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ARBITRARY LAGRANGIAN-EULERIAN (ALE) CODE FOR
PLASMA SIMULATIONS

MILAN KUCHAŘÍK AND RICHARD LISKA1

Abstract. Lagrangian codes with mesh moving with the fluid suffer in many cases by mesh
distortion leading to tangled mesh which in principle stops the computation as basic assumptions of
the numerical method as e.g. positive volume of cells are not valid any more. Arbitrary Lagrangian-
Eulerian (ALE) method overcomes this difficulty by untangling or smoothing the mesh and conser-
vative remapping of conserved quantities from the old mesh to the new one. After this Lagrangian
computation can continue. We will report on the development of ALE code for simulation of problems
from plasma physics.
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ulations.
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1. Introduction. In this paper we describe our newly developed 2D ALE code
for fluid and plasma simulations on logically orthogonal grids. Our task is to perform
laser plasma simulations, where considerable changes of computational domain volume
and shape with moving boundaries appear. The pure Eulerian approach is not suitable
for such simulations, as it is unable to treat moving boundary conditions. In the
Eulerian approach, the computational grid if fixed in time, it does not move at all.
There exists a mass flux between computational cells, representing the fluid movement
through the grid. In the Lagrangian approach, the computational grid moves with the
fluid, so changes of the computational domain make no problems in the simulation.
On the other hand, pure Lagrangian computation can lead to severe grid distortions,
e.g. by a shear in velocity, so the mathematical assumptions of the numerical method
are violated.

A way, how to deal with these problems is using the Arbitrary Lagrangian-
Eulerian (ALE) method. In the ALE method, several steps of pure Lagrangian com-
putation are performed. Then, some mesh rezoning technique is used to keep the
computational grid smooth and convex during the whole computation. Finally, the
last part of the ALE method comes – quantity remapping which recomputes the con-
servative quantities from the original Lagrangian grid, to the new, smoothed one. The
complete ALE method combines positives of both approaches – the computational grid
moves with the fluid as in the Lagrangian approach, but the smoothing-remapping
parts corresponding to the Eulerian approach, as it allows the mass flux between cells,
keeps the computational mesh smooth.

The ALE method was first proposed in 1974 [9], and in recent years it is becoming
more and more popular, see e.g. [10, 1].

1Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Trojanova 13, 120 00 Prague, Czech Republic.

96



Arbitrary Lagrangian-Eulerian (ALE) Code for Plasma Simulations 97

2. Lagrangian Step. Hydrodynamical Euler equations, describing the conser-
vation of mass, momentum and energy, in Lagrangian coordinates are

1

ρ

dρ

dt
= − div ~v (2.1)

ρ
d~v

dt
= − grad p (2.2)

ρ
de

dt
= −p div ~v, (2.3)

where ρ is density, p is pressure, e is specific internal density, and ~v = d~x/dt is
velocity vector. Note that the differential operator d/dt in (2.1)-(2.3) applied to
quantities depending on space and time is the operator of total derivative, e.g. dρ/dt =
∂ρ/∂t + ~v · gradρ, advective term ~v · gradρ is included in the Lagrangian moving
coordinates. This system is closed by the equation of state giving pressure as a
function of internal energy and density p(e, ρ). The ideal gas equation of state is used
for testing fluid dynamics problems and quotidian equation of state (QEOS) [14] for
plasma problems. Compatible differencing proposed in [6] and [5] is employed to treat
this system numerically in 2D on quadrilateral, logically rectangular computational
mesh and is explained in this section. Staggered discretization, typically used in
Lagrangian simulations [1], places scalar quantities ρ, e, p into the mesh cells and
vector quantities ~v, ~x into the mesh nodes. Each quadrilateral cell, zone, is divided
into four subzones by connecting the cell center with the edge centers as shown in
Fig. 2.1.
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Fig. 2.1. Quadrilateral cell and its four subzones. The vectors ~sk are perpendicular to the line
connecting the cell center and the appropriate edge center and have the length of this segment. The
vectors ~a

+

k
and ~a− + k are normals to the edge with length of the half of the edge.

