Studijní plány a sylaby FJFI ČVUT v Praze

-

Aktualizace dat: 25.11.2016

english

Bakalářské studiumAplikace softwarového inženýrství
Aplikace softwarového inženýrství (Praha)
1. ročník
předmět kód vyučující zs ls zs kr. ls kr.

Povinné předměty

Matematická analýza 101MAN Pošta 4+4 z - - 4 -
Předmět:Matematická analýza 101MANdoc. Ing. Pošta Severin Ph.D.----
Anotace:Základní kurs matematické analýzy funkcí jedné reálné proměnné (diferenciální počet).
Osnova:1. Opakování středoškolské matematiky: matematická logika, rovnice a nerovnice, goniometrické funkce, exponenciála a logaritmus, zkrácený zápis součtu a součinu, matematická indukce
2. Množiny a zobrazení
3. Limita posloupnosti reálné, komplexní - základní vlastnosti, limity některých posloupností, číslo e a exponenciální funkce, některé elementární funkce
4. Limita a spojitost funkce jedné reálné proměnné - základní vlastnosti
5. Derivace funkce - základní vlastnosti
6. Základní věty diferenciálního počtu reálné funkce jedné reálné proměnné
7. Průběh funkce
Osnova cvičení:
Cíle:
Požadavky:
Rozsah práce:
Kličová slova:
Literatura:

Matematická analýza B 1, zkouška01MANB Pošta - zk - - 4 -
Předmět:Matematická analýza B 1, zkouška01MANBdoc. Ing. Pošta Severin Ph.D.----
Anotace:Obsahem předmětu je zkouška k příslušnému předmětu dle studijního plánu.
Osnova:Obsahem předmětu je zkouška k příslušnému předmětu dle studijního plánu.
Osnova cvičení:
Cíle:
Požadavky:
Rozsah práce:
Kličová slova:
Literatura:

Lineární algebra 101LAL Dvořáková 3+2 z - - 2 -
Předmět:Lineární algebra 101LALdoc. Ing. Dvořáková Lubomíra Ph.D.----
Anotace:Předmět shrnuje nejdůležitější pojmy a věty spojené se studiem vektorových prostorů.
Osnova:1. Vektorový prostor
2. Lineární závislost a nezávislost
3. Báze a dimenze
4. Podprostory vektorového prostoru
5. Lineární zobrazení
6. Matice lineárních zobrazení
7. Frobeniova věta
Osnova cvičení:
Cíle:
Požadavky:
Rozsah práce:
Kličová slova:
Literatura:

Lineární algebra B 1, zkouška 01LALB Dvořáková - zk - - 3 -
Předmět:Lineární algebra B 1, zkouška01LALBdoc. Ing. Dvořáková Lubomíra Ph.D.----
Anotace:Obsahem předmětu je zkouška k příslušnému předmětu dle studijního plánu.
Osnova:Obsahem předmětu je zkouška k příslušnému předmětu dle studijního plánu.
Osnova cvičení:
Cíle:
Požadavky:
Rozsah práce:
Kličová slova:
Literatura:

Matematická analýza B 201MAB2 Pošta - - 2+4 z,zk - 7
Předmět:Matematická analýza B201MAB2doc. Ing. Pošta Severin Ph.D.-2+4 Z,ZK-7
Anotace:Základní kurs matematické analýzy reálných funkcí jedné reálné proměnné (integrální počet).
Osnova:1. Primitivní funkce - základní vlastnosti, metoda per partes, substituce, primitivní funkce k racionálním funkcím a dalším základním typům funkcí
2. Newtonův a Riemannův integrál, jejich vztah, konvergence integrálu
3. Některé aplikace určitého integrálu - obsah rovinné oblasti, délka křivky, objem a povrch rotačního tělesa
4. Nekonečná řada - součet, základní vlastnosti, konvergence řady s nezápornými členy, s libovolnými členy
Osnova cvičení:1. Neurčitý integrál - per partes, substituce
2. Určitý Riemannův integrál
3. Aplikace integrálního počtu
4. Nekonečné řady - konvergence
Cíle:Znalosti:
Základní techniky výpočtu neurčitých a určitých integrálů reálných funkcí jedné reálné proměnné, základní techniky vyšetřování konvergence číselných řad.

Schopnosti:
Aplikace teoretických znalostí na konkrétních příkladech z matematické a fyzikální praxe.
Požadavky:Absolvování základního kurzu Matematická analýza 1 (01MA1).
Rozsah práce:
Kličová slova:Integrální počet, reálná funkce, reálná proměnná, analýza, limita, integrál, nekonečná řada.
Literatura:Povinná literatura:
[1] E. Pelantová: Matematická analýza II (skriptum FJFI), ČVUT, Praha 2007
[2] E. Pelantová, J. Vondráčková: Cvičení z matematické analýzy (integrální počet) (skriptum FJFI), ČVUT, Praha 2006

Doporučená literatura:
[3] E. Dontová: Matematika II (skriptum FJFI), ČVUT, Praha 2001
[4] J. Kopáček a kol.: Matematická analýza pro fyziky II (skriptum MFF UK), Matfyzpress, Praha 2003
[5] J. Kopáček a kol.: Příklady z matematiky pro fyziky II (skriptum MFF UK), Matfyzpress, Praha 2003
[6] B. P. Děmidovič: Sbírka příkladů z matematické analýzy, Fragment, Praha, 2003.

