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APPLICATION OF A MULTIPHASE FLOW MODEL FOR

SIMULATIONS OF NAPL BEHAVIOR AT INCLINED MATERIAL

INTERFACES

JIŘÍ MIKYŠKA1 AND TISSA ILLANGASEKARE2

Abstract. Multiphase models that simulate the behavior of non-aqueous phase liquids (NAPL’s)
in porous media can be used to obtain fundamental understanding of the complex behavior and pre-
dict the fate of waste chemicals in the subsurface. Existing models have limitations in simulating
highly heterogeneous systems to be able to represent realistic field conditions. This document re-
ports development of a new multiphase flow code called VODA. It starts with a brief introduction
of the mathematical model of the multiphase flow in porous media. Then, the Control Volume
Finite Element (CVFE) discretization is described and finally, examples of several two-phase flow
computations in heterogeneous media are also given.
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1. Mathematical Model. The basic equations describing the multiphase flow
in porous media are developped from the Darcy laws and continuity equations for all
phases, cf [13], [10]:

∂(φραSα)

∂t
+ ∇ · (ραvα) = ραqα, α ∈ {w, n}(1.1)

vα = −
krα

µα

K · (∇pα − ραg), α ∈ {w, n}(1.2)

krα = krα(Sα), α ∈ {w, n}(1.3)

pc = pc(Sw) = pn − pw, Sw + Sn = 1.(1.4)

In these equations φ denotes porosity, ρα is the density of phase α, Sα are the
phase saturations, vα denote the Darcy velocities of the respective phases, qα is the
source/sink term for α−phase, K stands for intrinsic medium permeability tensor,
krα are the relative permeabilities of the respective phases, µα are the viscosities of
water and NAPL-phases, and finally, pc denotes capillary pressure.

We use the following form of the equations - the so-called pressure-saturation
formulation of the multiphase flow equations that uses the water pressure pw and
nonwetting phases saturations Sα as primary variables:

∂(φρw(1 − Sn))

∂t
= ∇ ·

[

ρw

krw

µw

K · (∇pw − ρwg)

]

+ ρwqw(1.5)

∂(φρnSn)

∂t
= ∇ ·

[

ρn

krn

µn

K · (∇pw + ∇pc − ρng)

]

+ ρwqn.(1.6)
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Capillary pressure is described by the Brooks-Corey model

pc(Sw) = pdS
−

1
λ

e ,

where the parameter pd denotes the entry pressure and λ is the pore size distribution
index. In both relations above, Se denotes the effective saturation given by

Se =
Sw − Swr

1 − Swr

,

where Swr is the residual wetting phase saturation.
The Brooks-Corey capillary pressure relationships are used in conjunction with

the following Burdine theorem for the relative permeabilities:

krw(Sw) = (Se)
2+3λ

λ ,(1.7)

krn(Sw) = (1 − Se)
2 · (1 − S

2+λ

λ

e ),(1.8)

These equations are to be solved in a bounded spatial domain Ω ∈ R
2 and time

interval I = 〈0, T 〉, T > 0. The system must be completed with initial and boundary
conditions as follows

Sn(x, 0) = SIni
n (x) ∀x ∈ Ω,(1.9)

pw(x, t) = pDir
w (x, t), Sn(x, t) = SDir

n (x, t) ∀x ∈ ∂ΩDir, ∀t ∈ I,(1.10)

vw(x, t) = vNeu
w (x, t), vn(x, t) = vNeu

n (x, t) ∀x ∈ ∂ΩNeu, ∀t ∈ I,(1.11)

where ∂ΩDir and ∂ΩNeu is a decomposition of the boudary ∂Ω.
Note, that the capillary pressure-saturation and relative permeability-saturation

relationships can be different in the different positions. This point is extremely im-
portant especially in the case of the Brooks-Corey relationships, which accounts for
nonzero entry pressures, and is thus suitable for description of the entry pressure
effects at the material interfaces.

2. Interface conditions. Special attention is paid to the NAPL’s behavior at
sharp material interfaces. Note, that the model equations 1.2 are valid only in the
regions where the model coefficients (as K, pd, λ etc) are smooth. At the sharp
material heterogeneities, these coefficients are discontinuous, and thus some interface
conditions must be imposed. These conditions were throughroughly examined in [8, 1]
in detail.

Assume a sharp interface between two sands 1 and 2, with two different retention
curves, see Figure 2.1. The first condition at the heterogeneity is the mass conservation
law accross the interface. The second condition says that the capillary pressure should
be continuous whenever it is possible, i.e. if the non-wetting phase saturation is such
that the non-wetting phase pressure in sand 1 is greater than the entry pressure in
sand 2. Otherwise, the non-wetting phase pressure must necessearily be discontinuous
and no NAPL can pass through the interface. Non-wetting phase saturation at the
interface in sand 2 is then zero. From Figure 2.1 we can deduce that the interface acts
as a barrier unless the non-wetting phase saturation is high enough (namely 1−Scrit

in Figure 2.1) and if the NAPL is pushed from sand 1 to sand 2. If the NAPL is
pushed in the opposite direction then the non-wetting phase pressure can be made
continuous at any time and no barrier effect takes place.
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Fig. 2.1. Capillary pressure - saturation relations at an interface between two sands

3. Discretization. All modern numerical techniques are based on a weak for-
mulation of the solved equations. This can be obtained using the well established
procedure - multiplying the equations by a weighting function W , integrating the
equations over Ω and applying Green’s theorem results in the following weak form:

∫

Ω

W
∂(φραSα)

∂t
dx +

∫

Ω

ραλα∇W ·K · (∇pw + δαn∇pc − ραg) dx(3.1)

=

∫

∂ΩNeu

Wραv
Neu
α dS +

∫

Ω

Wραqα dx, α ∈ {w, n}

where λα = kα

µα
is the phase α mobility coefficient. Based on this weak form we

will develop the control volume finite element discretizations of the multiphase flow
equations.

This approach follows [9, 10]. Having covered the domain Ω by a triangulation
and denoting the linear basis functions corresponding to the triangulation by Ni, the
following CVFE-scheme can be derived for α ∈ {w, n}

(−1)δαw
[φραSn]

n+1

i − [φραSn]
n
i

∆t
Vi +

∑

j∈ηi

λαijραγαij (ψn+1
αj − ψn+1

αi ) =

= (ραi qαi)
n+1 Vi +mn+1

αi ,

where mn+1
αi =

∫

∂ΩNeu

Niραv
Neu
α dS is the linear finite element discretization of the

Neumann-boundary-condition term, ψn+1
αi

= pn+1
wi + δαnp

n+1
ci − ραgi, and γαij =

−
∫

Ω
∇Ni · K · ∇ Nj dx is the finite-element stiffness matrix. Note, that all values

at the right hand side are taken in time n + 1, and thus the CVFE scheme is fully
implicit. Furthermore, the mobility coefficient between nodes i and j are chosen as
the mobility in the upwind node in the sense:

λαij =

{

λαi if γij(ψαj − ψαi) ≤ 0
λαj if γij(ψαj − ψαi) > 0

(3.2)

Finally, ∆t denotes the timestep, and Vi =
∫

Ω
Ni dx is a weighting factor.
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4. Numerical treatment of the interface effects. In view of applications of
our model to NAPL behavior in heterogeneous media it is very important to handle
the interface effects in a physically correct manner. The CVFE-model simulates the
dam effect correctly (due to upwinding of the mobility coefficients) assumed that
no mesh nodes are present at the interface. In this case, if the non-wetting phase
pressure is not sufficient to pass the interface, then the upwind-taken mobility is zero
and no non-wetting phase flux across the interface occurs. Unfortunately, the library,
which was used for model implementation, aligns automatically mesh nodes with the
subdomains interfaces and it is not possible to switch off this option. For this reason,
it was necesseary to assign a subdomain number to every node. If a node is a interior
node of a subdomain, it shares its number. For the nodes at the subdomain interfaces
the assignment is done in such way that the node belongs to the subdomain with
the highest entry pressure. For the evaluation of the cappilary pressure at a node
at the interface, capillary pressure-saturation relationship which corresponds to the
subdomain number assigned to the node is used instead of the subdomain assigned
to the current element. Then the entry pressures effects are simulated in a physically
correct way.

5. Application: NAPL flow on an inclined layer. The CVFE scheme was
implemented into a new multiphase flow package called VODA. For implementation we
used the software package UG, which is a C library for development of numerical codes
currently developped at the University of Heidelberg (see [17, 2, 4]). VODA can solve
two- and three-phase equations in 2-D using the CVFE discretization on triangular
unstructured meshes. The non-linear discrete equations are linearized using the New-
ton method with linesearch option. Linear systems are solved using a linear multigrid
solver based on the BiCGStab method. The code was tested on two onedimensional
problems for which quasianalytic solutions were available - i.e. McWhorter-Sunada
and Buckley-Leverett problems, see [14, 6, 15, 3] for details on the McWhorter-Sunada
problem, e.g. [7, 11] for details on the Buckley-Leverett problem and [12] for details
on results of the convergence analysis that were computed using VODA.

In this section we will examine flow of water and oil on inclined layers. Domain
Ω ⊂ R

2 is a rectangle 27.8×14.3 cm with a small square hole (1×1 cm) inside, which
serves as a source zone for NAPL spill. This domain is occupied by two different
sands. Sands and fluids properties are summarized in Tables 5.1 and 5.2.

Property [units] Sand # 1 (upper layer) Sand # 2 (lower layer)
Intrinsic permeability K [m2] 1.43 · 10−10 1.173 · 10−12

Porosity φ [-] 0.48 0.37
Entry pressure pd height [m] 0.3437 0.6953

Brooks-Corey index λ [-] 5.85 7.26
Residual water saturation [-] 0.16 0.22
Residual NAPL saturation [-] 0.20 0.21

Table 5.1

Sands properties

The sharp interface between the two sands is inclined with grades 1%, 5%, and
10%. The domains and the triangulations aligned with the interface used are illus-
trated in Figure 5.4. The NAPL is introduced into the system through the left, right,
and bottom edges of the source zone where a given boundary flux is prescribed. The
top edge of the source zone is impermeable and this is also valid for the top and bot-
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Property [units] Water NAPL (PCE)
Density ρ [kg m−3] 1000 1630

Viscosity µ [kg m−1s−1] 0.001 8.802 · 10−4

Table 5.2

Fluids properties

Fig. 5.1. Evolution of the NAPL spill at times from 10 minutes to 60 minutes (from left to
right, top to bottom) at the material interface, 1% grade. NAPL saturation isolines are shown (1%
the darkest one, increasing by 5%).

tom outer boundary edges of domain Ω. The left and right outer boundary edges are
Dirichlet edges with prescribed zero NAPL saturation and hydrostatic water pressure.
At the begining, the water pressure is hydrostatic (i.e. no flow) in whole domain and
no NAPL phase is present. We simulate time evolution of this system with special
attention for the interface effects, which are caused by different entry pressures in the
sands.

Figures 5.1–5.3 illustrate evolution of the systems and entry pressure effects in 10
minute intervals up to 60 minutes after the begining of the spill. The timestep used is
30 seconds in all cases. From Figures 5.1–5.3 one can see that the NAPL saturation
is never so high so that the NAPL could penetrate through the interface regardless of
the interface slope.

Every problem was solved on the respective mesh shown in Figure 5.4 and on
its four regular refinement. We present the final states of the NAPL spill after 60
minutes from the initial time computed on the original mesh (as shown in Figure 5.4)
and on its level 2 and level 4 refinements. Comparison of these results allows us to
see the convergence of the numerical scheme in situations when no analytical solution
is known. If the mesh is fine enough the differences between solutions obtained on
further refined mesh tend to be very small if ever visible (compare e.g. results obtained
on level 2 and level 4 refinement).
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Fig. 5.2. Evolution of the NAPL spill at times from 10 minutes to 60 minutes (from left to
right, top to bottom) at the material interface, 5% grade. NAPL saturation isolines are shown (1%
the darkest one, increasing by 5%).

Fig. 5.3. Evolution of the NAPL spill at times from 10 minutes to 60 minutes (from left to
right, top to bottom) at the material interface, 10% grade. NAPL saturation isolines are shown (1%
the darkest one, increasing by 5%).

Fig. 5.4. Domains Ω’s and the triangulations used (1%, 5%, and 10% grades).
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Fig. 5.5. NAPL spill at time 60 minutes, interface grade 1%, mesh in Figure 5.4 left. NAPL
saturation isolines are shown (1% the darkest one, increasing by 5%).

Fig. 5.6. NAPL spill at time 60 minutes, interface grade 1%, 2 regular refinements of the mesh
in Figure 5.4 left. NAPL saturation isolines are shown (1% the darkest one, increasing by 5%).

Fig. 5.7. NAPL spill at time 60 minutes, interface grade 1%, 4 regular refinements of the mesh
in Figure 5.4left. NAPL saturation isolines are shown (1% the darkest one, increasing by 5%).
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Fig. 5.8. NAPL spill at time 60 minutes, interface grade 5%, computed on the mesh in Fig-
ure 5.4 middle. NAPL saturation isolines are shown (1% the darkest one, increasing by 5%).

Fig. 5.9. NAPL spill at time 60 minutes, interface grade 5%, 2 regular refinements of the mesh
in Figure 5.4 middle. NAPL saturation isolines are shown (1% the darkest one, increasing by 5%).

Fig. 5.10. NAPL spill at time 60 minutes, interface grade 5%, 4 regular refinements of the
mesh in Figure 5.4 middle. NAPL saturation isolines are shown (1% the darkest one, increasing by
5%).
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Fig. 5.11. NAPL spill at time 60 minutes, interface grade 10%, computed on the mesh in
Figure 5.4 right. NAPL saturation isolines are shown (1% the darkest one, increasing by 5%).

Fig. 5.12. NAPL spill at time 60 minutes, interface grade 10%, 2 regular refinements of the
mesh in Figure 5.4 right. NAPL saturation isolines are shown (1% the darkest one, increasing by
5%).

Fig. 5.13. NAPL spill at time 60 minutes, interface grade 10%, 4 regular refinements of the
mesh in Figure 5.4 right. NAPL saturation isolines are shown (1% the darkest one, increasing by
5%).
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6. Conclusion. Results of these computations are important for verification of
the new multiphase flow code. Analytical solutions for two-phase flow are available
for one-dimensional horizontal flow through homogeneous sands only. As our research
aims to investigation of the NAPL behavior at sharp material interfaces we need to
test our model on situations involving heterogeneous media. For this purpose several
examples were computed in which the material interfaces were inclined with different
grades. The results show that the model is able to capture the entry pressure effects
in a physically correct way. The computations were repeated on a set of gradually
refined meshes (up to level 4 regular refinement) and it is possible to observe that the
computational results do not change much when the mesh is refined already from the
second level of the refinement. This is a good indication of the correct function of the
model in more complex situation than is required by known analytical solutions.
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