The movement of the Lagrangian computational mesh is obtained by solving the
ordinary differential equation

d~xn

dt
= ~vn (2.4)

for each node n. The density is obtained by the standard way from mesh movement
and Lagrangian assumption that mass does not flow through the mesh edges, so that
the masses of cells remain constant. The discrete form of the momentum equation
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(2.2) at node n can be written as

mn

d~vn

dt
= ~Fn =

∑

c∈C(n)

~fn
c . (2.5)

where ~fn
c is the force from the cell c to the node n, ~Fn is the total force from four cells

(from the node neighborhood C(n)) neighboring the node n. Each force ~fn
c has three

components – zonal pressure force fp n
c , subzonal pressure force fdp n

c , and artificial
viscosity force fq n

c

fn
c = fp n

c + fdp n
c + fq n

c .

and is responsible for changes in the velocity. The forces ~fn
c are also used in the

discretization of (2.3)

mc

dec

dt
= −

∑

n∈N(c)

~f c
n ~vn. (2.6)

which guarantees conservation of the total energy [6, 5]. Here N(c) is the set of four
nodes of the cell c.

The zonal pressure forces

~fp n
c = pc

(

~sc
n+1 − ~sc

n

)

,

express the force from zonal pressure in cell c to the node n. The vectors ~sk are defined
in Fig. 2.1. The subzonal pressure force was developed to control the artificial grid
distortion and prevent the hourglass motion of the grid cells [7]. The subzones are
assumed to be also Lagrangian, they have a constant mass, the subzonal density can
be calculated and can differ in different subzones of the same cell. The subzonal
pressure forces are calculated proportionally to the differences between the subzonal
and zonal densities. For each subzone, the pressure difference is

δP c
n = (ρc

n − ρc)
s2

c

γ
,

where sc is the speed of sound in the cell c and γ is the gas constant. Here we assume,
that the specific internal energy is the same in the subzone as in the cell. The corner
force due to this pressure difference is than calculated by integrating around the
boundary of the subzone which gives

~f c
dp n = δP c

n (a+
n + a−

n ) +
1

2

(

(δP c
n − δP n+1

c )~sc
n+1 + (δP c

n−1 − δP n
c )~sc

n

)

,

where a±

k vectors are defined in the Fig. 2.1 again. For more details see [5].
For computing the artificial viscosity force, just a simple “bulk viscosity” can be

used. The Kurapatenko [12] scalar artificial viscosity in each cell is

qc =







ρc

(

c2
γ−1

4 |dVc| +
√

2 c2
2

γ−1
4 dV 2

c + c1 sc

)

|dVc| for div(~vc) < 0

0 else
,

where div(~vc) is the numerical divergence of the velocity in the cell c, dimensionless
constants c1 = 1 and c2 = 1 multiply the linear and nonlinear viscosity terms, and
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dVc = − div(~v) lc, where the characteristic length of the cell lc is set to the square
root of the cell volume lc =

√

V (c). The appropriate corner viscosity force is than
computed by

fq n
c = qc

(

~sc
n+1 − ~sc

n

)

, (2.7)

which finishes the description of spatial discretization.

The system of ordinary differential equations (2.4) for nodes position, (2.5) for
nodes velocity and (2.6) for cells internal energy is numerically treated by second
order Runge-Kutta method for all nodes and all cells.

3. Mesh Rezoning. Mesh rezoning part of the ALE algorithm performs un-
tangling and smoothing techniques to repair possible distorted Lagrangian grids. For
minimization of the numerical error of the following remapping algorithm, we want
to move just the vertexes, that are necessary to be moved, and as little as possible.
There exist many untangling and smoothing techniques for mesh rezoning. The com-
bination of the feasible set method and global optimization [20] is a very strong tool
for untangling of severely distorted grids. In real computation, we prefer to keep the
grid smooth during the whole computation. For smoothing easier and faster methods
are available.

A classical method is the Winslow’s iterative smoothing [21] technique. Starting
with the original Lagrangian mesh one smoothing iteration applied to nodes positions
~xi,j = (xi,j , yi,j) is given by

~xk+1
i,j =

1

2 (αk + γk)

(

αk (~xk
i,j+1 + ~xk

i,j−1) + γk (~xk
i+1,j + ~xk

i−1,j)

−
1

2
βk (~xk

i+1,j+1 − ~xk
i−1,j+1 + ~xk

i−1,j−1 − ~xk
i+1,j−1)

)

,

where the coefficients αk = x2
ξ + y2

ξ , βk = xξ xη + yξ yη , γk = x2
η + y2

η, and (ξ, η)
are logical coordinates ξi = i/M , ηj = j/N for i = 0, . . . , M and j = 0, . . . , N . The
derivatives xξ , xη are approximated by the central differences

(xξ)i,j ≈
xi+1,j − xi−1,j

2 ∆ξ
, (xη)i,j ≈

xi,j+1 − xi,j−1

2 ∆η
(3.1)

and similarly for y. The Winslow’s smoothing technique is very fast, easy to implement
and it can be used in more iterations during one rezoning process to obtain smoother
grids for the next Lagrangian step.

