
Proceedings of Czech–Japanese Seminar in Applied Mathematics 2004

August 4-7, 2004, Czech Technical University in Prague

http://geraldine.fjfi.cvut.cz

pp. 36–46

NUMERICAL SOLUTION OF INVISCID AND VISCOUS FLOWS

USING WEIGHTED LEAST SQUARE SCHEME AND

QUADRILATERAL OR TRIANGULAR MESH

JIŘÍ FÜRST1

Abstract. The article describes development of a high order finite volume method for solution
of transonic flow problems. The method is based on a reconstruction procedure similar to weighted
ENO. Our reconstruction procedure is based on least square method with data dependent weights
which is much simpler to implement than ENO scheme. The computational results demonstrate the
usability of this approach for solution of several flow problems in 2D and 3D using both structured
and unstructured meshes.
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1. Introduction. This article deals with the numerical solution of Euler or
Navier–Stokes equations describing motion of compressible inviscid or viscous gas
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where ρ is density, ui are components of velocity vector, p is pressure, E is total
energy per volume unit, τij is stress tensor, and qj are components of heat flux (see
e.g. [4]).

The solution can be obtained with standard finite volume method. However, the
basic method of Godunov type often suffers from low accuracy. One possibility how to
improve the accuracy of such method is the application of an interpolation procedure
which tries to reconstruct pointwise values of the solution from their cell averages.
The main problem of those interpolation procedures is their applicability for data
with discontinuities and/or strong gradients. The so called ENO (i.e. essentially non-

oscillatory) reconstruction has been developed (see e.g. [12], [14]) and transformed
to finite volumes by many researchers at the end of last century. Nevertheless, the
standard finite volume version of ENO or weighted ENO method (see [13], [7] etc.) is
relatively complicated for general meshes. In fact, there is very few results obtained
with ENO/WENO using unstructured meshes in 3D. On the other hand, the proposed
WLSQR interpolation is simply extensible also for 3D (see last section of this article
for an example).
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We proposed in [10] a reconstruction procedure based on least square method
combined with data dependent weights for avoiding interpolation across a discontinu-
ity. Article [10] shows several applications of our weighted least square method namely
for inviscid transonic flows in 2D channels and turbine cascades with piecewise linear
reconstruction. Article [11] shows the extension to piecewise parabolic interpolation
for scalar test case.

The aim of this article is to document some preliminary experiments concerning
the choice of the weights in the reconstruction and to test the method for 3D inviscid
flows and 2D viscous flows in complex geometries.

2. High order finite volume method. As a base for our numerical method
we use standard finite volume method with data located in centers of polygonal cells.
The basic low order semi-discrete method can be written as (see e.g. [4])

dui(t)

dt
= −

∑

j∈Ni

F(ui(t), uj(t), ~Sij).(2.1)

Here ui(t) is the averaged solution over a cell Ci, Ni denotes the set of indices of

neighborhoods of Ci, ~Sij is the scaled normal vector to the interface between Ci and
Cj (oriented to Cj) and F denotes the so called numerical flux approximating physical
flux through the interface between cells Ci and Cj . In our case we use the AUSM or
AUSM+ flux [17], [16] nevertheless it is possible to use also another ones e.g. Roe’s
flux, Osher’s flux etc.

A higher order method can be obtained by introducing a cell-wise interpolation
P (~x; u) = Pi(~x; u) for x ∈ Ci into the basic formula. The higher order method is then
formally

dui(t)

dt
= −

∑

j∈Ni

F(Pi(~xij ; u), Pj(~xij ; u), ~Sij),(2.2)

where ~xij is the center of interface between Ci and Cj .
The semi-discrete is then solved either by explicit Runge-Kutta method, either

by implicit backward Euler method (see [8] or [11] for details).

3. Weighted least square interpolation. The most interesting part of the
above mentioned method is the high order reconstruction (or interpolation). There
are several reconstruction methods in the literature, but most of them are limited
to structured meshes or to lower order of accuracy. We describe here only piecewise
linear variant weighted least square (or shortly WLSQR) interpolation. Extension to
piecewise parabolical case was given in [11].

We assume, that any reconstruction should satisfy following requirements:
1. Conservativity, i.e. the mean value of the interpolant P (x; u) over any cell

Ci should be equal to cell average of u, in other words

∫

Ci

P (~x; u) d~x = |Ci|ui.(3.1)

2. Accuracy, i.e. for a given smooth function ũ(~x) with cell averages ui the
interpolant P (~x; u) should approximate ũ:

P (~x; u) = ũ(~x) + O(ho),(3.2)
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where h is characteristical mesh size and o is the order of accuracy. This
accuracy requirement is reformulated in the following way: let prolongate
Pi(~x; u) over cells in the vicinity of cell Ci. Then we request for such cells Cj

∫

Cj

Pi(~x; u) d~x = |Cj |uj .(3.3)

3. Non-oscillatory, i.e. the total variation of the interpolant should be bounded
for h → 0.

The interpolant Pi(~x; u) is therefore obtained by minimizing error in (3.2) for Cj

being the neighborhoods of Ci with respect to (3.1). In order to mimic weighted ENO
method we introduce data dependent weights:

Pi(~x; u) = argmin
∑

j∈Ni

[

wij

(

∫
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P̃ (~x; u) d~x − |Cj |uj

)]2

,(3.4)

where minimum is take over over all linear polynomials P̃ satisfying (3.1), in other
words, we define Pi as a polynomial satisfying (3.1) and minimizing errors in (3.3)
in L2 norm. Weights wij should depend on u and they should be high when u is
smooth and small when there is a discontinuity in u. This behavior is similar to
ENO reconstruction which can be for piecewise linear polynomials in 1D written as
WLSQR reconstruction with weights being either 1 or 0. In our case, we chose
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with p, q, and r being constants (e.g. p = 4, q = −3, r = 3).

4. Choice of parameters of weights in WLSQR interpolation. The coef-
ficient r is for scaling, which can be useful for high aspect ratio cells. Its role is not
analyzed here and it was chosen to be r = 3. The ratio p/q determines the behavior
of the weight: the weight is O(h−r−q) when |∆iju/h| << hq/p (here ∆iju = ui −uj),
and O(h−r|∆iju/h|−p when |∆iju/h| >> hq/p.

Let assume smooth function u. Then ∆uij/h is bounded independently of h and
the weight should be relatively large in that case. It happens for example for p > 0
and q ≤ 0 (the weight is at least O(h−r/2).

On the other hand, when there is a discontinuity in u, then ∆iju/h = O(h−1)
and the weight should be relatively small. In fact, it is at most O(h(p−r)/2) assuming
p > 0.

4.1. Theoretical analysis for simplified cases. The complete analysis of
accuracy and stability (in the sense of total variation of the interpolation) is very
complicated for general multidimensional case. We give here a preliminary results
obtained for equidistant meshes in 1D and piecewise linear interpolant.

Denote the mesh spacing by h, then the interpolant is defined by

Pi(x) = ζi + σix, for x ∈ (xi−1/2, xi+1/2).(4.1)

The conservativity requirement yields ζi = ui. Assuming the accuracy requirements
for two neighborhoods and weights w one obtains the following system of equations
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for single unknown σi

wi+1/2ui+1 = wi+1/2 (ui + hσi) ,(4.2)

wi−1/2ui−1 = wi−1/2 (ui − hσi) .(4.3)

The system is overdetermined and we solve it in the least square sense, i.e. we
minimize the functional at the right hand side of (3.4). The solution to this system
gives

σi =
w2

i+1/2(ui+1 − ui) + w2
i−1/2(ui − ui−1)

h(w2
i+1/2 + w2

i−1/2)
.(4.4)

