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EVALUATION OF SATURATION-DEPENDENT FLUX ON

TWO-PHASE FLOW USING GENERALIZED SEMI-ANALYTIC

SOLUTION

RADEK FUČÍK1 , TISSA H. ILLANGASEKARE2 , AND JIŘÍ MIKYŠKA1

Abstract. An important step in model development protocol is the verification of the model
code. This is performed by comparing the code performance with existing analytical solutions under
simplified conditions (e.g. geometry, flow dimensionality, parameter distribution and boundary condi-
tions). Two closed form solutions are commonly used as benchmarks for the verification of two-phase
flow in porous media codes: (1) Buckley-Leverett solution and (2) McWhorter and Sunada solution.
The first assumes the capillary effects are negligible, and the second formulation includes capillary
effects but assumes a particular functional form for the boundary flux that starts from a physically
unrealistic infinity value. This paper presents a derivation that generalizes the boundary flux term
by allowing it to start from a finite value. To expand the class of admissible boundary and initial
conditions, we offer a numerical algorithm that solves the transport equation for phase saturations
using the Finite-Difference Method in space and time. The use of the algorithm is demonstrated by
conducting a series of computations in one-dimensional spatial domain. (see also our article in [2])

Key words. Multiphase flow code verification, McWhorter-Sunada’s closed form solution,
transport equation, Finite-Difference Method, heterogeneous media.
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1. Model of multiphase flow. McWhorter and Sunada [6] formulated the
solution for a semi-infinite problem domain with specific boundary conditions to arrive
at a close form analytical solution of the multiphase flow. For general setting see [4],
for an application see [5]. The non-wetting phase (indexed n) is displaced by the
wetting liquid (water, indexed w) horizontally with no gravity effect and assumed
incompressibility of fluids.

This section contains the derivation of the multiphase flow equation. The Darcy
law applied to the two fluid phases yields

qw = −
kw

µw

∂pw

∂x
, qn = −

kn

µn

∂pn

∂x
, (1.1)

where pα is the pressure, qα is the volumetric flux, kα is the hydraulic conductivity
and µα is the dynamic viscosity for the phase denoted by α. The total flux is denoted
by qt = qw + qn and the capillary pressure

pc(Sw) = pn − pw. (1.2)

The aim is to eliminate variables respective to the non-wetting phase i.e. the flux qn

and the pressure pn. Subtraction of formulas in (1.1) yields

∂pn

∂x
−

∂pw

∂x
= −qn

µn

kn

+ qw

µw

kw

.
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Applying (1.2) and qn = qt − qw we get

∂pc

∂x
= −(qt − qw)

µn

kn

+ qw

µw

kw

= −qt

µn

kn

+ qw

(
µw

kw

+
µn

kn

)

,

kn

µn

µn

kn

µw

kw
+ µn

kn

∂pc

∂x
= −

µn

kn

µw

kw
+ µn

kn

qt + qw,

kn

µn

1

1 + kn

kw

µw

µn

dpc

dSw

︸ ︷︷ ︸

−D(Sw)

∂Sw

∂x
= −

1

1 + kn

kw

µw

µn

︸ ︷︷ ︸

f(Sw)

qt + qw.

Consequently

qw = f(Sw)qt −D(Sw)
∂Sw

∂x
, (1.3)

with

f(Sw) =
1

1 + kn(Sw)
kw(Sw)

µw

µn

, (1.4)

D(Sw) = −
kn(Sw)f(Sw)

µn

dpc

dSw

(Sw). (1.5)

Denoting Φ as the porosity, the mass balance equation has the following form

∂qw

∂x
+ Φ

∂Sw

∂t
= 0. (1.6)

Finally, using the expression (1.3) the multiphase flow equation is obtained as

Φ
∂Sw

∂t
= −qt

df

dSw

∂Sw

∂x
+

∂

∂x

(

D
∂Sw

∂x

)

. (1.7)

We set the boundary and initial conditions as was proposed by McWhorter and
Sunada [6]

qw(t, 0) = q0(t) = At−
1
2 ,

Sw(t, +∞) = Si,

Sw(0, x) = Si,

where A is the injection rate constant. Note that at t = 0, the boundary flux takes
an unrealistic value of infinity.