4. Quantity Remapping. To complete our ALE method we need a remapping
algorithm for recomputing the conservative quantities from the original, Lagrangian
grid to the new, smoother one. We have two different, but similar grids: the La-
grangian grid {c}, and rezoned smoother one {c̃} created by small movements of
nodes of the original one. Suppose, there exists some underlying function g defined
on the original grid expressing some conservative quantity, e.g. g = ρ, g = ρ u, g =
ρ (e + |~v|2/2). We know just the mean value gc of this function in each cell c and its
total value, or mass mc =

∫

c
gdV = gcV (c). Our task now is to find the new mean

values in the rezoned cells g̃c̃, and we have several conditions which these new means
must satisfy:

• Accuracy: m̃c̃ ≈
∫

c̃
g(r) dV – to be as close to the exact means, as possible.
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• Local-bound-preservation: gmax
c ≥ g̃c̃ ≥ gmin

c – the new mean value must be
between the local extremes of the mean values over the neighborhood of the
original cell.

• Conservation:
∑

∀ c m̃c̃ =
∑

∀ c mc – total mass must be the same.
• Linearity-preservation: m̃c̃ =

∫

c̃
g(r) dV if g(r) = a + b x + c y – exact for

linear function.

The remapping method is based on piecewise-linear reconstruction of the un-
derlying function in each original cell. Just piecewise-constant reconstruction would
violate our demand for linearity-preservation. Then, the “exact integration” of the
reconstructed function over overlapped areas would be most natural. Unfortunately,
this would require finding the intersections of the new and the original cells, which is
very time consuming, so the algorithm would be very slow. Our approach is based
on approximate integration, it does not require finding these intersections and thus
it is much more efficient. On the other hand, there are some problems with local-
bound-preservation, so the third stage is needed – repair. The repair is a conservative
redistribution of conservative quantities constructed to enforce satisfaction of this
condition.

4.1. Stage 1 – Piecewise-linear Reconstruction. Piecewise-linear recon-
struction is the first part of the remapping algorithm. We can use any method for
slope computation, using or not using limiters, the only condition for us is the bound-
preservation. We present here a method based on the computation of the unlimited
slopes, followed by the limiting.The formulas here are shown in 1D case, generaliza-
tion to multidimensional case is straightforward, just the computation of the slopes
in all directions is needed. At first, we compute the unlimited slope from the mean
values of the neighboring cells. For example one can use the simple central difference

sunlim
i+ 1

2

=

(

δg

δx

)unlim

i+ 1
2

=
gi+ 3

2
− gi− 1

2

xi+ 3
2
− xi− 1

2

.

When using this pure unlimited formula the local bounds might not be preserved. To
preserve them we are looking for the final limited slope in the form

sBJ
i+ 1

2

=

(

δg

δx

)BJ

i+ 1
2

= Φi+ 1
2

(

δg

δx

)unlim

i+ 1
2

, Φi+ 1
2

= min(Φ
i+ 1

2

i , Φ
i+ 1

2

i+1 ), (4.1)

where the Barth-Jasperson limiter [2] Φi+ 1
2 is employed to satisfy the bounds.

4.2. Stage 2 – Numerical Quadrature. As said above, now it is the easiest
to integrate the reconstructed function over overlapped areas of the original and the
new cells. This “exact integration” requires finding of all intersections of both grids,
the complete algorithm is then very slow and inefficient. Our approach [11] is based
on the approximate integration over swept regions. By the swept region we mean the
quadrilateral area defined by smooth movement of the cell edge from initial to its new
position. Just a small note, the exact integration method is very easy in 1D, it is very
inefficient, but possible to be done in 2D, and almost impossible in 3D.

The main idea of the swept-area integration is the fact that the integral over
the new cell can be decomposed as a sum of integrals over swept regions. Then,
the volume integral of the polygonal (linear) function over the arbitrary polyhedron
(polygon) can be reduced to the boundary integral which can be evaluated exactly.
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The mass of the new cell can be computed as the original mass plus signed masses of
all swept regions

m̃i+ 1
2

,j+ 1
2

= mi+ 1
2
,j+ 1

2
+ Fi+1,j+ 1

2
− Fi,j+ 1

2
+ Fi+ 1

2
,j+1 − Fi+ 1

2
,j .

