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QUALITATIVE AND NUMERICAL ASPECTS OF A MOTION OF A
FAMILY OF INTERACTING CURVES IN SPACE\ast 

MICHAL BENE\v S\dagger , MIROSLAV KOL\'A\v R\dagger , AND DANIEL \v SEV\v COVI\v C\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this article we investigate a system of geometric evolution equations describing
a curvature driven motion of a family of three-dimensional curves in the normal and binormal di-
rections. Evolving curves may be the subject of mutual interactions having both local or nonlocal
character where the entire curve may influence evolution of other curves. Such an evolution and
interaction can be found in applications. We explore the direct Lagrangian approach for treating the
geometric flow of such interacting curves. Using the abstract theory of nonlinear analytic semiflows,
we are able to prove local existence, uniqueness, and continuation of classical H\"older smooth solutions
to the governing system of nonlinear parabolic equations. Using the finite volume method, we con-
struct an efficient numerical scheme solving the governing system of nonlinear parabolic equations.
Additionally, a nontrivial tangential velocity is considered allowing for redistribution of discretization
nodes. We also present several computational studies of the flow combining the normal and binormal
velocity and considering nonlocal interactions.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . curvature driven flow, binormal flow, nonlocal flow, interacting curves, Holder
smooth solutions, flowing finite volume method

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35K57, 35K65, 65N40, 65M08, 53C80

\bfD \bfO \bfI . 10.1137/21M1417181

1. Introduction. In this article we investigate motion of a family \{ \Gamma i
t, t \geq 0, i =

1, . . . , n\} of interacting curves evolving in three dimensional (3D) Euclidean space
according to the geometric evolution law:

(1) \partial tX
i = viNNi + viBB

i + viTT
i, i = 1, . . . , n,

where the unit tangent Ti, normal Ni, and binormal Bi vectors form the Frenet
frame. We explore the direct Lagrangian approach to treat the geometric motion law
(1). The evolving curves \Gamma i

t are parametrized as \Gamma i
t = \{ Xi(u, t), u \in I, t \geq 0\} , where

Xi : I \times [0,\infty ) \rightarrow \BbbR 3 is a smooth mapping. Hereafter, I = \BbbR /\BbbZ \simeq S1 denotes the
periodic interval I = [0, 1] isomorphic to the unit circle S1 with \partial I = \emptyset . We assume
the scalar velocities viN , v

i
T , v

i
B to be smooth functions of the position vector Xi \in \BbbR 3,

the curvature \kappa i, the torsion \tau i, and of all parametrized curves \Gamma j , j = 1, . . . , n, i.e.,

viK = viK(Xi, \kappa i, \tau i,Ti,Ni,Bi,\Gamma 1, . . . ,\Gamma n), K \in \{ T,N,B\} , i = 1, . . . , n.

Motion (1) of one-dimensional (1D) structures forming space curves can be iden-
tified in a variety of problems arising in science and engineering. Among them, one of
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the oldest is the dynamics of vortex structures formed along a 1D curve, frequently a
closed one, forming a vortex ring. The investigation of these structures dates back to
Helmholtz [26]. Since then, the importance of vortex structures for both understand-
ing nature and improving aerospace technology is reflected in many publications, from
which Thomson [64], Da Rios [15], Betchov [9], Arms and Hama [6], or Bewley [11] are
a sample only. Vortex structures can be relatively stable in time and may contribute
to weather behavior, e.g., tornados, or accompany volcanic activity (cf. Fukumoto
[20], Fukumoto and Miyzaki [21], Hoz and Vega [29], and Vega [65]). Particular vor-
tex linear structures can interact each with other and exhibit interesting dynamics,
e.g., known as frog leaps (cf. Mariani and Kontis [43]). A comprehensive review of
research of vortex rings can be found in Meleshko, Gourjii, and Krasnopolskaya [44].

One-dimensional structures can also be formed within the crystalline lattice of
solid materials. As described, e.g., by Mura [52], some defects of the crystalline lat-
tice (voids or interstitial atoms) can be organized along planar curves in glide planes.
These structures are called the dislocations and are responsible for macroscopic mate-
rial properties explored in the everyday engineering practice (see Hirth and Lothe [27]
or Kubin [40]). The dislocations can move along the glide planes and be influenced by
the external stress field in the material as well as by the force field of other disloca-
tions. Such an interaction can lead to the change of the glide plane (cross-slip) where
the motion becomes 3D (see Devincre, Hoc, and Kubin, [16] or Pau\v s, Kratochv\'{\i}l, and
M. Bene\v s [53] or Kol\'a\v r et al. [39]).

A certain class of nano-materials is produced by electrospinning---jetting poly-
mer solutions in high electric fields into ultrafine nanofibers (see Reneker [56], Yarin,
Pourdeyhimi, and Ramakrishna [69], and He et al. [25]). These structures move
freely in space according to (1) before they are collected to form the material with
desired features. The motion of nano-fibers as open curves in three dimensions is a
combination of curvature and elastic responses to the external electric forces (see Xu
[68]). As the nano-fibers are produced from a solution, they are subject to a drying
process during electrospinning and may be considered as 3D objects with internal
mass transfer in detailed models (see [66]).

Some linear molecular structures with specific properties exist inside cells and
exhibit specific dynamics in terms of (1) in space, which is rather a result of chemical
reactions. They can interact with other structures as described in Fierling et al. in [19]
where the deformations and twist of fluid membranes by adhering stiff amphiphilic
filaments have been studied, or in Shlomovitz and Gov [61], Shlomovitz, Gov, and
Roux [62], Roux et al. [58], Kang, Cui, and Loverde [33], or Glagolev and Vasilevskaya
[24].

The motion of curves in space or along manifolds has also been explored, e.g., in
optimization of the truss construction and architectonic design (see Reme\v s\'{\i}kov\'a et al.
[55]), in the virtual colonoscopy [48], in the numerical modeling of the wildland-fire
propagation (see Ambro\v z et al. [3]), or in the satellite-image segmentation (in Mikula
et al. [47]).

Theoretical analysis of the motion of space curves is contained, among first, in
papers by Altschuler and Grayson in [1, 2]. The motion of space curves became a
useful tool in studying the singularities of the two-dimensional (2D) curve dynamics.
Nonlocal curvature driven flows, especially in the case of planar curves, have been
studied, e.g., by Gage and Epstein [22, 18]. Nonlocal curvature flows were treated
by the Cahn--Hilliard theory in [59, 12]. Conserved planar curvature flow has been
further investigated by Bene\v s, Kol\'a\v r, and \v Sev\v covi\v c in [36, 37, 38]. Recently, Bene\v s,
Kol\'a\v r, and \v Sev\v covi\v c [10] analyzed the flow of planar curves with mutual interactions.
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Recent theoretical results in the analysis of vortex filaments are provided by
Jerrard and Seis [32]. The dynamics of curves driven by curvature in the binormal
direction is discussed by Jerrard and Smets in [31]. Particular issues were numerically
studied by Ishiwata and Kumazaki in [30].

Curvature driven flow in a higher-dimensional Euclidean space and comparison to
the motion of hypersurfaces with the constrained normal velocity have been studied
by Barrett, Garcke, and N\"urnberg [7, 8], Elliott and Fritz [17], and Minar\v c\'{\i}k, Kimura,
and Bene\v s in [50]. Gradient-flow approach is explored by Laux and Yip [41]. Long-
term behavior of the length shortening flow of curves in \BbbR 3 has been analyzed by
Minar\v c\'{\i}k and Bene\v s in [51].

More specifically, we focus on the analysis of the motion of a family of curves
evolving in three dimensions and satisfying the law

(2) \partial tX
i = ai\partial 2siX

i + bi(\partial siX
i \times \partial 2siX

i) + Fi, i = 1, . . . , n,

where ai = ai(Xi,Ti) \geq 0, and bi = bi(Xi,Ti) are bounded and smooth functions
of their arguments, Ti is the unit tangent vector to the curve and si is the unit arc-
length parametrization of the curve \Gamma i (see section 2). The source forcing term Fi is
assumed to be a smooth and bounded function. It may depend on the position and
tangent vectors of the ith curve and integrals over other interacting curves as follows:

(3) Fi = Fi(Xi,Ti, \gamma i1, . . . , \gamma in), where \gamma ij(Xi,\Gamma j) =

\int 
\Gamma j

f ij(Xi,Ti,Xj ,Tj)dsj ,

and f ij : \BbbR 3 \times \BbbR 3 \times \BbbR 3 \times \BbbR 3 \rightarrow \BbbR 3, i, j = 1, . . . , n, are given smooth functions. Since
\partial 2sX

i = \kappa iNi and Bi = Ti \times Ni (see section 2) the relationship between geometric
equations (1) and (2) reads as follows:

(4) viN = ai\kappa i + Fi \cdot Ni, viB = bi\kappa i + Fi \cdot Bi, viT = Fi \cdot Ti.

The system of equations (2) is subject to initial conditions

(5) Xi(u, 0) = Xi
0(u), u \in I, i = 1, . . . , n,

representing parametrization of the family of initial curves \Gamma i
0, i = 1, . . . , n.

As an example of nonlocal source terms Fi, i = 1, . . . , n, we can consider a flow
of n = 2 interacting curves evolving in three dimensions according to the geometric
equations

\partial tX
1 = \partial sX

1 \times \partial 2sX
1 + \gamma 12(X1,\Gamma 2),

\partial tX
2 = \partial sX

2 \times \partial 2sX
2 + \gamma 21(X2,\Gamma 1),

(6)

where the nonlocal source term has the form

(7) \gamma ij(Xi,\Gamma j) =

\int 
\Gamma j

(Xi  - Xj)\times Tj

| Xi  - Xj | 3
dsj .