2. Analytical treatment. As follows from [6], the fractional flow function is
to be defined as

F (t, x) =

qw(t,x)
q0(t) − fiR

1− fiR
, with R(t) =

qt(t)

q0(t)
and fi = f(Si). (2.1)

For unidirectional displacement, qt = q0 and F has the physical meaning of the ratio
of net wetting phase flux at (x, t) to the net influx of wetting phase. In that case,
R = 1. On the ohter hand, R = qt = 0 for counter-current flow, and again, F

represents a flux ratio. (quoted the [6], p.401)
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In fact, the indicator function R(t) is a constant independent on t.
Regrouping the expression (2.1)

q0(t)(1−Rfi)F (t, x) = qw(t, x)−Rfiq0(t),

differentiating by ∂
∂x

q0(t)(1− Rfi)
∂F

∂x
(t, x) =

∂qw

∂x
(t, x),

and substituing into (1.6), the mass-balance equation becomes

At−
1
2 (1−Rfi)

∂F

∂x
(t, x) + Φ

∂Sw

∂t
= 0. (2.2)

The following lines present the reduction of (2.2) into an ODE. Using the change
of variables

(t, x, Sw , F )←→ (τ, λ, Sw, F ),

described by relations

λ = t−
1
2 x, Sw = Sw, t = τ, F = F ,

with

Sw = Sw(t, x), F = F (t, x), λ = λ(Sw), F = F (τ, Sw),

the equation (2.2) is transformed into

2A(1−Rfi)

Φ

∂F

∂Sw

(τ, Sw) = λ(Sw). (2.3)

The final form of the transformed fractional flow function F is

F (Sw) = −
Φ

2A2(1−Rfi)2

S0∫

Sw

(s− Sw)D(s)

F (s)− fn(s)
ds−

dF

dSw

(S0)(S0 − Sw) + F (S0), (2.4)

where fn is defined by

fn =
R(f − fi)

1−Rfi

.

The expression (2.4) is simplified by the condition

dF

dSw

(S0) = 0,

which follows from (2.3) (S0 is achieved at x = 0 for all t > 0). It requires that

A2 =
Φ

2(1−Rfi)2

S0∫

Si

(s− Si)D(s)

F (s)− fn(s)
ds. (2.5)
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Substituing (2.5) into (2.4) we get

F (Sw) = 1−

S0∫

Sw

(s−Sw)D(s)

F (s)−fn(s)
ds

S0∫

Si

(s−Si)D(s)

F (s)−fn(s)
ds

. (2.6)

Together, (2.5) and (2.6) constitute an implicit expression for the dependence of S0

on A. Numerical computations proceed conveniently by prescribing S0, calculating
F (Sw) from (2.6) by iteration (see [6] for details), and finally, computing A from (2.5).

Remark. The numerical solution presented in Section 2 is compared to analytical
solution obtained from [6]. Beside the error commented in [8] and replied in [7], it
is essential to point out another error in the Appendix B of [6] concerning numerical
realisation of the analytical solution. The equation ([6]:19) on page 402 is transformed
into ([6]:B9) by substitution. The correct form of the ([6]:B9) is

dF

dS
=

1

S0 − Si

1∫

S

Dn(β)
F (β)−fn(β)dβ

1∫

0

βDn(β)
F (β)−fn(β)dβ

.

3. Suggestion to generalisation of the input flux. Assuming q0(t) = A g(t),
the equation (2.2) becomes

A g(t)(1−Rfi)
∂F

∂x
(t, x) + Φ

∂Sw

∂t
= 0. (3.1)

The change of variables (t, x, Sw, F )←→ (τ, λ, Sw, F ) has the form

λ = x g(t), Sw = Sw, t = τ, F = F ,

with

Sw = Sw(t, x), F = F (t, x), λ = λ(Sw), F = F (τ, Sw).

To determine the form of g(t) it is necessary to follow these steps. Differentiating the
expression

F (t, x) = F (t, Sw(t, x)) ,

by ∂
∂x

we get

∂F

∂x
(t, x) =

∂F

∂Sw

(t, Sw(t, x))
∂Sw

∂x
(t, x).

