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The article describes a model of interaction dynamics between a dislocation and dipolar dislocation
loops. The interaction is essential for dipolar dislocation structure formation in early stages of a
hardening process. For the description of the dislocation curve a direct parametric approach is
employed whereas the loops are treated as rigid objects. The model equations are solved
approximately by means of the finite-volume method. Physically interesting phenomena can be
captured by the model provided the simulation covers long time periods. The strong interaction
between the dislocation and the loops causes growing nonuniformity of distribution of discrete
nodes along the dislocation curve. This effect is balanced by two proposed types of tangential
redistribution of the discrete nodes. The redistribution is tested in simulations of loop clustering.
© 2010 American Institute of Physics. �doi:10.1063/1.3340518�

I. INTRODUCTION

In crystalline solids plastic deformation is carried by dis-
locations which are line defects of the crystal lattice. Theo-
retical description of dislocations is provided in classical lit-
erature such as Ref. 1 or 2. Along the dislocation curve the
regularity of the crystallographic arrangement of atoms is
disturbed. The dislocation can be represented by a curve
closed inside the crystal or by a curve ending on surface of
the crystal. At low homologous temperatures the dislocations
can move only along crystallographic planes with the highest
density of atoms �slip planes�. The motion results in mutual
slipping of neighboring parts of the crystal along the slip
planes. The slip displacement carried by a single dislocation,
called Burgers vector, is equal to one of the vectors connect-
ing the neighboring atoms.

A field induced by displacement of atoms from their
regular crystallographic positions in the vicinity of a dislo-
cation curve can be treated as the elastic stress and the strain
fields. On the other hand, a stress field exerts a force on a
dislocation. The combination of these two effects causes the
elastic interaction among dislocations.

One of the most distinguished features of plastic defor-
mation at the microscale is a great overproduction of dislo-
cations during a deformation process. Only a small fraction
of generated dislocations is needed to carry plastic deforma-
tion, the rest is stored in the crystal. The deformed crystals
supersaturated with dislocations tend to decrease the internal
energy by mutual screening of their elastic fields. If disloca-
tions possess a sufficient maneuverability provided by easy
cross-slip �solids with wavy slip� the leading mechanism is
an individual screening. The dislocations are stored in the
form of dipoles which are transformed to prismatic disloca-
tion dipolar loops of the prevailing edge character or such

loops are directly formed. The loops are swept into clusters
�tangles, veins, dipolar walls� forming pattern of dipolar dis-
location structures �the experimental evidence is summarized
in Ref. 3�.

The glide dislocations �dislocation curves� and the dis-
location loops �dipolar loops� have much different character-
istic length scales and mobile properties �see Refs. 4 and 5�
as follows:

• The segments of glide dislocations extend over dis-
tances of micrometers, whereas size of the prismatic
dipolar loops is of the order of 10 nm.

• Glide dislocations are driven by the shear stress re-
solved in the slip plane, while loops are drifted by
stress gradients and/or swept by the glide dislocations.
Prismatic loops can move along the direction parallel
to the direction of their Burgers vector only.

• During deformation glide dislocations become curved.
Local curvature of the glide dislocations seems to be
one of leading factors controlling the pattering �see
Refs. 6 and 7�. On the other hand, loops can be ap-
proximately treated as rigid objects.

A helpful tool for investigation of elementary interaction
processes of plastic deformation is the discrete dislocation
dynamics. When treating dislocations, direct numerical simu-
lations originally considered long parallel straight dislocation
lines. Later, more physical but considerably more complex
three-dimensional �3D� situations of plastic deformation pro-
cesses were investigated. Application of this approach ad-
dressed a variety of mesoscale plasticity problems. Details
can be found, e.g., in Refs. 8–15.

Methods treating dynamics of curved dislocations can be
divided into the following groups. Some methods consider
discrete segments of the curve moving over a discrete lattice
�see Refs. 8 and 11�. Other methods discretize the curve into
piecewise linear �see Refs. 14 and 15� or piecewise polyno-
mially representative segments �see Refs. 12 and 13�.
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Due to the above mentioned complexity, formation of
dislocation structures as a consequence of interactions be-
tween dislocations is still an open problem. The aim of this
article is to present detailed description of a parametric
model treating a single dislocation curve and a finite number
of dipolar loops and to present simulation results obtained by
this model. As the parametric approach allows a single pa-
rameter description of the dislocation curve placed in 3D
space, there is a gain in speed of the numerical computation.
The numerical model using the flowing finite volume method
based on the presented mathematical model is described.
Difficulties with the numerical stability of the original nu-
merical model �mainly due to the strong force interactions of
the dislocation curve with dipolar loops� are discussed and
an improved numerical model is proposed which includes
tangential redistribution of the dislocation-curve discretiza-
tion.