The above result represents the Biot--Savart law measuring the integrated influence of
points Xj belonging to the second curve \Gamma j = \{ Xj(u), u \in [0, 1]\} at a given point Xi

belonging to the first interacting curve \Gamma i. In this example ai = 0 and bi = 1. Such a
flow is analyzed in a more detail in subsection 6.2. In the case of a special configuration
of the initial curves the dynamics can be reduced to a solution to a system on nonlinear
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ODEs. On the other hand, if ai > 0 and bi \in \BbbR , there are no explicit or semi-
explicit solutions, in general. Therefore a stable numerical discretization scheme has
to be developed. The scheme involving a nontrivial tangential velocity is derived and
presented in subsection 6.1. For such a configuration of normal ai > 0 and binormal bi

components of the velocity we establish local existence, uniqueness, and continuation
of classical H\"older smooth solutions in section 4. Here, we generalize methodology
and technique of proofs of local existence, uniqueness, and continuation provided in
[10] to the case of combined motion of closed space curves in normal and binormal
direction with mutual nonlocal interactions. The novelty and main contribution of
this part is the result on existence and uniqueness of classical solutions for a system
on n evolving curves in \BbbR 3 with mutual nonlocal interactions including, in particular,
the vortex dynamics evolved in the normal and binormal directions and external force
of the Biot--Savart type, or evolution of interacting dislocation loops.

To avoid singularities in (7) arising in intersections of \Gamma i and \Gamma j one can regularize
the expression for \gamma ij as follows:

(8) \gamma ij\delta (Xi,\Gamma j) =

\int 
\Gamma j

(Xi  - Xj)\times Tj

(\delta 2 + | Xi  - Xj | 2)3/2
dsj ,

where \delta > 0 is a small regularization parameter.
In general, the flow of n \geq 2 interacting curves involving the Biot--Savart law is

governed by the system of n evolutionary equations:

(9) \partial tX
i = \partial sX

i \times \partial 2sX
i +

\sum 
j \not =i

\gamma ij(Xi,\Gamma j), i = 1, . . . , n.

This article is organized as follows. In the next section, we recall principles of the
direct Lagrangian approach for solving normal and binormal curvature driven flows
of a family of interacting plane curves in three dimensions. In section 2 we derive a
system of nonlocal evolution partial differential equations for parametrizations of a
family of evolving curves. Section 3 is focused on the role of a tangential velocity.
We will show that a suitable choice of tangential velocity leads to construction of
an efficient and stable numerical scheme for solving the governing system of nonlin-
ear parabolic equations in section 5. Second, it helps to simplify the proof of local
existence of classical solutions (see section 4). Local existence, uniqueness, and con-
tinuation of classical H\"older smooth solutions is shown in section 4. The method of
the proof is based on the abstract theory of analytic semiflows in Banach spaces due
to Angenent [5, 4]. A numerical discretization scheme is derived in section 5. We
apply the flowing finite volume method for discretization of spatial derivatives and
the method of lines for solving the resulting system of ODEs. Finally, examples of
evolution of interacting curves are presented in section 6. Interactions are modeled
by means of the Biot--Savart nonlocal law. We show examples of interacting curves
following the motion with binormal velocity only as well as evolution of arbitrary
curves evolving in both normal and binormal directions.

2. Dynamic governing equations for geometric quantities. Assume the
family of evolving curves is parametrized as follows: \Gamma i

t = \{ Xi(u, t), u \in I, t \geq 0\} ,
where Xi : I\times [0,\infty ) \rightarrow \BbbR 3 is a smooth mapping. For brevity we drop the superscript
i, and we let X = Xi wherever it is not necessary. Then the unit arc-length parame-
trization s is given by ds = | \partial uX| du. The unit tangent vector is given by T = \partial sX.
In the case when the curvature \kappa = | T \times \partial sT| > 0 is strictly positive, we can define
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the so-called Frenet frame. It means that the unit normal and binormal vectors N
and B can be uniquely defined as follows: N = \kappa  - 1\partial sT, B = T \times N. These unit
vectors satisfy the following identities:

B = T\times N, T = N\times B, N = B\times T,

and the Frenet--Serret formulae:

d

ds

\left(  T
N
B

\right)  =

\left(  0 \kappa 0
 - \kappa 0 \tau 
0  - \tau 0

\right)  \left(  T
N
B

\right)  ,

where \tau is the torsion of a curve. For \kappa > 0 the torsion \tau is given by

\tau = \kappa  - 2(T\times \partial sT) \cdot \partial 2sT = \kappa  - 2(\partial sX\times \partial 2sX) \cdot \partial 3sX.

Indeed, as \partial sB = \partial sT\times N+T\times \partial sN = T\times \partial s(\kappa  - 1\partial sT) = \kappa  - 1(T\times \partial 2sT), we obtain

\tau =  - \partial sB \cdot N =  - \kappa  - 1(T\times \partial 2sT) \cdot \kappa  - 1\partial sT = \kappa  - 2(T\times \partial sT) \cdot \partial 2sT.

Concerning the dynamical governing equations we have the following proposition.
Some of these identities have already been discovered as a particular case by other
authors (see, e.g., [51, 50]). Our aim is to provide evolution equations general settings
of normal vN , binormal vB , and tangent velocities vT . Although our approach is based
on the analysis and numerical solution of the position vector equation (2), we provide
the dynamic equations for the curvature and torsion in the following proposition.

Proposition 1. Assume a family of curves \Gamma t, t \geq 0, is evolving in three dimen-
sions according to the geometric law

\partial tX = vNN+ vBB+ vTT.

Then the unit vectors N,B,T forming the Frenet frame satisfy the following system
of evolution partial differential equations:

\partial tT = (\partial svN + \kappa vT  - \tau vB)N+ (\partial svB + \tau vN )B,

\kappa \partial tN =  - \kappa (\partial svN + \kappa vT  - \tau vB)T+
\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) 
B,

\kappa \partial tB =  - \kappa (\partial svB + \tau vN )T - 
\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) 
N.

The local length element g = | \partial uX| and the commutator [\partial t, \partial s] := \partial t\partial s  - \partial s\partial t satisfy

\partial tg = ( - \kappa vN + \partial svT )g, \partial tds = ( - \kappa vN + \partial svT )ds, \partial t\partial s  - \partial s\partial t = (\kappa vN  - \partial svT )\partial s.

The curvature \kappa and torsion \tau (for \kappa (s, t) > 0) satisfy the evolution equations:

\partial t\kappa = \partial 2svN + \kappa 2vN + vT\partial s\kappa  - \partial s(\tau vB) - \tau \partial svB  - \tau 2vN ,

\partial t\tau = \kappa (\partial svB + \tau vN ) + \partial s
\bigl( 
\kappa  - 1

\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) \bigr) 
+\tau (\kappa vN  - \partial svT ).

Proof. Denote g = | \partial uX| . Then ds = gdu. Using Frenet--Serret formulae we have

\partial tT = \partial t(g
 - 1\partial uX) =  - g - 1\partial tgT+ \partial s\partial tX =  - g - 1\partial tgT+ \partial s(vNN+ vTT+ vBB)

=
\bigl( 
 - g - 1\partial tg + \partial svT  - \kappa vN

\bigr) 
T+ (\partial svN + \kappa vT  - \tau vB)N+ (\partial svB + \tau vN )B.
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Since 0 = \partial t(T \cdot T) = 2(T \cdot \partial tT) we have

\partial tT = (\partial svN + \kappa vT  - \tau vB)N+ (\partial svB + \tau vN )B,

and as a consequence, \partial tg = ( - \kappa vN + \partial svT )g, and \partial t\partial s = \partial s\partial t + (\kappa vN  - \partial svT )\partial s
because \partial t\partial s = \partial t(g

 - 1\partial u) = g - 1\partial u\partial t  - g - 2\partial tg\partial u. Next,

\kappa \partial tN = \kappa \partial t(\kappa 
 - 1\partial sT) =  - \partial t\kappa N+ \partial s\partial tT+ (\kappa vN  - \partial svT )\partial sT

=
\bigl( 
 - \partial t\kappa + \kappa 2vN  - \kappa \partial svT

\bigr) 
N+ \partial s\partial tT

=
\bigl( 
 - \partial t\kappa + \kappa 2vN + vT\partial s\kappa + \partial 2svN  - \partial s(\tau vB)

\bigr) 
N

+(\partial svN + \kappa vT  - \tau vB) \partial sN+ (\partial svB + \tau vn) \partial sB+
\bigl( 
\partial 2svB + \partial s(\tau vN )

\bigr) 
B

=
\bigl( 
 - \partial t\kappa + \kappa 2vN + vT\partial s\kappa + \partial 2svN  - \partial s(\tau vB) - \tau (\partial svB + \tau vN )

\bigr) 
N

 - \kappa (\partial svN + \kappa vT  - \tau vB)T+
\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) 
B.

Since 0 = \partial t(N \cdot N) = 2(N \cdot \partial tN) we have

\kappa \partial tN =  - \kappa (\partial svN + \kappa vT  - \tau vB)T+
\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) 
B,

and as a consequence,

\partial t\kappa = \partial 2svN + \kappa 2vN + vT\partial s\kappa  - \partial s(\tau vB) - \tau \partial svB  - \tau 2vN .

Finally, as \partial tB = \partial tT\times N+T\times \partial tN and B\times N =  - T and T\times B =  - N we have

\kappa \partial tB =  - \kappa (\partial svB + \tau vN )T - 
\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) 
N.

