Hierarchical structure of Green functions and the best constant of Sobolev inequality corresponding to a bending problem of a beam

Hiroyuki Yamagishi
Tokyo Metropolitan College of Industrial Technology

We consider 16 different 2 points boundary value problems for a bending of a beam.

$$
\left\{\begin{array}{l}
\operatorname{BVP}(\alpha, \beta) \\
u^{(4)}-p u^{\prime \prime}+q u=f(x) \\
u_{\alpha_{i}}(-1)=u_{\beta_{i}}(1)=0 \quad(-1<x<1) \\
\hline=0,1)
\end{array}\right.
$$

$u(x)$: bending of a beam, $f(x)$: density of a load, $p>0$: tension, $q>0$: spring constant. We assume that $(p / 2)^{2}>q>0, p>0$. This assumption is equivalent to $p=a^{2}+b^{2}, q=a^{2} b^{2}, a>$ $b>0 . u_{0}=u, u_{1}=u^{\prime}, u_{2}=u^{\prime \prime}, u_{3}=u^{\prime \prime \prime}, u_{\widetilde{3}}=u_{3}-p u_{1} . \alpha=\left(\alpha_{0}, \alpha_{1}\right)$ and $\beta=\left(\beta_{0}, \beta_{1}\right)$ takes values $(0,1)$ (clamped), $(0,2)$ (Dirichlet), (1,3) (Neumann) and ($2, \widetilde{3}$) (free).

For any bounded continuous function $f(x), \operatorname{BVP}(\alpha, \beta)$ has a unique classical solution

$$
u(x)=\int_{-1}^{1} G(x, y) f(y) d y \quad(-1<x<1)
$$

where $G(x, y)=G(\alpha, \beta ; x, y)$ is Green function.
Theorem 1 All Green functions are positive valued and have the suitable hierarchical structure of 16 Green functions.

We introduce Sobolev space $H=\left\{u(x) \mid u(x), u^{\prime}(x), u^{\prime \prime}(x) \in L^{2}(-1,1), \quad A(\alpha, \beta)\right\}$

$$
\begin{array}{ll}
A(0,1,0,1): & u(-1)=u^{\prime}(-1)=u(1)=u^{\prime}(1)=0 \\
A(0,2,0,2): & u(-1)=u(1)=0 \\
A(1,3,1,3): & u^{\prime}(-1)=u^{\prime}(1)=0 \\
A(2, \widetilde{3}, 2, \widetilde{3}): & \text { none }
\end{array}
$$

and Sobolev energy $\|u\|_{H}^{2}=\int_{-1}^{1}\left[\left|u^{\prime \prime}(x)\right|^{2}+p\left|u^{\prime}(x)\right|^{2}+q|u(x)|^{2}\right] d x$.
Theorem 2 For any function $u(x) \in H$, there exists a positive constant C which is independent of $u(x)$ such that Sobolev inequality

$$
\left(\sup _{|y| \leq 1}|u(y)|\right)^{2} \leq C\|u\|_{H}^{2}
$$

holds. Among such C the best constant $C(\alpha, \beta)$ is given by

$$
C(\alpha, \beta)=\max _{|y| \leq 1} G(y, y)=G\left(y_{0}, y_{0}\right)
$$

If we replace C by $C(\alpha, \beta)$ in the above inequality, then the equality holds for $u(x)=c G\left(x, y_{0}\right)(-1<$ $x<1)$ where c is any complex number.

