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NUMERICAL SOLUTION FOR THE WILLMORE FLOW OF

GRAPHS

TOMÁŠ OBERHUBER1

Abstract. In this article we present a numerical scheme for the Willmore flow of graphs.
It is based on the method of lines. Resulting ordinary differential equations are solved using the
4th order Runge-Kutte-Merson solver. We show basic properties of the semi-discrete scheme and
present several computational studies of evolving graphs.
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1. Introduction. For the purpose of this article we consider evolution of two
dimensional surface Γ(t) embedded in

�
3 such that it can be described as a graph

of some function u : (0, T 〉 × Ω →
�

, Ω ⊂
�

2. We investigate the following law

V = 24ΓH + H3 − 4HK on Γ (t) , (1.1)

where V is the normal velocity, 4Γ is the Laplace-Beltrami operator, H = κ1 + κ2

is the mean curvature, K = κ1 · κ2 is the Gauss curvature and κ1 and κ2 denote
the principal curvatures of the surface.

As follows from [5, 6, 7] the law (1.1) represents the L2-gradient flow for the
functional W defined as:

W (f) =

∫

Γ

H2dS, Γ = {(x, u (x)) | x ∈ Ω} . (1.2)

The gradient flow approach is described e.g. in [12]. Existence of the solution
under certain initial conditions was proved in [11, 8]. In [5] implicit numerical
scheme for the Willmore flow of graphs based on the finite element method together
with the numerical analysis is presented. A level set formulation for the Willmore
flow can be found in [6]. For the physical meaning of the minimization of (1.2)
we refer to [4]. In [7] the authors describe an algorithm for evolution of elastic
curves in

�
n. Interesting algorithm for parametrised curves driven by intrinsic

Laplacian of curvature can be found in [9] where the authors use tangential vector
for redistribution of the control points on the curve. Application for the surface
reconstruction of scratched objects is discused in [13].

We present a numerical scheme for the Willmore flow of graphs based on the
method of lines. For discretization in time we use 4th order Runge-Kutta type solver
which is explicite scheme. This method was succesfuly used for solving several
problems in interface motion [2]. Our work is related to [3] where the surface
diffusion for graphs is treated by a similar approach.

2. Problem formulation. We assume that Γ (t) is a graph of a function u of
two variables:

Γ (t) =
{

[x, u (t,x)] | x ∈ Ω ⊂
� 2
}

,
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2 T. Oberhuber

where Ω ≡ (0, L1) × (0, L2) is on open rectangle, ∂Ω its boundary and ν its outer
normal.

We express the quantities of (1.1) in terms of the graph description of Γ (t):

Q =

√

1 + |∇u|2; n =
∇u

Q
, (2.1)

V = −
ut

Q
, (2.2)

H = ∇ · n, (2.3)

K =
det D2u

Q4
, (2.4)

4ΓH =
1

Q
∇ ·

[(

QI −
∇u ⊗∇u

Q

)

∇H

]

. (2.5)

Lemma 2.1. For the graph formulation of the Willmore flow (1.1) takes the
following form

∂u

∂t
= −Q∇ ·

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

, (2.6)

w = Q∇ ·
∇u

Q
, (2.7)

where

� =
∇u

Q
⊗

∇u

Q
,

and

(u ⊗ v)ij = ui · vj .

Proof. The proof follows [5]. It is given here because of better understanding
of consequent results. We start with the expression (2.5) which can be written as

4ΓH = ∇ ·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇ (QH)

)

− H∇ ·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇Q

)

.

(2.8)
Using (2.3) we have

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇Q =
1

Q

(

∇Q −
4u

Q
∇u

)

+ H
∇u

Q
, (2.9)

from (2.4) and by a brief rearangement we obtain

∇ ·

(

1

Q

(

∇Q −
4u

Q
∇u

))

= −2K. (2.10)

Putting (2.9) and (2.10) into (2.8) we have

4ΓH = ∇ ·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇ (QH)

)

+ 2HK − H∇ ·

(

H
∇u

Q

)

= ∇ ·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇ (QH)

)

+ 2HK −
1

2
∇ ·

(

H2

Q
∇u

)

−
1

2
H3.

Together with (1.1), (2.2) and (2.7) we obtain (2.6).
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The above lemma allows to introduce the following problem:
Definition 2.2. A graph formulation for the Willmore flow is a system of two

partial diferential equations of the second order for u and w

∂u

∂t
= −Q∇ ·

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

in Ω × (0, T ) , (2.11)

w = Q∇ ·
∇u

Q
, (2.12)

u(·, 0) = uini,

with the Dirichlet boundary conditions

u |∂Ω= 0, w |∂Ω= 0, (2.13)

or the Neumann boundary conditions

∂u

∂ν
|∂Ω= 0,

∂w

∂ν
|∂Ω= 0. (2.14)

Remark: Multiplying (2.11) by test function ϕ ∈ H1
0 (Ω) in the case of the

Dirichlet boundary conditions, or ϕ ∈ H1 (Ω) for the Neumann boundary condi-
tions, summing over Ω and applying the Green theorem we have

∫

Ω

ut

Q
ϕ = −

∫

Ω

∇ ·

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

ϕ

=

∫

Ω

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

∇ϕ −

∫

∂Ω

[(

2

Q
( � − � )∇w

)

ν −
w2

Q3

∂w

∂ν

]

ϕ.

The last term vanishes because of the choice of the test function ϕ in the case of
the Dirichlet boundary conditions (2.13). In the case of the Neumann boundary
conditions the sum over ∂Ω vanishes because of (2.14) and the fact that

(( � − � )∇w) ν =
∂w

∂ν
−

1

Q2
((∇u ⊗∇u)∇w) ν =

∂w

∂ν
−

∇u · ∇w

Q2

∂u

∂ν
.

Similarly we multiply (2.12) by test function ξ ∈ H1
0 (Ω) for the Dirichlet boundary

conditions resp. ξ ∈ H1 (Ω) for the Neumann boundary conditions and we have

∫

Ω

w

Q
ξ =

∫

Ω

∇ ·
∇u

Q
= −

∫

Ω

∇u

Q
∇ξ +

∫

∂Ω

ξ

Q

∂u

∂ν
.

The last term vanishes because of the choice of ξ in the case of the Dirichlet bound-
ary conditions or because of (2.14) in the case of the Neumann boundary conditions.

We can define the weak solution for the Willmore flow of graphs as follows:
Definition 2.3. The weak solution of the graph formulation for the Willmore

flow with homogeneous Dirichlet boundary conditions is a couple u, w : (0, T ) →
H1

0 (Ω) which satisfy a.e in (0, T ), for each test functions ϕ, ξ ∈ H1
0 (Ω)

∫

Ω

ut

Q
ϕ =

∫

Ω

2

Q
( � − � )∇w∇ϕ −

∫

Ω

w2

Q3
∇u∇ϕ a.e. in (0, T ) (2.15)

∫

Ω

w

Q
ξ = −

∫

Ω

∇u

Q
∇ξ. (2.16)
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with the initial condition

u |t=0= uini.

Weak solution for the problem with homogeneous Neumann boundary conditions is
a couple u, w : (0, T ) →∈ H1

0 (Ω) which satisfy (2.15) a.e. in (0, T ), for each test
functions ϕ, ξ ∈ H1 (Ω).

Remark: There are at least two different steady solutions for the Willmore flow
of graphs. The trivial solution is represented by a constant function u(specified by
the boundary conditions) and zero mean curvature (w = 0) The second solution
is induced by a sphere with given radius r since the principal curvatures are κ1 =
κ2 = 1

r
and so H = κ1 + κ2 = 2

r
and K = κ1κ2 = 1

r2 . From this fact it follows that
the right hand side of (1.1) is equal to zero. In this case, the boundary conditions
are different from (2.13) and (2.14).

Mathematical properties of (1.1) have been partially studied in [11] for the case
when the initial condition is close to a sphere and in [8] existence of the solution

was proved under assumption that
∫

Γ
|A◦|2 is sufficiently small, for A◦ denoting

trace-free part of the second fundamental form.

3. Numerical scheme. For the numerical solution of (1.1), we will use method
of lines with finite difference discretization in space.

We use the following notation. Let h1, h2 be space steps such that h1 = L1

N1

and

h2 = L2

N2

for some N1, N2 ∈ N
+. We define a uniform grid as

ωh = {(ih1, jh2) | i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1} ,

ωh = {(ih1, jh2) | i = 0 · · ·N1, j = 0 · · ·N2} .

For u : R
2 → R we define a projection on ωh as uij = u(ih1, jh2). We introduce

the differences

ux1,ij =
uij − ui−1,j

h1

, ux1,ij =
ui+1,j − uij

h1

,

ux2,ij =
uij − ui,j−1

h2

, ux2,ij =
ui,j+1 − uij

h2

,

∇huij = (ux1,ij , ux2,ij) ,∇huij = (ux1,ij , ux2,ij) .

For f, g : ωh →
�

we define

(f, g)h =

N1−1,N2−1
∑

i,j=1

h1h2fijgij , ‖f‖
2

h = (f, f)h ,

(

f1, g1
⌋

=

N1,N2−1
∑

i,j=1

h1h2f
1
ijg

1
ij ,

(

f2, g2
⌉

=

N1−1,N2
∑

i,j=1

h1h2f
2
ijg

2
ij ,

(f, g] =
(

f1, g1
⌋

+
(

f2, g2
⌉

, ‖f ]2 = (f, f ] .

For the discretization of the Neumann boundary conditions we define the grid
boundary normal difference un̄:

un̄,0j = ux̄1,1j for j = 0, . . . , N2,

un̄,N1j = ux̄1,N1j for j = 0, . . . , N2,

un̄,i0 = ux̄2,i1 for i = 0, . . . , N1,

un̄,iN2
= ux̄2,iN2

for i = 0, . . . , N1.

For the purpose of analysis, we recall the grid version of the Green formula proved
in [1]:
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Lemma 3.1. Let p, u, v : ω̄h → R. Then the Green formula is valid:

(∇h · (p∇hu), v)h = −(p∇hu,∇hv] (3.1)

+

N2−1
∑

j=1

h2(pux1
|N1jvN1j − pux1

|1jv0j)

+

N1−1
∑

i=1

h1(pux2
|iN2

viN2
− pux2

|i1vi0).

If we denote

Qij =

√

1 +
1

2

(

u2
x1,ij + u2

x1,ij + u2
x2,ij + u2

x2,ij

)

,

i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1,

Qij =
√

1 + u2
x1,ij + u2

x2,ij ,

i = 1, · · · , N1, j = 1, · · · , N2,

Eij =
2

Qij

(

1 − u2
x1,ij −ux1,ijux2,ij ,

−ux1,ijux2,ij 1 − u2
x2,ij

)

,

i = 1, · · · , N1, j = 1, · · · , N2.

then the scheme has the following form (the index t means the derivative with
respect to t)

duh

dt
= −Q∇h

(

2

Q
E∇hw−

(

wh
)2

Q3
∇huh

)

, (3.2)

wh = Q ·

[

(

uh
x1

Q

)

x1

+

(

uh
x2

Q

)

x2

]

, (3.3)

(3.4)

and the initial condition is

uh (0) = uini |ωh
.

We consider either the Dirichlet boundary conditions

uh |∂ωh
= 0, wh |∂ωh

= 0, (3.5)

or the Neumann boundary conditions

uh
n̄ |∂ωh

= 0, wh
n̄ |∂ω= 0. (3.6)

The following theorem shows the energy equality of the scheme.
Theorem 3.2. For uh |∂ωh

= 0 and wh = 0 |∂ωh
we have

1

2

(

(

uh
t

)2
,

1

Q

)

h

+
1

2

d

dt

(

(

wh
)2

,
1

Q

)

h

= 0.

Proof. We start with the equation for wij (3.3), divide by Qij , multiply by ξij

vanishing on ∂ωh and sum over ω.

(

wh

Q
, ξ

)

h

=

(

(

uh
x1

Q

)

x1

+

(

uh
x2

Q

)

x2

, ξ

)

h

.
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The Green theorem (3.1) gives

(

wh

Q
, ξ

)

h

= −

(

ξx1
,
uh

x1

Q

⌋

−

(

ξx2
,
uh

x2

Q

⌋

(3.7)

+

N2−1
∑

j=1

(

ξ
uh

x1

Q
|N1j −ξ

uh
x1

Q
|0j

)

h2, (3.8)

+

N1−1
∑

i=1

(

ξ
uh

x2

Q
|iN2

−ξ
uh

x2

Q
|i0

)

h1, (3.9)

and the terms (3.8) and (3.9) are equal to zero because of the choice of ξij . Rewriting
the equation (3.2) in the following form

uh
t

Q
= −∇h

(

2

Q
E∇hwh −

(

wh
)2

Q3
∇huh

)

,

multiplying by test function ϕ vanishing at ∂ωh and applying the Green theorem
(3.1) we obtain

(

uh
t

Q
, ϕ

)

h

=

(

2

Q
E∇hwh −

(

wh
)2

Q3
∇huh,∇hϕ

]

(3.10)

+

N2−1
∑

j=1

[

ϕ ·

(

E11 · w
h

x1
+ E12 · w

h
x2

−

(

wh
)2

Q3
uh

x1

)

|N1j (3.11)

−ϕ ·

(

E11 · w
h

x1
+ E12 · w

h
x2

−

(

wh
)2

Q3
uh

x1

)

|0j

]

(3.12)

+

N1−1
∑

i=1

[

ϕ ·

(

E21 · w
h

x1
+ E22 · w

h
x2

−

(

wh
)2

Q3
uh

x2

)

|iN2
(3.13)

−ϕ ·

(

E21 · w
h

x1
+ E22 · w

h
x2

−

(

wh
)2

Q3
uh

x2

)

|i0

]

. (3.14)

The terms (3.11), (3.12), (3.13) and (3.14) are zero because of ϕij vanishing on ∂ωh.
Differentiating (3.7) with respect to t we obtain

d

dt

(

wh

Q
, ξ

)

h

+
d

dt

(

uh
x1

Q
, ξx1

⌋

+
d

dt

(

uh
x2

Q
, ξx2

⌉

= 0,

and using the following statements

d

dt

(

uh
xi

Q

)

=

(

uh
xi

)

t
Q − Qtu

h
xi

Q2
, i = 1, 2,

Qt =

(

uh
x1

)

t
uh

x1
+
(

uh
x2

)

t
uh

x2

Q
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we get

d

dt

(

∇huh

Q

)

=

((

uh
x1

)

t
,
(

uh
x2

)

t

)

Q
−

−
1

Q3
·
(

(

uh
x1

)2 (

uh
x1

)

t
+ uh

x1
uh

x2

(

uh
x2

)

t
, uh

x1
uh

x2

(

uh
x1

)

t
+
(

uh
x2

)2 (

uh
x2

)

t

)

=

=

((

uh
x1

)

t
,
(

uh
x2

)

t

)

Q
−

1

Q
·





(uh
x1

)
2

Q2

uh
x1

uh
x2

Q2

uh
x1

uh
x2

Q2

(uh
x2

)
2

Q2





( (

uh
x1

)

t(

uh
x2

)

t

)

=

=
1

Q
(I − P)

( (

uh
x1

)

t(

uh
x2

)

t

)

= E

( (

uh
x1

)

t(

uh
x2

)

t

)

,

which together with

d

dt

(

wh

Q

)

=
wh

t

Q
−

Qt · w
h

Q2
,

gives

d

dt

(

wh

Q
, ξ

)

h

+
d

dt

(

uh
x1

Q
, ξx1

⌋

+
d

dt

(

uh
x2

Q
, ξx2

⌉

=

=

(

wh
t

Q
, ξ

)

h

−

(

Qt · w
h

Q2
, ξ

)

h

+
1

2

(

E

( (

uh
x1

)

t(

uh
x2

)

t

)(

ξx1

ξx2

)]

= 0.

After substituting ξ = w we obtain

(

wh
t

Q
, wh

)

h

−

(

Qt

Q2
,
(

wh
)2

)

h

+
1

2

(

E∇huh
t ,∇hwh

]

= 0, (3.15)

and a substitution ϕ = ut in (3.10) gives

(

(

uh
t

)2
,

1

Q

)

h

−

(

E∇hwh −

(

wh
)2

Q3
∇huh,∇huh

t

]

= 0. (3.16)

Now we sum (3.15) with one half times (3.16) and we have

(

wh
t

Q
, wh

)

h

−

(

Qt

Q2
,
(

wh
)2

)

h

+
1

2

(

(

uh
t

)2
,

1

Q

)

h

+
1

2

(

(

wh
)2

Q3
,∇huh · ∇huh

t

]

= 0.

