
Mainframe Assembler
Mini-Reference

Instruction Formats
Note: In the following, only some 32-bit
unprivileged instructions of zArchitecture are
described. So register refers to low 32-bit
portions of 64-bit general zArchitecture
registers. Also, certain special cases are
omitted for simplicity.

Byte
Fmt 1 2 3 4 5 6

I Op I1
RR Op R1 R2

RI Op R1 Op I2

RS
Op R1 R3 B2 D2

Op R1 M3 B2 D2

RX Op R1 X2 B2 D2

S Op B1 D1

SI Op I2 B1 D1

SS
Op L B1 D1 B2 D2

Op L1 L2 B1 D1 B2 D2

The values L1, L2 and L are stored by
assembler in the machine instruction
decremented by 1 (except if the value is 0). In
descriptions we refer to the value as written
in the assembler instruction, before
decrementing.

Effective address of form D1(B1) or D1(X1,B1)
is calculated: value of register B1 (take 0 if

B1=0 or missing) + value of register X1 (take 0
if X1=0 or missing) + displacement D1 (12-bit
constant in range 0..4095).

Condition code (bits 18-19 in PSW) changes
are usually as follows:
Arithmetic - 0 if result is zero, 1 if result is
negative (highest bit set), 2 if result is
positive (highest bit not set), in some cases 3
if there was overflow during operation;
Logical - 0 if result is zero, 1 if result is not
zero;
Comparison - 0 if operands equal, 1 if first is
strictly lower, 2 if first is strictly greater;

Instructions that work with even/odd register
pairs almost always require the specified
register to be even. If a 64-bit value is formed
from a register pair, the even (lower) register
is used as higher 32 bit portion and the odd
(higher) register is used as lower 32 bit
portion.

Load/Store Instructions
IC R1,D2(X2,B2) [43,RX]
Copy byte at address D2(X2,B2) to lowest byte
of register R1. