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ABSTRACT 12 

A closed-form solution for one-dimensional two-phase flow through a homogeneous porous 13 
medium is presented that is applicable to water flow in the vadose zone and flow of 14 
nonaqueous phase fluids. The solution is a significant improvement to the one originally 15 
presented by McWhorter and Sunada (1990), allowing the analysis of wetting phase entry 16 
saturations ranging from residual to full. Our aims are to provide a detailed analysis of how 17 
the solution to the governing partial differential equation of two-phase flow can be obtained 18 
from a functional integral equation arising from the analytical treatment of the problems and 19 
to present an improved algorithm for the implementation of this solution. The integral 20 
functional equation is obtained by imposing a set of assumptions for the boundary conditions. 21 
The proposed method can be used to obtain solutions that incorporate a wide range of 22 
saturation values at the entry point. The semi-analytical solution will be useful in the 23 
verification of vadose zone flow and multi-phase flow codes designed to simulate more 24 
complex two-phase flow problems in porous media where capillary effects must be included. 25 
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1. Introduction 29 

Complex multi-dimensional numerical models of multi-phase flow through porous media 30 
such as those described by Helmig (1997), Mikyška et al. (2004), or Mikyška and 31 
Illangasekare (2005) require verification to assure that the governing equations are solved 32 
correctly and the codes do not contain programming errors. This step of code verification is a 33 
necessary step in modeling protocols used in practice (e.g., Anderson & Woessner (2002)). 34 
Code simulations are compared to closed-form analytical solutions of the governing equations 35 
to estimate numerical errors and other inaccuracies of numerical schemes. Two well-known 36 
one-dimensional solutions of the two-phase flow equations include the Buckley-Leverett 37 
solution of flow without capillary effects (e.g., described by Helmig (1997) and LeVeque 38 
(2002); or see references in McWhorter and Sunada (1990)), and the exact integral solution 39 
derived by McWhorter and Sunada (1990) with subsequent discussions by Chen et al. (1992), 40 
McWhorter and Sunada (1992), and Fučík et al. (2005), which includes both advective and 41 
capillary effects. In this paper, we discuss the exact integral equation for the wetting-phase 42 
saturation obtained by McWhorter and Sunada (1990). This equation must be numerically 43 
integrated to yield the saturation distribution along the length of the soil column, and a value 44 



for entry saturation is needed as an input boundary condition. The solution to the problem as 45 
presented by McWhorter and Sunada (1990) has limitations in those situations where the 46 
entry wetting-phase saturations are high.  47 
As numerical models are designed to simulate conditions that include high entry wetting 48 
saturations (e.g., wetting front propagation, water flooding for enhanced recovery), analytical 49 
models  used for code verification should have the capability to simulate this flow condition. 50 
We present an improvement of the technique, that allows the exact integral solution to be 51 
reliably obtained under conditions where the McWhorter and Sunada (1990) approach fails to 52 
converge. Our approach provides insight into the solution behavior and explains the 53 
limitations of the previously known method of resolution of the integral equation. This 54 
generalized approach is applicable to unsaturated zone (water - air) or saturated zone (water - 55 
NAPL) models when both phases are assumed to be incompressible.  We perform a series of 56 
qualitative and quantitative computations that show our algorithm agrees with previously 57 
obtained results while demonstrating the improved performance. 58 

2. Two-phase flow model 59 

In this section we introduce basic notation and set up the governing equations.  60 

2.1 Transport equation with capillarity 61 

We consider a one-dimensional problem describing flow of two incompressible and 62 
immiscible fluids through a porous medium where the non-wetting phase (indexed n ) is 63 
horizontally displaced by the wetting fluid (water, indexed w ) (therefore neglecting the 64 
influence of gravity). Darcy’s law, when written for each of the fluid phases, has the 65 
following form: 66 
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∂

= − ,
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where qα , αλ , and pα  are the flux, mobility and pressure of the phase α , respectively, 68 
where we use { }w nα ∈ , . The α -phase mobility is defined as 69 
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where kα  is the permeability and αμ  is the dynamic viscosity of phase α  (Bastian, 1999). 71 
The total flux tq  is defined as the sum of the fluxes of each of the phases ( )t w nq q q= + .  The 72 
capillary relation, c n wp p p= − , with a given function ( )c c wp p S=  of the effective wetting 73 
phase saturation wS , links the wetting and the nonwetting balance equations. The effective 74 
saturation of the phase α  is defined by 75 
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where wrS  and nrS   are the residual wetting and non-wetting phase saturations, respectively, 77 
and sα  is the saturation of phase α . The effective saturation is always between 0 and 1, 78 
which simplifies the description of the dependent variable by the definition 1w nS S+ =  79 
(Helmig, 1997).  80 
Introducing the wetting and nonwetting phase fractional flow functions 81 
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and diffusivity functions 83 
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we obtain the expression for the α -phase flux as 86 

 ( ) ( ) w
w t w

Sq f S q D S
xα α α

∂
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∂
 (7) 87 

The mass-balance equation has the following form (the fluid mass density is assumed 88 
constant): 89 

 (1 ) 0wr nr
q SS S
x t
α α∂ ∂
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∂ ∂
 (8) 90 

where Φ  is the porosity.  91 
The two-phase flow equation is obtained by substituting (7) into the mass-balance equation 92 
(8) to yield 93 

 
( )(1 ) ( )w w w w

wr nr t w w
S f S SS S q D S
t x x x

∂ ∂ ∂∂ ⎛ ⎞Φ − − = − + ,⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9) 94 

which corresponds to equation (2) in McWhorter and Sunada (1990). Substituting 1w nS S= − , 95 
equation (9) becomes 96 

 
(1 )(1 ) (1 )n n n n

wr nr t n n
S f S SS S q D S
t x x x
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 (10) 97 

Equations (9) and (10) are equivalent and they can be used in the formulation of either a 98 
wetting phase or a nonwetting phase displacement problem. A general form of the two-phase 99 
flow equation is given as 100 

 
( )(1 ) ( )wr nr t

S f S SS S q D S
t x x x
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 (11) 101 

where we obtain equations (9) or (10) using respective substitutions for the functions f , D  102 
and S . For the one-dimensional displacement problem, the initial and boundary saturations 103 
(at 0x =  and x →+∞ ) must be defined. 104 
McWhorter and Sunada (1990) presented the closed-form analytical solution for equation (11) 105 
for both one-dimensional and radial displacement. The radial displacement problem presented 106 
in McWhorter and Sunada (1990) is not discussed in this paper because a different type of the 107 
integral equation arises in that case. 108 
We will discuss conditions under which the flow equation can be solved analytically to 109 
provide a simple one-dimensional benchmark solution for verification of more complex two-110 
phase flow codes.  111 

2.2 Transport equation without capillarity 112 

The last term in equation (11) vanishes when the capillary effects represented by the term 113 
( )cdp S dS/  in the diffusivity function ( )D S  are neglected, resulting in the Buckley-Leverett 114 

equation for two-phase flow (Helmig, 1997) 115 
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The first-order hyperbolic equation (12) represents a limiting case for equation (11) when 117 
( ) 0D S → . The boundary and initial conditions are defined as 118 
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The analytical solution to equation (11) is based on the method of characteristics and is given 120 
by 121 
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The function ( )f S  has an inflection point, so that the solution is implicitly given by equation 123 
(13) for 0 tS S S≥ ≥  (inverted saturation profile), where tS  is the Welge tangent saturation (or 124 
post-shock value; see LeVeque (2002)) that is determined from the relation 125 
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 127 

2.3 Capillary and relative-permeability model functions 128 

Denoting the intrinsic permeability of the medium by k , the relative permeability for the 129 
wetting phase is defined by rw wk k k= /  and the relative permeability for the nonwetting phase 130 
by rn nk k k= / . The functions rwk , rnk  and the capillary-pressure expression are used in the 131 
following formulations.  132 
The Brooks-Corey model (Brooks and Corey, 1964) relating capillary pressure cp  to 133 
saturation is given by 134 
 

1

0( )cp S P S λ−= ,  (15) 135 
where λ  and 0P  are parameters characterising the soil and phase properties; 0P  is called the 136 
entry pressure.  137 
Application of the Burdine (1953) formulation to the Brooks-Corey model results in relative 138 
permeability functions for the wetting and non-wetting phases in the form 139 
 

23( )rwk S S λ+= ,  (16) 140 

 
212( ) (1 ) (1 )rnk S S S λ+= − − . 141 

The van Genuchten (1980) capillary-pressure cp  expression is given as 142 
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1

1

0( ) 1
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m
cp S P S −= − ,  (17) 143 

where the parameters m  and n  are often related by 11 nm = − .  144 
Application of the Mualem (1976) relative-permeability functions to the van Genuchten 145 
model results in 146 
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3. Quasi-analytical solution 150 

Usefulness of a benchmark solution depends on its relative ease of use. We therefore consider 151 
the possibility of improving a closed-form solution to equation (11) based on the approach 152 
originally presented by McWhorter and Sunada (1990). In this section, The closed-form 153 



solution of McWhorter and Sunada (1990) is presented in this section to provide a basis for 154 
improvement. An enhancement that enables a wider range of entry saturations to be 155 
considered than the McWhorter and Sunada (1990) approach is presented in Section 4.  156 

3.1 Problem formulation 157 

A quasi-stationary solution of (11) under a particular set of conditions is presented. We 158 
assume that for all (0 )x∈ ,+∞  and [0 )t∈ ,+∞   159 
 0( 0)S t S, = ,  (19) 160 
 ( ) iS t S, +∞ = ,  (20) 161 
 (0 ) iS x S, = ,  (21) 162 
with 0 iS S> . If 0 iS S< , we must use the other formulation (i.e., (10) instead of (9)) or 163 
introduce a fractional flow function, nwF , as in McWhorter and Sunada (1990). An advantage 164 
of our approach is that we use the same code to compute the wetting as well as the non-165 
wetting phase displacement problem simply by defining respective functions f  and D  166 
appropriately.  167 
The displacing phase (indexed α ) is introduced to the column at 0x =  with volumetric flux 168 
given by 169 
 

1
2( 0) ( )q t A g t A tα

−, = = ,  (22) 170 

where 0A > . The function ( )g t  must have the form 
1
2( )g t t−= , as will be shown in Section 171 

3.4. The displaced phase flux at the inlet ( 0x = ) and the outlet ( x →+∞ ) are unknown. The 172 
boundary at x →+∞  is semi-permeable, characterized by a scalar coefficient [0 1]R∈ , , where 173 

0R =  implies that the boundary is impermeable and 1R =  implies no resistance to the flow 174 
at the boundary (unidirectional flow).  175 
It follows from (7) and from the assumption of incompressibility of both phases that 176 

 0tq
x

∂
= .

∂
 (23) 177 

Therefore, tq  is spatially uniform but may vary with time, i.e., for all 0x ≥  and 0t ≥  we get  178 
 ( ) ( 0) ( )tq t x R q t RAg tα, = , = .  (24) 179 
The total flux achieves its maximum value, ( ) ( )tq t Ag t= , at the outlet when 1R = . On the 180 
other hand, the total flux vanishes when 0R = . This represents bidirectional displacement 181 
where the displaced fluid is draining only at the inlet ( 0x = ).  182 
McWhorter and Sunada (1990) considered only the limiting cases of 0R =  and 1R = , but we 183 
note that the approach is valid for [0 1]R∈ , . The displacing phase is thus injected in the 184 
counter-current flow direction of the total flux tq . 185 
By combining equations (7), (22), and (24), we obtain the relationship 186 
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 188 

3.2 Basic assumptions 189 

We assume that the solution exists in the form ( )S S λ= , where 190 
 ( )x g tλ = .  (26) 191 
This substitution is possible, provided the basic assumption  192 



 ( ) is a strictly monotone function ofS S λ λ= .  (27) 193 
This assumption allows the dependence ( )S S λ=  to be inverted so that  ( )Sλ λ= .  194 
Assuming that S  as a function of λ  is sufficiently smooth, partial differentiation of (26) 195 
yields 196 
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and 198 
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where ( )g t′  and ( )Sλ′  stand for the derivatives ( )dg t dt/  and ( )d S dSλ / , respectively.  200 

3.3 Expression for Function F 201 

We define the  fractional flow function, ( )F F t x= , , as 202 
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and introduce the normalized fractional flow function, ( )Sϕ , where 204 
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 206 
Combining equations (29), (30) and (31) allows for the redefinition of F  in terms of S , 207 
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 209 

3.4 Stationary differential equation 210 

Introduction of expression (32) for F  to equation (11) yields 211 
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 (33) 212 

Substituting equation (26), (28), and (29) into (33), we obtain the equation 213 
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( )(1 ) ( ) (1 ( )) ( ) 0
( )wr nr i

g tS S S A R f S F S
g t

λ
′

′Φ − − + − = ,  (34) 214 

where ( )F S′  stands for ( )dF S dS/ .  215 
Only a function g  of the form 216 

 
1
2

1 2( ) ( 2 )g t C t C −= − +  (35) 217 
allows the removal of the explicit time dependence of the terms in equation (34) because the 218 
term 3( ) ( )g t g t′ /  equals 1C . The value of 1C  is arbitrary as long as it is negative. As the value 219 
of A  depends on 1C , it is therefore possible to choose for instance 1 1/ 2C = − .  220 
Differentiating (34) with respect to S  and substituting equation (32) for ( )F S  yields the 221 
second-order ordinary differential equation 222 

 2 2
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2 (1 ( )) ( ) ( )

wr nr
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S S D SF S
A R f S F S Sϕ
Φ − −′′ = − ,

− −
 (36) 223 

where ( )F S′′  stands for 2 2( )d F S dS/ .  224 



The boundary conditions for the ordinary differential equation (36) are 0( ) 1F S =  and 225 
( ) 0iF S = , which follow from (19) and (21), respectively. Note that matching the initial 226 

condition (21) to the condition ( ) 0iF S =  is possible only if (0)g = +∞ . This implies that the 227 

only possible form of the input flux function ( )g t  is 
1
2( )g t t−= , which in turn implies that 228 

2 0C =  by (35).  229 
Moreover, the boundary condition defined in (19) gives us 0( ) 0F S′ = . However, the problem 230 
is not overdetermined because the condition ( ) 0iF S =  will be used to establish the 231 
relationship between A  and 0S .  232 

3.5 Solution of the transport equation 233 

Once the function ( )F S  is known, we can derive the inverted form of (11) from the relation 234 
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S S

λ− ′ = = , ,
Φ − −

 (37) 235 

which is in a form similar to the Buckley-Leverett analytical solution (13), given by 236 
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This expression is valid for all values of 0[ ]iS S S∈ ,  because the function ( )dF S dS/  can be 238 
inverted as a consequence of the basic assumption expressed in (27).  239 
In order to demonstrate the relationship between the Buckley-Leverett and the McWhorter-240 
Sunada exact solutions, we define the Buckley-Leverett fractional flow function BLF  as 241 
follows: 242 
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where tS  is the Welge tangent saturation given by (14). It is obvious that the function BLF  244 
does not satisfy the basic assumption (27) due to the relationship (37) and the linear part of 245 

BLF . However, the solutions (13) and (38) are formally the same when BLF  is substituted for 246 
F .  247 

4. Integral solution 248 

4.1 Derivation 249 

The equation (36) cannot be solved until the relationship between A  and 0S  is determined. 250 
Following McWhorter and Sunada (1990), we integrate (36) twice and include 0( ) 0F S′ =  251 
and 0( ) 1F S =  to obtain 252 
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The condition ( ) 0iF S =  allows for the establishment of the relationship between A  and 0S  254 
as follows 255 



 
0

2
2

(1 ) ( ) ( )
2(1 ( )) ( ) ( )

i

S
wr nr i

i S

S S v S D vA dv
Rf S F v vϕ

Φ − − −
= .

− −∫  (41) 256 

The integral equation (40) can be rewritten by means of (41) into the form 257 

 

0

0

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) 1
i

i

S
v S D v

F v v
S

S
v S D v
F v v

S

dv
F S

dv

ϕ

ϕ

−
−

−
−

= − .
∫

∫
 (42) 258 

Differentiating this integral equation, we obtain the function ( )F S′  259 
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The magnitude of the diffusion term ( )D S  does not influence the function F  because 261 
multiplicative constants in the term ( )D S  can be cancelled in (42) as well as in (43). It affects 262 
only the value of A  in (41).  263 

4.2 Iteration scheme 264 

In agreement with McWhorter and Sunada (1990), the unknown function ( )F S  is computed 265 
from the integral equation (42) by iteration. The iterative process is as follows: 266 
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 (44) 267 

As in McWhorter and Sunada (1990), we suggest using 0 1F ≡  as a first guess. The function 268 

kF  is considered to be the solution of (40) when successive iterations are sufficiently small in 269 
a norm. In our case, we use the L∞  norm and terminate the iterative process when  270 
 1k k FL

F F ε
∞

+− < .  (45) 271 

The integrals in (44) are evaluated numerically, therefore the exact solution is often referred 272 
to as quasi-analytical solution. The iterative process is rapid and convergent for all values of 273 

0S  in case of the bidirectional flow ( 0R = ). However, serious difficulties occur when 0S  and 274 
R  are close to one as the following first-iteration analysis demonstrates.  275 

4.3 Test problems 276 

Table 1 gives the parameter values that are used to demonstrate our approach. Water is the 277 
wetting phase in our computational experiments, while various realistic or theoretical non-278 
wetting liquids are used. The term NAPL stands for non-aqueous phase liquid and DNAPL is 279 
denser-than-water NAPL.  280 
The first setup consists of the use of Brooks-Corey model functions and artificially selected 281 
values of the soil parameters (see Helmig (1997)). In Setup 1, we choose 0 020nμ = . . Note 282 
that efficiency of our approach increases with decreasing w nμ μ/ .  283 
Setups 2 and 3 contain the parameters of laboratory test soils used in our ongoing research 284 



(sand #30 as in Turner (2004), p.43) and a test NAPL Soltrol 220.  285 
 286 

 Par. Units  Setup 1  Setup 2  Setup 3   
Porosity  Φ  [ ]−   0.3  0.4   

Intrinsic Permeability  k   2[ ]m   1010−   102 26 10−. ⋅    
Residual Water Sat.  wrS  [ ]−   0  0.144   
Residual NAPL Sat.  nrS  [ ]−   0  0.069   

Water Viscosity  wμ  1 1[ ]kg m s− − 0.001  0.001   
DNAPL Viscosity  nμ  1 1[ ]kg m s− − 0.020  0.0035 (Soltrol 220)   

Model functions Brooks-Corey Brooks-Corey van Genuchten
 0P  [ ]Pa   1000  668  909   
 λ   [-]  2  2.29   
 m  [-]    0.75   

 287 
Table 1.  Parameter values for the soil and liquids used in the computational examples.  288 

4.4 First iteration 289 

The iterative scheme presented by McWhorter and Sunada (1990) exhibits unsatisfactory 290 
behavior when the denominator in the integrand ( ) ( ( ) ( ))D v F v vϕ/ −  in (42) approaches zero. 291 
This happens when both 0S  and R  are close to 1. We offer an analytical justification of this 292 
phenomenon. It can be shown that ( ) ( )F S Sϕ>  for all 0( )iS S S∈ , . Hence, this relationship 293 
must stand for all approximations kF  of the function F .  294 
The first iteration of the function F  is obtained by substituting 0 1F ≡  into the right hand side 295 
of integral equation (44). Using Brooks-Corey model functions (16) and (15), the first 296 
iteration 1F  for the wS  formulation is expressed analytically as follows: 297 

 
1 1

1 1

3 4
0 0

1 3 4
0 0

(3 4 )( ) 1
(3 4 )

w w w
w

i i i

S S S S SF S
S S S S S

λ λ

λ λ

λ λ λ
λ λ λ

+ +

+ +

− − +
= − .

− − +
 (46) 298 

The second iteration of the function F  cannot be computed by substituting 1F  into the right 299 
hand side of integral equation (44) for certain values of 0S , because the function 1F  intersects 300 
the function ϕ  and the integrand ( ) ( ( ) ( ))D v F v v/ −  becomes unbounded. This is illustrated in 301 
Figure 1, where we set 0iS = , 1R =  and 0 {0 5 0 7 0 9 1}S ∈ . , . , . , .  302 
Equation (46) implies that the first iteration of F  is only dependent on λ . We studied the 303 
behavior of 1F  with respect to ϕ  for common values of λ , finding that λ  does not affect the 304 
formation of the instability of the iterative process in any remarkable way.  305 
Although the values wμ  and nμ  do not influence 1F , they have an important impact on the 306 
instability formation of the iterative process by the function ϕ , as shown in Figure 1. As an 307 
illustration we study the non-wetting phase displacement problem with 1R =  and 0iS = , i.e. 308 

wfϕ ≡ . Whenever the function ϕ  intersects the first iteration 1F , a singularity in the 309 
integrand ( ) ( ( ) ( ))D v F v vϕ/ −  in (42) occurs.  310 
The viscosity ratio, w nM μ μ= / , is the key parameter that affects the stability of the iterative 311 
process because it shifts the inflexion point of the function ϕ  towards 0S  or iS  (see Figure 312 



1). The singularity may occur at any saturation in the interval 0( )iS S, , not just in the vicinity 313 
of 0S . The other parameter that influences the formation of the instability after the first 314 
iteration is the initial saturation, iS , which appears in both the function ϕ  and 1F .  315 
 316 

iS   Viscosity ratio w wμ μ/    
 0.001  0.01  1  100  1000   
0.00  0.33593  0.52734 0.91578 0.99728 0.99984   
0.10  0.30390  0.49330 0.90798 0.99824 0.99976   
0.20  0.30468  0.45937 0.89843 0.99656 0.99966   
0.30  0.41142  0.45790 0.88378 0.99602 0.99957   
0.40  0.52743  0.54003 0.86640 0.99527 0.99970   
0.50  0.63696  0.64037 0.84570 0.99413 0.99928   
0.60  0.73642  0.73730 0.82968 0.99230 0.99896   
0.70  0.82395  0.82414 0.84648 0.98904 0.99842   
0.80  0.89818  0.89821 0.90151 0.98261 0.99843   

 317 

Table 2. Critical values 0S ∗  for Setup 1.  318 

 319 
In displacement problems involving NAPLs that are less viscous than water, as is 320 
demonstrated in Tables 2, 3 and 4, the original iterative process fails for values of 0S  near 1 . 321 
In order to demonstrate limits of the functionality of the original iterative scheme, we 322 
introduce the critical value denoted by 0S ∗  that represents the lowest value of 0S  for which the 323 
original iterative scheme (44) fails after the first iteration. We determine 0S ∗  experimentally 324 
by bisectioning an interval (1) (2)

0 0[ ]S S, , where (1)
0S  and (2)

0S  corresponds to 0S  for which the 325 
iterative scheme (44) is stable and fails, respectively. In the next step, we test if the scheme 326 
(44) works for (3) (1) (2)

0 0 0( ) 2S S S= + /  and then we shift the left ( (1) (3)
0 0S S:= ) or the right 327 

( (2) (3)
0 0S S:= ) boundary of the interval, so that the scheme (44) works for (1)

0 0S S=  and fails for 328 
(2)

0 0S S= . Iterations are terminated when the length of the interval (1) (2)
0 0[ ]S S,  is below a 329 

prescribed tolerance.  330 
 331 

iS   Viscosity ratio w wμ μ/    
 0.001  0.01  1  100  1000   
0.00  0.32018  0.51366 0.91241 0.99715 0.99982   
0.10  0.30390  0.47880 0.90463 0.99824 0.99973   
0.20  0.30312  0.44335 0.89335 0.99641 0.99980   
0.30  0.41347  0.45295 0.87831 0.99584 0.99954   
0.40  0.52946  0.54032 0.85929 0.99503 0.99970   
0.50  0.63889  0.64208 0.83886 0.99384 0.99920   
0.60  0.73798  0.73886 0.82460 0.99191 0.99890   
0.70  0.82500  0.82520 0.84648 0.98849 0.99832   
0.80  0.89872  0.89877 0.90195 0.98281 0.99843   

 332 

Table 3. Critical values 0S ∗  for Setup 2.  333 



 334 
Results given in Tables 2, 3, and 4 suggest that the instability issue of the original process is 335 
not peripheral for highly viscous non-wetting fluids. For example, the original iterative 336 
process fails for values of 0S  greater than 0 82.  in the case of the test NAPL Soltrol 220 337 
(Setup 2, Table 1), which is more viscous than water, 1 10 0035n kg m sμ − −= . , so that 338 

0 286M = . .  339 
Based on Figure 1, the original iterative process will fail for the values of 0 0S S ∗≥ . 340 
 341 

iS   Viscosity ratio w wμ μ/    
 0.001  0.01  1  100  1000   
0.00  0.27734  0.52319 0.98449 0.99998 0.99999   
0.10  0.23359  0.47792 0.98143 0.99998 0.99999   
0.20  0.32031  0.44921 0.97714 0.99997 0.99999   
0.30  0.44731  0.49277 0.97163 0.99996 0.99999   
0.40  0.56977  0.58690 0.96410 0.99995 0.99999   
0.50  0.68108  0.68798 0.95483 0.99993 0.99999   
0.60  0.77875  0.78123 0.94492 0.99991 0.99999   
0.70  0.86109  0.86193 0.93784 0.99988 0.99999   
0.80  0.92667  0.92687 0.94645 0.99982 0.99999   

 342 

Table 4. Critical values 0S ∗  for Setup 3.  343 

 344 

4.5 Modified integral equation 345 

We propose the following modified method to avoid unstable behaviour of the numerical 346 
iterative process. Denoting the principal part of the integrand in (42) as ( )G D F ϕ= / − , we 347 
can rewrite equation (42) as 348 
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which allows us to deduce two types of iterative schemes; method A, given by the scheme 350 
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and method B, given by the scheme 352 
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We suggest using 0 (1 )G D ϕ= / −  as the initial guess, which is equivalent to the case where 354 

0 1F ≡ , as proposed by McWhorter and Sunada (1990).  355 
The integrals in (48) and (49) are evaluated numerically, taking advantage of the form of the 356 
integrand as follows. Let 0{ }j M

jG =  be an equidistant discretization of the function G  in the 357 

interval 0[ ]iS S, , defined as ( )j
iG G S j h= + ,  where 0( )ih S S M= − / . The numerical solution 358 

of the integral equations (48) and (49) requires computation of the integral  359 
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We suggest introducing partial numerical integrals ja  and jb , given as 361 
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Linear interpolation of 0{ }j M
jG =  in the interval 0[ ]iS S,  allows the value of ja  and jb  to be 363 

expressed as 364 
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and 366 

 1( )
2
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 368 
The integral (50) in the modified iterative schemes (48) and (49) is approximated by lI  for 369 
discrete values of saturation ( iS S l h= + ) by  370 
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Since both ( ) 0iF S =  and ( ) 0iSϕ =  by definition, it follows from ( )G D F ϕ= / −  that the 372 
value of ( )iG S  is undefined (note that ( ) 0iD S >  if 0iS > ). The value 0 ( ) 0k iG G S= =  is used 373 
in the scheme for all k . 374 
Application of the discretization ( )l

iD D S l h= +  and ( )l
iS l hϕ ϕ= +  and using the 375 

expression (54) in the method A (48) yields 376 
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Analogously, the method B (49) is given by the scheme 378 
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 380 
The presented form of the iterative scheme benefits from the type of the integral equations 381 
(42), (48) and (49). In all iterations, only M  numbers ja  and jb  need to be evaluated.  382 
Values of the functions kF  are computed from  383 
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as ( ) 0G S >  for all 0( )iS S S∈ , . It is better to determine the first derivative F ′  based on the 385 



expression (43) in the form  386 
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than using the numerical differentiation since the terms ja  and 0I  are already evaluated.  388 

4.6 Behavior of the modified iterative scheme 389 

In this section we focus on the unidirectional case with 1R =  and will illustrate the 390 
functionality of the modified method. We observe a monotone growth of successive estimates 391 
of G  in all computations, i.e. 1k kG G +≤  in 0[ ]iS S, , and fast convergence for all cases where 392 
the original iterative method succeeds (Table 5).  393 
 394 

Case  0S    
 0 4.   0 5.   0 6.   0 7.   0 8.   0 9.   0 99.   0 999.   

