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Abstrakt: Prace predstavuje matematicky model dvoufdzového nemisivého a nestlacitelného
proudéni v rigidnim heterogennim poréznim prostiedi. V ramci prace jsou shrnuta testovaci
feseni. Déle je odvozeno numerické schéma zalozené na metodé koneénych objemu (VCFVM),
které umoznuje zkoumat dynamicky efekt v kapilarnim tlaku. Numerické schéma je testovano
pomoci analytickych a semianalytickych feSeni a néasledné vyuzito pro simulaci laboratornich
experimentii s kapildrnim tlakem za dynamickych podminek. Vyznam dynamického efektu
v matematickych modelech je diskutovdn za pouziti laboratornich dat s dirazem na ma-
teridlova rozhrani. V druhé ¢éasti prace je prezentovano pokroc¢ilé numerické schéma zalozené na
smiSené-hybridni metodé koneénych prvku (MHFE) spoleéné s nespojitym Galerkinovym (DG)
pristupem. Toto numerické schéma je schopeno fesit vicefazové proudéni v poréznim prostiedi
s ostrymi materidlovymi rozhranimi. Kromé toho muze simulovat akumulaci nesmacivé faze
na materidlovém rozhrani. MHFE-DG metoda je testovana pomoci analytickych a semianaly-
tickych feseni. Déle je tato metoda pouzita na simulaci nékolika dvourozmérnych tloh popsanych
v literatuie. VSechny modely mohou byt pouzity pro realistické tekutiny a materialové vlastnosti
urcéené pomoci laboratornich experimentu.

Klicovd slova: Proudéni v poréznim prostredi, dvoufdzové proudéni, kapilarita, dynamicky
efekt v kapilarnim tlaku, analytickd feseni, Buckleyho-Leverettovo feseni, McWhorterovo-
Sunadovo feeni, metoda koneénych objemu, hybridni-smisend metoda koneénych prvka, ne-
spojita Galerkinova metoda, rozsitena kapilarni podminka na rozhrani, bariérovy efekt.
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scheme based on the vertex-centered finite volume method (VCFVM) is developed and used to
investigate the dynamic effect in capillarity. The VCFVM numerical scheme is tested using the
benchmark solutions and then used to simulate laboratory experiment with capillary pressure
under dynamic conditions. The importance of the dynamic effect in the mathematical models
is discussed using the laboratory-determined data emphasizing the significance of the capillarity
under dynamic conditions at material interfaces. In the second part of the thesis, an advanced
mixed-hybrid finite element (MHFE) method with the discontinuous Galerkin (DG) approach is
adopted. The numerical scheme is capable of solving multiphase flow problems in porous media
with sharp material interfaces. Additionally, it can simulate the non-wetting phase pooling at
material interfaces. In order to show its applicability, the MHFE-DG method is tested against
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State of Art

In the past decades, the interest in understanding and prediction of multiphase flow in the
subsurface has increased extensively due to the widespread increase of awareness of the most
alarming contemporary problems such as the water contamination by organic solvents. Ad-
ditionally, the importance of the traditional petroleum engineering problems increases as the
worldwide reserves of the easily-obtainable-petroleum are running low. Compared to the pre-
vious decades, the unflagging boom in the increasing computer power allows to develop more
complex, reliable, and accurate mathematical models capable of simulating such multiphase flow
problems in the subsurface.

A reliable model of capillarity is one of the key aspects in the modelling of multiphase flow of
immiscible and incompressible fluids in porous media. In most past modelling efforts, various
capillary pressure-saturation models by Brooks and Corey [10] or van Genuchten [18] were
developed based on laboratory experiments where the capillary pressure and saturation were
measured under equilibrium conditions. However, the question has been raised on whether these
static models capture the dynamic behavior accurately when the fluid phases are in motion.
Recently, alternative models based on both empirical and theoretical approaches have been
proposed to deal with these dynamic effects associated with fluid flow.

Another interest is focused upon the Non-Aqueous Phase Liquid (NAPL) behavior at sharp
texture transitions in the petroleum reservoirs or contaminated aquifers. Laboratory experi-
ments show that such material inhomogeneities can increase the retention of the contaminants
immensely. Therefore, it is desirable to develop mathematical and numerical models such that
the behavior of the NAPLs is simulated correctly. These models then serve as a key tool when
dealing with various multiphase flow problems in the industry, ecology, and cutting—edge tech-
nology.

Research Goals
The primary goal of the dissertation thesis is to investigate flow of two immiscible and incom-
pressible fluids (phases) in heterogeneous porous materials using mathematical models.
In details, the main goals of this thesis are
e to present a mathematical model of two-phase immiscible and incompressible flow in a non-
deformable heterogeneous porous material including the dynamic effect in the capillary
pressure,

e to present an overview of available benchmark solutions,

e to develop a numerical scheme that can be used to investigate the dynamic effect in
capillarity,

e to discuss the importance of such integration of the dynamic effect in the mathematical
model using the laboratory-determined data, and

e to develop a higher-order numerical method capable of solving the multiphase flow prob-
lems in a porous medium with sharp material interfaces.

The models should be applicable for realistic fluid and material properties determined by
means of laboratory experiments.



Methods Used

There are two distinct numerical schemes developed in this thesis. First, a numerical model
capable of simulating the dynamic effect in capillarity is based on the Vertex-Centered Finite
Volume Method (VCFVM) in one dimension. The time discretization is carried out using the
backward Euler scheme. The resulting non-linear system of equations is solved using the Newton-
Raphson iteration method, where the Jacobi matrix is block tri-diagonal. A special method is
developed to treat conditions at material interfaces and verified using benchmark solutions.

Another numerical scheme is designed to simulate the multiphase flow in heterogeneous porous
media that is based on the Implicit-Pressure-Explicit-Saturation (IMPES) approach, where the
Mixed-Hybrid Finite Element (MHFE) method is used together with the Discontinuous Galerkin
(DG) approximation. The resulting systems of linear equations are solved either by direct solvers
(for smaller systems) or iteratively using the Conjugate Gradient (CG) method.

Stability of the numerical schemes is achieved using the upwind technique and the slope limiter
procedure when using the higher-order MHFE-DG approach.

Research Results

In this thesis, we present the complete derivation of both numerical schemes. The numeri-
cal schemes are verified using benchmark solutions developed by Buckley and Leverett [11],
McWhorter and Sunada [30], van Duijn and de Neef [28], and by the author [15], [10].

The importance of the dynamic effect in capillarity is investigated using the VCFVM. The
validity of the numerical scheme is discussed by means of the semi-analytical solutions. The
numerical scheme is used to simulate a drainage experiment where the sand and fluid proper-
ties were known. Then, the numerical scheme is used to simulate a laboratory experiment in
a homogeneous column including three major models of the dynamic effect coefficient 7 and
the respective results are presented and discussed. The presented numerical scheme can handle
porous medium heterogeneity and it is used to simulate a fictitious experimental setup with two
different sands. As a result, the penetration time of air phase through layered porous medium
for models including dynamic effects varied between 50% to 150% compared to static models of
capillary pressure—saturation relationship. Additionally, the accumulation time of air at a mate-
rial interface (i.e., delay of the air at the interface due to capillary barrier effect) is investigated
as a function of the ratio between air-entry pressure values of the adjacent sands emphasizing
the differences between the dynamic and static capillary pressure models.

The MHFE-DG method is tested using the benchmark solutions available for two-phase flow
in homogeneous and heterogeneous porous media. Additionally, a comparison with the VCFVM
is quantified using L; and Lo error norms. It is found that the MHFE-DG approach involves
less numerical diffusion than the VCFVM when simulating an advection dominated flow. In
case of capillarity driven flow, both VCFVM and MHFE-DG methods give similar results for
the one-dimensional benchmark solutions. A series of simulations is computed for two-phase
flow problems in heterogeneous porous media showing that the MHFE-DG numerical scheme
simulates the behavior of fluids at material interfaces in agreement with laboratory determined
data. Additionally, the difference between the first-order finite volume (MHFE-FV) and the
second-order discontinuous Galerkin (MHFE-DG) approach is found to be less important in all
two-dimensional simulations with both gravity and capillarity included.
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INTRODUCTION

Motivations

Today, most of the industrially developed countries invest substantial amount of resources to
understand and protect drinking water in the subsurface. Due to industrial activities, the water
saturated zones of aquifers are endangered by substances with a very low solubility in water
such as oil or chlorinated hydrocarbons. When these substances, generally referred to as Non-
Aqueous Phase Liquids (NAPLs), enter the aquifer, they can serve as a long-time source of
groundwater contamination. A prediction of their behavior in the subsurface is an important
step towards their partial or complete removal from the contaminated area. Therefore, two-
phase processes have been studied intensively in engineering, soil physics, and hydrogeology
over several decades [5], [57].

Currently, there exists two principal approaches in the prediction of flow and transport in the
subsurface: laboratory experiments and mathematical modelling. Multiple mathematical models
have been developed based on the Darcy law [23] that describes a linear relationship between the
velocity of water and the pressure gradient in a column filled with a porous material. By means
of the laboratory experiments, the material and fluid properties are determined and further
investigated in order to verify the mathematical models. As a result, mathematical models
calibrated on these laboratory determined data serve as a reliable instrument in simulation of
flow in porous media in the real-life applications.

The propagation of NAPLs through water saturated zones is usually driven by two primary
mechanisms. The NAPL is displaced due to external forces (externally imposed flow, gravity)
and capillarity. Capillary forces, well observed in thin tubes called capillaries, originate from
the contact of a solid matrix and two immiscible phases within the porous material. Not only
in porous media, this phenomenon of capillarity plays an important role also in many other
fields, for instance, the capillary action is essential for the drainage of constantly produced
tear fluid from the eye. Especially in heterogeneous porous materials, the capillary forces have
an important impact on the flow across interfaces between materials with different capillarity
properties. These capillary forces are responsible for the complex entrapment morphologies of
NAPL shown in the figure on page 2.

In this thesis, we address several topics concerning flow of two immiscible and incompressible
fluids (phases) in homogeneous and heterogeneous porous materials.

A reliable model of capillarity is the key aspect in the modelling of two-phase flow of immisci-
ble and incompressible fluids in porous media. Various capillary pressure-saturation models by
Brooks and Corey [10] or van Genuchten [18] were developed based on laboratory experiments
where the capillary pressure and saturation were measured under equilibrium conditions. How-
ever, both empirical and theoretical studies indicate that these static capillary pressure models
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The behavior of NAPL in heterogeneous porous materials. Pictures show a light non-aqueous phase
liquid (red spill) in a water saturated layered medium with an inclined interface (left) and highly

heterogeneous medium with random distribution of heterogeneities (right), respectively (provided
by CESEP, Colorado School of Mines).

may not be suitable to model behavior of fluids when the system is in motion. Thus, a mo-
dified capillary pressure-saturation relationship has been proposed that includes an additional
term which is referred to as the dynamic effect term. In order to understand implications of
the dynamic effect in capillarity, several laboratory experiments and mathematical simulations
have been carried out by various researchers. However, many questions still remain unanswered
such as the influence of the dynamic effect coefficient on a flow in heterogeneous porous mate-
rials. Additionally, a suitable functional model for the dynamic effect term with respect to the
saturation is still unknown.

A lot of mathematical models have been developed that describe the displacement and trans-
port processes in the subsurface. Currently, there exists a series of commercial software packages
like Fluent or MODFLOW that are used to model NAPL contamination problems and are quite
often employed in environmental projects of cleanup of old ecological contaminations. Most of
them are based on the basic finite difference (FD) or finite volume (FV) methods that have
only a first—order of accuracy. This implies that their results are usually distorted by numerical
diffusion. These deficiencies can be resolved using a higher—order numerical scheme based on
the mixed-hybrid finite element (MHFE) method that allows for accurate representation of the
velocities across sides of a finite element. Additionally, such approach can be further improved
by using the discontinuous Galerkin (DG) method that approximates saturation as piecewise
discontinuous per elements since the saturation is usually discontinuous across material inter-
faces. In a series of papers [63], [64], [65], such a combined MHFE-DG approach was investigated
and a numerical scheme suitable for simulating flow in heterogeneous porous media has been
proposed. However, some aspects of this MHFE-DG method have not been fully resolved such
as thorough investigation of the convergence of the numerical scheme or a simulation of NAPL
pooling at material interfaces referred to as the capillary barrier effect.

The text is organized in four chapters in the following way.

In Chapter 1, we present fundamental description of the mathematical model of multiphase
flow in porous media. We emphasize the differences between the definitions of the capillary
pressure p. at the micro—scale and macro—scale. In particular, we focus on the dynamic effect
in the capillary pressure—saturation relationship developed in [19], [50], [54], and [56]. We
conclude Chapter 1 by a summary of the mathematical model represented by a system of partial
differential equations supplied with the initial and boundary conditions.

In Chapter 2, we present a brief overview of the analytical and semi-analytical solutions
together referred to as the benchmark solutions. First, we describe the Buckley and Leverett
analytical solution applicable to pure hyperbolic problems. Then, a family of semi-analytical
solutions are described that can be obtained for pure diffusion and advection—diffusion problems
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in both homogeneous and layered porous materials. We extended applicability of these semi-
analytical solutions to a larger set of input conditions and even to a larger family of admissible
problems than in the original paper [30].

In Chapter 3, the significance of the dynamic effect in the capillary pressure-saturation re-
lationship is investigated. We propose a fully implicit numerical scheme based on the Vertex—
Centered Finite Volume Method (VCFVM) capable of solving systems of multiphase flow equa-
tions with the dynamic effect in capillarity. We use the benchmark solutions summarized in
Chapter 2 to verify that the numerical scheme converges for the static (classical) model of
the capillary pressure p.. These numerical solutions obtained using the static p. are used as
a reference solution when investigating the significance of the dynamic effect in the capillary
pressure.

In Chapter 4, we consider a higher-order numerical scheme that is suitable for simulation
of the two-phase flow including the capillary barrier effect with static capillary pressure only.
A numerical method is derived that combines the Mixed-Hybrid Finite Element (MHFE) and
the Discontinuous Galerkin (DG) methods. The numerical scheme is based on [4], [33], [65], [63],
and during its derivation, several important modifications are proposed to assure the existence
and uniqueness of the numerical solution. Our main goal is to extend the MHFE-DG method for
heterogeneous porous media to simulate pooling effects at material interfaces (the barrier effect).
The benchmark solutions from Chapter 2 are used to investigate convergence of the MHFE-
DG method. To demonstrate its applicability, several laboratory experiments in heterogeneous
porous media are simulated.

In Appendix A, we describe basis functions of the piecewise linear discontinuous Galerkin
space in R! and R?. In Appendix B, the description of all sand and fluid parameters, to which
we refer in the text, is presented for convenience.
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CHAPTER 1

LMODELLING IMMISCIBLE FLUID FLOW IN POROUS MEDIUM

flow of immiscible and incompressible fluids in a porous medium. First, we describe the
fundamental terminology and give definitions of the respective physical quantities. Then,
we provide governing equations for single and two-phase flow.

In this chapter, we present an introduction to the mathematical modelling of the multiphase

1.1. Porous Medium

A porous medium is a body composed of a persistent solid matriz (also called solid phase)
and a wvoid space (or a pore space), [5]. Figure 1.1 shows an example of a two-dimensional
cross-section of a porous medium filled with two liquid phases: water and oil.

In its most general sense, almost every material around us can be considered as porous if
it contains void space within. However, this definition is not useful for the development of
a relevant mathematical model. When in contact with water, for instance, a slice of the famous
Emmental cheese has a significantly different behavior than a bath sponge, although they fit the
commonly used definition. Once wetted, the sponge will absorb substantial amount of water by
its microscopic interconnected pore network due to capillarity. In contrast, the capillary forces
will be negligible in the case of large, single cheese holes.

The size and morphology is the key in understanding processes in a porous medium. Hence, the
following assumptions are placed upon the geometry and dimensions of the porous medium, [2]:

A. The pore space is interconnected since no flow can take place in a disconnected
void space.

B. The dimensions of the void space must be sufficiently large compared to the
dimensions of the fluid molecules.

C. The dimensions of the pore space must be small enough so that the fluid flow is
governed by adhesive forces at fluid-solid interfaces and cohesive forces at fluid—
fluid interfaces in multiphase systems. This excludes cases like a network of pipes
from the definition of porous medium.

1.2. Phase

A phase is considered as a chemically homogeneous portion of a system that is separated from
other such portions by a definite physical boundary.
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- solid matrix
- water
- oil

Figure 1.1.: Tllustration of a porous medium filled with water and oil (two-phase system).

The necessity of a definite physical boundary between two or more phases implies that no
more than one gaseous phase can be present in a multiphase system since gases are always
completely miscible. A phase can be formed from one or more fluids and it is characterized by
its dynamic viscosity u [Pa s] and volumetric mass density o [kg m™3].

Flow of water and other phases such as oil, chlorinated hydrocarbons, CO2, or air in porous
media is studied in the majority of cases. Generally, we use the abbreviation NAPL which
stands for the Non-Aqueous Phase Liquid, i.e., liquids immiscible with water. These liquids can
be further divided into dense NAPLs (DNAPLs) and light NAPLs (LNAPLs) with higher and
lower density than water, respectively.

1.3. Continuum Approach to Porous Medium

Consideration of different dimension scales is important in the modelling of flow in porous media.
Figure 1.2 depicts different magnifications of a porous medium from the macroscale (a) through
the microscale (b) to the molecular nanoscale (c).

Field scale ~ 10 m Pore scale ~ 1073 m  Molecular scale ~ 1072 m

<

oil source

- solid matrix

- oil

Figure 1.2.: Different scales in a porous medium illustrates a typical contamination problem.

Equations of fluid dynamics in porous media need to be provided with a set of boundary and
initial conditions. However, as shown in Figure 1.2, the boundary conditions for a macroscopic
problem can neither be prescribed at microscale nor at molecular scale due to practically random
geometry of the porous medium. In order to develop a mathematical model, a concept of porous
medium as a continuum at macroscopic scale is needed.

At each point of the macroscale continuum, an average of the microscopic quantities over
a representative elementary volume (REV) is assigned. Bear and Verruijt [5] define the REV
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as a volume that is sufficiently large to statistically estimate all relevant parameters of the void
space configuration and small enough to be considered as a negligible portion of the total volume
from the macroscopic scale. If such a REV cannot be found then the presented macroscopic
theory of flow in porous media cannot be applied.

This process leads to macroscopic equations that are independent of the exact description
of the microscopic configuration, because only statistical properties of the porous medium and
the fluid phases are taken into account. Furthermore, at the macroscale microscopic (or even
nanoscopic) physical quantities are represented only as averages over a chosen volume which
may lead to the lack of information such as interfacial contact surface between the fluid—fluid
and fluid-solid systems.

1.4. Porosity

Porosity ¢ is a macroscopic quantity that describes the ratio of void space within a volume of
a porous material to that volume. Mathematically, the porosity is defined as

1

olo0) = V/ y(x)dx, (L1)

where the volume V' = B(xzg,r) is a ball of a radius r centered around zp and ~ is the indicator
function of the void space of the porous medium in a volume V' given by

y(x) = { 1 for x in the void space, vx €V (1.2)

0 for x in the solid matrix,

In (1.2) the macroscale porosity is obtained by averaging the microscopic void space indicator
function over V', where V has to be chosen such that the value of the averaged quantity does
not depend on the exact size of the averaging volume. A rough plot of porosity values in
function of the averaging volume size r is sketched in Figure 1.3. In an infinitesimally small
volume, the porosity is strictly 0 or 1 based on a given position inside a solid grain or void
space, respectively. As the averaging volume increases in size, the porosity becomes more or less
constant up to a limit, where macroscopic inhomogeneities occur (fractures, different grain sizes,
etc.). The averaging volume V' is considered as the representative elementary volume REV, if
there exist radii 7micro and Tmaero Such that the value of the averaged quantity does not depend
on the radius r within the range

Tmicro K T <K Tmacro- (13)

Another way to obtain macroscopic quantities out of the microscale variables is the homoge-
nization technique which is based on the mathematical theory on asymptotic functional expan-
sion, [61]. Some of its principles have been discussed in [10].

1.5. Single Phase Flow

We first summarize equations describing flow of a single phase only. In the following, we apply
the mass-conservation law to the fluid in porous medium and present the famous Darcy law.

1.5.1. Mass Balance

Let us consider a porous domain 2 filled with a single fluid phase. Macroscopic fluid mass
conservation law, or the continuity theorem, is expressed by the following partial differential
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Figure 1.3.: Porosity as a function of the REV mean radius r.

equation

a(a(ig)—l-V(Q u) = oF, in Q, (1.4)

where the quantities have the following meaning;:

»(x) [—] Porosity of the porous medium defined in (1.1).

u(t,x) [ms Macroscopic apparent wvelocity. This velocity is observed at the

macroscale. On the microscopic level, the flow takes only place

through the pore channels of the porous medium where the average

velocity u/¢ is observed, see [2].

o(t,x) [kg m™3] Volumetric mass density of the fluid that can depend on position
or pressure for a compressible fluid.

F(t,x) [s7Y Specific source/sink term.

1.5.2. Darcy Law

By using the local averaging techniques [111], [94] or the homogenization procedure [(1], the
momentum conservation of the Navier-Stokes equation at the microscale can be reduced to
a macroscopic principle

1
u= —;K(Vp—gg), (1.5)
where the quantities have the following meaning;:

u(t,x) [m s7!] Macroscopic apparent velocity already introduced in (1.4).

K(x [m~2] Symmetric tensor of absolute permeability, that can depend on po-
sition in the case of heterogeneous medium. In homogeneous and
isotropic porous medium, K = K I, where I is the identity tensor
and K is the scalar absolute permeability, also called intrinsic soil

permeability.
pu(t,x) [Pas]  Dynamic viscosity of the fluid.
p(t,x) [Pal] Fluid pressure.
g [m s72] Gravitational acceleration vector.

This principle was first described by Henry Darcy, a French engineer who investigated the flow
of water in vertical homogeneous sand filters in connection with the fountains of the city of
Dijon. In 1856, he published his observations and the law (1.5) in [23]. It is valid only for slow
flows of Newtonian fluids through porous media with rigid solid matrices.
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The validity range of Darcy law can be expressed by the Reynolds number Re given by

8
Re = ;HuH (1.6)

It is a dimensionless quantity that characterizes the ratio of the fluid velocity ||u| with respect

to the fluid kinematic viscosity v [m? s71] and the representative microscopic length & [m)]
describing the mean diameter of grain size in the solid matrix. The Darcy law (1.5) is valid for
values of Re from 1 (fine sand) to 10 (coarse sand), which represents most of the practical porous
media problems. More complex nonlinear Darcy law has to be employed for greater values of
Re, e.g., for modelling of flow in a very close vicinity of large pumping or recharging wells, or
in very porous matters like cavernous limestone or larger stones [5]. In this thesis, we assume
that (1.5) holds in all considered cases.

1.6. Multiphase Flow

In this section, we study basics of the two-phase flow in a porous medium, but the respec-
tive quantities can be generalized for a multi-phase flow formulation as well. We resume the
definitions and explanations presented in [2], [5], and [57].

1.6.1. Saturation

Let us consider a REV of a porous medium occupied by several phases. At a microscale, every
point of the REV is occupied either by the solid phase or by exactly one of the fluid phases. Let
~a denotes the indicator function of the fluid phase a defined by a formula similar to (1.2) as

1 if x belongs to phase « at time ¢

0 otherwise vx el (1.7)

Tt = {

This a-phase indicator function allows us to define a dimensionless macroscopic quantity called

saturation S, [—] of the phase o by the relation
f Ya(t, x)dx
REV
Sa(t,x0) = : 1.8
(tx0) [t x)dx (18)
REV

where xg € REV.
The a-phase saturation S, expresses the volumetric ratio of the phase « to the total void

space at a given position x and time ¢. Therefore, the saturation is always bounded between
0 and 1,

0< S, <1, (1.9)

and the sum of the a-phase saturations over all phases in the system is 1

> Sa=1 (1.10)

By Greek subscripts a or 3, we denote quantities that correspond to the phase a or g,
respectively.
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1.6.2. Residual Saturation

It is well known that water cannot be displaced entirely from a porous medium. Thus, a residual
saturation Sy, is introduced which expresses the minimal water saturation that will retain in the
porous medium due to adhesion effects with respect to the solid matrix. Additionally, a residual
saturation S, , can be also defined for the non-aqueous phase which expresses the irreducible
portion of such phase that cannot be mechanically displaced. The remnant non-aqueous phase
can be further reduced by diminishing the surface tension of the phase by the chemical substances
called surfactants or by increasing the temperature, [2].

1.6.3. Effective Saturation

The effective saturation Se o [—| defined as
Sa - Sr,a

Se,a = 1— Z Sr,ﬁ
B

(1.11)

describes only the volumetric portions of the fluid phase that can be displaced mechanically.

1.6.4. Governing Equations

The main idea behind equations describing the multi-phase flow is based on the assumption that
every fluid phase « in the porous medium is governed by its continuity theorem (1.4) and Darcy
law (1.5), whereas the momentum transfer between the phases is negligible. The a-phase mass
balance takes the following form

9($0aSa)

——— + V(00 Ua) = 00 F0, 1.12
20200 V(00 1a) = 0 (112)

and the Darcy law for the phase « reads as

1
Uy = _7Ka<v]7a — Qo g)- (1'13)

67

The continuity theorem (1.12) includes the saturation as a consequence of the reduction of
the void space volume ¢V in (1.4) into a volume ¢S,V occupied by the phase a. In (1.13) the
a-phase permeability tensor K, is a function of S, and can be decomposed into

Ko = kra(Sa) K, (1.14)

where the function k, . is the relative permeability of the phase o which describes the decrease
of the permeability due to the presence of other phases. Its definition and models are further
discussed later in Section 1.8. The term k. o/ptq is frequently denoted as the a-phase mobility
Aas

k
Ao = —=, (1.15)
Mo
which allows to rewrite the Darcy law as
Uy = —AK(Vpa — 04 8). (1.16)

1.7. Capillarity

From now on, we will consider only a flow of two phases in porous media. In order to close the
system of equations for the two-phase flow given in the previous sections, i.e., (1.12), (1.16),
and (1.10), we add one more equation to the system that models the macroscopic effects of the
capillary forces and describes the difference between the phase pressures.

10
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1.7.1. Microscale Capillarity

On a pore scale, a single phase flow is governed by pressure forces arising from the pressure
gradient within the void space and the exterior gravitational force. The sharp interfaces between
fluid phases in multiphase flows on the microscale give rise to the capillary force. This force
is evoked by surface tension o [J m~2] of both phases at their interface and called interfacial
tension. The interfacial tension is caused by both molecular coherence within each of the phases
and the adhesion effects between the phases and the solid matrix.

wetting phase

\ w_

non-wetting phase

I vacer

- solid matrix - oil

Figure 1.4.: Interface between two phases in detail. The contact angle w characterizes the meniscus
at the fluid-fluid-solid interface (right figure) and defines the wetting phase (water) and non-
wetting phase (air, oil, ...).

Figure 1.4 shows the interface in a pore channel between two solid grains. At the fluid-fluid
interface, the equilibrium of forces leads to a curved form of the interface due to capillarity. Let
us consider two immiscible phases (e.g. water and air). The interaction of the three different
phases, where the third phase is the solid matrix, results in a contact angle w depicted in
Figure 1.4. The influence of these forces decreases with the distance from the interface.

When the phases are in mechanical equilibrium, the Young’s equation gives the following
expression for the surface tensions at the phase interface :

0§_1 = 05_2 + 01_2COSW, (1.17)

where o0g_1, 0g_9 and o1_9 are the respective surface tension forces at solid phase—fluid 1
interface, solid phase—fluid 2 interface and fluid 1-fluid 2 interface as shown in Figure 1.5. From
(1.17), the contact angle w can be explicitly given as

05-2 —US—1> (1.18)

W = arccos (
01-2

The contact angle « allows us to distinguish between the wetting and the non-wetting phases.
The fluid phase with an acute contact angle is referred to as the wetting phase with respect
to the solid matrix and the other fluid (fluid 1 in Figure 1.5), while the fluid phase with an
obtuse contact angle is the non-wetting phase (fluid 2 in Figure 1.5). This notation allows us to
develop more general two-phase flow models with a wetting and a non-wetting phase regardless
of the factual nature of the fluid phases, [2]. In the latter, the subscripts w and n are used for
quantities related to the wetting and non-wetting phase, respectively.

The microscopic capillary pressure m. [Pal is defined as the difference between the non-wetting
phase pressure and the wetting phase pressure at the phase interface,

Te = Ty, — T (1.19)

11
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fluid 2
(air, oil, ...)

A

og_ . .
52 solid matrix

Figure 1.5.: Interface tension and wetting angle at equilibrium.

The curved interface between both phases is preserved by a discontinuity in microscopic pressure
of each phase. The capillary pressure is thus the height of the jump and it is always a non-
negative quantity,

e > 0, (1.20)

because the pressure p, in the non-wetting phase is larger than the pressure p,, in the wetting
phase at the interface as a consequence of the definition of wettability.

1.7.2. Macroscale Capillarity: Static Case

In order to be able to describe the differences between the macroscale phase pressures p,, and
P, given in (1.16), we need to upscale capillary pressure (1.19). The natural way is to introduce
the macroscopic capillary pressure p. by the same definition as (1.19)

Pc = Pn — Pw> (1.21)

where p,, and p, are the macroscopic phase pressures that can be either averaged from the
microscale pressures 7, see [2] or [57], or defined by thermodynamic constitutive relationships
as in [56]. The macroscopic capillary pressure is a function of state variables such as the phase
saturations, temperature, and interfacial areas between fluids or a fluid and the solid matrix, [50].

By pc?, we denote the capillary pressure-saturation relationship determined under the static
conditions, i.e., in the state of thermodynamic equilibrium. Such static capillary pressure—
saturation relationship is obtained by measuring the phase pressures difference during slow
drainage or imbibition laboratory experiments. Traditionally, they are used in the modelling of
a multi-phase flow independently of the flow conditions as long as the hysteretic effects can be
neglected.

In this thesis, we assume that the static capillary pressure function pc? has the following
mathematical properties, [60]:

L pe? = pe? (Sw),
2. pc! is continuously differentiable in (0, 1),

3. pel is strictly decreasing with respect to Sy,
4. pd = pg>0as Sy —1— S,

where pg [Pal is the entry pressure. The entry pressure py is the capillary pressure at full
saturation and is considered as the minimal capillary pressure required to displace the wetting

12
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phase at its maximal saturation from the largest occurring pore. Among others, the following
two static capillary pressure—saturation models satisfying these conditions are commonly used.

Brooks and Corey [10] developed a mathematical model for pe? <+ S, in the form
peq A
Sew(Pe!) = <> for pg? > pa, (1.22)
Pa
where the parameter A [—| describes pore distribution of the grains in a porous material. Small
values of A belong to single grain size material, while large values indicate a highly non-uniform
material, [77]. This parametrization of the pe? <> Sy, relation simulates the DNAPL pooling (or

physical barrier effect) described later in Section 1.9. From (1.22), the static capillary pressure
ped can be expressed as

_1
Pel(Sw) = paSes  for Seq € (0,1]. (1.23)
Another model, developed by van Genuchten [18], treats the capillary pressure-saturation
relationship as
Sew(Pe?) = [1+ (apc®)"™  for pf? > 0. (1.24)

Usually, the parameters m and n are coupled as

m=1——, 1.25
. (1.25)
and they characterize the pore structure of the porous medium. The last parameter « is given
in [Pa~!]. It follows from (1.24) that the expression for pe?(S,,) reads as

_1 n
Pl (Sy) = é (Seﬂj}“ — 1) for Se. € (0,1]. (1.26)

Unlike the Brooks-Corey capillary pressure (1.23), the van Genuchten model (1.26) is unable to
model the barrier effect, because p. = 0 at full water saturation.

1.7.3. Macroscale Capillarity: Dynamic Case

In 1978, Stauffer [110] published an experimentally supported theory that the relationship

piq = Pn — Pw (1.27)

holds only if the system is in equilibrium. Therefore, it is of great concern whether the classical
models such as Brooks and Corey (1.23) or van Genuchten (1.26) can be used in (1.21) when
the system is not in equilibrium. The following modification to the phase pressure difference
equation is proposed by Stauffer

0Sy

o (1.28)

Pn —Pw = piq -7
where 7 [kg m™1 s7!] is the dynamic capillary pressure coefficient. Equation (1.28) is referred
to as the dynamic effect in the capillary pressure—saturation relationship, or, for the sake of
brevity, the dynamic capillary pressure, [78].

Decades later, a thermodynamic basis of the capillary pressure was derived by Hassanizadeh
and Gray in a series of papers [19], [50], [51], [53], [55], and [56]. They show that the macroscopic
capillary pressure p. is solely an intrinsic property of the system and that (1.28) is a result of
the Coleman and Noll method of exploitation of the Second Law of Thermodynamics, [56], [79].

13
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Consequently, we use the ansatz (1.28) as the constitutive relationship for the macroscopic
capillary pressure defined by (1.21)

oS

pe=p' =T (1.29)

Stauffer [110] proposed the following model for the dynamic effect coefficient (denoted here
by 7s)

aspw® ( Pd ?

Tg = — 1.30

KA (pwg> (130)

where ag = 0.1 [—] denotes a scaling parameter and g [m s~2] is the gravitational acceleration.

Both A and py are the Brooks and Corey parameters from (1.23).

The Stauffer model for the dynamic effect coefficient 7¢ was obtained by correlating experimen-
tal data. The values of 7g vary between 7¢ = 2.7-10* Pa-s and 7¢ = 7.7 - 10* Pa-s [77, page 27].
In case of the sands used in this work (cf. Table B.2), (1.30) gives higher values of 7¢ than for
the sands used by Stauffer. Other researchers suggest that the magnitude of 7 should be smaller,
i.e., in the order of 102 — 10® Pa-s according to [22], or, on the other hand, it should be higher,

i.e., in the order of 10* — 108 Pa-s as estimated by [74]. Furthermore, the dynamic coefficient
may depend on averaging scales as well as saturation, see [91], [95]. As the influence of the
averaging scales was not found to be important in [106], we do not consider this dependence
here.

1.7.4. Capillary Hysteresis

The relationship between capillary pressure and saturation depends on a type of the displacement
process (i.e., imbibition or drainage) as it is subject to capillary hysteresis. In general, the
capillary pressure depends on the complete history of drainage and imbibition cycles whereas
it is always bounded by the primary drainage and primary wetting curves, [20], [57], [35], [30].
These curves are shown in Figure 1.6. The red curves are valid for the primary drainage of
a fully water saturated medium and the blue curves correspond to the case, where the porous
medium is subsequently imbibed (wetted) to the maximal water saturation.

The capillary hysteresis can be significantly observed in the ink bottle effect when a capillary
tube of axial symmetry having periodical variations in radius has its lower end immersed in
water (air-water system), the water will rise through the tube until the hydrostatic pressure in
the tube equilibrates to the capillary pressure. Then, if the tube is raised in the water, some
water will drain out and a new equilibrium level will establish. When the interface meniscus is
advancing and approaches the narrow part of the tube, it jumps through the neck (imbibition).
When receding, it halts without passing through the neck. This phenomenon explains why
a given capillary pressure corresponds to a higher saturation on the drainage curve than on the
imbibition curve in Figure 1.6.

In most fluid-flow problems of practical interest, the capillary hysteresis can be neglected
because the flow regime usually dictates that one or the other capillary pressure-saturation
curve will apply. A general theoretical description of the capillary hysteresis model was proposed
in a series of papers [72], [73], [96]. In [99] Philip derived similarity solutions for a horizontal
redistribution problem which was later addressed in [100] that included fluid-fluid and fluid-
solid interfacial areas in the model of capillary hysteresis. According to [0], [7], and [52], it
is possible to develop a mathematical model that can treat both the capillary hysteresis and
the dynamic effect in the capillarity more accurately than (1.29). However, such mathematical
model requires additional experimental data and is subject to further investigation. Therefore,
we do not consider capillary hysteresis in this thesis.

14
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(b) van Genuchten

(a) Brooks and Corey
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Figure 1.6.: Typical capillary pressure curves p.(S,) after (a) Brooks-Corey and after (b) van
Genuchten for both drainage and imbibition (wetting) cycles.

1.8. Relative Permeability

The relative permeability k,, defined by (1.14) models the fact that the flow paths of a fluid
are hindered by the presence of other phases. It can be considered as a scaling factor that obeys

the constraint

0<kra <1. (1.31)
(a) Brooks and Corey (b) van Genuchten
1 — T T T T T T 1 T T T T
/ ]

T NT | /]
L 08F FERTIs /'
= 7 = /ﬁl 7777777 knw
= r V4 2 r 7" k
= /" = TN
E 06 i E 06 4
g L i 1 g L 7
s J s .
g 04t " 4 € o04r . .
" §a I .7 / - drainage
s 12t /' .
3 ‘s 3 7,7 - wetting
Z 02 s 4 Zo02f .
o 2 3 .
o=t 2 | = L =

0 == 0 == I

0 02 04 06 08 1 0 02 04 06 08 1

Effective saturation S¢ [—]

Figure 1.7.: Relative permeability funct

For the two-phase flow in porous media,
functions k., and k., can be deduced

(see [57]):

Effective saturation S¢, [—]

ions based on imbibition and drainage capillary curves.

the mathematical models for the relative permeability
from the models of the capillarity by the relations

Se,w C
[ pe*(v)] Pdo
Korw(Sw) = S;jw 01 ; (1.32a)
g[pﬁq(v)]‘de
Se.w c
[ [pe*(v)]Pdo
krn(Sw) = (1 Se,w)A 0 , (1.32b)
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where only the static capillary pressure function pe? is used. Simulations by pore-network models
[68], [92], have shown that the dynamics of the system affects negligibly the relative permeability
functions. Therefore, we assume that the relative permeabilities depend on saturations only. The
following two classical models are presented in [57].

The Burdine mathematical model for the relative permeability functions [12], [13] can be
obtained by substituting the Brooks and Corey static capillary pressure function p.! defined by
(1.23) into (1.32) with A= B =2 and C =1,

2
kr,w(sw) = Sgi_ui, (133&)

1+%)

khn(sw) = (1 - Se,w)2(1 - Se,w (133b)

It is common to refer to (1.33) in conjunction with (1.23) as the Brooks and Corey model.

The Mualem mathematical model for relative permeability functions [27] can obtained by
substituting the van Genuchten capillary pressure model (1.26) into (1.32) with A = %, B=1,
and C' = 2,

2
1 1
krw(Sw) = Séw (1 -(1- eTw)m) : (1.34a)
1
Frn(Sw) = (1 — Sew)3 (1 — Si)?™. (1.34b)

Equations (1.34) and (1.26) are usually referred to as the van Genuchten model.

1.9. Fluid Behavior at Material Interfaces

In this section, we describe the behavior of two fluids at a sharp material interface between
materials with different capillary pressure—saturation curves. We extend the approach of [90] to
the case of the dynamic capillary pressure—saturation relationship. A similar approach can be
found in [60] where the authors present a variational formulation of the interfacial conditions.
Let us consider an initially fully water saturated column with two sands separated by a sharp
interface. The situation at the interface is illustrated in Figure 1.8. Since no mass is lost or
produced at the material interface, the mass conservation law states that the normal component
of the mass flux
0o Uq - 1 is continuous across the interface, (1.35)

where n denotes a unit normal to the interface as illustrated in Figure 1.8.

Domain )

Subdomain Q4/:

I 1 I 11 II
kr,w kr,n Pe K P

R KL

material
interface

Figure 1.8.: The sharp interface between two different porous media.
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1.9.

Fluid Behavior at Material Interfaces

(a) Brooks and Corey

(b) van Genuchten
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Effective saturation S¢, [—] Effective saturation S¢ [—]
Pt pe!

Figure 1.9.: The typical Brooks and Corey (a) and van Genuchten (b) capillary pressure curves
for two different sands and the saturations at a material interface.

As in [90], we assume that a mobile wetting phase is present on both sides of the interface
which implies the following continuity condition for p,:

pw is continuous across the interface, (1.36)

If a non-wetting phase is present on both sides of the interface, p,, is also assumed to be conti-
nuous which implies the continuity of the capillary pressure p. in that case. On the other hand,
if the non-wetting phase is not present but approaches the material interface, the following si-
tuation can occur. As the non-wetting phase reaches the material interface from the coarse sand
(denoted by the superscript I), the interfacial capillary pressure p! increases. When p! is lower
than the entry pressure pél of the finer medium, the non-wetting phase cannot penetrate the
interface and accumulates (pools) at the interface. This is referred to as the barrier effect. Once
the capillary pressure p. exceeds the entry pressure threshold pél , the non-wetting phase enters
the finer sand. In Figure 1.9, typical van Genuchten (a) and Brooks and Corey (b) capillary
pressure curves (1.26) and (1.23) for two different porous media are shown. Note that the bar-
rier effect is simulated by the Brooks and Corey model only since the van Genuchten capillary
pressure—saturation relationship gives p. = 0 at full water saturation.
Altogether, the condition at the material interface is established in the following form:

Syt =0 and pl=pi, if pr<pg,

1.
pg = pgl , otherwise. (1.37)

Eq. (1.37) is referred to as the extended capillary pressure condition [30], [90]. In the case of
static capillary pressure, a unique value of the wetting phase saturation Sij* can be associated
with the threshold value of the capillary pressure for the static model such that

S = (D)~ (), (1.38)
see Figure 1.9.
We assume that the condition (1.37) holds also for the dynamic capillary pressure in the form

SI=0 and plf=pll,

70SL  eq,II 11 0SLI
Tt TP TT oo

if p£ < p{il,

otherwise.

eq,! (1.39)

Dc
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1. Modelling Immiscible Fluid Flow in Porous Medium

In contrast to the static capillary pressure model, the threshold saturation cannot be uniquely
associated with the entry pressure of the finer sand as in (1.38) because the value of the dynamic
capillary pressure depends on the dynamics of the system through the time derivative of the
saturation. Consequently, the required entry pressure threshold pg can be reached for higher
values of S! than in the static case.

1.10. Problem Formulations

We consider flow of two immiscible and incompressible fluids in a polygonal domain © in R¢
(with d = 1 or 2). We assume that the phase densities g, are constant and the porosity is
constant in time, i.e., the solid matrix of the porous medium is rigid.

1.10.1. Pressure—Saturation Formulation

In this subsection, we devise a formulation of two-phase immiscible and incompressible flow on
the macroscale. We rewrite all the relevant equations presented in the previous sections (1.10),
(1.12), (1.13), and (1.28) as:

S,
¢ atw +v'uw :Fwy (140&)
a8S,
uy = — MK (Vpyw — pug), (1.40c)
u, = -\ K (Vpn — png) (1.404)
as,
pc:piq—T 8tw = Pn — Pw, (1.406)
Su + Sp = 1, (1.40f)
where the unknown functions are the saturations S, = S,(t,x) and the phase pressures
Pa = Pal(t,x) for all ¢ > 0 and x inside Q, a € {w,n}.
The governing equations (1.40) are subject to an initial condition
Se=8" " in Q, «c{wn}, (1.41)
and boundary conditions
u, -n=uY on Ty, CoQ, (1.42a)
Sp =8P on Tg, C0Q, (1.42b)
Pa=ps on Ty, COQ, (1.42¢)

where n denotes the outward unit normal to the boundary 9 with respect to 2 and a € {n, w}.
The superscripts A/ and D stand for the Neumann and Dirichlet type boundary condition,
respectively. Initial condition (1.41) and boundary conditions (1.42) should be consistent with
(1.40¢) and (1.40f).

In the case of flow of a gas phase in an unsaturated porous medium, the mathematical for-
mulation (1.40) can be reduced into a single equation under the assumption that the changes
in pressure of the gaseous phase are negligible throughout the domain 2. Assuming p, to be at
a constant (atmospheric) pressure, the gradient of the wetting-phase pressure p,, can be directly
expressed as

Vpw = Vo, —Vp. = —Vpe. (1.43)
~—

0
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1.10. Problem Formulations

Combining the Darcy law (1.40c) and the continuity theorem (1.40a) for the wetting-phase, we
obtain

Sy
¢W — V- (MK (=Vpe — pug)) = Fu, (1.44)

where p, is given by (1.40¢). Equation (1.44) is a single equation for the wetting-phase saturation
Sy and is referred to as the Richards equation [102].

1.10.2. Flow Potential-Saturation Formulation

Since we assume that both fluids are incompressible, we can simplify the notation of the gover-
ning equations (1.40) by introducing the flow potential 1, as

Vo = Pa — Oa &'X, (1.45)

where x is the position vector and « € {w, n}. Similarly to the definition of the capillary pressure
(1.21), we define the capillary potential as

wc = zzz)’fl - ¢w- (146)

Using (1.45) and the expressions for the macroscale capillary pressure p. (1.21) and (1.29), we
obtain

Ve =Dn — Pw — (pn - pw)g~x (1.47&)
= Pc — (pn - Pw)g'X (1.47b)
0SSy
=pd =T~ (pn— pu)gx (1.47¢)
oS
=Yl — T 1.47d
wc T at ) ( )
where 1¢? stands for the static capillary potential,
Yol = pe? — (on — 0w)g X (1.48)
Consequently, the system of equations (1.40) can be rewritten in the following form
0Sy
¢—— +Vuy, = Fy, (1.49a)
ot
oSy

uy, = — A, KV,
u, = -\, KV,

08,
Ye = P — Ta—tw = 1y, — Yy, (1.49¢
Sw+ S, =1, (1.49f
where the unknown functions are the saturations S, = S,(t,x) and the phase potentials

Yo = Pa(t,x) for all t > 0 and x inside €2, o € {w,n}.
The governing equations (1.49) are subject to an initial condition

So=S8" in Q, (1.50)
and boundary conditions
u,-n=uY on Ty, CoQ, (1.51a)
Sy =58P on Ig, CON, (1.51b)
Yo =YY on Ty, COQ, (1.51c)
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1. Modelling Immiscible Fluid Flow in Porous Medium

for & € {w,n}. Initial condition (1.50) and boundary conditions (1.51) should be consistent
with (1.49¢) and (1.49f).
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CHAPTER 2

‘ BENCHMARK SOLUTIONS

(i.e., the benchmark solutions) that can be obtained if several assumptions are placed upon

the problem formulation (1.40). These benchmark solutions can be derived for a one-
dimensional two-phase flow problem without sources or sinks (£, = F, = 0) and with zero
gravity (g = 0). As we show in Section 2.1, the set of equations (1.40) can be reduced into
a single evolution equation for the wetting phase saturation S, = Sy (¢, z) in the form

In this chapter, we review the currently available analytical and semi-analytical solutions

0Sw 0 fw 0 0Sw 0 [ Awin 0 0Sy
— = —up—= — |D—— — |——K— (71— )|. 2.1
ot Tor v [ oz ] * o [Aan oz <T ot )] (21)
N
advection term  ggatic capillary dynamic effect term

pressure term

In the latter, we divide the benchmark solutions based upon a combination of the three terms
(advection, static capillary pressure, and dynamic effect) that are present in (2.1). In Section 2.2,
we present the Buckley and Leverett analytical solution for the pure advection version of (2.1)
with D = 0 and 7 = 0. Then, in Sections 2.3 and 2.4, we discuss semi-analytical solutions for
an advection—diffusion equation in homogeneous and layered porous media, respectively, with
D #0and 7=0in (2.1).

According to [1], [34], [88], or [109], equation (2.1) belongs to the family of Sobolev equations
when 7 # 0. In these papers, the existence and uniqueness of a solution is shown under several
restrictions placed upon the coefficients of (2.1). To the best of our knowledge, there is no
benchmark solution available for the case of partial differential equation (2.1) with the advection,
diffusion, and dynamic effect terms when coefficients are highly nonlinear as is the case for the
Brooks and Corey or van Genuchten models.

Based on [21] and [31], a semi-analytical solution can be obtained for a simplified (linearized)
equation (2.1) as an extension of the Buckley and Leverett solution. However, we are currently
unaware of how these semi-analytical solutions can be extended for the case of highly non-linear
coefficients that are considered in this thesis in (2.1).

2.1. One-Dimensional Saturation Equation

In this section, we derive the one-dimensional benchmark equation (2.1) from the phase
pressures—saturations formulation (1.40) given in Section 1.10.1 with F, = F;,, =0 and g = 0.
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2. Benchmark Solutions

We sum equations (1.40a) and (1.40b) and by using (1.40f), we obtain

0
2 (U + up) = 0. (2.2)
Defining the total velocity ur as
UT = Uy + Uy, (2.3)

equation (2.2) implies that up is constant in space. Thus, we establish an equation for the
wetting phase pressure p,, = py/(t, ) by substituting (1.40c) and (1.40d) into (2.3) as

Opw Ope
- w n K - nK
Qo £ ) K50 =Mk

=ur, (2.4)
At
where Ay = A\, + A\, denotes the total mobility function. By the definition of the relative

permeabilities k., and k,,, (see Figure 1.7), A\;(S,) is positive for all wetting-phase saturations
Sy (see Figure 1.7). We express the gradient of p,, as

Ow _ _ An Ope
or M\ Ox

— A K g (2.5)

We use (2.5) to eliminate p,, from the Darcy velocity (1.40c) to obtain

Uy = )\wKapw _ Aw . )\w)\nKapc

EZ v s 2

Next, we combine (2.6) and the continuity equation (1.40a),
0Sw 0 (A 9 (AwAn . Opc
Y up— [ 22 ) - = K . 2.
“or T Uy ()\t> oz ( N 63:) 2.7)

In (2.7) we expand the gradient of p. using the dynamic effect in capillary pressure-saturation
relationship (1.40e) as follows

Ope 0 q 0Sy
= a_ c w) — w) o, |- 2.
e — o (05— (5. (2.80)
dpe?(Sy) 0Sy 0 0Sy
= — — w)—— | - 2.8b
05, oz oz ") (2.8b)
For convenience, we introduce the fractional flow function f, of the a-phase as
Ao
fao=+, a€{w,n}, (2.9)
At
and the function D as .
AwAn . dpe
D=——K . 2.1
Aw + An dSy (2.10)
Note that the fractional flow functions have the following properties
0<fo <1, (2.11a)
fo=1,if Sy =1, (2.11b)
fa =0, if S, =0, (2.11c)
fot+ fn=1, (2.11d)
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2.2. Pure Advection Case

where a € {w,n}. Using this notation, equation (2.7) reads as

0Sw Ofw O [Dasw} 0 [ AwAn K6 ( 8Sw>]' (2.12)

ot~ “Tor Tar P or | T e nor \ o

Since all of the coefficients are either constant or depend on Sy, only, equation (2.12) is a nonlinear
partial differential equation for S,,. Typical shapes of functions f,, and D are shown in Figure 2.1.
Once Sy, is known, the wetting-phase pressure can be easily obtained from (2.5) in the form

dpc? DSy, 0 0Sy 11
— =— — — 7T ) -\ K . 2.13
or = a5, 0r Tha\Tar )N K (213)
We shall discuss only the equation (2.1) for the wetting-phase saturation S,, since we consider
pw as a saturation-dependent variable due to (2.13).
In the following sections, we consider benchmark solutions for (2.12) in a space-time domain
Q x (0,7) for initial and boundary conditions illustrated in Figure 2.2.

Opw

Fraction flow function f, Diffusion term D

1 — T T T T T 1x1076 1 T T T
0.8~ 4 8x1077 | .
— 06 41, 6x1077 1
= 0 B ] r
0.4 H o 4x107TE i
0.2 4 2x1077 i
0 L ! | L | L | | 0 i | L | L | L |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Effective saturation S¢ [—] Effective saturation S}, [-]
Figure 2.1.: Typical shapes of functions f,, and D.
A A
- [9) QI Sw Q[I
1 1
S SI ¢ GII
0 7 0
Uug
I
— S SO [ ]
? 17
s
(a) Homogeneous Setup (b) Heterogeneous Setup

Figure 2.2.: Benchmark problems setup.

2.2. Pure Advection Case

Neglecting the capillarity and the dynamic effect term in (2.1), we get a pure advection equation
in a homogeneous porous medium domain Q = (0, +00)

05, _ ot
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2. Benchmark Solutions

for which we set-up the following Riemann problem. The equation (2.14) is strictly hyperbolic
and thus we prescribe a boundary condition for .5, at the inflow boundary. Let us assume that
the inflow boundary is placed at x = 0, i.e., Sy (¢,0) = Sp. The total velocity ur is either
prescribed or implied by the boundary condition (1.42a) and we assume that uy = up(t) is an
integrable non-negative function. Initially, the domain {2 is filled with constant wetting phase
saturation S, (0,z) = S; with S; < Sy as shown in Figure 2.2a. In the following subsections, we
shall describe the derivation of the analytical solution for the case Sy > S; only. In order to
obtain the analytical solution for the other case Sy < S;, we use (1.40f) and (2.11d) and rewrite
(2.14) in terms of the non-wetting phase saturation as

fu

oSy,
- _ 2.15
"ot = "o (2.15)
The initial and boundary conditions of the Riemann problem read in terms of the non-wetting
phase saturation as Sy, (0,z) = 1 —.5; and S,(¢,0) = 1 — So, whilst the total velocity remains

unchanged. Therefore, denoting by 5; = 1 — S; and Sy = 1 — Sp, we get S; < Sy which is
formally the same Riemann problem as in the previous case.

2.2.1. Method of Characteristics

The analytical solution of (2.14) can be derived using the modified method of characteristics for
non-convex flux functions and is referred to as the Buckley and Leverett solution. A modification
of the method of characteristics is necessary due to the existence of an inflexion point of the
function f,, as depicted in Figure 2.3. The Buckley and Leverett analytical solution is very well
understood in the literature, c.f. [2], [11], [19], [12], [66], [74]. Therefore, we only recapitulate
the most important aspects of its construction.

We use the chain rule to expand the right-hand-side of (2.14) as

aSw _ dfw(sw) aSw

ot " Tds,  ox (2.16)

A characteristic is a curve in the (¢, x)-plane, along which the solution Sy, (¢, ) of the Riemann
problem (2.14) is constant. We consider a parametrization n — (¢,z) of such curve and we
assume differentiability of x = z(n) and ¢ = ¢(n) for all n. Since S,, is constant along the
characteristics,

Sw(n) = Sy (t(n),x(n)) = const. (2.17)

We differentiate (2.17) with respect to n as follows

dS,  0S,dt 98, dx

=T TR ), 2.1
dn ot dn ~ Ox dn 0 (2.18)
Comparing (2.18) and (2.16), we obtain
dt
- = 2.19
dn ? ( a‘)
de  dfw(Sw)
— = ——ur. 2.19b
dn ~ dS, (2.19b)
Combining (2.19a) and (2.19b), we get
1 w w
dr _ 1dfuw(Sw) (2.20)

dt ¢ dS,
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2.2. Pure Advection Case

By integrating (2.20) from 0 to ¢, a smooth rarefaction wave is obtained for convex functions f,,
in the implicit form

1 dfw

CC(t, Sw) = g@

(Sw) /uT(z)dz. (2.21)
0

The convexity or concavity of f,, implies that its first derivative is a monotonous function and
thus (2.21) can be inverted to obtain the solution Sy, (¢, z). Due to the existence of the inflexion
point of f,, shown in Figure 2.3, this is not the case in the Buckley and Leverett problem and
only a weak solution exists which involves both shock (due to convexity of f,,) and rarefaction
(due to concavity of f,,) waves. In order to determine the weak solution to the non-convex scalar
conservation law, we consider the Oleinik entropy condition in Theorem 2.1, [74].

Theorem 2.1 (Entropy condition (Oleinik)). A weak solution Sy (t,x) is the vanishing-viscosity
solution to a general scalar conservation law (2.14), if all discontinuities have the property that

FulS0) = FulS0) - fulSu) = F(S)
Sw — So - Sw — S; ’

(2.22)

for all S; < Sy, < Sy, where
fuw(S*) — £(S0)
= 2.23
s 5 5 (2.23)
is the (fractional) shock speed and S* is the postshock value that is constant in time defined by
the relationship

FulS%) — £(5) = J2(8)(5" - ). (2.24)

The term fractional shock speed is used because the shock speed ugpocr is for all £ > 0 defined
as
ushock(t) =S ’U,T(t). (2.25)

If the function f,, has no inflexion, then S* = S; and the shock speed ugspock(t) is given by the
Rankine-Hugoniot condition [74]

Jw(So) = fuw(Si)
So — S;

URH = up(t). (2.26)

2.2.2. Entropy Condition : Convex Hull Construction

The entropy-satisfying solution to the Riemann problem (2.14) can be determined by construct-
ing the convex hull of the set

6= {(Sw)y) 05 <S5y < S, y < fw(Sw)} . (2‘27)

As shown in Figure 2.3, the convex hull of a set is the smallest convex set that contains the
original set. The upper boundary of the convex hull is composed of a tangential from a point
[Si, f(S;)] to the graph at a point [S*, f(5*)]. The value S* is exactly the postshock value defined
by (2.24). The straight part of the upper boundary represents a shock jumping from S,, = S;
to Sy = S*, while the rest of the upper boundary that follows the graph f,,(Sy) corresponds to
the rarefaction wave. Moreover, the slope of the straight segment equals to the fractional shock
speed s defined in Theorem 2.1.

If f,, is convex, then the convex hull construction gives a single line segment (single shock)
and if f,, is concave, the convex hull coincides with & (single rarefaction).
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Figure 2.3.: Convex hull construction of the set &, model Brooks and Corey, Sy = 0.8, S; = 0.1.
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Figure 2.4.: Illustration of the Buckley and Leverett analytical solution, model Brooks and Corey,
S; = 0.1, (a) Sp = 0.8, and (b) Sp = 0.5. If (a) Sy > S*, the solution of the Riemann problem
contains a rarefaction wave and a shockwave, while the solution consists of a single shockwave if

(b) So < S*.

2.2.3. Analytical Solution

In this subsection, we finalize the derivation of the analytical solution. Let the value of S* be
computed from the equation (2.24). If S* < Sp, the solution of the Riemann problem (2.14)
contains a shockwave as well as a rarefaction wave, see Figure 2.4a. If S* > Sy, there is only
a shockwave with the Rankine-Hugoniot shock speed uprp (t) and the shock front position x g (t)

can be expressed as
t
1 f(So) = £(Si) /
xrp(t) = & S, 5, up(z)dz. (2.28)
0

Hence, the Buckley and Leverett analytical solution is given by the following implicit formula:

is solution of = = x(t,Sy), if S* < Sy, < So,

Sw(t,x)
If Sp > S*: Sw(t,xz) =Sy for « < x(t,S0),
Su(t,z) =S; for = <=xz(t,S*), (2.29)
. Sw(t,z) =8y for =z <zrm(t),
I 5o <57 { Sw(t,z)=S5; for x <zry(t).

