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QUANTITATIVE STUDY OF ADAPTIVE MESH FEM WITH
LOCALIZATION INDEX OF PATTERNS

MASATO KIMURA1, HIDEKI KOMURA2, MASAYASU MIMURA3,

HIDENORI MIYOSHI2, TAKESHI TAKAISHI4, AND DAISHIN UEYAMA3

Abstract. We study the effectivity of an adaptive mesh algorithm with triangular finite elements
for two or three dimensional pattern dynamics appearing in several reaction-diffusion systems. The
aim of this paper is to investigate a relation between the effectivity of the adaptive mesh and the
pattern profile through several numerical experiments. Based on the result of our previous paper [6],
the effectivity of the adaptive mesh is estimated in terms of the compression rate of the adapted mesh.
We introduce a quantity called localization index which characterizes pattern profiles of numerical
solutions.
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1. Introduction. The adaptive mesh technique is widely used in finite element
simulations for various problems [1, 2, 3, 4, 11, 17, 19, 20, 27]. In particular, based
on a posteriori error estimates ([25] etc.), adaptive mesh control theory has been well
established for stationary problems. On the other hand, for time evolution problems,
many numerical simulations have been done with dynamic adaptive mesh control
algorithms, but the behavior and efficiency of mesh adaptivity do not seem to have
been enough analyzed.

The adaptive mesh finite element method (FEM) has been developed in recent
years for various kind of time evolution problems. Such adaptive mesh algorithm
makes the finite element mesh adapt to the time dependent profile of a numerical
solution automatically. This is very effective for solutions which exhibits spatiotem-
poral patterns, such as in reaction-diffusion systems. As important mathematical
models of various spatiotemporal patterns in nonlinear nonequilibrium systems, var-
ious reaction-diffusion systems are widely proposed [8, 13, 16, 18, 22, 26]. A great
variety of interesting pattern dynamics such as internal layer motion, traveling front,
pulse and spot, stripe or laminar pattern, labyrinth pattern, spiral pattern, etc., pro-
duced by the reaction-diffusion systems have gained recognition as interesting research
objects through a large number of numerical simulations. Recently, reaction-diffusion
systems such as three dimensional problems, multi-variable systems and problems
very close to singular or critical cases, have been attracting people’s notice.

By the following properties (i) and/or (ii), most of such attractive spatial patterns
and their temporal dynamics are characterized. (i) Spatial localization: Very small
spatial scale structure, such as spatially rapid change of a variable, occurs only in
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a moving small restricted region. (ii) Temporal localization: Some kind of patterns
only appear in specific time regions as oscillatory or transitional phenomena. Another
important example is the pattern formation as a self-organizational process.

In our previous paper [6], we investigated a quantitatively for the effectiveness
of the adaptive mesh FEM for pattern dynamics appearing in the following reaction-
diffusion systems. First one is the following reaction-diffusion system with an activator-
inhibitor type nonlinearity (activator-inhibitor system) [18, 22]:

(AI)





ετ
∂u

∂t
= ε2∆u + u(u− a)(1− u)− v , in Ω× (0, T ),

∂v

∂t
= d∆v + u− λv , in Ω× (0, T ),

(1.1)

where ε, τ, d, λ > 0, 0 < a < 1
2 are constant values .

Another one is the reaction-diffusion system with a resource-consumer type non-
linearity, proposed as a mathematical model of an autocatalytic chemical reaction
(Gray-Scott model) [8, 16].

(GS)





∂u

∂t
= du∆u− uv2 + A(1− u) , in Ω× (0, T ),

∂v

∂t
= dv∆v + uv2 − αv , in Ω× (0, T ),

(1.2)

where du, dv, α > 0, A ≥ 0 are constant values.
In both cases, Neumann boundary condition ∂u

∂ν = ∂v
∂ν = 0 on ∂Ω is supposed,

where Ω is a bounded Lipschitz domain in Rn (n = 2 or 3). The initial condition
is given by u(x, 0) = u0(x), v(x, 0) = v0(x) (x ∈ Ω). They exhibit various kind of
patterns depending on parameters (see section 2 and [6]).

To measure the validity of our algorithm, we introduced a quantity called com-
pression rate of adaptive mesh and we showed that the compression rate gives a good
quantitative index instead of an intuitional judgment of the mesh adaptivity in [6].

This paper is a follow-up of [6]. The organization of this paper is as follows. A brief
introduction of the result concerning the compression rate is given in the next section.
Some typical adaptive mesh FEM simulations for (1.1) and (1.2) are presented. In
section 3, we introduce the localization index and give several examples of typical
functions with pattern. Through some numerical and analytical comparisons between
the compression rate and the localization index in section 4, it is shown that the
compression rate is almost proportional to the localization index. In the last section,
we give a small example of applications of our adaptive mesh finite element method to
pattern dynamics in reaction-diffusion systems. We remark that the contents of this
paper are mainly based on the results in [7, 12]. Our numerical simulations in this
research were computed mainly on a workstation system, COMPAQ AlphaStation
XP1000 (Alpha21264 667MHz, 1GB Memory).

2. Compression rate of adaptive mesh FEM. If we need very accurate
numerical solutions to analyze complicated and critical pattern dynamics, computing
on very fine uniform mesh has limitation in the sense of computational time and
memory size without use of very large computer systems. Adaptive mesh FEM enables
us to use meshes of very fine scale near the spatially localized pattern and coarse
meshes for the region without patterns. As the pattern changes, the adaptive mesh
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can track it by refinement and coarsening of the meshes. We developed a numerical
code to solve general reaction-diffusion systems by using ALBERTA. ALBERTA is a
C language library for adaptive mesh FEM created by A. Schmidt and K.G. Siebert
[20, 21].

We use mainly very standard P1 element (or P2 element for some examples) on
a triangular or tetrahedral mesh with backward Euler time discretization. For the
nonlinear term, the values in the previous time step are used. The obtained linear
system at each time step is solved by a standard preconditioned conjugate gradient
solver. The adaptive mesh control library equipped in ALBERTA enables us to use
the equidistributional strategy for mesh control with a bisection algorithm and an
error estimator based on an a posteriori estimate. To control the accuracy of the
numerical solution, we use a tolerance parameter tol. The smaller the parameter tol
is, the finer triangular elements are generated to be adapted to the numerical solution.
For the detail of these numerical techniques, please see the manual of the ALBERTA
library [21].

All numerical simulation in this section is computed on the unit square or cubic
domain Ω = (0, 1)n (n = 2, 3).

In Fig.2.1, we show an example of adaptive mesh FEM for the activator-inhibitor
system (1.1). The variables u and v represent activator and inhibitor, respectively.
We choose ε sufficiently small comparing with d such that there appears the internal
transition layer between two stable states in the u-component. For the initial values,
u0(x) is a given step function and v0(x) ≡ 0 as shown in Fig.2.1. A typical pattern
dynamics with (1.1) is shown in Fig.2.1, where an internal layer of specific width and
height forms in early stage, after that, it moves slowly. Starting from a fine uniform
mesh, the mesh adapts to the profile of u, and the mesh changes to track the internal
layer of the variable u as it moves. Since such an internal layer solution forms very
sparse localized pattern, the adaptive mesh FEM works effectively as we expected.

We show other examples of adaptive mesh FEM for the Gray-Scott model (1.2).
The variables u and v represent concentration of two chemical reactants, where the
substance v consumes the resource substance u by an autocatalytic process. The term
A(1−u) corresponds to a supply of the resource substance u from a reservoir, if A > 0.
The Gray-Scott model is known for its great variety of patterns (see [6, 10, 16] etc.).

Fig.2.2 is a typical traveling spot (spike) pattern appearing in the Gray-Scott
model without resource supply (A = 0). The consumer (variable v) forms several
traveling spots, but this is a transitional phenomenon since only finite resource is
given at the initial condition; u0(x) = u0, where u0 is a positive constant.

Starting from a fine uniform mesh, the mesh adapts to the profile of u and v at
t = 50. The mesh changes not only to track the traveling spots of the variable v, but
also the profile of u as they moves. Since such a transitional traveling spot solution
is spatiotemporally localized, the adaptive mesh FEM also works effectively.

