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Abstract

The article describes a new model of water—ice phase transition in pores of a saturated porous medium. The model takes
into account the difference in specific volume between ice and water which causes structural changes in the porous medium.
Describing details of heat, phase, and structure dynamics, the model contributes to a deeper understanding of phenomena
in upper soil layers subjected to either seasonal conditions or climate changes. Governing multi-physics system of equations
includes the conservation of mass, momentum and energy at the pore level and includes the anisotropic Allen—-Cahn equation
for tracking the position of ice during nucleation and growth inside the pores. The model provides space—time behavior of key
quantities and describes the interaction of growing ice with pore geometry and surrounding grains. The governing system of
equations is solved by the finite-element method to provide several qualitative computational studies of the ice growth inside
a porous structure.
©2023 Elsevier B.V. All rights reserved.
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1. Introduction

The behavior of soil surface subjected to freezing and thawing due to seasonal dynamics or climate changes
represents an interesting multi-physical topic of research coupling thermodynamics and structural changes of porous
medium with applications in design and maintenance of structures (see [1,2]) in regions suffering from larger
temperature variations, exploitation of oil and gas resources in cold regions (see [3]) or in leakage of methane or
carbon dioxide from melting permafrost into the atmosphere (see [4,5]). Modeling such phenomena can contribute
to a better understanding of climate evolution, the release of greenhouse gases, and also to progress in high-tech
materials design.

Freezing and thawing in a porous medium as a heterogeneous structure involves thermal as well as structural
dynamics. It is controlled by heat transfer, mostly between the soil surface and the atmosphere. The difference
between the specific volume of water and ice causes expansion or shrinkage of pores, leading to displacement of
grains and flow of water between them. Thin-film transport effects between ice and grains contribute to additional
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water transport. As a consequence, the porous medium expands wherever it can, mostly upwards, and creates a
variety of surface patterns observable by the naked eye.

The problem of soil freezing has been studied over the last century (e.g. in [6-8]). In past decades, some
more comprehensive and general approaches appeared in [5,9—11]. They use the thermodynamical principles of
macroscopic poroelasticity involving constitutive relations (see [12]), or use phenomenological analogies with
isothermal unsaturated porous mechanics (see [11,13,14]). The theory based on macroscopic thermodynamics
incorporating a nonlinear variational approach has been established as well in [15]. Interfacial premelting and
liquid films are analyzed, e.g. in [16,17]. Macroscopic thermo-hydro-mechanical modeling of frost action and
frost directional penetration is contained in [18,19], ice lenses formation is simulated in [20]. Applications in real
situations require careful treatment of phase transition dynamics and sometimes simplifications (as in [9,21]). As
some field and experimental observations suggest (e.g. in [14,22,23]), there is a need for comprehensive theory
describing the complexity of solidification processes in a porous medium.

To enhance such knowledge within the context of particular experimental evidence, a multi-physics macroscopic
model of porous medium solidification with structural changes has been described in [24]. A pore-scale model
considering geometrically symmetric pores in 2D has been developed in [25] whereas a general pore-scale model
of freezing has been announced in [26].

In this article, we use our experience in modeling micro-scale solidification processes in material science (see,
e.g. [27-31]), incorporate anisotropy and solid-phase expansion into the elementary phase transition, consequent
structural dynamics, and consider the onset of the water—ice phase transition in a two-dimensional porous medium
structure at the smallest pore scale. The Stefan problem with surface tension describing the phase transition is
transformed into the phase-field model including the difference in phase-specific volumes where the position of
the phases is tracked by the diffuse-interface Allen—Cahn equation. Suitable boundary conditions for the phase
function correspond to the existence of a thin liquid film along grain boundaries. The mechanical behavior of the
heterogeneous structure is described by the momentum conservation laws for each phase and grains. In Section 2,
we summarize corresponding conservation laws for mass, momentum, and energy and provide constitutive laws for
fluxes. In Section 3, we formulate the pore-scale multi-physics model weakly for treatment by the finite-element
method and provide several computational studies that use the model to study the freezing dynamics within the
pore-scale geometry.