Lineární algebra B 201LAB2 Ambrož - - 1+2 z,zk - 4
Předmět:Lineární algebra B201LAB2Ing. Ambrož Petr Ph.D.-1+2 Z,ZK-4
Anotace:Předmět shrnuje nejdůležitější pojmy a věty spojené s maticovým počtem, s prostory se skalárním součinem a s lineární geometrií.
Osnova:Matice a soustavy lineárních algebraických rovnic - determinanty - skalární součin a ortogonalita - vlastní čísla a vlastní vektory matic - lineární geometrie v eukleidovském prostoru.
Osnova cvičení:1. Řešení soustav lineárních algebraických rovnic
2. Výpočet inverzní matice Gaussovou eliminací
3. Permutace a determinanty
4. Hledání ortogonálních a ortonormálních bází, výpočet ortogonálního průmětu vektoru, Gram-Schmidtův ortogonalizační proces
5. Výpočet vlastních čísel a vlastních vektorů matic
6. Různé zápisy lineárních variet a konvexních množin, vyšetřování průniku lineárních variet
Cíle:Znalosti:
Základní přehled z maticového počtu, pojmy spojené se skalárním součinem a lineární geometrií.

Schopnosti:
Využití nastudovaných vět v navazujících předmětech a praktických úlohách.
Požadavky:Složená zkouška z předmětu Lineární algebra 1 nebo Lineární algebra plus.
Rozsah práce:
Kličová slova:Matice, soustavy lineárních algebraických rovnic, determinanty, skalární součin, ortogonalita, vlastní čísla a vlastní vektory matic, lineární geometrie v eukleidovském prostoru.
Literatura:Povinná literatura:
[1] J. Pytlíček, Lineární algebra a geometrie, skriptum ČVUT, 1997
[2] J. Pytlíček, Cvičení z lineární algebry a geometrie, skriptum ČVUT, 1985

Doporučená literatura:
[3] J. Bečvář, Lineární algebra, Matfyzpress, Praha, 2005
[4] L. Motl, M. Zahradník, Pěstujeme lineární algebru, Karolinum, Praha, 2003
[5] K. Výborný, M. Zahradník, Používáme lineární algebru, Sbírka řešených příkladů, Karolinum, Praha, 2002

Základy programování18ZPRO Jarý, Virius 2+2 z - - 4 -
Předmět:Základy programování18ZPROdoc. Ing. Virius Miroslav CSc.2+2 Z-4-
Anotace:Přednáška je určena především posluchačům, kteří mají jen velmi malé nebo žádné zkušenosti s programováním. Seznámí posluchače se základními pojmy v oblasti programování a s programovacím jazykem C++.
Osnova:1. Co je to počítač, co je to program, co je algoritmus
2. Zobrazování dat v paměti počítače, význam datových typů
3. Struktura programu
4. Proměnné a neobjektové datové typy
5. Příkazy, Vstupní a výstupní operace
6. Funkce
7. Ukazatele, spojové seznamy
8. Modulární stavba programu, objektové typy
Osnova cvičení:1. První program
2. Algoritmus
3. Použití vestavěných datových typů
4. Složitější programy
5. Neobjektové datové typy
6. Příkazy
7. Vstupní a výstupní operace
8. Podprogramy
9. Ukazatele, spojové seznamy: Neobjektová implementace jednosměrně zřetězeného spojového seznamu
10. Objektové typy v C++, preprocesor
Cíle:Znalosti:
Programovací jazyk C++l.

Schopnosti:
Řešit základní programátorské úkoly s pomocí jazyka C++.
Požadavky:Nenavazuje na žádné předměty; předpokládá se pouze uživatelská znalost počítače.
Rozsah práce:Individuální práce studentů představují program v C++pro řešení zadaného úkolu se složitější datovou strukturou (např. s vlastní implementací spojového seznamu).
Kličová slova:C++, datový typ, příkaz, deklarace, pole, záznam, množina, překlad, ladění, objekt.
Literatura:Povinná literatura:
[1] Virius, M.: Základy programování v C++. Praha: ČVUT 2014. ISBN 978-80-01-05470-3.

Doporučená literatura:
[2] Stroustrup, B.: The C++ programming language. 4th ed. Addison-Wesley 2013. ISBN 978-0-321-56384-2.

Matematická ekonomie 1, 218EKO12 Jablonský 2+2 z,zk 2+2 z,zk 5 5
Předmět:Matematická ekonomie 118EKO1prof. Ing. Jablonský Josef CSc.2+2 Z,ZK-5-
Anotace:Obsahem kurzu je úvod do vybraných modelů a metod pro ekonomické rozhodování. Pozornost bude soustředěna především na optimalizační modely lineárního programování, možnosti jejich praktického využití a jejich řešení pomocí aktuálního programového vybavení.
Osnova:1. Ekonomické rozhodování - úvod.
2. Formulace úloh matematického programování, typické úlohy lineárního programování.
3. Základní pojmy LP a grafické řešení úloh LP.
4. Simplexová metoda - podstata algoritmu.
5. Dvoufázová simplexová metoda.
6. Dualita v úlohách LP.
7. Stabilita řešení úloh LP.
8. Postoptimalizační analýza a parametrické programování.
9. Distribuční úlohy LP.
10. Dopravní problém a jeho řešení.
11. Přiřazovací a okružní dopravní problém.
12. Celočíselné programování - formulace typických úloh.
13. Metody sečných nadrovin a metody větvení a mezí.
Osnova cvičení:1. Formulace typických úloh lineárního programování.
2. Formulace typických úloh lineárního programování.
3. Grafické řešení úlohy LP a interpretace výsledků.
4. Simplexová metoda.
5. Simplexová metoda.
6. Dualita v úlohách LP - formulace duálních úloh, interpretace duálních proměnných.
7. Stabilita řešení úloh LP.
8. Postoptimalizační analýza.
9. Celočíselné programování - metody sečných nadrovin.
10. Celočíselné programování - metoda větvení a mezí.
11. Dopravní problém - výpočet výchozího základního řešení.
12. Dopravní problém - výpočet optimálního řešení.
13. Speciální úlohy LP.
Cíle:Znalosti:
Studenti se seznámí se základními algoritmy pro řešení úloh lineárního a celočíselného programování a se softwarovými produkty pro úlohy tohoto typu.