The Gray-Scott model with resource supply (A > 0), which is the origical model,
produces several kind of densely distributed patterns ([16]). In particular, it is studied
as a model of a self-replication dynamics [14, 15, 23, 24]. Fig.2.3 shows a typical
self-replication process in which the spot pattern occupies the domain densely after
repeating self-replication of spots. The profile of v and the adapted mesh are shown
in Fig.2.3. But, when the spot pattern is distributed densely at t = 8000, the mesh
looks almost uniformly fine

on the whole domain.
The last examples of our adaptive mesh FEM are three dimensional simulations
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t = 0.0

t = 0.2

t = 0.4

t = 0.6

t = 1.0

t = 4.0

Fig. 2.1. Snap shots of u, v and mesh from the numerical results of the activator-inhibitor
system (ε = 0.01, τ = 0.1, d = 1.0, a = 0.25, λ = 10.0)
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t = 0

t = 50

t = 100

t = 120

t = 150

t = 200

Fig. 2.2. Snap shots of u, v and mesh from the numerical results of the Gray-Scott model
(du = 11.5× 10−4, dv = 1.0× 10−4, A = 0, α = 0.25)
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t = 0

t = 400

t = 800

t = 2400

t = 5600

t = 8000

Fig. 2.3. Snap shots of v and mesh from the numerical results of the Gray-Scott model (du =
2.0× 10−5, dv = 10−5, A = 0.02, α = 0.077)
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t = 0 t = 100

t = 150 t = 200

Fig. 2.4. Snap shots of the isosurface (v = 0.1) of the numerical results of the three dimensional
Gray-Scott model without supply (du = 11.5× 10−4, dv = 1.0× 10−4, A = 0, α = 0.25).

of the Gray-Scott model without resource supply in Fig.2.4, and with resource supply
in Fig.2.6 and Fig.2.8. In Fig.2.4, spots pattern appears and disappears and the total
node number varries according to the disappearance of spots pattern similarly to
Fig.2.2 (Fig.2.5(a)). The minimum mesh size, which is the shortest length of edge of
the triangular element, is about h = 7.8×10−3 for t < 170 (Fig.2.5(b)). It corresponds
to about 2.1× 106 nodes in uniform mesh grid, if we use the mesh size h.

In the case of Gray-Scott model with resource supply (Fig.2.6, 2.8), the minimum
mesh size varries only at early time stage, however, total node number varries as the
pattern changes (Fig.2.7, 2.9). These are three dimensional self-replication processes.

We investigated a comparison of numerical accuracy between our adaptive mesh fi-
nite element method (AFEM) and the standard uniform mesh finite difference method
(UFDM) in our previous paper. As a conclusion, we proposed the following empirical
law: a numerical solution by AFEM with minimum mesh size h has almost same
accuracy as a numerical solution by UFDM with uniform grid size h. The details of
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Fig. 2.5. Total mesh number and minimum mesh size in Fig.2.4.
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t = 0 t = 400

t = 800 t = 4000

Fig. 2.6. Snap shots of the isosurface (v = 0.2) of the numerical results of the three dimensional
Gray-Scott model (du = 2.0× 10−5, dv = 10−5, A = 0.02, α = 0.077).

this discussion are given in [6].
To measure the effectiveness of the adaptive mesh FEM, we introduced a quantity

for each adapted mesh with minimum mesh size h. For a triangular mesh T , we define
a quantity C = C(T ), which represents the compression rate of the number of the
nodal points comparing with uniform grid of size h,

C :=
Number of nodal points of AFEM

Number of nodal points in UFDM of mesh size h
× 100 (%).

Since the minimum mesh size h and the number of nodal points of AFEM are changing
in time, we use representative (average or maximum, etc.) values for them. We also
remark that the number of nodal points in UFDM is roughly estimated by |Ω|/hn.

For spatially localized and sparse patterns, we expect that the adaptive mesh
FEM works well and the compression rate C becomes small, from our intuitive idea.
We show the compression rates on some typical examples of pattern dynamics problem
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Fig. 2.7. Total mesh number and minimum mesh size in Fig.2.6.
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t = 0 t = 400

t = 800 t = 4000

Fig. 2.8. Snap shots of the isosurface (v = 0.2) of the numerical results of the three dimensional
Gray-Scott model (du = 2.5× 10−5, dv = 5.0× 10−6, A = 0.02, α = 0.077).

by numerical results in Table 2.1.
Except for the case Fig.2.3 and Fig.2.8, the compression rates are sufficiently

small and the adaptive mesh algorithm works very well. Even in the cases Fig.2.3
and Fig.2.8, the maximum value is relatively high (C=43%) but the average in time
is smaller. We confirmed that adaptive FEM works well in some typical examples of
pattern dynamics problems, even if the pattern looks very complicated and dense.

Comparing two and three dimensional simulations of the Gray-Scott model with
same parameters (Fig.2.3 and Fig.2.6), we find very similar scale and structure of
dense spot pattern in both cases. But we can observe that the compression rate in
3D case (C ≤ 14 %) is much less than the 2D case (C ≤ 43 %) from Table 2.1. This
difference will be explained in section 4.
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Fig. 2.9. Total mesh number and minimum mesh size in Fig.2.8.
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Table 2.1
Compression rates for pattern dynamics problems

n C
Activator-Inhibitor system (Fig.2.1) 2 about 20%
Gray-Scott model without supply (Fig.2.2) 2 ≤ 10%
Gray-Scott model with supply (Fig.2.3) 2 ≤ 43%
Gray-Scott model without supply (Fig.2.4) 3 ≤ 7%
Gray-Scott model with supply (Fig.2.6) 3 ≤ 14%
Gray-Scott model with supply (Fig.2.8) 3 ≤ 43%

3. Localization index. In section 2, we have seen that the compression rate
C is a good quantity which reflects usefulness of our adaptive mesh FEM. But the
behavior of C is not so simple, and it is necessary to make it clear.

On the other hand, from numerical experiments for several pattern dynamics, the
adaptive mesh looks well adapted to the profile of the numerical solution uh(t). In
case that uh(t) has a localized pattern in a ”small” region, the mesh becomes very
fine only near the small region. For further quantitative study of these relations, we
need to introduce a good index which represents a kind of spatial localization and
complexity of the patterns.

We introduce the following quantity

L(u) :=

∫
Ω
|∇u|dx

|Ω| (ess-sup|∇u|) (u ∈ W 1,∞(Ω), u 6≡const.).

This is a kind of normalized total variation of u with 0 < L(u) ≤ 1 and the following
scale invariances. For arbitrary a > 0 and b > 0, we define v(y) := bu(ay) for
y ∈ Ω′ = {y ∈ Rn; ay ∈ Ω}. Then we have L(v) = L(u). Moreover, if Ω is
decomposed into N congruent subdomains as Ω = ∪N

j=1Ωj and a function u defined
on Ω has same profile on each Ωj , then we have L(u) = L(uj) where uj := u|Ωj .

Since the ”small” region of the spatially localized pattern is almost overlapped as
the region where |∇u| is large in many patterns, we can consider L(u) to be a quantity
which represents density of the pattern. In this sense, we call L(u) localization index
of u. If L(u) is small, say L(u) < 0.3, u seems to exhibit a kind of patterns.

Table 3.1 shows the localization indexes of some typical functions in 1D, where
Ω = (−l, l) for some l > 0. The case (i) and the cases (ii), (iii) correspond to internal
layer of width O(1/a) and to spike (spot) profiles of width O(1/a), respectively, as
a → ∞. In these localized patterns, the localization indexes tend to zero as a → ∞,
more precisely, L(u) = O(1/a).

On the other hand, a trigonometric function (iv) of wave length O(1/a) has
localization index L(u) = 2/π ∼= 0.64, and its localization does not change as a →∞.
We distinguish this kind of ”uniform pattern” from the typical localized patterns
appearing in reaction-diffusion systems.

In the case (v), we have L(u) = 1 for any b ∈ R. We remark that L(u) = 1 if and
only if u is a solution of the Eikonal equation:

|∇u| = const. a.e. in Ω.

In particular, all linear functions are solutions of Eikonal equation. In this case, there
is no pattern of course, but the adapted mesh should be almost uniform and the
compression rate is close to 100%.
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Table 3.1
Localization index for each functions u(x)

u(x) L(u)

(i) tanh ax
tanh al

al
a > 0

(ii)
1

1 + a2x2

8al

3
√

3(1 + a2l2)
a > 0

(iii) e−a2x2
√

e

2
1− e−a2l2

al
a > 0

(iv) cos ax
2
π

a 6= 0,
2al

π
∈ Z

(v) |x− b| 1 b ∈ R

(vi) |x|α 1
α

α ≥ 1

In the case (vi), u(x) has boundary layers near x = ±l when α →∞. The slope
of the boundary layers is |u′(±l)| = αlα−1 and it is quite large as α → ∞ if l > 1.
But its localization index is 1/α.

For some typical patterns in multi-dimensional case, such as internal layer and
spots pattern, their localization indexes will be calculated in the next section.

4. Localization index v.s. compression rate. We study the relation between
the compression rate and the localization index through some numerical experiments.
Let T (t) be the triangular finite element mesh at time t in our adaptive mesh FEM.
Then the compression rate C at time t depends only on T (t): C = C(T (t)).

But T (tj) at j-th discrete time t = tj is determined from the previous mesh
T (tj−1), the previous finite element solutions, the reaction-diffusion system under
consideration including system parameters (e.g. ε in the activator-inhibitor system,
etc.), and the choice of our finite element scheme including the adaptive mesh strategy.
In the following, for simplicity, the finite element solution at time t are represented
by uh(t), the reaction-diffusion system and its parameters are together represented
by p, and the finite element scheme with adaptive mesh strategy is represented by
the tolerance parameter tol. Then T (tj) depends on T (tj−1), uh(tj−1), p, and tol in
general, and its behavior seems to be very complicated. We remark that, in case of
system, uh represents the component which exhibits the pattern, e.g. the component
u for (1.1) and the component v for (1.2).

The graph in Fig.4.1 exhibits C(T (t)) in horizontal axis and L(uh(t)) in vertical
axis for the activator-inhibitor system (1.1) with τ = 0.1,d = 1.0,a = 0.25, λ = 10.0,
where ε changes as ε = 0.009, 0.010, 0.012, 0.014, 0.016, 0.018, 0.020, where
a time sequence of (C(T (tj)), L(uh(tj))) is plotted for each ε. Lines in the graph
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Fig. 4.1. Compression rate v.s. localization index on the activator-inhibitor system

are obtained by least squares fitting for each ε. Similarly, (C(T (tj)), L(uh(tj))) for
the Gray-Scott model without supply (Fig.2.2) are plotted in Fig.4.2(a) with a fitted
line. In each case in Fig.4.1 and Fig.4.2(a), (C(T (tj)), L(uh(tj))) are well fitted by a
straight line through the origin.

In the case of the Gray-Scott model with supply (Fig.2.3) which is shown in
Fig.4.2(b), (C(T (tj)), L(uh(tj))) are not well fitted but roughly around a straight
line.

To explain the above numerical results, let us consider a typical internal layer
solution appearing in two dimensional reaction-diffusion systems with bistable non-
linearity, such as the activator-inhibitor system (Fig.2.1) and the Allen-Cahn equation
([5] etc.). Let uh(t) be a finite element solution with an internal layer Γ(t), and let
|Γ(t)| be its length. Usually, a bistable system with fixed parameters p has its char-
acteristic lengths, the height H = H(p) and the width γ = γ(p) of the internal layer
(see Fig.4.3).

Since the total variation of uh(t) is close to H|Γ(t)| and max |∇uh(t)| ∼= H/γ if
0 < γ << 1, the localization index of uh(t) is roughly given by

L(uh(t)) ∼= H(p)|Γ(t)|
|Ω|H(p)/γ(p)

=
γ(p)|Γ(t)|

|Ω| .

On the other hand, an ideal finite element mesh T (t) for uh(t) should concentrate
near the internal layer. Let h(t) be the minimum mesh size of T (t). In the ideal case,
a band region of width κγ covering Γ(t) is divided into minimum size mesh and the
other region is divided very sparsely. The coefficient κ represents the ratio of widths
of Γ(t) and the internal layer of the mesh T (t), and it is greater than 1 and roughly
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Fig. 4.2. Compression rate v.s. localization index

depends on the system parameters and the numerical scheme, i.e. κ = κ(p, tol) > 1
(see Fig.4.4). The compression rate of an ideal mesh is given by

C(T (t)) ∼= κ(p, tol)γ(p)|Γ(t)|/h(t)2

|Ω|/h(t)2
=

κ(p, tol)γ(p)|Γ(t)|
|Ω| ,

and, hence we have

C(T (t)) ∼= κ(p, tol)L(uh(t)).
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(a) Side view of an internal layer

u    0≅
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Γ(t)

(b) Top view of an internal layer

Fig. 4.3. Profile of a typical internal layer

(a) ε = 0.007 (b) ε = 0.009

Fig. 4.4. Typical mesh profile of eq.(1.1) at t = 4

Next, let us consider a typical spots pattern of a multi-spike solution appearing
in n dimensional reaction-diffusion systems, such as the Gray-Scott model and the
Gierer-Meinhardt System ([9] etc.). Let uh(t) be a finite element solution with k
spikes. We assume that the spike profile under consideration has its characteristic
lengths, the height H = H(p) and the radius of the spot ρ = ρ(p) (see Fig.4.5), and
that the spikes are distributed sufficiently far from each other.

Let a typical spike profile at the origin be denoted by u0(x). Since max |∇uh(t)| ∼=
H/ρ and

∫

Ω

|∇uh(t)|dx ∼= k

∫
|∇u0|dx ∼= k

∫

Bn(ρ)

H

ρ
dx = k

H

ρ
|Bn(ρ)|,

hold, where Bn(ρ) := {x ∈ Rn; |x| < ρ}, the localization index of uh(t) is roughly
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H

2ρ
(a) single spike solution

k spots

(b) Spots pattern of k spikes solution

Fig. 4.5. Profile of a typical spike solution

given by

L(uh(t)) ∼= k(H(p)/ρ(p))|Bn(ρ(p))|
|Ω|H(p)/ρ(p)

=
k|Bn(ρ(p))|

|Ω| .

On the other hand, an ideal finite element mesh T (t) for uh(t) should concentrate
near the spikes. Let h(t) be the minimum mesh size of T (t). In the ideal case, a
multi-spots region of radius µρ covering the k spots region is divided into minimum
size mesh and the other region is divided very sparsely. The coefficient µ represents
the ratio of radii of the support of a spike and the fine mesh spot region, and it is
greater than 1 and roughly depends on the system parameters and the numerical
scheme, i.e. µ = µ(p, tol) > 1. Hence, the compression rate of an ideal mesh is given
by

C(T (t)) ∼= k|Bn(µ(p, tol)ρ(p))|/h(t)n

|Ω|/h(t)n
∼= µ(p, tol)nL(uh(t)).(4.1)

In the both ideal cases, the compression rate C(T (t)) is proportional to the lo-
calization index L(uh(t)) and its proportionality constant depends only on p and tol.
This explains the numerical experiments Fig.4.1, Fig.4.2(a) and Fig.4.2(b) well. In
other words, it means that our adaptive mesh algorithm realizes almost ideal mesh
adaptation in pattern dynamics problems.

As another application of the above analysis, we can explain the difference of
compression rates of the Gray-Scott model with supply between two and three di-
mensional cases, which was mentioned at the end of section 2. This can be explained
as a dimensional effect in terms of the localization index as follows.

Let n ∈ N be a spatial dimension. As a model of densely distributed spot patterns
such as Fig.2.3 and Fig.2.6, we suppose a periodic structure of a box cell which contains
a single spot. Let ρ > 0 and H > 0 be a typical radius and a typical height of a spike,
respectively, and let l > ρ be a half of a typical distance between centers of two nearest
spots. We suppose that the size of domain Ω is enough larger than the cell size 2l.

We consider a box cell

Qn(l) := {x = (x1, · · · , xn) ∈ Rn; |xi| < l (i = 1, · · · , n)},
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of size 2l and a function

u(x) = max
{

H

(
1− |x|

ρ

)
, 0

}
(x ∈ Qn(l)).

This is a simplified profile of the single spike solution shown in Fig.4.5(a).
The dense spot patterns in Fig.2.3 and Fig.2.6 are modeled by setting the box cell

Qn(l) periodically in each xi-direction with a period 2l. The function u(x) is extended
to whole domain periodically, too. The number of spots in Ω is approximately equal
to |Ω|/|Qn(l)|.

Let Ln := L(u) be the localization index of u in n dimensional case. Then, since
|∇u(x)| = H/ρ for a. e. x ∈ Bn(ρ), we have

Ln =

∫
Ω
|∇u(x)|dx

|Ω|Hρ
∼=

|Ω|
|Qn(l)|

∫
Bn(ρ)

H
ρ dx

|Ω|Hρ
=
|Bn(ρ)|
|Qn(l)| =

( ρ

2l

)n

|Bn(1)|.

From the previous result (4.1), the ideal compression rate in n dimensional case
is given by Cn = µnLn. It is a natural assumption that the coefficient µ does not
depend on n and satisfies ρ < µρ < l. As a consequence, the ratio of C2 and C3 (in
Table 2.1, it is C3/C2

∼= 14/43 ∼= 1/3) is estimated as

C3

C2

∼= µρ|B3(1)|
2l|B2(1)| =

4π
3 µρ

2πl
=

2µρ

3l
<

2
3
.(4.2)

In stead of the above periodic structure, we can assume the closest-packed struc-
ture in two or three dimension. In two dimension, the centers of spots are placed
on all node of a triangular grid tiled with copies of an equilateral triangle with edge
size 2l. In three dimension, the face-centered cubic lattice structure (FCC) or the
hexagonal closest-packed structure (HCP) is assumed. Since their packing densities
are π/(2

√
3) for n = 2 and π/(3

√
2) for n = 3, the estimate (4.2) becomes

C3

C2

∼= µρ

l

√
2
3

<

√
2
3
.

From this estimate, we can expect a dimensional effect by which the adaptive
mesh FEM works more effectively in 3D than 2D. The results in Table 2.1 support
that our adaptive scheme realizes this dimensional effect.

5. Application and concluding remarks. We have presented a quantitative
study of efficiency of an adaptive mesh finite element method for several reaction-
diffusion systems which produce various kind of spatiotemporal patterns in 2D and
3D. Through several numerical examples and analysis, it was shown that our adaptive
mesh algorithm works well for spatially localized pattern dynamics. We believe that
the adaptive mesh simulation becomes a more important and indispensable tool in
the analysis of spatiotemporal pattern dynamics. As such an example, here we show
a small application of our method to a reaction-diffusion system.

In the simulation shown in Fig.2.2, several spots appear in the variable v and
expand from the lower left corner with splitting, where initial conditions are radially
symmetric except for the domain shape. The minimum mesh size is about h =
8.0 × 10−3 and it seems to be sufficiently small. But the radial symmetry is broken
in Fig.2.2 numerically. Is this an influence from the boundary which is not radially
symmetric?
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Fig. 5.1. Unstable expanding ring pattern in the Gray-Scott model where (a) h = 2.0 × 10−3,
(b) h = 2.0× 10−4, (c) h = 2.0× 10−4 with small perturbation.

To remove the influence from the radial asymmetry of domain shape, we consider
a quarter of a disk: Ω = {x = (x1, x2) ∈ R2; |x| < 1, x1 > 0, x2 > 0}, with the
following same initial condition;





u0(x) = u0 > 0 (const.)

v0(x) =
{

1 ( |x| ≤ 0.1 )
0 ( otherwise ),

(5.1)
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Fig. 5.2. Temporal change of number of nodal points in Fig.5.1 (b).

and with parameters given in Fig.2.2. Then, from the uniqueness of the solution of
the reaction-diffusion system, it is clear that the exact solution has to be radially
symmetric.

A numerical result with a tiny minimum mesh size h = 2.0 × 10−3 is shown in
Fig.5.1 (a). A radial ring pattern expands in the beginning, but it is destabilized
around t = 40 ∼ 60 and splits into two spots contrary to the radially symmetric exact
solution. Comparing with Fig.2.2, the radially symmetric pattern is more stable and
the split occurs later. This computation suggests that the radially symmetric exact
solution is not stable, and the source of breaking the ring pattern seems to be the
anisotropy of the mesh.

Simulations shown in (b) and (c) of Fig.5.1 are computed with smaller tolerance
and the minimum mesh size is about h = 2.0× 10−4 during the computation in both
cases, where we add small perturbation to the initial condition only in simulation (c).
In (b), the numerical solution keeps an almost radially symmetric ring pattern which
is expanding and fading out in time. On the other hand, the ring pattern splits in (c)
because of an influence of the perturbation.

The temporal evolution of total node number in simulation (b) is shown in Fig.5.2.
The maximum number of nodes is about 35000. In this case, the compression rate
is less than 0.18 since the computational domain is much larger than the region
occupied by the pattern. Since the ring dissapears around |x| = 1

2 , it may be possible
to compute it on the half size domain. But the compression rate is still less than
0.18× 22 = 0.72 even in the half size domain.

If we want to study a behavior of such unstable exact solution through numerical
simulation, very fine mesh size like h = 2.0× 10−4 is required as we have seen above.
It is usually very difficult to realize such tiny mesh without adaptive mesh method.

The behavior of the compression rate of mesh, which is a good index for mesh
adaptivity, is well explained by the localization index. The localization index of a
numerical solution, which is a quantity introduced in this paper, characterizes local-
ization of a pattern exhibited by the numerical solution.
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In this paper and our previous one [6], we have attempted to study mesh adaptiv-
ity and pattern profiles quantitatively. Their quantitative characterizations have been
established to a certain extent in terms of the compression rate and the localization
index. In the field of pattern dynamics and its numerical simulation, we expect that
these quantities will become standard tools and that this study becomes a step toward
future more intensive analysis.
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