Here the mass of the swept region δi,j+ 1
2

is computed as the signed integral of the
reconstructed function over this region

Fi,j+ 1
2

=

∫

δ
i,j+ 1

2

gi,j+ 1
2
(x, y) dV (4.2)

and this linear reconstruction is taken from the neighboring cell, in which more of the
swept region lies.

4.3. Stage 3 – Repair. The swept-region integration algorithm satisfies all our
conditions, with only one exception, it does not have to preserve local bounds. To
enforce it, we apply the last stage – repair, the conservative redistribution of the
conserved quantity. At first, we define the bound-determining neighborhood C(c), the
segment of the original grid fully covering the new cell. For example, it can be the
original cell and 8 its nearest neighbors. Then we compute the local minimum and
maximum over this bound-determining neighborhood

gmin
c = min

k∈C(c)
gk , gmax

c = max
k∈C(c)

gk . (4.3)

We check, whether the new mean value g̃c̃ from the numerical quadrature integration
lies within this range. If yes, we do not do anything, the new mean value satisfies all
our conditions. We emphasize, that this is always true for the global linear function,
so the repair stage does not affect the linearity-preservation of the integration stage.
If the local bound is violated, we have to perform the repair.

Suppose that the lower bound is violated g̃c̃ < gmin
c . We search for mass, which

can safely be taken from the neighboring cells without violating their lower bound. If
we find enough mass, we perform the repair – we bring the violated value to the local
minimum and take the mass from the neighboring cells proportionally to the mass
available. If there is not enough mass available in the neighborhood, we extend the
neighborhood and search again. We have proved, that this conservative redistribution
of mass (repair) process is always successful in a finite number of steps [11]. If forces
the remapping algorithm to be local-bound-preserving. The approach outlined here
is applicable to bounds in conserved quantities. Physically however more natural
is to use local bounds in density, internal energy and velocity which prevent some
nonphysical situations as negative internal energy. The repair of conserved quantities
with these bounds is developed in [18].

Other complication is introduced by the staggered discretization used in the La-
grangian step described in the section 2. We perform remapping of all quantities in
subzones, however one must be very careful during the reconstruction of velocities in
nodes and internal energies in cells to keep total energy conservation [13].

The complete remapping algorithm is conservative, linearity and local-bound pre-
serving and stable. It is very efficient due to the fact, that it is face based, and all
computed quantities (for example, swept masses) can be used for both adjacent cells.
The algorithm is applicable to general unstructured meshes in 2D [11] and 3D [8].
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5. Heat Conductivity. The heat conductivity is essential for many problems
in laser plasma physics. The heat conductivity term div κ grad T (with T being the
temperature and κ the heat conductivity) is added to the right hand side of the
energy equation (2.3). The full system is split into hyperbolic part (2.1)-(2.3) and the
parabolic part. The parabolic part reduces into the heat equation

Tt − div K grad T = f (5.1)

which is treated on the region V after each Lagrangian step (before possible rezone-
remap step) by the mimetic discretization [17] using the support operators method
[16]. The integral properties of differential operators div and grad are required to
hold also for their discrete approximations, so that the discrete operators mimic the
properties of the continuum ones.

First the generalized gradient w = Gu = −K grad u and extended divergence

Dw =

{

div w on V
−(w,n) on ∂V

operators are defined. The integral property of extended divergence is given by the
divergence Green formula

∫

V

div w d V −

∮

∂V

(w,n) d S = 0

which can be expressed as (D w, 1)H = 0 where (u, v)H =
∫

V
u v d V +

∮

∂V
u v d S

is the inner product on the space H of smooth scalar functions on the region V . The
Gauss theorem

∫

V

u divw d V −

∮

u(w,n) d S +

∫

V

(w, K−1K grad u)d V = 0

is the integral property relating the operators divergence and gradient. It can be
rewritten as (Dw, u)H = (w,Gu)H where (A,B)H =

∫

V
(K−1A,B)d V is the inner

product on the space H of smooth vector functions on the region V . The generalized
gradient operates from scalar to vector space G : H → H and extended divergence
from vector to scalar space D : H → H . The Gauss theorem expresses the fact that
G is adjoint operator of D G = D∗ in the sense of these inner products. One can
show that the operator DG needed to treat (5.1) is self-adjoint and positive definite.