In the case when the curvature \kappa (s, t) is strictly positive, the evolution equation for
the torsion \tau can be deduced from the fact \tau =  - \partial sB \cdot N, i.e.,

\partial t\tau =  - \partial t\partial sB \cdot N - \partial sB \cdot \partial tN
=  - (\partial s\partial tB+ (\kappa vN  - \partial svT )\partial sB) \cdot N+ \tau N \cdot \partial tN
=  - (\partial s\partial tB) \cdot N+ \tau (\kappa vN  - \partial svT )

=  - \partial s
\bigl( 
 - (\partial svB + \tau vN )T - \kappa  - 1

\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) 
N
\bigr) 

\cdot N+ \tau (\kappa vN  - \partial svT )

= \kappa (\partial svB + \tau vN ) + \partial s
\bigl( 
\kappa  - 1

\bigl( 
\partial 2svB + \partial s(\tau vN ) + \tau (\partial svN + \kappa vT  - \tau vB)

\bigr) \bigr) 
+ \tau (\kappa vN  - \partial svT ).

As a consequence of the previous proposition, we obtain the following results
concerning temporal evolution of global quantities integrated over the evolving curves.

Proposition 2. Assume a family of curves \Gamma t, t \geq 0, evolving in three dimen-
sions according to the geometric law

\partial tX = vNN+ vBB+ vTT.

Then, the length L(\Gamma ) =
\int 
\Gamma 
ds and the generalized area A(\Gamma ) = 1

2

\int 
\Gamma 
(X\times \partial sX) \cdot B ds

enclosed by \Gamma satisfy the following identities:

d

dt
L(\Gamma ) =  - 

\int 
\Gamma 

\kappa vNds,

d

dt
A(\Gamma ) =  - 

\int 
\Gamma 

vNds - 
1

2

\int 
\Gamma 

(X\times \partial tX) \cdot \partial sB ds+
1

2

\int 
\Gamma 

(X\times \partial sX) \cdot \partial tB ds.

In particular, if the family \Gamma t, t \geq 0, of curves evolves in parallel planes, then A(\Gamma ) is
the area enclosed by \Gamma , and d

dtA(\Gamma ) =  - 
\int 
\Gamma 
vNds.
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Proof. The first statement follows from the identity \partial tg = ( - \kappa vN + \partial svT )g. In-
deed,

d

dt
L(\Gamma ) =

d

dt

\int 1

0

gdu =

\int 1

0

\partial tgdu =

\int 
\Gamma 

( - \kappa vN + \partial svT )ds =  - 
\int 
\Gamma 

\kappa vNds,

because \Gamma is a closed curve. Therefore,
\int 
\Gamma 
\partial svT ds = 0.

As for the second statement, we have A(\Gamma ) = 1
2

\int 
\Gamma 
(X \times \partial sX) \cdot B ds = 1

2

\int 1

0
(X \times 

\partial uX) \cdot B du, and so

d

dt
A(\Gamma ) =

1

2

\int 1

0

(\partial tX\times \partial uX) \cdot B+ (X\times \partial u\partial tX) \cdot B+ (X\times \partial uX) \cdot \partial tB du

=
1

2

\int 
\Gamma 

(\partial tX\times \partial sX) \cdot B+ (X\times \partial s\partial tX) \cdot B+ (X\times \partial sX) \cdot \partial tB ds

=  - 
\int 
\Gamma 

(\partial sX\times \partial tX) \cdot B ds - 1

2

\int 
\Gamma 

(X\times \partial tX) \cdot \partial sB ds+
1

2

\int 
\Gamma 

(X\times \partial sX)

\cdot \partial tB ds

=  - 
\int 
\Gamma 

vNds - 
1

2

\int 
\Gamma 

(X\times \partial tX) \cdot \partial sB ds+
1

2

\int 
\Gamma 

(X\times \partial sX) \cdot \partial tB ds .

In particular, if the family of 3D curves \Gamma t, t \geq 0, evolves in parallel planes with
the normal vector b, then the binormal vector B = \pm b/| b| is a constant vector
perpendicular to this plane. As a consequence, \partial tB = \partial sB = 0, and the proof of
the last statement of the proposition follows from the fact that the enclosed area of a
curve belonging to the plane x3 = 0 is given by A(\Gamma ) = 1

2

\int 
\Gamma 
x1\partial sx2  - x2\partial sx1ds, and

(Qa\times Qd) \cdot Qc = (a\times d) \cdot c for any rotation matrix Q transforming the vector b to
the vector (0, 0, 1)T .

3. The role of tangential redistribution. The tangential velocity vT appear-
ing in the geometric evolution (2) has no impact on the shape of evolving family of
curves \Gamma i

t, t \geq 0. It means that the curves \Gamma i
t, t \geq 0, evolving according to the system

of geometric equations

(10) \partial tX
i = ai\partial 2siX

i + bi(\partial siX
i \times \partial 2siX

i) + Fi + \alpha iTi. i = 1, . . . , n,

do not depend on a particular choice of the total tangential velocity viT given by

viT = Fi \cdot Ti + \alpha i.

However, the tangential velocity has a significant impact on the analysis of evolution of
curves from both the analytical as well as numerical points of view. Hou, Lowengrub,
and Shelley [28], Kimura [35], Mikula and \v Sev\v covi\v c [45, 46, 49], Yazaki and \v Sev\v covi\v c
[60]. Barrett, Garcke, and N\"urnberg [7, 8], and Elliott and Fritz [17], investigated the
gradient and elastic flows for closed and open curves in \BbbR d, d \geq 2. They constructed a
numerical approximation scheme using a suitable tangential redistribution. Kessler,
Koplik, and Levine [34] and Strain [63] illustrated the role of suitably chosen tangential
velocity in numerical simulation of the 2D snowflake growth and unstable solidification
models. Later, Garcke, Kohsaka, and Sev\v covi\v c, [23] applied the uniform tangential
redistribution in the theoretical proof of nonlinear stability of stationary solutions for
curvature driven flow with triple junction in the plane.

A suitable choice of vT can be very useful in order to prove local existence of
solution. Furthermore, it can significantly help to construct a stable and efficient
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numerical scheme preventing undesirable accumulation of grid points during curve
evolution. Calculating the derivative ratio gi/L(\Gamma i) with respect to time we obtain

(11)
\partial 

\partial t

gi

Li
=
\partial tg

i

Li
 - gi

(Li)2
dLi

dt
=
gi

Li

\biggl( 
 - \kappa iviN + \partial siv

i
T +

1

Li

\int 
\Gamma i

\kappa viNds
i

\biggr) 
,

where Li = L(\Gamma i
t). As a consequence, the relative local length gi/Li is constant with

respect to the time t, i.e.,

gi(u, t)

L(\Gamma i
t)

=
gi(u, 0)

L(\Gamma i
0)
, u \in I, t \geq 0,

provided that the total tangential velocity viT satisfies

(12) \partial siv
i
T = \kappa iviN  - 1

Li

\int 
\Gamma i

\kappa viNds
i,

(cf. Hou and Lowengrub [28], Kimura [35], Mikula and \v Sev\v covi\v c [45]). Since viT =
Fi \cdot Ti + \alpha i the additional tangential velocity \alpha i given by

(13) \alpha i(si) =  - Fi(si)\cdot Ti(si)+Fi(0)\cdot Ti(0)+\alpha i(0)+

\int si

0

\kappa iviNds
i - si 1

Li

\int 
\Gamma i

\kappa iviNds
i.

si \in [0, Li], ensures that the relative local length gi/Li is constant with respect to
time, and

gi(u, t) = gi0(u)
L(\Gamma i

t)

L(\Gamma i
0)
, u \in I, t \geq 0, i = 1, . . . , n,

where gi0(u) = gi(u, 0). The tangential velocity is subject to the normalization con-
straint

\int 
\Gamma i \alpha 

idsi = 0.
Another suitable choice of the total tangential velocity viT is the so-called asymp-

totically uniform tangential velocity proposed and analyzed by Mikula and \v Sev\v covi\v c
in [46, 49]. If

(14) \partial siv
i
T = \kappa iviN  - 1

Li

\int 
\Gamma i

\kappa viNds
i +

\biggl( 
Li

gi
 - 1

\biggr) 
\omega ,

then, using (11) we obtain

lim
t\rightarrow \infty 

gi(u, t)

L(\Gamma i
t)

= 1

uniformly with respect to u \in [0, 1] provided \omega > 0. It means that the redistribution
becomes asymptotically uniform. In the context of evolution of 3D curves or the
curves evolving on a given surface, the concept uniform and asymptotically uniform
redistribution has been analyzed and successfully implemented for various applications
by Mikula and \v Sev\v covi\v c in [46, 55], Mikula et al. [47], Bene\v s et al. [54], Ambro\v z et
al. [3], and others.

Remark 1. Suppose that the initial curve \Gamma 0 is uniformly parametrized, i.e.,
g0(u) = | \partial uX(u, 0)| = L(\Gamma 0). If \alpha is a tangential velocity preserving the relative
local length, then

g(u, t) = | \partial uX(u, t)| = L(\Gamma t) and ds = L(\Gamma t)du, s \in [0, L(\Gamma t)].



MOTION OF A FAMILY OF INTERACTING CURVES IN SPACE 557

4. Existence and uniqueness of classical solutions. In this section we pro-
vide existence and uniqueness results for the system of nonlinear nonlocal equations
(10) governing the motion of interacting closed curves in three dimensions. The
method of the proof of existence and uniqueness is based on the abstract theory of
analytic semiflows in Banach spaces due to DaPrato and Grisvard [13], Angenent
[5, 4], and Lunardi [42]. Local existence and uniqueness of a classical H\"older smooth
solution is based on analysis of the position vector equation (10) in which we choose
the uniform tangential velocity \alpha i. It leads to a uniformly parabolic equation (10)
provided the diffusion coefficients ai are uniformly bounded from below by a positive
constant. As a consequence, assumptions on strict positivity of the curvature \kappa i and
the existence of the Frenet frame are not required in our method of the proof. The
main idea is to rewrite the system (10) in the form of an initial value problem for the
abstract parabolic equation:

(15) \partial tX+ F (X) = 0, X(0) = X0

in a suitable Banach space. Furthermore, we have to show that for any \~X, the
linearization F \prime ( \~X) generates an analytic semigroup and it belongs to the so-called
maximal regularity class of linear operators mapping the Banach space \scrE 1 into Banach
space \scrE 0.

Note that the principal part a\partial 2sX+ b(\partial sX\times \partial 2sX) of the velocity vector \partial tX can
be expressed in the matrix form as follows:

a\partial 2sX+ b(\partial sX\times \partial 2sX) \equiv \scrA (a, b, \partial sX)\partial 2sX,

where \scrA (a, b,T) is a 3\times 3 matrix,

\scrA (a, b,T) = aI + b[T]\times :=

\left(  a  - bT3 bT2
bT3 a  - bT1
 - bT2 bT1 a

\right)  .

Clearly, the symmetric part 1
2 (\scrA + \scrA T ) = aI \succ 0 is a positive definite matrix for

a > 0. If a = 0, then \scrA is an indefinite and antisymmetric matrix, i.e., \scrA =  - \scrA T .
For given values a, b and a unit vector T, the eigenvalues of the matrix \scrA are \mu 1 =
a, \mu 2 = a - ib, \mu 3 = a+ ib. It means that the governing equation

(16) \partial tX = \scrA (a, b, \partial sX)\partial 2sX+ F+ \alpha T

is of the parabolic type provided a > 0 whereas it is of the hyperbolic type if a = 0
and b \not = 0. In the case of n \geq 2 interacting curves the system of governing equations
reads as follows:

\partial tX
1 = \scrA (a1, b1, \partial s1X

1)\partial 2s1X
1 + F1(X1, \partial s1X

1, \gamma 11, . . . , \gamma 1n) + \alpha 1T1,

...

\partial tX
n = \scrA (an, bn, \partial snX

n)\partial 2snX
n + Fn(Xn, \partial snX

n, \gamma n1, . . . , \gamma nn) + \alpha nTn,

(17)

where \gamma ij = \gamma ij(Xi,\Gamma j) for i, j = 1, . . . , n.

4.1. Maximal regularity for parabolic equations with complex valued
diffusion functions. Assume 0 < \varepsilon < 1 and k is a nonnegative integer. Let us denote
by hk+\varepsilon (S1) the so-called little H\"older space, i.e., the Banach space which is the closure
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of C\infty smooth functions in the norm Banach space of Ck smooth functions defined
on the periodic domain S1, and such that the kth derivative is \varepsilon -H\"older smooth. The
norm is being given as a sum of the Ck norm and the H\"older seminorm of the kth
derivative.

Among many important properties of H\"older spaces hk+\varepsilon (S1) there is an interpo-
lation inequality. Let \varepsilon \prime \prime , \varepsilon \prime , \varepsilon \in (0, 1), k\prime \prime , k\prime , k \in \BbbN 0 be such that k\prime \prime + \varepsilon \prime \prime < k\prime + \varepsilon \prime <
k + \varepsilon . Then, for any \delta > 0 there exists C\delta > 0 such that

(18) \| \varphi \| hk\prime +\varepsilon \prime \leq \| \varphi \| \theta hk+\varepsilon \| \varphi \| 1 - \theta 
hk\prime \prime +\varepsilon \prime \prime \leq \delta \| \varphi \| hk+\varepsilon + C\delta \| \varphi \| hk\prime \prime +\varepsilon \prime \prime 

for any \varphi \in hk+\varepsilon (S1), where \theta = (k\prime + \varepsilon \prime  - k\prime \prime  - \varepsilon \prime \prime )/(k + \varepsilon  - k\prime \prime  - \varepsilon \prime \prime ) \in (0, 1).
In what follows, we shall assume that the functions a, b \in h1+\varepsilon (S1), and a > 0 is

strictly positive. Let us define the following linear second order differential operators
A,B : h2+\varepsilon (S1) \rightarrow h\varepsilon (S1):

(19) A\varphi =  - \partial u(a(\cdot )\partial u\varphi ), B\varphi =  - \partial u(b(\cdot )\partial u\varphi ) for \varphi \in h2+\varepsilon (S1).

The spectra \sigma (A) \subset [0,\infty ), \sigma (B) \subset \BbbR , consists of discrete real eigenvalues. Further-
more, the linear operators \pm iB generate the C0 group of linear operators \{ e\pm iBt, t \in 
\BbbR \} . It means that the function \xi (t) = e\pm iBt\xi 0 is a solution to the Schr\"odinger equation

\partial t\xi = \pm iB\xi , \xi (0) = \xi 0.

Recall that the spectrum \sigma (B) consists of real eigenvalues. Hence the linear operator
e\pm iBt is bounded in the space L(Ck(S1)) uniformly with respect to t \geq 0. Since
hk+\varepsilon (S1) is an interpolation space between Ck(S1) and Ck+1(S1) there exists a con-
stant c0 > 0 depending on the function b only and such that

(20) \| e\pm iBt\| L(hk+\varepsilon (S1)) \leq c0 for k = 0, 2 and any t \geq 0.

Moreover, limt\rightarrow 0 e
\pm iBt = I in the respective norms of linear operators, k = 0, 2.

Next, we shall prove the maximal regularity of solutions to the linear evolutionary
equation:

(21) \partial t\varphi + (A+ iB)\varphi = f, t \geq 0, \varphi (0) = \varphi 0.

That is, to show the existence of a unique solution \varphi \in \scrH 1(0, T ) for the given right-
hand side f \in \scrH 0(0, T ) and initial condition \varphi 0 \in h2+\varepsilon (S1) and T > 0. Here we have
denoted by \scrH 0,\scrH 1 the following Banach spaces:
(22)
\scrH 1(0, T ) = C([0, T ], h2+\varepsilon (S1)) \cap C1([0, T ], h\varepsilon (S1)), \scrH 0(0, T ) = C([0, T ], h\varepsilon (S1)).

Consider the transformed function \psi = eiBt(\varphi  - \varphi 0). Then \varphi is a solution to (21)
if and only if \psi is a solution to the equation:

(23) \partial t\psi +A\psi = Rt\psi + \^f, t \geq 0, \psi (0) = 0,

where Rt = A  - eiBtAe - iBt, \^f = eiBt(f  - (A + iB)\varphi 0). Clearly, \^f \in \scrH 0(0, T ).
Recall that the linear operator A =  - \partial u(a\partial u) generates an analytic semigroup of
operators \{ e - At, t \geq 0\} . Moreover, it belongs to the so-called maximal regularity class
\scrM (h2+\varepsilon , h\varepsilon ) (cf. [4, 5, 13]). It means that the linear operator \partial t + A : \scrH 1(0, T ) \rightarrow 
\scrH 0(0, T ) is invertible, i.e., for any \^g :\in \scrH 0(0, T ) and \psi 0 \in h2+\varepsilon (S1) there exists a
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unique solution \psi \in \scrH 1(0, T ) of the initial value problem \partial t\psi + A\psi = \^g, \psi (0) = \psi 0,
and \| \psi \| \scrH 1(0,T ) \leq c1(\| \^g\| \scrH 0(0,T ) + \| \psi 0\| h2+\varepsilon ), where c1 > 0 is a constant.

Since limt\rightarrow 0Rt = 0 there exists a time 0 < T0 \leq T depending on the functions
a and b only, and such that \| (\partial t + A) - 1Rt\| L(\scrH 1(0,T0)) < 1. As a consequence, the
operator I  - (\partial t + A) - 1Rt is invertible in the space \scrH 1(0, T0). That is, the operator
\partial t + (A+ iB) is invertible on the time interval [0, T0]. Now, starting from the initial
condition \psi 0 = \psi (T0) we can continue the solution \psi over the larger interval [0, T0]\cup 
[T0, 2T0]. Continuing in this manner, we can conclude that the operator A + iB
generates an analytic semigroup e - (A+iB)t, t \geq 0, and it belongs to the maximal
regularity class \scrM (h2+\varepsilon , h\varepsilon ) on the entire time interval [0, T ].

Notice that (a+ib)\partial 2u\varphi = \partial u((a+ib)\partial u\varphi ) - (\partial ua+i\partial ub)\partial u\varphi = (A+iB)\varphi  - (\partial ua+
i\partial ub)\partial u\varphi . As \partial ua, \partial ub \in h\varepsilon (S1) and the Banach space h1+\varepsilon is an interpolation space
between the Banach spaces h\varepsilon and h2+\varepsilon , the perturbation operator A1 =  - (\partial ua +
i\partial ub)\partial u : h2+\varepsilon \rightarrow h\varepsilon has the relative zero norm, i.e., for any \delta > 0 there exists a
constant C\delta > 0 such that \| A1\varphi \| h\varepsilon \leq \delta \| \varphi \| h2+\varepsilon + C\delta \| \varphi \| h\varepsilon for each \varphi \in h2+\varepsilon . Here
we have used the interpolation inequality (18). Since the class of linear operators
belonging to the maximal regularity class is closed with respect to perturbations with
the zero relative norm (cf. [5, Lemma 2.5]), we conclude that the operator  - (a+ib)\partial 2u
belongs to the maximal regularity class \scrM (h2+\varepsilon , h\varepsilon ) on the time interval [0, T ].

If we denote

\scrQ =

\left(  T1 T1T2 + iT3 T1T2  - iT3
T2  - T 2

1  - T 2
3  - T 2

1  - T 2
3

T3 T2T3  - iT1 T2T3 + iT1

\right)  ,

then \scrQ is a similarity matrix such that \scrQ  - 1\scrA \scrQ = \scrD , where \scrD = diag(\mu 1, \mu 2, \mu 3),
\mu 1 = a, \mu 2 = a - ib, \mu 3 = a+ ib. Note that the matrix \scrQ = \scrQ (T) analytically depend
on the vector T \in \BbbR 3.

For given 0 < \varepsilon < 1 and k = 0, 12 , 1 we define the following scale of Banach spaces
of H\"older continuous functions defined on the periodic domain S1:

(24) Ek = h2k+\varepsilon (S1)\times h2k+\varepsilon (S1)\times h2k+\varepsilon (S1).

Proposition 3. Assume a, b \in h1+\varepsilon (S1) and the function a is strictly positive,
a > 0 . Let T > 0. Then

1. the operator  - (a\pm ib)\partial 2u belongs to the maximal regularity class \scrM (h2+\varepsilon (S1),
h\varepsilon (S1)) on the time interval [0, T ];

2. if T \in E 1
2
, | T| = 1, then the linear operator \scrA (a, b,T)\partial 2u = (aI + b[T]\times )\partial 

2
u

belongs to the maximal regularity class \scrM (E1, E0) on the time interval [0, T ].

4.2. Local existence and uniqueness of H\"older smooth solutions. Let us
denote X the vector of parametrizations belonging to the Banach space \scrE k

X = (X1, . . . ,Xn) \in \scrE k, where \scrE k = Ek \times \cdot \cdot \cdot \times Ek\underbrace{}  \underbrace{}  
n - times

, k = 0, 1/2, 1.

Clearly, we have the following continuous and compact embedding: \scrE 1 \lhook \rightarrow \scrE 1/2 \lhook \rightarrow \scrE 0.
Now, let us define the mapping F0 : \scrE 1 \rightarrow \scrE 0 as the principal part of the evolution

equation (16), i.e., F i
0(X) = \scrA (ai, bi, \partial siX

i)\partial 2siX
i. To prove local existence and

uniqueness of solutions, we employ the so-called uniform tangential redistribution
velocity defined in section 3. If \alpha i is such that the total tangential redistribution
viT = Fi \cdot \partial siXi+\alpha i, then gi(u, t) = | \partial uXi| = L(\Gamma i

t) provided that the initial curve \Gamma i
0
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is parametrized uniformly, i.e., gi(u, 0) = L(\Gamma i
0) for each u \in [0, 1], i = 1, . . . , n (see

Remark 1). Hence

dsi = L(\Gamma i)du, u \in [0, 1], si \in [0, L(\Gamma i)].

With this parametrization the operator F i
0(X) can be rewritten as follows:

F i
0(X) = L(\Gamma i) - 2\scrA (ai, bi, \partial siX

i)\partial 2uX
i.

Further, we define the nonlocal mapping F1 : \scrE 1/2 \rightarrow \scrE 0 as follows:

F i
1(X) = Fi(Xi, \partial siX

i, \gamma i1, . . . , \gamma in),

where X \in \scrE 1/2 and the interaction terms are defined as in (3), i.e.,

\gamma ij(Xi,\Gamma j) =

\int 
\Gamma j

f ij(Xi, \partial siX
i,Xj , \partial sjX

j)dsj .

Finally, we define the tangential part F2 of (16), i.e., F i
2(X

i) = \alpha i\partial siX
i. Con-

cerning qualitative properties of the functions ai = ai(Xi,Ti), bi = bi(Xi,Ti),Fi

= Fi(Xi,Ti, \gamma i1, . . . , \gamma in), where \gamma ij(Xi,\Gamma j) =
\int 
\Gamma j f

ij(Xi,Ti,Xj ,Tj)dsj we will as-
sume the following structural hypothesis:
(H)\left\{     

ai, bi : \BbbR 3 \times \BbbR 3 \rightarrow \BbbR , ai \geq a > 0,

Fi : \BbbR 3 \times \BbbR 3 \times \BbbR n \rightarrow \BbbR 3, f ij : \BbbR 3 \times \BbbR 3 \times \BbbR 3 \times \BbbR 3 \rightarrow \BbbR 3 for i, j = 1, . . . , n,

are C2 smooth and globally Lipschitz continuous functions, a > 0 is a constant.

Proposition 4. Assume the hypothesis (H) and \alpha i, i = 1, . . . , n, is the tangential
velocity preserving the relative local length. Let \~X \in \scrE 1 be such that \~gi > 0 for each
i = 1, . . . , n. Then we have the following,

1. The principal part mapping F0 : \scrE 1 \rightarrow \scrE 0 is C1 differentiable. Its Fr\'echet
derivative F \prime 

0(
\~X) belongs to the maximal regularity class \scrM (\scrE 1, \scrE 0).

2. The nonlocal mappings F1 and F2 are C1 differentiable as mappings from
\scrE 1/2 into \scrE 0. The Fr\'echet derivative F \prime 

k(
\~X), k = 1, 2, considered now as a

mapping from \scrE 1 into \scrE 0 has the relative zero norm.
3. The total mapping F : \scrE 1 \rightarrow \scrE 0, where F = F0+F1+F2 is C

1 differentiable,
and F \prime ( \~X) belongs to the maximal regularity class \scrM (\scrE 1, \scrE 0).

Proof. Let \~X \in E1/2. Denote \~s the unit arc-length parametrization of the curve
\~\Gamma = \{ \~X(u), u \in [0, 1]\} . Then d\~s = \~g(u)du, where \~g(u) = | \partial u \~X| . The derivative
of the local length g = | \partial uX| at the point \~X \in \scrE 1/2 in a direction X \in \scrE 1/2 is

given by g\prime ( \~X)X = \partial \~s \~X \cdot \partial uX. As a consequence, the derivative of the total length

functional L(\Gamma ) =
\int 
\Gamma 
ds =

\int 1

0
| \partial uX| du in the direction X \in E1/2 is given by L\prime (\~\Gamma )X =\int 1

0
\partial \~s \~X \cdot \partial uXdu.
To prove statement 1, we note that the linearization F \prime 

0(
\~X)X at the point \~X in

the direction X has the form

F i \prime 
0 ( \~X)X = L(\~\Gamma i) - 2\scrA (\~ai,\~bi, \partial \~si \~X

i)\partial 2uX
i + \~\scrB [Xi], i = 1, . . . , n,
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where the linear operator \~\scrB represents lower order terms with respect to differentia-
tion. Namely,

\~\scrB [Xi] = L(\~\Gamma i) - 2

\biggl( 
\nabla ai \~\scrA 

\bigl[ 
\nabla \bfX i\~ai Xi +\nabla \bfT i\~ai \partial siX

i
\bigr] 
+\nabla bi

\~\scrA 
\Bigl[ 
\nabla \bfX i

\~bi Xi +\nabla \bfT i
\~bi \partial siX

i
\Bigr] 

+\nabla \bfT i \~\scrA \partial siX
i  - 2L(\~\Gamma i) - 1L\prime (\~\Gamma i)Xi\scrA 

\biggr) 
\partial 2u

\~Xi,

where the coefficients ai, bi, the mapping \~\scrA , and their first derivatives are evaluated
at \~Xi. With regard to the assumption made on coefficients \~ai = ai( \~Xi, \~Ti) and
\~bi = bi( \~Xi, \~Ti) we conclude that the lower order linear operator \~\scrB is a bounded linear
operator from the Banach space E1/2 into E0. As a consequence, it has the zero
relative norm if considered as a mapping from E1 into E0.

Since L(\~\Gamma i) > 0 is a positive constant, then according to Proposition 3, part
2, the linear operator L(\~\Gamma i) - 2\scrA (\~ai,\~bi, \~Ti)\partial 2u belongs to the maximal regularity class
\scrM (E1, E0) on the time interval [0, T ]. Therefore, the linearization F i \prime 

0 ( \~X) belongs to
the maximal regularity class \scrM (E1, E0) because the class \scrM (E1, E0) is closed with
respect to perturbation with relative zero norm (cf. [5, Lemma 2.5], DaPrato and
Grisvard [13], and Lunardi [42]). Hence, F \prime 

0(
\~X) belongs to the maximal regularity

pair \scrM (\scrE 1, \scrE 0), as claimed.
In order to prove Proposition 3, part 2, we first evaluate the derivative of the

nonlocal function \gamma ij at the point \~Xi in the direction Xi. We have

\gamma ij \prime \bfX i ( \~X
i, \~\Gamma j)Xi =

\int 
\~\Gamma j

\Bigl( 
\~f ij \prime \bfX i X

i + \~f ij \prime \bfT i

\Bigl[ 
L(\~\Gamma i) - 1\partial uX

i  - (L(\~\Gamma i) - 2L\prime (\~\Gamma i)Xi)\partial u \~X
i
\Bigr] \Bigr) 
d\~sj ,

\gamma ij \prime \bfX j ( \~X
i, \~\Gamma j)Xj =

\int 
\~\Gamma j

\Bigl( 
\~f ij \prime \bfX j X

j + \~f ij \prime \bfT j

\Bigl[ 
L(\~\Gamma j) - 1\partial uX

j  - (L(\~\Gamma j) - 2L\prime (\~\Gamma j)Xj)\partial u \~X
j
\Bigr] \Bigr) 
d\~sj

+

\int 
\~\Gamma j

\~f ijL(\~\Gamma j) - 1L\prime (\~\Gamma j)Xjd\~sj .

Here we have used the fact that the directional derivative of the tangent vector Ti

= \partial siX
i = L(\Gamma i) - 1Xi in the directionXi is given by L(\~\Gamma i) - 1\partial uX

i - (L(\~\Gamma i) - 2L\prime (\~\Gamma i)Xi)
\partial u \~X

i. It means that that the mapping \gamma ij is C1 differentiable as a mapping from
E1/2 \times E1/2 \rightarrow \BbbR and its derivative is a bounded linear operator from E1/2 \times E1/2

into \BbbR . Hence the linearization F \prime 
1(

\~X) is a bounded linear operator from the Banach
space \scrE 1/2 into \scrE 0.

Finally, let us consider the tangential part F2(X) where F i
2(X

i) = \alpha i\partial siX
i, i =

1, . . . , n. Recall that the uniform tangential redistribution \alpha i = viT  - Fi \cdot Ti is com-
puted from \partial siv

i
T = \kappa iviN  - 1

L(\Gamma i)

\int 
\Gamma i \kappa v

i
Nds

i; see (12). Let us denote the auxiliary

function \psi (Xi) = \kappa iviN . Since viN = ai\kappa i + Fi \cdot Ni, then using the Frenet--Serret
formula \partial 2siX

i = \partial siT
i = \kappa iNi and the fact that dsi = L(\Gamma i)du, we obtain

\psi (Xi) = ai(\kappa i)2+Fi\cdot \kappa iNi = ai| \partial 2siX
i| 2+Fi\cdot \partial 2siX

i = L(\Gamma i) - 2
\bigl( 
ai| \partial 2uXi| 2 + Fi \cdot \partial 2uXi

\bigr) 
.

Let 0 < \varepsilon \prime < \varepsilon and E\prime 
k = h2k+\varepsilon \prime (S1) \times h2k+\varepsilon \prime (S1) \times h2k+\varepsilon \prime (S1). Clearly, E\prime 

k \lhook \rightarrow Ek

and E\prime 
1 is an interpolation space between E0 and E1. The mapping \psi : E\prime 

1 \rightarrow E\prime 
0

is C1 differentiable and its derivative \psi \prime ( \~Xi) is a bounded linear operator from E\prime 
1

to h\varepsilon 
\prime 
(S1). As a consequence, the mapping Xi \mapsto \rightarrow \kappa iviN  - 1

L(\Gamma i)

\int 
\Gamma i \kappa 

iviNds
i is C1
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differentiable as a mapping from the Banach space E\prime 
1 into h\varepsilon 

\prime 
(S1). Since the total

velocity viT is an integral of this mapping we obtain Xi \mapsto \rightarrow viT as well as Xi \mapsto \rightarrow \alpha i =

viT  - Fi \cdot \partial siXi is C1 differentiable as a mapping from the space E\prime 
1 into h1+\varepsilon \prime (S1) \lhook \rightarrow 

h\varepsilon (S1). Hence the mapping F i
2 (now considered as a mapping from E1 into E0) is

C1 differentiable and its linearization F i\prime 
2 (

\~X) has zero relative norm.
Statement 3 of Proposition 3 now follows as the class \scrM (E1, E0) is closed with

respect to perturbations with relative zero norm (cf. Angenent [5, 4], DaPrato and
Grisvard [13], and Lunardi [42]).

Now we can state the following result on local existence, uniqueness, and contin-
uation of solutions.

Theorem 4.1. Assume the hypothesis (H) and \alpha i, i = 1, . . . , n, is the tangential
velocity preserving the relative local length. Assume the parametrization X0 \equiv (Xi

0)
n
i=1

of initial curves \Gamma i
0 belongs to the H\"older space \scrE 1, and it is uniform parametrization,

i.e., | \partial uXi
0(u)| = L(\Gamma i

0) > 0 for all u \in I and i = 1, . . . , n. Assume the functions
ai, bi,Fi, f ij satisfy the assumptions (H).

Then there exists T > 0 and the unique family of curves \{ \Gamma i
t, t \in [0, T ]\} , i =

1, . . . , n, evolving in three dimensions according to the system of nonlinear nonlocal
geometric equations:

(25) \partial tX
i = ai\partial 2siX

i + bi(\partial siX
i \times \partial 2siX

i) + Fi + \alpha iTi, i = 1, . . . , n,

such that their parametrization satisfies X = (Xi)ni=1 \in C([0, T ], \scrE 1) \cap C1([0, T ], \scrE 0),
and X(\cdot , 0) = X0. Furthermore, if the maximal time of existence Tmax <\infty is finite,
then

lim
t\rightarrow Tmax

max
i,\Gamma i

t

| \kappa i(\cdot , t)| = \infty .

Proof. The proof follows from the abstract result on existence and uniqueness of
solutions to (25) due to Angenent [5]. It is based on the linearization of the abstract
evolution equation (15):

\partial tX+ F (X) = 0, X(0) = X0

in the Banach space \scrE 1. With regard to Proposition 4, for any \~X the linearization
F \prime ( \~X) generates an analytic semigroup and it belongs to the maximal regularity class
\scrM (\scrE 1, \scrE 0) of linear operators from the Banach space \scrE 1 into Banach space \scrE 0. The lo-
cal existence and uniqueness of a solution X = (Xi)ni=1 \in C([0, T ], \scrE 1)\cap C1([0, T ], \scrE 0),
and X(\cdot , 0) = X0 now follows from the abstract result [5, Theorem 2.7] due to An-
genent.

In order to prove the last statement we use a simple bootstrap argument. Sup-
pose that the maximal time of existence is finite and maxi,\Gamma i

t
| \kappa i(\cdot , t)| < \infty . Then

the solution X belongs to the space C([0, T ], \scrE 1) \cap C1([0, T ], \scrE 0) for any compact
subinterval [0, T ] \subset [0, Tmax). Since \kappa i is bounded so does the second derivative
\partial 2siX

i = \partial siT
i = \kappa iNi. It means that the lower order terms in the governing equa-

tion are continuous and uniformly bounded. That is, the function \~gi = Fi + \alpha iTi

belongs to the space C([0, Tmax], E0), and the solution Xi satisfies the linear evolution
equation

(26) \partial tX
i = \~\scrA i\partial 2siX

i + \~gi, Xi(\cdot , 0) = Xi
0 \in \scrE 1,

where \~\scrA i(\cdot , t) = \scrA (ai(\cdot , t), bi(\cdot , t), \partial siXi(\cdot , t)) with ai(\cdot , t) = ai(Xi(\cdot , t),Ti(\cdot , t)) and
bi(\cdot , t) = bi(Xi(\cdot , t),Ti(\cdot , t)) is a time dependent matrix belonging to the space C([0,



MOTION OF A FAMILY OF INTERACTING CURVES IN SPACE 563

Tmax], \scrE 1/2). Applying the maximal regularity for the linear equation (26) we con-
clude that the solution Xi \in C([0, Tmax], E1) \cap C1([0, Tmax], E0). It means that
X \in C([0, Tmax], \scrE 1) \cap C1([0, Tmax], \scrE 0), and so we can continue a solution beyond
the maximal time of existence [0, Tmax) starting from the initial condition X(\cdot , 0) =
X(\cdot , Tmax) \in \scrE 1, a contradiction. Therefore, Tmax = \infty , as claimed, provided that
the curvatures \kappa i, i = 1, . . . , n, remain bounded on the maximal time of existence
[0, Tmax).

Remark 2. The structural hypothesis (H) can be slightly relaxed in the case when
the initial curves do not intersect each other.

We assume there exist open nonintersecting neighborhoods \scrO i \in \BbbR 3 of initial
curves \Gamma i

0 \subset \scrO i, i = 1, . . . , n such that \scrO i \cap \scrO j = \emptyset for i \not = j, and the following
structural assumptions hold:
(H')\left\{     

ai, bi : \scrO i \times \BbbR 3 \rightarrow \BbbR , ai \geq a > 0,

Fi : \scrO i \times \BbbR 3 \times \BbbR n \rightarrow \BbbR 3, f ij : \scrO i \times \BbbR 3 \times \scrO j \times \BbbR 3 \rightarrow \BbbR 3 for i, j = 1, . . . , n,

are C2 smooth and globally Lipschitz continuous functions, a > 0 is a constant.

If we replace the hypothesis (H) by its generalization (H'), then the local existence
result stated in the main theorem, Theorem 4.1 remains true except for the limiting
behavior as t\rightarrow Tmax, where the last statement in Theorem 4.1 should be replaced as
follows: either limt\rightarrow Tmax

maxi,\Gamma i
t
| \kappa i(\cdot , t)| = \infty , or limt\rightarrow Tmax

mini dist(\Gamma 
i
t, \partial \scrO i) = 0.

Here dist(\Gamma i
t, \partial \scrO i) is the distance between \Gamma i

t and the boundary \partial \scrO i of the neighbor-
hood \scrO i.

The hypothesis (H') can be employed in examples involving flows of noninter-
secting curves driven by normal and binormal velocity under the Biot--Savart law
(7).

5. Numerical discretization scheme based on the method of lines. In
this section we present a numerical discretization scheme for solving the system of
equations (17) enhanced by the tangential velocity \alpha i. Our discretization scheme is
based on the method of lines with the spatial discretization obtained by means of the
finite volume method. For simplicity, we consider one evolving curve \Gamma (omitting the
curve index i) and rewrite the abstract form of (17) in terms of the principal parts of
its velocity

(27) \partial tX = a\partial 2sX+ b(\partial sX\times \partial 2sX) + F+ \alpha T.

