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GLOBAL EXISTENCE OF SOLUTIONS FOR A FREE BOUNDARY
PROBLEM OF HYPERBOLIC TYPE WITH NON CONSTANT

ADHESION

KAZUAKI NAKANE1 AND TOMOKO SHINOHARA2

Abstract. A free boundary problem which arises from the physical model “ Peel a thin film
from a domain” is treated. The behavior of the peeling front is governed by the hyperbolic equation.
If we suppose the effect Q from the peeling front to Lagrangian is constant, the global solution have
been constructed by pasting the local solutions inductively. In this note, the case where Q is a
function of the space is treated. Because the effect form peeling front is supposed to depend on the
situation of the domain. If we impose a regularity condition on Q, the sufficient condition for the
global existence of the solution is given.

Key words. free boundary, hyperbolic equation, variational problem

AMS subject classifications. 35R35, 35L70

1. Introduction. Let us consider the following one-dimensional free boundary
problem

(P )

{

uxx − utt = 0 in (0,∞) × {t > 0} ∩ {u > 0},
u2

x−u
2
t = Q2 on (0,∞) × {t > 0} ∩ ∂{u > 0},

with the initial conditions

(I)

{

u(x, 0) = e(x) in (−l0, 0),
ut(x, 0) = g(x) in (−l0, 0),

and the boundary condition

(B) u(−l0, t) = f(t) for t ≥ 0,

where e(x), g(x), f(t) and Q are given functions, and l0 is a positive constant.
This problem arises from the following variational problem which is related to a

physical model “Peel a thin film from a domain Ω ”(cf. [7] ) The shape of a film
is described by the graph of a function u : Ω → R. Find a stationary point of the
functional

J(u) :=

∫ T∗

0

∫

Ω

(

τ

2
|∇u|2−

ρ

2
(Dtu)

2χu>0+
Q2

2τ
χu>0

)

dxdt u ∈ K,(1.1)

where Ω is a domain in Rn, T ∗ is a positive constant, χu>0 is a characteristic function
of the set {(x, t) ∈ Ω×(0, T ∗);u(x, t) > 0} and K is a suitable function space. Here the
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constants τ , ρ are the tension and the line density, and Q is the adhesion. To approach
this problem, we assume that a stationary point is sufficiently smooth. Then we can
derive (1.2) and (1.3) as the Euler-Lagrange equations from the functional (1.1) (cf.
[1], [2] and [4]),

τ∆u− ρutt = 0 in Ω × {t > 0} ∩ {u > 0},(1.2)

τ

2
|∇u|2−

ρ

2
u2

t =
Q2

2τ
on Ω × {t > 0} ∩ ∂{u > 0}.(1.3)

In this article, as a first step, a one-dimensional problem will be analyzed. By using
some change of variable t, τ = 1 and ρ = 1 can be assumed. Therefore, we will
consider the problem (P ), (I) and (B).

The initial condition (I) implies that a thin film has been already peeled from
the plate on the interval (−l0, 0) and the boundary condition (B) corresponds to the
situation in which the edge of film is lifted up by f(t). Kikuchi and Omata [4] showed
the existence of time-local solutions under the several conditions which were imposed
on the functions e(x), g(x) and f(t). On the global existence of solutions, however,
they have not stated.

In the case of Q is constant, numerical experiments were carried out in [3]. A
sufficient condition for the global existence was given in [6]. That is to say, the solution
can be constructed by pasting the local solutions inductively, if f ′ ≥ 0, the solution
can be extended to any T > 0. And the same time, by using the expression of the
solution of this way, a well-posedness can be shown and the periodic solutions are
constructed.

In this note, the case where Q is a function of the space is treated, namely, it is
given on the line {(x, t); t = 0}. Because the effect Q from the peeling front to the
Lagrangian is supposed to depend on the situation of the domain. If we impose a
condition (A.5) on Q, then the global solution can be constructed.

2. Construction of solutions. To prove our problem, two variables ξ and η
are introduced by

t = (ξ + η)/2,
x = (ξ − η)/2.

Since the initial values e and g are given on the line {(x, t); t = 0}, they are given on
the line {(ξ, η); ξ + η = 0}. We regard them as the functions of ξ and rewrite them
e and g again. Similarly, the boundary value f and the adhesion Q are given on the
line {(ξ, η); ξ − η + 2l0 = 0} and {(x, t); t = 0}, respectively. They are functions of η.
Therefore (P ), (I) and (B) are transformed into

(P ′)

{

uξη = 0 in {u > 0},
−4uξuη = Q2(η) on ∂{u > 0},

(I ′)

{

u(ξ,−ξ) = e(ξ) in (−l0, 0),
uη(ξ,−ξ) + uξ(ξ,−ξ) = g(ξ) in (−l0, 0),

(B′) u(η − 2l0, η) = f(η − l0) in [l0,∞).

By taking these equations into considerations, we treat the following problem:
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Problem 2.1 Let T be a positive constant. Find a pair of functions u ∈ C0({(ξ, η); ξ ≥
η − 2l0, ξ ≥ −η}) and l ∈ C0([0, T )) ∩ C1((0, T )) which satisfies (P ′), (I ′) and (B′)
for η < T and

(i) l(0) = 0,
(ii) u ∈ C2({(ξ, η); η − 2l0 < ξ < l(η), ξ > −η})∩ C1({(ξ, η); η − 2l0 < ξ ≤ l(η), ξ ≥
−η}),
(iii) u > 0 in {(ξ, η); η − 2l0 ≤ ξ < l(η), ξ > −η},
(iv) u(ξ, η) = 0 in {(ξ, η); ξ ≥ l(η)} ∪ {(ξ, η); ξ ≥ −η, η < 0}.

Assumption 2.1 The functions f(η − l0) ∈ C2([l0,∞)), e(ξ) ∈ C2([−l0, 0]), g(ξ) ∈
C1([−l0, 0]) and Q(η) ∈ C0([0,∞)) satisfy

(A.0)

{

e(ξ) > 0 in (−l0, 0),
g(ξ) > 0 in (−l0, 0),

(A.1)







f(0) = e(−l0) > e(0) = 0,
f ′(0) = g(−l0),
f ′′(0) = e′′(−l0),

(A.2)















e(0) = 0,
e′(0)2 − g(0)2 = Q2(0),
−Q3(0){2Q′(0)(−e′(0) + g(0)) −Q(0)(e′′(0) − g′(0))}
= (−e′(0) + g(0))4(e′′(0) + g′′(0)),

(A.3)

{

e′(ξ) < g(ξ) for (−l0 ≤ ξ ≤ 0),
f ′(ξ + l0) − (e′(ξ) + g(ξ))/2 > 0 for (−l0 ≤ ξ ≤ 0),

(A.4) f ′(η − l0) ≥ 0 for η ∈ [l0,∞).

(A.5) Q is locally monotone function, i.e. for any η0

there is a constant δ(η0) > 0 such that Q(η1) ≤ Q(η2) or
Q(η1) ≥ Q(η2) for all η1, η2 ∈ [η0 − δ(η0), η0] with η1 ≤ η2.

Remark 2.1 (i) (A.1) is a compatible condition on the lifting edge and (A.2) is a

condition on the peeling front at t = 0. From our physical model, it is easy to see that

the singularities start from these points and they propagate along the lines which run

parallel to the (η, ξ)-axes. To show the regularity of the solution, we need to impose

some conditions on them. If the first equations of (A.1) and (A.2) are satisfied, we

can show the solution is continuous. By using direct calculation, the second one and

third one guarantee C1 and C2 regularity of the solution, respectively.

(ii) (A.3) is assumed by the technical reason. We may consider (A.3) is consistent

with the domain of dependence, however, we do not know the relation between them.

(iii) (A.4) and (A.5) are needed to construct global solutions. Even if Q belongs to Ck

class for any k > 0, there is an example such that it does not enjoy (A.5)(xk sin
1

x
is

not locally monotone at 0). However, (A.5) is satisfied by the function which has no

point where the signature of the Q′ changes infinity many time in its neighborhood.

The following procedure is originally given in [4]. To confirm the global existence of
the solution, we will modify its proof and introduce an iteration method.
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Lemma 2.1 Let c be a positive number and I = [0, c) an interval on the axis η. Let

Q(η) ∈ C0([0,∞)) and λ(η) ∈ C2(I) be a function which satisfies

(i)λ(0) = 0,
(ii)λ′(η) > 0 on η ∈ I.
Then there exists a unique pair of functions u(ξ, η) ∈ C2({(ξ, η); η ∈ I, 0 < ξ <
l(η)}) ∩ C1({(ξ, η); η ∈ I, 0 ≤ ξ ≤ l(η)}) and l(η) ∈ C2(I) such that

(PL)















uξη = 0 in {(ξ, η); 0 < ξ < l(η), η ∈ I},
−4uξuη = Q2(η) on (l(η), η), η ∈ I,
u(l(η), η) = 0 on η ∈ I,
u(0, η) = λ(η) on η ∈ I.