II. PHYSICAL MODEL

A. Equations of motion

The interaction dynamics between a dislocation curve �
and dipolar loops �1 , . . . ,�N is studied in the coordinate
system shown in Fig. 1. The xz plane represents the disloca-
tion slip plane �. The dipolar loops treated as rigid objects16

are considered in their stable configurations—having long
rectangular fixed shapes �see Ref. 14�. Therefore, their mo-
tion is fully described by motion of their barycenters. They
are assumed to have longer edges parallel with the z-axis
whereas their shorter edges are parallel with either �1,1,0� or
�1,−1,0� vectors. Due to its prismatic character, a dipolar
loop can move along the x-axis only, keeping the y and z
coordinates constant. The Burgers vector is set as
b� = �b ,0 ,0�.

The glide of a planar dislocation curve � is governed by
the linear viscous law written in the scalar form of the mean
curvature flow

Bv� = ��� + F , �1�

relating its normal velocity v� to the curvature �� and sum F
of forces acting on � in the normal direction to the disloca-
tion curve. Here, B denotes the drag coefficient and � stands
for the line tension. This evolution law is known from other
applications as described in Refs. 17 and 18. As pioneered by
Ref. 19, developed by Ref. 20, and under further improve-

ment of Ref. 12, the law �Eq. �1�� can be treated by the
arc-length parametrization. The parametrization is a smooth
vector mapping X� =X� �t ,s� depending on time t� �0,T� and
arc length s� �0,L�t��, where L�t� is the length of the dislo-
cation curve at a given time t. The mapping satisfies the
identity ��sX� �t ,s��=1. Values of X� �t ,s� are in the slip plane �.
In our setting, this means that the second coordinate of X� is
zero. The motion law �Eq. �1�� is then transformed into the
vectorial form as follows:

B�tX� = ��ss
2 X� + F�sX�

�,

where �sX�
� represents the normal vector to �.

The dislocation curve is assumed to be open with fixed
ends which provides the boundary conditions for the param-
etrization

X� �t,0� = X� fixed,0, X� �t,L�t�� = X� fixed,L.

A closed dislocation curve �e.g., appearing in the Frank–
Read source� can be treated when considering the periodic
boundary conditions

X� �t,0� = X� �t,L�t�� .

As indicated above, each dipolar loop is assumed to have a
rectangular shape and to be in one of two stable 45° orien-
tations either in vacancy �i.e., V1 and V2� or interstitial �i.e.,
I1 and I2� configurations. They are denoted according to Fig.
2, where vacancy-loop configurations are shown as an ex-
ample. We also adopt a simplification assuming that all di-
polar loops considered have the same size: their average
half-width h, the average half-length l, and the average pe-
rimeter P are shown in Fig. 2 and are related as

P = 2�2h�2 + 2l� .

The position of a dipolar loop � j , j=1, . . . ,N is given by
the coordinates �x�j� ,y�j� ,z�j�� of its barycenter. According to
the previous assumptions, y�j�=const.�0 and z�j�=const.,
and x�j�=x�j��t� satisfies the motion law

dx�j�

dt
=

1

BP
Fx,total

�j� ��,x�1�, . . . ,x�N�� . �2�

The term Fx,total
�j� represents the force interaction with other

dipolar loops and with the dislocation curve. This interaction
is projected to the only possible direction of the loop
motion—to the direction of the x-axis.

FIG. 1. Mutual position of dislocation and dipolar loops with respect to the
slip plane.
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FIG. 2. Stable configurations V1 and V2 of dipolar loops positioned at
�x0 ,y0 ,z0�.
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The interaction dynamics of a dislocation curve � and
dipolar loops �1 , . . . ,�N is therefore described by the fol-
lowing set of equations endowed by the boundary and initial
conditions

B�tX� = ��ss
2 X� + F�t,X� ,�1, . . . ,�N��sX�

�, �3�

dx�j�

dt
=

1

BP
Fx,total

�j� ��,x�1�, . . . ,x�N�� , �4�

X� �t,0� = X� fixed,0, X� �t,L�t�� = X� fixed,L, �5�

X� �0,s� = X� ini�s�, x�j��0� = xini
�j�, j = 1, . . . ,N . �6�

B. Evaluation of interaction terms

Driving force per unit length of the dislocation curve F
=F�t ,X� ,�1 , . . . ,�N� in Eq. �3� is caused by forces exerted to
a tested specimen and interaction with dipolar loops; the in-
fluence of other dislocations and of lattice friction is not
considered

F = b�local + �
j=1

N

b�xy
�j�.

Generally, to determine the local stress �local at the disloca-
tion curve coming from the forces exerted to the specimen
requires a solution of a boundary value problem for a par-
ticular experimental setup. Instead of this problem two sim-
plified limit cases are considered: either applied stress or
total strain are assumed uniform; the former alternative pro-
vides an upper estimate of the local applied stress, while the
latter one gives a lower estimate �see Ref. 21�. Here the latter
technically more challenging alternative, which seems to be
closer to the reality, is considered. It means that the total
shear strain �tot, being a sum of the elastic and plastic parts,

�tot =
�local

�
+ p , �7�

is assumed to be uniform; �local is the local resolved shear
stress and � is shear modulus �we set �=80 GPa�. To esti-
mate the plastic strain p the considered dislocation is taken
as a representative of glide dislocations in a specimen. The
plastic strain carried by a dislocation segment is

p�t� = �b�
0

t

�tX� ��� · �sX�
����d� , �8�

where the integral represents the part of the slip plane slipped
by a dislocation segment of a unit length; the elementary
amount of slip is Burgers vector magnitude b; initially
p�t0�=0. The average scalar density � of the glide disloca-
tions in Eq. �8� represents the number of segments piercing a
unit area perpendicular to the segment �we set �=1013 m−2�.