The Buckley and Leverett analytical solution is illustrated in Figure 2.5.
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Figure 2.5.: Example of the Buckley and Leverett analytical solution for Sy = 0.735,
ur(t) =107* ms™1, and S; = 0. We used Sand A whose parameters are given in Table B.2

(page 122).

2.3. Advection and Diffusion Case in Homogeneous Medium

In this subsection, we consider static capillary pressure p. = po! and homogeneous porous
medium in = (0, +00). We can include both pure diffusion (ur = 0, D # 0, and 7 = 0) and
advection—diffusion (up # 0, D # 0, and 7 = 0) cases into a family of semi-analytical (self-
similar) closed-form solutions that can be derived for (2.1). Here, a special inflow boundary
velocity u,, is assumed as

wy(t,0) = ug(t) = At~3, (2.30)

As a consequence of (2.2), we assume the total velocity in the form
ur(t) = Rug(t) = RAt ™2, (2.31)

where R € (—o0,1] indicates the semi—permeability of the boundary at z = +oo, see [17].
Therefore, we consider the equation (2.1) in the following form

0Sw _10fy O 0Sw
— =—RAt 22—+ — |D— 2.32
7 Rt28m+6w[ 830] (2:32)
with a constant initial saturation Sy (0,z) = S; in © and boundary conditions
Sw(t,0) = S, (2.332)
Sw(t, +00) = 5; (2.33b)
for t € (0,7).
If R = 1, the boundary at * = +oo is fully permeable such that w,(t, +00) = ug(t) for
all t € (0,7). The case R = 0 indicates impermeable boundary at z = 400 causing
Up, (T, +00) = Uy (t,+00) = 0, uy(t,0) = —up(t), and, therefore, up(t) = 0 for all t € (0,7

(pure diffusion, or counter-current flow case). Originally, only these two values of R were con-
sidered by McWhorter and Sunada for this type of problem, when they derived a semi-analytical
solution in [80] (see also [18] and [$1]). We studied multiple functional choices of the total veloc-
ity up = up(t) and the parameter R in [3], [9], [13], [47]. In [11] and [11] we showed that the range
for R can be extended between 0 and 1. Finally, for the sake of derivation of the semi-analytical
solution in heterogeneous porous medium, we extended R € (—oo, 1] in [15], [16], and [12]. The
negative values of R correspond to a situation, where the wetting phase is injected at x = +o00
with velocities w,,(t, +00) = Rup(t) and uy,(t, +00) = 0.
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2. Benchmark Solutions

As in the case of the pure advection Riemann problem (2.14), we distinguish between cases
So > S; and Sy < S;. If Sy > S;, the wetting-phase boundary velocity (2.30) is positive, i.e.
A > 0 and the wetting-phase saturation, initially at 5;, will increase in time. In the opposite
case, i.e., if Sy < 5;, the wetting-phase velocity at the inlet ug is negative, i.e. A < 0, which
implies that the total velocity up is also negative. Using (1.40f) and (2.11d), we rewrite (2.32)
in terms of the non-wetting phase saturation S,, as

8Sn . _1 8fn 0 8577,

and the initial and boundary conditions are given as
S, (t,0)=1—8y=: Sy, fort>0, (2.35a)
S,(0,2)=1—8;=:S;, forxz>0, (2.35b)

where Sy > S;. Equation (2.34) with the conditions (2.35) is formally the same as in the
previous case. Therefore, without loss of generality, we derive the semi-analytical solution for
the equation (2.32) and the case Sy > S; only.

2.3.1. Derivation of Semi-Analytical Solution

In order to derive the McWhorter and Sunada closed-form solution, we introduce a function
F =F(Sy,) as
D dSy

F = frorm — , (2.36)
AE3(1 = Rfu(S) 0
where by f:°"™, we denoted the normalized fractional flow function
fw - fw(Sz)
norm — Re———— | 2.37
A substitution )
A(Sw(t,x)) =at™ 2, (2.38)

where the relationship A = A(S,,) is assumed to be monotonous, allows to express the partial
derivatives of Sy, (¢,z) in the following form

8Sw [ dA(Sw) —1t_
or dS,,

NI

and

95, 1 (d)\(Sw)

B dSy,

-1
- 5 ) A(Sy)t L. (2.39)

Substituting the partial derivative 5/0x given by (2.39) into (2.36), we obtain

__ rfnorm D(Sw) dA(Sw) -
Fs) = 1)~ 5y (o) (240

which reveals that F' = F'(S,,) since variables x and ¢ were eliminated. Equation (2.36) allows
us to rewrite (2.32) in terms of F as

0Sw _1 OF
Using the fact that
oF  dF 95y
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2.3. Advection and Diffusion Case in Homogeneous Medium

the substitution of (2.39) into (2.41) leads to

-1 -1
o1 <d3§vw)> A(Su)t ™! = —At5(1 — wa(si))diéiw) (d?i(iw)> (243

from which the solution of (2.32) is obtained in the inverted form

2A(1 — Rfy(S:)) dF
) dSy

N

(Sw(t,z)) =at™2 = )\, (2.44)
for all values of S, € [S;, So].
To obtain equation for the unknown function F', we differentiate (2.44) with respect to Sy,

d?F ¢ dA
452~ 2A(1— Rfu(S)) dSu’ (2.45)

where we substitute for d\/dS,, from (2.40) to get the following differential equation for
F=F(Sy)
d*F ® D

dS2 ~  2A%(1— Rf,(S))2 F — fromm’ (2.46)

This equation can be integrated twice (see [15]) and using the conditions F(Sp) = 1 and
F’(Sp) = 0, which follow from the boundary conditions (2.33a) and (2.33b), respectively, we
obtain

So
- 10} z— Sy
F(Sy)=1- A0~ RJ(S))? / F) = fgorm(z)D(z)dz. (2.47)
Sw
Taking into account that F'(S;) = 0, equation (2.47) yields
¢ 7 S
A? = 2 ___D(z)d 2.48
ey | T fe P (245)

7

which is the integral expression that relates A and the boundary saturation Sj.

Finally, we substitute (2.48) into (2.47) and obtain the integral equation for the unknown
function F' = F(Sy)

So _g
] Fo e P(2)dz
S,
F(Sy) =1 . (2.49)

z2—S;
| Fatrmm D(2)dz

Differentiation of (2.49) with respect to Sy, reveals that dF/dS,, (used in (2.44)) is obtained
from
So

D(z)
e J Form
K(Sw) - So = . (250)
b i 25— D(2)dz

4 FE-T5
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2. Benchmark Solutions

2.3.2. Solution of Integral Equation

The integral equation (2.49) can be solved numerically [15]. We propose two iteration schemes
suitable for obtaining the solution F' = F'(S,,) for nearly all ranges of the input parameters Sy,
Si, and R. Using the functional transformation

D

G — W, (251)
these iteration schemes read as
So
[ (v—=54) G(v) dv
Gre1(Sw) = D(Su) + Gr(Su) | 1™ () + 2 NG
f(v — SZ) Gk(’l)) dv
S;
which is referred to as Variant A and
So -1
J (v = Sy) Gr(v) dv
i1 (Sw) = [D(Sw) + Gi(Sw) F27™(Sw)] | 1- 2% (2.53)
J(v—=25;) Gi(v) dv
S;

which is referred to as Variant B.
When the function G = G(S,,) is obtained using the iteration schemes (2.52) or (2.53), the
solution ' = F(S,) is computed from

D

I = (2.54)
and its derivative dF'/dS,, from
So
G(z)dz

AP S{ (2)

K(SHJ = So . (255)
¢ [(z = 5)G(2)dz
Si

Finally, the solution S,, = Sy, (¢, z) of the equation (2.32) is given implicitly by (2.44).

In Figure 2.7 and 2.6, we show typical shapes of the semi-analytical solutions for multiple
choices of the parameters R and Sy, respectively. A more detailed description of the McWhorter
and Sunada solution in the homogeneous medium is given in [15] and [12]. We also provide an
implementation of the semi-analytical solution in [39].

2.4. Advection and Diffusion Case in Heterogeneous Medium

When dealing with a layered porous medium, we need to simulate the conditions at material
interfaces using equation (1.37). In order to verify that the behavior of fluids is simulated
correctly by a numerical method, we need to use a suitable benchmark solution.

In [28] and [29] van Duijn et al. derived a semi-analytical solution for the pure diffusion form
of (2.1) in 2 = R for a porous medium with a single material discontinuity placed at z = 0.
Inspired by their problem formulation, we found that two McWhorter and Sunada problem
formulations for homogeneous media (2.32) in Q! = (—o00,0] and Q7 = [0, +-00), respectively,
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2.4. Advection and Diffusion Case in Heterogeneous Medium

07" (b) R=0,t=10000s | °7[ (a) R=0.9,¢t=1000 s
_ 4 06 .
| |
= 47205 .
w wop
=} -1 2 04 7
2 g0 Sp=0.3
g . g 0.3 : So=0.4
< <
n -1 » 0.2 1
i So = 0.735
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Figure 2.6.: Example of the McWhorter and Sunada semi-analytical solution for multiple choices
1
of So, us(0) = A(Sp) t72 ms™!, S; =0, and (a) R =0 or (b) R =0.9. We used Sand A with
parameters given in Table B.2 (page 122).
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04k (b) So =04, t =1000 s 7T (a) S0 = 0.735, t = 1000 s
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Figure 2.7.: Example of the McWhorter and Sunada semi-analytical solution for multiple choices
of R, us(0) = A(So) t72 ms™1, S; = 0, and (a) Sp = 0.5 or (b) Sy = 0.735. We used Sand A with
parameters given in Table B.2 (page 122).

can be combined to find a solution satisfying the continuity of the phase velocities (1.35) and
the extended capillary condition (1.37) for the respective boundary values S} and S{?, [16], [12].
In the following, by superscripts I and I1, we shall denote the quantities corresponding to the
McWhorter and Sunada problem formulation in Q! and Q7| respectively.

Under this notation, the system of the two-phase flow equations can be given as

195w 1 Of)

o= —RAIt_’—a + 52 [DI —6(;;” } in Qf, (2.56a)
a8 _10fy DSy, :

119w parl,—1 9w 11 11

o= RAMm2 =20 4 - [D o ] in Q1 (2.56b)

and the initial and boundary conditions described below are given such that the semi-analytical
solution can be obtained in both subdomains, see Figure 2.2b.
For Qf, we set

Syu(t,0)=Sf, forallt>o0, (2.57a)
Sy(t,—o0) = SI,  forall t >0, (2.57b)
Su(0,2) =8I, forallz <0, (2.57¢)
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2. Benchmark Solutions

and for Q1 we set

Sw(t,0) = ST, for all t > 0, (2.58a)
Sy(t, +00) = SH forallt >0, (2.58b)
Su(0,2) = S, for all z > 0. (2.58¢)

In Q1 the wetting flux is given as
ull(t,0) = ATy, (2.59)

and using the definition of the ratio R in (2.31), the total flux becomes ur = AURt=3. The
unknown interfacial saturations S} and S{! are determined using the continuity of the fluxes
(1.35) and the continuity of the capillary pressures (1.37) which reads as

pL(S§) = pH (SEh). (2.60)

We transform the problem in Q! to take advantage of the McWhorter and Sunada semi-
analytical solution described in the previous section. This is done by a substitution of £ = —x
in Q!. The transformed wetting-phase velocity 11{1} at £ = 0 becomes

ul (t,0) = ATt72. (2.61)

At the interface, the wetting-phase flux is continuous (1.35), which allows to couple of both left
and right subdomain problems together by requiring

Al =AM, (2.62)

Note that in (2.62) fluxes have opposite signs after the transformation & = —z. The total flux is
constant in space throughout both subdomains and continuous across the interface. The value
of the transformed total flux is

iy = —up=—A"Rt 2 = ATRt 2. (2.63)

Consequently, the same value of the parameter R must be used in both subdomains.

The negative value of the flux in the McWhorter and Sunada formulation corresponds to the
fact that Sy < 5;. Thus, to obtain a positive value of A in one subdomain and a negative value
of A in the other (c.f. (2.62)), either

St > sl and S < SH, (2.64a)

or

St <8l and SH > SH, (2.64D)

must hold.

The existence of the semi-analytical solution for the porous medium with a material disconti-
nuity is equivalent to the existence of saturations Sé and 5’61 such that the continuity condition
(2.62) holds. Both A’ and A’! are functions of S(]), R, S{, and S{!, R, SiH, respectively, but the
explicit relationship fulfilling (2.62) is unknown and has to be determined numerically together
with (2.60). If a solution of (2.62) exists, then it is unique due to monotonic relationship between
A and Sy and can be computed using the bisection method (see [15]).

Figure 2.8 shows typical shapes of such semi-analytical solutions for the pure diffusion (R = 0)
and the advection—diffusion cases (R # 0). A more detailed description of the semi-analytical
solution including a computational algorithm is presented in [16] and [12]. As in the homogeneous
case, an implementation is available in [35].
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2.4. Advection and Diffusion Case in Heterogeneous Medium

(a) (b)  Sand B Sand A
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Figure 2.8.: Example of the semi-analytical solution in a heterogeneous porous medium for multiple
choices of R and (a) S = 0.265, S/ =1 or (b) S! = 0.9, S{f = 0.4. As a porous material, we
used Sand A and Sand B with parameters given in Table B.2 and B.3, respectively.
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CHAPTER 3

SIGNIFICANCE OF DYNAMIC EFFECT IN CAPILLARY
PRESSURE

requires reliable models of capillary pressure—saturation relationships. In most past

modelling efforts, various capillary pressure—saturation models (such as Brooks and
Corey (1.23) or van Genuchten (1.26)) were developed based on laboratory experiments where
capillary pressure and saturation were measured under equilibrium conditions. As described in
Section 1.7.3, alternative models based on both empirical and theoretical approaches have been
proposed to deal with these dynamic effects associated with the fluid flow [19], [50], [54], [56].

M athematical prediction of flow of immiscible and incompressible fluids in porous media

In unsaturated flow modelling, the two-phase flow system is simplified using the Richards
equation (1.44), where the pressure of the non-wetting phase (air) is assumed to be constant
throughout the domain. Using this simplification, in [67] the dynamic effect was not found to
be of importance for a given heterogeneous system that was studied. Other numerical studies
on the dynamic effect in capillary pressure models have been reported in [78], [77], or [97].
However, the implications of using the dynamic capillary pressure models in general two-phase
models (without the assumption of constant non-wetting phase pressure) have not been fully
investigated. In [59] the authors present a semi-implicit numerical scheme based on the upwind
finite volume method, where the material interfaces in heterogeneous system are handled using
the Lagrange multiplier method. In a subsequent paper [60], the idea has been further developed
and the extended capillary pressure condition (1.37) takes the form of a variational inequality.
In all these and other studies such as [14] or [91], only constant dynamic effect coefficient was
assumed. However, experimental data in [1041], [105], and [106] suggest that this coefficient
depends on water saturation. We believe that this is critical especially in heterogeneous porous
media.