Schopnosti:
Studenti budou schopni používat základní metody a modely lineárního programování při řešení konkrétních reálných rozhodovacích situací. Budou mít přehled o softwarových produktech pro modelování a optimalizaci.
Požadavky:
Rozsah práce:
Kličová slova:Operační výzkum, lineární programování, optimalizace, celočíselné programování.
Literatura:Povinná literatura:
[1] Jablonský, J.: Operační výzkum - kvantitativní modely pro ekonomické rozhodování. Professional Publishing, Praha 2002, 2003, 2004.

Doporučená literatura:
[2] Lagová, M., Jablonský, J.: Lineární modely. Oeconomica, Praha, 2009.

Předmět:Matematická ekonomie 218EKO2Ing. Zouhar Jan Ph.D.-2+2 Z,ZK-5
Anotace:Obsahem kurzu je úvod do vybraných modelů a metod pro ekonomické rozhodování. Pozornost bude soustředěna především na modely teorie grafů, řízení projektů, deterministické i stochastické modely řízení zásob, modely hromadné obsluhy, modely obnovy a simulační modely.
Osnova:1. Úvod do teorie grafů, základní optimalizační úlohy na grafech.
2. Optimální cesty v grafu. Optimální toky v síti.
3. Řízení projektů - metoda CPM.
4. Řízení projektů - metoda PERT.
5. Deterministické modely řízení zásob - EOQ modely.
6. Deterministické modely řízení zásob - POQ model.
7. Modely hromadné obsluhy - úvod.
8. Modely M/M/1 a M/M/c - optimalizace v modelech hromadné obsluhy.
9. Markovské rozhodovací procesy - modely obnovy selhávajících jednotek.
10. Simulační modely - zachycení pravděpodobnostních stránek systému.
11. Simulační modely - zachycení dynamických stránek systému.
12. Vícekriteriální rozhodování - klasifikace úloh a základní pojmy.
13. Metody vícekriteriálního hodnocení variant.
Osnova cvičení:1. Optimalizační úlohy na grafech.
2. Optimální cesty v grafu. Optimální toky v síti.
3. Řízení projektů - metoda CPM.
4. Řízení projektů - metoda PERT.
5. Deterministické modely řízení zásob - EOQ a POQ modely.
6. Stochastické modely řízení zásob.
7. Modely hromadné obsluhy.
8. Optimalizace v modelech hromadné obsluhy.
9. Modely obnovy selhávajících jednotek.
10. Simulační modely.
11. Simulační modely.
12. Vícekriteriální rozhodování - metody odhadu vah kritérií.
13. Metody vícekriteriálního hodnocení variant.
Cíle:Znalosti:
Studenti se seznámí se základními algoritmy pro řešení úloh lineárního a celočíselného programování a se softwarovými produkty pro úlohy tohoto typu.

Schopnosti:
Studenti budou schopni používat základní metody a modely lineárního programování při řešení konkrétních reálných rozhodovacích situací. Budou mít přehled o softwarových produktech pro modelování a optimalizaci.
Požadavky:
Rozsah práce:
Kličová slova:Matematické modelování.
Literatura:Povinná literatura:
[1] Jablonský, J.: Operační výzkum - kvantitativní modely pro ekonomické rozhodování. Professional Publishing, Praha, 2007.

Doporučená literatura:
[2] Lauber, J., Hušek, R.: Operační výzkum. SPN, Praha, 1990.

Mikroekonomie 1, 218MIK12 Koubek 2+2 z,zk 2+2 z,zk 5 5
Předmět:Mikroekonomie 118MIK1Ing. Koubek Ivo2+2 Z,ZK-5-
Anotace:Mikroekonomie je souborem teorií, které slouží k porozumění procesům alokace vzácných zdrojů při jejich alternativním využívání. Mikroekonomie vysvětluje úlohu cen a trhů v těchto procesech a objasňuje chování ekonomických subjektů. Přednášky z mikroekonomie I sestávají především z úvodu do mikroekonomie a teorie spotřebitele.
Osnova:1. Povaha a předmět mikroekonomie. Rozpočtové omezení spotřebitele. Preference spotřebitele a jejich uspořádání.
2. Užitek, funkce užitku a její vlastnosti. Spotřebitelský výběr.
3. Komparativní statika: Změny důchodu a cen a poptávky, Engelovy a poptávkové křivky, důchodová a cenová elasticita poptávky.
4. Substituční a důchodový efekt cenové změny. Dualita: Hicksovské poptávky, výdajová funkce, Shephardova věta.
5. Dualita: Nepřímá funkce užitku, Royova identita a Sluckého rovnice.
6. Měření důsledků cenových změn na prospěch spotřebitele.
7. Projevené preference. Cenových indexy a změny v životní úrovni spotřebitele.
8. Spotřebitel jako kupující a nabízející zároveň. Spotřebitel jako subjekt nabízející práci.
9. Rozložení spotřeby v čase a úroková míra. Kapitálový trh, investice a výrobní možnosti spotřebitele.
10. Rozhodování spotřebitele za nejistoty. Očekávaný užitek a jistotní ekvivalent.
11. Optimální pojištění a sázky, morální hazard a nepříznivý výběr.
Osnova cvičení:1. Úvod do optimalizace. Formulace optimalizačního problému.
2. Množiny, funkce, vlastnosti řešení, Lagrangeova metoda, komplementární podmínky optima.
3. Různé typy preferencí, užitkové funkce pro různá preferenční uspořádání.
4. Procvičování: Spotřebitelský výběr, poptávky.
5. Odvozováni důchodových a cenových elasticit poptávek. Počítání substitučního a důchodového efektu.
6. Odvozování hicksovských poptávek a nepřímých užitkových funkcí, užití Shephardovy věty.
7. Odvozování nepřímých užitkových funkcí, užití Royovy identity, příklady na Slutského rovnici.
8. Měření kompenzujících a ekvivalentních variací pomocí výdajové funkce.
9. Příklady na projevené preference a cenové indexy; čisté poptávky a efekt počátečního vybavení
10. Příklady: nabídka práce, PV, FV, mezičasový výběr, reálná úroková míra a hodnocení investic, výběr za nejistoty, optimální pojištění.
Cíle:Znalosti:
Studenti budou znát strukturu mikroekonomické analýzy, její předměty a metody a různé modely spotřebitele a jejich specifické vlastnosti. Dále budou znát základy optimalizace v teorii spotřebitele.

Schopnosti:
Používat základní nástroje mikroekonomické analýzy, využívat postupy odvozené z těchto modelů k řešení ekonomických úloh.
Požadavky:1) Napsat úspěšně 1. a 2. písemný test z Mikroekonomie I (z každého alespoň 50% bodů ze všech možných).
2) Složit úspěšně závěrečnou ústní zkoušku.
Rozsah práce:
Kličová slova:Rozpočtové omezení, preference, užitková funkce, poptávka, elasticita poptávky, nepřímá užitková funkce, výdajová funkce, Slutského rovnice, kompenzující a ekvivalentní variace, projevená preference, počáteční vybavení, nabídka práce, současná a budoucí hodnota, úroková míra, inflace, vnitřní výnosová míra, nejistá vyhlídka, očekávaný užitek, jistotní ekvivalent, poctivá sázka, optimální pojištění, morální hazard, nepříznivý výběr.
Literatura:Povinná literatura:
[1] Gravelle, H. - Rees, R.: Microeconomics, Prentice Hall, třetí vydání, 2004.

Doporučená literatura:
[2] Varian, H. R.: Mikroekonomie, moderní přístup, český překlad, Victoria publishing, první vydání, 1995.
[3] Frank, Robert H.: Mikroekonomie a chování, Svoboda-Libertas,1. vydání, 1995.

Předmět:Mikroekonomie 218MIK2Ing. Koubek Ivo-2+2 Z,ZK-5
Anotace:Mikroekonomie vysvětluje úlohu cen a trhů při využívání vzácných zdrojů a objasňuje chování ekonomických subjektů, tj. chování spotřebitelů a výrobců na jednotlivých trzích. Kurz Mikroekonomie II je pokračováním kurzu Mikroekonomie I. Zabývá se zejména teorií firmy a průmyslovou organizací.
Osnova:1. Různé produkční funkce (f(z)): MRTSji, MPi, elasticita substituce, elasticita výnosů z rozsahu, homogenní a homotetické f(z), CES funkce. Krátkodobá produkční funkce: odvození, MPi a APi , elasticita výnosů z faktoru. Podmínky 1. řádu, nabídka výstupu a poptávky po vstupech.
2. Různé (f(z)): minimalizace nákladů v dlouhém období, rohové řešení.
3. Odvození nákladových funkcí dlouhého období a ověření Shephardovy věty.
4. Odvození nákladových křivek, (celkové, průměrné, mezní náklady), cenová a výstupová elasticita nákladů, a příklady na minimalizaci nákladů v krátkém období.
5. Náklady krátkého období (FC, VC, STC, AFC, AVC, SAC) Příklady na minimalizaci nákladů firmy s několika závody.
6. Příklady: maximalizace zisku a. nabídka dlouhého období, maximalizace zisku a nabídka v krátkém období
7. Příklady: zisková funkce - odvození, ověření Hotellingovy věty, marshallovské poptávky.
8. Příklady: odvození tržní poptávky a inverzní poptávky, reziduální poptávka; odvození tržní nabídky v dlouhém a v krátkém období; dokonale konkurenční rovnováhy a nerovnováhy, stabilita trhu a rovnováhy; výstup ceny a zisk monopolu, Lernerův index, CS, PS, DWL, cenová diskriminace; monopolistická konkurence a prostorový model; Cournot, Stackelberg, Bertrand, cenový vůdce, koluze, oligopol jako opakovaná hra.
Osnova cvičení:1. Různé produkční funkce (f(z)): MRTSji, MPi, elasticita substituce, elasticita výnosů z rozsahu, homogenní a homotetické f(z), CES funkce; krátkodobá produkční funkce: odvození, MPi a APi , elasticita výnosů z faktoru. Podmínky 1. řádu, nabídka výstupu a poptávky po vstupech. 2. Různé (f(z)): minimalizace nákladů v dlouhém období, rohové řešení. 3. Odvození nákladových funkcí dlouhého období a ověření Shephardovy věty. 4. Odvození nákladových křivek, (celkové, průměrné, mezní náklady), cenová a výstupová elasticita nákladů, a příklady na minimalizaci nákladů v krátkém období. 5. Náklady krátkého období (FC, VC, STC, AFC, AVC, SAC) Příklady na minimalizaci nákladů firmy s několika závody. 6. Příklady: maximalizace zisku a. nabídka dlouhého období, maximalizace zisku a nabídka v krátkém období. 7. Příklady:Zisková funkce - odvození, ověření Hotellingovy věty, marshallovské poptávky. 8. Příklady: odvození tržní poptávky a inverzní poptávky, reziduální poptávka; odvození tržní nabídky v dlouhém a v krátkém období; dokonale konkurenční rovnováhy a nerovnováhy, stabilita trhu a rovnováhy; výstup ceny a zisk monopolu, Lernerův index, CS, PS, DWL, cenová diskriminace; monopolistická konkurence a prostorový model; Cournot, Stackelberg, Bertrand, cenový vůdce, koluze, oligopol jako opakovaná hra.
Cíle:Znalosti:
Studenti budou znát mikroekonomický pohled na výrobu a technologii a seznámí se s významnými ekonomickými charakteristikami výroby a technologie. Budou znát povahu nákladů a zisku v ekonomické teorii.

Schopnosti:
Studenti budou umět používat příslušné optimalizační modely. Studenti budou rozumět pojmu tržní rovnováhy, jednotlivým tržním strukturám a jejich významu pro výrobce a zákazníky a umět je aplikovat.
Požadavky:1) Předpokládá se zkouška z MIKROEKONOMIE I.
2) Napsat úspěšně 1. a 2. písemný test z Mikroekonomie II (z každého alespoň 50% bodů ze všech možných).
3) Složit úspěšně ústní zkoušku.
Rozsah práce:
Kličová slova:Produkční funkce, výnosy z rozsahu, elasticita substituce, mezní a průměrný produkt, zisk, náklady, podmíněná poptávka, nákladová funkce, mezní a průměrné náklady, úspory z rozsahu, fixní a variabilní náklady, stínové ceny, dokonalá konkurence, zisková funkce, tržní rovnováha, alokační efektivnost, monopol, mezní příjem, ztráta mrtvé váhy, cenová diskriminace, monopolistická konkurence, diferenciace produktu, Hotellingův model, oligopoly, Nashova rovnováha, opakovaná hra, Cournot, Bertrand.
Literatura:Povinná literatura:
[1] Gravelle, H. - Rees, R.: Microeconomics, Prentice Hall, třetí vydání, 2004.

Doporučená literatura:
[2] Varian, H. R.: Mikroekonomie, moderní přístup, český překlad, Victoria publishing, první vydání, 1995.
[3] Frank, Robert H.: Mikroekonomie a chování, Svoboda-Libertas, 1. vydání, 1995.

Základy algoritmizace18ZALG Virius - - 2+2 z,zk - 4
Předmět:Základy algoritmizace18ZALGdoc. Ing. Virius Miroslav CSc.-2+2 Z,ZK-4
Anotace:V tomto předmětu se student seznámí se vybranými algoritmy a s metodami, jak algoritmus navrhnout. Seznámí se také s vybranými technikami odvozování jejich složitosti.
Osnova:1. Algoritmus, jeho popis a složitost.
2. Datové struktury.
3. Metody návrhu algoritmu.
4. Rekurze.
5. Řazení(třídění).
6. Vyvážené stromy, optimální stromy.
7. Seminumerické algoritmy.
Osnova cvičení:Osnova cvičení se shoduje s osnovou přednášky.
Cíle:Znalosti:
Běžně používané algoritmy (jako je třídění nebo hledání nejkratší cesty) a nejdůležitější datové struktury (jako je strom, seznam, hešová tabulka).

Schopnosti:
Použití běžných metod návrhu algoritmu, ve vybraných případech odvození jejich složitosti.
Požadavky:Základy programování.
Rozsah práce:Individuální práce studenta vychází z algoritmického rozkladu zadaného problému a jeho naprogramování. Ověřuje se prezentací programu.
Kličová slova:Algoritmus, složitost, seznam, strom, b-strom, hešová tabulka, graf, rekurze, rozděl a panuj, hladový algoritmus, dynamické programování, backtracking, metoda Monte Carlo, třídění, vyvážený strom, číselná soustava, seminumerické algoritmy.
Literatura:Povinná literatura:
[1] Virius, M.: Základy algoritmizace v C++. 3. vydání. Praha, ČVUT 2014. ISBN 978-80-01-05606-6.

Doporučená literatura:
[2] Knuth, Donald E.: The Art of the Computer Programming. Vol. 1, 2, 3. Addison-Wesley Professional 1998. ISBN: 0201485419.
[3] Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall 1975.
[4] Topfer, P.: Algoritmy a programovací techniky. Praha, Prometheus 1995.

Správa operačních systémů18OS Mrázková - - 0+2 kz - 2
Předmět:Správa operačních systémů18OSIng. Mrázková Linda-0+2 KZ-2
Anotace:Správa operačních systémů Windows a Linux. Uživatelé, práva, konfigurace, příkazový řádek, skripty, základy sítí, bezpečnost (firewall).
Osnova:1. Základy hardwaru, vývoj platformy Windows
2. Správa systému Windows - pevné disky - princip funkce, souborové systémy, ovladače
3. Správa systému Windows - uživatelé, skupiny, uživatelské profily
4. Správa systému Windows - správa pevných disků, oddíly, svazky, pole, kvóty, nástroje pro správu disků
5. Správa systému Windows - oprávnění souborů a složek, sady oprávnění, vlastnící souborů, skutečná oprávnění
6. Správa systému Windows - oprávnění souborů a složek - pokračování, speciální identity, sdílení.
7. Správa systému Windows - prostředí, správa - systémové nástroje, ovládací panely
8. Správa systému Windows - systémová politika, služby, registr systému, správce úloh, další nástroje pro správu - ProcessExplorer, Autoruns apod.
9. Příkazový řádek
10. IP protokol a sítě
11. Základy správy OS Linux
12. Základy správy OS Linux
13. Bezpečnost v sítích, firewall
14. Řízené konzultace
Osnova cvičení:1. Základy hardwaru, vývoj platformy Windows
2. Správa systému Windows - pevné disky - princip funkce, souborové systémy, ovladače
3. Správa systému Windows - uživatelé, skupiny, uživatelské profily
4. Správa systému Windows - správa pevných disků, oddíly, svazky, pole, kvóty, nástroje pro správu disků
5. Správa systému Windows - oprávnění souborů a složek, sady oprávnění, vlastnící souborů, skutečná oprávnění
6. Správa systému Windows - oprávnění souborů a složek - pokračování, speciální identity, sdílení.
7. Správa systému Windows - prostředí, správa - systémové nástroje, ovládací panely
8. Správa systému Windows - systémová politika, služby, registr systému, správce úloh, další nástroje pro správu - ProcessExplorer, Autoruns apod.
9. Příkazový řádek
10. IP protokol a sítě
11. Základy správy OS Linux
12. Základy správy OS Linux
13. Bezpečnost v sítích, firewall
14. Řízené konzultace
Cíle:Znalosti:
Možnosti správce operačních systémů.