Differentiating the expression

Sw

(

τ,
1

g(τ)
λ(Sw)

)

= Sw,

by ∂
∂τ

we get

∂Sw

∂t

(

τ,
1

g(τ)
λ(Sw)

)

−
ġ(τ)

g2(τ)
λ(Sw)

∂Sw

∂x

(

τ,
1

g(τ)
λ(Sw)

)

= 0,
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where ġ(τ) stands for d
dτ

g(τ). The equation (3.1), after substitution of the above
expressions, becomes

Ag(τ)(1− Rfi)
∂F

∂Sw

∂Sw

∂x
+ Φ

ġ(τ)

g2(τ)
λ(Sw)

∂S

∂x
= 0. (3.2)

The independence of τ in the coefficients in (3.2) implies we need to solve

g(τ) = C∗
ġ(τ)

g2(τ)
for a C∗ 6= 0,

with general form of the solution

g(τ) =

(
1

g2(τ0)
−

2

C∗
(τ − τ0)

)−
1
2

.

4. Model specification. We use two main models for the capillary pressure pc

(as described in [3]):

Brooks-Corey pc(Sw) = pdS
−

1
λ

e for pc ≥ pd (4.1)

Van Genuchten pc(Sw) =
1

α

(

S
−

1
m

e − 1
) 1

n

for pc > 0 (4.2)

with parameters n, m, λ and α, effective saturation Se given by

Se =
Sw − Swr

1− Swr

and residual wetting saturation Swr, with relevant relative permeability coefficients
kri

Burdine krw(Sw) = S
2+3λ

λ

e (4.3)

krn(Sw) = (1− Se)
2
(

1− S
2+λ

λ

e

)

(4.4)

Mualem krw(Sw) = Sε
e

[

1−
(

1− S
1
m

e

)m]2

(4.5)

krn(Sw) = (1− Se)
γ

(

1− S
1
m

e

)2m

(4.6)

where the parameter λ is an empirical Brooks-Corey’s model constant from (4.1), other
parameters ε and γ are closely connected with the pore structure and parameter m

is the same as in Van Genuchten’s model (4.2). Generally m = 1 − 1
n
, ε = 1

2 and
γ = 1

3 . Burdine’s model is used together with Brooks-Corey’s and Mualem’s with
Van Genuchten’s model.

Permeability kα is then given by

kα(Sw) = k0kαr(Sw). (4.7)

where the soil permeability k0 is characterising the specific soil (medium).
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5. Numerical solution. As an alternative, we study the following one-dimensional
transport problem

Φ
∂Sw

∂t
= −qt

df

dSw

∂Sw

∂x
+

∂

∂x

(

D
∂Sw

∂x

)

in [0, +∞]× [0, L], (5.1)

with

Sw = Sw(t, x),

f = f(Sw) =
1

1 + kn(Sw)
kw(Sw)

µw

µn

,

D = D(Sw) = −
1

1 + kn(Sw)
kw(Sw)

µw

µn

kn(Sw)

µ2

dpc

dSw

(Sw).

The boundary and initial conditions are

Sw(t, L) = Si, (5.1.bc1)

Sw(t, 0) = S0, (5.1.bc2)

Sw(0, x) = Si. (5.1.ic)

The parameters used in the numerical and analytical computations are listed in
Table 5.1.

Brooks-Corey & Burdine : λ = 2, pd = 2 Pa

Van Genuchten & Mualem : α = 0.37 Pa−1, n = 4.37
common constants and parameters: Swr = 0.01, Φ = 0.3,

µw = µn = 0.001 kg m−1 s−1,

k0 = 10−10 m2

Table 5.1

Values used in analytical and numerical computation are mainly taken from [3]. Parameters
for the Van Genuchten model and the Brooks-Corey model pertain to same physical conditions.

The solution of (5.1) Sw = Sw(t, x) is compared to the solution given by (2.6).
A choice of the grid ωh = {xi|xi = ih; i = 0, . . . , m; h = L

m
} leads to a discrete

problem to find a grid-function u(t) : ωh → R which approximates the solution
Sw(t, x) of the problem (5.1). Its components ui(t) resolve a system of (m − 1)
ordinary differential equations (where there is used backward difference in the term
replacing df

dSw

)

∂ui

∂t
= −

qt

Φ

f(ui)− f(ui−1)

h
+

1

Φ

Di+ 1
2
(ui+1 − ui)−Di− 1

2
(ui − ui−1)

h2
i = 1, . . . , m− 1

(5.2)

u0(t) = S0

um(t) = Si

where Di± 1
2

is defined by

Di+ 1
2

= D(
ui+1 + ui

2
)

Di− 1
2

= D(
ui + ui−1

2
)
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with an initial condition

ui(0) = Si for i = 1, . . . , m. (5.3)

The problem (5.2) can be written in the form

∂u

∂t
= A(t, u) on 〈0, +∞〉

u(0) ≡ Si (5.4)