Assuming smooth function u(x) and applying Taylor expansions to u one gets

σi = ux(xi) +
h

2
uxx(xi)

w2
i+1/2 − w2

i−1/2

w2
i+1/2 + w2

i−1/2

+ O(h2).(4.5)

Next, since ∆iju/h is bounded independently on h, the weights are bounded (for
sufficiently small h and q ≤ 0) by 1

2h−r−q ≤ w2
ij ≤ h−r−q. Therefore the term by

h/2uxx is bounded by 2 from above.
The following lemma follows directly from the last formulas:
Lemma 4.1. Assume a sufficiently smooth function u(x) having cell averages ui

and weights w 6= 0. Then the piecewise linear WLSQR interpolation polynomial with

p > 0 and q ≤ 0 approximates u(x) with second order of accuracy, i.e.

P (x; u) = u(x) + O(h2).(4.6)

Another issue is the stability for non-smooth data. It can be examined in the terms
of total variation. Up to now we do not have general results concerning discontinuous
case, therefore we mention here only special case with data corresponding to a shock
given by u(x) = 1 for x < xshock and u(x) = 0 for x ≥ xshock. Without loss of
generality we assume, that the shock is located inside cell with index 0. It means,
that the cell averaged values ui will be ui = 1 for negative i, ui = 1 for positive i and
u0 = c where c ∈ [0, 1] corresponds to exact location of the shock inside cell. With
this data we can compute weights

w2
−1/2 = hp−r/

(

(1 − c)p + hp+q
)

,(4.7)

w2
1/2 = hp−r/

(

(cp + hp+q
)

,(4.8)

w2
3/2 = hp−r/hp+q.(4.9)

The formula (4.4) yields

σ0 = −
1

h

(cp + hp+q)(1 − c) + [(1 − c)p + hp+q]c

cp + (1 − c)p + 2hp+q
,(4.10)

σ1 = −
1

h

hp+qc

2hp+q + cp
.(4.11)

At first we will compute magnitude of overshoot for interface between cells 1 and 2
denoted by δ3/2.

δ3/2 = |h/2σ1| =
hp+qc

4hp+q + 2cp
.(4.12)
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The value of c can be arbitrary in [0, 1] (and may depend on h), so we analyse two
cases (assuming always p > 1):

• assume cp < hp+q , then

δ3/2 ≤
hp+qc

4hp+q
≤ 0.25h1+q/p,(4.13)

• assume cp ≥ hp+q in this case

δ3/2 ≤
hp+qc

2cp
≤ 0.5h1+q/p+p+q.(4.14)

In both cases we have for small h (assuming p + q ≤ 0)

δ3/2 ≤ h1+q/p.(4.15)

The overshoot at the interface −1/2 can be estimated in the same way.
The calculation of magnitude of overshoot δ1/2 is much more complicated. Nu-

merical experiments with p = 4, q ∈ [−10, 10], c ∈ [0, 1], and h > 0 shows, that the
overshoot δ1/2 = −min(0, uL

1/2, u
R
1/2) has maximum for c = 0. Here uL

1/2 and uR
1/2

are the values of the interpolant at the left and right side of interface 1/2. Assuming
validity of this hypothesis we have the following estimate for δ1/2 (for small h):

δ1/2 ≤
hp+q

2 + 4hp+q
≤

hp+q

2
.(4.16)

Moreover, it is easy to prove that the overshoot can occur only for c < 1/2. It means,
that δ−1/2 or δ1/2 is equal to zero.

Summing all those things together we can conclude, that (at least) for p = 4 and
q ∈ [−10, 10] the total variation of interpolant is for the case of a shock

TV (P (x; u)) ≤ 1 + 2
(

δ−1/2 + δ1/2 + δ1/2

)

≤ TV (u) + 4h1+q/p + hp+q .(4.17)

This yields the following lemma:
Lemma 4.2. Assume weights with1

p + q ≥ 0, and p > 0.(4.18)

Then the total variation of the interpolant of data given by a single shock with constant

states at both sides will be bounded independently of h as h → 0.
Note that this simplified analysis does not give any condition on r. Moreover,

it is not clear if the conditions given in the lemma 4.2 would apply also for more
complicated configurations or for multidimensional systems.