In the numerical simulations, we explore the case when
the total shear strain �tot=�tot�t� is a periodic function in time
with the frequency 1.57 s−1 and the amplitude 0.0017. From
Eqs. �7� and �8� we get that

�local�t� = �	�tot�t� − �b�
0

t

�tX� ��� · �sX�
����d�
 . �9�

Interaction with dipolar loops is given by the xy component
of the stress field tensor �xy

�j� describing the stress field gen-
erated by jth dipolar loop, j=1, . . . ,N. As the loops are con-
sidered as rigid objects their stress field can be expressed
through analytical formula �see Refs. 4, 14, and 22�

�xy�x,y,z� = −
�hb

2	�1 − 
��	 l − z

�−
+

l + z

�+



�	 x � y

�x2 + y2�2��x + y − 8
x2y

x2 + y2

+ 	 l − z

�−
3 +

l + z

�+
3 
	�
 +

xy

�x2 + y2�2

��y2 − 3x2  4xy�
 + 	 l − z

�−
5 +

l + z

�+
5 


�	−
3x2y�x � y�

x2 + y2 
� ,

�− = �x2 + y2 + �l − z�2, �+ = �x2 + y2 + �l + z�2, �10�

The above analytical formula for �xy is valid under the as-
sumption that the distance �x ,y ,z� of the dipolar loop from
the dislocation curve is large enough compared to the dipolar
loop parameter h. The stress field of dipolar loops expressed
by the above analytical formula allows to speed up the nu-
merical algorithm for solution of the evolution systems �Eqs.
�3�–�6��.

Driving term for a dipolar loop Fx,total
�j� in Eq. �4� is given

by the following formula:

Fx,total
�j� ��,x�1��t�, ¯ ,x�N��t�� =�

Fx
c,�j� + �

k�j

Fx
j,k − F0 if Fx

c,�j� + �
k�j

Fx
j,k � F0

0 if �Fx
c,�j� + �

k�j

Fx
j,k� � F0

Fx
c,�j� + �

k�j

Fx
j,k + F0 if Fx

c,�j� + �
k�j

Fx
j,k � − F0,� �11�
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where the term Fx
c,�j� is the x-axis component of the force

interaction between the entire dislocation curve � and the jth
dipolar loop:

Fx
c,�j� = �

�

�xy���j�� �bnxds . �12�

In Eq. �12�, ��j�� connects the barycenter of the dipolar loop
and a given point on the dislocation curve, and nx is the
x-axis component of the normal vector �sX�

� of the disloca-
tion curve. The threshold term F0 stands for the internal lat-
tice friction, i.e., it describes minimal force needed to bring
an arbitrary dipolar loop into motion.

In simulations, the interaction between dipolar loops
plays an important role. Hence, it cannot be neglected. The
computer simulations16 and results of Ref. 15 show that the
sweeping of two loops by a glide dislocation is much differ-
ent when the mutual loop interaction is not considered. The
term Fx

j,k, describes mutual interaction between the jth and
the kth dipolar loops, k=1, . . . ,N , k� j. This term prevents
an arbitrary dipolar loop to move across any other dipolar
loop.

The term Fx
j,k can be approximately evaluated �see Ref.

23 and references therein� provided the average half-width of

a dipolar loop h is small enough compared to the distance
between the jth and kth dipolar loops �measured between
central points of the rectangles of these two loops�. The final
formula for Fx

j,k has three different forms depending on dif-
ferent combination of the types and configurations of the
dipolar loops.

(1) For the combinations V1−V2, V1− I2, I1−V2, I1− I2,
V2−V1, V2− I1, I2−V1, and I2− I1 it holds

Fx
j,k�1� = −

�h2

	�1 − 
�
b�b���1

− 8x0
5 + 64x0

3y0
2 − 24x0y0

4

�x0
2 + y0

2�4

+ �−1
− 4x0

5 + 32x0
3y0

2 − 12x0y0
4

�x0
2 + y0

2�3 + �−3	�1 − 
�x0

+
− x0

5 + 8x0
3y0

2 − 3x0y0
4

�x0
2 + y0

2�2 
 + �−5	3x0
3− x0

2 + y0
2

x0
2 + y0

2 
� .

