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NUMERICAL STUDIES OF CAHN-HILLIARD EQUATION AND

APPLICATIONS IN IMAGE PROCESSING

VLADIMÍR CHALUPECKÝ1

Abstract. In this article we present a numerical scheme for solving the Cahn-Hilliard equation
with degenerate mobility. This scheme is based on the method of lines, we discretize the equation
by finite differences in space and the resulting system of ordinary differential equations is solved
by an embedded fourth-order Runge-Kutta Cash-Karp method with fifth-order error estimate. The
experimental order of convergence suggests that the scheme is accurate of the first order. We also
summarize some results concerning the efficiency of parallel implementation. Finally, we consider
the application of the scheme for processing of binary images, which contain objects with distorted
boundaries, and present various numerical experiments.
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1. Introduction. The Cahn-Hilliard equation

∂u

∂t
= ∇ · (M(u)∇(f ′(u) − γ∆u)) , (1.1)

has been proposed by Cahn and Hilliard [7, 9] to model isothermal phase separation in
binary alloys under critical undercooling. A mixture of two components in a thermal
equilibrium is formed by a single phase where both components are present uniformly
in the considered domain. After rapid undercooling under the critical temperature
the homogeneous state becomes unstable and the system will try to reach the thermal
equilibrium. A phase separation will take place and the domain splits into regions
rich in one component and poor in the other. Depending on the initial ratio of both
components, this process can proceed in two different ways. In the case the mixture
contains significantly higher amount of one component, nuclei of the poorer component
form and grow. In the case both components are present in basically the same ratio, a
process called spinodal decomposition takes place and fine-grained random structures
appear and coarsen.

The Cahn-Hilliard equation is a representative of the so-called phase-field mod-
els. These arise from a diffuse description of sharp interfaces separating two bulk
phases during microstructure processes. The Allen-Cahn equation [8] is another such
representative used to model crystalline solidification of a pure liquid. Aside from
the modelling of interfacial phenomena, the phase-field equations have recently been
successfully applied in the context of image processing. The non-local Allen-Cahn
equation and the constant-mobility Cahn-Hilliard equation have been used for shape
recovery [11], a modification of the Allen-Cahn equation has been proposed for geo-
metrical image segmentation [5].
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In this paper we are concerned with a numerical scheme for the degenerate Cahn-
Hilliard equation in the following form

∂u

∂t
= ∇ · (M(u)∇w)) , (1.2)

w = f ′(u) − γ∆u, x ∈ Ω, t ∈ (0, T ), (1.3)

∂u

∂n

∣

∣

∣

∂Ω
=

∂w

∂n

∣

∣

∣

∂Ω
= 0, t ∈ (0, T ), (1.4)

u(x, 0) = u0(x), x ∈ Ω. (1.5)

In this fourth-order parabolic equation u represents a relative concentration of one
component in a binary mixture, i.e. u = uA = 1 − uB , u ∈ 〈0, 1〉, and w denotes
a chemical potential. The function M(u) is the degenerate mobility, which restricts
diffusion of both components to the interfacial region only. It can be any positive
function equal to zero in pure components, in the computations below we use the
following form M(u) = βu(1 − u), where β is a constant.

The function f(u) is a homogeneous free energy. Mean-field model leads to the
form

f(u) =
θ

2
(u ln(u) + (1 − u) ln(1 − u)) + u(1− u), (1.6)

which gives rise to the double-well form for temperatures of undercooling θ < 1. Other
forms of the free energy are possible, for instance for 0 � θ < 1 the function (1.6)
can be approximated by

f(u) =
1

4
u2(1 − u)2, (1.7)

which has the advantage of being smooth.
During the evolution of the initial condition, the domain Ω splits into three differ-

ent subdomains. Two domains, Ω0 and Ω1, are formed by points where the solution
is close to the minima of f (in our formulation 0 and 1) or by points where the bi-
nary mixture is rich in one component and poor in the other. The third domain is
formed by a thin transition layer, where the solution rapidly changes from 0 to 1. The
parameter γ > 0 is related to the thickness of this interface which is of order

√
γ.

Existence of a weak solution for the Cahn-Hilliard equation with degenerate mo-
bility has been proven in [12], there is yet no result concerning the uniqueness.

