The best constant of discrete Sobolev inequality on regular polyhedron

Kametaka Yoshinori, Osaka University

The best constant of discrete Sobolev inequality on regular polyhedron is obtained. The simplest case is the case of tetrahedron. The discrete Laplacian of it is the 4×4 matrix

$$
A=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right)
$$

Theorem For any $u \in \mathbb{C}^{4}$ satisfying $\sum_{j=0}^{3} u(j)=0$ it holds an inequality

$$
\left(\max _{0 \leq j \leq 3}|u(j)|\right)^{2} \leq C u^{*} A u
$$

with suitable positive constant C. Among such C the best constant is $C_{0}=3 / 16$. If we substitute C by C_{0} then the equality holds for $u=(3,-1,-1,-1)$, $(-1,3,-1,-1), \quad(-1,-1,3,-1), \quad(-1,-1,-1,3)$.

For regular M-hedron the best constants $C_{0}(M)$ are as follows:

$$
\begin{aligned}
& C_{0}(4)=3 / 16, \quad C_{0}(6)=29 / 96, \quad C_{0}(8)=13 / 72 \\
& C_{0}(12)=137 / 300, \quad C_{0}(20)=7 / 36
\end{aligned}
$$

