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A CONVENIENT WORKING ASSUMPTION FOR THE
DEVELOPMENT OF NUMERICAL MODELS OF HIGH-PRESSURE

INDUCTIVELY COUPLED PLASMA FLOWS
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Abstract.

We present preliminary numerical simulations of inductively coupled plasma flows in an existing
plasma tunnel of the von Karman Institute. Emphasis is put on the numerical techniques used
to create the model. As a useful working assumption, we propose to neglect the plasma-induced
electro-magnetic field in a first implementation. While this approximation is shown to be inaccurate,
it is nevertheless very useful since it allows to obtain physically consistent preliminary results with
a minimal effort.
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1. Introduction. The high-pressure Inductively Coupled Plasma (ICP) torch is
a plasma source which allows to generate thermal plasmas with peak temperatures
∼ 10 000 K in a clean, electrodeless manner. A gas is injected in a swirling, annular
way into a heat-resistant quartz tube, surrounded by an inductor (see Figure 1.1). A
radio-frequency electric current runs through the inductor and induces a secondary
current through the gas inside the tube, which heats up by means of Ohmic dissipa-
tion. The swirling injection of gas close to the quartz wall stabilizes the plasma by
promoting flow recirculation [7]. Because of their chemical purity and good stability,
high-pressure ICPs are well-suited for a variety of industrial and scientific applica-
tions [3]. Note that the ICPs studied here operate at pressures greater than 1000 Pa
and are not to be confused with the inductive discharges at very low pressures used,
e.g., for the processing of semi-conductors.

Over the past three decades, considerable efforts have been invested in the devel-
opment of reliable numerical simulations of high-pressure ICPs; the pioneering work
in the field is due to Boulos ([2], 1976). In the authors’ option, the most challenging
part in the development of numerical models of ICPs is that both a flow and elec-
tromagnetic field solver must be run in a coupled manner. In this contribution, we
investigated the usefulness of a pragmatic working assumption, in which the electro-
magnetic field induced by an ICP is completely neglected in the preliminary model
development. Under this simplifying assumption, preliminary ICP results may be
obtained by merely including two source terms into an existing low-Mach number
Navier-Stokes solver. These source terms represent the action of the external electro-
magnetic field, induced by the coil surrounding the ICP torch. We will assess the
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Fig. 1.1. Thermal argon plasma inside an ICP torch.

validity of this approximation and verify whether the obtained preliminary results
make sense from both a qualitative and quantitative point of view.

2. Mathematical Model. The mathematical model is given by a simplified
form of the equations of magneto-hydrodynamics [11, 10]. To a good approximation,
the flow may be assumed to be under Local Thermodynamic Equilibrium (LTE) [10]
and moreover mass fractions of elements can be fixed throughout the flow field in
many situations [8]. We neglect buoyancy effects and time-average the equations over
a period of the radio-frequency inductor current.

The governing equations then assume the following form [11]:

∇ · (ρu) = 0,(2.1)
∇ · (ρu⊗ u) +∇p = ∇ · τ + 〈FL〉,(2.2)

∇ · (ρuH) = ∇ · [(λtot + λreact)∇T ] + 〈PJ 〉.(2.3)

The flow is axisymmetric with swirl velocity component. For this reason, the equations
have been implemented in cylindrical coordinates (z, r). For a detailed description,
the reader is referred to [10]. We have introduced the following thermodynamic and
transport properties: density ρ = ρ(p, T ), total enthalpy per unit mass H = h+‖u‖2/2
including internal enthalpy per unit mass h = h(p, T ), the total thermal conductivity
coefficient λtot = λtot(p, T ), the reactive thermal conductivity coefficient λreact =
λreact(p, T ) (see Ref. [8]) and the dynamic viscosity coefficient µ = µ(p, T ) appearing
in the tensor of viscous stresses τ . Under LTE and for a given elemental composition,
these quantities depend only on the pressure p and the temperature T . Further,
u = (u, v) designates a mass-averaged flow velocity vector.

FL represents the Lorentz force acting on the plasma and PJ stands for the Joule
heating source term; the notation 〈·〉 serves to indicate that the RMS average value is
to be used for the latter two quantities. They have the following detailed expressions:

〈PJ〉 =
σ

(
E2

R + E2
I

)

2
,(2.4)

where ER and EI are real and imaginary part of an electric field, respectively and σ
represents the electrical conductivity of the plasma. The time-averaged Lorentz force
〈FL〉 in cylindrical coordinates takes the form
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Fig. 3.1. Schematic representation of the inductor coil surrounding a plasma torch. The current
is assumed to flow at the innermost position of the inductor rings (infinitely thin current loops).

where f is the operating frequency of the torch.

3. Electromagnetic Field. As a working assumption, we consider only the
‘vacuum’ electro-magnetic field EV induced by the outer inductor in this preliminary
study and disregard the contribution EP induced by the plasma itself:

E = EV + EP → E = EV .(3.1)

The coil surrounding the ICP torch (see Figure 1.1) is substituted by a series of
(infinitely thin) current loops of radius Rc, carrying a current I (see Figure 3.1). The
real and imaginary components of the ‘vacuum’ electric field intensity are as follows:

ER = 0 ,(3.2)
EI = −2πfAR .(3.3)

Only the azimuthal component of the vector potential is nonzero in our axisymmetric
configuration (see, e. g., [4], [6]). It can be computed via the Biot-Savart law:

Aθ(r, z) = AR + jAI =
µ0I

2π

√
Rc

r

#coils∑

i=1

G(ki) ,(3.4)

where j =
√−1. Hence,

AR =
µ0I

2π

√
Rc

r

#coils∑

i=1

G(ki) ,(3.5)

AI = 0.(3.6)

Here, #coils denotes number of cylindrical loops representing the inductor coil, µ0 is
the magnetic permeability of free space and

G(ki) =
(2− k2

i )K1(ki)− 2K2(ki)
ki

,(3.7)

ki =

√
4Rcr

(Rc + r)2 + (z − Zi
c)2

,(3.8)

where K1 and K2 are the complete elliptic integrals of the first and second kinds,
respectively. For a numerical approximation of these integrals see, e. g., [9]. An
illustration of magnetic field lines thus computed is shown in Figure 3.2.
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Fig. 3.2. Illustration of ‘vacuum’ magnetic field lines for a six-turn coil around an ICP torch.

4. Numerical Solution.

4.1. Pressure-Stabilized Flow Field Solver. Two variable sets are involved
in the numerical solution of the equations (2.1) - (2.3). First, the solution is updated
in primitive variables P = (dp, u, v, T )T, whereas the system (2.1) - (2.3) is expressed
in conservative variables U = (ρ, ρu, ρv, ρE)T:

U
(
Pn+1

)− U (Pn)
∆t

+∇ · F (
U

(
Pn+1

))
= 0 ,(4.1)

where F =
(
FC − FV , GC −GV

)
. Here, the superscript C denotes convective fluxes

and V viscous fluxes. Symbol dp represents pressure variations. Relations for density
ρ, total energy per unit mass E and total enthalpy per unit mass H come from
statistical mechanics [10]. Eqs (4.1) are solved implicitly using a damped Newton
method.

We use a pressure-stabilized finite-volume low-Mach number solver, such that the
Jacobian of (4.1) is a regular matrix. The pressure-stabilized mass flux f̃ed

M normal to
an edge ed (see Figure 4.1) is given by

f̃ed
M = (ρun)ed − Λ

β

(
dpr

ed − dpl
ed

)
,(4.2)

where un = u · ned, ned =
(
ned

1 , ned
2

)
is the normal vector to the edge ed and

Λ =
1

1 + Re−1
|ed|

(4.3)

is a factor scaling the pressure dissipation with the local cell Reynolds number

Re−1
|ed| =

µ

ρβ|ed| .(4.4)

Here, β stands for an estimated global flow speed. Then, the stabilized convective
flux vector F̃ c

ed on the edge ed including upwind stabilization reads
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If symbol var represents an arbitrary variable, then vared =
(
varr

ed + varl
ed

)
/2 and

varr
ed, resp. varl

ed is a value of the variable var considered at the edge ed and coming
from the finite volume cell Ωr, resp. Ωl. All simulations presented herein were run
using a first-order upwind method as a first approach. Viscous fluxes were discretized
in the standard finite-volume manner, using dual cells to evaluate derivatives on cell
edges [10].
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Fig. 4.1. Computational stencil used to evaluate convective fluxes.

4.2. Joule Heating Source Term. The power Pt dissipated into the plasma
is given by the formula

Pt =
∫

VT

σ
(
E2

R + E2
I

)

2
dV ,(4.6)

where ER and EI are given by (3.2) and (3.3), respectively. The symbol VT denotes
the volume of the torch. This power is proportional to the square of the electric
current running in the induction coils (see Eq. 3.4): Pt ∝ I2. The desired operating
power P0 can be expressed as

P0 =
∫

VT

σ
(
(γcER)2 + (γcEI)2

)

2
dV ∝ (γcI)2 ,(4.7)

where γc is a scaling coefficient. It is determined as follows

γ2
c =

P0

Pt
.(4.8)

This coefficient is used for rescaling the electric current I and thereby the electric field
intensity, in order to have the desired power level P0 at any iteration of the Newton
method. Therefore, the Joule heating source term can be expressed as follows:

〈PJ〉 = γ2
c

σ
(
E2

R + E2
I

)

2
.(4.9)

The relation (4.6), discretized in a finite volume manner, can be written in the form

Pt =
#cells∑

i=1

{
σ

(
E2

R + E2
I

)

2

}

i

Vi 2 π ri ,(4.10)

where Vi is the area of the i-th cell and ri denotes the radius of the i-th cell centroid.

5. Numerical Results. We now present preliminary results for ICPs in the von
Karman Institute’s (VKI) ‘plasmatron’ windtunnel [1]. These results were obtained
using an object-oriented CFD platform developed at VKI and extended for ICP fea-
tures [5]. The Lorentz force is known to be negligible at the considered pressure levels
[11] and has therefore not been implemented. Furthermore, as said (Eq. 3.1), the
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Fig. 5.1. Plasmatron torch geometry used for our preliminary simulations.

plasma-induced electric field intensity part EP is set to zero. To assess the relative
importance of the plasma-induced part of the electric field intensity in ICP flows, we
write the induction equation that couples EV and EP in dimensionless form:

1
r̃

∂

∂r̃

(
r̃
∂ẼP

∂r̃

)
− 1

r̃2
ẼP − jN1σ̃

(
ẼP + ẼV

)
= 0 .(5.1)

Here r̃ = r/Rδ, σ̃ = σ/σ1, ẼV = EV /E1, ẼP = EP /E1 and E1 = 2πµ0fI, where Rδ

stands for the skin layer (≈ thermal boundary layer) thickness, I is the amplitude of
the electric current through the inductor rings and σ1 represents an estimate of the
plasma electrical conductivity. One dimensionless number has appeared as a result of
the non-dimensionalization procedure:

N1 = 2πµ0σ1fR2
δ .(5.2)

This number is called ‘induction number’ and it characterizes the electromagnetic
coupling between the coil and plasma. From equation (5.1), it is seen that it should
be of order 1 or greater to achieve good inductive coupling.

Simulations are performed for the geometry (inspired by the VKI ‘plasmatron’
torch) shown on Figure 5.1, with dimensions

R1 = 0.075 m ,
R2 = 0.08 m ,
L = 0.486 m.

The radii Rc and axial positions Zc of the inductor rings are summarized in Table 5.1.
If it is considered that Rδ ≈ R/3 ≈ 0.3 m, then for the used values of f = 0.37 MHz,
µ0 = 4π 10−7 kgm C−2 and σ1 ≈ 3000 S m−1 (for T = 10000 K) the induction number
reaches the value N1 ≈ 21. We must therefore conclude that the electromagnetic
coupling between EV and EP has a non-negligible effect on numerical results and
that our decision to neglect EP can only be a working assumption.

We consider Argon as a working gas (species: Ar, Ar+, e−). The operating
parameters of the torch are: torch operating frequency f = 0.37 MHz, operating
plasmatron torch power P0 = 10 kW, mass flow rate at the inlet of the torch Q = 8
g s−1, temperature imposed on the isothermal wall Tw = 350 K. A quadrilateral
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Coil Rc [m] Zc [m]
1 0.109 0.127
2 0.109 0.177
3 0.109 0.227
4 0.109 0.277
5 0.109 0.327
6 0.109 0.377

Table 5.1
Inductor rings radia and positions.

Symmetry

Subsonic
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Subsonic
inlet

Isothermal wall

Isothermal wall

Fig. 5.2. Boundary conditions of the computational domain (isothermal inlet wall).

structured mesh of 116× 88 = 10208 cells is used. The applied boundary conditions
are given in Figure 5.2. The torch walls are treated as isothermal walls. Symmetry
condition is imposed on the torch axis. Since the flow speed is subsonic, subsonic inlet
and subsonic outlet boundary conditions are used.

Figure 5.3 shows the computed streamline pattern. The well-known clockwise
vortex that stabilizes the plasma flame is correctly obtained. The frontiers of an over-
lapping domain-decompositioning (used for parallel computations on four processors)
are also shown. Figure 5.4 shows computed temperature isolines. In spite of the
drastic approximation made, quantatively correct peak temperatures ≈ 10 000 K are
reached in the inductor zone. A detailed comparison of presented numerical results
with results considering both the Lorentz force and coupling of EV with EP is made
in [5]. Finally, the good convergence achieved is evidence of the robustness of the
proposed numerical techniques. Figure 5.5 presents the decadic logarithm of the L2

norm of the temperature equation steady reziduum, which serves as the simulation
stopping criteria, with respect to iterations of the Newton method.

6. Conclusions. The presented results show that, as a useful working assump-
tion for developing numerical models of ICP flows, the plasma-induced electro-magnetic
field may be neglected. Although our analysis showed that this approximation is not
valid for most ICP torches, the obtained results nevertheless show correct physical
trends and orders of magnitude. From a purely numerical point of view, the suggested
numerical techniques have also been shown to yield a robust solution algorithm.

The logical next step in this research will be to include the plasma-induced electric
field into the simulations.
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Fig. 5.3. Streamline patterns.
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Fig. 5.4. Temperature isolines.
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Fig. 5.5. Convergence history demonstrating the robustness of the code.
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