Schopnosti:
Správa operačního systému na lokální úrovni.
Požadavky:
Rozsah práce:Při cvičení studenti plní zadané úkoly z aktuálně probírané látky, které průběžně kontroluje cvičící.
Kličová slova:Správa operačních systémů, Microsoft, Linux.
Literatura:Povinná literatura:
[1] BOTT, Ed, SIECHERT, Carl. Mistrovství v Microsoft Windows XP. Praha: Computer Press, 2002. 608 s. ISBN: 80-7226-693-4.

Doporučená literatura:
[2] MUELLER, John Paul. Příkazový řádek Windows -- pro Windows Vista, 2003, XP a 2000. Praha: Computer Press, 2008. ISBN: 978-80-251-1961-7.

Studijní pomůcky:
Počítačová učebna, projektor, Windows XP nebo Windows 7 ve virtuálním stroji s administrátorským přístupem pro studenty.

Dějiny fyziky 102DEF1 Jex 2+0 z - - 2 -
Předmět:Dějiny fyziky 102DEF1prof. Ing. Jex Igor DrSc.2+0 Z-2-
Anotace:Fyzika a její místo mezi ostatními vědami. Vztah člověka a přírody. Přírodní vědy ve starém Orientě a Řecku, řečtí přírodní filozofové, Aristoteles. Helénistická fyzika, Archimedes. Arabská věda, věda ve středověké Evropě. Renesanční věda - da Vinci, Giordano Bruno. Koperník, Kepler, Galileo, Huygens. Vznik fyziky jako experimentální vědy. Newton a jeho dílo.
Osnova:1. Fyzika a její místo mezi ostatními vědami, vztah člověka a přírody
2. Původ člověka, myšlení a kultury
3. Věda starého Orientu, Egypta, Indie a Číny
4. Řecká přírodní filosofie, atomisté
5. Aristotelova fyzika
6. Fyzika v období helénismu, Archimedes
7. Arabská věda
8. Věda ve středověké Evropě
9. Koperník a heliocentrismus
10. Fyzika v období renesance
11. Kepler a Galilei
12. Vědecká revoluce v 17. století
13. Newton a vznik klasické mechaniky
Osnova cvičení:
Cíle:Znalosti:
Získat ucelený pohled na vznik fyzikálního myšlení a poznatků, jak se vyvíjely od nejstarších počátků až do začátku novověku. Vědět, jak došlo k oddělení logického, matematicky podloženého výkladu přírody od původních mytologických představ a zdůraznit příspěvek národů starého Orientu a antického Řecka. Ukázat, jak vývoj vědy a techniky v průběhu evropského středověku vyústil v experimentálně podloženou vědeckou revoluci, která otevřela cestu k naší dnešní technické civilizaci.

Schopnosti:
Podle stupně zájmu rozšiřovat své znalosti dalším studiem literatury, dokázat se v ní orientovat a být schopen připravit pojednání na vybrané téma z historie tohoto období fyziky.
Požadavky:Požadavky:
Obecná znalost dějin lidstva a základních zákonů fyziky na středoškolské úrovni.
Rozsah práce:
Kličová slova:Historie, fyzika, antika, středověk
Literatura:Povinná literatura:
[1] I. Štoll: Dějiny fyziky, Praha, Prometheus 2009.
[2] I. Kraus: Fyzika od Thaleta k Newtonovi, Praha, Academia 2007.

Doporučená literatura:
[3] Aristoteles: Fyzika, Praha, P. Rezek 1996
[4] Zlomky předsokratovských myslitelů, Praha, NČSAV 1962.
[5] Řečtí atomisté. Svoboda, Praha 1980.
[6] Lucretius: O přírodě, Praha, Svoboda 1971.
[7] Z. Horský: Kepler v Praze, Praha, Mladá fronta 1980.
[8] V. Malíšek: Co víte o dějinách fyziky, Praha, Horozonz 1996.
[9] R. Zajac, J. Šebesta: Historické pramene súčasnej fyziky, Bratislava, Alfa 1990..

Přípravný týden00PT FJFI 1 týden z - - 2 -
Předmět:Přípravný týden00PTtýden Z-2-
Anotace:Přípravný týden je určen pro nastupující studenty bakalářského studia. Obsahuje seznámení s organizačními náležitostmi vysokoškolského studia a úvodní přednášky 1. semestru.
Osnova:1. Úvodní přehled o vysokoškolském systému v ČR a na ČVUT.
2. Způsob a organizace studia na FJFI.
3. Povinnosti a volitelné možnosti v rámci studia.
4. Počítačové sítě.
5. Organizace výuky jazyků.
6. Studentské organizace.
7. Zahájení výuky v matematice a fyzice.
8. Motivační přednášky odborných kateder.
9. Volitelné předměty prvního semestru.
Osnova cvičení:
Cíle:Znalosti:
Studenti získají přehled o způsobu organizace studia na FJFI, ubytování, dopravě a informačním systému ČVUT v Praze.

Schopnosti:
Studenti jsou schopni se orientovat ve studijních záležitostech a zahájit první rok svého studia.