We focus on the study of the implications of the use of dynamic effect in the capillary pressure—
saturation relationship in modelling of flow of water and air in homogeneous and heterogeneous
porous media described by (1.49) with the respective initial (1.50) and boundary (1.51) con-
ditions. We propose a numerical scheme to model these cases of dynamic flow. Subsequently,
this numerical scheme is verified by comparing with the semi-analytical solutions for the static
capillary pressure developed earlier and presented in [30], [15] for homogeneous cases and [16] for
a layered system. By means of the experimental order of convergence (defined later by (3.36)),
we show that the developed numerical scheme is convergent and can be reliably used for simu-
lating flow in both homogeneous and heterogeneous porous media systems. Various models of
dynamic effects in capillary pressure defined through the empirical dynamic effect coefficient 7
are investigated and compared to the static model of capillary pressure.
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3. Significance of Dynamic Effect in Capillary Pressure

Our primary goal is to simulate the drainage flow regimes in a vertically placed one—
dimensional column filled with either homogeneous or layered porous medium and determine
the importance of the dynamic effect in capillary pressure—saturation relationship. We com-
pare the numerical solutions obtained for various models of the dynamic effect coefficient 7 to
those computed using the static (classical) capillary pressure p. = pe! and/or to the laboratory
measured data.

The chapter is organized in the following way. In Section 3.1, we derive the fully implicit
vertex-centered finite volume method for the system of two-phase flow equations (1.49). In
Section 3.2, we verify its reliability using the benchmark solutions presented in Chapter 2. In
Section 3.3, we describe a laboratory experiment of drainage in a homogeneous porous medium
carried out at CESEP and discuss results of our numerical simulations that were performed in
order to reproduce the experimentally measured data. We present a detailed numerical study on
the dynamics of drainage flow regimes in heterogeneous porous media in Section 3.4. Concluding
remarks are summarized in Section 3.5.

3.1. Fully Implicit Vertex-Centered Finite Volume Method in 1D

We use the vertex-centered finite volume method (VCFVM) to obtain a time fully implicit
numerical scheme capable of solving the two—phase flow system of equations (1.49) in a one—
dimensional porous medium. In the following sections, we describe the numerical scheme in de-
tails, focus on the conditions at material interfaces, and summarize how the initial and boundary
conditions are implemented in the numerical scheme.

3.1.1. Numerical Scheme

We shall use the following form of the 1,,~S,, formulation (1.49):

8857;" + aaxuw —F, =0, (3.1a)

— % + a%un ~F, =0, (3.1b)
U = —AwK%¢w, (3.1c)

tn = ~AK o (4 ) (3.10)

forallz € Q= (0,L) and all ¢ € (0,7"), where L [m] denotes the length (or height) of the domain
(or column) and T [s] is the final time of the simulation. Initial and boundary conditions will
be considered later.

Let us consider an ordered set of vertices V = {Vy : k=1,2,..., N} such that

(VVkl,VkQ S V)(kl <k =0< Vk1 < sz < L).

We construct a set of dual vertices W = {W}, : k =0,1,..., N} such that Wy =0, Wy = L, and
for all k =0,1,..., N, vertex Vj is placed in the center of the finite volume Ky = [Wy, Wii1],
see Figure 3.1.

We define the distance between successive points from V and W as AV = Vi1 — V|, and
AWy, = |[Wy — Wi_1], respectively. For any natural number k, we denote by & the mean value
of a quantity or function & over a finite volume Kj. Next, as we need to address the values
of a quantity £ in the middle of two adjacent vertices Vi and Vi1, we introduce the notation

1 = &0, Wa).
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3.1. Fully Implicit Vertex-Centered Finite Volume Method in 1D

Sand 1 | Sand II
| : :
Swh-2 Sw k1 ;| 51{1 o S ki1 - Suw k42
| : | —— ‘ : ‘
Vi W1 Vi1 Wi Vi Wit Vier Witz Vigo

Figure 3.1.: Vertex—centered finite volume method applied to a one—dimensional domain.

Finally, we discretize the time interval [0, T] by a set T,
T={0=tg<ti1 <--- <ty =T}, (3.2)

and we denote the time increments by At; = t;11 — t;. By a superscript ¢, we denote the value
of £ on a time level t = t;, i.e., & = £(t;, ).
Integrating (3.1a) and (3.1b) over a finite volume K} and a time interval [t;, t;+1], we get

1+1

[ [ ][5 ] [n-
// 05w //8% ]/Fn:o. (3.3b)
t, Ky

In (3.3) we assume ¢ to be constant over K} so that the finite volume K}, does not contain any
material interfaces. Therefore, the integrals in (3.3) are evaluated as

¢k,’ 1 i1 ~ -
Atz <S’IZU+I€ Z ) AW <U:j:k+1/2 o u:::k;—l/Q) - FuZ)T]g = O, (34&)
(rbk 1 ; i1 11 -
_Ati (S;U"‘k Sci;,k) + TVVk (“;Tk+1/2 — ujﬂ,—t_kfl/Q) — F’fz:l—f =0, (3.4b)
where the integrated source/sink term in (3.1a) and (3.1b) is denoted by
1+1
Fjl = / / v o fwn) 5.5)
ak AWkAtl ’
t;
4We use the upwind technique [57], [74] to compute the discrete Darcy velocities ' ; 1 and
u;f,j_s_l/z) in (3.4) as

i+1 i+1
¢w,k+1 - ww,k’

i+1 _ i+1
Ung 1y = ~ N hrns K AU (3.6a)
i+1 +1 j+1 i+1
uitl — W, z+1K¢zlu,k+l B W + 7/)2 k41 W (3.6b)
n,k+1/2 n,k—+1/2 AVk .

where )\Zp . +11721 denotes the a-phase mobility taken in the upstream direction with respect to the

gradient of the phase potential ¢, i.e.,

1 . i+1 +1
)\upw A+l )‘ (S;Lu+k+1) if (¢11UJ7rk+1 - 1/}zu+,k) 2 Oa (3 7&)
wk+1/2 w(SzUH) otherwise, '
)\upw Z+1 ( ;Lu+k1;+1) lf (¢;Tk1+1 ¢l+1 + ¢£i];-{|_1 17[}2+1> (3 7b)
nkt+1/2 T (SHI) otherwise. )
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3. Significance of Dynamic Effect in Capillary Pressure

The discrete capillary potential wif reads as

i+l Qi

) S
w:&];l — eq(SH-l) (Sz-‘rl) W,kAt' w,k' (38)

3.1.2. Material Interfaces

At a material interface, the properties of the porous media are discontinuous. By superscripts
L and R, we denote the quantities that correspond to the left (between Wj_; and Vj) and
right (between Vj, and W}) hand side of the interface, respectively (c.f., Figure 1.5). Since the
normal components of the phase velocities u, are continuous across the interface (1.35), the
integration of the derivative of the velocity in (3.3) gives the same result as in (3.4). However,
the discontinuity in porosity ¢ and saturation .S,, requires to split the integral in the left hand
sides of (3.3a) and (3.3b) into two parts

:/K/qﬁf;” t/ j %% Z/¢365R. (3.92)

i Wi

Then, using the same technique as in (3.4), the resulting numerical scheme reads as

</>£ ( L g+l ) ( Ryi+1 Ry
L i = st +
. w,k w,k w,k
2At; 2At (3.10a)
i+1 i+1 +1
i (v ;W Wi ) - i =0,
_ ¢£ ( gLitl _ gL, ) ( GRi+1 _ R,i>+
2At; \ 2At Ws w (3.10b)
1 ( i+1 it ) _Fpitl_
AW, nk+1/2 Uy Jk—1/2 n,k :
An additional equation that relates S, L Hl and Sf ’;fl in (3.10) is given by the extended capillary

condition (1.39). Assuming without loss of generality that pﬁ < pg, equation (1.39) can be
discretized as 4
St =1 and p =pf, (3.11a)

if pl (SL ZH) < pf, and

L/ aLyi+1 L;aLitly 1 Lyit+1 L
pgq (Squ ) -7 (Sw,k )E (Sw,k - w,k) -
. (3.11b)
Ri+1 Ri+1 Ri+1 R,
pg%R(SwlZc ) (Swlzﬁ ) (Swlzﬁ B S 1) =0,
’ At;
otherwise. ‘ A
Equation (3.11) requires both values of the interfacial saturations Siz and Sf’,i from the
previous time level in contrast to the static case (7% = 7' = 0), where it suffices to remember

the saturation on the coarser side of the material interface only (i.e. Sﬁ;) since the capillary
pressure function pg? Can be easﬂy inverted in (3.11). In the dynamic case, however, the 1n—
terfa(nal saturations S k: and S depend on the saturations on all previous time levels S

and S%

w, k’
increasing ¢. To avoid such a recursion, we remember the values Sk k: and Sﬁ ,Zﬁ from the previous
time step at both sides of all material interfaces in €2 .

j=1—1,1—2,...,0, Wthh would significantly increase the computational time w1th
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3.1. Fully Implicit Vertex-Centered Finite Volume Method in 1D

3.1.3. Initial and Boundary Conditions

The numerical scheme (3.4) is supplied by the initial and boundary conditions (1.50) and (1.51),
respectively. The initial condition for the wetting phase saturation is given as

Sox =S Vi), Vk. (3.12)

The conditions at boundary points 0Q = {Wj, Wy} are discretized as

Un o1y = —u (Wo), if Wy C Ty, (3.13a)

U Ny = uN (W), if Wy CTu,, (3.13b)

Swi = SD(Wp), if WycTlsg,, (3.13c)

Swn = SD(Wy), if Wy cUlg,, (3.13d)

Vw1 = VE(Wh), if Wy CTy,, (3.13¢)

YN =PI (W), if Wy C Ty, (3.13f)

where a € {w, n}. If the Neumann boundary velocities are prescribed, we use (3.13a) or (3.13b)

instead of the discrete Darcy velocities (3.6) in (3.4).

3.1.4. Numerical Solution
System of Nonlinear Equations

The system of nonlinear equations (3.4), (3.10), (3.11), and (3.13) can be represented in a vector
form as

Gy'™) =0, (3.14)
where G : R2V+4 — R2V+9 is a vector function and y**! is a vector of (2N +¢)-unknowns, where
q is the number of material interfaces in Q. By ki, k2, ..., ky, we denote indices of the vertices
placed at the material interfaces. The components of the vector y**! are for all k = 1,2,..., N
given by

A SEL i ke (ke ko, kg )
[y, | = wh ! { 1, 52 a} (3.15a)
2k—-1 S otherwise,
[y o = il (3.15b)
and for all j =1,2,...,¢q, by
i+1 _ oRj+1
Y M oney = Suk - (3.16)

The components of the vector function G in (3.14) read for all k =1,2,..., N as

left hand side of (3.10a), if k € {ki,ko,...,kq},

; Sw1— SP(Wy) ifk=1 and Wy CT
i+1 _ w,1 w 0/, 0 Sws
GO o= sy — SPwy), itk =N and Wy C Tg,, (3.172)
left hand side of (3.4a),  otherwise,
left hand side of (3.100), if k € {ki,ko,... , kq},
i1y ) w — g (W), if k=1 and Wy C Ty,
GO o = YN — VD (W), if k=N and Wx CTy,, (3.17b)
left hand side of (3.4b),  otherwise,
and for all j =1,2,...,q, as
[Gy"™™H],n ; = left hand side of (3.110). (3.18)
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3. Significance of Dynamic Effect in Capillary Pressure

Under this notation, the system of nonlinear equations (3.14) has the following structure.
There is always a pair of equations

[Gy"™) ]y, =0, (3.19)
[G(y™™)],, =0, (3.20)
for all k =1,2,..., N that couples at most 6 unknowns
’Vyi+1-‘ max{2k—3,1}’ [yi+1—‘ max{2k—2,1} (3213‘)
[y s [y g (3.21b)
|>yZ+1_‘ min{2k+1,2N} ) |'y7»+1—| min{2k+2,2N} . (321C)

In case of a layered porous medium with ¢ material interfaces, the system of nonlinear equation
(3.14) includes ¢ equations at material interfaces (3.11) that depend only on two unknowns
[yt Sl and [y = Sﬁ’gl forj=1,2,...,q.

Newton—Raphson Method

We use the Newton-Raphson iteration method to solve the nonlinear vector equation (3.14) in
the form

vl =yt - [@ (vith)] T Gy, (3.22)

where G’ denotes the Jacobi matrix of the vector function G. As a starting vector (¢ = 0) in
(3.22), we choose
yort =y, (3.23)
where y' is the vector that corresponds to the previous time step ¢;. Note that when i = 0, we
use the initial condition (3.12) for S , and we always choose hydrostatic 0 , as an initial guess
for y§.
We rewrite (3.22) in the form

i i -1 i
Ayzﬁ =[G (ye+1)] G(yz+l)= (3.24)
where
Ayit =i -yt (329

It follows from (3.24) that the increment Ayéﬂ of the vector y?’l is the solution of a linear
system of equations

(G (yi™)] Ayity = —Glyy™). (3.26)

In each iteration of (3.24), the solution of (3.26) is the most expensive step from the compu-
tational point of view. In order to diminish the required amount of work, we take advantage
of the structure of the system of equations (3.14) introduced by (3.17) and (3.21) and solve the
linear system (3.26) in the following way. We represent (3.26) as

ai e )(m)=(w)
_ , 3.7
< 5 Ghy z W2 (3.27)
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3.1. Fully Implicit Vertex-Centered Finite Volume Method in 1D

where

c R2NX2N . [G/11-|j,k e 1+1)]] . (3.28a)

Gh, € RPNV . [GY1],,,, =[G 1)}2N+m’k, (3.28b)

G, € R |VG/22—|m,n [ yi )] ON+m,2N+n’ (3.28¢)

1y € R2NVxa . [Gl2];, = [¢ Z+1 N im (3.28d)

w; € RV . [wi], = (G(y;“ﬂj , (3.28¢)

wy € R?: [wal, = =[G ) oy (3.28f)

7, € R?V . [z1]; = [Ay@iﬂj, (3.28g)

7y € R?: [22],, = [Ay 1], i (3.28h)

forall j,k=1,2,...,2N,and m,n=1,2,...,q

The linear system (3.27) can be regarded as a block system of two linear equations with two
unknowns z; and z3. Assuming that G/, is non-singular, we express z; from the first equation
in (3.27) in terms of zo as

=G}, (w1 — Gloza) . (3.29)

We use (3.29) in the second equation in (3.27) to get a single linear equation for the unknown
vector zo

(— /21 ,11—1 ,12 + G,22> Z2 = W2 — G/21G,11_1W1- (3.30)

The vector zo determined as the solution of (3.30) is then substituted in (3.29). Altogether, the
solution of (3.27) is obtained in the form

~1
Zz1 = Gr/11_1 [Wl — Gl ( 52 — G Gy ! 12) <W2 - /21G/11_1W1)} ) (3.31a)
_ -1 _
<G22 e /12> (w2 - G5 Gy 1W1) . (3.31b)

The following algorithm is used to compute (3.31):

1. Solve G;q = w; and G};Q = G, where q € R?" and Q € R4, Tt follows from
(3.17) and (3.28a) that the matrix G/, is block tridiagonal with 2 x 2- blocks and thus we
use the Thomas algorithm to compute q = G’ll_lwl and Q = G ! '5. Note that the
Thomas algorithm is not expensive from computational point of view since the number of
arithmetic operations depends linearly on the size of the matrix.