2. Phase transition with structural effects

The micro-scale model of porous medium freezing and thawing with structural changes treats a saturated porous
medium at the scale of several pores. The model is presented in the two-dimensional case. Without any restriction,
it can be set in three-dimensional domains. The representative volume consisting of grains and pores filled by a
water—ice system has sizes ranging between 1 pum and 1 mm. As the changes in the specific volume of phases
produce forces leading to displacements in solid parts and flow in liquid parts, the Lagrangian coordinates are used.

A schematic cross-section of the pore structure is depicted in Fig. 1. Due to the size and shape of particular
grains, the curvature of the growing solid phase is comparable to the curvature of grains. Their interaction due to
surface tension causes an effective change of the temperature at which the porous medium freezes or melts (see [24]
and references therein).

The position of particular phases dynamically changes due to the phase transition process and, unlike in [25] for
symmetric pore geometry, it cannot be guessed from other governing quantities. Therefore, a method commonly
used in material science (see [27,32,33]) known as the phase-field method is used to track the position of both
phases. In subsequent sections, particular parts of the model are described in detail and coupled together.

2.1. Volume, coordinates and forces

The domain occupied by the heterogeneous structure of the porous medium under phase transition with volumic
variation requires a coordinate system respecting the displacement of particular parts by forces produced by the
volume changes. If X denotes the position of a material point in the reference frame, then its position change
due to displacement at a given time ¢ is X + u(X, ¢). Below, the conservation laws are formulated in a geometry
corresponding to the initial Lagrangian configuration.
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water

ice grain

Fig. 1. Illustration of the domain with the representative volume with the grains m, water w and ice i.

Under the assumption of small deformations (compare to [25,34]), the momentum conservation law for the phase
j € {i, w, m} is expressed as
. 8211 j
Q./ 9 l2
where g; is the phase volumetric mass density, o ; is the stress tensor and V is the gradient vector with respect to

the components of X. We assume that the solid phases m, i comply with linear elasticity. Thus their stress tensors
can be related to the small deformation tensor ¢

=V.o,, inf2, je{i,w m} (1)

R 1 .
&) = 5(Vu, +(Vup)h), j e {i,m} 2)
and reads as
Ej N l)jEjV LY A, .
L= ; — -] ,m}, 3
= Ty, Mt Ty =y S e tem ©)

where E; is the Young modulus, v; is the Poisson ratio, and [ is the unit tensor. We assume that the water phase
w is a viscous Newtonian fluid characterized by the stress tensor

oy =—pl + pw(Vv, + (Vv,)D), )

where p is the pressure, p is the dynamic viscosity, and v,, is the Lagrangian water velocity.
As in [34], the equation of continuity for water as a slightly compressible fluid that reads
p

owEy

On the interfaces between ice, water and grains I, [}, Iyn, the coupling conditions of displacement and forces

are described, in general, by nonlinear equations coupling the states of neighboring domains (compare with [35]).

Assuming small deformations and using linearization as in [34], the mechanical coupling is through the continuity
of displacement and normal forces (see also [36]).

For the intersection of three interfaces, an additional condition should be considered. At equilibrium, the Young
law is commonly used to determine the contact angle of the interfaces with respect to their surface energies.
In dynamical situation, the no-slip condition may lead to nonintegrable flow singularities at the contact of lines
(see [37,38]). The phase-field treatment of the phase transition allows for the regularization of such singularity as
indicated in [39] and therefore handles this particular issue.

+V-.u, =0, in £2,. )

2.2. Energy balance

The energy conservation in the entire system is described by the enthalpy transport equation involving the heat
transfer and the latent heat release and is expressed in terms of the temperature 7 = T'(X, ¢) which naturally is
continuous across all subdomains (2,, {2, {2,. Since the geometry is subject to small deformations, the enthalpy
balance is linearized and formulated within the Lagrangian framework.

3
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The conservation of energy within the subdomains (2,,, {2, {2, is expressed as
0;c; T +V - q; =0, j € (w.i,m), ©)

where c; is the specific heat capacity and q; is the heat flux.
Coupling conditions on the interfaces between ice and grain as well as between water and grain are given by
continuity of temperature and normal heat flux

T|m = T|w’ N30, - qmlm =m0, - qw|w on me,

(7
T|m = T|iv nyo, - qm|m =m0, - qili on Fim'

On the ice—water interface I,;, the first-order phase transition occurs where the specific latent heat /,, is being
absorbed or released. This is described by the conditions on this interface

T|i = T|w7

np,.-q; li — np,.- Qulw = 0ilm vr,; on Ly

®)

The second condition in (8) is known as the Stefan condition. It couples the jump in heat flux across I',; to the
Lagrangian normal velocity vr,, of the interface through the specific latent heat /,,. The role of this condition is
discussed e.g. in [40,41].

The conservation law (6) is accompanied by the constitutive expression for the heat flux in the form of the linear
Fourier law

where k; is the thermal conductivity of the phase j.
The Stefan condition (8) requires the assessment of the normal Lagrangian velocity vr,,. Its determination is
clarified below.

2.3. Motion of phase boundary

The phase interface I',; is driven by the temperature difference between the equilibrium ice melting point T,
and the current temperature of a given point on I, known as the undercooling (see [40,42,43] for details). The
corresponding motion law for I',; has the dissipative form relating the normal velocity of an interface point to the
mean curvature x of I',; and the undercooling

ayvr, = —yx+ 22Ty — 1), on I (10)
Tu
and is known as the Gibbs—Thomson equation. Its derivation assuming the effects of the pressure and the interfacial
entropy is presented in [40,44]. Here, « = a(ny) is the kinetic coefficient, y = y(ny,) is the surface tension, both
anisotropic, depending on the crystallographic orientation. Due to comparable curvatures of pores and crystals, the
anisotropy of growing ice (see, e.g. [45]) has limited space to develop. Despite of that, it is included in the model
using the approach of [46].

The motion law (10) itself has been widely treated in literature aiming at its mathematical properties (e.g. in [47])
and algorithms for its numerical solution. These methods rely on direct interface tracking [48,49], or parametric
description [50-52], or the level set evolution [53]. In the context of the complex geometry of a porous structure,
we use the phase-field method to track the nucleation and growth of particular crystals assuming a diffuse character
of I',; as described below.

The motion of I',; is augmented by the expansion of the ice phase due to the increase of specific volume. This
effect is captured by the Lagrangian coordinates and the stress-saturation tensor

E;
ag————
3(1 —2v;)
added to the elastic stress tensor of the water—ice system in agreement with [12,26]. Here, ag is the coefficient of
volumetric expansion due to the phase transition.

A

Y
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water interface ice

Fig. 2. Illustration of the typical profile of the function w across the solid (ice) and liquid (water) phases.

2.4. Cahn-Hilliard theory of diffuse interfaces

The geometric complexity of the porous structure through which the solid phase of ice grows or vanishes requires
a reliable and stable method for tracking the position of the ice crystals at each time moment and at any space
position. Such properties are brought by the phase-field method which generates a regularized characteristic function
for the position of the phases also known as the order parameter w = w(X, t) being 0 at one phase (water), 1 at
the other phase (ice) and varying smoothly between them across a narrow band of thickness & surrounding I,;
which is identified by the value w = % (see Fig. 2). The method is based on the Cahn-Hilliard theory of phase
transitions [54,55]. Such an approach has been widely used in the context of solidification modeling, fluid flow, and
crystal growth [27,31,33,56-58]. The mentioned theory derives a parabolic nonlinear partial differential equation
— the Allen—Cahn equation for the order parameter w

2 2 2 Qilm

a(Vw)y§ dw = y(Vw)E™Aw + fo(w) +§ IVwIT—(TM =T), (12)
M

with fo(w) = w1l —w)(w— %), in the form suggested in [33]. The equation alone or coupled to the heat conduction

equation has been thoroughly studied in the literature (see e.g. [30,33,46,59]). It has been shown employing the

matched asymptotics [33,56] that for &€ — 0, the Stefan condition (8) and the Gibbs—Thomson law (10) are recovered

at I',;:

ayEdw = yEAw + 1 fo(w)+EVw| G (Ty — T)

l

il
ayvr, = vk + Oilm

Ty

Ty —T)

2.5. Governing equations and boundary conditions

The phase field method allows us to unite the evolving water and ice subdomains and their interface into the
pore domain {2,. Correspondingly, the equation system is operating the pore domain {2, and on the grain domain
2, as illustrated in Fig. 3.

The governing system of evolution equations is summarized for ¢ € (0, #j,) as

chmatT =V .-&*,VT), in (2,
(woici + (1 — w)0ycy)d T =V - (wki + (1 — w)ky,)VT + il 0w, in £2,,

Qilm

af0w = y§ Aw + fow) + €[V == (T = T), in 2,
M
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a0,

0,

Fig. 3. Illustration of a domain with the parts (2, and (2, divided by the interface I3,. The unit vector ny normal to I, points out of (2,,.

Om———> = V. Om, in Qma (13)

d%u, ,
(wei + (1 —w)ow) 52 = V-6, inf2

P

(l—w)( ’; +v.up>=o, in 2,.

wH~w
It is accompanied by the constitutive relations

VuE,V -u, A

Ey
on = ——e(u,) +

1+, (I 4+v)d =2v,)
PR V,E;V-u, A
g, = Tvie(up) + ml, (14)
0, = —pl 4 ud,(Vu, + (Vu,)"),
o, =wo; +(1—-w)o, + wasﬁf.
The temperature, displacement, and forces are coupled across the boundary 7}, as
Tlw=Tlp, ny-kyVT)|p =04 (wk; + (1 —w)k,)VT)|p, (15)

um|m:up|pa n+'am|m=n+'ap|p~
The boundary conditions provide the heat-flux q,,, for the energy equation, water phase at the pore edges, and the
displacement-free boundary 9 {2r

nagjmfzm '(kaT)|m = Qout> naQJme . (kaT)|m = Qout»
for J =B,L,R, T,

Om - naQTQO = GP ’ naQTﬂme = O’ (16)
J_ C = ~ — —

naﬂ.lnf?m (O nBQJﬁQm) =0, u, - naﬂjﬂﬂm) =0, forJ=B,L,R,
L 9 = ~ fr —

Nona, (@) Myg,np,) =0, W, ny 5 ) =0, for /=B, LR,

wlan, =0,

where the symbol L means the tangent to the boundary. The last boundary condition in (16), for w, reflects the fact
that along grains in a porous medium, a water film always persists (see, e.g. [17]). Due to the nature of Eq. (12),
in case ice approaches grain, the remaining transition layer has a thickness of the order of &£. The initial conditions
are

Tli=o = Tinis  Wli=0 = Wini,

um|t:0 = Wy,0,ini>» 8tum|t:O = Wy, 1,ini>» (17)

up|t:0 = Wp 0,ini» atup|t:0 = Up, 1,ini-
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The above conditions are adjusted in Section 2 for each of the computational examples. From the solution of this

system, the phase interface is identified as w = %

3. Computational studies

The model (13)—(17) described above and summarized in Section 2.5 is solved in two-dimensional domains
representing vertical cuts of a porous medium.

3.1. Numerical solution

For the numerical solution, the space discretization is performed by the finite element method on a vertically
oriented domain {2 C R? sketched in Fig. 3 divided by the boundary I}, into the pore subdomain {2, and the grain
matrix subdomain (2,,, and on a time interval (0, g;,).

The system of governing Eqs. (13)—(17) is weakly formulated using the test functions

v, € H'(20), vr, € H'(12,),

vy e Vy={ve HI(QP)| U|m,, =0},

Vu, € Va, ={ve H' (2 R)| v -y 15 =0, J=B,L, R},
Vu, € Vu, ={ve H'(12,;R)| v- Ny np, =0, J =B, LR}
v, €V, = L*(£),),

and is represented by the following set of weak identities:

/ 0s¢cs0: Tvr, + kVT - Vur, dx +/ Qour V7, dS
Om AR

+ (wk; + (1 — w)k,)VT -njvg,dS =0,
I'y

(inci + (1 - w)chw)atTva + (U)kt + (1 - w)kw)VT : Vvadx (18)
2p

—/ Qilma,u)vT,,dx—i—/ qgu,vadS—/ kaT-nJrvadS:O,
2 e, I,

ilm
O Ty = Thvydx = 0,

/ CE2 0w + YEVW - Vo + fow)v + £ Vw| L
2 Tn

9%u,, .
va Vi + 0, Vv,dx + o,n, -v,dS =0,
Om

m

9%u
(wo; + (1 — w)Qw)sz VY, +0,:Vv,)dx — / 0Ny - v,dS =0,

2 Ty

Qp(l —w) <QWLva,, +V-u,- v,,) dx =0.
The numerical solution is obtained through the Faedo—Galerkin approximation of (18) (see, e.g. [60]) based on the
triangulations 7, of {2, and 7,, of (2, consisting of the triangular Lagrange elements of the second order. The
semi-discrete scheme consisting of ordinary differential equations is solved by the generalized o-method which is
implicit and second-order accurate (see [61]). In the pore subdomains, the diameter of elements is limited by the
phase-field small parameter & as indicated in the description of each computation. This guarantees proper behavior
of the Allen—Cahn equation in the form (12) as discussed in [33,46,59]. The algorithmic realization of the scheme
has been operated in the software Comsol.

3.2. Computational examples

The following computational examples describe the behavior of the model reflecting the ice phase growth inside
a pore structure, interaction with the grain structure, universal positioning of the solid phase in pores and expansion
of the medium due to the difference in density of the ice and water phases.

7
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Fig. 4. Computation 1: Temperature and ice phase evolution in a one-dimensional micro-pore (scale in m). The solid phase gradually grows
in the pore filled with the liquid phase. Due to different heat capacities and conductivities in water and grain, the temperature has different
slopes in the pore and the grains.

The setup of key physical quantities is summarized in Table 1. For porous medium mass and heat parameters,
see [62,63], ice properties are summarized, e.g. in [64], surface tension parameters in [65-67], and kinetics of
crystal growth in [68]. The phase diffuse interface layer is indicated by a couple of isolines w = 0.4, 0.6. The
two-dimensional ice anisotropy in (12) is, for simplicity, chosen as og/o = op/0 = 1 + 0.7 cos(66(Vw)) where
6(Vw) is the angle between the crystallographic orientation (e.g. set as 7 /8 in our computational examples) and
the vector ny,. For some details and complexity of ice crystals, see e.g. [49].

Computation 1. This study is computed on the domain shown in Fig. 4 above. It shows a one-dimensional columnar
symmetric porous structure where solidification occurs in the pore without considering the volumic expansion. The

8
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Table 1

Values of physical parameters.

Symbol Value Symbol Value Symbol Value

Cu 4.2 [k/(kg K)] Ci 2.1 [kJ/(kg K)] Cm 1 [kI/(kg K)]
£ ~10~% [m] Ew 5.33 [GPa] E; 7.8 [GPa]

En 75 [GPa] h 0.3 [wm] ku 0.6 [W/(m K)]
ki 0.6 [W/(m K)] o 0.6 [W/(m K)] I 334 [kI/kg]

n 180 [Pa s] Vi 0.33 [1] Vm 0.33 [1]

q 100 [W/m] r 3 [um] Ow 1000 [kg m3)
0i 920 [kg m~3] Om 2500 [kg m~3] Qg 0.13 [GPa]

o 1.85x 1077 [s m™2] % 0.033 [J m™2] e 0.5 [1]

rl)ulttml

Fig. 5. Illustration of the triangular domain representing a vertical cut of a regular porous structure with the particle radius » = 2.8 um and
particle distance m = 0.9 um.

initial temperature was T;,; = 268.15 K, the boundary temperature at both ends was 263.15 K, the nucleation
diameter was 40 pum, and the phase-field parameter is & = 8 x 10~7 m. Ice grows driven by undercooling as shown
in Fig. 4 with the spatial profile of the phase function w = w(#, x) evolving in time, correspondingly.

Computation 2. This study has been computed on the domain described in Fig. 5. It shows the phenomenon
of coalescence (merging two growing phases) well known in material science [69]. The process is driven by heat
exchange. The computation does not consider structural changes. The phase function has the zero Dirichlet boundary
condition, the Newton heat flux of qq,; = 30(272.15 — T) Wm™2 is on e and 1, right> and isolation is on Ipottom-
The initial temperature is 273.10 K, nucleation radii are 0.3 um, the phase-field parameter is £ = 5 x 10~% m, and
the maximum element diameter in the pore is 0.10 um. As a result of the time evolution, both ice crystals merge
and occupy the position centered within the pore as shown in Fig. 6.

Computation 3. This computation has been performed on the domain described in Fig. 7 with zero normal
displacement at the domain edges, zero Dirichlet boundary condition for the phase function and the Newton heat
flux quu = 30(272.15—T) W m~2 along the upper edge of the boundary, isolation along other boundary edges. The
initial temperature is 272.2 K, the nucleation radius is 0.3 um, and the phase-field parameter is & = 8 x 10~% m, the
maximum element diameter in the pore is 0.12 um. This study compares the phase transformation and structural
dynamics for three different positions of the nucleation site (a), (b), and (c). As a result of the time evolution in
the pore geometry, ice always occupies the position centered within the largest part of the pore as shown in the
third row of Fig. &.

Computation 4. Using the same domain described in Fig. 7 with zero normal displacement at the domain boundary,
zero Neumann boundary condition for the phase function, and the Newton heat flux q,,, = 300(270.65—T7) W m—2

9
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N |
273.06 273.07 273.08 273.09 273.10 273.11 273.12

-1 0 1 2 3 -3 -2 - 0 2 3 -3 -2 -1 0 1 2 3
[ [ [

t=0.0004s t=0.0010s t=0.0016s

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3
(] [ (o)

t=0.7500s t=1.7000s t=3.0000s

Fig. 6. Computation 2: Temperature distribution and solid phase evolution in a symmetric trifold micro-pore (scale in um). Two ice crystals
coalesce and create a single pattern centered in the pore. A thin diffuse interface remains between ice and grains.

6.00

5.00

4.00

2.00

1.00

0.00
0.00 1.00 2.00 3.00 4.00 5.00 6.00

a [pm]

Fig. 7. The domain represents a vertical cut of a pore structure for Computation 3, 4 and 6. The grains are in red and pore in blue. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

along the upper edge of the boundary, isolation along other boundary edges, the solidification dynamics is initiated
by a single nucleation site of radius 0.3 pm placed at the boundary. The initial temperature is 7;,; = 272.15 K. The
phase-field small parameter £ = 8 x 10~% m, the maximum element diameter in the pore is 0.12 um. As a result,
one can observe that ice grows from the boundary and fills the entire volume in a way similar to Computation 3 -
see Fig. 9 - but faster due to different thermal circumstances.

Computation 5. In a general porous structure within the domain described in Fig. 10 with zero normal displacement
at the domain right and bottom edges and free displacement at the domain top and left edges, zero Dirichlet
boundary condition for the phase function, and the heat flux 50 Wm~2 for ¢ > 0.5 s along the entire boundary, the
solidification dynamics is initiated by two nucleation sites of radius 10 um. The initial temperature is 7;,; = 273.15
K. The phase-field small parameter & = 8 x 107% m, and the maximum element diameter in the pore domain is

10
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N
272.00 272.20 272.40 272.60 272.80 273.00 273.150
6 6

[emn]