Proof. At first, let us define the functions ψ and l by

ψ(η) = λ(η),

l(η) = 4

∫ η

0

ψ′(s)2

Q2(s)
ds.

Because ψ′ is positive, l−1(ξ) exists in [0, l(c)). The function φ is defined by

φ(ξ) = −ψ(l−1(ξ)).

Then we can see that u(ξ, η) = φ(ξ) + ψ(η) and l(η) are desired functions.
Nextly, we show the uniqueness of the solution. Suppose that there exist another

functions (ũ(ξ, η), l̃(η)) satisfying (PL) which has the form ũ(ξ, η) = φ̃(ξ) + ψ̃(η). It
follows that

ũ(l̃(η), η) = 0.(2.1)

From the fact −4ũξũη = Q2 and by differentiating the both sides of (2.1) with respect
to η, we have

l̃′(η) =
4

Q2(η)
ψ̃′(η)2.

Since the free boundary starts at origin, we obtain

l̃(η) = 4

∫ η

0

ψ̃′(s)2

Q2(s)
ds.

Because of

ũ(0, η) = φ̃(0) + ψ̃(η) = λ(η),

it follows

ψ̃′(η) = λ′(η).

It implies that l̃ is equal to l. Hence, from Goursat’s theorem, (ũ(ξ, η), l̃(η)) coincides
with (u(ξ, η), l(η)), it is a contradiction proving our assertion.

Main Theorem For any T > 0 , there exists a unique solution to Problem 2.1.
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Proof. Firstly, let φ0 and ψ1 be functions such that



























φ0(ξ) =
1

2

(

e(ξ) +

∫ ξ

0

g(s)ds

)

for − λ1 ≤ ξ ≤ 0,

ψ1(η) =
1

2

(

e(−η) +

∫ 0

−η

g(s)ds

)

for 0 ≤ η < λ1,

where λ1 = l0. Evidently, u(ξ, η) = φ0(ξ) + ψ1(η) is a unique solution to the initial
value problem in {(ξ, η);−l0 < −η < ξ < 0}. Let us define the free boundary l1 by

l1(η) = 4

∫ η

0

ψ′
1(s)

2

Q2(s)
ds.

By (A.3), ψ′
1(η) is positive for 0 ≤ η < λ1. Therefore there exists l−1

1 (ξ) for 0 ≤ ξ <
l1(λ1) and we can define φ1 by

φ1(ξ) = −ψ1(l
−1
1 (ξ)) for 0 ≤ ξ < l1(λ1).

By using these functions, we define the functions u and l by

u(ξ, η) =







φ0(ξ) + ψ1(η) on D0,1,
φ1(ξ) + ψ1(η) on D1,1,

0 on De,1,

l(η) = l1(η) for {η; 0 ≤ η < λ1},

where

D0,1 = {(ξ, η); ξ ≥ −η,−l0 ≤ ξ < 0, 0 ≤ η < λ1},
D1,1 = {(ξ, η); 0 ≤ ξ < l1(η), 0 ≤ η < λ1},
De,1 = {(ξ, η); ξ ≥ l1(η), 0 ≤ η < λ1, }.

The regularity on the joint line ξ = 0 of φ0 and φ1 is guaranteed by (A.2). By Lemma
2.1, (u(ξ, η), l(η)) is a unique solution to Problem 2.1 on D0,1 ∪D1,1 ∪De,1.

Nextly, we define ψ2 by

ψ2(η) =

{

f(η − l0) − φ0(η − 2l0) for λ1 ≤ η < 2λ1,
f(η − l0) − φ1(η − 2l0) for 2λ1 ≤ η < λ2,

where λ2 = l1(λ1)+2l0. Since φ0 and φ1 are connected smoothly, ψ2(η) is of C2-class.
Because the free boundary starts from l1(λ1), l2 is defined by

l2(η) = 4

∫ η

λ1

ψ′
2(s)

2

Q2(s)
ds+ l1(λ1) for λ1 ≤ η < λ2.

