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NUMERICAL SOLUTION OF HIGHER AND LOWER MACH
NUMBER FLOWS

KAREL KOZEL1, PETRA PUNČOCHÁŘOVÁ2, JIŘÍ FÜRST2,
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Abstract. The work deals with numerical solution of two compressible flows problems. Firstly
authors considered steady transonic flows through DCA 8% cascade (Double Circular Arc symmet-
rical) for increasing upstream Mach numbers M∞ ∈ (0.813; 1.13). The cascade flows were suggested
in Institute of Thermomechanics by Mr. Dvořák and flows were investigated experimentally. The
structure of flow seems to be very complicated. It is possible to observe subsonic and supersonic
part, shock wave structure, interaction of shock wave and boundary layer, wake etc. We investigated
these flows numerically using composite scheme in the form of finite volume method for governing
system of Euler equations. These numerical results are compared to experimental data of IT CAS
CZ using comparison of several regimes with increasing upstream Mach numbers.

The second problem is an unsteady viscous flow with very low upstream Mach number M∞ ≈ 0.02
in a 2D channel with a moving part of solid wall as a function of time. The flow is described by
the system of Navier-Stokes equations for compressible laminar flows. The problem is numerically
solved by MacCormack finite volume scheme. Moved grid of quadrilateral cells is considered in the
form of conservation laws using Arbitrary Lagrangian-Eulerian method.
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1. Introduction. This work presents a numerical solution of two compressible
flows problems with higher and lower inlet Mach numbers. The first problem is a
numerical solution of steady inviscid flow through cascade with double circular arc
symmetrical 8% profiles (DCA 8%) and inlet Mach numbers M∞ ∈ (0.813; 1.13). The
numerical solution of Euler equations is achieved by explicit central finite volume
method using a composite scheme. The second problem presents unsteady numerical
solution of the system of Navier-Stokes equations for compressible viscous laminar
flow in a symmetrical channel. Unsteady flow is caused by a moving part of the
channel wall as a function of time. Physically the flow in the symmetrical channel
can present a very simple model of flow in a human vocal tract. Numerical solution is
achieved by explicit predictor-corrector finite volume version of MacCormack scheme
on a moved grid of quadrilateral cells.

2. Mathematical model. The 2D system of Navier-Stokes equations (2.1) has
been used as mathematical model to describe an unsteady, viscous compressible (lam-
inar) flow in a channel. The system is expressed in non-dimensional form:

Wt + Fx + Gy =
1

Re
(Rx + Sy),(2.1)

W = [ρ, ρu, ρv, e]T is the vector of conservative variables, F = [ρu, ρu2 + p, ρuv, (e +
p)u]T and G = [ρv, ρuv, ρv2 + p, (e + p)v]T are the vectors of inviscid fluxes, R =
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Fig. 3.1. Domain of solution D1 of DCA 8% cascade.

[0, 2
3η(2ux − vy), η(uy + vx), uR2 + vR3 + kTx]T and S = [0, η(uy + vx), 2

3η(−ux +
2vy), uS2 + vS3 + kTy]T are the vectors of viscous fluxes. Reynolds number Re =
ρ∞u∞H

η∞
is computed from inflow variables. Dynamic viscosity is η = 1

Re and temper-
ature is T = p

rρ . Static pressure p in the inviscid fluxes is expressed by the equation
of state. If a flow is considered to be inviscid, Euler equations are used and then the
right side of the equation (2.1) is equal to zero.

3. Inviscid steady compressible flow through DCA 8% cascade. For
numerical solution the domain of solution D and its boundary conditions are defined.
Figure 3.1 shows domain of solution D1 which is one period of the DCA 8% cascade

[1, 2]. The lower curve
_

BC and upper curve
_

FG represent solid wall and the parts
AB, CD, EF and GH represent periodical boundaries. The inlet boundary is between
points A,E and the outlet boundary is between points D, H. Boundary conditions
are considered in the following form:

a) Upstream conditions: 3 values of W are given, pressure is extrapolated.
b) Downstream conditions: pressure is given, other values are extrapolated.
c) On the solid wall non-slip condition is considered (u, v)wall · ~n = 0.
d) Periodicity condition for all variables.

3.1. Numerical solution of flow through DCA 8% cascade. Numerical
solution of the system of Euler equations which describes inviscid compressible flow
is realized by a composite finite volume scheme [3] on a grid of quadrilateral cells:

Wn+1
i,j = Wn

i,j −
∆t

µi,j

4∑

k=1

(F̃n
k ∆yk − G̃n

k∆xk) +
ε

4

4∑

k=1

(Wn
k −Wn

i,j)(3.1)

predictor step :
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corrector step :
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n+1/2
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(3.2)

The Equation (3.1) is Lax-Friedrichs explicit scheme which is of the 1st order of
accuracy in time and space and the Equation (3.2) is Lax-Wendroff explicit scheme in
predictor-corrector form (Richtmyer form) which is of the 2nd order of accuracy. The
parameter µi,j =

∫
Di,j

dxdy is volume of cell Di,j and parameter ε ∈ (0, 1). Numerical
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Fig. 3.2. Finite volume Di,j , dual volume V ′k.

fluxes F̃ , G̃ on edge k of cell Di,j (see Figure 3.2) are centrally approximated from
physical fluxes F, G, e.g.: F̃n

1 = 1
2 (Fn

i,j + Fn
i+1,j). The composite scheme (CS) is

combined from Lax-Friedrichs (LF ) scheme and from Lax-Wendroff (LW ) scheme in
the form:

CS = n · LF + m · LW(3.3)

where n = 1 and m are numbers of time steps. Stability condition of the composite
scheme (on regular orthogonal grid) reduces time step to:

∆t ≤ CFL
|umax|+c

∆x + |vmax|+c
∆y

,(3.4)

where c denotes local speed of sound and condition CFL < 1.
Remark 1: Composite scheme was originally published in [4] for finite difference

scheme on orthogonal grid, extended in [3] for finite volume schemes for triangular and
later for quadrilateral meshes. Number of iterations m in (3.3) depends on geometry,
mesh etc. and has to be experimentally tested, because smoothing step by LF scheme
has to be such small as possible.

3.2. Numerical results and comparison with experiment. The figures 3.3
and 3.4 show some transonic and supersonic flows for increasing upstream Mach num-
bers M∞ ∈ (0.813; 1.13) through DCA 8% cascade. Interferometric measurements of
IT CAS CZ by Mr. Dvořák are shown on the left side in pictures. Numerical re-
sults computed by the composite scheme on structured mesh 150 x 30 cells are shown
on the right side in pictures. The results are mapped by Mach number iso-lines
(∆M = 0.025). Sonic line is marked by dashed line in the interferograms and by
thick line in numerical results. We can compare change of upstream part of the flow
using a change of sonic line as well as change downstream of the flow. Numerical re-
sults are similar to interferograms in upstream part of flow. Differences are observed
between numerical and experimental data in downstream part because of inviscid
flows considered in numerical results.
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(a) Exp.: M∞ = 0.832, α = 0o; Num.: M∞ = 0.850, α = 0.9o, m = 90

(b) Exp.: M∞ = 0.849, α = 0o; Num.: M∞ = 0.930, α = −2.0o, m = 20

Fig. 3.3. Transonic flows. Comparison of experimental and numerical results.

(a) Exp.: M∞ = 0.946, α = 0o; Num.: M∞ = 1.050, α = 0o, m = 40

(b) Exp.: M∞ = 0.982, α = 0o; Num.: M∞ = 1.080, α = 0o, m = 70

(c) Exp.: M∞ = 1.073, α = 0o; Num.: M∞ = 1.150, α = 0o, m = 40

Fig. 3.4. Supersonic flows. Comparison of experimental and numerical results.

4. Unsteady viscous compressible flow in symmetrical channel. Figure
4.1 shows domain of solution D2 called the symmetrical channel. The computational
domain is only the lower half of the channel. The upper boundary represents the axis
of symmetry. Lower boundary represents solid wall and part of wall between points
A,B is changing as a given function of time g(t). Boundary conditions are considered
in the following form:

a) Upstream conditions: 3 values of W are given, pressure is extrapolated.
b) Downstream conditions: pressure is given, other values are extrapolated.
c) On the solid wall velocity vector (u, v)wall = ~0 and temperature Tn = 0 are

considered.
d) At the axis of symmetry (u, v) · ~n = 0 is considered.
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Fig. 4.1. Domain of solution D2 the symmetrical channel.

4.1. Numerical solution of flow in a symmetrical channel. For numerical
solution of the system (2.1) explicit MacCormack finite volume scheme in predictor
corrector form which is of the 2nd order of accuracy in time and space is used.
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Equation (4.1) represents MacCormack scheme for viscous flow in a domain with
moving grid of quadrilateral cells. Moving grid in unsteady domain is described using
Arbitrary Lagrangian-Eulerian (ALE) method which defines projection of reference
domain D0 to a domain in time Dt [5]. It defines other fluxes ~skWk in MC scheme
where vector ~sk represents a velocity of edge k. Approximations of conservative
variable Wk and diffusive components Rk, Sk on edge k are central. The second
derivatives (dissipative terms) on edge are approximated using dual volumes [7] as is
shown in Figure 3.2.

Inviscid numerical fluxes are approximated as follows:
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(4.2)

The last term of MC scheme is Jameson artificial dissipation AD(Wi,j)n that is added
to schemes with higher order of accuracy to stabilise a numerical solution [6]:

AD(Wi,j)
n = C1γ1(W

n
i+1,j − 2W n

i,j + W n
i−1,j) + C2γ2(W

n
i,j+1 − 2W n

i,j + W n
i,j−1).(4.3)

C1, C2 ∈ R are constants and normed pressure gradients have form:

γ1 =
|pn

i+1,j − 2pn
i,j + pn

i−1,j |
|pn

i+1,j |+ 2|pn
i,j |+ |pn

i−1,j |
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i,j+1|+ 2|pn
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Then we can compute a vector of conservative variables W in a new time level tn+1:

Wn+1
i,j = W

n+1

i,j + AD(Wi,j)n.(4.5)
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(a) Steady solution, initial state t = 0

(b) Convergence to a steady solution

Fig. 4.2. The steady numerical solution of viscous compressible (laminar) flow in the symmet-
rical channel, M∞ = 0.02, Re ≈ 9 · 103, Mmax = 0.0938, 400x50 cells.

Stability condition of the MacCormack scheme (on regular orthogonal grid) reduces
time step to:

∆t ≤ CFL
|umax|+c
∆xmin

+ |vmax|+c
∆ymin

+ 2
Re ( 1

∆x2
min

+ 1
∆y2

min
)
,(4.6)

where c denotes local speed of sound, condition CFL < 1 and minimal step of grid in
y-direction is ∆ymin ≈ 1√

Re
due to boundary layer.

4.2. Numerical results of unsteady viscous flow in the channel. The
domain D2 contains 400x50 cells for length L = 8 and width of computed domain
H = 0.4. Parameters considered for computation are set: inlet Mach number M∞ =
0.02 (v∞=6.68 m/s), dimension frequency of solid wall between points A, B (see Fig.
4.1) is f = 20 Hz and Reynolds number is Re ≈ 9 · 103. Figure 4.2(a) shows a steady
solution of viscous laminar flow in the symmetrical channel. Maximal Mach number
in domain was computed Mmax = 0.0938. Figure 4.2(b) shows convergence to a
steady solution that is followed using L2 norm of momentum residuals (ρu). It seems
to be relatively good for this case with very low Mach number. Figure 4.3 shows
development of the unsteady viscous compressible laminar flows in the domain D2 in
several time layers in the third period of oscillations. For computation of the unsteady
solution the steady solution was used as an initial state. The highest Mach number
was achieved when the minimum gap was reached, nearly after the glottal-width
began to open. The maximum computed value of Mach number is Mmax = 0.5174
at the point x = 2.325 at the channel axis in time t = 21/40 π. Domain D2 with its
boundary conditions represents a simple case of flow in a human vocal tract [8, 9].
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(a) t = 4π, Mmax = 0.0935

(b) t = 4π + π
2
, Mmax = 0.5139

(c) t = 4π + 21π/40, Mmax = 0.5174

(d) t = 5π, Mmax = 0.0949

(e) t = 4π + 3π
2

, Mmax = 0.0523

(f) t = 6π, Mmax = 0.0935

(g) Legend of Mach numbers

Fig. 4.3. The unsteady numerical solution of viscous compressible (laminar) flow in the sym-
metrical channel, M∞ = 0.02, Re ≈ 9 · 103, 400x50 cells.
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5. Conclusions. In the first case a numerical method solving 2D compressible
system of Euler equations using finite volume method was developed. This method
was realized for high Mach number flows in DCA 8% cascade. It was numerical
simulation of CS scheme to show that also this scheme with accuracy of k ∈ (1, 2)
order is able to successfully simulate real high speed transonic flows. The numerical
results were compared to interferometric measurements of IT CAS CZ. Comparison
seems to be very good in upstream part of the flow-field and part between the profiles.
The flow in downstream part shows some differences caused by the fact that real flow
is viscous but for numerical solution only inviscid model has been used.

In the second case a numerical method solving 2D unsteady compressible system
of Navier-Stokes equations using finite volume method was developed. This unsteady
method was realized for very low Mach number flows in a 2D channel with changing
part of solid wall as a given function of time. It is interesting, that in flows with
very low Mach numbers described by the system of Euler equations is necessary to
modify traditional numerical methods to converge in this problem but for the system
of Navier-Stokes equations these methods are working well. For the case of vocal tract
simulation by compressible viscous system, these unsteady results are one of the first
in the world.
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