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NUMERICAL SOLUTION OF A FLOW OVER AN OBSTACLE
KATE�INA SEINEROVÁ1

Abstract. This paper deals with a numerical solution of a viscous �ow over a two-dimensional
hill. The mathematical model is based on a system of Navier-Stokes equations for an incompressible
�ow. Space discretization is done by a central �nite di�erence method, time discretization by a
multistage Runge-Kutta method. To compute pressure in time, arti�cial compressibility method
and time-marching method are used. Several numerical results of �ows over a hill are presented.
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1. Introduction. Flows over topography have attracted a great interest from
not only �uid mechanics but also engineering in a variety of �elds. We consider two-
dimensional internal waves excited topographically in stably strati�ed �ows in the
atmospheric boundary layer (ABL) and in the channel of �nite depth. Under these
conditions, the �uid layer is bounded above by a horizontal rigid lid and below by a
two-dimensional surface-mounted obstacle.

2. Solved Problems. System 1 - Flow over a hill in the Atmospheric
Boundary Layer is described by the model which is based on Navier-Stokes equa-
tions for an incompressible �ow. Governing equations modi�ed according to the
method of arti�cial compressibility can be recast in a conservative, non-dimensional
and vector form.

R̃Wt + Fx + Gy =
R̃

Re
(Wxx + Wyy), (2.1)

where W = (p, u, v)T is the vector of unknowns; p is the pressure, (u, v)T is the
velocity vector. Re = U∞L

η/ρ = U∞L
ν is Reynolds number, R̃ = diag(0, 1, 1). The terms

F , G denote the inviscid �uxes and are de�ned by

F = (u, u2 + p, uv)T , G = (v, uv, v2 + p)T .

The �ow is investigated in a 2D spatial domain as shown in Fig. 2.1. Boundary
conditions for this case are set as follows:

a) in�ow: u = 1, v = 0, extrapolated pressure ∂p
∂x = 0,

b) out�ow: ∂u
∂x = 0, ∂v

∂x = 0,extrapolated pressure ∂p
∂x = 0,

c) upper boundary: ∂u
∂y = 0, v = 0, extrapolated pressure ∂p

∂y = 0,
d) bottom: u = 0, v = 0, extrapolated pressure: ∂p

∂y = 0.
System 2 - Flows over a hill in a channel of �nite depth (Strati�cation). This
problem is described by a system of Navier-Stokes equations similar to the previous
problem (2.1). Nevertheless, in this problem the density ρ is computed, together with
the velocity (u1, u2) and the pressure p, ρ′ is the density perturbation, % = %0 + %′,
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Fig. 2.1. Spatial domain in the atmospheric boundary layer

where %0 is the reference density. Boundary conditions are modi�ed according to [1]
by solving a similar problem.

∂uj

∂xj
= 0,

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xj
+

1
Re

∂2ui

∂x2
j

− ρδi2

Fr2
, i = 1, 2, (2.2)

∂ρ′

∂t
+ uj

∂ρ′

∂xj
= u3,

where Fr denotes the Froud number, and δij is the Kronecker delta.
The �ow is investigated in a 2D spatial domain as shown in Fig. 2.2. Boundary

conditions for this case are set as follows:
a) in�ow: u1 = 1, u2 = 0, extrapolated pressure ∂p

∂x1
= 0, p0 = 0.5, ρ′ = 0,

b) out�ow: ∂u1
∂x1

= 0, ∂u2
∂x1

= 0, ∂ρ′

∂x1
= 0, extrapolation ∂p

∂x1
= 0, ∂ρ′

∂x1
= 0,

c) upper boundary: ∂u1
∂x2

= 0, u2 = 0, extrapolated pressure: ∂p
∂x2

= 0, ρ′ = 0,
d) bottom part: except of the hill - the free-slip conditions are applied u2 = 0,

∂p
∂x2

= 0, ∂u1
∂x2

= 0, ρ′ = 0;
on the hill surface - non-slip condition u1 = 0, u2 = 0, extrapolation: ∂p

∂x2
= 0,

∂ρ′

∂x2
= 0 are used.

3. Numerical Solution. To discretize the governing system of equations in
space, a non-orthogonal structured boundary following the grid is constructed. Grid
layers form an orthogonal system; the non-orthogonality is introduced to the grid by
the curved terrain pro�le as shown in Fig 3.1. The �nite-di�erence discretization
is developed using a Taylor expansion for derivatives as follows.
a) Approximation of the 1st derivative in orthogonal grid is obtained

∂U

∂x
∼ 1

2

(
Ui+1 − Ui

xi+1 − xi
+

Ui − Ui−1

xi − xi−1

)
.
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Fig. 2.2. Spatial domain in the channel

b) The coordinate system is transformed and the derivative approximation is obtained:

DxUij =
Ui+1,j − Ui−1,j

24s. cos α
− sin α(Ui,j+1 − Ui,j−1)

2.4y cosα
, α =

α− + α+

2
.

c) Approximation of the 2nd derivative in orthogonal grid is obtained:

∂2U

∂x2
∼ 2

xi+1 − xi−1

(
Ui+1 − Ui

xi+1 − xi
− ...− Ui − Ui−1

xi − xi−1

)
.

d) The coordinate system is transformed and the second derivative approximation is
obtained:

DxxUij =
Ui+1,j − 2Uij + Ui−1,j

(4s. cosα)2
− ...

...− 2 sinα(Ui+1,j+1 − Ui+1,j−1 − Ui−1,j+1 + Ui−1,j−1)
4.4s.4y. cos2 α

+
sin2 α(Ui,j+1 − 2Uij + Ui,j−1)

(4y. cos α)2
+ ...

... +
Ui+1,j − Ui−1,j

4.4s2. cos α

(
1

cos α+
i

− 1
cos α−i

)
− sin α(Ui+1,j − Ui−1,j)

4.4s.4y. cosα

(
1

cos α+
j

− 1
cos α−j

)
− ...

...− Ui,j+1 − Ui,j−1

4.4y.4s. cosα

(
sin α+

i

cos α+
i

− sin α−i
cos α−i

)
+

sin α(Ui,j+1 − Ui,j−1)
4. cos α.(4y)2

(
sin α+

j

cos α+
j

− sinα−j
cos α−j

)
.

For the time discretization, the 3-stage explicitRunge-Kutta method is used, which
is designed for treatment of the problems (2.1-2.2) - see [4]. We denote W = (p, u, v)T

in case of (2.1), or W = (p, u, v, ρ′)T in case of (2.2) and consider the following scheme:

W
(0)
ij = Wn

ij ,

W
(m)
ij = W

(0)
ij − αm4tRWm

ij , m = 1, 2, 3,

Wn+1
ij = W

(3)
ij ,
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Fig. 3.1. Transformation of coordinates along the hill

where

RW =
∂F

∂x
+

∂G

∂y
− R̃

Re
(4W ).

For the values of the constants αm, the reader is refered to [4].
Arti�cial compressibility and time-marching method. The solution procedure
used in our method to resolve pressure is based on the so-called arti�cial compressibil-
ity method. This requires to add the time derivative of the pressure to the continuity
equation, so the equation ∂uj

∂xj
= 0 transforms into ∂p

∂t + ∂uj

∂xj
= 0. For an expected

steady-state solution, this method is correct.
The governing system is then solved by a time-marching method. The governing

system of equations is solved in the computational domain under stationary boundary
conditions for t → ∞ (t is arti�cial time) to obtained the expected steady-state
solution for the pressure and the velocity components.

4. Numerical Results. In this section, results of the numerical solution of
a �ow over a hill are presented, which were obtained using a 250×100 grid with
Re = 2000. The top of the hill is in the height of 1/10 of the computational domain
height. These results were obtained from both numerical models - �ows in atmospher-
ical boundary layer and �ows in a channel. Examples di�er in boundary and initial
conditions and in used systems of equations.
Numerical Results of System 1. Isolines of velocity and pressure are shown in Fig.
5.3. Boundary conditions of this system (ABL) are no-slip conditions on the whole
surface. Fig. 5.1 deals with residua of presented examples to show the convergence of
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used methods. Residuum belonging to the computation of the system 1 is presented
in the middle part of Fig. 5.1.
Numerical Results of System 2. In Fig. 5.2 isolines of velocity and pressure are
shown; boundary conditions for this case (channel) are no-slip conditions on the hill
surface, free-slip conditions on the rest of surface.

As said earlier, in the case of computation of �ows in a channel the density
is computed. Figs. 5.4 and 5.5 demonstrate examples of the density perturbation
ρ′ = ρ− ρB and the density ρ. Results in both �gures di�er in value of ∂ρB

∂y . At the
lower boundary, there is ρL

B = 1 in the both cases; in the �rst case, ρU
B = 0, 8, and in

the latter case, ρU
B = 0, 5, at the upper boundary. ρB is an initial distribution of the

density.
Fig. 5.1 deals with residua, as mentioned above. Both the �rst and the third

residuum belong to the computation of the system 2 (channel). The �rst one is the
residuum of the computation of �ows in a channel with values ρL

B = 1 and ρU
B = 0, 8;

the last one shows the residuum belonging to �ows in a channel with values ρL
B = 1

and ρU
B = 0, 5 .

5. Conclusion. A short description of computed problems - �ow in the atmo-
sphere and in a channel of �nite depth - is presented in this paper, and the �rst
achieved numerical results are discussed. All the important methods used for the
computation are mentioned as well. In the future, results shown in this paper will
be compared with next numerical results of the same problems obtained by di�erent
numerical methods.
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Fig. 5.1. Residua. 1. Flows in a channel, ρL
B = 1 and ρU

B = 0.8. 2. Flows in the atmospherical
boundary layer, ρL

B = 1 and ρU
B = 0.8. 3. Flows in a channel, ρL

B = 1 and ρU
B = 0.8.
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Velocity isolines
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Fig. 5.2. Model of a �ow in a channel of �nite depth. Isolines of velocity and pressure. No-
slip conditions on the hill surface, free-slip conditions on the rest of surface. Re = 2000, number of
iterations 10000.
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Fig. 5.3. Model of a �ow in the atmospheric boundary layer. Isolines of velocity and pressure.
No-slip conditions on all the surface. Re = 2000, number of iterations 10000.
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Fig. 5.4. Model of a �ow in a channel of �nite depth. Isolines of density perturbation for.
Upper �gure ρL

B = 1 and ρU
B = 0.8, lower �gure ρL

B = 1 and ρU
B = 0.5. Re = 2000, number of

iterations 10000.
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Fig. 5.5. Model of a �ow in a channel of �nite depth. Isolines of density. Upper �gure ρL
B = 1

and ρU
B = 0.8, lower �gure ρL

B = 1 and ρU
B = 0.5. Re = 2000, number of iterations 10000.
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