We place M discrete nodes xk = X(uk), k = 0, 1, 2, . . . ,M along the curve \Gamma .
Corresponding dual nodes are defined as xk\pm 1

2
= X(uk\pm 1

2
) (see Figure 1). Here

uk\pm 1
2
= uk \pm h

2 , where h = 1/M , and (xk + xk+1)/2 denote averages on segments
connecting nearby discrete nodes and differs from xk\pm 1

2
\in \Gamma . The kth segment \scrS k of

\Gamma between the nodes xk - 1 and xk represents the finite volume. Integration of (27)
over the segment of \Gamma between the nodes xk+ 1

2
and xk - 1

2
yields

\int u
k+1

2

u
k - 1

2

\partial tX| \partial uX| du =

\int u
k+1

2

u
k - 1

2

a
\partial 

\partial u

\biggl( 
\partial uX

| \partial uX| 

\biggr) 
du+

\int u
k+1

2

u
k - 1

2

b(\partial sX\times \partial 2sX)| \partial uX| du

+

\int u
k+1

2

u
k - 1

2

F| \partial uX| du+

\int u
k+1

2

u
k - 1

2

\alpha \partial uXdu.

(28)
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Let us denote dk = | xk  - xk - 1| for k = 1, 2, . . . ,M,M + 1, where x0 = xM and
x1 = xM+1 for closed curve \Gamma and we approximate the integral expressions in (28) by
means of the finite volume method along \Gamma as follows:\int u

k+1
2

u
k - 1

2

\partial tX| \partial uX| du \approx dxk

dt

dk+1 + dk
2

,

\int u
k+1

2

u
k - 1

2

a\partial u

\biggl( 
\partial uX

| \partial uX| 

\biggr) 
du \approx ak

\biggl( 
xk+1  - xk

dk+1
 - xk  - xk - 1

dk

\biggr) 
,

\int u
k+1

2

u
k - 1

2

b(\partial sX\times \partial 2sX)| \partial uX| du \approx bk
dk+1 + dk

2
\kappa k(Tk \times Nk),\int u

k+1
2

u
k - 1

2

F| \partial uX| du \approx Fk
dk+1 + dk

2
,

\int u
k+1

2

u
k - 1

2

\alpha \partial uXdu \approx \alpha k
xk+1  - xk - 1

2
.

(29)

The approximation of the nonnegative curvature \kappa , tangent vector T, and normal
vector N, \kappa N = \partial sT read as follows:

\kappa k \approx 
\bigm| \bigm| \bigm| \bigm| Tk \times 2

dk + dk+1

\biggl( 
xk+1  - xk

dk+1
 - xk  - xk - 1

dk

\biggr) \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| 2

dk + dk+1

\biggl( 
xk+1  - xk

dk+1
 - xk  - xk - 1

dk

\biggr) \bigm| \bigm| \bigm| \bigm| ,
Tk \approx xk+1  - xk - 1

dk+1 + dk
, Nk \approx \kappa  - 1

k

2

dk + dk+1

\biggl( 
xk+1  - xk

dk+1
 - xk  - xk - 1

dk

\biggr) 
.

(30)

Here and hereafter, we assume \partial tX, \partial uX,F, and \alpha are constant over the finite vol-
ume between the nodes xk+ 1

2
and xk - 1

2
, taking values \partial tXk, \partial uXk,Fk, and \alpha k, re-

spectively. In approximation Fk of the nonlocal vector valued function F, we assume
the curve \Gamma entering the definition of F is approximated by the polygonal curve with
vertices (x0,x1, . . . ,xM ). In order to find the approximation \alpha k of the tangential
velocity given by (13) and (14) we apply a simple integration rule and obtain the
following formula:
(31)

\alpha k \approx  - Fk \cdot Tk+F0 \cdot T0+\alpha 0+

k\sum 
j=1

\kappa jvN,jdj - 
\sum k

j=1 dj

L

M\sum 
j=1

\kappa jvN,jdj+\omega 

k\sum 
j=1

\biggl( 
L

M
 - dj

\biggr) 

for k = 1, 2, . . . ,M , where L =
\sum M

j=1 dj is the total length of the curve and \omega \geq 0 is
a redistribution parameter. Here the discrete normal velocity vN,j is given by

vN,j = a \kappa j + Fj \cdot Nj .

The values \alpha 0 = \alpha M are chosen in such a way that
\sum M

j=1 \alpha jdj = 0. If \omega = 0, we obtain
the uniform redistribution. If \omega > 0, we obtain asymptotically uniform redistribution
(see (14) and Figure 2). In summary, the semidiscrete scheme for solving (27) can be
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di + 1di

Fig. 1. Discretization of a segment of a curve by means of the flowing finite volumes.
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Fig. 2. Illustration of importance of a suitable choice of the tangential redistribution. Left: no
tangential redistribution. Right: tangential redistribution preserving the relative local length (i.e.,
\omega = 0).

written as follows:

dxk

dt

dk+1 + dk
2

= ak

\biggl( 
xk+1  - xk

dk+1
 - xk  - xk - 1

dk

\biggr) 
+ bk

dk+1 + dk
2

\kappa k(Tk \times Nk)(32)

+Fk
dk+1 + dk

2
+ \alpha k

xk+1  - xk - 1

2
,

xk(0) = Xini(uk) for k = 1, . . . ,M.(33)

The resulting system (32)--(33) of ODEs is solved numerically by means of the 4th
order explicit Runge--Kutta--Merson scheme with automatic time stepping control and
the tolerance parameter 10 - 3 (see [54]). We chose the initial time-step as 4h2, where
h = 1/M is the spatial mesh size.

6. Numerical results. In this section we present several examples of evolution
of interacting curves in three dimensions. Nonlocal interactions between curves are
modeled by means of the Biot--Savart law. Subsection 6.1 is devoted to the motion
of interacting curves with a nontrivial normal velocity component ai > 0. We apply
numerical scheme based on the finite volume approximation of spatial derivatives
in combination with the method of lines. In subsection 6.2 we present examples
of evolving interacting curves with the binormal velocity with bi = 1, ai = 0, and
nonlocal interactions. The problem can be reduced to a solution of the system of
ODEs and the solution can be represented in terms of evolving concentric circles.

6.1. Computational examples of 3D curve dynamics under normal and
binormal velocity. Below, we describe computational examples performed by scheme
(32)--(33) designed in section 5. The examples demonstrate mutual interaction of a
pair of closed spatial curves moving according to the motion law (6)--(7) where the
interaction force of the Biot--Savart type is used. The semidiscrete scheme (32)--(33)
is solved by the fourth-order Runge--Kutta--Merson method with automatic time step
control (see, e.g., as in [54]), with the tolerance 10 - 3.

Example 1. This example shows the evolution of two mutually interacting curves---
see Figure 3. Their initial shape is circular with a vertical sinusoidal perturbation,
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their barycenters are vertically in different planes and horizontally shifted. As it can
be seen from the time evolution, the curves exhibit the ``frog leap"" dynamics (see
[44])---the smaller curves moves vertically through the interior of the larger curve,
becomes larger and the process repeats several times until one of them shrinks to a
point as a consequence of the normal component of the flow. This example is set
as follows---the flow parameters combining the normal and binormal directions are
a1,2 = 0.05 and b1,2 = 0.1. The initial curves are parametrized as

X1(u, 0) =

\left(  cos(2\pi u) + 0.1
sin(2\pi u)

0.2 + 0.2 sin(6\pi u)

\right)  ,

X2(u, 0) =

\left(  3 cos(2\pi u)
0.1 + 3 sin(2\pi u)

 - 0.2 + 0.2 sin(12\pi u)

\right)  , u \in (0, 1).

The initial curves do not intersect each other. As an external forcing term we considere
the Biot--Savart law (7), i.e., we choose \delta = 0 in (8). The spatial parametrization is
discretized by M = 100 segments. The output time step was \Delta t = 0.2.

Example 2. This example shows the evolution of two mutually interacting curves---
see Figure 4. Their initial configuration consists of two circles in mutually perpendic-
ular planes. In the time evolution, the curves become distorted by the mutual forces
and move away each from other. This example is set as follows---the flow parameters
combining the normal and binormal directions are a1,2 = 0.05 and b1,2 = 0.1. The
initial curves are parameterized as

X1(u, 0) =

\left(  2 cos(2\pi u)
2 sin(2\pi u)

0.0

\right)  , X2(u, 0) =

\left(  2 sin(2\pi u)
3.0

2 cos(2\pi u)

\right)  , u \in (0, 1).

Again we considered the Biot--Savart law (7) as an external forcing term. The spatial
parametrization is discretized by M = 100 segments. The output time step was
\Delta t = 0.2.

Example 3. This example shows the evolution of two mutually interacting curves---
see Figure 5. Their initial shape is circular, their barycenters are vertically in different
planes and horizontally shifted. In the time evolution, the curves exhibit acrobatic
motion when the smaller curve squeezes into the interior of the larger one and loops
over it repeatedly. This example is set as follows---the flow parameters combining the
normal and binormal directions are a1,2 = 0.05 and b1,2 = 0.1. The initial curves are
parametrized as

X1(u, 0) =

\left(  cos(2\pi u)
sin(2\pi u)

0.0

\right)  , X2(u, 0) =

\left(  2 cos(2\pi u)
0.5 + 2 sin(2\pi u)

1.5

\right)  , u \in (0, 1).

The parametric space is discretized by M = 150 segments. The output time step was
\Delta t = 0.2. The numerical algorithm is stabilized by tangential redistribution.

6.2. Dynamics of concentric circles under pure binormal flow Biot--
Savart type of interactions. We consider a flow of two vertically concentric circles
driven by the system of equations (6). It illustrates the effects of frog leap vortex
dynamics (cf. Mariani and Kontis [43]). Parametrizations of vertically concentric
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(a) time t = 0.0 (b) time t = 9.0
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(c) time t = 18.0 (d) time t = 27.0
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(e) time t = 36.0 (f) time t = 45.0

Fig. 3. Example 1: Evolution of space curves with the Biot--Savart type of interaction starting
from two vertically perturbed circles showing the ``frog leap"" dynamics.

circlesXi, i = 1, 2 with radii ri evolving in parallel planes with vertical heightsX3i, i =
1, 2, are given by

Xi = (ri cos 2\pi u, ri sin 2\pi u,X3i)
T , Xj = (rj cos 2\pi v, rj sin 2\pi v,X3j)

T for u, v \in I.

