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We present an efficient computational approach for simulating component transport within single-phase free 
flow in the boundary layer over porous media. A numerical model based on this approach is validated using 
experimental data generated in a climate-controlled wind tunnel coupled with a soil test bed. The developed 
modeling approach is based on a combination of the lattice Boltzmann method (LBM) for simulating the fluid 
flow and the mixed-hybrid finite element method (MHFEM) for solving constituent transport. Both those methods 
individually, as well as when coupled, are implemented entirely on a GPU accelerator in order to utilize its 
computational power and avoid the hardware limitations caused by slow communication between the GPU and 
CPU over the PCI-E bus. In order to utilize vast computational resources available on modern supercomputers, 
the implementation is extended for distributed multi-GPU computations based on domain decomposition and 
the Message Passing Interface (MPI). We describe the mathematical details behind the computational method, 
focusing primarily on the coupling mechanisms. The performance of the solver is demonstrated on a modern 
high-performance computing system. Flow and transport simulation results are validated and compared herein 
with experimental velocity and relative humidity measurements made above a flat partially saturated soil layer 
exposed to steady air flow. Model robustness and flexibility is demonstrated by introducing cuboidal bluff-

bodies to the flow in several different experimental scenarios. The experimentally measured values are available 
in a publicly available dataset that can serve as a benchmark for future studies. Finally, we discuss potential 
improvements for the model as well as future experimental efforts.
1. Introduction

Numerous proprietary or open-source computational tools are avail-

able for solving partial differential equations originating from math-

ematical modeling of various biological, environmental, or industrial 
problems. In particular, computational software such as deal.II [1], 
DUNE [2], OpenFOAM [3], TOUGH2 [4], MFiX [5], ANSYS Fluent [6]

or COMSOL Multiphysics [7] is suitable for complex multi-physics sim-

ulations involving multiphase or compositional flows. However, each 
software has limitations: the underlying numerical methods may restrict 
the applicability of the software; the approach for code execution may 
cause limited or no advantage of using high-performance architectures, 
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in particular graphical processing units (GPUs), for the acceleration of 
computations; and the software design in general might make it difficult 
to combine different tools for solving coupled problems. Furthermore, 
extending large software packages such as the aforementioned ones 
with novel mathematical approaches and numerical methods is chal-

lenging and unfeasible for most external users.

We have developed a novel computational approach based on a 
combination of the lattice Boltzmann method and the mixed-hybrid fi-

nite element method for simulating component transport within single-

phase free flow. The lattice Boltzmann method (LBM) [8] is a modern 
and efficient numerical method capable of simulating numerous prob-

lems in computational fluid dynamics (CFD), including turbulent fluid 
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flows. The mixed-hybrid finite element method (MHFEM) [9] is a well 
established general numerical method for solving partial differential 
equations. In this work, we use the MHFEM formulation presented in 
[10] and extend it with the coupling to LBM. There are multiple reasons 
why we pursue this approach:

• Both LBM and MHFEM individually have advantages compared to 
traditional numerical methods. LBM is based on the mesoscopic de-

scription of the fluid and the computational algorithm avoids the 
solution of Poisson equation for pressure [8], which is the most 
time consuming part of algorithms based on finite difference meth-

ods (FDM) or finite volume methods (FVM). On the other hand, 
MHFEM is a general method that combines different finite element 
approximations of scalar as well as vector functions. For some prob-

lems, it may provide higher accuracy and robustness compared to 
standard FEM or FVM approaches [11,12].

• Both LBM and MHFEM individually can be efficiently parallelized 
and implemented for modern high-performance architectures, in-

cluding GPU accelerators. All computations in the coupled LBM-

MHFEM solver can be executed entirely on a GPU accelerator in 
order to utilize its computational power and avoid the hardware 
limitations caused by slow communication between the GPU and 
CPU over the PCI-E bus.

• The coupled solver can utilize vast computational resources avail-

able on typical supercomputers by decomposing the domain and 
dividing the computation between multiple workers (GPUs) which 
communicate over the Message Passing Interface (MPI) [13].

Verification of the developed approach against exact solutions is 
not possible, since there are no known exact analytical solutions for 
a coupled system of Navier–Stokes and transport equations. We there-

fore turn to controlled experimental data for model validation purposes, 
specifically posing this effort in terms of the problem of bare-soil evap-

oration, a key component of Earth’s hydrologic, carbon, and energy 
balances [14]. In this context, airflow has been shown to be a strong 
forcing parameter responsible for driving the process evaporation from 
bare soils or any porous medium [15,16]. Given the complexity of near-

surface airflow, evaporation estimates in practice rely on simplified 
flow parameterizations or sparse wind measurements. We pose that the 
development of the combined LBM-MHFEM flow and transport model 
herein could support these issues by providing a way to simulate near-

surface flow fields and subsequent above-ground vapor transport with 
a high level of fidelity, in turn improving evaporation estimates [17].

The data used for validation in this paper include velocity and rel-

ative humidity profiles measured in a low speed, climate controlled 
wind tunnel where 3D turbulent flow above a soil surface with cuboidal 
bluff bodies were investigated in [18]. The wind tunnel used for these 
measurements was designed specifically for the investigation of cou-

pled soil–plant–atmosphere processes as soil-test beds containing any 
desired soil(s) and vegetation can be interfaced at a sufficiently large 
scale along a 7.4 m long test-section.

The focus of this paper is the presentation of this coupled numeri-

cal scheme as well as its validation using experimental data obtained 
in controlled environments and simplified flow geometry. While we 
present this investigation in terms of a bare-soil evaporation prob-

lem, it is important to note that with relatively minor modifications 
this numerical solver could be expanded to support a wide range of 
applications currently being investigated by the authors, including: 
heat transfer in the context of disturbed environments, training AI/ML 
super-resolution algorithms, dust forecasting and mitigation efforts, and 
greenhouse gas loading. More importantly, the work presented herein 
should be viewed as the initial steps toward the development of a flex-

ible numerical solver that can be used to support fundamental process 
understanding and exploration, guide sensitivity analysis for measure-

ments in regions with high uncertainty, inform sampling in future ex-
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perimental effort or help fill gaps in datasets where it was not possible 
to make measurements.

The paper is organized as follows: first a general description of the 
experiments, mathematical model and boundary conditions is given, 
followed by details of the coupled LBM-MHFEM computational ap-

proach, and finally, a validation of our model is presented. The model 
is compared both qualitatively and quantitatively to experimental data 
measured in three configurations resulting in different flow regimes.

2. Problem formulation

In this section, the background for numerical simulations is intro-

duced, namely the experimental facility and procedures are described, 
and the mathematical model is formulated.

2.1. Experimental setup and methodology

All experimental data used in this paper were generated in the 
Center for Experimental Study of Subsurface Environmental Processes 
(CESEP) wind tunnel–porous media test facility now located at the US 
Army Engineer Research and Development Center (ERDC) Synthetic En-

vironment for Near-Surface Sensing and Experimentation (SENSE) Re-

search Facility. The facility is centered around a closed-circuit, climate-

controlled, low-speed wind tunnel that can be interfaced with soil test-

beds of varying size. The test facility was designed specifically for the 
investigation of coupled soil–plant–atmosphere processes, including air 
flow and heat and mass transport at a 1:1 scale; the wind tunnel meets 
similarity criteria and is therefore suitable for momentum scaling stud-

ies as well. A brief description of the components relevant to this paper 
is presented below for the convenience of the reader. Details concerning 
the test facility can be found in [19,16].

The wind tunnel was interfaced with a 7.15 m long and 0.3 m wide 
soil test-bed along the centerline of its 7.4 m long, 1 m wide, and 1 m tall 
test-section. The experimental datasets of [18] were chosen for model 
validation due to their use of synthetic plants (i.e., porous limestone 
blocks) instead of living vegetation. This approach significantly sim-

plified the airflow component of the problem (i.e., the plant can be 
treated as a traditional bluff body) while still retaining key hydrody-

namic characteristics. The dimensions of each block were nominally 
(3.15 × 3.15 × 29.5) ± 0.1 cm and they were planted in a vertical position 
(10.0 ± 0.3) cm deep, leaving the 19.5 cm high part above ground.

A total of three experimental configurations featuring two synthetic 
plants were explored by [18]. Each configuration was characterized in 
terms of the spacing between the two synthetic plants: 15 cm spacing 
(EX-1), 45 cm spacing (EX-2), and 105 cm spacing (EX-3). The positions 
of the synthetic plants in these configurations are given by:

• EX-1 (15 cm spacing): 𝑥I = -5.197 m, 𝑥II = -5.047 m,

• EX-2 (45 cm spacing): 𝑥I = -5.647 m, 𝑥II = -5.197 m,

• EX-3 (105 cm spacing): 𝑥I = -6.247 m, 𝑥II = -5.197 m.

Note that in the coordinate system used hereafter, 𝑥 =0 m corresponds 
to the upstream entrance of the test-section of the wind tunnel (right 
hand side), 𝑥 = -7.4 m corresponds to the downstream exit of the test 
section (left hand side), 𝑧 =0 m corresponds to the ground surface and 
𝑦 =0 m corresponds to the centerline of the test-section. At the time 
that the datasets associated with [18] were generated, the authors did 
not have access to a LiDAR system that could scan the exact position 
of the bluff bodies. Uncertainty of the placement of the bluff bodies is 
thus given as 𝛿𝑥I = 𝛿𝑥II = 𝛿𝑦 =±5 mm. The maximum deviatory angle of 
attack of the bluff bodies relative to the direction of the flow is similarly 
given as 5◦.

During each experiment, the mean wind speed, air temperature, and 
relative humidity of the air entering the test-section was controlled and 
continuously monitored. Given the coupling of the test-section with 
the partially saturated soil test-bed, a variable temperature and vapor 
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Table 1

Experimental climate conditions.

EX-1 EX-2 EX-3

Mean Air Temperature [°C] 25.83 ± 1.52 25.70 ± 1.06 23.98 ± 0.21
Mean Surface Temperature [°C] 22.10 ± 0.23 23.50 ± 0.80 22.07 ± 0.03
Mean Soil Temperature [°C] 20.72 ± 0.31 22.40 ± 0.18 20.92 ± 0.11
gradient was observed above the soil tank. The soil temperature was 
controlled by varying the exterior temperature of the soil test-bed and 
the soil moisture was hydrostatically distributed and allowed to freely 
evaporate. Table 1 provides a summary of the average soil, surface and 
air temperatures in the experiments. Variability around the mean value 
was caused by the cycling of the individual climate control systems 
(i.e., heater, chiller, humidifier, dehumidifier) throughout the duration 
of the experiments. The exterior temperature of the soil test-bed and 
barometric pressure were also measured through out the experiments; 
the reader is referred to [18,19] for more details.

The measurements of [19,18] are available as a public dataset [20]. 
Note that only a subset of these measurements is relevant for the 
purpose of this paper, namely the airflow properties (velocity, RMS, 
Reynolds stress) and relative humidity above the soil surface. Given 
the size of the domain and the experimental setup, the number of air-

flow and relative humidity measurements were necessarily constrained. 
The locations of airflow and relative humidity were varied between the 
three configurations based on the spacing distance between the syn-

thetic plants and the resulting flow regime created. The measurement 
locations are highlighted in the figures in the last section of this pa-

per. The laser used to make the flow measurements was mounted on an 
automated traverse located outside the wind tunnel test-section. Uncer-

tainty in the exact location where the measurements were made can be 
given as 𝛿𝑥 = 𝛿𝑦 =±5 mm and 𝛿𝑧 =±1 mm. The sensor used to measure 
relative humidity was similarly mounted on an automated traverse lo-

cated within the test-section; uncertainty associated with this system is 
given as 𝛿𝑥 =±10 mm and 𝛿𝑦 = 𝛿𝑧 =±5 mm.

Air flow statistics (i.e., velocity, turbulence intensity, Reynolds 
stress) above the soil surface were measured using two-dimensional 
laser Doppler velocimetry [19], providing high frequency data with an 
accuracy of 5%. Relative humidity was measured with an accuracy of 
±0.03 using a relative humidity–temperature (RHT) sensor constructed 
by the University Corporation of Atmospheric Research. Compared with 
the laser, these RHT sensors have a significantly lower sampling rate 
(≈1 Hz); data collected over a 30 second window were averaged at 
each measurement location [19].

Furthermore, water loss from the wetted surface of the synthetic 
plants was measured in a separate small scale experiment [19]. These 
data were used to calculate an average mass flux of Φ⋆ = 0.128
g cm−2 d−1; this value was assumed to be applicable to all three con-

figurations given similarity in applied climate conditions.

2.2. Mathematical model

The air flow in the free space above the soil surface is governed 
by the Navier–Stokes equations. As the model targets low Mach num-

ber situations (Ma ≈ 0.003 in the wind tunnel), the fluid is considered 
to be incompressible [21,22]. The momentum and mass conservation 
equations for the air are written as

∇ ⋅ 𝒗 = 0, (1a)

𝜕𝒗

𝜕𝑡
+ 𝒗 ⋅∇𝒗 = −1

𝜌
∇𝑝+ 𝜈Δ𝒗, (1b)

where 𝒗 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] [m s−1] is the air velocity, 𝑝 [Pa] is the pressure, 
𝜌 [kg m−3] is the air density, and 𝜈 [m2 s−1] is the kinematic viscosity 
of the air. In general, these quantities are given as functions of spatial 
coordinates 𝒙 = [𝑥, 𝑦, 𝑧] ∈Ω1 ⊂ℝ3 and time 𝑡 ∈ (0, 𝑡max).
67
Table 2

Model parameters for air under standard atmospheric conditions (25 ◦C and 
pressure of 1 bar).

Density 𝜌 [24] 1.184 kg m−3

Kinematic viscosity 𝜈 [24] 15.52 × 10−6 m2 s−1

Molecular diffusivity 𝐷 of water vapor in air [25] 25.52 × 10−6 m2 s−1

The mass conservation law for a component 𝛼 within a gas mixture 
in Ω2 × (0, 𝑡max) can be derived [23] and written as

𝜕𝜌𝛼

𝜕𝑡
+∇ ⋅

(
𝜌𝛼𝒗+ 𝑱 𝛼

)
= 0, (2)

where 𝜌𝛼 [kg m−3] is the density of the component 𝛼 and 𝑱 𝛼 [kg m−2 s−1] 
is the diffusive flux. As in Eq. (1a), no sources/sinks are considered in 
Eq. (2). The diffusive flux is given by the Fick’s law [23] as

𝑱 𝛼 = −𝜌𝐷∇𝜔𝛼, (3)

where 𝐷 [m2 s−1] is the molecular diffusivity coefficient and 𝜔𝛼 = 𝜌𝛼∕𝜌
[-] is the mass fraction of the component 𝛼 in the mixture.

In this work, a single component 𝛼 ≡ H2O representing water vapor 
dispersed in air is considered. The component density 𝜌𝛼 corresponds 
to the absolute humidity (i.e., the mass of the water vapor per unit 
volume) and the mass fraction 𝜔𝛼 corresponds to the specific humidity. 
The relative humidity 𝜙 [-] is defined as

𝜙 =
𝑝𝛼

𝑝∗
𝛼

, (4)

where 𝑝𝛼 [Pa] is the partial pressure of water vapor in the mixture and 
𝑝∗
𝛼

[Pa] is the equilibrium vapor pressure of water over a flat surface of 
pure water at a given temperature. Assuming that the mixture behaves 
as an ideal gas at constant temperature 𝑇 [K], the ideal gas law 𝑝𝛼 =
𝜌𝛼𝑅𝛼𝑇 with the specific gas constant 𝑅𝛼 [J kg−1 K−1] means that the 
partial pressure 𝑝𝛼 is proportional to the absolute humidity 𝜌𝛼 and thus 
the relative humidity equals

𝜙 =
𝜌𝛼

𝜌∗
𝛼

, (5)

where 𝜌∗
𝛼

[kg m−3] is the saturated absolute humidity corresponding to 
𝑝∗
𝛼
. Using 𝜌𝛼 = 𝜙𝜌∗

𝛼
, Eq. (3) and the assumption of constant density 𝜌, 

Eq. (2) transforms to the conservative transport equation

𝜕𝜙

𝜕𝑡
+∇ ⋅ (𝜙𝒗−𝐷∇𝜙) = 0. (6a)

Combining Eqs. (1a) and (6a) leads to the non-conservative form

𝜕𝜙

𝜕𝑡
+ 𝒗 ⋅∇𝜙−∇ ⋅ (𝐷∇𝜙) = 0. (6b)

Although a slightly variable temperature distribution above the soil 
tank was observed during the experiments [18], we assume its impact 
on the density, kinematic viscosity, molecular diffusivity, and rela-

tive humidity to be negligible compared to the sensor accuracies. The 
isothermal model given by Eqs. (1) and (6) is used with constant pa-

rameters 𝜌, 𝜈, and 𝐷. Furthermore, the fluid density 𝜌 is assumed to 
be independent of the relative humidity 𝜙 and the effect of gravity is 
neglected due to the dimensions of the experimental facility. Model 
parameters for air under standard atmospheric conditions are given 
in Table 2.

For the purpose of this paper, we are interested in simulating only 
the free flow region, where the soil-atmosphere and synthetic plant 
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Fig. 1. Illustration of the computational domains Ω1 and Ω2 for Eqs. (1) and (6). Note that Ω1 conforms to the actual dimensions (width and height) along a 3.89 m

length of the wind tunnel test-section where experimental measurements were made.
(bluff body)–atmosphere interfaces are treated using boundary condi-

tions (described in Section 2.3). Hence, the computational domains Ω1
and Ω2 are considered as shown in Fig. 1. Based on the experimental 
setup described in Section 2.1, the computational domain Ω1 is defined 
as an inset of the whole test-section starting at a downstream distance 
of −3.507 m from the test-section inlet. The total dimensions of Ω1 are 
approximately 3.89 m × 1 m × 1.13 m. The upper side of the domain Ω1
coincides with the inclined ceiling of the wind tunnel; the back and 
front sides coincide with the test-section walls. The bottom boundaries 
of both domains Ω1 and Ω2 coincide with the soil surface in which the 
two synthetic plants were planted as illustrated in Fig. 1. The dimen-

sions of the subdomain Ω2 are 2.94 m × 0.7 m × 0.5 m.

Note that Eq. (1) is solved in domain Ω1 and Eq. (6) is solved in 
domain Ω2. Since Eqs. (1) and (6) are coupled only via the velocity 
field 𝒗, Eq. (1) can be solved without Eq. (6) and the latter can be 
solved only in a subdomain of Ω1, i.e., Ω2 ⊂Ω1.

2.3. Initial and boundary conditions

Both Eqs. (1) and (6) must be supplemented by initial and bound-

ary conditions suitable for this problem. In all simulations presented in 
this paper, the velocity field was initialized by zero (𝒗(𝒙, 0) = 𝟎) and the 
initial relative humidity profile varied with height as 𝜙(𝒙, 0) = 𝜙in(𝑧), 
where 𝜙in(𝑧) determines the inflow boundary condition for relative hu-

midity (specified in Section 3.2.1). Various boundary conditions are 
used throughout the simulations. The sides, ceiling, and floor (includ-

ing soil) of the test-section are impermeable and thus modeled using 
the standard no-slip boundary condition. A simple outflow condition 
based on a fixed pressure value and a zero velocity gradient in the nor-

mal direction is used on the left hand side of the domain in Fig. 1 (i.e., 
test-section exit). On the right hand side of the domains Ω1 and Ω2 in 
Fig. 1, the inflow boundary condition for velocity 𝒗 and relative humid-

ity 𝜙, respectively, are prescribed. Numerical details related to these 
conditions are given in Sections 3.1.1, 3.1.2 and 3.2.1.

Furthermore, additional boundary conditions are applied on the 
sides of synthetic plants where “transpiration” is modeled by prescrib-

ing velocity and relative humidity profiles in order to match the ex-

perimentally measured mass flux of water lost through the surface of 
the plants. Water loss does not occur homogeneously on the surface 
of the synthetic plants since a capillary fringe of fully wetted surface 
was observed at the bottom of the plants. Therefore, water vapor is re-

leased with higher concentration near the soil surface and the top part 
of the plants is in equilibrium with the ambient environment. This is 
modeled in the simulations by prescribing a height-variable relative hu-

midity profile on the sides of the synthetic plants as depicted in Fig. 2. 
Based on the experiments, the capillary fringe height is approximately 
𝑧min =3.5 cm. The prescribed relative humidity is 𝜙max = 1 below 𝑧min
and 𝜙min = 𝜙in(0.195) above 2𝑧min, where the ambient relative humidity 
𝜙min is set to the value prescribed on the inflow in the height of the syn-

thetic plants. We also assume a transition part between 𝑧min and 2𝑧min
where the surface is not fully wetted and the prescribed relative hu-

midity decays linearly from 𝜙max to 𝜙min. The profile shown in Fig. 2
68
corresponds to the configuration EX-2 with 45 cm spacing; the value of 
𝜙min was different in the other configurations.

To match the experimentally measured mass flux Φ⋆ (see Sec-

tion 2.1), we also need to prescribe a non-zero velocity in the normal 
direction on the sides of the plants. For example, given the mean rel-

ative humidity 𝜙mean = 0.437 from Fig. 2 and assuming that saturated 
air has absolute humidity of 23 g m−3 at 25 ◦C, the mass flux Φ⋆ cor-

responds to the velocity 𝑉⋆ =1.5 mms−1. The velocity 𝑉⋆ is prescribed 
only on the downstream side of each synthetic plant as a constant pro-

file 𝑣𝑥 = −𝑉⋆, which coincides with the direction of the mean flow. On 
the remaining sides of the plants, the standard no-slip condition is used 
as we do not model advective transpiration on these sides for simplic-

ity. On the upstream side, the velocity would have to be prescribed in 
the direction opposite to the mean flow, and on the sides parallel to the 
mean flow it would have to be prescribed in the tangential direction. 
However, water vapor is still released diffusively from the sides where 
the no-slip condition is used.

3. Coupled LBM-MHFEM computational approach

In this section, the computational approach for solving Eqs. (1) and

(6) based on the combination of the lattice Boltzmann and mixed-hybrid 
finite element methods is described. Both methods are introduced and 
their coupling in a time-adaptive manner is explained. Finally, various 
implementation details are described.

3.1. Lattice Boltzmann method

The lattice Boltzmann method [8] (LBM) is an alternative to tradi-

tional computational methods such as finite difference, finite volume, 
and finite element methods. LBM can be formulated as a time-explicit 
scheme that can be easily parallelized [8] and the advent of general-

purpose computing on graphics processing units (GPGPU) made large-

scale numerical simulations of turbulent flows feasible [26–31]. For the 
simulation of air flow in the wind tunnel, we could take advantage of 
the previously developed parallel LBM algorithms validated in [32–34].

Instead of directly solving the Navier–Stokes equation (1), LBM ap-

proximates the temporal evolution of macroscopic quantities such as 
density 𝜌, velocity 𝒗, and other variables (e.g., pressure, stress tensor, 
etc.) using probability moments of discrete density distribution func-

tions 𝑓𝑞 = 𝑓𝑞(𝒙, 𝑡), 𝑞 = 1, … , 𝑄, where 𝑄 denotes the number of discrete 
velocities per lattice site. In this paper, we consider a regular 3D lat-

tice Ω̂ covering the domain Ω1 with the D3Q27 model consisting of 
𝑄 = 27 discrete velocities per lattice site denoted as 𝝃𝑞 , 𝑞 = 1, … , 𝑄. The 
evolution of each 𝑓𝑞 is described by the discrete Boltzmann transport 
equation

𝑓𝑞(�̂�+Δ𝑡𝝃𝑞 , 𝑡+Δ𝑡) − 𝑓𝑞(�̂�, 𝑡) = 𝑞(�̂�, 𝑡), (7)

for all discrete lattice sites �̂� ∈ Ω̂ and time levels 𝑡 ∈ 𝐼 = {0, … , 𝑁𝑡}. 
The dimensionless time step Δ𝑡 is set to unity, i.e., Δ𝑡 = 1. The term 
𝑞 in Eq. (7) denotes the discrete collision operator; in this paper we 
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Fig. 2. Relative humidity profile prescribed as the boundary condition on the synthetic plants in the configuration with 45 cm spacing (EX-2).
use the cumulant operator proposed in [27] with the relaxation rates 
set as suggested therein and including the approximations of the spatial 
velocity derivatives to reduce the artifacts due to the absence of higher-

order cumulants [35,36]. Macroscopic quantities can be recovered in 
Ω̂ × 𝐼 by taking moments of the discrete density distribution functions 
𝑓𝑞 . The macroscopic density 𝜌 (in lattice units) for example, is given by

𝜌(�̂�, 𝑡) =
𝑄∑
𝑞=1

𝑓𝑞(�̂�, 𝑡) (8)

and the macroscopic velocity 𝒗 computed from the macroscopic mo-

mentum density 𝜌𝒗 (in lattice units) given by

𝜌(�̂�, 𝑡)𝒗(�̂�, 𝑡) =
𝑄∑
𝑞=1

𝑓𝑞(�̂�, 𝑡)𝝃𝑞 . (9)

The detailed derivation of LBM is not within the scope of this paper; the 
reader is referred to [8] for details.

We use the full-way bounce-back boundary condition [8] to pre-

scribe the no-slip condition on impermeable walls. The boundary con-

dition for velocity on the downstream faces of synthetic plants (see 
Section 2.3) is realized via the modified bounce-back condition [8] by 
specifying zero tangential and small non-zero normal velocity of the 
moving wall. On the inflow, the discrete distribution functions are ap-

proximated by the discrete equilibrium functions evaluated from the 
known macroscopic variables [37–39]. The macroscopic velocity pro-

files that were considered for the inflow boundary condition in this 
work are described in the following subsections. On the outflow, the 
extrapolation outflow boundary condition is used to approximate the 
discrete distribution functions.

3.1.1. Inflow boundary condition: mean velocity profile

Using this boundary condition, a time-constant inflow velocity pro-

file approximating the mean free flow velocity measured in the wind 
tunnel is prescribed. The inflow velocity is set to 𝒗in = [−𝑣in,𝑥(𝑧), 0, 0], 
where the component 𝑣in,𝑥 is specified as a function of height 𝑧 [m] 
based on the 1/7-th power law [40]:

𝑣in,𝑥(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣max

(
𝑧

𝑧𝛿

) 1
7

if 𝑧 ≤ 𝑧𝛿,

𝑣max

(
𝑧max − 𝑧

𝑧𝛿

) 1
7

if 𝑧max − 𝑧 ≤ 𝑧𝛿,

𝑣max otherwise,

(10)

where 𝑧max =1.0624 m is the height of the domain Ω1 in Fig. 1 at the 
inflow boundary, 𝑧𝛿 =0.1 m is the estimated boundary layer height and 
𝑣max = 0.8ms−1 corresponds to the mean free stream velocity in the 
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wind tunnel. The parameters were chosen based on the experimentally 
measured velocity profiles and the same values are used in all three 
spacing configurations.

3.1.2. Inflow boundary condition: velocity fluctuations

As will be seen in Section 4, prescribing a time-constant velocity 
profile at the inflow boundary may lead to non-physical results, because 
the simulated flow field may remain laminar until it reaches the first 
obstacle placed in the domain. An alternative is to induce turbulent 
flow by adding synthetic fluctuations to the prescribed velocity profile. 
The inflow velocity 𝒗in = 𝒗in(𝒙, 𝑡) is decomposed as

𝒗in(𝒙, 𝑡) = 𝒗in(𝒙) + 𝒗′in(𝒙, 𝑡), (11)

where 𝒗in(𝒙) is the mean (time-averaged) value given in Section 3.1.1, 
and 𝒗′in(𝒙, 𝑡) is the velocity fluctuation.

The procedure for generating synthetic turbulent fluctuating veloc-

ity field 𝒗′in is based on [41–44]. In the simulation, inflow velocity 
fluctuations for a uniform grid with the spacing Δ𝑥 are computed at 
discrete time levels 𝑡𝑛 = 𝑛Δ𝑡, where 𝑛 is an integer denoting the time 
level and Δ𝑡 is the time step. Firstly, independent realizations of random 
fluctuations �̂�′in are generated for each time level for the specified length 
scale int and energy spectrum of synthetic turbulence. In this work, we 
set the turbulent length scale to one half of the inflow boundary layer 
𝑧𝛿 used in Eq. (10), i.e. int =0.05 m, and use the modified von Kármán 
spectrum [42,44] with the highest wave number 𝜅max = 2𝜋∕Δ𝑥, small-

est wave number 𝜅min = 𝜅𝑒∕5, 3000 discrete modes, turbulent kinetic 
energy 𝑘in = 10−2 m2 s−2, and kinematic viscosity 𝜈 given in Table 2. 
Then, time correlation between the realizations is introduced using an 
asymmetric time filter

(𝒗′in)
𝑛 = 𝑎(𝒗′in)

𝑛−1 + 𝑏(�̂�′in)
𝑛, (12)

where 𝒗′in denotes the time-correlated field, �̂�′in denotes the time-

independent field, subscripts denote the time levels and the coeffi-

cients are chosen as 𝑎 = exp(−Δ𝑡∕in) and 𝑏 =
√
1 − 𝑎2, where int =int∕|𝑣𝑥,in,max|. The time filter ensures that int corresponds to the turbu-

lent integral time scale and that the variance of the generated fluctua-

tions is preserved [44].

Note that the fluctuations generated with the aforementioned 
procedure are isotropic which is an acknowledged simplification of 
anisotropic real-world turbulence. The procedure could be improved 
based on a specified anisotropic Reynolds stress tensor [44], however, 
even using the inflow condition based on isotropic synthetic turbulence 
lead to improved results in this work. Experimentally, the problem was 
treated as 2D, i.e., the transverse flow statistics, such as the components 
𝑣′
𝑦
𝑣′
𝑦
, 𝑣′

𝑥
𝑣′
𝑦
, and 𝑣′

𝑦
𝑣′
𝑧

of the Reynolds stress tensor, were not quantified.
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3.2. Mixed-hybrid finite element method

The transport equation (6) has been incorporated into the mathe-

matical framework of our previous work, the NumDwarf solver [10]. 
NumDwarf was originally developed for simulating multicomponent 
transport phenomena in porous media, but the numerical scheme is 
implemented for a PDE system written in the form

𝑛∑
𝑗=1

𝑁𝑖,𝑗

𝜕𝑍𝑗

𝜕𝑡
+

𝑛∑
𝑗=1

𝒖𝑖,𝑗 ⋅∇𝑍𝑗 +∇ ⋅

[
𝑚𝑖

(
−

𝑛∑
𝑗=1

𝐃𝑖,𝑗∇𝑍𝑗 +𝒘𝑖

)
+

𝑛∑
𝑗=1

𝑍𝑗𝒂𝑖,𝑗

]

+
𝑛∑

𝑗=1
𝑟𝑖,𝑗𝑍𝑗 = 𝑓𝑖 (13)

for 𝑖 = 1, … , 𝑛, where 𝒁 = [𝑍1, … , 𝑍𝑛]𝑇 is the vector of unknown func-

tions depending on spatial and temporal coordinates and the symbols 
𝐍 = [𝑁𝑖,𝑗 ]𝑛𝑖,𝑗=1, 𝒖 = [𝒖𝑖,𝑗 ]𝑛𝑖,𝑗=1, 𝒎 = [𝑚𝑖]𝑛𝑖=1, 𝐃 = [𝐃𝑖,𝑗 ]𝑛𝑖,𝑗=1, 𝒘 = [𝒘𝑖]𝑛𝑖=1, 
𝒂 = [𝒂𝑖,𝑗 ]𝑛𝑖,𝑗=1, 𝒓 = [𝑟𝑖,𝑗 ]𝑛𝑖,𝑗=1, 𝒇 = [𝑓𝑖]𝑛𝑖=1 are given coefficients. Note that 
the coefficients may, in general, depend on 𝒁. After spatial and tempo-

ral discretizations, the derivation of the numerical scheme applies the 
semi-implicit approach of the frozen coefficients method to non-linear 
terms in Eq. (13). Hence, only the terms in Eq. (13) containing 𝑍𝑗 are 
treated implicitly and the coefficients are either independent of 𝒁 or 
use the values of 𝒁 from the current time level.

NumDwarf can be used for any problem whose governing equations 
can be written in a compatible form, including multiphase and multi-

component flow in porous media [45,46]. Both Eq. (6a) and Eq. (6b)

can be converted to this form by taking 𝑛 = 1, 𝒁 = [𝜙], 𝐍 = [1], 𝒎 = [1], 
𝑫 = [𝐷], 𝒘 = 𝟎, 𝒓= 𝟎, 𝒇 = [0], and depending on the equation:

• 𝒖 = 𝟎, 𝒂 = [𝒗] for Eq. (6a),

• 𝒖 = [𝒗], 𝒂= 𝟎 for Eq. (6b).

The effects of coupling LBM with MHFEM for a conservative and a non-

conservative formulation of the problem are studied on a benchmark 
problem in Appendix A.

The system of Eqs. (13) must be supplemented by a suitable initial 
condition 𝒁(𝒙, 0) = 𝒁 ini(𝒙) and boundary conditions. A Dirichlet-type 
boundary condition is used to prescribe fixed values of the primary 
variable on the inflow and bottom parts of the domain boundary 𝜕Ω2. 
The exact values of relative humidity used in this work are specified 
later in Section 3.2.1. On the remaining parts of 𝜕Ω2, which are either 
impermeable walls where the no-slip condition on velocity is imposed 
or free-stream boundaries of Ω2 inside Ω1, a Neumann-type condition is 
used to prescribe zero gradient of the unknown function in the normal 
direction.

NumDwarf is based on the mixed-hybrid finite element method (MH-

FEM). In this work, we use conforming unstructured cuboidal meshes 
denoted as ℎ for the discretization of the domain Ω2. The set of all 
faces of the mesh will be denoted as ℎ, the subsets of interior and ex-

terior faces of the mesh will be denoted as  int
ℎ

and ext
ℎ

, respectively, 
and the set of faces of an individual element 𝐾 ∈ ℎ will be denoted 
as 𝐾 . Using the discontinuous Galerkin method, scalar functions are 
approximated in the space of piecewise constant functions 𝐷0(ℎ), 
where the basis functions 𝜙𝐾 are indicator functions for mesh elements 
𝐾 ∈ℎ. Vector functions are approximated in the lowest-order Raviart–

Thomas–Nédélec function space 𝐑𝐓𝐍0(ℎ).
We denote the diffusive flux in Eq. (13) by 𝒒𝑖 =𝑚𝑖𝒗𝑖, where

𝒗𝑖 = −
𝑛∑

𝑗=1
𝐃𝑖,𝑗∇𝑍𝑗 +𝒘𝑖. (14)

The approximated vector functions 𝒗𝑖, 𝒖𝑖,𝑗 , 𝒂𝑖,𝑗 are given in the basis of 
the space 𝐑𝐓𝐍0(𝐾) as
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𝒗𝑖|𝐾 =
∑

𝐸∈𝐾
𝑣𝑖,𝐾,𝐸𝝎𝐾,𝐸 , 𝒖𝑖,𝑗 |𝐾 =

∑
𝐸∈𝐾

𝑢𝑖,𝑗,𝐾,𝐸𝝎𝐾,𝐸,

𝒂𝑖,𝑗 |𝐾 =
∑

𝐸∈𝐾
𝑎𝑖,𝑗,𝐾,𝐸𝝎𝐾,𝐸, (15)

where 𝝎𝐾,𝐸 ∈ 𝐑𝐓𝐍0(𝐾) are the finite element basis functions. The 
discretization of 𝒒𝑖 and 𝒗𝑖 subsequently follows the usual procedure 
described in [10]. Note that the mass-lumping technique is used to sta-

bilize the scheme. The discretization of the terms with velocities 𝒖𝑖,𝑗
and 𝒂𝑖,𝑗 is also briefly outlined in [10], but here we provide more de-

tails for convenience. By multiplying the terms 𝒖𝑖,𝑗 ⋅∇𝑍𝑗 and ∇ ⋅ (𝑍𝑗𝒂𝑖,𝑗 )
by a basis function 𝜙𝐾 ∈ 𝐷0(ℎ), integrating over the domain Ω2 and 
using the Green’s formula together with the properties of the 𝐑𝐓𝐍0(𝐾)
basis functions, we obtain

∫
Ω2

𝒖𝑖,𝑗 ⋅∇𝑍𝑗𝜑𝐾 = ∫
𝜕𝐾

𝑍𝑗𝜑𝐾𝒖𝑖,𝑗 ⋅ 𝒏𝜕𝐾 − ∫
𝐾

𝑍𝑗𝜑𝐾∇ ⋅ 𝒖𝑖,𝑗

≈
∑

𝐸∈𝐾
𝑍

upw
𝑖,𝑗,𝐾,𝐸

𝑢𝑖,𝑗,𝐾,𝐸 −𝑍𝑗,𝐾

∑
𝐸∈𝐾

𝑢𝑖,𝑗,𝐾,𝐸 , (16a)

∫
Ω2

∇ ⋅
(
𝑍𝑗𝒂𝑖,𝑗

)
𝜑𝐾 = ∫

𝜕𝐾

𝑍𝑗𝜑𝐾𝒂𝑖,𝑗 ⋅ 𝒏𝜕𝐾 ≈
∑

𝐸∈𝐾
𝑍

upw
𝑖,𝑗,𝐾,𝐸

𝑎𝑖,𝑗,𝐾,𝐸 , (16b)

where 𝒏𝜕𝐾 denotes the outward unit normal vector on 𝜕𝐾 , 𝑍𝑗,𝐾 rep-

resents the mean value of 𝑍𝑗 on the element 𝐾 and 𝑍upw
𝑖,𝑗,𝐾,𝐸

is a yet 
undefined value of 𝑍𝑗 on the face 𝐸 ∈ 𝐾 as viewed from the element 
𝐾 ∈ℎ. Note that the discretization of the advection terms differs in the 
term containing ∑

𝐸∈𝐾
𝑢𝑖,𝑗,𝐾,𝐸 , which corresponds to the discretization of 

∇ ⋅ 𝒖𝑖,𝑗 on the element 𝐾 ∈ℎ. This is the key distinction between the 
conservative and non-conservative formulations, as will be clear from 
the numerical results.

The discrete scheme for Eq. (13) is obtained by applying the Euler 
method for temporal discretization and the semi-implicit approach of 
the frozen coefficients method for the linearization in time. Consistently 
with [10, Eq. (15)], it can be written as

|𝐾|
Δ𝑡𝑘

𝑛∑
𝑗=1

𝑁𝑘
𝑖,𝑗,𝐾

(
𝑍𝑘+1

𝑗,𝐾
−𝑍𝑘

𝑗,𝐾

)
+

𝑛∑
𝑗=1

∑
𝐸∈𝐾

𝑍
upw
𝑖,𝑗,𝐾,𝐸

(
𝑎𝑘
𝑖,𝑗,𝐾,𝐸

+ 𝑢𝑘
𝑖,𝑗,𝐾,𝐸

)
+

∑
𝐸∈𝐾

𝑚
𝑘,upw
𝑖,𝐸

𝑣𝑘+1
𝑖,𝐾,𝐸

+
𝑛∑

𝑗=1

(|𝐾|𝑟𝑘
𝑖,𝑗,𝐾

−
∑

𝐸∈𝐾
𝑢𝑘
𝑖,𝑗,𝐾,𝐸

)
𝑍𝑘+1

𝑗,𝐾
= |𝐾|𝑓𝑘

𝑖,𝐾
(17)

for all 𝐾 ∈ℎ, 𝑖 ∈ {1, … , 𝑛} and time levels 𝑘 ∈ℕ. Here |𝐾| denotes the 
volume of the element 𝐾 and Δ𝑡𝑘 = 𝑡𝑘+1−𝑡𝑘 is the discrete time step. The 
superscripts 𝑘 and 𝑘 +1 indicate the time level where the corresponding 
term is evaluated. The symbols 𝑁𝑘

𝑖,𝑗,𝐾
, 𝑚𝑘,upw

𝑖,𝐸
, 𝑟𝑘

𝑖,𝑗,𝐾
, and 𝑓𝑘

𝑖,𝐾
represent 

coefficients obtained from the discretization of the corresponding quan-

tities in Eq. (13), see [10] for details.

Two upwind schemes for the term 𝑍upw
𝑖,𝑗,𝐾,𝐸

are tested in this paper. 
The first one, hereafter denoted as explicit upwind, evaluates the term at 
time level 𝑡 = 𝑡𝑘 as

𝑍
upw
𝑖,𝑗,𝐾1 ,𝐸

≡𝑍
𝑘,upw
𝑖,𝑗,𝐾1 ,𝐸

=

{
𝑍𝑘

𝑗,𝐾1
if 𝑎𝑘

𝑖,𝑗,𝐾1 ,𝐸
+ 𝑢𝑘

𝑖,𝑗,𝐾1 ,𝐸
≥ 0,

𝑍𝑘
𝑗,𝐾2

otherwise,
(18)

for all interior faces 𝐸 ∈  int
ℎ

such that 𝐸 ∈ 𝐾1
∩ 𝐾2

. Note that this 
scheme is symmetric, i.e., 𝑍𝑘,upw

𝑖,𝑗,𝐾1 ,𝐸
= 𝑍

𝑘,upw
𝑖,𝑗,𝐾2 ,𝐸

. This scheme was used 
also in [10]. The second scheme, hereafter denoted as implicit upwind, 
was introduced in [11,47] and evaluates the term at time level 𝑡 = 𝑡𝑘+1
as

𝑍
upw
𝑖,𝑗,𝐾1 ,𝐸

≡𝑍
𝑘+1,upw
𝑖,𝑗,𝐾1 ,𝐸

=

{
𝑍𝑘+1

𝑗,𝐾1
if 𝑎𝑘

𝑖,𝑗,𝐾1 ,𝐸
+ 𝑢𝑘

𝑖,𝑗,𝐾1 ,𝐸
≥ 0,

2𝑍𝑘+1 −𝑍𝑘+1 otherwise,
(19)
𝑗,𝐸 𝑗,𝐾1
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where 𝑍𝑘+1
𝑗,𝐸

is the unknown trace of 𝑍𝑗 on the face 𝐸 ∈  int
ℎ

(also called 
a Lagrange multiplier in the context of mixed finite element methods). 
The motivation for this choice is that since 𝑍𝑗,𝐸 provides an approxima-

tion to the mean value 12 (𝑍𝑗,𝐾1
+𝑍𝑗,𝐾2

), then 2𝑍𝑗,𝐸 −𝑍𝑗,𝐾1
approximates 

𝑍𝑗,𝐾2
. This allows to proceed with the hybridization procedure in MH-

FEM even when upwinded terms are treated implicitly, but the scheme 
is not symmetric, i.e., 𝑍𝑘+1,upw

𝑖,𝑗,𝐾1 ,𝐸
≠𝑍

𝑘+1,upw
𝑖,𝑗,𝐾2 ,𝐸

. However, it is not a concep-

tual problem since the matrix of the resulting system of linear algebraic 
equations is non-symmetric even when the explicit upwind scheme is 
applied. Both upwind schemes are compared on a benchmark problem 
in Appendix A.

The linear system of equations for the unknown values 𝑍𝑘+1
𝑗,𝐾

, 𝐾 ∈
ℎ and 𝑍𝑘+1

𝑗,𝐸
, 𝐸 ∈ ℎ is closed by adding equations that represent the 

balance of the normal components of the flux 𝑸𝑖 = 𝒒𝑖 +
𝑛∑

𝑗=1
𝑍𝑗 (𝒂𝑖,𝑗 + 𝒖𝑖,𝑗 )

across interior faces of the mesh. The balance conditions can be written 
in the discrete form as

2∑
𝓁=1

[
𝑚𝑘
𝑖,𝐸

𝑣𝑘+1
𝑖,𝐾𝓁 ,𝐸

+
𝑛∑

𝑗=1
𝑍

upw
𝑖,𝑗,𝐾𝓁 ,𝐸

(
𝑎𝑘
𝑖,𝑗,𝐾𝓁 ,𝐸

+ 𝑢𝑘
𝑖,𝑗,𝐾𝓁 ,𝐸

)]
= 0 (20)

for all 𝑖 ∈ {1, … , 𝑛} and all interior faces 𝐸 ∈  int
ℎ

such that 𝐸 ∈ 𝐾1
∩𝐾2

. 
Note that 𝑣𝑘+1

𝑖,𝐾𝓁 ,𝐸
is given in terms of 𝑍𝑘+1

𝑗,𝐾𝓁
and 𝑍𝑘+1

𝑗,𝐸
, see [10]. For 

exterior faces 𝐸 ∈ ext
ℎ

, constraints given by the discretized boundary 
conditions are used instead of Eq. (20). The following steps depend on 
which upwind technique is used. In case of the explicit upwind scheme 
Eq. (18), the advection terms in Eq. (20) cancel out, because the upwind 
scheme is symmetric and both velocities 𝒂𝑖,𝑗 and 𝒖𝑖,𝑗 are assumed to be-

long to the space 𝐑𝐓𝐍0(ℎ). Hence, the resulting conditions enforce 
only the balance of the diffusive flux 𝒒𝑖, which leads to the scheme de-

scribed in [10]. In case of the non-symmetric implicit upwind scheme 
Eq. (19), however, the balance Eq. (20) must be considered as a whole 
and the MHFEM modification from [10] that allows the scheme with 
explicit upwind to deal with vanishing diffusion in non-linear PDEs no 
longer applies. Nonetheless, the implicit upwind scheme is applicable 
to the linear transport equation (6) that is considered in this work. De-

tailed analysis of this upwind scheme can be found in [47].

The final discrete scheme is obtained by following the hybridiza-

tion procedure, see [9–11]. The per-element averages 𝑍𝑘+1
𝑗,𝐾

, 𝐾 ∈ℎ are 
eliminated from the large, indefinite system of linear algebraic equa-

tions (Eqs. (17) and (20) with boundary conditions) and a smaller, 
definite system of linear algebraic equations for the traces 𝑍𝑘+1

𝑗,𝐸
, 𝐸 ∈ ℎ

is obtained. The MHFEM computational algorithm leads to the solution 
of one non-symmetric linear system per time step, it allows to use un-

structured meshes and can be efficiently parallelized.

3.2.1. Inflow boundary condition for relative humidity

In the problem described in Section 2, the inflow boundary condition 
for relative humidity 𝜙 is specified as a function 𝜙in(𝑧) of height 𝑧 [m]:

𝜙in(𝑧) =

⎧⎪⎪⎨⎪⎪⎩
𝜙max +𝜙lin

𝑧pow − 𝑧

𝑧pow
if 𝑧 ≤ 𝑧pow,

𝜙max − (𝜙max − 𝜙min)
(

𝑧−𝑧pow
𝑧const−𝑧pow

)𝛾

if 𝑧 > 𝑧pow and 𝑧 ≤ 𝑧const ,

𝜙min if 𝑧 > 𝑧const ,

(21)

where the common parameters 𝜙lin = 0.01 and 𝑧pow =0.005 m describe 
the profile below the minimal height for measurements, 𝑧const =0.195 m

corresponds to the height of the synthetic plants, and the remaining 
parameters 𝜙min, 𝜙max, 𝛾 are fitted values to the experimental data 
(see Table 3 and the supplementary materials). Furthermore, the value 
𝜙in(0) is used for the fixed-value boundary condition at the bottom side 
of the domain Ω2 that coincides with the interface between the soil tank 
and free space.
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Table 3

Values of fitted parameters 𝜙min , 𝜙max , 𝛾 for the relative humidity inflow bound-

ary condition (21).

EX-1 EX-2 EX-3

𝜙min 0.236 0.230 0.217

𝜙max 0.270 0.275 0.265

𝛾 0.184443 0.262402 0.402284

3.3. Computational algorithm and time adaptivity

The previous two sections described the numerical methods used 
for the discretizations of Eqs. (1) and (6), respectively. In this section, 
we describe the main computational algorithm of the coupled scheme 
focusing on its adaptive time control.

The initialization of the solver includes setting all physical param-

eters, discretization of the domain Ω1 by the lattice Ω̂, discretization 
of the domain Ω2 by the unstructured mesh ℎ, and decomposition of 
the lattice and mesh into subdomains for distributed computing. Then 
the solver allocates all data structures, applies the initial conditions and 
starts the main time-loop. To optimize the efficiency of the solver, we 
developed an adaptive time-stepping algorithm based on a “CFL-like” 
condition. The time-stepping part of the computational algorithm can 
be summarized as follows:

1. Set the time tracking variables 𝑡𝐿 ∶= 0 and 𝑡𝑀 ∶= 0, physical time 
step Δ𝑡 and final time 𝑡max =𝑁𝑡Δ𝑡.

2. While 𝑡𝐿 <𝑁𝑡Δ𝑡, repeat these steps:

(a) After every 1000 iterations, recompute inflow velocity fluctua-

tions that will be used in the next 1000 iterations.

(b) Perform one iteration of LBM.

(c) Set 𝑡𝐿 ∶= 𝑡𝐿 +Δ𝑡.
(d) If 𝑡𝑀 < 𝑡𝐿, perform these steps:

i. Interpolate the velocity field from the regular lattice to the 
unstructured mesh. See Section 3.4 for details regarding 
this procedure.

ii. Compute 𝐶 = max𝐸{|𝒗𝐸 |Δ𝑡∕|𝐸|}, where 𝐸 ∈ ℎ goes over 
all faces of the unstructured mesh, |𝒗𝐸 | is the magnitude 
of the interpolated velocity on the face 𝐸 and |𝐸| is the 
characteristic length of the face 𝐸.

iii. Set the time step for MHFEM: Δ𝑡𝑀 ∶= Δ𝑡⌊𝐶max∕𝐶⌋ if 𝐶 ≤
𝐶max, else Δ𝑡𝑀 ∶= Δ𝑡∕⌈𝐶∕𝐶max⌉.

iv. Set the number of MHFEM iterations: 𝑛𝑀 ∶= 1 if 𝐶 ≤ 𝐶max, 
else 𝑛𝑀 ∶= ⌈𝐶∕𝐶max⌉.

v. Perform 𝑛𝑀 iterations of MHFEM with the time step Δ𝑡𝑀 . 
The MHFEM algorithm is described in [10].

vi. Set 𝑡𝑀 ∶= 𝑡𝑀 + 𝑛𝑀Δ𝑡𝑀 .

(e) If 𝑡𝐿 is a multiple of a pre-defined time period, make a snapshot 
of the current data for visualization/post-processing.

Initially, two separate time tracking variables 𝑡𝐿 and 𝑡𝑀 are created, 
one for computations on the lattice and the other for computations on 
the mesh. The lattice variable 𝑡𝐿 is the main one which is checked in 
the time loop condition (step 2 above). The variable 𝑡𝑀 is incremented 
separately in the step 2d that is responsible for the coupling between 
computations on the lattice and the mesh. Here the velocity field is in-

terpolated from the lattice to the mesh and the time-step control factor 
𝐶 is computed. The time step Δ𝑡𝑀 for the mesh computations can be ei-

ther longer or shorter than Δ𝑡 depending on the value of 𝐶 . If 𝐶 ≤ 𝐶max, 
where 𝐶max is a pre-defined constant, the time step Δ𝑡𝑀 is set as an in-

tegral multiple of Δ𝑡 and the time variable 𝑡𝑀 is pushed forward to the 
new time level by just one iteration of MHFEM. Hence, several follow-

ing LBM iterations can be performed successively until the lattice time 
𝑡𝐿 overruns 𝑡𝑀 and the condition 2d is satisfied. On the other hand, if 
𝐶 > 𝐶max, the MHFEM solver needs to perform 𝑛𝑀 > 1 iterations to move 
to the new time level 𝑡𝑀 +Δ𝑡 with a shorter time step Δ𝑡𝑀 =Δ𝑡∕𝑛𝑀 .
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In practice, we found empirically that limiting the time step Δ𝑡𝑀
with 𝐶max =

1
2 is necessary to ensure the stability of the coupled solver. 

The overall performance of the solver depends on the concrete val-

ues of Δ𝑡𝑀 selected by the adaptive algorithm, which are influenced 
by the quantities needed to compute the time-step control factor 𝐶 , 
i.e., local velocity magnitude, lattice time step (which is related to the 
lattice space step), and the local space step of the unstructured mesh 
(expressed by |𝐸| in the algorithm).

3.4. Interpolation of the velocity field

Since Eqs. (1) and (6) are coupled by the velocity field 𝒗(𝒙, 𝑡), the 
numerical approach relies on the interpolation of the approximate ve-

locity field computed by LBM and its projection into the finite element 
space used by MHFEM. Note that the spatial discretization of the do-

main Ω2 ⊂Ω1 is generally different than the equidistant lattice on Ω1; it 
may be a regular grid with different space steps or even an unstructured 
mesh.

The interpolation of the velocity field can be requested at any point 
𝒙 ∈Ω2. The surrounding lattice points �̂� ∈ Ω̂ can be easily found and the 
linear or cubic interpolation in ℝ3 can be used to obtain the velocity at 
𝒙 from the velocities at �̂�. Note that linear interpolation can be imple-

mented more efficiently than cubic interpolation as it uses fewer input 
data points. Our implementation of the cubic interpolation causes the 
whole solver to run about three times slower than when using the lin-

ear interpolation. Both linear and cubic interpolations are compared on 
a benchmark problem in Appendix A and based on those results, linear 
interpolation is used for the main simulations presented in Section 4.

The finite element space used by MHFEM imposes requirements on 
the interpolation of the velocity field. According to [9], the Raviart–

Thomas–Nédélec space of the lowest order 𝐑𝐓𝐍0(ℎ) that is used for 
the finite element–approximation of the velocity field in this work is 
formed by functions 𝝎 ∈ [𝐿2(Ω2)]3 such that:

1. for any element 𝐾 ∈ℎ, the restriction of 𝝎 to 𝐾 , 𝝎|𝐾 , must belong 
to the finite element space 𝐑𝐓𝐍0(𝐾) on the element 𝐾 ,

2. 𝝎 satisfies the balancing condition for normal traces on all interior 
faces 𝐸 ∈  int

ℎ
of the mesh, i.e., ∫

𝐸
𝝎|𝐾1

⋅ 𝒏𝐾1 ,𝐸
+ ∫

𝐸
𝝎|𝐾2

⋅ 𝒏𝐾2 ,𝐸
= 0

for all 𝐸 ∈  int
ℎ

, 𝐸 ∈ 𝐾1
∩𝐾2

, where 𝒏𝐾𝓁 ,𝐸
is the unit normal vector 

on the face 𝐸 oriented outward from the element 𝐾𝓁 , 𝓁 = 1, 2.

An interpolation strategy compatible with these requirements is as fol-

lows. First, velocity is evaluated at the element face centers 𝒙𝐸 for 
all 𝐸 ∈ ℎ. This can be done at any time level 𝑡 yielding the approx-

imate velocity values �̂�(𝒙𝐸, 𝑡) which are then used for the projection 
into the 𝐑𝐓𝐍0(ℎ) space. The discrete velocity field is assumed to be 
piecewise constant on the element sides ℎ and the values �̂�(𝒙𝐸, 𝑡) de-

fine the components corresponding to the face 𝐸 in the finite element 
spaces 𝐑𝐓𝐍0(𝐾𝑗 ) of the elements 𝐾𝑗 adjacent to the face 𝐸.

Finally, it is important to note that numerical schemes for Eqs. (6a)

and (6b) do not behave equivalently with a general discrete velocity 
field interpolated to the mesh. This is because the discrete velocity field 
computed by LBM may not satisfy Eq. (1a) exactly and even if it did, 
the interpolation scheme combines values from different locations in 
the flow field on a single element. Hence, the field interpolated to the 
unstructured mesh may be locally non-conservative, i.e., the discrete 
approximation of the velocity divergence ∑

𝐸∈𝐾
�̂�(𝒙𝐸, 𝑡) ⋅𝒏𝐾,𝐸 on element 

𝐾 ∈ ℎ may be non-zero. The accuracy of the numerical scheme ap-

plied to the conservative form of Eq. (6a) and non-conservative form 
of Eq. (6b) are studied in Appendix A on a benchmark problem. The 
presented results show that solving the conservative transport equa-

tion with a highly turbulent velocity field may lead to large deviations 
in the numerical solution, whereas solving the non-conservative trans-

port equation with the same velocity field results in significantly more 
accurate solution. Therefore, the non-conservative formulation of the 
transport equation (6b) is used for the main simulations in Section 4.
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An alternative approach to address the problem of non-conservative 
velocity field might be to use a post-processing algorithm to recover the 
discrete divergence-free condition on the given mesh. The problem of 
compatibility between flow schemes producing a discrete velocity field 
and transport schemes using the interpolated velocity was extensively 
researched and several velocity post-processing algorithms were devel-

oped [48–50]. However, such post-processing would incur additional 
cost to the computational algorithm and the approach is not investi-

gated further in this paper.

3.5. Implementation remarks

The LBM and MHFEM parts of the coupled solver were developed 
and tested separately in [32–34] and [10], respectively. Both parts in-

dividually as well as the algorithms specific to the coupling between 
them utilize the open-source TNL library [51] for parallelization and 
distributed computing on GPU clusters. TNL natively supports and pro-

vides a unified high-level interface for modern parallel architectures 
such as CPUs, GPU accelerators (via CUDA [52]) and distributed sys-

tems (via MPI [13]). Furthermore, TNL provides common building 
blocks for numerical solvers, including data structures and parallel al-

gorithms for linear algebra, structured grids and unstructured meshes. 
Using the data structures and algorithms from TNL is beneficial for per-

formance, because they allow to avoid running expensive computations 
on the CPU and having to transfer large datasets between the system 
memory and accelerators over the PCI-E bus. Instead, all expensive parts 
of the computational algorithm are executed on the GPU accelerators 
and the CPU is responsible only for the orchestration of the work and 
occasional sequential steps such as handling input and output.

The coupled solver uses a regular lattice for LBM and an unstruc-

tured mesh for MHFEM. The use of the lattice is the main limiting 
factor for the flexibility of the solver, because extra care must be taken 
when setting up a simulation to ensure proper alignment of immersed 
boundaries such as the synthetic plants used in this paper. This could 
be improved by using interpolated boundary conditions for LBM [8], 
they are however not currently implemented in our solver. On the other 
hand, the MHFEM part of the solver can be used on complex domain ge-

ometries with unstructured mesh discretizations. The details related to 
the decomposition of a regular lattice overlapped with an unstructured 
mesh are described in the following section.

An important choice related to the solver performance is the selec-

tion of the algorithm for the solution of large systems of linear equa-

tions. We have found that the best performance is obtained using the 
BiCGstab method combined with the Jacobi preconditioner, both im-

plemented in TNL [51]. In the simulations presented in this paper, the 
BiCGstab method took at most 4 iterations to converge in most of the 
time steps, so improved performance cannot be expected from stronger 
preconditioners.

3.6. Domain decomposition for overlapped lattice and mesh

The combination of a lattice overlapped with an unstructured mesh 
requires special attention when the solver is run in a distributed fashion, 
e.g. utilizing multiple GPU accelerators. Both the lattice and the mesh 
have to be decomposed into subdomains and each assigned to a GPU. 
Sufficiently wide overlapping regions on the lattice subdomains have to 
be generated to ensure that each GPU can interpolate the velocity field 
from its lattice subdomains to its mesh subdomain. Furthermore, since 
computations on the lattice and the mesh are never executed concur-

rently, it is desirable to balance the sizes of the subdomains in order to 
achieve good computational efficiency.

Fig. 3 illustrates the problems with decomposition on an example 
involving a non-uniform cuboidal mesh that is refined around the two 
synthetic plants in configuration EX-1. Due to limitations of our LBM 
implementation, only 1D decompositions (i.e., such that all interfaces 
between two lattice subdomains are planes perpendicular to the 𝑥-axis) 
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can be considered. Fig. 3a shows a naive approach with uniformly 
sized lattice subdomains (highlighted with rainbow-colored rectangles), 
which leads to highly non-uniform distribution of mesh cell counts in 
each subdomain (indicated by percentages below the figure). In order 
to solve this balancing problem, we implemented a decomposition strat-

egy which optimizes the lattice as well as mesh subdomains such that 
each GPU is assigned approximately the same number of lattice sites as 
well as mesh cells. The essential idea is to first determine the part of the 
domain where the lattice and mesh overlap, perform its decomposition 
such that an optimal mesh decomposition is achieved, and then decom-

pose the remaining parts of the lattice (which do not overlap with the 
mesh) to add up to the optimal number of lattice sites in each subdo-

main.

For a given regular lattice and an unstructured mesh covering the 
domain Ω1 and its subdomain Ω2, respectively, the decomposition pro-

cedure (with 𝑁ranks denoting the number of MPI ranks used in the 
computation and 𝑁cells denoting the total number of mesh cells) can 
be summarized as follows:

1. For all 𝑥-coordinates of the lattice sites, count the number of mesh 
cells whose centroid is located left of this 𝑥-coordinate. Use linear 
interpolation to obtain a continuous interpolant function 𝐹 (𝑥) that 
is increasing from 0 to 𝑁cells.

2. Find the smallest interval [𝑥0, 𝑥𝑁ranks
] such that 𝐹 (𝑥𝑁ranks

) − 𝐹 (𝑥0) =
𝑁cells. This interval identifies the part of the lattice that is over-

lapped by the mesh, i.e., the dark transparent rectangle in Fig. 3.

3. Find a partition {𝑥0, 𝑥1, … , 𝑥𝑁ranks−1, 𝑥𝑁ranks
} of the interval

[𝑥0, 𝑥𝑁ranks
] such that each subinterval contains approximately 

𝑁cells∕𝑁ranks mesh cells:

(a) Define the objective function 𝑓 (𝑥1, … , 𝑥𝑁ranks−1) which mea-

sures the imbalance of mesh cells included in each subinterval 
based on the function 𝐹 .

(b) Minimize the objective function using the gradient descent 
method and the uniform interval partition as initial condition.

(c) Round the solution from ℝ to the lattice coordinates (i.e., from

double to int). As the rounding does not ensure the opti-

mal result in integer precision, we additionally minimize the 
objective function in integer precision. We try to iteratively in-

crement/decrement each component of the solution as long as 
it improves the partition.

4. Decompose the remaining parts of the lattice which do not overlap 
with the mesh. Note that these parts of the lattice are decomposed 
separately in reversed order (i.e., from right to left) in order to 
allow merging the non-overlapping subdomains with the adjacent 
mesh-overlapping subdomains (see the red and gray subdomains in 
Fig. 3b).

The result of this decomposition procedure is illustrated in Fig. 3b. 
Overall, the decomposition algorithm optimizes the computational cost 
and memory requirements of each MPI rank at the cost of increased 
communication due to increased number of lattice subdomains.

4. Validation results

4.1. Computational methodology

All three experimental configurations were simulated up to the fi-

nal time 𝑡max =100 s in three different resolutions, hereafter denoted 
as RES-1, RES-2, and RES-3. A reference lattice and mesh were gener-

ated for the initial resolution RES-1 and the space step is halved with 
each subsequent resolution. The simulations were computed on a sys-

tem with two AMD EPYC 7763 processors and eight Nvidia Tesla A-100

GPU accelerators with NVLink interconnection. See Table 4 for the char-

acteristics of each resolution and computational resources needed for 
the simulations.
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To match the experimental methodology described in Section 2.1, 
time-averaging was employed to produce statistical quantities such as 
the mean and variance of the flow velocity and relative humidity. 
Time-averaging is implemented as part of the simulation code where 
statistical quantities are updated in every time step using the Welford’s 
online algorithm [53–55]. Note that no space-averaging is applied to 
the simulation results.

4.2. On qualitative and quantitative approaches for comparing experiments 
and simulations

This section describes the approaches adopted in this study for com-

paring simulation results with the physical experimental data. Consider 
Dooge [56] who wrote that, “the term model is used to describe a 
system which is simpler than the prototype system and which can re-

produce some but not all of the characteristics thereof. Accordingly, a 
model is related to those particular aspects of the behavior of the proto-

type for which understanding or prediction is required”. Following this 
reasoning, the authors would like to emphasize that our objective is not 
to exactly reproduce the experimental results of [18] – nor is this even 
a feasible task. Our goal is to instead ensure that the model is able to 
capture the general patterns and behavior observed in the experimental 
data.

The sparsity of these datasets prevents a reliable reconstruction of 
the flow field that can be compared quantitatively with the three-

dimensional simulation results. To address this issue, simulation data 
were extracted at the same locations as the experimentally measured 
vertical profiles for direct quantitative comparison of the results. There-

fore, while not as informative as a point-by-point comparison, the 
qualitative comparison of the simulated flow field with interpolated ex-

perimental data in 2D is still important for ensuring that the model is 
able to capture general patterns and behavior.

As previously discussed, relative humidity and flow statistics were 
measured with accuracies of ±0.03 and 5%, respectively. It should be 
noted that there are a large number of variables at play with respect 
to the experimental setup and methodologies employed by [18]. Col-

lectively, these are not accounted for in the model and are the likely 
explanation for any of the observed differences between the experimen-

tal and simulation results. A summary of possible factors contributing 
to experimental uncertainty include:

• The low sampling frequency of relative humidity measurements 
leads to a smearing effect due to spatio-temporal averaging of the 
vapor transport in the streamwise direction.

• The reliance on a sensor immersed in the flow to measure relative 
humidity is furthermore invasive; its presence disturbs the flow 
field locally and therefore the relative humidity distribution; the 
impact of the sensor was not quantified by [18].

• The climate controls (i.e., heater, chiller, humidifier, dehumidifier) 
continuously fluctuated during the experiments, typically by no 
more than temperature ±1 ◦C, relative humidity ±3 %, and velocity 
±0.05 m s−1. This can lead to momentary increases or decreases in 
any of the aforementioned atmospheric variables; this variability 
was accounted for in the model.

• Uncertainty in the physical placement of the bluff bodies within the 
test-section, see the section on the experimental setup. The model 
and physical experiments may therefore differ slightly. The mea-

surements did not explore variability in the transverse direction 
(i.e., 𝑦-axis).

• Uncertainty in the physical locations where the flow and relative 
humidity measurements were made due to the accuracy of the au-

tomated traversing systems. If the laser was not perfectly centered 
behind a synthetic plant for example, it would measure slightly dif-

ferent flow behavior than it would otherwise. See the experimental 
setup section for more details.
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Fig. 3. Domain decompositions of a regular lattice (rainbow-colored subdomains) overlapped with an unstructured mesh (dark transparent rectangle) that is refined 
around the synthetic plants (two small black rectangles). The percentages below the case a) indicate the portion of the total number of mesh cells included in the 
corresponding lattice subdomain. All lattice subdomains in the case b) include 1/8 of the total number of mesh cells.

Table 4

Characteristics of each resolution used for presented simulations. The computational times were 
achieved using 8 Nvidia Tesla A-100 cards with NVLink interconnection. The total computational 
time is broken down to cumulative contributions from LBM computation, velocity interpolation, 
and MHFEM computation; the remaining time includes initialization and output of the data.

RES-1 RES-2 RES-3

Lattice space step 7.88 mm 3.94 mm 1.97 mm

Lattice dimensions 496 × 96 × 144 991 × 224 × 288 1981 × 480 × 575
No. of lattice sites approx. 7 ⋅ 106 approx. 64 ⋅ 106 approx. 547 ⋅ 106

No. of mesh cells approx. 1.5 ⋅ 106 approx. 12 ⋅ 106 approx. 96 ⋅ 106

Total memory 2.5 GiB 24 GiB 200 GiB

Base time step Δ𝑡 1.33 × 10−3 s 3.33 × 10−4 s 8.32 × 10−5 s

Average no. of LBM iters per 
MHFEM step (⌊𝐶max∕𝐶⌋) 1 2 4

Computational time 10 min 65 min 15 h 12 min

– LBM computation 1 min 11 min 6 h 8 min

– velocity interpolation 46 s 2 min 30 min

– MHFEM computation 4 min 30 min 7 h 54 min
• Uncertainty in the exact angle of the laser beams. If the beams were 
not exactly perpendicular to the flow, there could be some resulting 
skewness in the measured flow properties.

4.3. Qualitative comparison via 2D flow fields

Upon investigation of the velocity profiles from simulations using 
the time-constant (i.e., steady) inflow velocity profile given by Eq. (10), 
we noticed that vortical structures induced by the flow around obsta-

cles were different immediately behind the first and second synthetic 
plants in the configurations EX-2 and EX-3 with 45 cm and 105 cm spac-

ing, respectively. The difference is caused by the fact that when steady 
flow is prescribed at the inflow boundary, the flow immediately be-

fore the first plant is still steady, whereas the flow reaching the second 
plant is already turbulent. This scenario is non-physical, since natural 
air flow measured in the experiments was turbulent (Re > 104). In or-

der to introduce additional realism to the simulations and to address 
the above issue, the inflow velocity profile was modified through the 
inclusion of synthetic fluctuations based on Section 3.1.2. The effect 
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of small perturbations on the inflow boundary is that they enhance 
the development of the turbulent boundary layer in simulations with 
limited spatial resolution and domain size. A qualitative comparison 
of the high-resolution simulated mean horizontal velocity (𝑣𝑥) fields 
using both steady (time-constant) and unsteady (time-varying) bound-

ary conditions are presented for the configurations EX-2 and EX-3 in 
Fig. 4. Vortical structures caused by recirculating flow are observed 
downstream of both synthetic plants regardless of the applied bound-

ary condition, but the overall size of this recirculating region is affected 
by the boundary condition. The steady inflow velocity boundary con-

dition leads to the development of a region with low velocity down-

stream of the first plant in the flow direction that is larger than that 
observed when the time-varying boundary condition is applied. When 
these results are compared with the experimental data (i.e., the vertical 
columns in Fig. 4), it is clear that the time-varying boundary condition 
captures the observed behavior better. Hence, only the time-varying 
inflow boundary condition is considered for the results discussed here-

after.
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Fig. 4. Simulated mean horizontal velocity (𝑣𝑥) fields along the plane 𝑦 = 0 with overlain 1D velocity profiles for the configurations EX-2 (45 cm spacing) and EX-3 
(105 cm spacing). The velocity profile prescribed at the inflow boundary was either time-constant (subfigures a and c) or time-varying (subfigures b and d). Only 
a small region of interest around the synthetic plants is shown to improve visibility. The background color corresponds to the high-resolution simulation (RES-3); 
vertical columns show experimental data.
The profiles of mean horizontal and vertical velocity (𝑣𝑥 and 𝑣𝑧), 
root-mean-square of the turbulent horizontal and vertical velocity 
(RMS𝑥 and RMS𝑧), and mean relative humidity (𝜙) along the plane 
𝑦 = 0 are shown in Fig. 5 for EX-1, Fig. 6 for EX-2, and Fig. 7 for 
EX-3. In all three cases, the background color corresponds to the high-

resolution simulation (RES-3) and the narrow vertical columns high-

light superimposed experimental data measured at the corresponding 
locations.

The flow field observed around the synthetic plants depends on the 
spacing between the roughness elements [57]:

• In the closest spacing configuration (EX-1, Fig. 5), the downstream 
synthetic plant is located within the turbulent wake of the up-

stream plant. In this scenario, stable vortices are formed between 
the plants and the regime is termed skimming flow.

• In the intermediate spacing configuration (EX-2, Fig. 6), the wake 
created by the upstream plant does not fully develop before the 
flow reaches the downstream plant and affects the flow around it. 
Thus, this scenario is termed wake interference flow.

• In the widest spacing configuration (EX-3, Fig. 7), the synthetic 
plants are spaced sufficiently far apart so as to allow for full de-

velopment of individual wake zones. This flow regime is termed 
isolated roughness flow.

These flow regimes can be clearly discerned in the simulated flow fields 
shown in Figs. 5 to 7. The skimming flow and the isolated roughness 
flow regimes seem to be captured well by the high-resolution simulation 
(RES-3). As discussed at the beginning of this section, the horizontal po-
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sition of the wakes in the wake interference and isolated roughness flow 
regimes is affected by the inflow boundary condition used in the simu-

lation. While the width of the simulated upstream wake in the isolated 
roughness flow regime (Fig. 7) is in good agreement with the experi-

ment, it is underestimated in the wake interference flow regime (Fig. 6). 
Aside from this disagreement, the wakes formed behind the downstream 
plant as well as flow profiles far away from the plants are qualitatively 
in good agreement with the experiments in all three scenarios.

In the case of relative humidity, the greatest differences between 
experiments and simulations occur in the vertical profiles measured im-

mediately downstream of the synthetic plants (i.e., on the left side of the 
gray rectangles in the figures). In the following section, we will quan-

tify the differences in the profiles immediately downstream of the first 
plant and compare them with the measurements accuracy.

4.4. Quantitative comparison via 1D graphs

In this section, the simulation results and experimental data are com-

pared quantitatively in the vertical columns immediately downstream 
of the first synthetic plant; the comparisons in the other measurement 
locations are included in the supplementary materials. The graphs of 
the mean velocity (𝑣𝑥 and 𝑣𝑧) profiles are shown in Figs. 8 to 10 and 
the graphs of the relative humidity (𝜙) profiles are shown in Figs. 11 to 
13. For convenience, the horizontal position of each profile is indicated 
schematically by the red bar above each graph on the right hand side. 
In each graph, the experimental data (red line) and simulation data in 
three resolutions (dark blue line for RES-1, light blue line for RES-2, 
orange line for RES-3) are compared. The dashed lines indicate the sta-
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Fig. 5. Simulated flow fields along the plane 𝑦 = 0 with overlain 1D profiles: mean horizontal and vertical velocity (𝑣𝑥 and 𝑣𝑧), root-mean-square of horizontal and 
vertical velocity (RMS𝑥 and RMS𝑧), and mean relative humidity (𝜙) for the configuration with 15 cm spacing between synthetic plants (EX-1). Only a small region 
of interest around the synthetic plants is shown to improve visibility. The background color corresponds to the high-resolution simulation (RES-3); vertical columns 
show experimental data.
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Fig. 6. Simulated flow fields along the plane 𝑦 = 0 with overlain 1D profiles: mean horizontal and vertical velocity (𝑣𝑥 and 𝑣𝑧), root-mean-square of horizontal and 
vertical velocity (RMS𝑥 and RMS𝑧), and mean relative humidity (𝜙) for the configuration with 45 cm spacing between synthetic plants (EX-2). Only a small region 
of interest around the synthetic plants is shown to improve visibility. The background color corresponds to the high-resolution simulation (RES-3); vertical columns 
show experimental data.
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Fig. 7. Simulated flow fields along the plane 𝑦 = 0 with overlain 1D profiles: mean horizontal and vertical velocity (𝑣𝑥 and 𝑣𝑧), root-mean-square of horizontal and 
vertical velocity (RMS𝑥 and RMS𝑧), and mean relative humidity (𝜙) for the configuration with 105 cm spacing between synthetic plants (EX-3). Only a small region 
of interest around the synthetic plants is shown to improve visibility. The background color corresponds to the high-resolution simulation (RES-3); vertical columns 
show experimental data.
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Fig. 8. Quantitative comparison of horizontal and vertical velocity profiles (𝑣𝑥 and 𝑣𝑧) at the first position downstream of the first synthetic plant in the 15 cm

spacing (EX-1). The red bar above each graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other measurement locations 
(thin gray bars).
tistical deviation of the respective simulated quantity from its mean 
value (full lines). In case of the measured velocity profiles in Figs. 8 to 
10, the statistical deviation is indicated by errorbars. On the other hand, 
the low sampling frequency of the RHT sensors prevents any informa-

tion on the turbulent transport of the water vapor from being inferred 
from the data. In this case, the errorbars in Figs. 11 to 13 represent the 
sensor accuracy rather than statistical deviation of the samples.

The graphs in Figs. 8 and 10 for the cases EX-1 and EX-3, respec-

tively, show the best match between the simulated velocity profiles 
and experimental data. It can be observed that of the three resolutions 
compared in the graphs, the low-resolution simulation RES-1 differs 
the most from the experimental data and the high-resolution simula-

tion RES-3 is closest to the experimental data. For the remaining case 
EX-2, the graphs in Fig. 9 show larger differences that correspond to 
the qualitative disagreement described in the previous section. The 
primary cause is presumably the uncertainty related to the exact condi-

tions in the experiment. Upon closer examination of the documentation 
from this experiment, we found that the upstream plant may have been 
79
planted not perfectly perpendicular to the ground surface, which would 
result in different flow behavior around and above the plant. However, 
there is no data that would allow us to reproduce this scenario in the 
simulation.

In case of the relative humidity profiles, the largest difference be-

tween the experimental data and simulations is observed in Fig. 11 for 
EX-1 where the simulated profiles are underestimated. These results 
suggest that improvements could be made by modifying the bound-

ary condition applied on the plant. The boundary condition described 
in Section 2.3 is based on a mass flux that was measured in a sep-

arate experiment under different atmospheric forcing conditions [19]

than those applied herein; the applied mass fluxes may therefore un-

derestimate the conditions actually present in the simulated scenarios. 
Furthermore, it should be noted that when the plants are located close 
together, the plants may compete for the limited resource [18] which 
might result in increased collective evaporation rate compared to the 
cases where the plants are located far away from each other. In the cases 
EX-2 and EX-3 featuring different flow regimes, the graphs in Figs. 12
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Fig. 9. Quantitative comparison of horizontal and vertical velocity profiles (𝑣𝑥 and 𝑣𝑧) at the first position downstream of the first synthetic plant in the 45 cm

spacing (EX-2). The red bar above each graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other measurement locations 
(thin gray bars).
and 13 indicate that the simulation results are well within the accuracy 
of the RHT sensors.

4.5. Computational performance analysis

To demonstrate the computational efficiency of the implemented 
LBM-MHFEM solver, we performed a strong scaling study whose re-

sults are shown in Table 5 for the experimental configuration EX-1 in 
the resolution RES-2. Due to limitations of the computational system, 
the performance scaling analysis could be performed only with 8 GPUs. 
Because of the coupling with MHFEM, the overall performance of the 
solver in GLUPS (giga-LUPS, billions of lattice updates per second) is about 
4-5× lower compared to a standalone LBM solver, depending on the 
adaptively selected time steps. The efficiency decreases with increas-

ing the number of GPUs used in the computation, which is a typical 
behavior in strong scaling analyses caused by reduced work per GPU 
and increased communication-to-work ratio. Considering that our im-

plementation is limited by the one-dimensional domain decomposition 
80
of the lattice, the 80% efficiency achieved on 8 GPUs is a satisfactory 
result. Higher efficiency can be expected for weak scaling studies where 
the amount of work is kept proportional to the number of GPUs. How-

ever, due to the adaptive time stepping strategy used in the coupled 
solver, it is not straightforward to analyze the weak scaling, because 
the performance of the solver depends on the number of time steps 
where MHFEM is executed, which would be different for each problem 
size.

5. Conclusion

In this paper, we presented an efficient computational method for 
vapor transport in the boundary layer above a partially saturated soil. 
The solver is based on the combination of lattice Boltzmann and mixed-

hybrid finite element methods and can utilize modern GPU-based high-

performance computing systems. The paper deals with mutual collabo-

ration between experimental and computational methodologies.
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Fig. 10. Quantitative comparison of horizontal and vertical velocity profiles (𝑣𝑥 and 𝑣𝑧) at the first position downstream of the first synthetic plant in the 105 cm

spacing (EX-3). The red bar above each graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other measurement locations 
(thin gray bars).
Table 5

Strong scaling of the coupled LBM-MHFEM solver for the scenario EX-1 in the 
resolution RES-2. 𝑁GPUs denotes the number of Nvidia Tesla A-100 GPUs used 
in the computation, the Time column includes the computational time without 
initialization, the performance metric GLUPS stands for billions of lattice updates 
per second and 𝐸𝑓𝑓 denotes the parallel efficiency.

𝑁GPUs Time [min] GLUPS 𝐸𝑓𝑓

1 392 1.0 1.00

2 202 1.9 0.96

4 110 3.7 0.92

8 62 6.4 0.80

The model was validated with experimental data measured above 
a flat partially saturated soil layer featuring synthetic plants arranged 
in several configurations. The model relies on experimental data for the 
input for boundary conditions: the inflow velocity and humidity profiles 
and the average mass flux of water loss from the plants; experimental 
81
data used in this study were generated by [19,18] and are publicly 
available in [20].

Based on the validation study presented in this paper, we can draw 
reasonable predictions about the flow and transport behavior inside the 
computational domain. The performance of the coupled solver depends 
on the selected lattice and mesh sizes (i.e., spatial resolution) and the 
adaptively selected time steps. The highest-resolution simulations pre-

sented in this paper, which compare the best to the experimental data, 
require about 200 GiB memory and 15.25 h computational time on 8 
Nvidia Tesla A-100 cards to simulate 100 s of physical time. The simu-

lations in lower resolutions are not as accurate, but require less memory 
and shorter computational time compared to the highest resolution. A 
strong scaling analysis was performed for a lower resolution giving a 
parallel efficiency of 80% on 8 Nvidia Tesla A-100 cards. Scalability 
problems that are likely to occur on large-scale supercomputers (e.g., 
due to one-dimensional decomposition of the domain) were not inves-

tigated here due to the availability of computational resources. The 
generalization of the domain decomposition procedure from Section 3.6
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Fig. 11. Quantitative comparison of relative humidity profiles (𝜙) at the first position downstream of the first synthetic plant in the 15 cm spacing (EX-1). The red 
bar above the graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other measurement locations (thin gray bars).

Fig. 12. Quantitative comparison of relative humidity profiles (𝜙) at the first position downstream of the first synthetic plant in the 45 cm spacing (EX-2). The red 
bar above the graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other measurement locations (thin gray bars).
to improve the scalability on large supercomputers may be subject of fu-

ture research.

The results presented herein suggest several key areas where future 
experimental efforts could be improved, allowing the analysis of this 
model’s performance to be extended and further explored. For exam-

ple, extending measurements with flow characteristics in the transverse 
direction (e.g., 𝑣𝑦, RMS𝑦, 𝑣′𝑥𝑣′𝑦, 𝑣′𝑦𝑣′𝑧) would allow us to compare the tur-

bulent kinetic energy and improve the fluctuating inflow velocity con-

dition for the simulations. Another possible improvement is to arrange 
measurements in horizontal profiles in regions behind the plants, which 
would allow us to study the convergence of the numerical method (i.e.,

the effect of mesh resolution) by comparing the horizontal location of 
the vortical structures. Last but not least, the applicability of the mea-

sured evaporative mass flux to the close spacing scenario EX-1 should 
be investigated. Improving the methodology for measuring the evap-
82
oration from the plants would allow for prescribing more appropriate 
boundary conditions.

The work presented in this paper explores new possibilities in the 
efficient solution of various multiphysics problems using modern hard-

ware architectures. The developed model is based on the combination 
of LBM for fluid flow and MHFEM for a general system of advection-

diffusion-reaction PDEs. The simulator for vapor transport in air is 
just a first application that could be extended into a more general 
software tool capable of solving other physical phenomena such as non-

isothermal flow, multicomponent flow, land-atmospheric interaction, 
etc. There are many potential applications in combination with the ex-

perimental research, such as developing an efficient tool for a sensitivity 
analysis of measurements, supplementing sparse experimental datasets 
in regions where measurements would be too expensive or unfeasible, 
or predicting the behavior of the studied system in virtual scenarios.
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Fig. 13. Quantitative comparison of relative humidity profiles (𝜙) at the first position downstream of the first synthetic plant in the 105 cm spacing (EX-3). The red 
bar above the graph highlights the position of the profile relative to the synthetic plants (dark rectangles) and other measurement locations (thin gray bars).

Table A.6

Characteristics of lattice and grid resolutions used for the numerical analysis.

RES-A1 RES-A2 RES-A3

Lattice space step 8.06 mm 3.97 mm 1.97 mm

Lattice dimensions 217 × 128 × 128 441 × 256 × 256 889 × 512 × 512
MHFEM grid dimensions 128 × 64 × 64 256 × 128 × 128 512 × 256 × 256
No. of lattice sites approx. 3.5 × 106 approx. 29 × 106 approx. 233 × 106

No. of grid cells approx. 0.5 × 106 approx. 4 × 106 approx. 33 × 106

Base time step Δ𝑡 1.39 × 10−3 s 3.38 × 10−4 s 8.32 × 10−5 s

Average no. of LBM iters per 
MHFEM step (⌊𝐶max∕𝐶⌋) 2 4 9
Data availability

The experimental data used for validation are available as a public 
dataset https://doi .org /10 .17632 /6fryw4xzgh .1.
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Appendix A. Numerical analysis of the conservative vs. 
non-conservative formulation

In this section, we study numerically the convergence of the coupled 
LBM-MHFEM scheme using an artificial benchmark problem. The aim 
of this section is to study the differences between the conservative and 
non-conservative formulations of the transport equation.

Equation (1) governing the fluid flow is solved in a cuboidal channel 
Ω1 = [0, 1.75] × [0, 1] × [0, 1] (dimensions are in meters) with parameters 
similar to the main problem discussed in the paper (kinematic viscosity 
𝜈 = 15.52 × 10−6 m2 s−1, mean inflow velocity magnitude 𝑣max = 1 ms−1). 
Note that the channel is free of all obstacles, but we induce turbulent 
flow using the unsteady (time-varying) inflow boundary condition de-

scribed in Section 3.1.2.

The fluid flow is coupled with a transport equation either in the con-

servative form Eq. (6a) or non-conservative form Eq. (6b), where 𝜙 [-] 
is exempt from its physical meaning and for the purpose of this section, 
it is interpreted as the concentration of a generic constituent trans-

ported by the fluid. The diffusion coefficient 𝐷 = 25.52 × 10−6 m2 s−1 is 
set the same as in the main problem discussed in the paper (see Table 2). 
The transport equation is solved in domain Ω2 = [0.5, 1.5] × [0.25, 0.75] ×
[0.25, 0.75] (in meters) that is completely immersed in the domain Ω1
(i.e., none of the domain boundaries coincide: 𝜕Ω1 ∩ 𝜕Ω2 = ∅). See 
Fig. A.14a for schematic configuration of the domains.

In order to study the differences between the conservative and non-

conservative formulations, the initial and boundary conditions for the 
transport equation are posed as follows. Initially, we set 𝜙 = 1 uniformly 

https://doi.org/10.17632/6fryw4xzgh.1
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Table A.7

Results of the numerical analysis for different formulations and variants of the MHFEM scheme.

Interp. Upwind Resolution Conservative Non-conservative‖𝜙−𝜙ℎ‖1 ‖𝜙− 𝜙ℎ‖2 ‖𝜙−𝜙ℎ‖1 ‖𝜙− 𝜙ℎ‖2
linear

explicit

RES-A1 4.01 × 10−3 1.11 × 10−2 1.21 × 10−14 3.70 × 10−13

RES-A2 2.01 × 10−3 5.71 × 10−3 5.05 × 10−15 2.85 × 10−13

RES-A3 7.82 × 10−4 2.28 × 10−3 8.00 × 10−15 1.34 × 10−12

implicit

RES-A1 3.24 × 10−3 8.95 × 10−3 3.62 × 10−13 2.40 × 10−12

RES-A2 1.62 × 10−3 4.64 × 10−3 5.80 × 10−14 2.62 × 10−13

RES-A3 6.23 × 10−4 1.82 × 10−3 3.97 × 10−14 2.19 × 10−13

cubic

explicit

RES-A1 3.25 × 10−3 8.75 × 10−3 1.19 × 10−14 3.56 × 10−13

RES-A2 1.31 × 10−3 3.63 × 10−3 7.44 × 10−15 5.01 × 10−13

RES-A3 3.98 × 10−4 1.09 × 10−3 8.68 × 10−15 1.45 × 10−12

implicit

RES-A1 2.63 × 10−3 7.08 × 10−3 5.28 × 10−13 2.46 × 10−12

RES-A2 1.07 × 10−3 2.96 × 10−3 5.73 × 10−14 2.50 × 10−13

RES-A3 3.24 × 10−4 8.83 × 10−4 3.37 × 10−14 1.91 × 10−13

Fig. A.14. Schematic configuration of the computational domains in the benchmark problem and the resulting flow field computed in Ω1 .
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Fig. A.15. Simulated concentration field (𝜙) along the plane 𝑦 = 0 in Ω2 in the benchmark problem using the conservative formulation of the transport equation (6a). 
Several configurations of the numerical scheme are compared: linear and cubic interpolation of the velocity from LBM to MHFEM, and discretization of the advection 
term in the MHFEM scheme based on explicit and implicit upwind. Only the first two resolutions RES-A1 and RES-A2 are shown here.
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in the whole domain Ω2. On the inflow boundary (𝑥 = 0.5), we prescribe 
a fixed value 𝜙 = 1. On all remaining parts of 𝜕Ω2, we prescribe a zero 
gradient in the normal direction ( 𝜕𝜙

𝜕𝒙
⋅ 𝒏 = 0). Given a divergence-free 

velocity field due to Eq. (1a), this initial-boundary-value problem has a 
trivial analytical solution 𝜙(𝒙, 𝑡) = 1 for all 𝒙 ∈Ω2 and 𝑡 > 0.

The coupled problem is solved numerically using the LBM-MHFEM 
scheme as described in Section 3. Several variants of the MHFEM 
scheme were used, namely explicit or implicit upwind, and linear or 
cubic interpolation of the velocity field. Each variant was computed 
in three resolutions denoted as RES-A1, RES-A2, and RES-A3, see Ta-

ble A.6. To illustrate the turbulent flow field in Ω1, Fig. A.14b shows 
the horizontal velocity (𝑣𝑥) field in the final time 𝑡max =10 s. Fig. A.15

shows qualitative differences between the concentration (𝜙) fields that 
were computed using different variants of the MHFEM scheme. Since 
the fields obtained using any variant with the non-conservative for-

mulation were visually indistinguishable from the constant analytical 
solution on the scale used in Fig. A.15, only the conservative formula-

tion variants are shown in the figure. Note that for given resolution, the 
velocity field is the same in all variants of the MHFEM scheme. Quanti-

tative comparison is presented in Table A.7 in terms of 𝐿𝑝 norms of the 
differences between the analytical solution 𝜙 = 1 and each numerical 
solution 𝜙ℎ.

Both qualitative and quantitative results in Fig. A.15 and Table A.7

indicate that for the conservative formulation, changing linear interpo-

lation to cubic, as well as changing the explicit upwind discretization to 
implicit upwind, leads to smoother and more accurate results. Further-

more, all these variants converge to the analytical solution as the lattice 
and grid are refined. However, even the most accurate numerical solu-

tion obtained using the conservative formulation exhibits an error that 
is larger by orders of magnitude compared to the non-conservative for-

mulation, even in the coarsest resolution. The only difference between 
the discretizations of the non-conservative and conservative formula-

tions is in Eq. (16) where the former contains a term corresponding to 
the discrete divergence of velocity. The results indicate that this extra 
term can be understood as a compensation for the non-zero divergence 
of the discrete velocity field interpolated on the mesh. Furthermore, it 
can be noticed in Table A.7 that changing the interpolation or upwind 
scheme does not have a significant effect on the error when the non-

conservative formulation is used. In the finest resolution RES-A3, using 
the linear interpolation and explicit upwind is not only advantageous 
for the performance of the solver, but also leads to a smaller error.

Appendix B. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .camwa .2023 .02 .021.

The supplementary materials for this paper include additional 
graphical results, including 2D flow fields simulated in all resolutions 
(RES-1, RES-2, RES-3) showing the effect of mesh resolution qualita-

tively, and 1D graphs comparing the velocity and relative humidity 
profiles quantitatively at all measurement locations.
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