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A VARIATIONAL APPROACH TO VERY SINGULAR GRADIENT

FLOW EQUATIONS

YOHEI KASHIMA1

Abstract. We formulate singular gradient flow equations by the notion of subdifferential. Char-
acterization of the subdifferential operator in the Sobolev space with negative power H

−1 enables us
to calculate the initial speed of a solution solving the subdifferential formulation of the fourth order
singular parabolic equation which models a crystalline surface driven by surface diffusion.
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1. Introduction. Some mathematical models describing the motion of a
crystalline surface have a strong singularity, therefore they do not have a clear notion
of solution solving the equations. In this work we will study how to formulate such sin-
gular parabolic PDEs mathematically and observe the behaviour of the corresponding
solutions. The models we are concerned with are written as follows.

ut = div

(

∇u

|∇u|

)

in Ω × (0, +∞), (1.1)

ut = div

(

∇u

|∇u|
+ |∇u|γ−1 ∇u

|∇u|

)

in Ω × (0, +∞), (1.2)

ut = −∆ div

(

∇u

|∇u|
+ |∇u|γ−1 ∇u

|∇u|

)

in Ω × (0, +∞), (1.3)

for the exponent γ > 1 and the domain Ω ⊂ R
n. The function u : Ω × [0, +∞) → R

stands for the surface height on the domain Ω at time t.
H. Spohn [12] proposed the second order parabolic equation (1.2) as a model of the
crystalline surface driven by evaporation of the surface atom and the fourth order
equation (1.3) to describe the crystalline surface’s motion caused by surface diffusion,
respectively. Moreover, H. Spohn formulated these equations as free boundary value
problems with evolving facets (flat portions on the surface).
On the other hand, M.-H. Giga, Y. Giga and R. Kobayashi [8] formulated (1.1) by the
notion of subdifferential, which is an extended notion of differential, and constructed
the global in time solution analytically. Their method is applicable to analyse these
singular gradient flow equations and explained as follows. Since the right hand side
of these equations are the gradients of convex energy functional with respect to the
metric of the suitable Hilbert space, they can be written as the subdifferential of the
energy. Then in the case that the dimension n = 1 by choosing the smallest element in
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the subdifferential, we can practically obtain the vertical speed of the solution whose
unique existence is assured by the general existence framework from the nonlinear
semigroup theory (see, eg, [3], [4], [11]).
Though the behaviour of the solution solving the equation (1.1) was studied in detail
in [8] by the subdifferential formulation and the equation (1.2) was investigated in
[12] by the free boundary formulation, the motion of the surface described by (1.3)
is not known clearly. The free boundary formulation of (1.3) in [12] was done on
the assumption that the facets on the initial surface would evolve spontaneously. We
would like to see whether the facet on the initial profile will grow or not when we
apply the method proposed in [8] to the fourth order singular equation (1.3).

2. The motion of the evaporation model. Let us review the approach by
M.-H. Giga, Y. Giga and R. Kobayashi [8] to analyze the singular equation (1.1). Since
the right hand side of the equation (1.2) is L2−gradient of the energy functional

F (u) =

∫

Ω

|∇u|dx,

we can introduce the notion of subdifferential to handle the singularity mathemati-
cally. The model (1.1) can be rewritten as an evolution equation whose right hand
side is the subdifferential of the energy F in L2(Ω). The general theory ([3]) says
that the speed of the solution of the subdifferential formulation is expressed by the
smallest element in the value of the subdifferential operator at each time. Therefore
the procedure to construct the global in time solution is explained as follows.
(Step1) The subdifferential formulation of the singular gradient of the energy.
(Step2) Characterization of the subdifferential of the convex energy functional in the

functional space where the functional is defined.
(Step3) Calculation of the smallest element in the subdifferential at each time.
If the speed obtained in (Step3) is a constant on the facetting parts and zero in the
other parts, the facet will grow spontaneously. Therefore we can construct the solution
by
(Step4) The free boundary problem with the growing facets written as the system of

ODE, which practically enables us to calculate the global in time solution.
The characterization of subdifferential for a class of convex energies in L2 space

was established by H. Attouch and A. Damlamian in [2]. Their theory is applicable
to the energy functional F defined in L2(Ω) by modifying the energy density to be
coercive and we can achieve (Step2). The next (Step3) actually shows the constant
vertical speed on the facets for (1.1), which allows us to proceed to (Step4), and we
can successfully obtain the global solution. The spontaneous growth of the facets of
the solution was observed in [8], while H. Spohn arrived the same conclusion for the
solution solving a free boundary value formulation of (1.2) in [12].

