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FULLY TWO DIMENSIONAL HLLEC RIEMANN SOLVER

PAVEL VÁCHAL1 , RICHARD LISKA1 , AND BURTON WENDROFF2

Abstract. Fully two dimensional sixteen state HLLEC (Harten, Lax, van Leer, Einfeldt, with
contact correction) approximate Riemann solver has been developed for hydrodynamical Euler equa-
tions. The solver is applied to first order Godunov and second order WAF (Weighted Average Flux)
finite difference schemes. The results yield improved treatment of contact discontinuities, stationary
contacts are resolved exactly.
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1. Introduction. The aim of this paper is to study the class of HLLE approx-
imate Riemann solvers for Euler equations of gas dynamics and suggest a fully two
dimensional extension of the one dimensional HLLC Riemann solver from [7]. We will
be concerned with the family of HLLE approximate Riemann solvers. The first three
characters in this name stand for Harten, Lax and van Leer, who suggested [3] to
approximate the solution of the Riemann problem by three constant states, separated
by two waves, propagating with constant speeds. Particular algorithms for compu-
tation of these wave speeds were presented five years later by Davis [1] and Einfeldt
[2]. Here, we will follow Einfeldt’s implementation. This explains the last character
in the abbreviation HLLE. Then, the evolution continued in two directions. Since the
assumption of two waves is correct only for hyperbolic systems of two equations, Toro,
Spruce and Speares [7] added one more wave, creating so the 4-state one dimensional
HLLC solver. In fluid dynamics, this new wave corresponds to a contact discontinu-
ity. And really, the HLLC solver resolves contact discontinuities much better than his
predecessor, the stationary ones even exactly. Later, Wendroff presented a series of 9-
state solvers, extending the 3-state HLLE approach to two dimensions [11], [10]. Due
to doubts about efficiency, he decided not to construct a straightforward extension of
the contact-corrected 4-state HLLC solver. Here, we follow the path abandoned by
Wendroff and extend the contact-corrected approach to a fully two dimensional 16-
state HLLEC approximate Riemann solver. A brief description of this solver together
with its usage in Godunov and WAF schemes has been presented in [9]. Here the full
derivation of the approximate Riemann solver is presented.

2. One Dimensional HLLE and HLLEC Riemann Solvers. Methods pre-
sented in this paper have been derived for Euler equations
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where ρ is the density, (u, v) fluid velocity, p pressure and E the density of the total
energy. Completing the system (2.1) by the equation of state for an ideal polytropic
gas p = (γ − 1)

(

E − 1/2ρu2
)

, we can write it in 1D (by removing third equation and

y flux) in the general differential form ~wt + ~f(~w)x = ~0.
Let us discretize the x-t-plane by a rectangular grid with cell centers xi = i∆x,

i ∈ {0,±1,±2, . . .}, cell endpoints xi+1/2 = (i + 1/2)∆x and discrete time levels
tn = tn−1 + ∆t(n). Further, we will also use the staggered mesh, with cells of the
same size, but shifted by ∆x/2 with respect to the original ones.

2.1. 1D 3-state HLLE Solver. Let’s have the initial Riemann problem

w (x, t1) =

{

W0 for xi ≤ x < xi+1/2

W1 for xi+1/2 < x ≤ xi+1
.(2.2)

Following [10], we approximate the solution at t1 < t < t1 + ∆t with three constant
states W0, W ∗ and W1, divided by two waves, propagating with constant speeds b0

and b1. The situation is shown in Fig. 2.1(a). With this layout, the integral form

t1 ∆ t+

t1

x i x i+1/2 x i+1

W1W0

W1/2,RW1/2,L

b1 ∆ t∆ tu*b0 ∆ t 0 ∆ x / 2∆ x / 2−
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Fig. 2.1. 1D 3-state solver (a) and 4-state solver (b)

of the 1D version of (2.1) integrated over staggered cell from xi to xi+1 in space and
from t1 to t1 + ∆t in time becomes

∆x

2
(W0 + W1) =

(

∆x

2
+ b0∆t

)

W0 +
(

b1∆t − b0∆t
)

W ∗ +(2.3)

+

(

∆x

2
− b1∆t

)

W1 + [f (W1) − f (W0)] ∆t.