Then the unit tangent vector Tj = ( - sin 2\pi v, cos 2\pi v, 0)T . In order to compute the
integral nonlocal term, \gamma ij(Xi) is given by means of (7) we note that dsj = gjdv =
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(a) time t = 0.0 (b) time t = 7.2
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(c) time t = 14.4 (d) time t = 21.6
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(e) time t = 28.8 (f) time t = 32.0

Fig. 4. Example 2: Evolution of space curves with the Biot--Savart type of interactions starting
from two circular curves in perpendicular planes.

| \partial vXj | dv = 2\pi rj . Furthermore, for Xi = (ri cos 2\pi u, ri sin 2\pi u,X3i)
T we have

\partial sX
k \times \partial 2sX

k = (0, 0, 1)T , k = i, j,

(Xi  - Xj)\times Tj = ( - zij cos 2\pi v, - zij sin 2\pi v, ri cos 2\pi (v  - u) - rj)
T ,

| Xi  - Xj | = | r| 
\sqrt{} 
1 - \delta cos 2\pi (v  - u),

where zij =  - zji = X3i  - X3j , r = (r1, r2, z12)
T , \delta = \delta ij = \delta ji = 2rirj/| r| 2.

(34)
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(a) time t = 0.0 (b) time t = 4.4
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(c) time t = 8.8 (d) time t = 13.2
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(e) time t = 17.6 (f) time t = 31.6

Fig. 5. Example 3: Evolution of space curves with the Biot--Savart type of interactions starting
from two nonconcentric circular curves showing the ``acrobatic"" dynamics.

Next, we compute the integral over the curve \Gamma j parametrized by Xj . The complete

elliptic functions of the first kind K(m) =
\int \pi /2

0
1/
\sqrt{} 

1 - m sin2(\vargamma )d\vargamma , and the sec-

ond kind E(m) =
\int \pi /2

0

\sqrt{} 
1 - m sin2(\vargamma )d\vargamma can be used in order to determine all terms

entering the integral (7) over the curve \Gamma j . After straightforward calculations employ-
ing differentiation of E and K functions, using integration by parts, and relationships
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Fig. 6. Graphs of the functions Is(\delta ) (left) and I0(\delta ) (right).

between derivatives of E and K one can (see Figure 6) derive the following explicit
expressions for parametric integrals:

Is(\delta ) :=

\int 1

0

sin 2\pi \~v

(1 - \delta sin 2\pi \~v)3/2
d\~v

=
2

\pi 

1

\delta (1 - \delta )
\surd 
1 + \delta 

\biggl( 
E

\biggl( 
2\delta 

1 + \delta 

\biggr) 
 - (1 - \delta )K

\biggl( 
2\delta 

1 + \delta 

\biggr) \biggr) 
,

Ic(\delta ) :=

\int 1

0

cos 2\pi \~v

(1 - \delta sin 2\pi \~v)3/2
d\~v = 0,

I0(\delta ) :=

\int 1

0

1

(1 - \delta sin 2\pi \~v)3/2
d\~v =

2

\pi 

1

(1 - \delta )
\surd 
1 + \delta 

E

\biggl( 
2\delta 

1 + \delta 

\biggr) 

for any | \delta | < 1. Since cos 2\pi (v  - u) = sin 2\pi \~v, where \~v = v  - u+ 1/4 we obtain

\int 1

0

sin 2\pi v

(1 - \delta cos 2\pi (v  - u))3/2
dv =

\int  - u+5/4

 - u+1/4

sin 2\pi (\~v + u - \pi /4)

(1 - \delta sin 2\pi \~v)3/2
d\~v

=  - 
\int 1

0

cos 2\pi (\~v + u)

(1 - \delta sin 2\pi \~v)3/2
d\~v = Is(\delta ) sin 2\pi u.

Arguing similarly as before, we obtain

\int 1

0

cos 2\pi v

(1 - \delta cos 2\pi (v  - u))3/2
dv =

\int 1

0

sin 2\pi (\~v + u)

(1 - \delta sin 2\pi \~v)3/2
d\~v = Is(\delta ) cos 2\pi u,\int 1

0

1

(1 - \delta cos 2\pi (v  - u))3/2
dv =

\int 1

0

1

(1 - \delta sin 2\pi \~v)3/2
d\~v = I0(\delta ),\int 1

0

cos 2\pi (v  - u)

(1 - \delta cos 2\pi (v  - u))3/2
dv =

\int 1

0

sin 2\pi \~v

(1 - \delta sin 2\pi \~v)3/2
d\~v = Is(\delta ).

In summary, we conclude that

\gamma ij(Xi) =
2\pi rj
| r| 3

( - zijIs(\delta ) cos 2\pi u,  - zijIs(\delta ) sin 2\pi u, riIs(\delta ) - rjI0(\delta ))
T
.

The radii r1, r2 and the difference z12 =  - z21 = X31 - X32 of the heights of underlying
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Fig. 7. Graphs of the functions r1(t) (red), r2(t) (blue), z12(t) (green) solving the nonlinear
system of ODEs ( 34). (Figure in color online.)

planes satisfy the following system of nonlinear ODEs:

dr1
dt

=  - 2\pi r2z12
| r| 3

Is(\delta ),

dr2
dt

=
2\pi r1z12
| r| 3

Is(\delta ),(35)

dz12
dt

=
2\pi (r21  - r22)

| r| 3
I0(\delta ), \delta = 2r1r2/| r| 2, | r| =

\sqrt{} 
r21 + r22 + z212.

If we sum the first equation in (34) multiplied by r1 with the second equation
multiplied by r2 we conclude that

d

dt
(r21(t) + r22(t)) = 0.

Hence the sum of enclosed areas A(\Gamma 1) +A(\Gamma 2) is constant with respect to time, i.e.,

A(\Gamma 1
t ) +A(\Gamma 2

t ) = A(\Gamma 1
0) +A(\Gamma 2

0) for all t \geq 0.

Therefore, the system (34) has a dynamics of a 2D planar system of ODEs. With
regard to the Poincar\'e--Bendixon theorem the \omega -limit sets of such a dynamical system
consist either of a single fixed point, or a periodic orbit, or it is a connected set com-
posed of a finite number of fixed points together with homoclinic and heteroclinic or-
bits connecting these fixed points. In Figure 7 we show the solution (r1(t), r2(t), z12(t))
of the system of ODEs (34) with initial conditions r1(0) = 2, r2(0) = 1, z12(0) = 3.
The radii of circles are periodically oscillating exchanging their maximums and min-
imums. Furthermore, the difference between moving underlying planes is also oscil-
lating so the one shrinking and expanding circle jumps up and down with respect to
the other one.

In general, the evolution of n vertically concentric circles with radii ri and mutual
differences zij = X3i  - X3j of their vertical heights X3i, i = 1, . . . , n satisfy the
following system of ODEs:

dri
dt

=  - 2\pi 
\sum 
j \not =i

rjzijIs(\delta ij)

(r2i + r2j + z2ij)
3/2

, i = 1, . . . , n,

dzij
dt

= 2\pi 
\sum 
k \not =i

rkriIs(\delta ki) - r2kI0(\delta ki)

(r2i + r2k + z2ik)
3/2

 - 2\pi 
\sum 
l \not =j

rlrjIs(\delta lj) - r2l I0(\delta lj)

(r2j + r2l + z2jl)
3/2

,(36)

where \delta ij = rirj/(r
2
i + r2j + z2ij), i, j = 1, . . . , n.
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Fig. 8. Left: Graphs of the functions r1(t) (red), r2(t) (blue), r3(t) (green). Right: Graphs of
the functions z12(t) (brown), z23(t) (pink). (Figure in color online.)

Multiplying the differential equation for ri by ri, summing them for i = 1, . . . , n, and
taking into account that zji =  - zij , \delta ij = \delta ji, we obtain

d

dt

n\sum 
i=1

r2i (t) = 0, i.e.,

n\sum 
i=1

A(\Gamma i
t) =

n\sum 
i=1

A(\Gamma i
0)

for all t \geq 0. It means that the flow of vertically concentric circles governed by
the geometric law (36) preserves the total area enclosed by the evolving curves. Since
zij = zik+zkj , the system (36) can be reduced and computed only for 2n - 2 variables
z12, z23, . . . , zn - 1,n and r1, . . . , rn - 1.

In Figure 8 we show evolution of radii of n = 3 vertically concentric circles (left)
and their mutual vertical differences z12, z23 (right). The dynamical behavior is similar
to the n = 2 case shown in Figure 7 as the radius r3 tends to a steady state, i.e., the
circle \Gamma 3 converges to a stationary position. The circles \Gamma 1 and \Gamma 2 are periodically
shrinking and expanding as z12 oscillates around zero. Their mutual distances | z23| 
and | z13| = | z12 + z23| tend to the third circle \Gamma 3

t tends to infinity as t\rightarrow \infty .

7. Conclusion. In this paper we investigated a curvature driven geometric flow
of several curves evolving in three dimensions with mutual interactions which can
exhibit local as well as nonlocal character and entire curve influences evolution of
other curves. We proposed a direct Lagrangian approach for solving such a geometric
flow of curves. Using the abstract theory of analytic semiflows in Banach spaces we
proved local existence, uniqueness, and continuation of H\"older smooth solutions to the
governing system of nonlinear parabolic equations for the position vector parametri-
zation of evolving curves. We applied the method of the flowing finite volume method
in combination with the method of lines for numerical discretization of governing
equations. We presented several computational examples of evolution of interacting
curves. Interaction were modeled by means of the Biot--Savart nonlocal law.
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