
Proceedings of the Czech–Japanese Seminar in Applied Mathematics 2006

Czech Technical University in Prague, September 14-17, 2006
pp. 25–36

PARALLEL ALGORITHM FOR NUMERICAL SOLUTION OF THE SHALLOW
WATER EQUATION

STANISLAV BRAND1

Abstract. Parallel programming is the leading technique for accelerating numerical algorithm. This article
deals with parallelization of the program for solving the shallow water equation in 2D, representing an example of a
conservation law. The equation is solved by finite difference and finite volume methods within the Lax-Friedrichs,
Lax-Wendroff and MacCormack scheme. The algorithm is parallelized using OpenMP and MPI. The efficiency
measurement is made mainly on systems with shared memory and thanks to the sufficient number of processors
there are some results of the mixed mode programming which used both OpenMP and MPI.
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1. Introduction. This article summarizes the results of numerical solution of the shal-
low water equation. The first section shows the derivation of the one-dimensional shallow
water equation and describes the two-dimensional shallow water system. The second section
contains numerical schemes used, in the particular finite difference and finite volume vari-
ants of the well-known Lax-Friedrichs, Lax-Wendroff and MacCormack schemes. The third
section describes parallelization, that was made for improving program performance. The
fourth and fifth section contains several results of efficiency measurement and of the problem
solved.

2. Solved problem. The Shallow water equation is a special case of the Euler equations
describing wave motion in shallow water. The two-dimensional shallow water equation is
often used for numerical simulation of natural river flows. For illustration, we derive the one-
dimensional shallow water equation which is also often used. Consider a fluid in a channel
and assume that the vertical velocity in the fluid is negligible and the horizontal velocity
v(x, t) is constant through any vertical cross section. For example, small aptitude wave in the
fluid that is shallow relative to the wave length. We assume an incompressible fluid, where
the density ρ is constant. Our variable is the height of water h(x, t). The total mass in x1, x2

at time t can be written as mx1,x2 =
∫ x2

x1
ρh(x, t)dx. Vertical integration from 0 to h(x, t)

of the momentum ρv(x, t) gives us the mass flux to be ρv(x, t)h(x, t). By dropping out the
constant ρ we get the conservation of mass equation in the form

ht + (vh)x = 0. (2.1)

Now we get the conservation of momentum from the Euler equation

(ρhv)t + (ρhv2 + p)x = 0. (2.2)

In our case, the pressure p is determined from a hydrostatic law saying the pressure at
depth y is ρgy, where g is the gravitation constant. Integrating this relation vertically from
y = 0 to y = h(x, t) we get the proper pressure term p = 1

2ρgh2. Using this in (2.2), and
pointing out ρ gives
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FIG. 2.1. Meaning of variables for the shallow water equation.

(hv)t + (hv2 +
1
2
gh2)x = 0. (2.3)

One-dimensional shallow water system consists of the continuity equation (2.1) and the
momentum equation (2.3). We use the two-dimensional shallow water equation whose deriva-
tion can be found in [3].

It can be written as

Ut + F (U)x + G(U)y = S, (2.4)

where
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0
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Here h = h(x, y) denotes the depth of water over the bottom topography b = b(x, y),
u,v are velocities in x and y directions, and g stands for the gravitational constant (see Figure
2.1).

3. Numerical solution. We used three finite difference methods for conservation laws,
the Lax-Friedrichs(LF), the Lax-Wendroff(LW), and the MacCormack(MC) schemes. For
details, we refer the reader to [4],[5]. All of these methods have some limitations. The LF
scheme is first-order-accurate and diffusive. The LW and MC schemes are second-order-
accurate, but oscillatory near shocks.
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We therefore also tested the composite scheme as well which combines these methods
in order to eliminate their problems. For more information about the composite schemes, see
[6],[7]. All computations were made with the composite scheme that was a composition of
three LW steps and one diffusive LF step needed for removing spurious oscillations.

The schemes in the following sections are based on the finite volume and finite difference
discretization.

3.1. Lax-Friedrichs scheme. Finite volume method yields:

Un+1
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1
N

N∑

k=1

Un
k −

∆t

µ(Di)

N∑

k=1

Fn
i,k∆yk −Gn
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Finite difference method yields:
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3.2. Lax-Wendroff scheme. Finite volume method yields:
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Finite-difference method yields:
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3.3. MacCormack schemes. Finite volume method yields:
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4. Stability. Each numerical scheme must satisfy the necessary stability condition in
the form

∆t ≤ 1
ρA

∆x + ρB

∆y

, (4.1)

where ρA and ρA are spectral radii of jacobian matrix A and B,
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 , (4.2)

B =
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=




0 0 1
−uv v u

gh− v2 0 2v


 . (4.3)

Unfortunately, this condition is not sufficient for nonlinear partial differential equations.
To demonstrate stability and consistency, we have to use numerical results computed on a
refined grid. We linearly interpolate the solution on the finest grid and compare it with the
remaining solutions (see Tables 4.1 - 4.4).