Note, that data below the plots in Fig. 2.1 show the absolute position, while data
above the plots are relative distances to the center of the staggered cell.

Resolving (2.3) with respect to W ∗ gives the central state value

W ∗ =
b1W1 − b0W0 − f (W1) + f (W0)

b1 − b0
.(2.4)

To have the scheme totally determined, we must decide, how to choose wave speeds b0

and b1. We again follow [10] and use the Einfeldt speeds [2], based on Roe averages.

2.2. 1D 4-state HLLEC-based Solver. The 3-state HLLE Riemann solver,
presented above, consists of two waves, dividing the staggered cell into three regions
with constant states. As mentioned above, Toro et al. [7] extended it to a 4-state
version, called HLLC, which resolves contact discontinuities better. The main idea
is to split the intermediate state by the third wave, representing a contact, shown in
Fig. 2.1(b). Since the velocity and pressure stay constant across contact disconti-
nuities, the two central states differ only in density.For the initial Riemann problem
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(2.2) with W0 = (ρ0, ρ0u0, E0)
T W1 = (ρ1, ρ1u1, E1)

T we compute the intermedi-
ate state from (2.4) the same way as in the 3-state solver and denote this state by
W ∗ = (ρ∗, ρ∗u∗, E∗)T . We assume u∗ and p∗ to be preserved across the central wave
which moves with speed u∗ as a contact discontinuity. The densities in the two new
intermediate regions can be computed from the scalar Rankine-Hugoniot condition
for the mass conservation, applied to the left, resp. right wave:

ρ1/2,L = ρ∗
u0 − b0

u∗ − b0
, ρ1/2,R = ρ∗

u1 − b1

u∗ − b1
.(2.5)

3. Two Dimensional Solvers. First, we describe the fully two dimensional 9-
state HLLE Riemann solver, originally presented in [10]. In this first implementation,
wave speeds have been restricted by certain unnecessary conditions, which have been
removed in [8]. Here, we introduce the latter version. Then we demonstrate its step-
by-step transformation into a new 16-state HLLEC solver, which principally resolves
also contact discontinuities. So, let us again start with the discretization.

We subdivide the x-y plane by a rectangular grid with cell centers at (xi, xj) =
(i∆x, j∆y), where i, j ∈ {0,±1,±2, . . .} and assume, that after each time step, the
state variables are constant inside each cell. Then, in each corner (xi+1/2, yj+1/2) =
((i + 1/2)∆x, (j + 1/2)∆y), we have an interface of four cells, forming a two dimen-
sional Riemann problem. When we choose the time step small enough, these Riemann
problems do not interfere with each other and we can solve each of them separately.

t = 0

W0,1

W0,0 W1,0

W1,1

y = yj+1/2

(a)

x = xi+1/2

b0,1/2
1 ∆ t

b 0
0,1/2 ∆ t

W0,0 W1/2,0 W1,0

W1,1/2
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=
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t =∆ t

b 1
1/2,0 ∆ t
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Fig. 3.1. 2D 9-state solver: the initial Riemann problem (a) evolves in time, splitting the
staggered cell into 9 pieces (b).

3.1. 2D 9-state HLLE Solver. The two dimensional Riemann problem at
(

xi+1/2, yj+1/2

)

, shown in Fig. 3.1(a), evolves in time and here we assume that it
splits the staggered cell into 9 regions. An approximation of the status after some
time interval ∆t is shown in Fig. 3.1(b). The waves propagate from the center
with constant speeds. For ∆t sufficiently small, none of the waves in y-direction
does reach the edge y = yj , so that the state W1/2,0 is affected only by the one
dimensional Riemann problem in x-direction, given by W0,0 and W1,0. Analogous
considerations along the other three edges lead us to following method: The corner
states (W0,0, W1,0, W0,1, W1,1) stay undisturbed. We take them to compute the edge
states

(

W1/2,0, W1/2,1, W0,1/2, W1,1/2

)

, using a 3-state solver based on the 1D HLLE



198 P. Váchal, R. Liska and B. Wendroff

solver from section 2.1. Then we do not need to solve the real two dimensional
problem in the central area, since W1/2,1/2 is given by a two dimensional conservation
law, applied to the whole staggered cell.

It is not exactly correct to say, that we “use the 1D 3-state solver” along the
edges. Now, we are in two dimensions, and so we have one more state variable, which
must be conserved: the transversal momentum ρv. Furthermore, we have a new flux
in y−direction, and all vectors have now four components. Fortunately, we can drop
off some terms. Fig. 3.2 shows in detail the region along the lower edge (y = yj),

CD

BA

t∆b
1
1/2,0t∆b

0
1/2,0

W1/2,1/2W0,0

G1/2,0

G1/2,0

W
1,0

∆− y / 2

t∆b1/2,1/2
y,min

Fig. 3.2. 2D 9-state solver: Computing 1D problems along the edges with a 3-state solver.
Fluxes in y-direction are the same and so they drop off.

inside the rectangle ABCD. We want to compute the intermediate (blue) state W1/2,0

so, that two dimensional integral conservation laws over the whole rectangle ABCD
hold. Since we have always only one state in y−direction, fluxes through the upper
and lower border (g−fluxes) are the same and thus we can drop them off. Our system
to solve is (2.1) without the y flux (.)y. This is very similar to the one dimensional
problem.So we can use the 3-state 1D solver (2.4) to compute the state W1/2,0 but
with the 1D fluxes changed to 2D f−fluxes according of (2.1), and inserting the
transversal momentum ρv into the vector W of conserved variables. We perform the
same operations along the upper edge of the staggered cell (y = yj+1). Both 1D
problems in y−direction, i.e. along edges x = xi and x = xi+1 will be computed
similarly, this time with g−fluxes and dropping the f−fluxes off.

The central red region in Fig. 3.1 is bordered by minimal and maximal wave
speeds in x and y directions obtained from 1D Riemann problems along edges. Now,
let us see, how to compute the central (red) state W1/2,1/2. Applying the inte-

gral conservation law to the whole staggered cell centered at
(

xi+1/2, yj+1/2

)

=
((i + 1/2)∆x, (j + 1/2)∆y), we get (due to the simple geometry of an approximate
Riemann solver with constant states)

∑

α,β∈{0,1/2,1}

Aα,βWα,β =
∆x∆y

4

∑

γ,δ∈{0,1}

Wγ,δ −(3.1)

−∆t∆y
(

F1,1/2 − F0,1/2

)

− ∆t∆x
(

G1/2,1 − G1/2,0

)

where Wα,β represent the states, Aα,β the areas of regions occupied by these states at
time ∆t, and F0,1/2, F1,1/2 resp. G1/2,0, G1/2,1 the numerical fluxes through time-like
faces of the staggered cell. These are

F0,1/2 =
1

2∆y

[(

∆y + b0
0,1/2∆t

)

f (W0,0) +

+
(

b1
0,1/2 − b0

0,1/2

)

∆tf
(

W0,1/2

)

+
(

∆y − b1
0,1/2∆t

)

f (W0,1)
]

(3.2)
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through edge x = xi, resp.

G1/2,0 =
1

2∆x

[(

∆x + b0
1/2,0∆t

)

g (W0,0) +

+
(

b1
1/2,0 − b0

1/2,0

)

∆tg
(

W1/2,0

)

+
(

∆x − b1
1/2,0∆t

)

g (W1,0)
]

(3.3)

through edge y = yj , and similarly for the other two edges. Since we already know all
other states, all areas, speeds, fluxes and constants, we can resolve (3.1) with respect
to W1/2,1/2 and compute the central state.

3.2. From 9-state HLLE to 16-state HLLEC. Our next objective is to de-
velop a non-split, fully two dimensional HLLEC Riemann solver. Let us summarize
our requirements:

• First, the solver should be (as much as possible) a straightforward extension
of the one dimensional 4-state HLLEC solver from section 2.2. This means,
in 2D we would have 16 states.

• Further we require, that it degenerates to the 1D solver for purely 1D prob-
lems in coordinate directions. In other words, if the initial condition is a
Riemann problem with only one interface, for example WUL = WLL and
WUR = WLR, the solver has to consist of four stripes with constant states.
Since we will have a 16-state solver, each of these stripes will be formally
divided into four regions with identical states. Note, that this degeneracy
should take place also in the case of nonzero transversal velocities, and even
if these velocities differ in the initial left and right states. The same must of
course hold also for the problem rotated by 90 degrees (Fig. 3.3(b)).
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Fig. 3.3. 2D HLLC solver: Desired degeneracy to 1D 4-state solver for 1D initial problems
along the coordinate directions.

• Another property of the 1D HLLEC solver, which we want to retain also in
2D, is the exact resolution of stationary contact discontinuities in coordinate
directions. This is very important, since contact discontinuities are the main
motivation to construct HLLEC solvers.

3.2.1. Splitting the Peripheral Regions. The simplest extension of the 9-
state solver is to split the intermediate region in each of the one dimensional problems
along the edges. That means, we replace the 3-state HLLE solver from section 2.1
by the 4-state HLLEC from section 2.2. We are now in 2D and so, as in the 9-state
approach, we must modify the 1D solvers to obey also 2D conservation laws. Let us
again consider the region along the lower edge (y = yj), i.e. the rectangle ABCD
from Fig. 3.2. The computation along other three edges of the staggered cell will be
fully analogous.

We want to compute two intermediate (blue) states in Fig. 3.4(b) so, that two

dimensional integral conservation laws over the whole rectangle are fulfilled. As in
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Fig. 3.4. 2D HLLEC solver: “One dimensional” strip along the lower edge (magnified part of
Fig.3.2). Computing the intermediate state (a) and splitting it into two (b).

the 9-state solver, the g−fluxes (through lower and upper border) are the same and
so they drop out, which means that we again have to solve the pseudo-1D system.

First, we compute the whole, unsplit central state, denoted by W ∗ in Fig. 3.4(a)
with a 3-state solver (2.4). Then, exactly as we did in the 1D 4-state HLLEC
solver, we split the intermediate region by a wave approximating a contact dis-
continuity. The longitudinal velocity is preserved across the contact, thus we set
u1/2,0,L = u1/2,0,R = u1/2,0. Densities ρ1/2,0,L and ρ1/2,0,R can again be com-
puted from the Rankine-Hugoniot condition for mass conservation, applied to the
left, resp. right wave (2.5). Transversal velocity is advected with the contact, so we
set v1/2,0,L = v0,0 and v1/2,0,R = v1,0. Finally, we compute the central pressure from
the total energy conservation

(

u1/2,0 − b0
1/2,0

)

E1/2,0,L +
(

b1
1/2,0 − u1/2,0

)

E1/2,0,R =
(

b1
1/2,0 − b0

1/2,0

)

E∗.(3.4)

Since pressure is constant across contact discontinuities, we assume it to be equal for
both intermediate states.

By such splitting of intermediate (blue) regions along all four edges, we obtain a
13-state solver shown in Fig. 3.5(a). Now, we have to compute the central red state
W1/2,1/2.

∆ tb0,1/2
1

∆ tb 0
0,1/2

∆ tv0,1/2

∆ t1/2,0b 0 ∆ t1/2,0u ∆ tb 1
1/2,0

∆ tb1,1/2
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∆ tb 0
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W1,1/2,L

W0,1/2,U

0,1/2,LW
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Fig. 3.5. 2D 13-state solver (a) and 2D 16-state solver(b).