4.2. Numerical experiments. In the previous section we have discussed some
theoretical aspects of the choice of p, q, and r in the definition of weight. We obtained
some necessary conditions for simple scalar one-dimensional cases. However, it is not
clear whether those conditions apply also for multidimensional systems of equations.
Therefore we present results of several calculation with different values of p, q, r and
we compare their quality.

First case is the transonic flow through a test channel (the so called GAMM
channel, see fig. 4.1). The solution was obtained using the implicit version of our

1From p > 0 and p + q ≥ 0 follows 1 + q/p ≥ 0 and therefore δ3/2 → 0 in (4.15).
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method using a mesh with 90 × 30 quadrilateral cells. Figure 4.2 shows calculated
distribution of Mach number and convergence history for different values of p, q, r.
Since the calls have aspect ratio close to one, the value of r should not be to important
for this case. Therefore we set r = 3 and we changed only the ratio of p and q. One
can see, that the convergence history is similar for all cases starting from p = 4,q = 0
to p = 4, q = −4. The distribution of Mach number however differs from case to
case. By comparison with results obtained with other methods (see e.g. [3], [9] etc.)
we can see, that the triplet p, q, r = 4, 0, 3 does not resolve well the structure of the
shock. On the other hand, triplets 4,−2, 3 and 4,−3, 3 do very good job. There are no
significant overshoots and the Zierep’s singularity can be identified behind the shock.
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(a) Geometry of the channel (b) Mesh with 90 × 30 cells

Fig. 4.1. 2D GAMM channel
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Fig. 4.2. Distribution of Mach number along walls and convergence history for 2D GAMM
channel test case.

Another case is the transonic flow over NACA 0012 profile with inlet Mach number
M∞ = 0.8 and inlet angle α1 = 1.25◦. The computation was made using a structured
mesh with 168 × 40 quadrilateral cells which was used for this test case. It can be
seen at the fig. 4.3 that triplets p, q, r = 4,−1, 3, 4,−2, 3, and 4,−3, 3 resolve shock
wave with tiny overshoots (almost invisible for 4,−1, 3, higher for lower values of q).
Convergence to steady state was very good for 4,−2, 3 and 4,−3, 3 whereas it stalls
for 4,−1, 3 and it diverges for 4,−4, 3.
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Figure 4.4 shows isolines of Mach number obtained with obtained with p, q, r =
4,−2, 3 and comparison of computed distribution of pressure coefficient cp with results
found in [1] and [6]. One can see, that there are big differences in the position of the
shock wave. Nevertheless, the WLSQR method shows at least qualitatively good
agreement with other results with exception of those of Zanetti.
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Fig. 4.3. Distribution of cp for different weights (left) and convergence history (right) for flow
around NACA 0012 profile at M∞ = 0.8 and α1 = 1.25◦.
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Fig. 4.4. Isolines of Mach number (left) and comparison of cp obtained using p, q, r = 4,−2, 3
with results found in references [1] and [6] (right) for flow around NACA 0012 profile at M∞ = 0.8
and α1 = 1.25◦.

Those numerical experiments off course did not give complete answer on the
question of the choice of weights in WLSQR methods. However, they says, that the
weights with p, q, r being 4,−2, 3 or 4,−3, 3 are at least in some cases suitable for
applications in calculations of transonic flows.

5. Application to several flow problems. In the last section we show several
flow problems which were solved with the help of WLSQR interpolation incorporated
into a basic finite volume scheme.

5.1. 2D inviscid flow through turbine cascade. As an example of the ap-
plication of our method is the inviscid flow through a 2D turbine cascade with inlet
Mach number M1 ≈ 0.3, inlet angle α1 = 19.3◦ and outlet Mach number M2 = 1.2.
The figure 5.1 shows the results obtained using an unstructured mesh with trian-
gular cells. The mesh is adaptively refined in order to resolve better shock waves.
Figure 5.2 shows the interferogram of the flow field obtained at the Institute of Ther-
momechanics [18] and the comparison of measured distribution of pressure with our
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numerical results using three meshes. One can see relatively good agreement both in
the structure of the flow field and in the distribution of pressure. There are still some
differences in the pressure distribution at x ≈ 0.8. This difference may be caused by
neglected viscosity.

Fig. 5.1. Isolines of Mach number for inviscid transonic flow through 2D turbine cascade with
adaptive mesh refinement (5646 triangles, 7952 triangles, 11440 triangles)
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Fig. 5.2. Comparison of numerical results with experimental data for transonic flow through a
2D turbine cascade; interferogram and distribution of pressure.

5.2. 2D viscous flow over a profile. Another case is the application of the
method for viscous transonic flows in turbulent regime at high Reynolds number. The
flow is described by the so called Reynolds averaged Navier–Stokes equation and the
turbulence is modeled by the TNT k−ω model of Kok [15]. The domain is discretized
using a structured hyperbolic mesh with 164× 96 quadrilateral cells with refinement
in the direction normal to the profile prepared by A. Jirásek. Normal size of first cell
is approximately ∆y1 = 10−5 and the size grows exponentialy with ∆yj+1/∆yj ≤ 1.1.
Inlet and outlet conditions correspond to the flow with M∞ = 0.734, α1 = 2.54◦, and
Re = 6.5 · 106 which corresponds to CASE-9 from [2] with tunnel corrections Figure
5.3 shows isolines of Mach number, isolines of turbulent Reynolds number defined
as a ratio of turbulent viscosity µT and laminar viscosity µL, and a comparison of
computed pressure coefficient and skin friction with experimental data [2].
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Fig. 5.3. Solution of turbulent viscous flow over RAE2822 profile, M∞ = 0.734, α1 = 2.54◦,
Re = 6.5 ·106, isolines of Mach number (top left), turbulent Reynolds number (top right), ditribution
of pressure coefficient (bootom left), and skin friction coeeficient (bottom right).

5.3. 3D inviscid flow through a turbine cascade. Last example is the in-
viscid transonic flow through 3D turbine cascade. We assume that the flow is periodic
from blade to blade and therefore it is possible to solve the flow field just in one period.
The domain is discretized using a structured mesh with hexahedral cells. The inflow
and outflow conditions depend on the radius. Figure 5.4 compares the distribution of
Mach number obtained with the WLSQR method with AUSM flux using a structured
mesh with 100 × 20 × 20 cell. It can be seen, that the solution is comparable to
the reference solution obtained with TVD MacCormack scheme [8] with finer mesh
having 200× 40 × 40 cells. Similar results were also obtained by J. Halama [5] using
cell vertex Ni’s scheme with Jameson’s artificial viscosity.

6. Conclusion. The analysis of the WLSQR method given in this article shows
some preliminary results concerning the stability of the interpolation procedure for
discontinuous data. The analysis was done only in very simple cases. However,
numerical experiments show relatively good properties of the method for wide range
of transonic flow calculation. The distribution of cp for NACA 0012 shows, that the
method produces small overshoots near the shock wave. In many applications, such
overshoots do not matter (provided that they do not blow up). However, the choice
of the weight should be more examined especially for the case of high aspect ratio
cells.
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Fig. 5.4. Isolines of Mach number for inviscid flow through a 3D turbine stator, WLSQR
method on the left (coarser mesh), TVD MC scheme on the right (finer mesh).
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[3] V. Dolejš́ı. Adaptive Higher Order Methods for Compressible Flows. PhD thesis, Charles
University, Faculty of Mathematics and Physics, 2003.
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[5] J. Fořt, J. Fürst, J. Halama and K. Kozel. Numerical simulation of 3D transonic flow
through cascades. Mathematica Bohemica, 126(2):353–361, 2001.
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