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NUMERICAL SOLUTION FOR SURFACE DIFFUSION ON GRAPHS

MICHAL BENEŠ1

Abstract. The article studies the motion of graphs by the surface Laplacian of the mean
curvature by means of the numerical algorithm based on the method of lines with the finite differences
in space. The semi-discrete scheme is analysed from the viewpoint of several integral properties and
is then used for the computations. We also present the numerical convergence results and investigate
the nonlinear dynamics of the problem.
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1. Introduction. This contribution deals with the evolution law

V = ∆Γ(H + F ) on Γ, (1.1)

for two-dimensional surfaces Γ embedded in the Euclidean three-dimensional space
R

3, which can be represented by graphs. Here, we denoted:
• Γ surface in R

3,
• nΓ normal vector to Γ,
• V is normal velocity of Γ,
• ∆Γ is Laplace-Beltrami operator with respect to Γ,
• H is mean curvature of Γ,
• F forcing term.

We study this evolution law within the context of solid state physics and material
science. The mentioned law (1.1) is described, e.g. in the results of Mullins [17], [18]
as a mechanism of surface formation under the action of chemical potential. Further
interesting application is in the microcrack formation as given in [1]. Phenomenology
of the problem is studied, e.g. in [8], [6]. Mathematical aspects of the problem are
partially discussed in [12], [11], computationally interesting results have been collected
in [7], [2], [10].

The purpose of the research is to provide a suitable tool for the study of surfacial
phenomena accompanying special surface treatment or behaviour of surfaces under
the influence of external forces. The extensive resource of such phenomena can be
found in the current research, as indicated by [13], [14].

The general field of application of the developed model can be in:
• body-shape dynamics as a result of surfacial processes,
• surface destruction as a result of external stress and vibration,
• computer data processing.

We also mention a certain diversity in the physical and mathematical terminology,
as indicated by [16]. Mathematical understanding of this phenomenon is related to
the shape changes due to the redistribution of the matter below the surface, whereas
physical investigation considers the surfacial atomic redistribution processes.
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Trojanova 13, 120 00 Prague, Czech Republic
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The parametric form of the evolution law has been studied in [10], the cylindrically
symmetric case in [9]. The graph evolution law has been extensivelly studied in [3], to
which we refer in the following text. Our approach is similar to the work [19] where
the Willmore flow is numerically treated by the method of lines.

2. The evolution for a graph. Our scope is given by the fact that we intend
to study the evolution of surfaces as graphs of real functions of two variables. More
precisely, we assume that there is a function Φ : R

1+2 → R such that

Γ(t) = {[x, y] ∈ R
3 | y = Φ(t, x), x ∈ Ω ⊂ R

2}.

For simplicity, we assume that Ω = (0, L1)×(0, L2) ⊂ R
2 is an open rectangle, we also

denote by ∂Ω its boundary, by n∂Ω its outer normal and by ∂n the normal derivative
with respect to n∂Ω.

Consequently, we express the quantities appearing in (1.1) in terms of this as-
sumption:

Q(∇Φ) =
√

1 + |∇Φ|2,

Ñ = [N,N3] = [−
∇Φ

Q(∇Φ)
,

1

Q(∇Φ)
],

V =
1

Q(∇Φ)

∂Φ

∂t
,

H = [∇, ∂y] · Ñ = ∇ · N,

where Ñ = [N,N3] is the normal vector to Γ, ∇ = [∂x1
, ∂x2

] the gradient with respect
to x = [x1, x2] ∈ Ω. If g : R

2 → R is a suitable smooth function, g = g(x), we express
the Laplace-Beltrami gradient ∇Γ of g, and the Laplace-Beltrami operator ∆Γ of g

as follows:

∇Γg = [∇, ∂y]g − ([∇, ∂y ]g · Ñ)Ñ = [∇g, 0]− ([∇g, 0] · Ñ)Ñ,

= [∇g − (∇g ·N)N,−(∇g · N)N3],

∆Γg = (∇Γ · ∇Γ)g.

Consequently, we obtain

∆Γg =

3
∑

ij=1

(δij −NiNj) ∂ijg − H

3
∑

i=1

∂igNi =

2
∑

ij=1

(δij −NiNj) ∂ijg − H

2
∑

i=1

∂igNi

= ∆g −NT g′′N− H∇g · N,

where ∂i denotes the partial derivative with respect to the i-th component of x, ∂ij

denotes corresponding second partial derivative, g′′ denotes the corresponding Hessian
matrix.

By substituting the above given quantities into (1.1), we obtain the evolution
equations

1

Q(∇Φ)

∂Φ

∂t
= ∆(H + F ) −

(∇Φ)T (H + F )′′∇Φ

Q(∇Φ)2
− H

∇(H + F ) · ∇Φ

Q(∇Φ)
, (2.1)

H = −∇ ·

(

∇Φ

Q(∇Φ)

)

, (2.2)
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which are viewed as the fourth-order PDE with respect to Φ. For simplicity, it is
endowed by the Dirichlet boundary conditions:

Φ|∂Ω = 0, H |∂Ω = 0, (2.3)

or alternatively, by the Neumann boundary conditions:

∂Φ

∂n

∣

∣

∣

∣

∂Ω

= 0,
∂H

∂n

∣

∣

∣

∣

∂Ω

= 0, (2.4)

and by the initial condition

Φ|t=0 = Φini. (2.5)

The boundary conditions (2.3)/(2.4) can be generalized.

Remark. We shall see later that the boundary conditions (2.4) will be accom-
panied by the condition

∂F

∂n

∣

∣

∣

∣

∂Ω

= 0, (2.6)

imposed on the forcing term in (1.1).

The evolution equation (2.1) can be rewritten into the divergence form which is
more useful from the viewpoint of analysis as well as numerical treatment.

Lemma 2.1. The system (2.1) has an algebraically equivalent form

∂Φ

∂t
= ∇ · (Q(∇Φ)(∇(H + F ) − (∇(H + F ) ·N)N) , (2.7)

H = −∇ ·

(

∇Φ

Q(∇Φ)

)

.

Proof. Assuming that the terms in (2.7) are smooth enough we perform the differ-
entiation of (2.7) and obtain

∂Φ

∂t
= Q(∇Φ)∆(H + F ) + ∇Q(∇Φ) · (∇(H + F ) − (∇(H + F ) · N)N)

−Q(∇Φ)NT (H + F )′′N− Q(∇Φ)(∇(H + F ) ·N)(∇ · N)

−Q(∇Φ)(∇(H + F ) · N∇N).

Taking into account the fact that

N∇N =
1

Q(∇Φ)
(∇Q(∇Φ) − (N · ∇Q(∇Φ))N) ,

we obtain the equality

∂Φ

∂t
= Q(∇Φ)∆(H + F ) − Q(∇Φ)NT (H + F )′′N + Q(∇Φ)H(∇(H + F ) · N),

which represents the equation (2.1). q.e.d.
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3. Several mathematical aspects of the evolution law. We denote:

(u, v) =

∫

Ω

uv dx for u, v ∈ L2(Ω).

Using standard approach to the weak formulation of an initial-boundary value prob-
lem, we multiply the equation (2.7) by a test function Ψ and the equation (2.2) by a
test function K (Ψ, K ∈ H1

0(Ω) for the homogeneous boundary conditions of the type
(2.3), Ψ, K ∈ H1(Ω) for the homogeneous boundary conditions of the type (2.4)), and
integrate over Ω. The use of Green’s formula yields

(
∂Φ

∂t
, Ψ) =

∫

∂Ω

Ψ (Q(∇Φ)(∇(H + F ) − (∇(H + F ) · N)N) · n∂ΩdS

−(Q(∇Φ)(∇(H + F ) · ∇Ψ − (∇(H + F ) ·N)(∇Ψ ·N)), 1),

(H, K) = −

∫

∂Ω

K(
∇Φ

Q(∇Φ)
· n∂ΩdS + (

∇Φ

Q(∇Φ)
,∇K).

The boundary integrals vanish due to the boundary conditions and we obtain the
following definition:

Definition 3.1. Let F = F (x) be a forcing term, F ∈ H1(Ω). The weak
solution for the problem with homogeneous Dirichlet boundary conditions is a couple
Φ, H : (0, T ) → H1

0(Ω) which satisfies a.e. in (0, T ), for each Ψ, K ∈ H1
0(Ω)

(
∂Φ

∂t
, Ψ) + (Q(∇Φ)(∇(H + F ) · ∇Ψ − (∇(H + F ) ·N)(∇Ψ ·N)), 1) = 0, (3.1)

(H, K) − (
∇Φ

Q(∇Φ)
,∇K) = 0,

and the initial condition

Φ|t=0 = Φini.

Weak solution for the problem with homogeneous Neumann boundary conditions is a
couple Φ, H : (0, T ) → H1(Ω) which satisfies the equalities a.e. in (0, T ), for each
Ψ, K ∈ H1(Ω).

Naturally, there is a close relationship between the strong and weak formulation
of the problem (1.1) as indicated in the following statement:

Lemma 3.2. Let Φ, H be a solution to the initial-boundary value problem (3.1)
which is smooth enough. Then it is the strong solution for (2.1).
The proof is simple and is mentioned, e.g. in [3].

Regardless of the chosen form of the graph evolution law (1.1), we observe the
following features of its solution. Most of them can also be found in [3]. We provide
their proof for better understanding of the analysis of our numerical scheme presented
later in the text.

Lemma 3.3. Let Φ, H be a solution to the initial-boundary value problem (2.7)
with F = 0. Then the following property holds

d

dt

∫

Ω

Φdx = 0,

provided the boundary conditions (2.4) are imposed.
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Proof. We integrate the equation (2.7) over Ω and use Green’s formula:

d

dt

∫

Ω

Φdx =

∫

∂Ω

(Q(∇Φ)(∇(H + F ) − (∇(H + F ) · N)N) · n∂ΩdS.

The boundary integral vanishes provided F = 0 and the pair of homogenous Neumann
boundary conditions is applied. q.e.d.

Lemma 3.4. Let Φ, H be a solution to the initial-boundary value problem (2.7)
with F = 0. Then the following property holds

d

dt

∫

Ω

Q(∇Φ)dx +

∫

Ω

(

|∇H |2 − |∇H ·N|2
)

Q(∇Φ)dx = 0,

provided the boundary conditions either (2.3), or (2.4) are imposed.
Proof. The energy equality to prove is obtained by investigating the left-hand side
as follows:

d

dt

∫

Ω

Q(∇Φ)dx =

∫

Ω

∇∂tΦ · ∇Φ

Q(∇Φ)
dx =

∫

∂Ω

∂tΦ

Q(∇Φ)

∂Φ

∂n
dS −

∫

Ω

∂tΦ∇ ·
∇Φ

Q(∇Φ)
dx.

The boundary integral vanishes due to (2.3)/(2.4). Then, using (2.7)

−

∫

Ω

∂tΦ∇ ·
∇Φ

Q(∇Φ)
dx =

∫

Ω

H∇ · (Q(∇Φ)(∇(H + F ) − (∇(H + F ) · N)N) dx

=

∫

∂Ω

HQ(∇Φ)(∇(H + F ) − (∇(H + F ) · N)N · n∂ΩdS

−

∫

Ω

Q(∇Φ)(|∇H |2 − (∇H ·N)2)dx,

where the boundary integral again vanishes due to (2.3)/(2.4) and due to the assump-
tion F = 0. q.e.d.

4. Discretization. For the purpose of numerical solution of the law (2.7), we
derive a numerical scheme based on the method of lines together with the finite-
difference discretization of spatial derivatives. We introduce the following notation (g
is a suitable, at least continuous function defined on Ω̄):

h = (h1, h2) , h1 =
L1

N1
, h2 =

L2

N2
,

ωh = {[ih1, jh2] | i = 1, . . . , N1 − 1; j = 1, . . . , N2 − 1},

ω̄h = {[ih1, jh2] | i = 0, . . . , N1; j = 0, . . . , N2},

uij = u(ih1, jh2),

ux̄1,ij =
uij − ui−1,j

h1
, ux1,ij =

ui+1,j − uij

h1
,

ux̄2,ij =
uij − ui,j−1

h2
, ux2,ij =

ui,j+1 − uij

h2
,

∇̄hu = [ux̄1
, ux̄2

], ∇hu = [ux1
, ux2

].

We also use a projection operator Ph : C(Ω) → R
N1+1,N2+1 defined as Phg = g|ω̄h

.
The discretization of the Neumann boundary conditions requires definition of the grid
boundary normal difference un̄:
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un̄,0j = ux̄1,1j for j = 0, . . . , N2,
un̄,N1j = ux̄1,N1j for j = 0, . . . , N2,
un̄,i0 = ux̄2,i1 for i = 0, . . . , N1,
un̄,iN2

= ux̄2,iN2
for i = 0, . . . , N1.

We define the following expressions:

(f, g)h =

N1−1,N2−1
∑

i,j=1

h1h2fijgij , ‖f‖2
h = (f, f)h ,

(f1, g1c =

N1,N2−1
∑

i=1,j=1

h1h2f
1
ijg

1
ij ,

(f2, g2e =

N1−1,N2
∑

i=1,j=1

h1h2f
2
ijg

2
ij ,

(f ,g] = (f1, g1c + (f2, g2e, ‖f ]|2 = (f , f ],

(f, g] =

N1,N2
∑

i,j=1

h1h2fijgij ,

where f = [f1, f2] and g = [g1, g2].
For the purpose of analysis, we recall the grid version of Green’s formula proved

in [5]:
Lemma 4.1. Let p, u, v : ω̄h → R. Then Green’s formula is valid:

(∇h · (p∇̄hu), v)h = −(p∇̄hu, ∇̄hv] (4.1)

+

N2−1
∑

j=1

h2(pux̄1
|N1jvN1j − pux̄1

|1jv0j) +

N1−1
∑

i=1

h1(pux̄2
|iN2

viN2
− pux̄2

|i1vi0).

Then, we propose a semi-discrete scheme containing a time-dependent system of
ODEs for the unknown functions Φh, Hh : (0, T )× ω̄h → R

dΦh

dt
= ∇h ·

(

Q(∇̄hΦh)(∇̄h(Hh + F ) − (∇̄h(Hh + F ) ·Nh)Nh
)

, (4.2)

Hh = −∇h ·

(

∇̄hΦ

Q(∇̄hΦh)

)

, Nh = −
∇̄hΦh

Q(∇̄hΦh)
. (4.3)

According to (2.3)/(2.4), we consider two pairs of boundary conditions, alternatively:

Φh
∣

∣

γh

= 0, Hh
∣

∣

γh

= 0, (4.4)

or

Φh
n̄

∣

∣

γh

= 0, Hh
n̄

∣

∣

γh

= 0. (4.5)

The initial condition is written as follows

Φh
∣

∣

t=0
= PhΦini.

The scheme (4.2) is a system of first-order differential equations in the initial-value
problem. We resolve it by means of the Runge-Kutta method with the step adaptivity
(Merson variant) as described in [15] and as used e.g. in [5], [4].



Surface diffusion 7

The scheme (4.2) satisfies the following features:
Lemma 4.2. Let Φh, Hh be a solution to the initial-boundary value problem (4.2)

with F = 0. Then the following property holds

d

dt
(Φh, 1)h = 0,

provided the boundary conditions (4.5) are imposed.
Proof. We sum (4.2) over ωh and use (4.1):

d

dt
(Φh, 1)h = +

N2−1
∑

j=1

h2(E
1
h|N1j − E1

h|1j) +

N1−1
∑

i=1

h1(E
2
h|iN2

− E2
h|i1),

where we have denoted

Eh = Q(∇̄hΦh)(∇̄h(Hh + F ) − (∇̄h(Hh + F ) · Nh)Nh, Eh = [E1
h, E2

h]. (4.6)

The boundary conditions (4.5) and the assumption F = 0 imply that

(Φh)n̄

∣

∣

γh

= 0, (Hh + F )n̄

∣

∣

γh

= 0,

which yields the statement. q.e.d.

Lemma 4.3. Let ω̄h be a rectangular uniform mesh and let Φh, Hh be a solution
to the semi-discrete initial value problem (4.2) with F = 0. Then the equality

d

dt
(Q(∇̄hΦh), 1] + (

(

|∇̄hHh|2 − |∇̄hHh ·Nh|2
)

Q(∇̄hΦh), 1)h = 0,

holds provided the boundary conditions (4.4) are imposed, and the equality

d

dt
(Q(∇̄hΦh), 1)h + (

(

|∇̄hHh|2 − |∇̄hHh ·Nh|2
)

Q(∇̄hΦh), 1)h = 0,

holds provided the boundary conditions (4.5) are imposed
Proof. We multiply the equation (4.2) by Hh and sum over ωh:

(
dΦh

dt
, Hh)h = (∇h ·

(

Q(∇̄hΦh)(∇̄h(Hh + F ) − (∇̄h(Hh + F ) · Nh)Nh
)

, Hh)h.

(4.7)

The left-hand side of (4.7) becomes

(
dΦh

dt
, Hh)h = −(

dΦh

dt
,∇h ·

∇̄hΦh

Q(∇̄hΦh)
)h = (∇̄h

dΦh

dt
,

1

Q(∇̄hΦh)
∇̄hΦh]

−

N2−1
∑

j=1

h2(
1

Q(∇̄hΦh)
Φh

x̄1
|N1j

dΦh

dt

∣

∣

∣

∣

N1j

−
1

Q(∇̄hΦh)
Φh

x̄1
|1j

dΦh

dt

∣

∣

∣

∣

0j

)

−

N1−1
∑

i=1

h1(
1

Q(∇̄hΦh)
Φh

x̄2
|iN2

dΦh

dt

∣

∣

∣

∣

iN2

−
1

Q(∇̄hΦh)
Φh

x̄2
|i1

dΦh

dt

∣

∣

∣

∣

i0

),

where the boundary expressions vanish due to (4.4)/(4.5). The expression

(∇̄h

dΦh

dt
,

1

Q(∇̄hΦh)
∇̄hΦh] =

N1
∑

i=1

N2−1
∑

j=1

h1h2
dΦh

dt

∣

∣

∣

∣

x̄1,ij

1

Q(∇̄hΦh)ij

Φh
x̄1,ij

+

N1−1
∑

i=1

N2
∑

j=1

h1h2
dΦh

dt

∣

∣

∣

∣

x̄2,ij

1

Q(∇̄hΦh)ij

Φh
x̄2,ij .
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For the conditions (4.4), it becomes

N1
∑

i=1

N2
∑

j=1

h1h2
dΦh

dt

∣

∣

∣

∣

x̄1,ij

1

Q(∇̄hΦh)ij

Φh
x̄1,ij +

N1
∑

i=1

N2
∑

j=1

h1h2
dΦh

dt

∣

∣

∣

∣

x̄2,ij

1

Q(∇̄hΦh)ij

Φh
x̄2,ij

=
d

dt
(Q(∇̄hΦh), 1],

and for the conditions (4.5), it becomes

N1−1
∑

i=1

N2−1
∑

j=1

h1h2
dΦh

dt

∣

∣

∣

∣

x̄1,ij

1

Q(∇̄hΦh)ij

Φh
x̄1,ij +

N1−1
∑

i=1

N2−1
∑

j=1

h1h2
dΦh

dt

∣

∣

∣

∣

x̄2,ij

1

Q(∇̄hΦh)ij

Φh
x̄2,ij

=
d

dt
(Q(∇̄hΦh), 1)h,

We then have

(
dΦh

dt
, Hh)h =

d

dt
(Q(∇̄hΦh), 1],

for the conditions (4.4), and

(
dΦh

dt
, Hh)h =

d

dt
(Q(∇̄hΦh), 1)h,

for the conditions (4.5).
The right-hand side of (4.7) becomes

(∇h · Eh, Hh)h = −(Eh, ∇̄hHh]

+

N2−1
∑

j=1

h2(E
1
h|N1jH

h|N1j − E1
h|1jH

h|0j) +

N1−1
∑

i=1

h1(E
2
h|iN2

Hh|iN2
− E2

h|i1H
h|i0),

where again the boundary expressions vanish due to (4.4)/(4.5). As F = 0, we obtain

d

dt
(Q(∇̄hΦh), 1] + (Eh, ∇̄hHh] = 0,

in other words

d

dt
(Q(∇̄hΦh), 1] + (

(

|∇̄hHh|2 − |∇̄hHh ·Nh|2
)

Q(∇̄hΦh), 1)h = 0,

for the conditions (4.4), and

d

dt
(Q(∇̄hΦh), 1)h + (

(

|∇̄hHh|2 − |∇̄hHh ·Nh|2
)

Q(∇̄hΦh), 1)h = 0,

for the conditions (4.5). q.e.d.

Remark. The boundedness of the expression (Q(∇̄hΦh), 1)h, resp. (Q(∇̄hΦh), 1]
is obtained by means of the estimate

|∇̄hHh|2 − |∇̄hHh · Nh|2 ≥ |∇̄hHh|2(1 −
|∇̄hΦh|2

Q(∇̄hΦh)2
) =

|∇̄hHh|2

Q(∇̄hΦh)2
≥ 0,
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and by integration of the estimate for (Q(∇̄hΦh), 1)h, resp. (Q(∇̄hΦh), 1] over the
time interval.

Lemma 4.4. Let ω̄h be a rectangular uniform mesh and let Φh, Hh be a solution to
the semi-discrete initial value problem (4.2) with boundary conditions (4.4), or (4.5)
with Fn̄|γh

= 0. Then the following property holds

1

2

d

dt
‖Φh‖2

h + ‖Hh‖2
h ≤

√

L1L2‖∇̄hF ]|.

Proof. We again use the expression (4.6), multiply first equation in (4.2) by Φh, sum
over ωh and use (4.1):

1

2

d

dt
‖Φh‖2

h = −(Eh, ∇̄hΦh]

+

N2−1
∑

j=1

h2(E
1
h|N1jΦ

h|N1j − E1
h|1jΦ

h|0j) +

N1−1
∑

i=1

h1(E
2
h|iN2

Φh|iN2
− E2

h|i1Φ
h|i0),

where the boundary expressions vanish due to the conditions (4.4), or (4.5) with
Fn̄|γh

= 0. The remaining term becomes

(Eh, ∇̄hΦh] = (Q(∇̄hΦh)(∇̄hHh − (∇̄hHh · Nh)Nh), ∇̄hΦh]

+(Q(∇̄hΦh)(∇̄hF − (∇̄hF · Nh)Nh), ∇̄hΦh].

We realize that for g = Hh, or g = F we have

∇̄hg · ∇̄hΦh − (∇̄hg · Nh)(Nh · ∇̄hΦh)

= ∇̄hg · ∇̄hΦh −
1

Q(∇̄hΦh)2
(∇̄hg · ∇̄hΦh)|∇̄hΦh|2

=
1

Q(∇̄hΦh)2
(∇̄hg · ∇̄hΦh).

We then obtain that

(Eh, ∇̄hΦh] = (
1

Q(∇̄hΦh)
∇̄hHh, ∇̄hΦh] + (

1

Q(∇̄hΦh)
∇̄hF, ∇̄hΦh].

Testing the definition of Hh (4.3) by Hh itself, Green’s formula gives

(Hh, Hh)h = −(∇h · (
∇̄hΦh

Q(∇̄hΦh)
), Hh)h

= (∇̄hHh,
∇̄hΦh

Q(∇̄hΦh)
]

−

N2−1
∑

j=1

h2(
1

Q(∇̄hΦh)
Hh|N1jΦ

h
x̄1
|N1j −

1

Q(∇̄hΦh)
Hh|1jΦ

h
x̄1
|0j)

−

N1−1
∑

i=1

h1(
1

Q(∇̄hΦh)
Hh|iN2

Φh
x̄2
|iN2

−
1

Q(∇̄hΦh)
Hh|i1Φ

h
x̄1
|i0),
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where the boundary expressions vanish again due to (4.4), or (4.5). Finally, we obtain
the energy equality

1

2

d

dt
‖Φh‖2

h + (Hh, Hh)h = (
1

Q(∇̄hΦh)
∇̄hF, ∇̄hΦh],

leading by the fact that |∇̄hΦh|
Q(∇̄hΦh)

≤ 1 to the desired result. q.e.d.

As a consequence, the solution Φh, Hh exists on a common time interval (0, T ).

5. Computational results. We have performed a series of computations by
using (4.2) to show that it yields a good approximation of the original problem and
to investigate the solution itself. First, we show the quantitative solution analysis for
one-dimensional settings. Here, we measure the difference between two computations
by means of the following norms:

ErrorL∞−L2
= max

t∈〈0,T 〉

(
∫

Ω

|IhΦh − Ih̃Φh̃|2dx

)
1

2

,

ErrorL∞−L∞
= max

t∈〈0,T 〉
max
x∈Ω

|IhΦh − Ih̃Φh̃|,

where Ih is the piece-wise linear interpolation operator. We evaluate the experimental
order of convergence defined as follows

Errorh

Errorh̃

=

(

h

h̃

)EOC

.

In the computations, we use the boundary conditions (4.5) and the forcing term in
the form stimulating the pinch-off as F = CF

Φ . The parameter ∆t means the period
of the data output, NT number of such outputs, tol tolerance for the adaptive Mersn
time stepping (see also [15]).
Example 1 evolves a 1D perturbation which vanishes after a time. We measure the
difference between the particular numerical solution and the finest-grid solution. The
problem setting and the finest-grid parameters are indicated in Table 5.3. The graph
evolution is illustrated in Figure 5.1. The measured differences are summarized in
Table 5.1 and the EOC’s in Table 5.2. The CPU time is given by the system used in
this case (LINUX RedHat 8.0 on the Pentium IV, 1.4 GHz, 756 MB RAM, the code
compiled by the Intel Fortran Compiler 8.0).

Mesh h NT ErrorL∞−L2
ErrorL∞−L∞

CPU
0.0250000 10 0.0001783 0.0037160 0.4300000
0.0200000 10 0.0001145 0.0026200 1.3300000
0.0125000 10 0.0000467 0.0009820 13.3599997
0.0100000 10 0.0000350 0.0006600 40.8400002
0.0080000 10 0.0000248 0.0003950 124.8700027

Table 5.1

Table of numerical parameters and convergence errors for the Example 1.

Example 2 evolves a 1D perturbation which develops and increases in time (CF =
−100.0). We measure the difference between the particular numerical solution and the
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Fig. 5.1. Example 1: The shape of the solution which tends to a constant value.

Mesh h NT EOC for EOC for
ErrorL∞−L2

ErrorL∞−L∞

0.0250000 10 0.0000000 0.0000000
0.0200000 10 1.9857855 1.5661373
0.0125000 10 1.9072390 2.0879377
0.0100000 10 1.2866584 1.7806986
0.0080000 10 1.5423961 2.3005560

Table 5.2

Table of EOC coefficients Error versus h for the Example 1.

finest-grid solution. The problem setting and the finest-grid parameters are indicated
in Table 5.6. The graph evolution is illustrated in Figure 5.2. The measured differences
are summarized in Table 5.4 and the EOC’s in Table 5.5. The CPU time is given
by the system used in this case (HP UX PARISC HP 8000 1 GHz processor, 12 GB
RAM, the code compiled by the HP Fortran Compiler).

We proceed by the qualitative computational results indicating properties of the
solution such as fast elimination of peaks and slow elimination of spatially larger
variations of the initial condition.
Example 3 shows the situation when the initial perturbation simulating a surface
crack develops and increases in time (CF = −100.0). The problem setting and the
numerical parameters are indicated in Table 5.7. The graph evolution is illustrated in
Figure 5.3. The CPU time is given by the system used in this case (LINUX RedHat
8.0 on the Pentium IV, 1.4 GHz, 756 MB RAM, the code compiled by the Intel Fortran
Compiler 8.0).
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CF Ω ∆t NT tol mesh CPU
0.0 (0,1) 0.00001 10 0.0001 0.005 1297.45

Table 5.3

Table of the finest experiment parameters for the Example 1.

Fig. 5.2. Example 2: The shape of the solution which develops in time.

Mesh h NT ErrorL∞−L2
ErrorL∞−L∞

CPU
0.0250000 10 0.0031877 0.0214440 3.7200000
0.0200000 10 0.0023783 0.0160200 11.3599997
0.0125000 10 0.0009689 0.0061480 119.4100037
0.0100000 10 0.0004155 0.0021450 366.0799866

Table 5.4

Table of numerical parameters and convergence errors for the Example 2.

Mesh h NT EOC for EOC for
ErrorL∞−L2

ErrorL∞−L∞

0.0250000 10 0.0000000 0.0000000
0.0200000 10 1.3127408 1.3068131
0.0125000 10 1.9104705 2.0376677
0.0100000 10 3.7947932 4.7188773

Table 5.5

Table of EOC coefficients Error versus h for the Example 2.
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CF Ω ∆t NT tol mesh CPU
-100.0 (0,1) 0.0001 10 0.0001 0.005 11833.26

Table 5.6

Table of the finest experiment parameters for the Example 2.

CF Ω ∆t NT tol mesh CPU
-100.0 (0,1)x(0,0.5) 0.0001 11 0.0003 0.0166x0.0166 952.25

Table 5.7

Table of the experiment parameters for the Example 3.
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Fig. 5.3. Example 3: The shape of the solution which develops in time.
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Example 4 shows the situation when the initial circular perturbation develops and
increases in time (CF = −100.0). The problem setting and the numerical parameters
are indicated in Table 5.8. The graph evolution is illustrated in Figure 5.4. The CPU
time is given by the system used in this case (LINUX RedHat 8.0 on the Pentium IV,
1.4 GHz, 756 MB RAM, the code compiled by the Intel Fortran Compiler 8.0).

CF Ω ∆t NT tol mesh CPU
-100.0 (0,2)x(0,2) 0.00005 22 0.0003 0.02x0.02 2524.99

Table 5.8

Table of the experiment parameters for the Example 4.

Fig. 5.4. Example 4: The shape of the solution which develops in time.
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Example 5 shows the situation when the initial double-hill perturbation develops and
is supressed in time. The problem setting and the numerical parameters are indicated
in Table 5.9. The graph evolution is illustrated in Figure 5.5. The CPU time is given
by the system used in this case (HP UX PARISC HP 8000 1 GHz processor, 12 GB
RAM, the code compiled by the HP Fortran Compiler).

CF Ω ∆t NT tol mesh CPU
0.0 (0,2)x(0,2) 0.0004 20 0.0003 0.02x0.02 8235.34

Table 5.9

Table of the experiment parameters for the Example 5.

Fig. 5.5. Example 5: The shape of the solution which develops in time.

Example 6 shows the situation when the initial multi-hill perturbation develops and
is supressed in time. The problem setting and the numerical parameters are indicated
in Table 5.10. The graph evolution is illustrated in Figure 5.6. The CPU time is given
by the system used in this case (HP UX PARISC HP 8000 1 GHz processor, 12 GB
RAM, the code compiled by the HP Fortran Compiler).

6. Conclusion. In the article, we have presented the numerical scheme for the
motion of graphs by surface Laplacian of the mean curvature based on the method of
lines. The scheme has been analyzed concerning its stability features and used for the
computation. We have demonstrated the numerical convergence as well as nonlinear
behaviour of the solution leading to the crack formation.
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CF Ω ∆t NT tol mesh CPU
0.0 (0,2)x(0,2) 0.0003 60 0.0003 0.02x0.02 18682.61

Table 5.10

Table of the experiment parameters for the Example 6.

Fig. 5.6. Example 6: The shape of the solution which develops in time.
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