3.2.2. Computing the 13th State. Up to now, our solver consists of 13 regions
(see Fig. 3.5(a)): four in the corners (white), eight along the edges (blue) and one
(the 13th) in the center (red). First, we compute the areas of all these regions. Let
us denote them Aσ , where σ indicates the state. Now we apply the two dimensional
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integral conservation law in the same way as we did in the 9-state solver (3.1), but
now taking into account also the splitting of (blue) edge states:

A1/2,1/2W1/2,1/2 =
∑

α,β∈{0,1}

(

∆x∆y

4
− Aα,β

)

Wα,β −

−
∑

α∈{0,1}

(

Aα,1/2,LWα,1/2,L + Aα,1/2,UWα,1/2,U

)

−(3.5)

−
∑

β∈{0,1}

(

A1/2,β,LW1/2,β,L + A1/2,β,RW1/2,β,R

)

−

−∆t∆y
(

F1,1/2 − F0,1/2

)

− ∆t∆x
(

G1/2,1 − G1/2,0

)

,

where the numerical fluxes through left and lower edges are

F0,1/2 =
1

2∆y

[(

∆y + b0
0,1/2∆t

)

f (W0,0) +
(

v0,1/2 − b0
0,1/2

)

∆t f
(

W0,1/2,L

)

+

+
(

b1
0,1/2 − v0,1/2

)

∆t f
(

W0,1/2,U

)

+
(

∆y − b1
0,1/2∆t

)

f (W0,1)
]

G1/2,0 =
1

2∆x

[(

∆x + b0
1/2,0∆t

)

g (W0,0) +
(

u1/2,0 − b0
1/2,0

)

∆t g
(

W1/2,0,L

)

+

+
(

b1
1/2,0 − u1/2,0

)

∆t g
(

W1/2,0,R

)

+
(

∆x − b1
1/2,0∆t

)

g (W1,0)
]

and through the upper and right edges analogously. If there was only one state in the
center (red), it would have the density ρ1/2,1/2, the velocities u1/2,1/2, v1/2,1/2 and the
total energy E1/2,1/2 computed from (3.5). Such 13-state Riemann solver performs
slightly better than the 9-state version, but does not degenerate to the 1D 4-state
HLLEC solver for 1D initial conditions. We have to split the central region into four
parts by two additional waves parallel to coordinate axes.

3.2.3. Splitting the Central Region. As in the 1D case, we can estimate the
speeds of the splitting waves by the x−, resp. y−components of fluid velocity in the
central region (i.e. the velocity of the 13th state). Unfortunately, we can no longer
assume, that these waves are contact discontinuities having longitudinal velocities on
both sides of contact equal to the speed of the contact wave. Under that assumption,
velocities in all four central regions would have to be equal. Such solver could correctly
degenerate to 1D in density, but not in momenta for the 1D problem with different
transversal velocities. However, we can still assume, that pressure stays unchanged
across these two splitting waves, i.e. that it is constant inside the whole central region.

We can use other speeds of splitting waves, for example the averages of contact
speeds along the opposite cell edges (i.e. those splitting the blue regions). That is,
if we use the notation as in Fig. 3.5(b) and report to the speeds of central splitting
waves as to u1/2,1/2 and v1/2,1/2, we can take u1/2,1/2 = (u1/2,0 +u1/2,1)/2, v1/2,1/2 =
(v0,1/2 + v1,1/2)/2. As can be clearly seen in Fig. 3.5(b), we require, that both

splitting waves stay inside the central region (delimited by bx,min
1/2,1/2, bx,max

1/2,1/2, by,min
1/2,1/2

and by,max
1/2,1/2). The first approach described above (speeds = velocities of the 13th

state) satisfies this condition for most usual problems. However, in some extreme
cases, the splitting waves with such speeds would leave the central region. In such
case we use the averages which work always. Beside these two, there are many other
ways to split the central region.
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Now, we need to compute states in the four central regions W1/2,1/2,UL, W1/2,1/2,UR,
W1/2,1/2,LL and W1/2,1/2,LR, shown in Fig. 3.5(b). First, we estimate the velocities
and densities so, that our solver degenerates correctly to 1D as explained above. Then
we correct these estimates to obey the mass and both momentum conservation laws.
Finally, we set the value of the only remaining variable - the constant pressure, com-
mon for all four central states - so, that total energy is conserved. Let us study these
steps in more detail.