Remark 1. The application of the theory of subdifferential operator to the second
order singular crystalline curvature flow equation was initiated by T. Fukui and Y.
Giga [7] in 1993 for one dimensional case. The motion of the surface solving their
subdifferential formulation was numerically studied by C. M. Elliott, A. R. Gardiner
and R. Schätzle in [5]. They observed the evolution of facets on the surface as well as
the problem (1.1) shows.

3. The application to the surface diffusion model. Let us study the fourth
order problem (1.3) by this approach. In the fourth order problem, the right hand
side term in (1.3) can be formally interpreted as the gradient of the energy functional
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Fγ defined by

Fγ(u) =

∫

Ω

(

|∇u| +
1

γ
|∇u|γ

)

dx

with respect to the metric of H−1(Ω). The Hilbert space H−1(Ω) is defined by

H−1(Ω) =
{

−∆u | u ∈ H1
0 (Ω)

}

with the inner product 〈u, v〉H−1(Ω) := 〈(−∆)−1u, v〉, where 〈 , 〉 is the inner product

of the duality between H1
0 (Ω) and H−1(Ω). Indeed, the formal calculation shows

δFγ(u)

δu
‖H−1(Ω) = ∆ div

(

∇u

|∇u|
+ |∇u|γ−1 ∇u

|∇u|

)

.

Now we define the energy functional Fγ in H−1(Ω) imposing zero Dirichlet boundary
condition to fix the problem.

Fγ(u) :=







∫

Ω

|∇u| +
1

γ
|∇u|γdx u ∈ W 1,1

0 (Ω), ∇u ∈ Lγ(Ω, Rn),

+∞ otherwise.

: H−1(Ω) → R ∪ {+∞}.

The subdifferential of Fγ at u is a set given by

∂Fγ(u) =
{

v ∈ H−1(Ω) | 〈φ, v〉H−1(Ω) + Fγ(u) ≤ Fγ(u + φ), ∀φ ∈ H−1(Ω)
}

.

The mathematical formulation of the surface diffusion model (1.3) is

du

dt
∈ −∂Fγ(u), (3.1)

which is an extended gradient flow equation in H−1(Ω) requiring the surface to move
in order to reduce the energy with respect to the metric of H−1(Ω).
Since now Fγ satisfies the lower semicontinuity, the unique existence of a global solu-
tion for the initial value problem for (3.1) is an immediate consequence of the nonlinear
semigroup theory ([3],[4], or [11]).
One remarkable property of (3.1) is the following stability theorem ([1],[13]). If we
introduce the regularized energy functional

F m
γ (u) :=







∫

Ω

(

|∇u|2 +
1

m

)
1

2

+
1

γ

(

|∇u|2 +
1

m

)

γ

2

dx u ∈ W 1,1
0 (Ω), ∇u ∈ Lγ(Ω, Rn),

+∞ otherwise,

and denote um, u : Ω × [0, +∞) → R as solutions of the initial value problems
{

dum(t)

dt
∈ −∂F m

γ (um(t)) a.e t > 0,

um(0) = u0m,

{

du(t)

dt
∈ −∂Fγ(u(t)) a.e t > 0,

u(0) = u0,

respectively, then we observe the next convergence.
Proposition 3.1. If the initial data u0m converges to u0 strongly in H−1(Ω) as

m → +∞, then for all T > 0,

lim
m→+∞

sup
0≤t≤T

‖um(t) − u(t)‖H−1(Ω) = 0.

This proposition tells us that the solution of the subdifferential formulation (3.1) is
a limit of some regularized smooth problems.
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4. Characterization of the subdifferential in H−1(Ω). To attain (Step2)
for the surface diffusion model we need to determine the subdfferential ∂Fγ(u) pre-
cisely. It is possible by extending the argument in [2] into the space H−1(Ω) on the
assumption that the space dimension n ≤ 4 to obtain the following characterization.

Theorem 4.1. If n ≤ 4, for any u ∈ H−1(Ω) such that ∂Fγ(u) 6= ∅,

∂Fγ(u) =

{

∆ div g
∣

∣

∣
g ∈ Lγ/(γ−1)(Ω, Rn), div g ∈ H1

0 (Ω),

g(x) ∈ ∂σγ(∇u(x)) a.e.x ∈ Ω, and

∫

Ω

(u · div g + 〈g,∇u〉)dx = 0

}

,

where

σγ(p) = |p| +
1

γ
|p|γ : R

n → R.

If we restrict the dimension n to be one, we can erase the integral condition in the
characterization.