The Runge-Kutta 4th order schema is used to resolve the problem (5.4) as in [1]
(note that the time step is denoted by τ and discrete time by tn = nτ , n = 0, 1, 2, . . . ).

u(tn+1) = u(tn) +
τ

6
(κ1 + 2κ2 + 2κ3 + κ4) n ∈ N0

κ1 = A(tn, u)

κ2 = A(tn+ 1
2
, u +

1

2
τκ1)

κ3 = A(tn+ 1
2
, u +

1

2
τκ2)

κ4 = A(tn+1, u + τκ3)

5.1. Results. In this section we present the numerical and quasi-analytical re-
sults obtained using this numerical scheme. It is obvious from the figures below that
this numerical scheme is convenient to use as an numerical extension for the quasi-
analytical procedure by McWhorter-Sunada.

The numerical solution is compared to the semi-analytical solution in the first
series (Figures 5.1 to 5.4). The choice of the input saturation S0 is restricted only for
values not too close to 1.00 because the iteration process of the equation (2.6) was
found out not to be convergent for values close to 1.00.

The dependency of A on the prescribed value of S0 is demonstrated in Table 5.2.

S0 0.3 0.5 0.7 0.9
AV an Genuchten 0.479 1.440 3.227 7.239
ABrooks−Corey 0.384 1.251 2.740 6.039

Table 5.2

The dependency of A on the prescribed value of S0. The order of values of A is 10−5.
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Fig. 5.1. Comparison of the numerical to the analytical solution using the Van Genuchten
model. The numerical solution is obtained using a grid of 1000 nodes with a timestep of 0.01 s.

Fig. 5.2. Comparison of the numerical to the analytical solution using the Brooks-Corey model.
The numerical solution is obtained using a grid of 1000 nodes with a timestep of 0.01 s.
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Fig. 5.3. Comparison of the numerical to the analytical solution using the Van Genuchten
model. The numerical solution is obtained using a grid of 1000 nodes with a timestep of 0.01 s.

Fig. 5.4. Comparison of the numerical to the analytical solution using the Brooks-Corey model.
The numerical solution is obtained using a grid of 1000 nodes with a timestep of 0.01 s.
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Figures 5.5 and 5.6 present an interesting phenomenon in the comparison of the
unidirectional and bidirectional displacement. Both curves agree up to certain level
of S0 and then, as the value of S0 increases, the unidirectional displacement is faster
as expected.

Fig. 5.5. Comparison of the unidirectional and the bidirectional displacement using the Van
Genuchten model. The numerical solution is obtained using a grid of 1000 nodes with a timestep of
0.01 s.

Fig. 5.6. Comparison of the unidirectional and the bidirectional displacemnt using the Brooks-
Corey model. The numerical solution is obtained using a grid of 1000 nodes with a timestep of
0.01 s.

5.2. Suggestion to generalisation of the input. In this section we present
some ideas concerning the form of the input flux q0(t). We used some functions with
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the same value at t = 0 (except the first case). Results using our numerical scheme are
presented in Figures 5.7 to 5.11. Values of A were based on preceding computations
(see the Table 5.2) : for the Van Genuchten model, A = 7 · 10−5 and for the Brooks-
Corey model A = 6 · 10−5. Each result was obtained on the grid of 100 nodes with a
timestep of 0.01 s and finaltime of 10000 s.

Fig. 5.7. Firstly, the numerical scheme was tested with a little modified input flux function

q0(t) = A t−
1
3 .

Fig. 5.8. In this case, the input flux function is constant q0(t) = A.

6. Conclusion. The numerical scheme seems to be convenient for solving this
class of problems even if it is impossible to find the quasi-analytical integral solution.
Figures presented in Section 5.1 demonstrated that the numerical solution of the
equation (1.7) equals to the benchmark solution, i.e. the semi-analytical solution.
Consequently, we can introduce some new input fluxes and compute the solution of
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Fig. 5.9. In this case, the input flux function is constant only for a certain period of time.
q0(t) = A for t < 1000 s else q0(t) = 0.

Fig. 5.10. The input flux function is q0(t) = A

t+1
. Curves seem to be similar to Figure 5.9, but

it is only a coincidence.

the (1.7) using the verified numerical scheme as was shown in Section 5.2. There were
not obtained any limitations concerning the shape of the input flux function yet.
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Fig. 5.11. The input flux function is q0(t) = A e−t.
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