If the interface width goes to zero, the resulting curve moves according to some
geometric motion law. In [10] it has been obtained by method of formal asymptotic
expansion that under the scaling

t → ξ2t, γ = ξ2, (1.8)

the interface, in the limit ξ → 0, moves by a geometric motion law called surface
diffusion

ν = −π2

16
∆sκ, (1.9)

where ν is the normal velocity of the curve, ∆s is the Laplace-Bertrami operator and
κ is the mean curvature of the interface. This is in contrast to the constant mobility
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case, where we get the Mullins-Sekerka problem when ξ → 0 for the rescaling of time
t → ξt.

It should also be noted that the integral of the solution of (1.2)–(1.5) is preserved,
i.e.

d

dt

∫

Ω

u dx = 0.

This property of the solution will be important for image processing applications.

2. Numerical scheme. In this section we present a numerical scheme that we
propose for the problem (1.2)–(1.5) with the homogeneous free energy in the form
(1.7) and with the scaling (1.8). The scheme is based on finite difference discretiza-
tion in space, the resulting system of ODEs is solved by an embedded fourth-order
Runge-Kutta Cash-Karp method with fifth-order error estimate, which enables us to
adaptively change the time step [6, 3, 4].

The case of constant diffusive mobility is well investigated and a number of nu-
merical schemes has been proposed based on both finite difference as well as finite
element method. In the constant-mobility case, convergence and error estimates are
studied, e.g., in [14] for a finite difference scheme in 1-D or in [13] for a mixed finite
element scheme in 2- and 3-D. The degenerate-mobility case is more complicated, a
finite element method has been proposed in [1, 2], where the convergence (in one space
dimension) is studied. A method based on nonlinear multigrid method was proposed
in [16].

First, let us present some used notation. By Ω we denote a rectangular computa-
tional domain (0, Lx) × (0, Ly). We discretize the equation on a regular rectangular
grid, by ω̄h =

{

[ihx, jhy] ∈ Ω̄
∣

∣i = 0, . . . , mx − 1; j = 0, . . . , my − 1
}

we denote all grid

nodes, by ωh =
{

[ihx, jhy] ∈ Ω̄
∣

∣i = 1, . . . , mx − 2; j = 1, . . . , my − 2
}

only the inner
nodes. The space steps in x, resp. y direction are hx = Lx/(mx−1), hy = Ly/(my−1),
value of function u at the node (i, j) is denoted by uij = u(ihx, jhy).

We look for a solution uh =
(

uij(t)
)mx−1,my−1

i=0,j=0
satisfying the following system of

ordinary differential equations

duij

dt
=

1

ξ2
∇h ·

(

M(uh)∇̄hw
)

ij
on ω̄h, (2.1)

where

∇h ·
(

M(uh)∇̄hwh

)

ij
=

1

h2
x

(

M(ui+1/2j)(wi+1j − wij)

− M(ui−1/2j)(wij − wi−1j)
)

+
1

h2
y

(

M(uij+1/2)(wij+1 − wij)

− M(uij−1/2)(wij − wij−1)
)

on ωh,

wij = f ′(uij) − ξ2(∆huh)ij on ωh,

(∆huh)ij =
1

h2
x

(ui+1j − 2uij + ui−1j)

+
1

h2
y

(uij+1 − 2uij + uij−1),
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and where for instance

ui+1/2j =
uij + ui+1j

2
,

Boundary conditions are treated by reflecting uh at the boundary. For instance

u−1j = u1j , j = 0, . . . , my − 1,

to fulfill the condition ∂u
∂n |Γ = 0 and

w−1j = w1j , j = 0, . . . , my − 1,

to fulfill the condition ∂w
∂n |Γ = 0.

The system (2.1) is then solved by an embedded fourth-order Runge-Kutta Cash-
Karp method with fifth-order error estimate (see e.g. [17]). Since we are using the
polynomial approximation of the homogeneous free energy for low undercoolings, the
solution is not guaranteed to stay within the interval 〈0, 1〉. For stability reasons, we
overcome this inconvenience by a heuristical approach where we cut off the solution
at each time step.