Obviously, l2 is of C2-class. By (A.3) and (A.4), ψ′
2(η) > 0 holds on [λ1, λ2). Then

there exists l−1
2 (ξ) for l2(λ1) ≤ ξ < l2(λ2). Hence we can define

φ2(ξ) = −ψ2(l
−1
2 (ξ)) for l2(λ1) ≤ ξ < l2(λ2).
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The functions (u(ξ, η), l(η)) are extended as the following

u(ξ, η) =















φ0(ξ) + ψ2(η) on D0,2,
φ1(ξ) + ψ2(η) on D1,2,
φ2(ξ) + ψ2(η) on D2,2,

0

l(η) = l2(η) on {η;λ1 ≤ η < λ2},

where

D0,2 = {(ξ, η); ξ ≥ η − 2l0,−l0 ≤ ξ < 0, λ1 ≤ η < 2l0},
D1,2 = {(ξ, η); ξ ≥ η − 2l0, 0 ≤ ξ < l1(λ1), λ1 ≤ η < λ2},
D2,2 = {(ξ, η); l1(λ1) ≤ ξ < l2(η), l1 ≤ η < λ2},
De,2 = {(ξ, η); ξ ≥ l2(η), λ1 ≤ η < λ2}.

It follows from (A.1) that ψ1 and ψ2, concurrently, φ1 and φ2 are connected smoothly
on the line ξ = λ2 − 2l0. By applying Lemma 2.1 again, we can see the pair of
functions (u(ξ, η), l(η)) is a unique solution to Problem 2.1.

Inductively, for j ≥ 3, we define the functions ψj , lj and φj by

ψj(η) = f(η − l0) − φj−1(η − 2l0) for λj−1 ≤ η < λj ,

lj(η) = 4

∫ η

λj−1

ψ′
j(s)

2

Q2(s)
ds+ lj−1(λj−1) for λj−1 ≤ η < λj ,

φj(ξ) = −ψj(l
−1
j (ξ)) for lj(λj−1) ≤ ξ < lj(λj),

where

λj = lj−1(λj−1) + 2l0.

Suppose that it has been already shown that ψj−1(η), lj−1(η) and φj−1(ξ) are well-
defined and of C2-class, and ψ′

j−1(η) > 0 on λj−2 ≤ η < λj−1. In addition, it is
supposed that φj−2 and φj−1 are connected smoothly on the line ξ = λj−1 − 2l0.
Since

λj − λj−1 = 4

∫ λj−1

λj−2

ψ′
j−1(s)

2

Q2(s)
ds(2.2)

≥ 4

(

min
λj−2≤η<λj−1

ψ′
j−1(η)

Q(η)

)2

(λj−1 − λj−2),

holds, we have λj > λj−1. Here we remark that lj(λj−1) = lj−1(λj−1). It can be seen
that ψj and lj are well-defined and of C2-class, immediately. We have

ψ′
j(η) = f ′(η − l0) − φ′j−1(η − 2l0)

= f ′(η − l0) +
1

4

Q2(l−1
j−1(η − 2l0))

ψ′
j−1(l

−1
j−1(η − 2l0))

,

it follows ψ′
j(η) > 0 on λj−1 ≤ η < λj by (A.4) and induction assumption. Therefore,

there exists l−1
j for lj(λj−1) ≤ ξ < lj(λj), and it implies that φj is well-defined and
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of C2-class. From the induction assumption, ψj−1 and ψj are connected smoothly
on the line η = λj−1. Therefore φj−1 and φj are connected smoothly on the line
ξ = λj − 2l0. By combining these functions, the pair of functions (u(ξ, η), l(η)) can
be extended as the following

u(ξ, η) =







φj−1(ξ) + ψj(η) on Dj−1,j ,
φj(ξ) + ψj(η) on Dj,j ,

0 on De,j ,

l(η) = lj(η) for {η;λj−1 ≤ η < λj},

where

Dj−1,j = {(ξ, η); ξ ≥ η − 2l0, λj−1 − 2l0 ≤ ξ < lj−1(λj−1), λj−1 ≤ η < λj},
Dj,j = {(ξ, η); lj−1(λj−1) ≤ ξ < lj(η), λj−1 ≤ η < λj},
De,j = {(ξ, η); ξ ≥ lj(η), λj−1 ≤ η < λj}.