�13�

(2) and (3) For the combinations V1−V1, V1− I1, I1−V1,
and I1− I1 �using the upper signs�, and for V2−V2, V2− I2,
I2−V2, and I2− I2 �with the lower signs� the interaction is
given by the formula

Fx
j,k�2,3� = −

�h2

	�1 − 
�
b�b��− 4�1

x0
5 � 9x0

4y0 − 2x0
3y0

2  14x0
2y0

3 − 3x0y0
4 � y0

5

�x0
2 + y0

2�4

+ �−1
− 2x0

5  18x0
4y0 + 4x0

3y0
2 � 28x0

2y0
3 + 6x0y0

4  2y0
5

�x0
2 + y0

2�3 + �−3	�1 + 
�x0 +
− x0

5  4x0
4y0 � 8x0

2y0
3 + x0y0

4

�x0
2 + y0

2�2 

+ �−5	− 3x0

3 �x0 � y0�2

x0
2 + y0

2 
� . �14�

In the above formulae, we used the following short hand
notation:

�1 = �0�− 2l� − 2�0�0� + �0�2l� ,

�−1 = −
1

�0�− 2l�
+ 2

1

�0�0�
−

1

�0�2l�
,

�−3 = −
1

�0
3�− 2l�

+ 2
1

�0
3�0�

−
1

�0
3�2l�

,

�−5 = −
1

�0
5�− 2l�

+ 2
1

�0
5�0�

−
1

�0
5�2l�

,

�0��� = �0�x0,y0,z0,�� = �x0
2 + y0

2 + �z0 + ��2.

In the formulae �13� and �14�, 
 is the Poisson ratio �

=0.31�, b� is the signed magnitude of the Burgers vector of
the first dipolar loop and b� is the signed magnitude of the

Burgers vector of the second dipolar loop. As shown in Ref.
23, the interstitial dipolar loop simply reverses the direction
of the interaction force. Then values of b� and b� are, there-
fore, set to b for the case of a vacancy dipolar loop, and to
−b for an interstitial dipolar loop in Eqs. �13� and �14�. The
vector �x0 ,y0 ,z0� denotes the relative position of the loop
barycenters.

The interaction between two dipolar loops has a complex
spatial variability. This is demonstrated in Figs. 3–6. Figure
3 shows the interaction force Fx

j,k�1� between dipolar loops V1

and V2 placed in the same height above the slip plane, i.e.,
difference in y coordinate vanishes. Forces Fx

j,k�2� and Fx
j,k�3�

have similar graphs when staying in the same height above
the slip plane—this can be seen from the formulae: almost
all terms having difference in y0 zero vanish and the rest is
up-to-constants similar to Fx

j,k�1�.
Figures 4–6 present graphs of forces between two dipo-

lar loops of types V1−V1 and V2−V2 which have the same
z-axis coordinate, i.e., difference in z coordinate vanishes. In
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each case, there are five areas where there is attraction be-
tween dipolar loops, and five areas where there is repulsion.
These areas are of different sizes. Moreover, location of at-
tractive and repulsive areas depends on the combination of
dipolar-loop types.

Remark. Note that if we set x0=0, there is no force be-
tween the dipolar loops, i.e., Fx

j,k�1�=0 for any y0 and z0. This
is not valid for Fx

j,k�2� nor for Fx
j,k�3�.

III. COMPUTATIONAL MODEL

A. Discretization of the evolution problem

The model of interaction dynamics in Eqs. �3�–�6� is
approximately treated by means of the numerical scheme
based on discretization of the model equations in space by
the finite-volume method and subsequently, on discretization
of the model equations in time by the higher-order Runge–
Kutta scheme.

At a given time moment, the dislocation curve � is ap-
proximated by a piecewise linear curve with vertices—nodes

X� i�t� , i=0, . . . ,M in the slip plane �. The end nodes X� 0 and
X� M are prescribed by the boundary conditions in Eq. �5�

X� 0 = X� fixed,0, X� M = X� fixed,L,

and do not depend on time.
The segments �X� i−1 ,X� i� are called flowing finite vol-

umes. We also define dual volumes Vi

= �X� i−�1/2� ,X� i�� �X� i ,X� i+�1/2��, i=1, .. ,M −1, where X� i−�1/2�

= �X� i−1+X� i� /2 and X� i+�1/2�= �X� i+X� i+1� /2 are the centers of

segments �X� i−1 ,X� i� and �X� i ,X� i+1�, respectively, �see Fig. 7�.
The finite-volume method is based on integrating the

evolution �Eq. �3�� over the dual volume Vi. We then obtain

�
Vi

B�tX� ds = �
Vi

��ss
2 X� ds + �

Vi

F�sX�
�ds , �15�

from which it follows that

B
di + di+1

2

dX� i

dt
= ���sX� �X� i−1/2

X� i+1/2 + Fi�X� ��X� i−1/2

X� i+1/2, �16�

where
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di = �X� i − X� i−1� = ��Xi
x − Xi−1

x �2 + �Xi
z − Xi−1

z �2 �17�

are the distances between the nodes �we recall that � is lo-
cated in the slip plane �, and therefore the y coordinate
vanishes�.

The values Fi are a piecewise constant approximation of
the function F over the dual volume Vi with

Fi = F�X� i� .

Replacing the terms on the right-hand side of Eq. �16� by
finite differences and by averaged values, respectively, the
following system of ordinary differential equations �ODE’s�
is obtained �compare with Ref. 14�

B
dX� i

dt
= �

2

di + di+1
�X� i+1 − X� i

di+1
−

X� i − X� i−1

di


+
2

di + di+1
Fi

X� i+1
� − X� i−1

�

2
, i = 1, . . . ,M − 1. �18�

The initial conditions for this problem are given by the dis-
tribution of initial node positions given by values s1 , . . . ,sM−1

of the arc-length parameter

X� i�0� = X� ini�si�, i = 1, . . . ,M − 1.

The discretization of � also influences the stress contribution
of the dislocation curve to the motion equation of the jth
dipolar loop due to term �Eq. �12��. The contributions of each
curve segment are summed to obtain approximation of Fx

c,�j�

for which we use the same notation

Fx
c,�j��t� = �

i=0

M−1

�xy�Xi+1/2
x �t� − x�j��t�,− y�j�,Xi+1/2

z �t� − z�j��

�bcurve�Xi+1
z �t� − Xi

z�t�� , �19�

where �x�j��t� ,y�j� ,z�j�� is the center of the dipolar loop at
time t, and y�j� and z�j� are fixed and time independent.

The driving term Fx,total
�j� in Eq. �4� is then evaluated ac-

cording to Eq. �11�. Note that it depends on the nodal posi-
tions X� i�t� , i=0, . . . ,M.

dx�j��t�
dt

=
1

BP
Fx,total

�j� �X� 0�t�, . . . ,X� M�t�,x�0��t�, . . . ,x�N��t��,

j = 1, . . . ,N . �20�

The discretized evolution problem is completed by initial
and boundary conditions and has the following form:

B
dX� i

dt
= �

2

di + di+1
�X� i+1 − X� i

di+1
−

X� i − X� i−1

di


+
2

di + di+1
Fi

X� i+1
� − X� i−1

�

2
, i = 1, . . . ,M − 1. �21�

dx�j��t�
dt

=
1

BP
Fx,total

�j� �X� 0�t�, . . . ,X� M�t�,x�0��t�, . . . ,x�N��t��,

j = 1, . . . ,N . �22�

X� 0 = X� fixed,0, X� M = X� fixed,L, �23�

X� i�0� = X� ini�si�, i = 1, . . . ,M − 1, x�j��0� = xini
�j�,

j = 1, . . . ,N . �24�

This problem is a system of ODE’s depending on time. It is
solved by the Runge–Kutta fourth-order scheme according to
Ref. 24.

B. Redistribution of nodes along the dislocation
curve

Dynamics of the interaction between the dislocation
curve and the dipolar loops contains several time scales re-
lated to the motion of the dislocation, to the motion of the
dipolar loops and to their mutual influence. For example, an
imposed external periodically variable total strain causes a
periodical motion of the dislocation �expansion and shrink-
ing� with a relatively short time scale. This motion brings
changes in the position of the dipolar loops with another,
longer time scale. Frequently, the model must cover time
intervals of order of magnitude larger to make corresponding
physical behavior apparent. This requirement can become
difficult to fulfill when using the discrete model �Eqs.
�21�–�24�� without any additional improvement.

Such difficulties are shown in Fig. 8 where dynamics of
a single dislocation curve and two dipolar loops is presented.
The model setting is summarized in Table I. This computa-
tional study considers one dipolar loop �left� of the type V2

and placed 5 nm above the slip plane of the dislocation
curve. Another dipolar loop �right� of the type V1 is placed 5
nm below the slip plane of the dislocation curve. The initial
configuration for time t=0 is shown in Fig. 8�a�. The incli-
nation of the initially straight dislocation curve with respect
to the Burgers vector is 30°. Position of the curve and loops
is shown at four different time moments close to the time t
=36 s in Fig. 8�b� �corresponds to more than 56 load cycles�
and at four different time moments close to the time t
=56 s in Fig. 8�d� �corresponds to more than 87 load
cycles�. An enlarged detail of Fig. 8�b� is in Fig. 8�c� from
which a nonuniform distribution of discretization nodes
along the dislocation curve can be observed. After a certain
time, the numerical computation of this example becomes
unstable—the discretization nodes shift away from each
other along some parts of the dislocation curve. This is
caused by the force interaction with the dipolar loops and by
long time intervals covered by the simulation. These two
effects overcome the natural redistribution property of Eq.
�3�. It is therefore necessary to derive an enhanced redistri-
bution of the nodes along the dislocation curve �in the tan-
gential direction� which would stabilize nodes during long-
term computations.

The redistribution algorithms have been discussed, e.g.,
in Refs. 25–29 for closed curves where tangential motion of

Xi−1

Xi− 1
2

Xi
Xi+ 1

2
Xi+1

di+1di

FIG. 7. Piecewise linear approximation of the dislocation curve, flowing
finite volumes, and construction of dual volumes.
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the nodes is not limited by the shape of the curve. Disloca-
tion curves considered in this article are open. The tangential
motion of points is then limited by the fixed ends. We there-
fore modify approaches available for closed curves and allow
a tangential motion for the nodes inside the dislocation curve
only.

For this purpose the governing Eq. �3� for the dislocation
motion is modified by adding a term ��sX� acting in the tan-
gential direction which does not modify the curve motion

B�tX� = ��ss
2 X� + F�sX�

� + ��sX� , �25�

here � is the coefficient of the tangential motion which is
specified below.

The tangential term is introduced into the discrete Eq.
�21�. Here instead of discretizing ��sX� by

�i
X� i+1 − X� i−1

di + di+1
,

similarly to the force term in Eq. �21�, another discretization
is used

�i
X� i+1 − X� i−1

�X� i+1 − X� i−1�
.

The reason is that for higher curvature at the node X� i, the
distance �X� i+1−X� i−1� fits better into the numerical approxima-
tion than the sum of distances di and di+1, as discussed in
Refs. 28 and 30. The modified discrete evolution law then
becomes

B
dX� i

dt
= �

2

di + di+1
�X� i+1 − X� i

di+1
−

X� i − X� i−1

di


+
2

di + di+1
Fi

X� i+1
� − X� i−1

�

2
+ �i

X� i+1 − X� i−1

�X� i+1 − X� i−1�
,

i = 1, . . . ,M − 1. �26�

When specifying a suitable parameter � for an open curve
with fixed ends, obvious conditions must be satisfied

�0�t� = �M�t� = 0, ∀ t � �0,T� .

A class of curvature-driven problems can be treated by the
redistribution of the nodes based on the curvature as dis-
cussed in Refs. 25, 28, 30, and 31. In this case, the nodes
accumulate along parts of the curve with higher curvature. In
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FIG. 8. �Color online� Interaction dynamics between a dislocation and two dipolar loops of V1 and V2 type computed without help of a tangential redistribution
of nodes along the dislocation curve. Initial condition is shown in part �a�. After 56 load cycles, i.e., close to t=36 s, part �b� shows mutual configuration of
the dislocation and of the loops at four subsequent time moments differing by 0.05 s. Detail of this configuration is in part �c� from which nonuniform
distribution of nodes along the dislocation can be observed. After 87 load cycles, i.e., close to t=56 s, part �d� shows mutual configuration of the dislocation
and of the loops at four subsequent time moments differing by 0.05 s.

TABLE I. Table of parameters used in simulations.

Parameter Notation Value

Drag coefficient B 5�10−5 s−1

Line tension � 4 MPa m
Burgers vector b 0.256 nm
Initial length of the dislocation curve L0 1200 nm
Density of dislocations � 9.2�1012 m−2

Amplitude of periodic external force term �A 0.0017
Frequency of periodic external force term f 1.57 s−1

Shear modulus � 80 GPa
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case of dislocation dynamics, the dislocation is curved close
to the dipolar loops whose position is not a priori known.
Redistribution of the nodes to the proximity of the dipolar
loops then can be delayed. Accuracy of simulations is also
influenced by the approximation of the term �Eq. �8�� de-
scribing the plastic strain carried by a curve segment.

Derivation of a suitable form of �i , i=1, . . . ,M −1, then
proceeds by means of a change of the arc-length parametri-
zation to the fixed-domain parametrization of the curve �
governed by the law �Eq. �1�� as it has been shown in Ref.
32. Assume that � is parametrized by the mapping x
=x�t ,u� for u� �0,1� being the fixed-domain parameter. We
then define

g�u,t� = ��ux�u,t�� .

Then there is a relation between the fixed-domain parametri-
zation by u and the arc-length parametrization by s as fol-
lows:

ds = gdu . �27�

Denote the right-hand side of Eq. �1� as �=���+F and ex-
press the quantity A by means of both parametrizations as

A =
1

L
�

�

���ds =
1

L
�

0

1

���gdu . �28�

If we set

�s� = ��� − A ,

we have in terms of the fixed domain parametrization

1

g
�u� = ��� − A . �29�

We then obtain the simplest model preserving relative local
lengths.

1. Relative-length preserving redistribution

Equation �29� can be rewritten into the form

�u� = ���g − Ag ,

from which we obtain a formula for �

��t,0� = 0, �30�

��t,u� = �
0

u

���gd� − A�
0

u

gd� . �31�

Such a choice of � yields �see Ref. 32�

g�u,t�
L�t�

=
g�u,0�
L�0�

for any u � �0,1�, t � �0,T� ,

what in fact expresses the preservation of relative local
lengths. Moreover, the requirement for ��t ,1� is easily ful-
filled

��t,1� = �
0

1

���gd� − A�
0

1

gd� = AL − AL = 0.

Conservation of the relative local lengths is a suitable prop-
erty for the model of dislocation dynamics. We therefore
convert Eq. �31� into the arc-length form

��t,s� = �
0

s

���d� − A�
0

s

d� . �32�

Using discrete form of the differential transformation in Eq.
�27�

g �
�X� i+1 − X� i�

�u
, L�t� � �

i=0

M−1

�X� i+1 − X� i� ,

the formula in Eq. �32� can be transformed into the discrete
version

Li�t� = �
j=0

i

dj ,

�0�t� = 0, �33�

�i�t� = �
j=0

i

��,j� jdj −
Li�t�
L�t� �

j=0

M

��,j� jdj , �34�

where dj is the distance of the neighboring nodes defined in
Eq. �17�. The quantities ��,j and � j are expressed in terms of
the parametrization X� =X� �t ,s�. The Frenet formula gives

�� · N� = �ss
2 X� , �35�

where N� denotes the normal vector

N� = �sX�
� �

�X� i+1 − X� i−1��

�X� i+1 − X� i−1�
.

Using the scalar product with N� on both sides of the Frenet
formula �35� we get

�� = �ss
2 X� · N� . �36�

Discretizing this relationship �compared with Eq. �26�� we
obtain

��,i =
2

di + di+1
�X� i+1 − X� i

di+1
−

X� i − X� i−1

di
 ·

�X� i+1 − X� i−1��

�X� i+1 − X� i−1�
.

�37�

The formula for �i is obtained from Eq. �26� too.

�i = �
2

di + di+1
�X� i+1 − X� i

di+1
−

X� i − X� i−1

di


+
2

di + di+1
Fi

X� i+1
� − X� i−1

�

2
. �38�

In comparison to the analytical formulae �30� and �31� pre-
serving relative local lengths, the discrete version �Eq. �34��
preserves them approximately only. As it can be seen from
Fig. 9, numerical behavior is improved only slightly in com-

061802-8 Minárik, Beneš, and Kratochvíl J. Appl. Phys. 107, 061802 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



parison with Fig. 8. This is caused by the predominant nature
of the interaction forces overcoming this type of redistribu-
tion.

2. Asymptotically uniform redistribution

A stronger type of redistribution is therefore needed. Let
� be a constant to be specified later. Let us use the quantity
A defined in Eq. �28�. The expression for � is

1

g
�u� = ��� − A + ��L

g
− 1 ,

from which we get

�u� = ���g − Ag + ��L − g� .

In the continuous case � is given by

��t,0� = 0,

��t,u� = �
0

u

���gd� − A�
0

u

gd� + ��L�
0

u

d� − �
0

u

gd� .

Similarly to the previously described relative local length
preserving case, for ��t ,1� it holds

��t,1� = �
0

1

���gd� − A�
0

1

gd� + ��L�
0

1

d� − �
0

1

gd�
= AL − AL + ��L · 1 − L� = 0.

The discrete formula for �i in the case of asymptotically
uniform redistribution of nodes reads as

Li�t� = �
j=0

i

dj ,

�0�t� = 0,

�i�t� = �
j=0

i

��,j� jdj −
Li�t�
L�t� �

j=0

M

��,j� jdj

+ �� L�t�
di�M − 1�

− 1 . �39�

Under the assumptions that ��0 is constant �e.g., �=100�
we refer to Ref. 32 to state the behavior of the local length as
t grows

g�u,t�
L�t�

→ 1 as t → Tmax

uniformly with respect to u � �0,1� . �40�

Figure 10 shows that under identical setting as it was pre-
sented in Figs. 8 and 9, the nodes remain uniformly distrib-
uted along the dislocation in long-term computations.

IV. SIMULATION RESULTS AND DISCUSSION

Main goal of the article was to present a reliable simu-
lation method which allows to perform computations for
long time periods. In Sec. III it has been concluded that the
method of the asymptotically uniform redistribution of nodes
satisfies this requirement. As a further test, the method is
employed in a preliminary study of a loop clustering consid-
ered to be one of elementary processes leading to a dipolar

-200

-100

0

100

200

300

400

500

-400 -200 0 200 400

nm

nm

a)

V1
V2

-200

-100

0

100

200

300

400

500

-400 -200 0 200 400

nm

nm

b)

t

80

100

120

140

160

60 80 100 120 140 160 180 200

nm

nm

c)

t

-200

-100

0

100

200

300

400

500

-400 -200 0 200 400
nm

nm

d)

t

FIG. 9. �Color online� Interaction dynamics between a dislocation and two dipolar loops of V1 and V2 type is computed with help of the relative-length
preserving redistribution. The setting and presentation of the result is identical to the simulation presented in Fig. 8. Time evolution is indicated by an arrow.
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dislocation structure formation. Basic setup of the computa-
tions is the same as in Sec. III—see Table I. The dislocation
is exposed to the local stress �local given by Eq. �9�. In the
imposed cyclic shear �tot�t� with amplitude �A and frequency
f from Table I, the dislocation oscillates in the environment
of loops. In Fig. 11 there are several time levels of dynamics
consisting of a single dislocation curve �initial length
1.2 �m, the mixed orientation of 30° with respect to the
Burgers vector�, five vacancy dipolar loops V1 with y coor-
dinate equal to �10, 10 �twice�, 15, and 20 nm, and five
vacancy dipolar loops V2 with y coordinate equal to �10, 10
�twice�, �15, and �20 nm. The left-hand side of the figure
contains 3D plots with positions of the curve and loops,
whereas the right-hand side contains two-dimensional �2D�
projection of their positions onto the slip plane of the dislo-
cation curve. In each record, four closely following time lev-
els �differing of 0.05 s—8% of load cycle—each from other�
are brought together in order to provide better understanding
of dynamics at given time moments. For the result presented
in Fig. 11, mutual interactions between dipolar loops cap-
tured by the model are essential.

The simulation has been performed in order to study the
clustering phenomenon which occurs rather abruptly. It is
first observed at t=46 s—after 72 load cycles. In the follow-
ing time levels, the cluster does not substantially change its
shape.

In general, the cluster formation highly depends on the
initial conditions where the initial positions of the dipolar
loops play important role. Moreover, the clustering is not a
rule. A change in types of dipolar loops �using the same
initial positions� produces different results and does not nec-
essarily lead to clustering. This fact is illustrated in Fig. 12.

Four different initial setups of vacancy dipolar loop configu-
rations were used for the simulations. Here, five dipolar
loops of type V1 and five dipolar loops of type V2 were used
with positive or negative y coordinate ranging between 10
and 20 nm. The left-hand side graphs show the initial setups
�t=0 s�, while the right-hand side graphs show the simula-
tion results close to the time t=166 s—after 260 load cycles.
In Figs. 12�a� and 12�c�, there is no apparent clustering. In
Fig. 12�b� clustering occurs. In Fig. 12�d�, two smaller clus-
ters seem to be formed. Clear correlation between occurrence
of clustering and composition of the loop set has not yet been
detected.

The above presented results represent a test of the pro-
posed computational method in case of larger number of
loops. A further systematic study of a loop clustering would
be needed. From a broader viewpoint, the loop clustering is
one of several mechanisms of dipolar structure pattering.
One could also consider interaction among glide disloca-
tions, loop and dislocation generation, and annihilation sub-
jected to laws of continuum crystal mechanics �stress equi-
librium and compatibility�.

The pattering phenomenon has also been studied by
other approaches. The model of discrete dislocation dynam-
ics considering segments of the dislocation curves moving
over a discrete lattice was used for simulations of activity of
a large number of dislocations in a volume element of the
size �10 �m with periodic boundary conditions and with a
realistic dislocation density. As it can be seen from Refs.
33–35, it already reached some traces of initial pattering. On
the other hand, the models of discrete dislocation dynamics
based on parametric methods, which discretize dislocation
curves into piecewise linear �the model presented here� or
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FIG. 10. �Color online� Interaction dynamics between a dislocation and two dipolar loops of V1 and V2 type computed with help of the asymptotically uniform
redistribution. The setting and presentation of the result is identical to the simulation presented in Fig. 8. Time evolution is indicated by an arrow.
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into piecewise polynomially represented segments, may re-
quire more computational capacity. On the other hand, the
parametric methods are more accurate in capturing details of
the dislocation and loops interactions. As our preliminary
results indicate, the clustering is sensitive to these details.
This opens a further perspective for the described approach.

As dislocation pattering is a result of a collective behav-
ior of a large number of dislocations and loops a continuous
description is a useful tool. A statistical derivation of con-
tinuous distribution of dislocations from discrete dislocation
dynamics has been suggested by Groma et al.36–40 The idea
was to study a simplified model of straight parallel edge
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FIG. 11. �Color online� Interaction dynamics between a dislocation and ten dipolar loops of of V1 and V2 type. Graphs on left show spatial positions of
interacting objects, graphs on right show projection of the positions onto the slip plane. The initial configuration is in part �a�, the configuration after 72 load
cycles, i.e., close to t=46 s in part �b�, the configuration after 178 load cycles, i.e., close to t=114 s in part �c�, the configuration after 260 load cycles, i.e.,
close to t=166 s in part �d�, and the configuration after 312 load cycles, i.e., close to t=199 s in part �e�. Parts �b�–�e� show mutual configuration of the
dislocation and of the loops at four subsequent time moments differing by 0.05 s with time evolution indicated by an arrow.
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dislocations of a single slip system represented by points of
intersection of the dislocation lines with the plane of defor-
mation. Thus, the problem was reduced to statistics of point
objects, where the tools of standard statistical mechanics
were employed. This idealized model revealed one of the
main problems of this approach: an adequate description of
the short range correlations among dislocations. In the de-
rived averaged continuum model, the correlations result in
nonlocal effects which play a decisive role in modeling of
dislocation pattering and size effects. In 2D idealized mod-
els, there have been partly successful attempts38,39 to deter-
mine the correlation functions by means of a statistical
evaluation of massive dynamics simulations of discrete

straight edge dislocations. The statistical approach men-
tioned above has been applied to curved glide dislocations
and dipolar dislocation loops in Ref. 41. The resulting con-
tinuous constitutive equations are expressed through correla-
tion functionals. Their determination would require a careful
description of interactions in the close vicinity of a disloca-
tion or a loop. The method proposed and tested in this article
could provide the data on local arrangement in loop cluster-
ing caused by a moving dislocation.
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