3. Experimental order of convergence. In this section we demonstrate the
experimental order of convergence of our numerical scheme for both the constant-
mobility case M ≡ 1 as well as for the degenerate-mobility case M(u) = βu(1 − u).
We measure the convergence by comparing the error between discrete solutions on a
set of gradually finer meshes. To compute the error, we use the so-called double-mesh
principle [15, 16], where the finer mesh has twice as many grid points in each axis as
the coarser mesh.

Our setup for the convergence measurement is as follows. As the initial condition
we choose the characteristic function χΛ of a special set Λ convolved with a smoothing
kernel Gσ in the following way

u0 = Gσ ∗ χΛ,

Λ = {(x, y) ∈ (0, 1) × (0, 1) dist((x, y), 0) > a1 + a2 cos(a3 · arctg(y/x))},

where Gσ is the Gauss function with the parameter σ small. We compute the solution
on uniform grids hx = hy = hn = 1/(2n − 1), n = 4, 5, 6, 7, 8, 9 and we measure
the convergence at time t = 10−5. This time interval is sufficient for investigating
the convergence, the solution changes significantly and the number of time steps for
the finest mesh is about 7.105. The interface parameter ξ is kept constant in all the
computations and is equal to 2/15, i.e., twice as large as the space step for the coarsest
mesh.

To measure the error between two successively finer meshes, we first calculate
values of the coarse grid solution at the nodes of the finer mesh by means of bilinear
interpolation. We define the error en,2n to be the discrete Lp norm of the differ-
ence of the fine grid solution and the interpolated coarse grid solution. The rate of
convergence is then defined as a ratio of succesive errors

R =
log(en,2n) − log(e2n,4n)

log(hn) − log(h2n)
.

The results are summarized in Table 3.1 for the case with constant mobility and
in Table 3.2 for the degenerate mobility case. In both tables in the first column there
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are sizes of the grids between which we measure the error. The error is shown in the
corresponding column together with the convergence rate. From Table 3.1 and 3.2
we observe that the scheme converges with first-order accuracy in both the constant
as well as the degenerate-mobility case. Theoretical results supporting the observed
order of convergence will form a part of author’s future work.

Grid sizes L2 norm of error Rate L∞ norm of error Rate
16-32 0.133717 1.164281 0.518882 0.965498
32-64 0.057428 0.940740 0.257440 0.998871
64-128 0.029471 1.029924 0.126778 1.015713
128-256 0.014316 1.053902 0.062201 1.106401
256-512 0.006867 0.028764

Table 3.1

Experimental order of convergence for the Cahn-Hilliard equation with constant mobility

Grid sizes L2 norm of error Rate L∞ norm of error Rate
16-32 0.159477 1.127866 0.694137 1.060878
32-64 0.070326 1.166494 0.321353 1.217638
64-128 0.030751 0.999014 0.135511 0.980905
128-256 0.015265 0.947854 0.068128 0.971427
256-512 0.007884 0.034613

Table 3.2

Experimental order of convergence for the Cahn-Hilliard equation with degenerate mobility

4. Parallel implementation. In order to recover the thin interface layer where
the solution changes rapidly, a fine grid has to be used which leads to high compu-
tational demands. Therefore, a parallel implementation is a suitable tool to ease the
execution of large amount of computational experiments.

We have implemented such a parallel version of the numerical scheme presented in
the Section 2 using the MPI standard. We have decided for this distributed-memory
environment due to easy availability of cheap clusters of workstations. Moreover, the
shared-memory computers we had access to could exploit the parallelism without any
changes to the program. Thus, for our purposes we consider the choice of MPI as a
parallel environment to be more general than for example OpenMP.

Due to the regular mesh, the implementation is quite straightforward. The com-
putational grid is divided in subdomain and each process is designated one subdomain.
During the computation, each process updates only its own subdomain. Values of
boundary nodes are computed either from boundary conditions or they are obtained
from communication with neighboring processes. All-to-one communication is neces-
sary for I/O operations only and it is kept to minimum.

At this point we should mention that due to the Cash-Karp Runge-Kutta method
the amount of communication at one time step increases in the case of shortening
the time step and subsequent recomputing the solution. One time step requires six
evaluations of the right-hand side and each evaluation requires two communications,
one for the solution u and another for the chemical potential w. At early stages of
the evolution the algorithm may require to shorten the time step in order to keep the
error below a specified threshold and thus the amount of time spent in sending data
between processes increases.
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Graphs summarizing some preliminary performance results are shown in Figure
4.1 for the case of row-wise division of the computational grid. We realize that this
is not ideal, but this is caused by our technical limitations. However, more efficient
division by columns and rows has been also implemented.

The parallel speed-up S and efficiency E were measured in the usual way

S(P ) = T (1)/T (P ), E(P ) = S(P )/P,

where P denotes the number of processors and T (1) and T (P ) denote the execution
times of the algorithm on one and P processors respectively.
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Fig. 4.1. Parallelization: computational grid = 128×128 nodes, row-wise distribution of nodes

among processes

5. Image processing by the Cahn-Hilliard equation. The image processing
applications we consider in this section are concerned with recovering object bound-
aries in binary images. Such a binary image can be a result of applying some segmen-
tation algorithm on the input image. By image segmentation we mean a process of
partitioning an image into regions which are contiguous and relatively homogeneous
in image properties (like intensity or texture). Since the real images are almost always
degraded by noise, the shapes will not have a smooth boundary which renders any
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further processing more difficult. Since good segmentation forms a key step in any
image-based recognition system, some preprocessing step is necessary, either at the
stage before segmentation or afterwards. The algorithm we consider in this section
is meant to be applied on the segmented binary image, where for example zero value
of the image function identifies the object in question. In this setting, the object
boundary is then identified as those points (pixels) where the image function changes
from 0 to 1.

The above described process can be summarized as follows
1. Image acquisition – the output of this stage is a gray-scale or color image.

This image will be very likely degraded by noise originating either from trans-
mission errors or more often from the limitations of the acquisition technology.
A typical example may be a magnetic-resonance imaging scans.

2. Image preprocessing – the goal of this stage is to smooth the image while
preserving important features in the image. Spurious structures like noise are
removed, however, this may happen at the price of smoothing out texture
details. These can be an important distinguishing property in the further
processing pipeline.

3. Image segmentation – at this stage the image domain is divided into con-
tiguous regions of relatively homogeneous image properties. The output is
a binary image where for instance the value 0 identifies those points which
share the same property of interest. Due to the noise in the original image or
due to the natural characteristics of the object, the boundary of these regions
will not be smooth. This can make further processing and recognition more
difficult.

4. Shape recovery – this is the stage that we are concerned about in this section.
Its goal is to smooth the noise and small spurious details at the boundaries in
the segmented image while preserving important and distinguishing features.

To cope with the task stated in the item 4 of the previous list, we will consider
only the boundaries of segmented objects. The noise and spurious details create
stuctures with high curvature. Application of some curvature-dependent motion on
the boundaries could smooth out high-curvature details without changing the overall
shape of the curve.

In the image processing literature a number of approaches for curve evolution
have been proposed (see [11] and references therein). The most often used is the
motion by mean curvature

ν = −κ, (5.1)

where ν denotes the normal velocity of the curve at each point and κ denotes its mean
curvature. This motion law is curve-shortening, but it is not area-preserving, a circle
moving under this law will shrink to a point in finite time. The original shapes are
quickly lost, which implies a necessity for a stopping time.

Consequently, a motion law that is curve-shortening and area-preserving might be
more suitable for image processing. These requirements are fulfilled by the so-called
surface diffusion

ν = −∆sκ, (5.2)

where ν and κ denote as before the normal velocity of the curve and curvature,
respectively, and ∆s denotes the Laplace-Bertrami operator. This motion law operates
on two different scales, which means that small structures on the curve are quickly
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smoothed out, while the overall shape changes very slowly in time. We have mentioned
in Section 1 that under a suitable scaling that Cahn-Hilliard equation with degenerate
mobility asymptoticaly approximates the surface diffusion. As a result, we propose to
apply the Cahn-Hilliard equation with degenerate mobility and its numerical scheme
presented in the previous sections in the context of image processing as an algorithm
for smoothing and recovering the distorted boundaries of segmented objects. For some
numerical experiments, see the following section.

Other choices of area-preserving motion laws for curves are of course possible.
The Cahn-Hilliard equation converges for ξ → 0 to the Mullins-Sekerka problem, the
non-local form of the Allen-Cahn equation is area-preserving as well [11].

6. Numerical experiments. In this section we present some numerical ex-
periments using the proposed numerical scheme (2.1) applied to image processing
applications.

In all the experiments, the initial condition was chosen as an image resulting from
some previous segmentation algorithm. Such an image, represented as a piece-wise
constant function defined on the domain Ω and smoothed in the sense of Section 3, can
be directly input into the numerical scheme. All the processed image are square, so
that the computational domain is always set to (0, 1)× (0, 1) and the space step is set
accordingly to 1/(n−1), where n denotes the number of pixels in each dimension. The
interface parameter ξ is chosen equal to space step. This choice may not guarantee
enough grid points on the interface and therefore the exact recovery of the surface
diffusion motion law, but this does not pose a real problem since this is not the goal
of the presented image processing application. The constant β was chosen to be equal
to 1/4.

In Figure 6.1 we can see the evolution of an initial shape with four “leafs”, the
boundary of which has been damaged by small bumps. The initial condition is in
Figure 6.1(a) and the time increases to the right and down. Several images at various
times of the evolution are shown, the effect of evolution at two time scales is apparent.
The small bumps at the boundary are smoothed out quickly while the overall four-leaf
shape almost does not change. Even after a long-time evolution shown in the lower
right corner (Figure 6.1(f)) the final shape does not differ much from the original
shape.

In Figure 6.2 the processing of a segmented image of a dog is shown. Unlike the
previous result, this shape is more complicated and the boundary has been distorted
by fine-grained noise. During the evolution this noise is eliminated quickly.

In Figure 6.3 the shape recovery of the letter R is shown. The boundary is again
damaged by distorting it by a noise. After a short time of the evolution the noise is
smoothed out.

In the last Figure 6.4 the same image of letter R is shown, the only difference
from the previous figure being the amount of noise applied to the boundary. Even
though the boundary is now quite damaged, after a short time we get result which
may be more suitable for further processing.

7. Conclusion. In this paper we have proposed a numerical scheme for solv-
ing the Cahn-Hilliard equation with both the constant mobility and the degenerate
mobility. This scheme is based on method of lines, discretizing in space variable by
finite differences. We get a system of ODEs which we then solve by an embedded
fourth-order Runge-Kutta Cash-Karp method with fifth-order error estimate. This
choice of an ODE solver enables us to adaptively change the time step and thus keep
the error resulting from the time discretization under a specified threshold.
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(a) t = 0 (b) t = 5 · 10−8

(c) t = 5 · 10−7 (d) t = 5 · 10−6

(e) t = 2.5 · 10−5 (f) t = 5 · 10−5

Fig. 6.1. Shape recovery: 180 × 180 pixels, h = ξ = 1/179
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(a) t = 0 (b) t = 2.5 · 10−9

(c) t = 5 · 10−9 (d) t = 10−8

(e) t = 2.5 · 10−8 (f) t = 5 · 10−8

Fig. 6.2. Shape recovery: 200 × 200 pixels, h = ξ = 1/199
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(a) t = 0 (b) t = 2.5 · 10−9

(c) t = 5 · 10−9 (d) t = 10−8

(e) t = 2.5 · 10−8 (f) t = 5 · 10−8

Fig. 6.3. Shape recovery: 20 × 200 pixels, h = ξ = 1/199
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(a) t = 0 (b) t = 2.5 · 10−9

(c) t = 5 · 10−9 (d) t = 10−8

(e) t = 2.5 · 10−8 (f) t = 5 · 10−8

Fig. 6.4. Shape recovery: 20 × 200 pixels, h = ξ = 1/199
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Then, we demonstrated experimentally that the proposed scheme converges with
the first-order accuracy. In order to be able to easily run large computation, a parallel
implementation is necessary and we shorly described such an implementation. The
presented numerical scheme can be applied in the context of image processing for
shape recovery of segmented images, we proposed such an algorithm and demonstrated
its use on several images.
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