By the same argument on j = 2, (u(ξ, η), l(η)) is a unique solution to Problem 2.1.
Finally, we shall show the sequence {λj}

∞
j=1 goes to infinity. Once we show this,

for any T > 0, a pair of functions (u, l) which is a solution to Problem 2.1 can be
constructed. To this end, assume the contrary. Then, {λj}

∞
j=1 converges to some

constant λ∞ <∞. Then, it follows from the definitions

λj+2 − λj+1

= 4

∫ λj+1

λj

ψ′
j+1(s)

2

Q2(s)
ds

= 4

∫ λj+1

λj

1

Q2(s)

{

f ′(s− l0) +
Q2
(

l−1
j (s− 2l0)

)

4ψ′
j

(

l−1
j (s− 2l0)

)

}2

ds

≥ 4

∫ λj+1

λj

1

Q2(s)

{

Q2
(

l−1
j (s− 2l0)

)

4ψj

(

l−1
j (s− 2l0)

)

}2

ds.

Using the change of variable y = l−1
j (s− 2l0), we have

λj+2 − λj+1 ≥

∫ λj

λj−1

Q2(y)

Q2 (lj(y + 2l0))
dy.

From (A.5) there exists a constant δ such that Q is a monotone function on [λ∞ −
δ, λ∞). Let λj0 ∈ {λj}

∞
j=1 be the lowest number which is in [λ∞ − δ, λ∞). Here, we

have two cases to consider.
(Case 1) Q is decreasing on [λ∞ − δ, λ∞).
It holds

Q2(λ̄)

Q2
(

lj(λ̄) + 2l0
) ≥ 1 for λ̄ ∈ [λj0 , λ∞).

Therefore, we obtain

λj+2 − λj+1 ≥

∫ λj

λj−1

dy = λj − λj−1, and lim
j→∞

λj = ∞.
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It contradicts our assumption. In this case the proof completes.
(Case 2) Q is increasing on [λ∞ − δ, λ∞).
From mean value theorem for integral, there exists a sequence λ̄j ∈ [λj−1, λj) such
that

λj+2 − λj+1 ≥

∫ λj

λj−1

Q2(y)

Q2(lj(y) + 2l0)
dy = (λj − λj−1)qj ,(2.3)

where qj =
Q2(λ̄j)

Q2(lj(λ̄j) + 2l0)
. By using (2.3) inductively, it follows that

λj0+2j − λj0+2j−1 ≥ (λj0+2 − λj0+1)

j−1
∑

k=1

qj0+2 · · · qj0+2k,

λj0+2j−1 − λj0+2j−2 ≥ (λj0+1 − λj0)

j−1
∑

k=1

qj0+2 · · · qj0+2k−1.

Hence, we have

λ∞ − λj0

= lim
j→∞

{(λj0+1 − λj0 ) + · · · + (λj0+2j − λj0+2j−1)}

≥ (λj0+1 − λj0)

j−1
∑

k=1

qj0+1 · · · qj0+2k−1(2.4)

+(λj0+2 − λj0+1)

j−1
∑

k=1

qj0+2 · · · qj0+2k.

From the assumption λ∞ < ∞, the right hand side of (2.4) converges. Therefore, it
implies that

lim
j→∞

qj0+1 · · · qj0+2j−1 = 0 and lim
j→∞

qj0+2 · · · qj0+2j = 0.(2.5)

Let {Mj} and {mj} be recurrences such that

Mj = max
η∈[λj−1 ,λj ]

Q(η) and mj = min
η∈[λj−1,λj ]

Q(η).

Then, because of Q2(lj(λ̄j) + 2l0) =
Q2(λ̄j)

qj
, it holds M2

j+1 ≥
m2

j

qj
. Since Q is increas-

ing, m2
j+1 = M2

j holds. Then we obtain

m2
j+1= M2

j ≥
m2

j−1

qj−1

=
1

qj−1
M2

j−2 ≥
1

qj−1

m2
j−3

qj−3

· · ·

≥
m2

j0+1

qj−1 · · · qj0+1
or

m2
j0+2

qj−1 · · · qj0+2
.
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On the other hand, it implies from (2.5) that lim
j→∞

m2
j+1 = ∞. This contradicts the

fact that Q is a continuous function and proves our assertion.
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