Setup 1 with 0iS =    
Original equation (44) 13  12  18  failed  failed  failed  failed  failed  

Method A (48)  574  628  637  1645  8342  89684  75356132 910>  
Method B (49)  36  115  411  1645  8348  89681  75459253 910>   

Setup 2 with 0iS =    
Original equation (44) 13  13  13  14  27  failed  failed  failed  

Method A (48)  636  711  772  807  1655  17913  15570965 910>   
Method B (49)  29  31  87  320  1652  17925  15595550 910>   

Setup 3 with 0iS =    
Original equation (44) 14  14  14  14  15  27  failed  failed  

Method A (48)  1527  1747  1937  2103  2198  2027  121888  7062455 
Method B (49)  36  38  46  99  294  1493  121891  7067090 

Setup 2 with 0 2iS = .   
Original equation (44) 20  19  18  18  failed  failed  failed  failed  

Method A (48)  38  25199  29088 32236 31501 17723  15368374 910>  
Method B (49)  7  136  88  323  1654  failed  15345177 910>  

Setup 3 with 0 2iS = .   
Original equation (44) 22  21  20  19  19  46  failed  failed  

Method A (48)  20523  24836  29106 33519 38123 40250  119475  6836971 
Method B (49)  630  157  failed  68  292  1477  119467  failed  
 395 

Table 5. Number of iterations required to obtain the function F  and the value of A  with accuracy 396 
1510Aε
−= . In some situations with 0iS > , the modified iterative method B fails randomly.   397 

The modified method converged for cases where the original method failed. In the modified 398 
method, successive estimates of G  decreased in the L∞  norm, but the number of iterations 399 
needed to reach a required precision of G  increases considerably as both 0S  and R  approach 400 
one. Although there are negligible variations in successive estimates kF  in this situation, the 401 
value of A  converges slowly, as shown in Figure 2. Successive differences of the function F  402 
estimates decrease very rapidly in the beginning of the iterative process, while the value of A  403 
increases considerably. Values of Fε  between 2010−  to 3510−  are necessary to obtain 404 



successive differences of the approximations of A  below 1510Aε
−= , which reaches the 405 

common computer round-off error.  406 
We suggest using the difference between successive approximations of A  as the stopping 407 
criterion for the iterative process. This is represented formally as 408 
 1k k AA A ε+− < .  (59) 409 
We use the test models with highly viscous NAPL to demonstrate robustness of our modified 410 
iterative scheme in situations where the original iterative scheme fails even after the first 411 
iteration.  412 
We found that the method B (49) fails randomly due to numerical division by zero, when 413 

0iS > , because finite-precision evaluation of the fraction in (49) is indistinguishable from 1 414 
for S  very close to iS . If 0iS = , however, the process is stable because the diffusivity term 415 

(0) 0D =  lets ( )G S  vanish in the vicinity of iS . It is obvious that the value of ( )iG S  is 416 
undefined for all 0[0 ]iS S∈ , , since by definition ( ) ( ) 0i iF S Sϕ= = . We suggest excluding the 417 
value of ( )iG S  from the discretization of the function G  in the numerical computation 418 
because ( ) 0iF S = . Table 5 shows that the number of iterations required to reach machine 419 
precision of successive estimates of A  increases as 0 1S →  for both method A and B. This is 420 
due to the extremely small difference between the function ϕ  and F  in the neighborhood of 421 
one, as noted by McWhorter and Sunada (1990). Results given in Table 6 and Figure 3 422 
demonstrate how the function F  approaches the Buckley-Leverett-based function BLF  423 
introduced in (39). Moreover, convergence also takes place for the first and second 424 
derivatives of F , i.e. BLF F′ ′→  and BLF F′′ ′′→  as 0 1S → . 425 
The number of iterations increases as 0 1S → , because the integrals in the iterative scheme 426 
determined numerically become inaccurate as limited by the precision of the computer. More 427 
importantly, the limit function BLF  does not obey the basic assumption that S  is a strictly 428 
monotone function of λ  and its second derivative BLF ′′  is discontinuous. Numerical 429 
experiments showed that the function F ′′ , given as  430 
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is bounded by BLF ′′  (see Figure 3). The convergence of F  to BLF  as 0 1S →  can be studied 432 
only through numerical experiments since analytical techniques are not available.  433 
For 0S  close to 1, a large number of iterations is needed to achieve convergence of A  (see 434 
Figure 4). Above a certain value of 0S , the modified iterative process will not converge due to 435 
loss of numerical accuracy. However, estimates of the function F  and its first and second 436 
derivative may converge even though A  will not, since the fraction in (44) 437 
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suppresses any effect of changing A  on the function F .  439 
The lower subfigures of Figure 3 indicate that the function G  approaches the function BLF ′′  440 



multiplied by a constant involving 2A  (see (60)). Since ( ) 0BLF S′′ =  for all S  in [ )i tS S, , this 441 
possible limit function of G  as 0 1S →  does not solve the modified iterative schemes. This is 442 
due to ( ) 0D S ≠  in the interval [ )i tS S, , since zero values of G  are not admissible in the 443 
modified integral equation (47).  444 
Consequently, the integral equation (42) cannot be solved numerically for values of 0S  and R  445 
when they are too close to 1.  446 