Požadavky:
Rozsah práce:
Kličová slova:Vysokoškolské studium; organizace a struktura ČVUT v Praze; semestr; předměty; zkoušky; kredity
Literatura:Povinná literatura:
[1] Studijní programy FJFI ČVUT v Praze, vydáváno každoročně

Doporučená literatura:
[2] Průvodce prváka, ČVUT v Praze, vydáváno každoročně

Výuka jazyků04. KJ - - - - - -

Volitelné předměty

Matematické minimum 200MAM2 Pošta 0+1 z - - 1 -
Předmět:Matematické minimum 200MAM2doc. Ing. Pošta Severin Ph.D.----
Anotace:
Osnova:
Osnova cvičení:
Cíle:
Požadavky:
Rozsah práce:
Kličová slova:
Literatura:

Evropský standard počítačové gramotnosti 1, 218ESPG12 Kukal 0+2 z 0+2 z 2 2
Předmět:Evropský standard počítačové gramotnosti 118ESPG1doc. Ing. Kukal Jaromír Ph.D.0+2 Z-2-
Anotace:Tabulkové kalkulátory představují především pro studenty a absolventy Softwarového inženýrství v ekonomii důležitý nástroj. V zimním semestru jsou studenti to problematiky uvedeni v širším kontextu s ostatními kancelářskými aplikacemi. Důraz je kladen na zvládnutí především pokročilých funkcí Excelu (názvy, funkce a vzorce, kontingenční tabulka a graf). Dále se začne s výkladem jazyka VBA, především s ohledem na nahrávání maker a programování uživatelských funkcí.
Osnova:
Osnova cvičení:1. Úvod do kancelářských balíků
2. Textové procesory - základní funkce
3. Textové procesory - složitější typografická témata
4. Prezentace - zásady
5. Prezentace - pokročilejší techniky
6. Úvod do tabulkových procesorů
7. Práce s grafy, kontingenční tabulka a graf
8. Přehled funkcí: matematické a logické funkce
9. Přehled funkcí: vyhledávací a databázové funkce
10. Přehled funkcí: textové a pro datum a čas
11. Programování ve VBA: nahrávání maker, úvod
12. Programování ve VBA: uživatelské funkce
13. Programování ve VBA: události
14. Programování ve VBA: práce s listem
Cíle:Znalosti:
Pokročilá obsluha MS Office, především pak Excelu ve vztahu s předmětem jejich studia.

Schopnosti:
Studenti by měli rovněž získat povědomí o jazyce VBA a naučit se jej používat (makra, funkce, formuláře).
Požadavky:
Rozsah práce:Zápočet je možné získat na základě aktivní účasti na cvičeních, případně samostatnou domácí prací.
Kličová slova:ESPG, MS Office, MS Excel, VBA.
Literatura:Povinná literatura:
[1] J. Walkenbach: Microsoft Excel 2000 a 2002 programování ve VBA, Computer Press, 2001.

Doporučená literatura:
[2] Marie Franců: Jak zvládnout testy ECDL, COMPUTER PRESS, ISBN 978-80-251-2653-0.

Předmět:Evropský standard počítačové gramotnosti 218ESPG2doc. Ing. Kukal Jaromír Ph.D.-0+2 Z-2
Anotace:Tabulkové kalkulátory představují především pro studenty a absolventy Softwarového inženýrství v ekonomii důležitý nástroj. Letní semestr navazuje na zimní pokročilejšími tématy programování ve VBA (grafy, objekty, grafické uživatelské rozhraní, programování doplňků) a uvádí do aplikací v ekonomii, matematice, operačním výzkumu a informatice.
Osnova:
Osnova cvičení:1. Opakování z předešlého semestru: klikací hra Lišák
2. Uživatelské formuláře: dvouruký bandita
3. Moduly tříd: třída hypotéka, zachycování událostí
4. Programování grafů: vločka von Kochové
5. Programování grafů: vizualizace silniční sítě
6. Programování doplňků: kopírování do HTML
7. MS Excel jako databáze
8. Aplikace v operačním výzkumu: lineární programování
9. Aplikace v operačním výzkumu: distribuční problémy
10. Aplikace ve statistice: jednorozměrné statistiky
11. Aplikace ve statistice: regrese a korelace
12. Aplikace v operačním výzkumu: vícekriteriální rozhodování
13. Aplikace v informatice: datamining
14. Aplikace v informatice: generování kódu jiného jazyka
Cíle:Znalosti:
Pokročilá obsluha MS Office, především pak Excelu ve vztahu s předmětem jejich studia.

Schopnosti:
Studenti by měli rovněž získat povědomí o jazyce VBA a naučit se jej používat (makra, funkce, formuláře).
Požadavky:
Rozsah práce:Zápočet je udělen na základě samostatného řešení zvoleného problému v MS Excelu za použití VBA. Součástí je vypracovaná dokumentace. V případě aktivní účasti na cvičeních je možné zvolit výrazně jednodušší projekt.
Kličová slova:ESPG, VBA, optimalizace, statistika.
Literatura:Povinná literatura:
[1] J. Walkenbach: Microsoft Excel 2000 a 2002 programování ve VBA, Computer Press, 2001.

Doporučená literatura:
[2] Marie Franců: Jak zvládnout testy ECDL, COMPUTER PRESS, ISBN 978-80-251-2653-0.