Corollary 4.2. When the space dimension n = 1, for any u ∈ H−1(Ω) satisfy-
ing ∂Fγ(u) 6= ∅,

∂Fγ(u) = {gxxx | g ∈ C1(Ω̄), gx ∈ H1
0 (Ω), g(x) ∈ ∂σγ(ux(x)) a.e.x ∈ Ω}.

Remark 2. More generally, we can calculate the subdifferential of convex func-
tionals of the form

E(u) :=







∫

Ω

τ(x, u(x),∇u(x))dx u ∈ W 1,1
0 (Ω),

+∞ otherwise,

: H−1(Ω) → R ∪ {∞},

where the function τ : Ω × R × R
n → R satisfies the integrability for the first vari-

able, the convexity for the second and third variables, and the coercivity for the third
variable, etc, on the same assumption that the space dimension n ≤ 4 ([10]).

5. Calculation of the initial speed. The consequence of (Step3) for the fourth
order problem (1.3) will let us know whether it is possible to construct the solution
as well as the second order’s case and to see the behaviour of the surface in a next
moment. What we are especially interested in is the speed in a facetting part on the
initial profile, therefore, let us give an initial surface with one facet and calculate the
initial speed in the case that n = 1, γ = 2, and the domain Ω = (0, l). The initial
data u0 is defined as

u0(x) =







u01(x) (0 < x ≤ a),
h(> 0) (a ≤ x ≤ b),
u02(x) (b ≤ x < l),

where u01 ∈ C4([0, a]) is a strictly monotone increasing function with u01(0) =

0, u01(a) = h, and u
(i)
01 (0) = u

(i)
01 (a) = 0 (i = 1, 2, 3, 4). Similarly u02 ∈ C4([b, l])
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is a strictly monotone decreasing function with u02(b) = h, u02(l) = 0, and u
(i)
02 (b) =

u
(i)
02 (l) = 0 (i = 1, 2, 3, 4). Then we see

Theorem 5.1. In the situation stated above, the initial vertical speed of the
solution of (3.1) for the initial data u0 is given by

d+u0

dt
= −u0xxxxχ(0,a)∪(b,l) −

24

(b − a)3
χ(a,b) +

12

(b − a)2
δa +

12

(b − a)2
δb, (5.1)

where χ(0,a)∪(b,l) and χ(a,b) are the characteristic functions of (0, a)∪ (b, l) and (a, b),
δa and δb stand for the Dirac distributions on a and b respectively, and d+/dt is the
right derivative in time.

Remark 3. More generally, it is possible to calculate the initial vertical speed for
C1-class initial profile. If we adopt an initial data u0 ∈ C1(Ω) such that u0|∂Ω = 0,

u0(x) =







u01(x) (0 < x ≤ a),
h(> 0) (a ≤ x ≤ b),
u02(x) (b ≤ x < l),

where u01 is strictly monotone increasing and u02 is strictly monotone decreasing.
Then we see

d+u0

dt
= − u0xxxxχ(0,a)∪(b,l) −

6

(b − a)2

(

u02xx(b) + u01xx(a) +
4

b − a

)

χ(a,b)

+

(

2

b − a
u02xx(b) +

4

b − a
u01xx(a) +

12

(b − a)2
+ u01xxx(a)

)

δa

+

(

4

b − a
u02xx(b) +

2

b − a
u01xx(a) +

12

(b − a)2
− u02xxx(b)

)

δb.

6. Conclusion. Our subdifferential formulation of (1.3) turned out to be dif-
ficult to be the system of ODE like the second order problem (1.1) since the initial
vertical speed we obtained is not a constant on the facet and includes the delta func-
tions depending on the profile and the facet growth is not visible.
Recently it was pointed out in [9] and [6] that it is natural to assume that the coeffi-
cients of the delta functions vanish for the global solution by taking the regularizing
effect of parabolic equations into account. Assuming so and giving a symmetric ini-
tial data u0, the problem becomes the following free boundary value problem in the
domain Ω = (0, l/2).

ut = −uxxxx, (x, t) ∈ (0, α(t)) × [0, +∞),

boundary conditions:






















u(0, t) = uxx(0, t) = ux(α(t), t) = 0,

u(α(t), t) = −

∫ t

0

12

(l − 2α(s))2

(

uxx(α(s), s) +
2

l − α(s)

)

ds + h,

6uxx(α(t), t)

l − 2α(t)
+

12

(l − 2α(t))2
+ uxxx(α(t), t) = 0, t ∈ [0, +∞),

initial conditions:
{

u(x, 0) = u0(x), x ∈ (0, l/2),
α(0) = a,
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where α(t) denotes the free boundary between the facet and the other region. Thus, we
can conclude that our subdifferential formulation can be reformed in a free boundary
value problem on the assumption that the facet grows.
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