=}
S
w
IS
=3

[ema]

=3
o
w
IS
o
=

[

0 1 2 3 4 5 6

(©)

Fig. 8. Computation 3: Comparison of temperature, solid phase, and displacement evolution in a general pore for different positions of the
nucleus. The temperature is in a color scale, the phase boundary is indicated by a double isoline of w, and the displacement is indicated

by green arrows of proportional length. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

7 um. As a result, one can observe two ice phase areas coexisting due to a larger initial mutual distance. They
gradually approach and tend to fill the entire volume which expands due to the difference in specific volumes of
phases and free conditions on top and left edges — see Fig. 11.

11



A. Zdk, M. Bene§ and T.H. lllangasekare Computer Methods in Applied Mechanics and Engineering 414 (2023) 116166

272.00 272.20 272.40 272.60 272.80 273.00 273.150

G

3 3 4
[ppm] [pem] [pm]

5
=3
=
o
5%
=3

0 1 2 3 4

t=0.0001s t=0.1000s t=0.3000s

0 1 2 3 4 5 6 0o 1 2 3 4 5 6 o 1 2 3 4 5 6
(0] [ppn] (o]
t=0.5000s t=0.6000s t=0.7000s

(] [pmn] [1mn]
t=0.8000s t=1.0000s t=1.2000s

Fig. 9. Computation 4: Evolution of temperature, solid phase, and displacement in a general pore with nucleation at the pore boundary. The
temperature is in a color scale, the phase boundary is indicated by a double isoline of w, and the displacement is indicated by green arrows
of proportional length. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

y x 107 [m]

70,00 1.00 2.00
z x 1074 [m]

Fig. 10. The domain represents a vertical cut of a pore structure for Computation 5. The grains are in red and pore in blue. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Computation 5: Showing temperature, ice phase, and displacement dynamics in a small pore of general shape given in Fig. 10. In
(a), ice is in yellow, water in light blue, the phase boundary is indicated by a double isoline of w and the displacement is indicated by green
arrows of proportional length. The shape deformation is indicated by a violet contour with a scale factor 2. In (b), the temperature field is
in a color scale, the phase boundary is indicated by a double isoline of w. The displacement of both matrix and liquid phases through the
unconstrained domain boundaries is induced by the change in volume of forming solid phase. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Computation 6: Evolution of temperature, solid phase, and displacement in a general pore with homogeneous nucleation in the pore
volume. The temperature is in a color scale, the phase boundary is indicated by a double isoline of w, and the displacement is indicated

by green arrows of proportional length. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Computation 6. Using the domain described in Fig. 7 with zero normal displacement at the domain edges, zero
Neumann boundary condition for the phase function and the Newton heat flux q,,, = 300(270.65 — T) Wm™2
along the upper edge of the boundary, isolation along other boundary edges, the initial temperature is 7;,; = 272.15
K. The initial condition for the phase function w;,; = 0.5 + 0.1 cos(87x/6 x 107%) cos(8mx/6 x 107°) is set as a
perturbation of the metastable state w = 0.5 to induce a homogeneous nucleation. The phase-field small parameter
&€ = 8 x 107® m, and the maximum element diameter in the pore is 0.12 um. As a consequence of the initial
condition, ice nucleates spontaneously at various positions in the pore, grows, and fills the pore — see Fig. 12.

4. Conclusion

The model of solidification in a porous medium at the pore scale has been formulated by using the conservation
laws of mass, momentum, and energy. The phase dynamics is tracked through the anisotropic Allen—Cahn equation
which is coupled to the momentum evolution law. The model is able to describe the ice-phase expansion which
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induces the structural dynamics in the entire volume of the porous structure. It can serve for describing the onset
of the water—ice phase transition with mechanical effects in the pore structure.

The presented computational studies are two-dimensional. However, the model can be used in three-dimensional
pore geometry without any restriction, just with higher CPU costs. Further development of the model should be
directed to the interfacial phenomena between ice and grain matrix where specific transport phenomena have been
noticed in literature.
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