Úvod do objektové architektury18UOA Pecinovský 2+2 z,zk - - 4 -
Předmět:Úvod do objektové architektury18UOAIng. Pecinovský Rudolf CSc.2+2 Z,ZK-4-
Anotace:Cílem předmětu je seznámit studenty s objektově orientovaným paradigmatem a základními konstrukcemi používanými při návrhu objektově orientované architektury vyvíjených aplikací. Integrální součástí tohoto úvodního kurzu bude seznámení se základními návrhovými vzory a se základy funkcionálního programování pronikajícího do OO programů. Studenti se naučí aplikovat zásady moderního programování a efektivně vytvářet aplikace, které budou snadno modifikovatelné a spravovatelné.
Osnova:? Základní seznámení s OO paradigmatem v interaktivním režimu
o Objekty, třídy a další entity OO programů
o Programování řízené testy
o Rozhraní × interface
o Návrhové vzory a jejich použití v OO architektuře
o Tři typy dědění a jejich uplatnění v sw architektuře
o Aplikace dědění u konstrukce interface
? Základy syntaxe, návrh programů, které doposud vytvářel generátor
o Anotace a možnosti jejich využití.
o Testovací knihovna JUnit a její možnosti
? Rozšiřující architektonické konstrukce a techniky
o Hodnotové a odkazové typy
o Další návrhové vzory
o Refaktorace a další techniky
o Generických datové typy a metody
o Lambda výrazy a základy funkcionálního programování
o Základy kolekcí a polí, interní iterátory
o Datové proudy jako efektivnější náhražka kolekcí a polí
o Sériové a paralelní zpracování proudů
? Dědění implementace
o Dědění implementace a jeho náhrada návrhovým vzorem Dekorátor
o Pasti a propasti dědění implementace
? Základní algoritmické konstrukce
o Podmíněné příkazy
o Cykly
o Externí iterátory
? Základní principy moderního programování
o Současné požadavky na vývoj programů, rostoucí úloha zákazníka, posun preferencí
o Přehled nejdůležitějších programátorských zásad (OCP, DRY, SRP, LSP ...)
Osnova cvičení:
Cíle:Cílem předmětu je seznámit studenty s objektově orientovaným paradigmatem a základními konstrukcemi používanými při návrhu objektově orientované architektury vyvíjených aplikací. Integrální součástí tohoto úvodního kurzu bude seznámení se základními návrhovými vzory a se základy funkcionálního programování pronikajícího do OO programů. Studenti se naučí aplikovat zásady moderního programování a efektivně vytvářet aplikace, které budou snadno modifikovatelné a spravovatelné.
Požadavky:
Rozsah práce:
Kličová slova:objektové programování
Literatura:Pecinovský, Rudolf. Návrhové vzory: [33 vzorových postupů pro objektové programování]. Vyd. 1. Brno: Computer Press, 2007. 527 s. ISBN 978-80-251-1582-4.
Fowler, Martin. Refaktoring: zlepšení existujícího kódu. 1. vyd. Praha: Grada, 2003. 394 s. Moderní programování. ISBN 80-247-0299-1.
Pecinovský, Rudolf. Java 8 - Učebnice objektové architektury pro mírně pokročilé. Praha: Grada, 2013

Programování v Pascalu18PVP Virius - - 2+2 z,zk - 4
Předmět:Programování v Pascalu18PVP----
Anotace:Přednáška je určena především posluchačům, kteří mají jen velmi malé nebo žádné zkušenosti s programováním. Seznámí posluchače se základními pojmy v oblasti programování a s programovacím jazykem Pascal.
Osnova:1. Co je to počítač, co je to program, co je algoritmus
2. Zobrazování dat v paměti počítače, význam datových typů
3. Struktura programu
4. Proměnné a neobjektové datové typy
5. Příkazy, Vstupní a výstupní operace
6. Procedury a funkce
7. Ukazatele, spojové seznamy
8. Modulární stavba programu, objektové typy
Osnova cvičení:1. První program
2. Algoritmus
3. Použití vestavěných datových typů
4. Složitější programy
5. Neobjektové datové typy
6. Příkazy
7. Vstupní a výstupní operace
8. Procedury a funkce
9. Ukazatele, spojové seznamy: Neobjektová implementace jednosměrně zřetězeného spojového seznamu
10. Objektové typy v Turbo Pascalu a v Delphi
Cíle:Znalosti:
Programovací jazyk Pascal.

Schopnosti:
Řešit základní programátorské úkoly s pomocí jazyka Pascal.
Požadavky:Nenavazuje na žádné předměty; předpokládá se pouze uživatelská znalost počítače.
Rozsah práce:Individuální práce studentů představují program v Pascalu pro řešení zadaného úkolu se složitější datovou strukturou (např. s vlastní implementací spojového seznamu).
Kličová slova:
Literatura:Povinná literatura:
[1] Virius, M.: Úvod do programování. Praha, Vydavatelství ČVUT, 2009. ISBN 978-80-01-04278-6.

Doporučená literatura:
[2] Satrapa, P.: Pascal pro zelenáče. Neocortex, Praha 2000. ISBN 80-86330-03-6.
[3] Písek, S.: Začínáme programovat v Delphi. Praha, Grada Publishing 2000. ISBN 80-247-9008-4.
[4] Cantú, M.: Myslíme v jazyku Delphi 6. Díl 1, 2. Praha, Grada Publishing 2002. ISBN 80-247-0334-3 (1. díl), 80-247-0335-1 (2.díl).

Konverzační seminář v angličtině04AKS Kovářová, Rafajová - - 0+2 z - 1
Předmět:Konverzační seminář v angličtině04AKS-0+2 Z-1
Anotace:Kurz rozvíjí základní řečové dovednosti v návaznosti na dovednosti získané v předchozím studiu jazyka. Záměrem kurzu je zlepšit všechny stránky mluvené komunikace. Studenti si rozšíří slovní zásobu a frazeologii dle probíraných tématických okruhů a komunikativních situací. Procvičuje se též poslech, aby studenti mohli lépe sledovat konverzaci a zapojit se do diskusí. Cílem je osvojení komunikativní strategie v závislosti na druhu komunikace a to tak, aby student dokázal vyjadřovat své myšlenky jasně, srozumitelně a gramaticky správně v různých situacích a aby se stal sebevědomějším mluvčím.
Osnova:Nácvik konverzačních a poslechových dovedností na každodenní témata (rodina, zaměstnání, jídlo, program dne, kultura, cestování, bydlení, koníčky).
Osnova cvičení:Předmět má seminární povahu a jeho náplň a rozsah odpovídá výše uvedené osnově.
Cíle:Znalosti:
Systematické rozšíření slovní zásoby na každodenní témata, strategie komunikace s přihlédnutím k adekvátnosti situace, mluvená a psaná podoba jazyka.

Schopnosti:
Umět komunikovat v různých všednodenních situacích. Rozumět krátkým diskusím na probíraná témata a zapojit se do nich, mluvit plynně s minimem gramatických a lexikálních chyb.
Požadavky:znalost jazyka na úrovni alespoň A2 dle SERR
Rozsah práce:
Kličová slova:Konverzace, řečové a poslechové dovednosti, slovní zásoba
Literatura: