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CARDIAC MRI DATA SEGMENTATION USING THE PARTIAL
DIFFERENTIAL EQUATION OF ALLEN–CAHN TYPE

RADOMÍR CHABINIOK1,2, JAROSLAV TINTĚRA2

Abstract. The work deals with the segmentation of the image data using the algorithm based
on the numerical solution of the geometrical evolution partial differential equation of the Allen-Cahn
type. This equation has origin in the description of motion by mean curvature and has diffusive
character. The diffusion process can be controlled by the input intensity signal, so that edges of the
objects or areas can be found. The method is applied to the problem of automated segmentation
of the left heart ventricle from the images obtained by magnetic resonance (cardiac MRI). The
segmentation is a necessary step for estimation of significant indicators of the myocardial function
from dynamic MR images such as the ejection fraction or the kinetic parameters of the wall thickening
during the cardiac cycle. These parameters describe clinical situation of the myocardium.
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1. Introduction. Magnetic resonance imaging (MRI) is a modern non-invasive
imaging technique used in medicine to produce high quality images of the inside of
the human body (see [9]). Development of fast imaging MR sequences allowed the
examination of unsteady tissues such as the beating heart (cardiac MRI, see [8]).

Dynamical examination of the heart kinetics stands for a valuable examination
of the myocardium. During this examination several hundreds of MR images are
measured covering the entire left ventricle volume and recording complete cardiac
cycle interval with the temporal resolution of about 40 ms (see Fig. 1.1). Segmentation
of the heart ventricle volume and of the wall of the ventricle is an important part of the
cardiac MRI data postprocessing (see Fig. 1.2). Hemodynamic parameters such as the
ejection fraction, the stroke volume or kinetic parameters of the wall thickening can be
estimated from the segmented images. Compared with echocardiography (an usual
technique for the heart examination based on ultrasound emission and detection),
MRI provides better spatial resolution and allows for quantification of the function
of myocardium in a reproducible way. Since the number of images from a single
cardiac MRI dynamical examination exceeds 100 (number of slices times number of
time frames), automation of the segmentation procedure is necessary. In the presented
work we deal with the automated segmentation of the cardiac MR images.

Since most pathologies of the heart in the adulthood are localized in the left heart
ventricle (for example the myocardial infarction), we deal with the segmentation of
the left heart ventricle with the purpose to interpret its dynamics.

In the following section we give information about the level set formulation of the
motion of curves by mean curvature. Then we describe segmentation model from [3]
based on the phase–field approach to the mean curvature flow which is used for image
segmentation in the presented work. Finally we present results of segmentation of
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(a) Time frame 01 (heart con-
traction)

(b) Time frame 03 (heart con-
traction)

(c) Time frame 05 (heart con-
traction)

(d) Time frame 07 (heart con-
traction)

(e) Time frame 09 (heart con-
traction)

(f) Time frame 11 (heart re-
laxation)

(g) Time frame 13 (heart re-
laxation)

(h) Time frame 15 (heart re-
laxation)

(i) Time frame 17 (heart re-
laxation)

Fig. 1.1. Example of cardiac MR images – dynamic CINE series of the heart in short axes (see
[7], pages 415-418). A slice corresponding to the mid-cavity part of the ventricle during the cardiac
cycle. Time frame 01 corresponds to the end-diastole (maximal ventricle volume), time frame 09
to the end-systole (minimal ventricle volume). Total number of images from single examination
exceeds 100. The segmentation procedure has to be proceeded in all the images. For anatomical
details see [8], pages 61-83.

cardiac MR dynamic CINE images using the model.

2. Segmentation by mean curvature flow. Detection of objects boundaries
in an image, that are given by the magnitude of the spatial gradient is a known ap-
proach to the image segmentation. The level set method is applicable in this problem
(see [2, 12, 13]). A segmentation function u(t, x) evolves from the initial condition
given by u(0, x) = uini(x) under a law described by the equation:

∂u

∂t
= |∇u|∇ ·

(
g(|∇u0|)

∇u

|∇u|

)
,(2.1)
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(a) Segmentation of the left heart ventricle
volume

(b) Segmentation of the wall of the left heart
ventricle

Fig. 1.2. Example of MR images of the heart in short axes. The left ventricle volume and the
wall of the left heart ventricle are marked by white color.

where u0(x) stands for the input image (intensity of MR signal in the input image),
g : R+

0 → R+ is a non-increasing edge detector function (the Perona–Malik function,
see [14]) for which g(0) > 0, g(

√
s) is smooth, g(s) → 0 for s → +∞. The evolution

of level sets of the function u according to equation (2.1) can be used to the detection
of object boundaries.

We can re-write (2.1) into an advection–diffusion form:

∂u

∂t
= g(|∇u0|) |∇u|∇ ·

(
∇u

|∇u|

)
︸ ︷︷ ︸

(A)

+∇g(∇|u0|) · ∇u︸ ︷︷ ︸
(B)

.(2.2)

The vector field −∇g(|∇u0|) in the advective term (B) in equation (2.2) has an impor-
tant geometrical meaning. It points towards regions in the image where the magnitude
of the spatial gradient of the intensity signal u0 is large and makes level sets of the
segmentation function u concentrate in these areas.

To segment such noisy images like cardiac MR images, the advection itself would
not be sufficient. It would lead to detection of spurious edges. The term (A) in
equation (2.2) avoids such a false detection. It describes motion by mean curvature.
It adds a curvature dependence to the level set flow and regularizes the evolution in the
normal direction. Sharp irregularities are smoothed and the curve length in regions
with missing edge information is minimized. The process can be also interpreted as
an intrinsic diffusion of the curves dependent on |∇u0|.

A semi-implicit method of discretization of equation (2.2) using co-volume scheme
is described in [12].

3. Edge Detection using Allen–Cahn Equation. In our work we use the
algorithm based on the phase–field approach to the mean curvature flow (see [3]).
Compared to the segmentation method described in Section 2, we denote the seg-
mentation function by p(t, x). The function p(t, x) evolves according to the modified
Allen–Cahn equation (see [1]):

ξ
∂p

∂t
= ξ∇ · (g (|∇Gσ ∗ P0|)∇p) + g (|∇Gσ ∗ P0|)

(1
ξ
f0(p) + ξF |∇p|

)
,
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in (0, T )× Ω,

p |∂Ω = 0 on (0, T )× ∂Ω,

p|t=0 = pini in Ω,(3.1)

where Ω = (0, L1)× (0, L2) ⊂ R2, L1 > 0, L2 > 0 is a rectangular area that represents
the input image, x = [x1, x2] ∈ Ω is a spatial parameter, t ∈ (0, T ) time, 0 < ξ � 1 is
a constant parameter (connection to level-set segmentation methods for ξ → 0+, see
Section 4).

The function p(t, x) ∈ [0, 1] is related to the characteristic function of the seg-
mented area. The boundary of the segmented area in time t matches with the the
level set {x ∈ Ω : p(t, x) = 1

2}. An initial guess of the segmented area p(0, x) = pini(x)
can be given by:

p(0, x) = pini(x) =
{

1 for x ∈ initial guess of segmented area,
0 for x ∈ elsewhere,

(see Fig. 3.1). The automated choice of pini is discussed in Section 6.
Intensity of the MR signal in the segmented image enters our model by means of

the function P0(x). Values of the input data signal P0 are between 0 and 255 and can
be normalized to the interval [0, 1]. Other terms in equation (3.1) are as follows:

• Gσ is Gauss smoothing kernel, Gσ = 1
(4πσ)e

− |x|2
4σ . The convolution with

the piecewise constant function P0 (input digital image) converts P0 to an
infinitely smooth function and also removes some spurious structures (the
increase of the signal-to-noise ratio). The convolution is proceeded before the
numerical solution of equation (3.1), the convolved input signal is denoted
again by P0.

• g : R+
0 → R+ is a non-increasing Perona–Malik function (see Section 2).

The feature g (|∇P0|) → 0 for |∇P0| → +∞ makes the diffusion process
to stop near edges in the image. Our choice of the Perona–Malik function:
g(s) = 1

1+λs2 , parameter λ > 0.
• F has meaning of an external force that influences motion of the curves. The

sign of F causes either expanding of the segmented area (for F > 0) or its
shrinking (for F < 0).

• f0 is a polynomial, our choice f0(p) = p(1−p)(p− 1
2 ) is related to the motion

of phase–fields by mean curvature (see [6]).
The segmentation function p(t, x) evolves under a diffusion process described by

equation (3.1). The diffusion process stops on edges of the objects in the image.
Finally after a convenient time T the segmented area p covers the area of our interest
(see Fig. 3.2).

The initial–boundary–value problem (3.1) is investigated by means of weak for-
mulation. As usual, we use the notation: (u, v) =

∫
Ω

u(x)v(x)dx, D(Ω) is a space
of infinitively smooth functions with compact support in Ω. In [5], the following
statement is proved:

Theorem 3.1. Let pini ∈ H1
0 (Ω), then there exists a unique solution of the weak

formulation of the initial–boundary–value problem (3.1):

ξ
d
dt

(p, q) + ξ
(
g(|∇P0|)∇p,∇q

)
=

1
ξ

(
g(|∇P0|)f0(p), q

)
+ ξ

(
g(|∇P0|)F |∇p|, q

)
,

p(0, x) = pini(x),(3.2)
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(a) Left heart ventricle volume (b) Left heart ventricle wall

Fig. 3.1. Examples of the initial guess pini for the segmentation of the left heart ventricle
volume and for the ventricle wall segmentation.

a.e. t ∈ (0, T ), ∀x ∈ Ω,∀q ∈ D(Ω), which satisfies:

p ∈ L2
(
0, T ;H2 (Ω) ∩H1

0 (Ω)
)
,

∂p

∂t
∈ L2

(
0, T ;L2 (Ω)

)
.

4. Relationship to level-set methods. In this section we briefly describe
connection of the equation (3.1) to level–set methods. More detailed description is in
[4]. The mean–curvature flow can be expressed by a law from differential geometry

vΓ = −κΓ + F,(4.1)

where vΓ stands for a velocity of a motion of a closed curve Γ in R2, κΓ is a curvature
of Γ and F has meaning of an external force that influences the motion. This is a
central law for reasoning the segmenting models from Sections 2 and 3.

Describing the motion of the level set Γ(t) = {x ∈ Ω : p(t, x) = 0} under the law
given by the equation (4.1), using the notation:

A normal to the level set Γ . . . ~nΓ = − ∇p
|∇p| ,

a normal velocity to the level set Γ . . . vΓ = 1
|∇p| ·

∂p
∂t ,

the mean curvature of Γ . . . κΓ = ∇ · ( ~nΓ) = −∇ · ∇p
|∇p| .

We obtain a level set equation:

∂p

∂t
= |∇p|∇ · ∇p

|∇p|
+ F,(4.2)

which describes mean curvature flow of level sets. The segmenting model (2.1) from
Section 2 is based on the equation (4.2).

Now, the Allen–Cahn equation (3.1) in a context of the law described by (4.2):
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(a) Initial image (b) 300 time iterations

(c) 600 time iterations (d) 900 time iterations

Fig. 3.2. Evolution of the initial area pini according to equation (3.1). Parameters of equation
(3.1): ξ = 0.09, λ = 0.0005 (λnorm = 30 for P0 normalized to the interval [0, 1]), F = 2, time step
τ = 0.005. The process can be viewed as a nonlinear diffusion dependent on a magnitude of the
spatial gradient of the input image (|∇P0|).

For ξ → 0+ the level set Γ(t) = {x ∈ Ω : p(t, x) = 1
2} is evolving under a law of

the mean–curvature flow. Connection of the problem (3.1) to the law described by
the equation (4.1) for ξ → 0+ can be expressed by the scheme:

ξ
∂p

∂t︸︷︷︸y
= ξ∇ · (∇p) +

1
ξ
f0(p)︸ ︷︷ ︸y

+ ξF |∇p|.︸ ︷︷ ︸y
vΓ = −κΓ + F

5. Numerical scheme. The discretization is designed according to [3]. We
approximate the initial–boundary–value problem (3.1) on a rectangular grid that cor-
responds with the initial image (MR image of size 512 x 512 pixels). Each picture
element has a corresponding node in this grid. For the refinement of the grid we use
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bilinear interpolation of the initial picture data. Next, we describe a semi-implicit1

numerical scheme in a finite difference formulation2.
We discretize problem (3.1) in space and time on a regular rectangular grid:

ωn = {[ih1, jh2] : i = 0, . . . , N1; j = 0, . . . , N2} ,
ωn = {[ih1, jh2] : i = 0, . . . , N1 − 1; j = 0, . . . , N2 − 1} .

Notation:

τ . . . the time step,
h1, h2 . . . mesh sizes,
N1, N2 . . . number of grids in respective directions,
pk

i,j . . . value of p(x, t) in the node x = [ih1, jh2], in time t = kτ.

Discretization of the variables:

∂p
∂t |t=kτ → pk−pk−1

τ ,

∇p|ki,j →
(

pk
i+1,j−pk

i,j

h1
,

pk
i,j+1−pk

i,j

h2

)
,

∇̄p|ki,j →
(

pk
i,j−pk

i−1,j

h1
,

pk
i,j−pk

i,j−1
h2

)
,(

∇ · q
)
|i,j →

(
q1

i+1,j−q1
i,j

h1
+ q2

i,j+1−q2
i,j

h2

)
, where q = (q1, q2).

After the discretization we get a system of nonlinear algebraic equation, that can be
written in the form:

ξAp− τ

ξ
f(p) = ξF,(5.1)

where

p =
(
pk

i,j

)N1−1,N2−1

i=1,j=1
,

Ap =
(
pk

i,j − τ∇ ·
(
g∇̄pk

)
i,j

)N1−1,N2−1

i=1,j=1
,

f(p) =
(
gi,jf0

(
pk

i,j

))N1−1,N2−1

i=1,j=1
,

F =
(
pk−1

i,j + τgi,jFi,j

∣∣∣(∇̄pk−1
)
i,j

∣∣∣)N1−1,N2−1

i=1,j=1
.

We decompose a linear operator A into diagonal operator, lower and upper triangular
operators, so that A = D + L + U.

Dp =
(

pk
i,j + τ

(
gi+1,j + gi,j

h2
1

+
gi,j+1 + gi,j

h2
2

)
pk

i,j

)N1−1,N2−1

i=1,j=1

,

Lp =
(
−τ

gi,j

h2
1

pk
i−1,j − τ

gi,j

h2
2

pk
i,j−1

)N1−1,N2−1

i=1,j=1

,

Up =
(
−τ

gi+1,j

h2
1

pk
i+1,j − τ

gi,j+1

h2
2

pk
i,j+1

)N1−1,N2−1

i=1,j=1

.

1Semi-implicitness in sense that nonlinear terms of the equation are treated from the previous
time step, the linear terms are considered on the current time level.

2Finite elements scheme is practically identical, for easy implementation we are describing the
scheme based on finite differences.
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We solve (5.1) using Gauss-Seidel nonlinear iterative method in the form:

ξ(D + L)pl+1 = ξF−
(

ξUpl − τ

ξ
f(pl)

)
,(5.2)

where the index l denotes number of the Gauss-Seidel iteration. For the initial guess
we choose the previous time level:

p0 =
(
pk−1

i,j

)N1−1,N2−1

i=1,j=1
.

The size of the mesh either exactly corresponds with the size of the input MR image
or we use bilinear interpolation for the mesh refinement.

6. Results. We implemented segmentation algorithm from Section 5 in the C
language. The user interface is written in MATLAB. Presenting results were obtained
using cardiac MR images of volunteers and patients from MR departments of hospitals
IKEM3 Prague, Na Homolce4 Prague and Hradec Králové5.

6.1. Segmentation of the left heart ventricle volume. We segment the
volume of the ventricle throughout the systolic and diastolic phase6 of the cardiac
cycle in an automated way.

For every image (slices and time frames) we use initial segmented area pini that
covers the whole ventricle volume (see Figs. 3.1(a) and 6.1(a)). The cross-section of
the heart ventricle is decreasing from the heart base to its apex and it is decreasing
also during the systolic phase of the cardiac cycle. Using these facts we derive pini

for the actual image automatically from the segmented neighbouring image (either in
time or spatial domain), so that pini covers the whole heart volume.

For the parameter F < 0 the automatically given area pini shrinks. Its movement
stops on the edge representing the inner contour of the ventricle, so that the left heart
ventricle volume in one image is segmented.

After the volume segmentation we can describe the dynamics of the ventricle
volume by summing the segmented areas all over the left heart ventricle (see Figs.
6.2 and 6.3). From these values for example a global parameter of heart contractility
– ejection fraction of the ventricle (EF) – can be estimated. Definition of the ejection
fraction of the heart is: EF = (EDV − ESV)/EDV, where EDV means end-diastolic
volume of the ventricle, ESV means end-systolic volume of the ventricle (see [11]).

Normal EF is between 55% and 80%. Pathologically lower value may be a sign
of cardiac insufficiency. It comes along with ischemic heart disease (IHD) and its
complications, heart inflammation, dilated cardiomyopathy, etc. Cardiac MRI is used
as a reference method for estimation of EF.

6.2. Segmentation of the wall of the left heart ventricle. The initial seg-
mented area pini for the segmentation of the ventricle wall is derived automatically
from the segmented ventricle volume (see Fig. 3.1(b) – by a small expansion of the
segmented volume area). Then the area pini is evolving under the equation (3.1) with
the parameter F > 0 that causes expansion of the area. We fix p(t, x) = 0 inside the
ventricle volume.

3http://www.ikem.cz/
4http://www.homolka.cz/en/
5http://www.fnhk.cz/
6Systole – period of the myocardial contraction, diastole – period of ventricle filling.
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(a) Initial image (b) Segmented volume of the left ventricle

Fig. 6.1. Example of the left heart ventricle segmentation. A slice corresponding to the basal
part of the ventricle. Time frame 07 (corresponding to the end-systole). On the left pini automati-
cally derived from the previous time image, on the right result of the segmentation. Parameters of
equation (3.1): ξ = 0.09, λ = 0.0005 (λnorm = 30), F = −1, time step τ = 0.005. Number of time
iterations: 200.

Our algorithm is less successful compare to the ventricle volume segmentation.
Although more manual corrections have to be performed, Figs. 6.4 and 6.5 show
promising results of the application of the model to the wall segmentation7.

From the segmented ventricle wall, local parameters of the wall thickening in ra-
dial direction during the cardiac cycle can be estimated. These are local parameters of
the myocardial kinetics. For the proper interpretation, the left ventricle is divided into
17 segments according to the convention of the American Heart Association Writing
Group on Myocardial Segmentation and Registration for Cardiac Imaging (see [10]).
The thickening of the normokinetic myocardium during the cardiac cycle is greater
than 30% (see Figs. 6.6 and 6.7).

7. Discussion. Cardiac MRI data segmentation is an important part of the
MR data post-processing. In our case the number of acquired images from single
examination is about 200. This number is too high to segment images manually.
However, the data character of cardiac MR images (such as limited signal-to-noise
and contrast-to-noise ratio, motion and pulsation artifacts) makes the automated
segmentation to be a rather difficult task.

An algorithm for medical data segmentation has to be successful in detection of
objects in the image and also it has to be fast enough, so that clinical physicians
would benefit from its usage. Currently on a 2GHz PC, our algorithm segments the
ventricle volume in one image in about 20 seconds (using the numerical grid with
300 × 300 degrees of freedom, time step τ = 0.01, 300 time iterations).

In the presented work we also dealt with non-constant choice of parameters λ and
F in the equation (3.1). We tried to choose these parameters with respect to the non-
constant signal-to-noise ratio in the images8. Although we prefer data acquisition with

7These results were obtained using images acquired by so called ’trueFISP’ MR sequence (denoted
also as ’balanced SSFP’, see [7], pages 579-606) that provides good signal-to-noise ratio. Unfortu-
nately, for the MR sequence ’FLASH’ (see [7], pages 415-418) the results are not so good.

8It is caused e.g. by signal inhomogeneities resulting from different level of signal detection by
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(a) Time frame 01 (b) Time frame 03 (c) Time frame 05

(d) Time frame 07 (e) Time frame 09 (f) Time frame 11

Fig. 6.2. Example of the left heart ventricle segmentation. A slice corresponding to the basal
part of the ventricle. Time frames 01 – 10 correspond to the period of contraction of the ventricles
(systole), time frames 11 – 15 to the period of the filling of the ventricles (diastole). Parameters of
equation (3.1): ξ = 0.09, λ = 0.0005 (λnorm = 30), F = −1, time step τ = 0.005. Number of time
iterations: 200.

Fig. 6.3. Graph of relative volume of the left ventricle versus time during the cardiac cycle.
The ejection fraction (EF) is about 60%, that is a normal value.

the quality as high as possible, the modification e.g. with external force F dependent
on an input signal P0 is promising.

Choice of the stopping time of the evolution depends on other parameters of
equation (3.1) (namely λ, F, ξ, h, τ). Usual approach is to terminate the evolution
when the change of the segmentation function p is below a specified threshold. Due to

acquisition coils of the MR system in different spatial localization.
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(a) Initial image (b) Segmented wall of the left ventricle

Fig. 6.4. Example of the left heart ventricle wall segmentation. Time frame 01 (corresponding
to the end-diastole). On the left pini, on the right result of the segmentation. Parameters of equation
(3.1): ξ = 0.09, λ = 0.0005 (λnorm = 30), F = 2, time step τ = 0.005. Number of time iterations:
400.

many irregularities in our images we choose a fixed number of iteration. We estimate
this number in the first segmented image and then use this value for the segmentation
of all other images in this examination.

In future new techniques in MRI will certainly make possible to get cardiac MR
dynamic images with better spatial and temporal resolution. Number of commonly
acquired images from a single examination may rise to thousands. Then an automa-
tion of the procedure of the heart segmentation will be a fundamental part of data
acquisition.

Images with better spatial and temporal resolution might even improve the di-
agnostic possibilities. For example cardiac pathologies could be better localized,
the heart function could be better described using e.g. cardiac stress–strain model,
fluid–structure interaction, etc. The description as exact as possible is important for
the indication of proper treatment modalities.

8. Conclusion. In our work we successfully adapted the segmentation model
described in [3] to the problem of cardiac MRI data segmentation. Our algorithm is
successful in automated segmentation of the heart ventricle volumes and wall of the
left heart ventricle (with eventual minor manual correction). The goal of our work is
an automated algorithm for image processing helpful in clinical examinations.
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(Nečas Center for Mathematical Modeling) and by grants MSMT 1M6798582302,
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