Mimetic discretization defines the discrete function spaces HC,HL and the dis-
crete operators (div,grad) D : HL → HC, G : HC → HL. The discrete Green
formula can be written as (DW, 1)HC = 0 (with appropriate definition of discrete
inner product) and defines the discrete operator D. The discrete Gauss theorem
G = D∗ states that G is adjoint of D, i.e. (DW, U)HC = (W, GU)HL, and it is used
to compute the discrete operator G [17]. Boundary condition are naturally included
through the discrete inner products. Having both discrete operators D and G a fully
implicit scheme in time

(T n+1 − T n)

∆t
+ DGT n+1 = F n+1 (5.2)

is used to approximate (5.1). The matrix of global system (I + ∆tDG)Un+1 = Un +
∆tF n+1 remains symmetric and positive definite so that fast converging conjugate
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gradient method can be used to solve the implicit scheme (5.2). The described method
is exact on piecewise constant or piecewise linear solutions, otherwise it is second order
accurate in space. It works very well on bad quality meshes appearing in Lagrangian
simulations. The diffusion coefficient K can be discontinuous.

For plasma we use either the classical Spitzer-Harm [19] or Rozmus-Offenberger
[15] heat conductivity coefficient.

6. Disc Target Impact. As the numerical example we present here the sim-
ulation from laser plasma physics, laser accelerated disc impact problem, the initial
conditions of which we have taken from a part of the experiment performed on the
PALS (Prague Asterix Laser System) laser facility [3]. Fig. 6.1(a) shows the problem
setup. A small Aluminum disc (r = 150 µm, d = 11 µm) is irradiated by an intense
laser beam, and it is ablatively accelerated up to 82 km/s (for 390 J laser beam).
The fast moving disc (flayer) strikes into a massive Aluminum target. Our simulation

Aluminum disc

Massive target

LASER

r
d

L

(a) Experiment
setup

(b) Initial condi-
tions

(c) Lagrangian
simulation at time
0.2 ns

1

2

3

4

5

(d) ALE simulation
at time 0.2 ns

Fig. 6.1. Experimental setup, initial density of the disc impact simulation, and density of the
Lagrangian and ALE simulation after 0.2 ns.

starts at the moment of the impact. Fig. 6.1(b) shows the initial density colormap in
the critical area. The left green higher density region is the massive Aluminum target
and the right blue lower density region is the impacting Aluminum disc. The density,
width and temperature of the impacting disc has been obtained from a 1D Lagrangian
hydrodynamical simulation. Fig. 6.1(c) presents the pure Lagrangian results in the
same area after at a very short time 0.2 ns. The Lagrangian computational grid is
already very distorted and in fact, the Lagrangian simulation fails due to the tangled
mesh soon after this snapshot. On the other hand the complete ALE method shown in
Fig. 6.1(d) keeps the computational mesh smooth and can continue the computation
without troubles.

After the impact, both the massive target and the disc start to raise their tem-
perature, a shock wave is formed that propagates into the target, and causes heating,
melting, and evaporation of the target material. Fig. 6.2(a) presents the increase of
the internal energy at time 30ns. The right pink colormap is used in the area, where
the material has evaporated, the reflected gas is moving right. The central colored
colormap shows the melted liquid part of the material, and the left black and white
colormap shows material remaining in solid state. Approximately circular shock wave
propagates left and is positioned at the solid-liquid interface. From the figure, we
can also see the evolved crater shape. By the crater, we mean the interface between
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(a) Colormap of the internal density increase
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(b) Computational grid

Fig. 6.2. Internal energy increase and final grid in time 30 ns after the impact. Isolines of
melting and evaporation energy included.

the gas and the liquid state, because the gas flows away, but the liquid Aluminum
becomes solid again after temperature decrease. At later times crater does not prop-
agate further left into the massive target, while the shock wave continues to move
inside the target. The numerical carter shape and volume corresponds reasonably
well to the experimental data [4]. Fig. 6.2(b) presents the computational grid at time
30 ns after the impact. The grid remains smooth and the computation can continue.
One can distinguish the position of the circular shock wave in the mesh.

7. Conclusion. We have developed an universal linearity and local-bound pre-
serving interpolation algorithm for conservative remapping of conservative quantities
between similar grids. This remapping algorithm is robust enough to be applicable
in real ALE codes. We have developed such ALE code on logically orthogonal 2D
grids, which can be used for performing of laser plasma simulations. In this paper we
presented the ALE simulation of the accelerated disc impact, the initial conditions of
which are inspired with the real experiment. The numerical results are comparable
with the experimental data.
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