 447 
 448 

Method A (48)   
0S   

1
BL L

F F−   
1

BL L
F F′ ′−   

1
BL L

F F′′ ′′−   Number of 
iterations   

0 6.  25 465648 10−. ⋅  12 481441 10−. ⋅  1 713216.  637    
0 7.  22 300671 10−. ⋅  11 076385 10−. ⋅  1 211580.  1645    
0 8.  35 765451 10−. ⋅  22 893127 10−. ⋅ 15 623390 10−. ⋅  8342    
0 9.  31 009092 10−. ⋅  35 437080 10−. ⋅  11 953441 10−. ⋅  89684    

0 99.  53 759800 10−. ⋅  42 194170 10−. ⋅ 23 099655 10−. ⋅  )10000000∗    
0 999.  51 207132 10−. ⋅  57 157822 10−. ⋅ 21 675954 10−. ⋅  )10000000∗    

0 9999.  51 068035 10−. ⋅  56 345308 10−. ⋅ 21 554650 10−. ⋅  )10000000∗    
Method B (49)   

0S   
1

BL L
F F−   

1
BL L

F F′ ′−   
1

BL L
F F′′ ′′−   Number of 

iterations   
0 6.  25 465648 10−. ⋅  12 481441 10−. ⋅  1 713216.  411   
0 7.  22 300671 10−. ⋅  11 076385 10−. ⋅  1 211580.  1645    
0 8.  35 765451 10−. ⋅  22 893127 10−. ⋅ 15 623390 10−. ⋅  8348    
0 9.  31 009092 10−. ⋅  35 437080 10−. ⋅  11 953441 10−. ⋅  89681   

0 99.  53 759809 10−. ⋅  42 194170 10−. ⋅ 23 099652 10−. ⋅ )10000000∗    
0 999.  51 207278 10−. ⋅  57 157773 10−. ⋅  21 675853 10−. ⋅  )10000000∗    

0 9999.  51 068200 10−. ⋅  56 345262 10−. ⋅ 21 554525 10−. ⋅  )10000000∗    
)∗ the precision 1510Aε

−=   was not reached yet after 810  iterations   
 449 

Table 6. Experimental approaching of BLF F→  as 0 1S →  for test Setup 1, 0iS =  and 1510Aε
−= .  450 

4.7 Limiting value of A 451 

The convergence of A is an important part of the computational scheme, especially as it 452 
depends on 0S . The iterative process may need a large number of iterations for A  to converge 453 
if 0S  and R  are close to one, while the estimates of the function F  vary negligibly. 454 
Therefore, we pursue the discussion of McWhorter and Sunada (1990), (1992) and Chen et al. 455 
(1992) concerning the limit  456 
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S

A S
→ −

.  (62) 457 

In this section, we consider only the unidirectional displacement case when 1R = .  458 
McWhorter and Sunada (1990) claimed that the limit (62) is infinite as a consequence of 459 
F ϕ→  close to 0S . However, this was questioned by Chen et al. (1992), claiming that the 460 



limit is always finite since the integrand  461 
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is bounded as 0 1S → . In the reply to this comment, McWhorter and Sunada (1992) 463 
confirmed that the limit (62) is always finite because the integrand (63) is bounded for 0v S= .  464 
On the other hand, our work shows that the value of A  increases without bounds as 0S  465 
approaches 1, as demonstrated in Figure 4. We extend our observations related to F ′′  466 
approaching BLF ′′  as 0 1S →  as follows.  467 
The term ( )Sλ′  can be evaluated by combining (32) and (36) to yield 468 
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We substitute this expression of ( )Sλ′  into (29) to obtain 470 
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The total flux condition (25) can be written in the terms of 0S  only, as follows: 472 
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This equation can be further simplified by employing the wS  formulation into  474 
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 476 
and thus one can state  477 
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 479 
The limit (67) is infinite for both the Brooks-Corey and van Genuchten models. That is  480 
 

0

2
01

lim ( )
S

A S
→ −

= +∞,  (68) 481 

which agrees with McWhorter and Sunada (1990). Note that the limit (68) is also infinity for 482 
the nS  formulation. This result implies that G  must be unbounded at some value of S . It can 483 
be seen in Figure 3 that G  grows dramatically as 0 1S →  in the region of tS  (the cusp at the 484 
front of the Buckley-Leverett shock). Since a cusp has an undefined second derivative, 485 
convergence to a cusp implies that the solution is unbounded in the vicinity of the cusp.  486 

5. Solution overview 487 

In this section, we demonstrate how the modified iterative methods using (48) and (49) can 488 
delineate the relationship between the McWhorter and Sunada and Buckley-Leverett 489 
analytical solutions. We perform computations for Setup 1 with 0iS =  with various values of 490 
R  and 0S . In order to compare the McWhorter and Sunada exact solution (37) with the 491 
Buckley-Leverett analytical solution (13), we use the value of A  corresponding to the 492 
McWhorter and Sunada exact solution for 1R = .  493 
Figure 5 shows how the cases of bi-directional displacement (R=0, diffusive term only in 494 
(11)), partially unidirectional displacement (R=0.8, both advective and diffusive terms in 495 
(11)), and unidirectional displacement (R=1, both advective and diffusive terms in (11)) are 496 



related to the Buckley-Leverett solution of the advection equation (12). As 0S  approaches 1, 497 
the diffusive term in (11) has less effect on the solution. Table 7 displays values of A  for 498 
various combinations of R  and 0S .  499 
The modified iterative process allows solutions for strongly advective terms in (11), whereas 500 
the original iterative process fails in situations where the diffusive term is still significant. 501 
Since the critical value 0S ∗  for Setup 1 with 0iS =  and 1R =  is 0 0 69S ∗ = . , solutions with 502 