3.2.4. Estimating Central Velocities. We need to estimate eight central ve-
locities u1/2,1/2,α, v1/2,1/2,α, α ∈ {UL, UR, LL, LR}. Constructing previous versions
of our solver, we first tried to base these estimates directly on values of momenta
in the 13th (red) state, which we obtained from the 2D conservation law. This was
not correct, since such approach introduces the 2D element and does not degenerate
properly to 1D.

Let us repeat, what exactly does degeneracy in momenta mean1. If the initial
conditions form an one dimensional problem in x-direction (i.e. if WUL = WLL

and WUR = WLR), we would like to obtain four “1D” states independent on the y-
coordinate. Transversal velocities (here v) stay unchanged, their interface is advected
with speed of the central contact wave. We estimate the x−velocities u1/2,1/2,α from
the already known states neighboring up, resp. down, weighted by lengths of interfaces
of the particular central region (red) with corresponding edge regions (blue) and
corner regions (white). Similarly, we estimate four central y−velocities v1/2,1/2,α

from the states neighboring to the left, resp. right. For lucidity, the estimating
procedure is shown schematically in Fig. 3.6. These estimates are based on properties
of longitudinal and transversal velocities across contact waves and correctly degenerate
to 1D as required.

u  ( =  x−velocity ) v  ( =  y−velocity )

Fig. 3.6. Estimating the central velocities in a way that preserves 1D degeneracy. Estimate for
particular central region is based on values in states, where the corresponding arrows start.

3.2.5. Estimating Central Densities. In the 1D problem along the edges (see
section 3.2.1), we have computed intermediate densities from the Rankine-Hugoniot
conditions for mass conservation law2. We will use these conditions also to estimate
densities in four central (red) regions. At each segment of interface with surrounding
(blue or white) states, we know the speed of splitting wave (bx,min

1/2,1/2, bx,max
1/2,1/2, by,min

1/2,1/2,

or by,max
1/2,1/2), two velocities and one density. For each such segment, we compute the

second density from the 1D Rankine-Hugoniot condition2. weigh the appropriate
densities by lengths of these segments and get an average for each of the four central

1We will handle velocities here. The final scheme will be degenerative also in densities, so
degeneracy will be achieved for momenta as well.

2Let us have two states WA and WB with constant densities ρ and velocities u, split by a simple
wave, propagating with speed s. Then the condition in 1D is ρAuA − ρBuB = s (ρA − ρB).
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regions. These averages will be used as our estimations of central densities. The whole
procedure for the upper right state is shown in Fig. 3.7. Densities ρ(j) in Fig. 3.7(b)
are weight averaged by the lengths d(j). Other alternatives to this weighting are also
possible [8].

ρ(1) ρ(3)ρ(2) ρ(4)

ρ(5)

ρ(8)

ρ
1/2,1,R

ρ
1/2,1,L

ρ
1,1

ρ
1,1/2,U

ρ(6)

ρ(7) ρ
1,1/2,L

ρ
1,0

ρ
0,1

d
(1)

d
(2) (3)

d

d
(4)

d
(5)

d
(6)

d
(7)

d
(8)

∆ tb 0
1,1/2

∆ tb1,1/2
1

∆ tv1,1/2

∆ tb1/2,1
1∆ tu1/2,1∆ tb1/2,1

0

1/2,1/2v ∆ t

∆ tb
y, max
1/2,1/2

∆ tu1/2,1/2 ∆ tb
x, max
1/2,1/2

(a) (b)

Fig. 3.7. 2D 16-state solver: Weighting the densities, resulting from 1D wave-propagation
conditions, in order to get ρ1/2,1/2,UR. (a) whole staggered cell, (b) magnified upper right part.