2. Solve (Ghy — G5 Q) z2 = wa — G);q. Recall that the matrix (Ghy — G5 Q) is a ¢ X ¢-
matrix, where g denotes the number of material interfaces in the domain, which is usually
a very small number. Consequently, we use the direct Gaussian elimination method to

s}
compute zy = (Ghy — G4, Q) (wa — GL;q).

3. Solve Giyz1 = (w;— G)yz2) again using the Thomas algorithm and obtain
= Gln_l (w1 — Gip22).

4. Set Ayéﬁ = < 2 )

Note that if no material interfaces are present in the medium (¢ = 0), we solve G,z = wy

using the Thomas algorithm only and set Ayzﬂ = 7.
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3. Significance of Dynamic Effect in Capillary Pressure

Line Search Strategy

The Newton-Raphson method (3.22) seeks the next iteration yéﬂ in the direction Ayéﬂ in
the domain of definition of G towards the solution of (3.14), where Ayzﬂ is the solution of
(3.26). If yé“ is in a sufficiently close neighborhood of the solution, the iteration method has

a quadratic convergence, [2]. Otherwise,
i+1 i+1 i+1
YEL =y; +AY (3.32)

may move too far away from the neighborhood causing the iteration method to stagnate or
diverge. In order to avoid the stagnation, we use the line search strategy with a modifier
n € (0,1], i.e., we search for yzﬂ in the form

it =y Ay, (3:33)
where 7 is the largest value in the set {1,1/2,1/4,...} such that

IG +nayiihlz < (1= 1) IGEE e, (3:34)
see [2]. In some cases, the iteration process is unable to decrease |G (y,"')||2 under the required
threshold after the maximal number of iterations (; or the minimal admissible line search modifier
¢y and thus we decrease the time step At; by a factor denoted by (a; and restart the iteration
procedure. On the other hand, if the process is convergent for at least (;; successive time
steps, we increase the time step At; by the factor of {a;. We stop the iteration process, when
|G(y4th)|2 is lower than a stopping threshold criterion (g. The typical values of parameters
are ¢, = 100, ¢, = 1074, ¢ar = 1.5, ¢ = 1000, and (g = 1075,

3.2. Verification of Numerical Scheme

We test the numerical scheme (3.4) on the analytical and semi-analytical solutions introduced
in Chapter 2. These are available for the static capillary pressure model (7 = 0) and no gravity
(9 = 0) only. The convergence of the numerical scheme is investigated for a homogeneous and
heterogeneous porous medium, respectively, by means of the experimental order of convergence.

We consider a one dimensional domain = (0, 1) filled with a porous medium initially fully
saturated by water. In the following simulations, we use laboratory-measured sand properties
provided by CESEP to verify the numerical model under realistic conditions. Parameters of
these sands are described in Tables B.2-B.4 in Appendix B. Since our aim is to simulate the
laboratory experiment held in CESEP, we use the sand A (the Ohji sand) in the presented
numerical experiments.

In each benchmark problem I.-V., water is displaced by air due to an imposed flux at the
boundary. We select the final time T" such that the front of the benchmark solution stays inside
the domain Q = (0, 1).

3.2.1. Benchmark | : Pure Advection

We use the pure advection benchmark (2.14) (see Section 2.2) with Sy = 0.265 (residual water
saturation), S; = 1 (maximal water saturation), and up(t) = 10~* ms~1.

In the numerical formulation (3.4), we set S? = S; = 1 and at the inlet (z = 0), we prescribe
the Neumann boundary condition as u (¢,0) = up(t) = 107* ms~' and 2 (¢,0) = 0 Pa. We
choose the final time 7" = 1000 s such that the front of the analytical solution stays inside €.
In Figure 3.2, we compare the numerical solutions computed on regular meshes with mesh sizes
h to the Buckley and Leverett analytical solution.
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Figure 3.2.: Numerical solutions computed for multiple choices of the finite volume size h compared
to the Buckley and Leverett analytical solution; ¢ = 1000 s and At/h = 2 s/cm is kept constant.

3.2.2. Benchmark Il : Pure Diffusion in Homogeneous Medium

We use the pure diffusion benchmark problem formulation (2.32) (see Section 2.3) with R =0
(and thus up = 0), Sp = 0.5, and S; = 1.

In the numerical formulation (3.4), we set S = S; = 1 and prescribe the following boundary
conditions. At the inlet (x = 0), we set the Dirichlet boundary condition for ST (¢,0) = Sy = 0.5
and ¥P(t,0) = 0 Pa and at * = 1 m, we impose zero Neumann boundary velocities
uN (t,1) = w2V (¢,1) =0 ms~'. By choosing the final time of the simulation as 7" = 15000 s,
we assure that the air-front stays inside {2 during the simulation. We compute the numerical
solutions on a series of regular meshes with decreasing mesh sizes h and compare them to the
McWhorter and Sunada semi-analytical solution in Figure 3.3.

0.5 T T T
t = 15000 s
T 04 - —— analytical
. .
) numerical,
g 0.3 B h=2cm
§ [ ]]11]\](‘,]'1(":1].
*,-; 0.2 I h=1cm
= numerical,
< 01 m h=1/2cm
0 P I O S N U NN IR B .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance z [m)]

Figure 3.3.: Numerical solution of the pure diffusion McWhorter and Sunada problem in a homo-
geneous porous medium; ¢ = 15000 s and At/h? =4 s/cm? is kept constant.

3.2.3. Benchmark Il : Advection and Diffusion in Homogeneous Medium

We test both advection and diffusion by means of the McWhorter and Sunada problem formu-
lation (2.32) with R = 0.92, Sy = 0.5 and S; = 1. We use (2.48) to compute the McWhorter
and Sunada input flux rate parameter A which, for the selected parameters Sy and R, is
A=153-10"3 ms 2.

In the numerical formulation (3.4), we set S = S; = 1 and prescribe the following boundary
conditions. At the inlet (z = 0), we set the the air and water Neumann boundary velocities to

N (t,0) = At~% and uw (t,0) = (R — 1)At_%, respectively. At the outlet (x = 1 m), we set
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3. Significance of Dynamic Effect in Capillary Pressure

uN(t,1) = RAt™2 ms~! and SP(t,1) = S; = 1. We choose the final time 7' = 1000 s such that
the air-front stays inside (2. We compute the numerical solutions on a series of regular meshes
with decreasing mesh sizes and compare them to the semi-analytical solution in Figure 3.4.
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Figure 3.4.: Numerical solution of the advection—diffusion McWhorter and Sunada problem in
a homogeneous porous medium; ¢ = 1000 s and At/h? = 4 s/cm? is kept constant.

3.2.4. Benchmark IV : Pure Diffusion in Layered Medium

We consider the pure diffusion benchmark problem with a single material discontinuity (2.56)
(see Section 2.4) with R = 0, S/ = 0.3, and S/! = 1 with the problem setup sketched in
Figure 2.2b. We assume that ) is composed of homogeneous subdomains filled with Sands A
and B in Qf = [0,1/2] and Q! = [I/2, 1], respectively, where sand B is finer than sand A. The
sand properties are shown in Table B.2 and B.3 in Appendix B.

In the numerical model (3.4), we set the following initial and boundary conditions. Initially,
Sw(0,2) = 0.3 in Qf and S,(0,z) = 1 in Q1. At x = 0, we prescribe SE(¢,0) = 0.3 and
a constant water pressure wg (t,0) = 0 Pa, while on the other boundary at =z = 1, we set
wN (t,1) = Y (t,1) = 0 ms~'. We compute the numerical solutions on a series of meshes and
compare them to the van Duijn and de Neef semi-analytical solution [28] in Figure 3.5.

I T T
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7 0.6 : - —— analytical
|
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Air saturation S, |
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0.2 = numerical,
[ h=1/1cm
0.1~ _
0 L | |
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Distance x [m]

Figure 3.5.: Numerical solution of the pure diffusion problem in a layered porous medium;
t = 10000 s and At/h? =4 s/cm? is kept constant.

3.2.5. Benchmark V : Advection and Diffusion in Layered Medium

We consider the semi-analytical solution for the diffusion and advection driven flow in a porous
medium with a single material discontinuity (2.56) with R = 0.9, S{ = 0.3, and S/ = 1. We
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3.2. Verification of Numerical Scheme

use the same setup of the domain €2 as in the previous case.

In the numerical model (3.4), we consider the following initial and boundary conditions.
Initially, S,,(0,7) = 0.3 in @/ and S,(0,z) = 1 in Q1. At x = 0, we set SL(¢,0) = 0.3
and ¢P(¢,0) = 0 Pa. The boundary conditions at = 1 read as uﬁ[(t,l) = 0 ms! and
u{\U/(t, 1) = RAt_%, where A = 5.61 - 1074 ms~2. The numerical solutions compared to the
semi-analytical are shown in Figure 3.6.
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Figure 3.6.: Numerical solution of the advection—diffusion problem in a layered porous medium;
t = 1000 s and At/h? =4 s/cm? is kept constant.

3.2.6. Experimental Order of Convergence

For each benchmark solution, we evaluate the experimental order of convergence eoc which
estimates the theoretical order of convergence € of the numerical scheme. The experimental order
of convergence is computed using the L; or Ly norm of the difference between the numerical S;/*™
and the semi-analytical solution S;,* at the final time of the simulation. For numerical solutions
on two regular meshes with mesh sizes h; and ho denoted as Sg“,i? and g“g’;, respectively, we
expect their error norms to be in the form

1Sy = Sl = C ()", (3.35a)
[Stens — Sl = C (h2)", (3.35D)

where C' is some positive constant and k = 1,2. In (3.35) we assume that At oc h and At oc h?
for pure advection and advection-diffusion problems, respectively. Using (3.35), the order of
convergence € is approximated by the experimental order of convergence eocy as

In [|S50 = Su |k — I [[S50 — Su Ik

1Ilh1 — lnhQ ’

e =~ eock(hi, he) = (3.36)
k=1,2.

In Table 3.1, the values of eoc show the convergence rate of the numerical solution towards
the exact solution. These values are typical for a first—order numerical scheme with upwind
technique, [74]. The experimental orders of convergence indicate that the numerical solution
converges to the analytical solution in both homogeneous and heterogeneous benchmarks.

The numerical approximation of the discontinuous fronts is not sharp if the advection term
dominates the flow in Figures 3.2, 3.4, and 3.6. This is due to the upwind technique which
involves excessive numerical diffusion in the numerical scheme.

Figures 3.5 and 3.6 show that the jump in saturations across the interface in the case of the
heterogeneous porous medium is determined correctly.
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3. Significance of Dynamic Effect in Capillary Pressure

eocy €eocy
hi — hg [em)] I 11 11T I\ A% I 11 II1 v Vv
2—1 0.18 0.93 0.68 0.82 0.47 020 0.74 0.34 0.48 0.29

1 —1/2 0.62 093 074 0.89 099|038 0.76 047 0.55 0.58
12 — 1/4 0.77 089 076 091 1.12]0.39 0.66 0.55 0.55 0.67
/4 — 1/8 0.75 088 085 091 1.12|0.36 0.75 0.61 0.56 0.73
1/8 — 1/16 0.80 0.80 0.87 0.92 1.04|0.40 0.74 070 0.55 0.65
/16 —1/32 | 0.83 0.67 0.75 0.96 1.01 | 041 0.64 0.66 0.55 0.64
/32 — 1/6a | 0.85 0.52 0.63 0.96 1.00 | 0.43 0.58 0.72 0.54 0.65

Table 3.1.: Experimental orders of convergence eoc; and eocy computed for Benchmark Problems
I-V in L; and Ly norms, respectively.

3.2.7. Benchmark VI: Barrier Effect Verification

In principle, the benchmark solutions derived by van Duijn and de Neef [28] and Fuéik et al. [10]
cannot simulate the barrier effect described in Section 1.9 because they always require a non-zero
flux of the non-wetting phase across the material interface. In order to verify simulation of the
barrier effect using our numerical scheme, we use the problem formulation described in [58], [57,
page 275]. Here, a non-wetting phase, denoted as DNAPL A (see Table B.1, page 121), displaces
water from an initially fully water-saturated, vertically placed column shown in Figure 3.7. At
the inlet (z = 0), the DNAPL velocity is given as u,(¢,0) = 3.57 - 107° ms~! whereas the
water velocity is zero. At the bottom of the column, the maximal wetting-phase saturation
S, = 1 is prescribed and the water pressure is kept constant at 2-10% Pa. The column consists
of three sand layers and two different sands denoted as Sand D and E; their properties are
given in Tables B.5, respectively. The sharp material interfaces are placed at x = 0.145 m and
x = 0.345 m, see Figure 3.7. The final time of the simulation T' = 1650 s is chosen such that
the DNAPL front stays inside the domain = [0,0.5].

In Figure 3.8, we show numerical results computed on a series of regular meshes with mesh
size h. The presented results agree with the results obtained by the Fully-Upwind Galerkin
method shown in [57, Fig. 5.39, on page 286] and, therefore, the numerical scheme (3.4) treats
the extended capillary pressure condition (1.37) correctly.

3.3. Simulation of Laboratory Experiment

In this section, we use the numerical scheme (3.4) to simulate a drainage laboratory experiment
[106] in order to investigate how the numerical solutions are affected by the use of the dynamic
effect in capillarity in comparison with the experimentally measured data and with numerical
solutions obtained using the standard, static capillary pressure—saturation relationship.

First, we describe the experimental setup and procedure. We also describe the technique that
were used to determine three functional models of the dynamic effect coefficient 7 = 7(S,,) and
summarize other relevant data that will be later used in the numerical simulations as input
parameters. Then, we simulate the drainage flow regime under dynamic conditions using the
measured data and the models for the capillary pressure—saturation relationship under static and
dynamic conditions. As a result, we present and discuss measured and numerically simulated
time evolution of the saturation and capillary pressure.
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Figure 3.7.: Geometric configurations with boundary conditions of a three-layered porous medium
for Benchmark Problem VI (redrawn from [57, Fig. 5.30, on page 275]).
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Figure 3.8.: Numerical solutions of Benchmark Problem VI. The time step At is chosen adaptively.

3.3.1. Description of Experimental Setup

The experiment consisted of a single, vertically placed 10 ¢m long Tempe cell uniformly filled
with a homogeneous field sand from a site Ohji sampled in Tokyo, Japan, [L04], [L05], [L06].
A schematic view of the experimental apparatus is shown in Figure 3.9. The following detailed
description of the apparatus and measurement procedure was provided by Prof. Sakaki (edited):

Two tensiometers were installed in the middle of the sample height (at © =5 cm)
for water pressure measurement. The porous cup was glued to a brass tubing con-
nector that was connected to a pressure transducer. Roughly 2.5 cm of the porous
cup penetrated into the sand sample. Pressure readings from the two tensiometers
were averaged and used as the capillary pressure p. based on the assumption that
air equilibrates to atmospheric faster than the interval over which water pressures
are measured using the pressure transducers. This assumption has been confirmed
in separate experiments using the same experimental procedure and apparatus (e.g.,
porous media, Tempe cell) where both the air and water pressures were quantified
at the column midpoint for a selected subset of experiments conducted in this study
(results not shown). These separate experiments found that the air phase rapidly
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3. Significance of Dynamic Effect in Capillary Pressure

equilibrates to atmospheric pressure at the column midpoint, the measurement loca-
tion. Using a two—phase flow numerical model [1/], it was further confirmed that
the air phase pressure at the column midpoint, when a suction of —80 cm water is
applied at the column midpoint, is less than —0.2 cm water after 2.5 minutes. This
suggests that it is appropriate to assume that the water pressure measured by the two
tensiometers in this study can be considered as the capillary pressure.

A soil moisture sensor was installed in the middle of the sample height to quantify
water saturation. The moisture sensor uses capacitance to measure the apparent
dielectric constant of the surrounding medium. The moisture sensor was installed
with the prongs in a vertical orientation (one on top of the other) to minimize inter-
ferences with the flow path (see Figure 3.9). Under the given sensor configuration,
the sampling volume of the moisture sensor is enclosed within a vertical thickness of
1.0 — 1.5 em [76]. This can be considered to be sufficiently small for the measured
water saturation to be considered a point-value [105], [10/]. The measured water
pressure is representative of the mid slice with a thickness of 0.64 c¢m. Thus, it
is appropriate to assume that the retention curves constructed using the measured
capillary pressure and water saturation values are those at the midpoint in the soil
column.

In these experiments, it was also crucial that measurements of the water pressure
and saturation were made at the same time. The response time of the water pressure
(pressure transducer and porous cups) and saturation measuring systems were tested
and found to respond quickly (on the order of 1 to 2 seconds for the pressure mea-
surement, whereas the soil moisture sensor response was almost instantaneous). It
was thus assumed that the response times were within the necessary tolerance as pres-
sure and saturation were quantified every 15 seconds in both the static and dynamic
experiments.

Finally, the ceramic porous plate at the bottom of the column was replaced by a hy-
drophilic Nylon membrane. The membrane was glued onto a perforated acrylic plate
that has the same dimensions as the porous plate. It was further assumed that po-
tential dynamic effects within the membrane were negligible since the membrane was
initially water-saturated and no change in saturation occurred during the experi-
ment [1/]. The bottom of the column was connected to a constant-head reservoir
whose elevation can be varied. A more detailed description of the modification of the
Tempe cell is provided in [10/].

The Ohji sand is denoted as sand A and its physical properties are given in Table B.2 in
Appendix B. Initially, the column was flushed with water such that no air phase was present
inside. A series of slow drainage steps was carried out in order to determine the capillary
pressure-saturation relationship in equilibrium pz? = pz?(Sy). The fitted Brooks and Corey
model parameters are shown in Table B.2 (page 122). Then, a series of fast drainage and
imbibition experiments was performed and values of the capillary pressure and the air saturation
were measured by probes sensors in the middle of the column. In the primary drainage cycle,
the measured 7 exhibited a dependency on saturation shown in Figure 3.10. Therefore, three
models were fitted and evaluated and their explicit formulae are given in Table B.2, [106].

3.3.2. Numerical Simulation

We use the numerical scheme (3.4) to simulate the experimental setup using a one-dimensional
domain sketched in Figure 3.11, Case 1. We compare the time evolution of the simulated and
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Figure 3.9.: A schematic view of the experimental apparatus. The top boundary was exposed to
the atmosphere through a small hole on the top cap. The bottom boundary was connected to the
constant-head water reservoir. Water pressure was measured with two tensiometers and averaged.
(Provided by Prof. Sakaki, [104], [106].)
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Figure 3.10.: Fitted models of dynamic coefficient 7 (log—scale) to the observed laboratory data
(after Sakaki et al., 2010, [100]).

measured air saturation S, (¢, 5 cm) and capillary pressure p.(t,5 ¢m) in the middle of the column
using the static and dynamic models for the capillary pressure.

Initially, the column is fully water-saturated such that S, (0,2) =1 for all x € (0,1). At the
upper boundary, uﬁ/ (t,0) = 0 ms~! and the air pressure is assumed to be constant and equal
to the atmospheric pressure p,(t,0) = 10° Pa. At the lower boundary, we prescribe the water
outflow wyater (solid line in Figure 3.12) that was measured during the laboratory experiment,
ie., u{l\[ (t,10 em) = Uyqater(t). Due to the presence of the hydrophilic membrane that does not
allow air to penetrate, we set v (£,10 em) = 0 ms~'.

The resulting time evolution of the air saturation .S, and the capillary pressure p. in the
middle of the column are shown in Figure 3.13. In Figure 3.13, the solutions have non-smooth
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Figure 3.11.: A sketch of homogeneous (Case 1) and layered (Cases 2-4) configurations of the
porous medium. In each case, the porous medium is placed vertically and fully water-saturated
Sy =1 at t =0 s. The gravitational acceleration vector g points in the positive z-direction.

shapes but those are caused solely by the non-smoothness of the prescribed flux of water at
x = 10 em. Since the temporal derivative of the air saturation is directly influenced by the given
flux, the non-smoothness is magnified in the values of the dynamic capillary pressure given by
(1.29). This is why the bumps do not appear in the case of the static capillary pressure. In
Figure 3.15, we show profiles of the saturation and capillary pressure at t = 300 s obtained
using the experimentally measured outflow. To assure that the differences among the numerical
solutions with respect to different models of 7(.S,,) are not caused by the non-smoothness of the
prescribed flux, we use a smooth functional approximation of the boundary flux that preserves
the total mass of the effluent water in the form

U rer(t) = 3.7-10 P exp(—=1.7-1073¢) + 7.4 - 1077 [ms™ 1. (3.37)

In Figure 3.12, the measured flux of water is compared to its smooth functional approximation
Uy gter- As shown in Figure 3.14, the numerical solutions computed with w;; ., are smooth alter-
nates to the bumpy shaped solutions in Figure 3.13. Apparently, the bumpiness of the capillary
pressure is not caused by the numerical scheme and the non-smoothness of the prescribed flux
does not affect significantly the overall time evolution of the solutions.

The influence of different models of the dynamic effect coefficient 7 on the numerical solution
of the air saturation S, is negligible (see Figures 3.13 and 3.14). On the other hand, their
influence on the capillary pressure p. is important in cases, where there is a temporal change in
Sy because the time derivative of S, is multiplied by the dynamic effect coefficient 7 in equation
(1.29). Lower parts of Figures 3.13 and 3.14 show time evolution of p. for various models of
T = 7(Sw) compared to the static p. (red line) and also to the laboratory measured values
(black dashed line). The values of p. for the static, linear, and loglinear model of 7 are strictly
increasing in time which agrees to the laboratory measured evolution of p.. However, the values
of p. with the constant model for 7 exhibit different behavior. First at ¢ = 3 min, the value
of p. rapidly jumps to 4800 Pa. Then, it strictly decreases towards the values of the static p..
In the first 10 minutes of the simulation, the saturation .S, in the middle of the column steeply
increases from 0 to 0.25. In Figure 3.10, the linear and exponential models for 7 have more than
one order of magnitude lower values than the constant model for the values of S,, € (0.75,1) that
correspond to S, € (0,0.25). Consequently, the dynamic effect term in (1.29) gives substantially

50



3.3. Simulation of Laboratory Experiment

4%107°

3x107°

2x107°

Air saturation S, [—]

\ I
0 10 20 30 40 50 60 70 80
Time ¢ [min)

measured outflow uyqter — — — — smooth flux uy,,.,

Figure 3.12.: Measured and smoothly approximated water outflow from the column at = = 10 cm.

higher values of 7 for the constant model than for the other models which explains the different
time evolution of p. in Figures 3.13 and 3.14.
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Figure 3.13.: Numerical solutions and measured laboratory values of S;, and p. in the middle of
the column for various models of 7 = 7(5,,). Numerical solutions were obtained with N = 400
nodes, adaptive time stepping strategy, and by using laboratory measured flux (see the solid line
in Figure 3.12) through the lower boundary.
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Figure 3.14.: Numerical solutions and measured laboratory values of S,, and p, in the middle of the
column for various models of 7 = 7(S,,). Numerical solutions were obtained with N = 400 nodes,
adaptive time stepping strategy, and by using smooth flux (see the dashed line in Figure 3.12)

through the lower boundary.
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the differences among the solutions using multiple models of the dynamic coefficient T = 7(.5,,).
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3.3. Simulation of Laboratory Experiment

3.3.3. Dynamic Coefficient Sensitivity Analysis

In order to assure that the different time evolution of p. for the constant model of 7 is caused by
the magnitude of the dynamic effect term in (1.29) only and not by the choice of the functional
dependency of 7 = 7(S,), we present a sensitivity analysis of the numerical solution on the
absolute value of the dynamic effect coeflicient. As in the previous section, we use the numerical
scheme (3.4) to simulate the laboratory experiment using the smoothened water flux w .,
We multiply the three measured dynamic coefficient models by 2, 4, 6, and 8, respectively, and
observe the time evolution of S,, and p, in the middle of the column in Figures 3.16-3.18.

The evolution of the air saturation obtained using the amplified dynamic coefficients 7 are
nearly identical to the results in Figure 3.14 which mimic the experimental conditions and
laboratory determined values. On the other hand, the evolution of the capillary pressure using
the amplified dynamic coefficients exhibits a rapid increase in the beginning of the simulation
(from 0 to 1 minute in Figure 3.16, from 0 to 10 minutes in Figure 3.17, or from 0 to 15 minutes
in Figure 3.18). Then, the capillary pressure decreases smoothly towards the solution obtained
using the static model (the dashed line in Figures 3.16-3.18). The change in monotonicity in
time of p. is observed for all of the considered functional models 7 = 7(5,,) and is directly
proportional to the magnitude of the dynamic effect coefficient. Consequently, the different
time evolution of p. with constant 7 with respect to the linear and exponential models for 7
in Figures 3.13 and 3.14 is due to large values of 7¢ons With respect to 7;, and 7¢;, for high
wetting-phase saturation in Figure 3.10.

While the change in saturation is negligible in Figures 3.13-3.18, the magnitude of the capillary
pressure with the dynamic effect may differ substantially from the static model.
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Figure 3.16.: Numerically simulated evolution of S,, and p. in the middle of the column obtained

using the smooth flux

*

constant model of 7(S.,) = Teonst and its multiples (sensitivity analysis).

water through the lower boundary, N = 400 nodes and adaptive time
stepping strategy. The static capillarity model is compared to the dynamic models of p. with the
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3.4. Numerical Simulations in Layered Medium

3.4. Numerical Simulations in Layered Medium

As described in Section 1.9, the magnitude of the capillary pressure plays a crucial role in the
propagation of fluids across material interfaces, when the non-wetting fluid flows from a coarser
to a finer porous material. In this section, we investigate effects of different dynamic capillary
pressure models on the behavior of the air phase at heterogeneity interfaces. Since no laboratory
experiment involving dynamic capillary pressure is available for such a case, only a numerical
simulation is provided in this section. Similar to the setup of the laboratory experiment in
Section 3.3, we consider a vertically-placed column filled with two different sands (denoted as
I and II). Both sands are separated by a sharp interface in the middle of the column, see Fig-
ure 3.11, Cases 2 and 3. Initially, the column is fully water-saturated. At t = 0, the water starts
to flow out of the column at = 10 ¢m and its flow rate is given by the smooth flux wj ..,
defined by (3.37) because our goal is to mimic the conditions from the laboratory experiment
described in the previous section. In the numerical simulation, we use the same initial and
boundary conditions as in Section 3.3.2, i.e., S, (0,x) = 1 for all z € (0, 1), at the upper bound-
ary, ul (t,0) = 0 ms~" and the air pressure is assumed to be at constant atmospheric pressure
pn(t,0) = 10° Pa, and at the lower boundary, we set w2 (¢£,10 em) = 0 ms~' and prescribe
uN (£,10 ¢m) = Uyarer(t) for Simulation 1 (Section 3.4.1) and w2 (¢,10 em) = 10~* ms~! for
Simulation 2 (Section 3.4.2), respectively.

3.4.1. Simulation 1: Laboratory Measured Sands

There is no known laboratory measured model for the dynamic coefficient 7 for the sand B or
C and the air-water system. However, the Stauffer model 75 g and 75 ¢ given by (1.30) can be
computed for these sands, respectively.

In order to estimate functional models 7 = 7(S5,), we scale the three functional models
obtained in the laboratory experiment by the ratio between the Stauffer models Té and Tél such
that , ,

Ts 7 (Sw)

Tél = (5, VSy. (3.38)
Using this technique, we produced the dynamic effect coefficients 7 = 7(5,,) for the sands B and
C, see Tables B.3 and B.4, respectively.

In Figure 3.19, we show the front position of the air saturation in time for different models
of the dynamic coefficient 7 = 7(S,,). First, the air flows from the fine to the coarse sand
(Figures 3.19a and 3.19¢) and then, we consider the opposite configuration (Figures 3.19b and
3.19d), where the barrier effect is simulated. The barrier effect, modelled by the Brooks and
Corey model (1.23) and the extended capillary pressure condition (1.39) for the capillary pressure
Pe, implies that the non-wetting fluid (air) cannot enter the finer sand unless its capillary pressure
at the interface is higher than the entry pressure pg of the finer sand. In all cases, the use of
the linear model of 7 = 7(S,,) causes faster propagation of the air front in the porous media
whereas the exponential model does not influence the speed substantially with respect to the use
of the static capillary pressure. The constant model of 7 = 7(.S,,) exhibited a different behavior
in different situations. In Figure 3.19a and 3.19b, for instance, the solution obtained with
constant 7 has a substantially slower front propagation than other solutions. We believe that
this is because the constant model overestimates the dynamic coefficient for high wetting-phase
saturation S, (see Figure 3.10).

The delay of the non-wetting phase at the interface due to barrier effect differs when various
configurations of sands are used. In the case of sand B with lower entry pressure than sand C
(Figure 3.19b), the time required to penetrate the finer medium is generally smaller when using
the dynamic models of capillarity than in the case of the static capillary pressure. However, in
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Figure 3.19.: Time evolution of the front position of the air saturation. Note that both sands B
and C are finer than sand A. Therefore, figures (b) and (d) shows situations where the barrier
effect is simulated: Simulation 1.
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