1R =  shown in Figure 5, except the case 0 0 6S = . , are only obtainable by our modified 503 
iterative method.  504 
 505 

Dependency of A on S0 and R 
S0 R=0 R=0.2 R=0.4 R=0.6 R=0.8 R=1 

0 40. 1.372282 410−⋅  1.422307 410−⋅ 1.481100 410−⋅ 1.552003 410−⋅ 1.640657 410−⋅ 1.757718 410−⋅
0 50. 1.758601 410−⋅  1.858937 410−⋅ 1.987728 410−⋅ 2.164222 410−⋅ 2.435723 410−⋅ 2.984027 410−⋅
0 60. 1.977760 410−⋅  2.114149 410−⋅ 2.297735 410−⋅ 2.569444 410−⋅ 3.056894 410−⋅ 4.879118 410−⋅
0 70. 2.082277 410−⋅  2.237585 410−⋅ 2.451182 410−⋅ 2.779105 410−⋅ 3.417753 410−⋅ 8.879432 410−⋅
0 80. 2.121827 410−⋅  2.284708 410−⋅ 2.510610 410−⋅ 2.862575 410−⋅ 3.572659 410−⋅ 2.027109 310−⋅
0 90. 2.131235 410−⋅  2.295997 410−⋅ 2.525009 410−⋅ 2.883224 410−⋅ 3.613094 410−⋅ 5.474154 310−⋅
0 99. 2.131881 410−⋅  2.296778 410−⋅ 2.526013 410−⋅ 2.884687 410−⋅ 3.616068 410−⋅ 3.276546 210−⋅

Table 7. Values of A  for various values of R  and 0S ; test Setup 1, 0iS = , M=10000 nodes. 506 

6. Conclusions 507 

The article is devoted to a detailed discussion of the benchmark solution described by 508 
McWhorter and Sunada (1990). We propose a reliable procedure for solving the implicit 509 
functional relationship that is the result of the analytical treatment of the advection-diffusion 510 
equation. This algorithm extends the use of the semi-analytical approach to a wider range of 511 
entry saturations than the original algorithm proposed by McWhorter and Sunada (1990). The 512 
use of our algorithm is limited by the round-off errors of the numerical computations  and the 513 
number of iterations required for solution.  514 
From our analysis, it follows that the original iterative method proposed by McWhorter and 515 
Sunada (1990) can be used to obtain solutions of the unidirectional displacement problem 516 
(R=1) only in a restricted interval of the entry saturations 0S .  The restricted interval can be 517 
determined by examining the first iteration. Our modified iterative method removes this 518 
restriction and offers a solution for larger range of entry saturations.  519 
Method A (equation (48)) can be used to compute the solution for any admissible parameters 520 
except the values of 0S  and R  extremely close to 1 while method B (equation (49)) randomly 521 
fails if 0iS > . Therefore, the iterative method described by method A (equation (48)) can be 522 
used exclusively for use of the McWhorter and Sunada quasi-analytical solution.  523 
The comparison of the McWhorter-Sunada fractional flow function F  with the Buckley-524 
Leverett fractional flow function, BLF , allows us to determine the limit of A  as 0 1S →  and 525 
therefore to confirm the statement given by McWhorter and Sunada (1990), in contrast to the 526 
contentions of Chen et al. (1992) and McWhorter and Sunada (1992).  527 
The practical value of our results is that they contribute to a detailed analysis of the analytical 528 
benchmark solution often useful for verification of more complex numerical models and in 529 
providing a tool for comparison under conditions of high wetting-phase saturations. Such a 530 



code verification was conducted by Mikyška and Illangasekare (2005) where this improved 531 
solution was used.  532 
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 579 
Figure 1.  Graphs of the function ϕ  and 1F  for different choices of 0S  illustrate why the original 580 

iterative process fails after the first iteration. Brooks-Corey model uses 2λ = . 581 

 582 

583 
 584 

Figure 2. Illustration of successive approximations of F  in the L∞  norm (using the decadic logarithmic 585 
scale) and the value of A . We used the method A (48), Setup 1 with 0iS =  and 0 0 99S = . . The iterative 586 

process is terminated by 1510Aε
−= .   587 



 588 
Figure 3. Experimental convergence of the functions F  to BLF , F ′  to BLF ′  and F ′′  to BLF ′′  as 589 

0 1S →  for Setup 1 with 0iS = , using method A (48). The last figure depicts the evolution of the 590 
function G  as 0 1S → . Note that the function G  and F ′′  are related by (60), i.e. they differ only by a 591 

factor involving 2A .  592 
 593 



 594 
Figure 4. Evolution of A  in the modified iterative process, method A; test Setup 1, 0iS = . As 0S  595 

approaches 1, the iterative process requires higher number of iterations to reach convergence of A . In 596 
the very proximity of 0 1S = , the value of A  is far from convergence even after 810  iterations. The 597 

situation for the method B is analogous.   598 
 599 
 600 



 601 
Figure 5. McWhorter exact solutions (the method A) and Buckley-Leverett analytical solutions for various 602 

0S ; test Setup 1, 0iS = . As 0 1S → , the unidirectional displacement solution (R=1) approaches the 603 
Buckley-Leverett solution, while the head of the bi-directional displacement solution (R=0) advances 604 

negligibly.  605 
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