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APPLICATION OF THE MIZUKAMI–HUGHES METHOD TO
BILINEAR FINITE ELEMENTS∗
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Abstract. This paper is devoted to the numerical solution of scalar two–dimensional steady
convection–diffusion equations using the Mizukami–Hughes method. The Mizukami–Hughes method
is a Petrov–Galerkin finite element method satisfying the discrete maximum principle and providing
very accurate discrete solutions in convection–dominated regime. However, up to now, this method
was available only for conforming triangular linear finite elements. The aim of this paper is to present
an extension of the method to bilinear quadrilateral finite elements.
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1. Introduction. This paper is devoted to the numerical solution of the con-
vection–diffusion equation

−ε∆u + b · ∇u = f in Ω.(1.1)

Here Ω is a bounded two–dimensional domain with a polygonal boundary ∂Ω, f is
a given outer source of the unknown scalar quantity u (e.g., temperature or concen-
tration), ε > 0 is the diffusivity, which is assumed to be constant, and b is the flow
velocity. The equation (1.1) is equipped with boundary conditions

u = ub on ΓD, ε
∂u

∂n
= g on ΓN ,(1.2)

where ΓD and ΓN are disjoint and relatively open subsets of the boundary ∂Ω satis-
fying meas1(ΓD) > 0 and ΓD ∪ ΓN = ∂Ω, n is the outward unit normal vector to ∂Ω
and ub, g are given functions.

Numerical solution of this seemingly very simple problem has been the subject
of an extensive research for several decades but remains still a challenge if convection
strongly dominates diffusion. The reason is that, in the convection–dominated regime,
the solution of (1.1), (1.2) typically contains narrow inner and boundary layers which
cannot be resolved properly unless the used mesh is extremely fine. It is well known
that the application of the classical Galerkin finite element method is inappropriate in
this case since the discrete solution is usually globally polluted by spurious oscillations.

To enhance the stability and accuracy of the Galerkin discretization of (1.1), (1.2)
in convection–dominated regime, various stabilization strategies have been devel-
oped during the last three decades. One of the most efficient procedures for solving
convection–dominated equations is the streamline upwind/ Petrov–Galerkin (SUPG)

∗The work is a part of the research project MSM 0021620839 financed by MSMT and it was partly
supported by the Grant Agency of the Charles University in Prague under the grant No. 344/2005/B–
MAT/MFF.

1Charles University, Faculty of Mathematics and Physics, Department of Numerical Mathemat-
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method [2] which consistently introduces numerical diffusion along streamlines. Al-
though this method produces to a great extent accurate and oscillation–free solutions,
it does not preclude small nonphysical oscillations localized in narrow regions along
sharp layers. Since these oscillations are not permissible in many applications, various
terms introducing artificial crosswind diffusion in the neighborhood of layers have been
proposed to be added to the SUPG formulation in order to obtain a method which is
monotone or which at least reduces the local oscillations (cf. e.g. [1, 3, 4, 6, 9, 12, 14]
and the references there). This procedure is usually referred to as discontinuity cap-
turing (or shock capturing). A basic problem of most of these methods is the design
of appropriate stabilization parameters which lead to sufficiently small nonphysical
oscillations without compromising accuracy.

One of the first monotone methods for solving (1.1), (1.2) was introduced by
Mizukami and Hughes [13] for linear triangular finite elements. In contrast to the
most discontinuity–capturing methods, the solutions of the Mizukami–Hughes method
always satisfy the discrete maximum principle, which ensures that no spurious oscil-
lations will appear, not even in the vicinity of sharp layers. Further, as a method of
upwind type, it does not contain any stabilization parameters, which also is a great
advantage in comparison with the most other stabilized methods. Moreover, it is
conservative and since it is a Petrov–Galerkin method, it is consistent. Last but not
least, the Mizukami–Hughes method is based on a clear and simple idea whereas many
discontinuity–capturing methods are derived using heuristic ad hoc arguments. Like
many discontinuity–capturing methods for solving (1.1), (1.2), the Mizukami–Hughes
method depends on the unknown discrete solution and hence it is nonlinear. Recently
some improvements and extensions of the Mizukami–Hughes method were introduced
by Knobloch [11].

The Mizukami–Hughes method in [13, 11] is defined only for conforming triangular
linear finite elements and it is not obvious how to apply the method to other types of
finite elements. The aim of the present paper is to propose an extension of the method
to bilinear quadrilateral finite elements. First, in the next section, we introduce
the concept of Petrov–Galerkin discretizations and a general form of the Mizukami–
Hughes method considered in this paper. The properties of the method depend on the
definitions of four constants on each element of the triangulation. The choice of these
constants will be discussed in Sections 3. Since this will take several pages, we briefly
summarize the definitions of the constants in Section 4. Finally, in Section 5, we
show that our definition of the Mizukami–Hughes method for bilinear finite elements
enables to fulfil the discrete maximum principle.

2. A Petrov–Galerkin method for convection–diffusion equations. Let
Th be a triangulation of Ω consisting of a finite number of open convex quadrilateral
elements K. The discretization parameter h in the notation Th is a positive real
number satisfying diam(K) ≤ h for any K ∈ Th. We assume that Ω =

⋃
K∈Th

K
and that the closures of any two different elements of Th are either disjoint or possess
either a common vertex or a common edge. Further, we assume that any edge of an
element K ∈ Th which lies on ∂Ω is contained either in ΓD or in ΓN .

Let K̂ = (−1, 1)2 be the reference square and let Q1(K̂) be the space of bilinear
functions on K̂. For any convex quadrilateral K ∈ Th, there exists a regular map-
ping FK ∈ [Q1(K̂)]2 which maps K̂ onto K. The solution u of (1.1), (1.2) will be
approximated by a function uh from the space

Vh = {v ∈ C(Ω) ; v ◦ FK ∈ Q1(K̂) ∀ K ∈ Th} .
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The space Vh is independent of the choice of the mappings FK . Let a1, . . . , aMh
be

the vertices of Th lying in Ω ∪ ΓN and let aMh+1, . . . , aNh
be the vertices of Th lying

on ΓD. For any i ∈ {1, . . . , Nh}, let ϕi ∈ Vh be the function satisfying ϕi(aj) = δij

for j = 1, . . . , Nh, where δij is the Kronecker symbol. Then Vh = span{ϕi}Nh
i=1.

Let us recall that, in the classical Galerkin method, the discrete solution uh

satisfies

ε (∇uh,∇ϕi) + (b · ∇uh, ϕi) = (f, ϕi) + (g, ϕi)ΓN , i = 1, . . . ,Mh ,(2.1)

where (·, ·) denotes the inner product in L2(Ω) or L2(Ω)2 and (·, ·)ΓN is the inner prod-
uct in L2(ΓN ). Similarly, we shall denote by (·, ·)K the inner product in L2(K) or
L2(K)2, where K is an element of Th. It is well known that the Galerkin discretization
is inappropriate in the convection–dominated regime since it gives unphysically oscil-
lating solutions. As a remedy, various authors proposed to add a weighted residual
stabilization term of the form

∑

K∈Th

(−ε ∆uh + b · ∇uh − f, ψi)K(2.2)

to the left–hand side of (2.1) (cf. e.g. [2, 7, 8]). Of course, the properties of such
a stabilization strongly depend on the choice of the functions ψi. According to our
numerical experiences, the term −ε ∆uh is negligible in the convection–dominated
case and therefore, we shall not consider it in the following (note that ∆uh = 0 on
any rectangular element K). Thus, adding (2.2) to (2.1) and introducing the weighting
functions ϕ̃i = ϕi + ψi, we obtain

ε (∇uh,∇ϕi) + (b · ∇uh, ϕ̃i) = (f, ϕ̃i) + (g, ϕi)ΓN , i = 1, . . . ,Mh .

Further, we introduce approximations of the terms containing ϕ̃i. To this end, we
define the mapping πh : L1(Ω) → L1(Ω) by

(πh v)|K =
1
|K|

∫

K

v dx ∀ v ∈ L1(Ω), K ∈ Th ,

where |K| denotes the area of K. Using this mapping, the weighting function ϕ̃i will
be replaced by the piecewise constant function πh ϕ̃i. In addition, we replace the
convective field b by a piecewise constant function bh (e.g., bh = πh b). We shall also
use the notation bK ≡ bh|K .

Now we can introduce the Petrov–Galerkin method considered in this paper: we
define the discrete solution of the problem (1.1), (1.2) as a function uh satisfying

uh ∈ Vh ,

ε (∇uh,∇ϕi) + (bh · ∇uh, πh ϕ̃i) = (f, πh ϕ̃i) + (g, ϕi)ΓN , i = 1, . . . ,Mh ,

uh(ai) = ub(ai) , i = Mh + 1, . . . , Nh .

Like in [13], we define the weighting functions ϕ̃i by

ϕ̃i = ϕi +
∑

K∈Th,

ai∈K

CK
i χK , i = 1, . . . , Mh ,

where CK
i are constants which will be determined in the next section and χK is the

characteristic function of K (i.e., χK = 1 in K and χK = 0 elsewhere).
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Fig. 3.1. Notation for vertices, edges and vectors related to an element K.

3. Choice of the constants CK
i . In this section we shall discuss the choice of

the constants CK
i in the definition of the weighting functions ϕ̃i. We shall apply some

of the ideas used in the triangular case treated in [11].
For any element K ∈ Th, let us denote

BK
i = (πh ϕi)|K ∀ i ∈ {1, . . . , Nh} , ai ∈ K .(3.1)

Then

BK
i ∈ (0, 1) ∀ i ∈ {1, . . . , Nh} , ai ∈ K ,

Nh∑

i=1
ai∈K

BK
i = 1 .

Note also that BK
i = 1

4 if K is a parallelepiped. We require that

CK
i ≥ −BK

i ∀ i ∈ {1, . . . , Nh} , ai ∈ K ,

Nh∑

i=1
ai∈K

CK
i = 0(3.2)

and that the local convection matrix AK with entries

aK
ij = (bK · ∇ϕj , πh ϕ̃i)K , i = 1, . . . , Mh , j = 1, . . . , Nh , ai, aj ∈ K ,

is of nonnegative type (i.e., off–diagonal entries of AK are nonpositive and the sum of
the entries in each row of AK is nonnegative, cf. [5]). The matrix AK has four columns
and at most four rows and it will be of nonnegative type as soon as aK

ij ≤ 0 for i 6= j.
The latter condition in (3.2) implies that uh satisfies a discrete mass conservation law
if the data in (1.1), (1.2) satisfy ΓN = ∂Ω, g = 0 and b = const., cf. [10].

Consider any K ∈ Th and denote the vertices of K by a1, a2, a3 and a4 (see
Fig. 3.1). For i = 1, . . . , 4, we denote by Ei the edge of K with vertices ai, ai+1 and
by Ti the triangle with vertices ai−1, ai, ai+1 (here and in the following all indices
are considered modulo 4). Moreover, we denote by E∗

i the edge of the triangle Ti

opposite the vertex ai and we set

zi =
ai − ai+2

|ai − ai+2| , i = 1, . . . , 4 .(3.3)
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Fig. 3.2. Definition of the angles ωk, αk and αk+1.

Of course, z1 = −z3 and z2 = −z4. Further, for i = 1, . . . , 4, we set

si =
∫

K

∇ϕi dx =
∫

∂K

ϕi n∂K dσ =
1
2

∫

Ei−1∪Ei

n∂Ti dσ = −|E
∗
i |

2
n∂Ti |E∗i ,(3.4)

where n∂K and n∂Ti denote the outer unit normal vectors to the boundary of K and
Ti, respectively, and |E∗

i | is the length of the edge E∗
i . Obviously,

si · zi+1 = 0 , si = −si+2 , i = 1, . . . , 4 .(3.5)

Using the vectors si, we can write the entries of the local convection matrix AK in
the form

aK
ij = bK · sj (BK

i + CK
i ) ,

which is convenient for discussing the choice of the constants CK
i .

First let us assume that bK = α zk for some α > 0 and k ∈ {1, . . . , 4}. Then, in
view of (3.5), AK is of nonnegative type and (3.2) holds if and only if

CK
k = 1−BK

k and CK
i = −BK

i for i 6= k, i = 1, . . . , 4 .(3.6)

Now, on the contrary, let the vectors bK and zi be linearly independent for any
i ∈ {1, . . . , 4}. Then there exists k ∈ {1, . . . , 4} such that

bK · sk > 0 , bK · sk+1 > 0 , bK · sk+2 < 0 , bK · sk+3 < 0 .(3.7)

Thus, bK points from the point X = E∗
1∩E∗

2 into the convex subset of R2 the boundary
of which consists of the half–lines {X + α zk ; α > 0} and {X + α zk+1 ; α > 0}
(cf. Fig. 3.2). It is obvious that the matrix AK is of nonnegative type if and only
if CK

i = −BK
i for all i = 1, . . . , 4, which is not permitted by (3.2) (in this case all

entries of AK vanish). However, using an idea of Mizukami and Hughes [13], we can
define the constants CK

i in such a way that (3.2) holds and the coefficients of the
discrete solution with respect to the basis of Vh solve a linear system with a matrix of
nonnegative type. Such a definition of the constants CK

i is based on the observation
that u still solves the equation (1.1) if we replace b by any function b̃ such that b̃− b
is orthogonal to ∇u. This suggests to define the constants CK

i in such a way that the
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Fig. 3.3. Notation for demonstrating the upwind character of the method (vectors indicate the
directions of b).

matrix AK is of nonnegative type for bK replaced by a function b̃K being a multiple
of the vector zk for some k ∈ {1, . . . , 4}. Since ∇u is not known a priori, we obtain a
nonlinear discrete problem where the constants CK

i depend on the discrete solution
uh which we want to compute.

Let us assume that (bK ,∇uh)K 6= 0 and let wK be a unit vector orthogonal to
(πh∇uh)|K . Then wK and bK are linearly independent and it is possible to find β ∈ R
such that the vector b̃K ≡ bK + β wK satisfies b̃K = α zk or b̃K = α zk+1 for some
α > 0 (we still consider the case (3.7)). In the former case, we denote the respective
value of β by βk, in the latter case by βk+1. If, for some l ∈ {k, k + 1}, there is no
β ∈ R such that b̃K = α zl with α > 0, we set βl = 0. Note that, for l ∈ {k, k + 1},

βl 6= 0 ⇐⇒ (bK + βl wK) · sl > 0, (bK + βl wK) · sl+1 = 0 .

Consequently, for l ∈ {k, k + 1}, we have

βl 6= 0 ⇐⇒ (wK · sk)(wK · sk+1) < 0 or(3.8)
|(wK · sl)(bK · sl+1)| < |(bK · sl)(wK · sl+1)| .

The above considerations lead us to the following values of the constants CK
i ,

i = 1, . . . , 4:

βk 6= 0 & βk+1 = 0 =⇒ CK
k = 1−BK

k ,(3.9)
CK

i = −BK
i ∀ i 6= k ,

βk = 0 & βk+1 6= 0 =⇒ CK
k+1 = 1−BK

k+1 ,(3.10)

CK
i = −BK

i ∀ i 6= k + 1 ,

βk 6= 0 & βk+1 6= 0 =⇒ CK
i = −BK

i ∀ i 6= k, k + 1 ,(3.11)
CK

k and CK
k+1 satisfy (3.2) .

We shall see in Section 5 that this choice of the constants CK
i enables to prove that

the discrete solution uh satisfies the discrete maximum principle. Note also that in
all three cases (3.9)–(3.11), we set CK

k+2 = −BK
k+2 and CK

k+3 = −BK
k+3, which gives

rise to an upwind effect. Indeed, if we consider the situation depicted in Fig. 3.3, we
have CK1

i = −BK1
i , CK2

i = −BK2
i and hence

(bh · ∇uh, πh ϕ̃i) = (bh · ∇uh, πh ϕ̃i)K3∪K4 .
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It remains to decide how to define the constants CK
k and CK

k+1 in case (3.11). In
view of (3.6), this definition should satisfy

αk → 0 =⇒ CK
k → 1−BK

k , CK
k+1 → −BK

k+1 ,

αk+1 → 0 =⇒ CK
k → −BK

k , CK
k+1 → 1−BK

k+1 ,

where αk and αk+1 are the angles formed by the vectors bK , zk and bK , zk+1,
respectively, see Fig. 3.2 or 3.4. We denote by ωk the angle formed by the vectors zk

and zk+1. Then αk + αk+1 = ωk. It seems to be reasonable to require that

CK
k = 1

2 [1− ξk(αk)]−BK
k , CK

k+1 = 1
2 [1 + ξk(αk)]−BK

k+1 ,(3.12)

where ξk : [0, ωk] → [−1, 1] is a monotone continuous function of αk which is odd with
respect to the value ωk/2 and satisfies

ξk(0) = −1 , ξk(ωk) = 1 .

The simplest choice is to set ξk(αk) = 2 αk/ωk − 1 = (αk − αk+1)/(αk + αk+1).
However, to make the computation cheaper, we use

ξk(αk) =
sin[ 12 (αk − αk+1)]
sin[ 12 (αk + αk+1)]

=
cosαk+1 − cos αk

1− cos(αk + αk+1)
.(3.13)

It follows from (3.8) that the case (3.11) applies if and only if qk ≡
(wK · sk)(wK · sk+1) < 0. However, as soon as the sign of qk changes, the con-
stants CK

i change to values given by (3.9) or (3.10). Consequently, the constants
CK

i depend on the orientation of wK in a discontinuous way, which may prevent the
nonlinear iterative process from converging. Therefore, it is desirable to modify the
formulas (3.12) taking into account the orientation of wK .

Thus, let qk < 0 and let l, m ∈ {k, k + 1}, l 6= m, be such that wK · sl > 0 and
wK · sm < 0 (l = k in Fig. 3.4). We shall need some additional notation which is
introduced in Fig. 3.4. Here, the dashed lines are axes of the angles formed by the
vectors zk, zk+1 and zk+1, zk+2. The magnitude of the former angle is equal to ωk

and we introduce a unit vector vk in the direction of the axis of this angle pointing
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as in Fig. 3.4. Without loss of generality, we may assume that wK · vk ≥ 0 and we
denote by δ the angle between wK and zl. It suffices to discuss the choice of CK

l since
CK

m = 1− (BK
l + CK

l )−BK
m . Obviously, αl ∈ (0, ωk) and δ ∈ (0, κ] with κ = π

2 − ωk

2 .
We shall require the following values of CK

l in the limit cases:

δ = κ =⇒ CK
l is determined by (3.12) ,

αl → 0 , δ 6→ 0 =⇒ CK
l is determined by (3.12)

(⇒ CK
l → 1−BK

l ) ,

δ → 0 , αl 6→ 0 =⇒ CK
l → −BK

l .

Denoting by C
K

l the value of CK
l determined by (3.12), we set

CK
l = Φ(αl, δ)C

K

l − [1− Φ(αl, δ)] BK
l ,

where Φ : ([0, ωk]× [0, κ])\ (0, 0) → [0, 1] is a continuous function. The above require-
ments imply that

Φ(αl, κ) = Φ(0, δ) = 1 , Φ(αl, 0) = 0 ∀ αl ∈ (0, ωk], δ ∈ (0, κ] .

The function Φ can be defined in various ways and we set

Φ(αl, δ) = min
{

1,
2 sin δ

rl sin κ

}
,(3.14)

where

rl =





sin αl

sin ωk

2

if αl < ωk

2 ,

1 if αl ≥ ωk

2 .

The computation of (3.13) and (3.14) is inexpensive as we shall see in the next section.
Up to now, we have assumed that (bK ,∇uh)K 6= 0. If bK = 0, we set CK

i = 0
for all i = 1, . . . , 4. If bK 6= 0 and (bK ,∇uh)K = 0, we use average values of those
ones defined in (3.9) and (3.10) since these values are used as soon as the direction of
(πh∇uh)|K slightly changes.

4. Summary of the definitions of the constants CK
i . In this section we

summarize the definitions of the constants CK
i introduced in the previous section

and we rewrite them in a form appropriate for implementation. Let us consider any
element K ∈ Th and let a1, a2, a3 and a4 be its vertices, see Fig. 3.1. We shall use
the constants BK

i and the vectors zi and si, i = 1 . . . , 4, defined in (3.1), (3.3) and
(3.4), respectively. If bK 6= 0, we denote by k ∈ {1, . . . , 4} the uniquely determined
index satisfying

bK · sk > 0 , bK · sk+1 ≥ 0 .

Further, we set

s =
bK

|bK | , vk =
zk + zk+1

|zk + zk+1|
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if bK 6= 0 then

CK
k+2 = −BK

k+2 , CK
k+3 = −BK

k+3

if bK = 0 then

CK
1 = CK

2 = CK
3 = CK

4 = 0

else if (bK ,∇uh)K = 0 then

CK
k = 1

2 −BK
k , CK

k+1 = 1
2 −BK

k+1

else if qk ≥ 0 & |(wK · sk)(bK · sk+1)| < |(bK · sk)(wK · sk+1)| then

CK
k = 1−BK

k , CK
k+1 = −BK

k+1

else if qk ≥ 0 then

CK
k = −BK

k , CK
k+1 = 1−BK

k+1

else if wK · sk > 0 then

rk = min
{

1,
|s · z⊥k |
|vk · z⊥k |

+ 1− sgn(bK · zk)
}

,

Φ = min
{

1,
2 |wK · z⊥k |
rk vk · zk

}
,

CK
k = −BK

k +
1
2

Φ
[
1 +

(zk − zk+1) · s
1− zk · zk+1

]
,

CK
k+1 = BK

k+2 + BK
k+3 − CK

k

else

rk+1 = min

{
1,
|s · z⊥k+1|
|vk · z⊥k+1|

+ 1− sgn(bK · zk+1)

}
,

Φ = min

{
1,

2 |wK · z⊥k+1|
rk+1 vk · zk+1

}
,

CK
k+1 = −BK

k+1 +
1
2

Φ
[
1 +

(zk+1 − zk) · s
1− zk · zk+1

]
,

CK
k = BK

k+2 + BK
k+3 − CK

k+1 .

Fig. 4.1. Definition of the constants CK
i .

and we introduce unit vectors wK , z⊥k and z⊥k+1 such that

wK · (πh∇uh)|K = 0 , wK · vk ≥ 0 , z⊥k · zk = 0 , z⊥k+1 · zk+1 = 0 .

Finally, we set

qk = (wK · sk)(wK · sk+1) .

Then the constants CK
1 , . . . , CK

4 are determined according to the algorithm in Fig. 4.1.
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5. Validity of the discrete maximum principle. Let K be any element of
the triangulation Th with vertices denoted by a1, a2, a3 and a4 like in the preceding
sections. On this element, the discrete solution introduced in Section 2 can be written
in the form uh|K =

∑4
i=1 ui ϕi and we define the vector U = (u1, u2, u3, u4). Our

aim is to show that, defining the constants CK
1 , . . . , CK

4 as described in Section 3, one
can find a matrix ÃK which has the same size as the local convection matrix AK , is
of nonnegative type and satisfies

AK U = ÃK U .(5.1)

Of course, if (bK ,∇uh)K = 0 or if bK points in the direction of some of the vectors
z1, . . . , z4, we can set ÃK = 0 or ÃK = AK , respectively. Thus, let us assume that
(bK ,∇uh)K 6= 0 and that (3.7) holds with some k ∈ {1, . . . , 4}. If βl 6= 0 for some
l ∈ {k, k + 1}, we define the matrix ÃK,l having the entries

ãK,l
ij = (bK + βl wK) · sj (BK

i + CK
i ) , i, j = 1, . . . , 4, ai ∈ Ω ∪ ΓN ,

with CK
i ’s from (3.9) if l = k and with CK

i ’s from (3.10) if l = k + 1. As we have
seen in Section 3, the matrix ÃK,l is of nonnegative type. Let us assume that βk or
βk+1 is equal to zero and let l ∈ {k, k + 1} be such that βl 6= 0. Then, for i = 1, . . . , 4
(with ai ∈ Ω ∪ ΓN ), we have

(AK U)i = (bK ,∇uh)K (BK
i + CK

i )
= (bK + βl wK ,∇uh)K (BK

i + CK
i ) = (ÃK,l U)i .

Thus, (5.1) holds with ÃK = ÃK,l. In case (3.11), we have

AK = (BK
k + CK

k )AK,k + (BK
k+1 + CK

k+1) AK,k+1 ,

where AK,k and AK,k+1 are matrices defined like AK but using CK
i ’s from (3.9) and

(3.10), respectively. Consequently, (5.1) holds with

ÃK = (BK
k + CK

k ) ÃK,k + (BK
k+1 + CK

k+1) ÃK,k+1 .

To establish the validity of the discrete maximum principle, the triangulation
Th has to be such that the discrete maximum principle holds for the pure diffusion
problem (i.e., for b = 0). For this it is sufficient to assume that, for any element K ∈
Th, the local diffusion matrix {(∇ϕj ,∇ϕi)K}4i,j=1 is of nonnegative type. Denoting
by D the matrix having the entries dij = (∇ϕj ,∇ϕi), i = 1, . . . , Mh, j = 1, . . . , Nh,
and by Ã the Mh × Nh matrix made up of the local matrices ÃK , we see that the
vector of coefficients of the discrete solution uh with respect to the basis {ϕi}Nh

i=1 of
the space Vh is the solution of a linear system with the matrix C ≡ εD + Ã where
all three matrices are of nonnegative type. Moreover, since the matrix {dij}Mh

i,j=1 is
nonsingular, the matrix {cij}Mh

i,j=1 also is nonsingular. This implies that uh satisfies
the discrete maximum principle (see e.g. [6]). Thus, for any G ⊂ Ω being a union of
closures of elements of Th, we have

(f, ϕ̃i) ≤ 0 ∀ ai ∈ intG ⇒ max
G

uh = max
∂G

uh ,

(f, ϕ̃i) ≥ 0 ∀ ai ∈ intG ⇒ min
G

uh = min
∂G

uh ,

which shows that the discrete solution does not contain any spurious oscillations.
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