5. Numerical results. This section contains results for the shallow water equation with
the flat bottom. Results are represented by graphs displaying depth of water h at each point
of the space domain (see Figures 5.1 - 5.3). The initial condition for the depth of water
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Mesh L∞(0, T ;L2) L∞(0, T ;L∞)
h error of u error of u
0.0800000 0.0154219 0.0149480
0.0400000 0.0078344 0.0071600
0.0200000 0.0036292 0.0033470
0.0100000 0.0015629 0.0016555
0.0050000 0.0005506 0.0006410

TABLE 4.1
Table of convergence errors for the MacCormack scheme.

Mesh EOC u EOC u
h L2 L∞
0.0800000 0.0000000 0.0000000
0.0400000 0.9584786 1.2418251
0.0200000 1.3806293 1.0897255
0.0100000 0.9930047 1.1842024
0.0050000 1.0094179 1.2039963

TABLE 4.2
Table of EOC coefficients for the MacCormack scheme.

Mesh L∞(0, T ;L2) L∞(0, T ;L∞)
h error of u error of u
0.0800000 0.0154219 0.0149480
0.0400000 0.0078344 0.0071600
0.0200000 0.0036292 0.0033470
0.0100000 0.0015629 0.0016555
0.0050000 0.0005506 0.0006410

TABLE 4.3
Table of convergence errors for the composite scheme.

Mesh EOC u EOC u
h L2 L∞
0.0800000 0.0000000 0.0000000
0.0400000 0.9770784 1.0619210
0.0200000 1.1101687 1.0970910
0.0100000 1.2154725 1.0156016
0.0050000 1.5051878 1.3688708

TABLE 4.4
Table of EOC coefficients for the composite scheme.

h is presented in figures at time t = 0. The initial velocities u,v were set to zero. The
solution was computed at the time interval [0, 0.14] using the space domain [−2, 2]× [−2, 2].
We use transmissive and reflective boundary conditions at points Ub on the boundary. The
transmissive boundary condition are defined as Ub = [h, uh, vh]T and the reflective ones are
defined as Ub = [h, 0, 0]T , where h, u, v are values at the inner neighbour of each boundary
point.
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FIG. 5.1. Shallow water, transmissive boundary condition.
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FIG. 5.2. Shallow water, transmissive boundary condition.



32 S. Brand

Shallow water, t=0.0

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

Shallow water, t=0.02

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

Shallow water, t=0.04

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

Shallow water, t=0.06

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

Shallow water, t=0.08

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

Shallow water, t=0.10

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

Shallow water, t=0.12

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

Shallow water, t=0.14

0.8

0.6

0.4
2

1
0

-1
-2210-1-2

FIG. 5.3. Shallow water, reflective boundary condition.
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FIG. 6.1. Used splitting of the space domain.

6. Parallelization of numerical algorithms. The main purpose of our work was to
compare the efficiency of parallel algorithms for numerical solution of the shallow water
equation on systems with shared memory. Parallel computation is based on concepts for
data exchange, shared and distributed memory. Shared memory means that all data are saved
in the memory that can be accessed by all CPUs. This concept is used by OpenMP API
(see [2]). Distributed memory means that in a multiprocessor system each processor has
its own memory and after the processing of required computation tasks the data have to be
reassembled. This concept is used by Message Passing Interface (MPI) (see [1]) and is applied
similarly to [8].

All the presented numerical schemes are explicit. This enables to split the space domain
into p parts and solve each part on one processing unit. The OpenMP shares the memory,
therefore, after computing values at time n, all CPUs start computing the n + 1 time level.
However, with distributed memory systems, it is necessary to send values from the boundary
of each part to all neighbors after completing every time step computation.

The domain splitting is illustrated in Figure 6.1, where the square represents the border
of the space domain and dash lines represent borders of parts used for the computation on
each processing unit. It can be seen that each middle part has only two neighbors. This
simplifies communication needs for parallel computation. One can admit that this splitting is
not minimizing the number of data sent. For example, if we use the domain splitting with the
square parts, then we will need to send only two thirds of the data needed for this case. But
this splitting is independent of the number of processing units, which allow us to measure the
efficiency with the same program on any number of processors.

7. Results of the efficiency measurement. The efficiency measurement was performed
for the shallow water equation (2.4) on the following parallel systems. The first three com-
puters are shared memory parallel systems and the last two computers are distributed parallel
systems.

• Hewlett Packard C8000, 4xCPU HP PA-RISC - 1GHz, 12GB RAM
• SGI ALTIX 3700, 24xCPU Intel Itanium II - 1,3 GHz, 64GB RAM
• Linux PC, 2xCPU Intel Pentium II - 700 MHz, 1GB RAM
• Linux grid, 8xCPU Intel Pentium 4 - 2.4 GHz, 512MB RAM
• Linux grid, 12xCPU Intel Pentium 4 - 2.4 GHz, 512MB RAM

The results of efficiency measurement are presented in Tables 7.1 and 7.1. The tables
have the following structure. The first column contains the grid dimension. The second
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column contains the time of sequence program in seconds, this means the time of the compu-
tation made by only one processing unit. The remaining columns contain the time of parallel
program and the efficiency of this program in the brackets. In the header of these columns
there is specified how many MPI and OpenMP processes were used in the computation. The
time duration of each computation was measured by the C gettimeofday() function as a
difference between the start and the end time. The times listed in here are the times needed
for the computation only. This means the times needed for the value initialization and result
saving is excluded. The efficiency is calculated from the following formula:

efficiency =
sequence time

parallel time× number of processors
(7.1)

grid OMP=4,MPI=1 OMP=2,MPI=2 OMP=1,MPI=4
100×100 0.660 0.661(0.250) 0.249(0.664) 0.262(0.631)
200×200 5.705 1.704(0.837) 1.833(0.778) 1.540(0.926)
300×300 19.436 5.445(0.892) 5.525(0.879) 5.283(0.920)
400×400 46.568 12.432(0.936) 12.564(0.927) 12.411(0.938)
500×500 89.915 25.429(0.884) 24.972(0.900) 23.695(0.949)
600×600 154.264 43.074(0.895) 42.324(0.911) 40.290(0.957)
700×700 248.072 66.403(0.934) 66.086(0.938) 63.709(0.973)
800×800 369.939 97.479(0.949) 95.952(0.964) 94.033(0.984)
900×900 533.809 138.156(0.966) 139.469(0.957) 134.933(0.989)

1000×1000 726.617 194.368(0.935) 190.263(0.955) 183.260(0.991)
1100×1100 960.135 252.363(0.951) 248.010(0.968) 244.049(0.984)
1200×1200 1250.901 327.944(0.954) 322.275(0.970) 319.292(0.979)
1300×1300 1600.657 432.835(0.925) 429.117(0.933) 408.119(0.981)
1400×1400 1975.505 530.362(0.931) 523.026(0.944) 506.207(0.976)
1500×1500 2432.951 639.059(0.952) 635.187(0.958) 626.386(0.971)
1600×1600 2918.703 762.497(0.957) 754.847(0.967) 753.314(0.969)
1700×1700 3562.641 943.562(0.944) 931.938(0.956) 914.391(0.974)
1800×1800 4169.705 1142.250(0.913) 1139.587(0.915) 1078.108(0.967)
1900×1900 4900.167 1289.412(0.950) 1278.466(0.958) 1269.950(0.965)
2000×2000 5668.034 1513.491(0.936) 1495.630(0.947) 1462.494(0.969)

TABLE 7.1
Time and efficiency of parallel program using composite scheme computed on sugar.fjfi.cvut.cz.

OMP=1,MPI=4
OMP=2,MPI=2
OMP=4,MPI=1
OMP=1,MPI=1
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grid OMP=2,MPI=1 OMP=1,MPI=2
100×100 0.660 0.407(0.812) 0.350(0.943)
200×200 5.705 2.979(0.957) 3.018(0.945)
300×300 19.436 10.542(0.922) 10.168(0.956)
400×400 46.568 23.888(0.975) 24.081(0.967)
500×500 89.915 47.564(0.945) 46.331(0.970)
600×600 154.264 78.828(0.978) 78.992(0.976)
700×700 248.072 128.731(0.964) 125.554(0.988)
800×800 369.939 185.831(0.995) 187.054(0.989)
900×900 533.809 274.079(0.974) 267.076(0.999)

1000×1000 726.617 364.812(0.996) 365.749(0.993)
1100×1100 960.135 490.989(0.978) 484.739(0.990)
1200×1200 1250.901 629.919(0.993) 632.366(0.989)
1300×1300 1600.657 815.476(0.981) 809.857(0.988)
1400×1400 1975.505 994.999(0.993) 1002.577(0.985)
1500×1500 2432.951 1240.065(0.981) 1238.091(0.983)
1600×1600 2918.703 1470.887(0.992) 1484.173(0.983)
1700×1700 3562.641 1809.891(0.984) 1799.128(0.990)
1800×1800 4169.705 2101.875(0.992) 2113.957(0.986)
1900×1900 4900.167 2491.581(0.983) 2485.624(0.986)
2000×2000 5668.034 2858.638(0.991) 2891.638(0.980)

TABLE 7.2
Time and efficiency of parallel program using composite scheme computed on sugar.fjfi.cvut.cz.

OMP=1,MPI=2
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OMP=1,MPI=1
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8. Conclusion. The efficiency results show that both OpenMP and MPI are suitable for
paralleling programs computing numerical solution of the shallow water equation because its
values for the grid that was large enough were never less than 85% during the testing. For a
small grid there the communication time is higher than the processing time and therefore the
efficiency is too small. One important result is that efficiency of the program using MPI was
higher than efficiency of the program using OpenMP. This is due to the ideal conditions over
the measuring. Any load of one processing unit will enlarge the computational time of the
program using MPI while the program using OpenMP will be minimally affected. OpenMP
contains built-in tools for load balancing that can be easily used even if the programmer did
not originally intend to use it. The MPI programmer has to write his own load balancing
which will enlarge the programming time.
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Knobloch, K. Najzar, ISBN 3-540-21460-7.