3.2.6. Mass Conservation. To construct a conservative solver, we need that
the total mass inside the whole central region remains the same as in case of the
13-state solver. Thus, central densities must obey

A1/2,1/2ρ1/2,1/2 = ALL
1/2,1/2ρ1/2,1/2,LL + ALR

1/2,1/2ρ1/2,1/2,LR +(3.6)

+ AUL
1/2,1/2ρ1/2,1/2,UL + AUR

1/2,1/2ρ1/2,1/2,UR,

where ρ1/2,1/2 is the 13th density, computed from the 2D mass conservation law,
and Aσ are areas of appropriate regions. The estimates (weighted averages) from
the previous step (section 3.2.5) have to be corrected to satisfy (3.6). One of many
possibilities is to multiply each of them with an constant factor C:

ρ1/2,1/2,α = Cρestim
1/2,1/2,α , α ∈ {UL, UR, LL, LR}(3.7)

where

C =
A1/2,1/2ρ1/2,1/2

ALL
1/2,1/2ρ

estim
1/2,1/2,LL + ALR

1/2,1/2ρ
estim
1/2,1/2,LR + AUL

1/2,1/2ρ
estim
1/2,1/2,UL + AUR

1/2,1/2ρ
estim
1/2,1/2,UR

.

(3.8)
This is possible, since all areas and all densities are positive. Another methods for
correcting of the estimates are mentioned below (in section 3.2.7).

3.2.7. Conservation of Momenta. The conservation conditions for momenta
are similar to (3.6), just with densities replaced by momenta:

A1/2,1/2ρ1/2,1/2u1/2,1/2 =
∑

α∈{UL,UR,LL,LR}

Aα
1/2,1/2ρ1/2,1/2,αu1/2,1/2,α

A1/2,1/2ρ1/2,1/2v1/2,1/2 =
∑

α∈{UL,UR,LL,LR}

Aα
1/2,1/2ρ1/2,1/2,αv1/2,1/2,α.

Unlike densities, velocities can be negative, and so the coefficient analogous to C from
(3.8) could be also negative. Multiplying the momenta would then change their signs,
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which would lead to fatal errors (for large velocities of similar magnitude in opposite
directions). We have to find some other method to correct the velocities estimated in
section 3.2.4.

In our implementation, we have chosen to add the same amount of momentum to
each state. Then we have

ρ1/2,1/2,αu1/2,1/2,α = ρ1/2,1/2,αuestim
1/2,1/2,α + ∆/4 , α ∈ {UL, UR, LL, LR}(3.9)

where

∆ = ρ1/2,1/2u1/2,1/2 −
1

A1/2,1/2

∑

α∈{UL,UR,LL,LR}

Aα
1/2,1/2ρ1/2,1/2,αu1/2,1/2,α(3.10)

and similarly for the y-momentum ρv. Note, that the correction by adding, analogous
to (3.9), (3.10), could be used also earlier for density instead of multiplication (3.7),
(3.8).

3.2.8. Energy Conservation and Central Pressure. We assume, that pres-
sure is equal in all four central (red) states p1/2,1/2 = p1/2,1/2,UL = p1/2,1/2,UR =
p1/2,1/2,LL = p1/2,1/2,LR. The central pressure is computed from conservation of the
total energy

A1/2,1/2E1/2,1/2 =
∑

α∈{UL,UR,LL,LR}

Aα
1/2,1/2E1/2,1/2,α

which with the use of equation of state gives direct formula for p1/2,1/2.

3.2.9. Degeneracy to 1D Solver for 1D Problems. Let us show, that our
solver really degenerates as required in the beginning of section 3.2. Consider a 1D
initial problem in x-direction. Since in this case b0

1/2,0 = b0
1/2,1 = bx,min

1/2,1/2, u1/2,0 =

u1/2,1 = u1/2,1/2 and b1
1/2,0 = b1

1/2,1 = bx,max
1/2,1/2, we have three continuous wavefronts

in this direction, i.e. there are only three vertical partitions as shown in Fig. 3.3(a).
Due to the initial condition, solutions of the 1D Riemann problems y-direction (left
and right blue regions) are trivially equal to the adjacent corner states. Solution of
both 1D Riemann problems in x-direction (upper and lower blue regions) are equal
and the incoming and outgoing G-fluxes cancel each other. Thus, when checking
for conservation, we only have to care about the F -fluxes. Since in this case the x-
velocity estimates in the red regions are equal to values in corresponding blue regions
neighboring up or down, the Rankine-Hugoniot condition across horizontal interfaces
is trivial (no jump in anything). Now, the density estimates are given only by the
jumps across the vertical interfaces and all values are the same as for the horizontal 1D
Riemann problems. To summarize, the estimates of density and longitudinal velocity
in the red states are equal to values in blue regions neighboring up or down and already
these estimates satisfy the corresponding conservation laws. This is the same case also
for pressure. We see, that in the case of 1D initial problem, no conservation correction
in the red states is necessary and the solver really degenerates to 1D HLLEC. As for
jumps in transversal velocity, the degeneracy requirement is still met, since everything
happens along the continuous central wavefront.

4. Numerical results. In this section, we demonstrate, how approximate Rie-
mann solvers can be used in difference schemes. The developed approximate Riemann
solvers have been used in the first order Godunov and second order WAF [6] finite
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difference schemes [9]. Here we present the results for one 2D Riemann problem
(from a family presented at [5] ) computed by these schemes. Computational domain
〈0, 1〉 × 〈0, 1〉 is split by two perpendicular lines, located at x = 0.5 and y = 0.5,
into four quadrants, denoted UL (upper left), UR (upper right), LL (lower left) and
LR (lower right). Each quadrant contains diatomic polytropic ideal gas (γ = 1.4),
initially described by the constant values presented in Tab. 4.1. The initial data are
chosen so that four 1D Riemann problems along the domain edges (x = 0, x = 1,
y = 0 and y = 1) result in just one elementary wave, namely shock on right and up
and contact on left and down as schematically shown in Tab. 4.1. Computations

ρUL = 1.0 pUL = 1.0 ρUR = 0.5313 pUR = 0.4

uUL = 0.7276 vUL = 0 uUR = 0 vUR = 0

ρLL = 0.8 pLL = 1.0 ρLR = 1.0 pLR = 1.0

uLL = 0 vLL = 0 uLR = 0 vLR = 0.7276

S

→

C ↑ S

C

Table 4.1

Initial conditions for the test Riemann problem (test 12 from [4])

have been performed on a rectangular mesh of 400x400 cells, with CCFL = 0.49 for
both schemes. The results are shown in Fig. 4.1(a),(b),(c) for the Godunov scheme
with 9-state and 16-state solver and for the WAF scheme with 16-state solver. Den-
sity is visualized by colors and by a set of equidistant contours. Clearly 9-state solver
resolves badly the contact waves separating lower left quadrant. 16-state solver re-
solver stationary contacts exactly. The WAF scheme resolves better shock waves,
both straight ones separating small blue region in the upper right corner and curved
ones separating yellow-red central structure. This Riemann problem has two station-
ary contact discontinuities. To show resolution of moving contacts we present in Fig.
4.1(d) result of the WAF scheme with 16-state solver for similar Riemann problem
with initial velocities shifted by (-0.2,-0.2) in all quadrants. Moving contact is resolved
reasonably well. Also note a bubble-shaped formation in upper right corner of the
lower left blue region. It is visible already in the Godunov scheme with 16-state solver
(b), but resolved in much more detail by the WAF scheme (c),(d).This is in good cor-
respondence with experiments on denser meshes as well as with other higher-order
numerical schemes, however any proof of correct solution of 2D Riemann problems
does not exist yet. As for the computational expenses, the ratio of CPU times in this
particular test was 1.0 / 2.0 / 5.4 for results in Figs. 4.1(a)/(b)/(c).

5. Conclusion. We proposed a fully two dimensional extension of the one di-
mensional approximate Riemann solver from [7] and demonstrated its application in
two particular difference schemes.
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[9] P. Váchal, R. Liska, and B. Wendroff, Fully two-dimensional HLLEC Riemann solver
and associated difference schemes, in Numerical Mathematics and Advanced Applications
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