We remind that ∇huh · ∇huh
t = Q · Qt which gives

(

wh
t

Q
, wh

)

h

−

(

Qt

Q2
,
(

wh
)2

)

h

+
1

2

(

(

uh
t

)2
,

1

Q

)

h

+
1

2

(

(

wh
)2

Q2
, Qt

]

= 0.

It is equivalent

1

2

(

(

uh
t

)2
,

1

Q

)

h

+

(

wh
t

Q2
, wh

)

h

−
1

2

(

Qt

Q2
,
(

wh
)2

)

h

+ Sh = 0, (3.17)

for

Sh =
1

2

N2−1
∑

j=1

(

wh
N1j

QN1j

)2

· (Qt)N1j h1h2 +
1

2

N1−1
∑

i=1

(

wh
iN2

QiN2

)2

· (Qt)iN2
h1h2.
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Finaly from (3.17) we have

1

2

(

(

uh
t

)2
,

1

Q

)

h

+
1

2

d

dt

(

(

wh
)2

,
1

Q

)

h

+ Sh = 0.

To complete the proof of we need to eliminate the term Sh. This can be done by
applying the Dirichlet boundary conditions (2.13).

Remark: The above given procedure can be used even for nonhomogenous
time independent Dirichlet boundary conditions for u. Similar statetment as (3.2)
for the Neumann boundary conditions remains an open problem.

4. Computational results. Here, we present several numerical experiments
qualitative character. Quantitative results are summarized in [10]. First three
examples show a decay towards planar surface. For all of them we considered
homogeneous Dirichlet boundary conditions for u and w. Fig.6.1 shows evolution
of the initial condition uini (x, y) = sin (2πx) · sin (2πy) on domain Ω ≡ (0, 1)

2
with

50 × 50 meshes and the space steps h1 = h2 = 0.02. The computation has been
performed until T = 0.01.

In the Fig.6.2 we show again a decay towards planar surface. The initial condi-
tion is discontinuous: uini (x, y) = sign

(

x2 + y2 − 0.22
)

. The domain Ω is (−1, 1)
2

and there are again 50× 50 meshes and h1 = h2 = 0.04. We stopped the computa-
tion at time T = 1.

The Fig.6.3 shows a decay towards the planar surface with highly oscilating

intial condition uini (x, y) = sin
[

2π
(

15 tanh
(

√

x2 + y2 − 0.2
))]

. The domain Ω

is (−1, 1)
2

and there are again 50 × 50 meshes and h1 = h2 = 0.04. The final time
for the computation was T = 0.1.

Next two examples show restoration of spherical surface. We start with a part
of the sphere with radius R = 3 and center C = (0, 0,−1.5) above the square

Ω ≡ (−1, 1)
2
. We obtain a graph which can be described by a function uS . It yields

wS = Q (us) H (uS). Then the following Dirichlet boundary conditions

u |∂ωh
= uS, w |∂ωh

= wS ,

are considered (there are more general then (2.13) and (2.14)). In the case of Fig.6.4
we perturb the original function uS as follows

uini = uS + exp−5r · sin (7.5πr) ,

for r =
√

x2 + y2. The initial condition for Fig.6.5 was obtained by applying
the heat equation on the initial function vini ≡ 0 with the Dirichlet boundary
conditions v |∂ωh

= uS and setting uini = v |t=0.1. There were 50 × 50 meshes and
h1 = h2 = 0.04 in both cases. In the first case (Fig.6.4) we stopped the computation
at time T = 0.05 and in the second case (Fig.6.5) at T = 0.2.

The example on Fig. 6.6 shows a computation with the homogeneous Neumann
boundary conditions on uij and wij. The initial condtion is u0,ij = sin (2πx) on

Ω = (0, 1)
2

with 25 × 25 meshes and so h1 = h2 = 0.04. The final time T = 0.5.

5. Conclusion. In this article, we discused a formulation of the Willmore flow
for graphs and we presented a numerical scheme based on the method of lines. We
have proved energy equality for the scheme and we have showed several computa-
tional experiments.

6. Acknowledgement. This work has been performed with partial support of
Ministry of Education of the Czech Republic under the research plan No. MSM9:210000010
and of the Ministry of Industry and Trade, No. 1H-PK/22.
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Fig. 6.1. Convergence towards the planar surface at times t = 0, t = 10−4, t = 17 · 10−4

and t = 0.01.
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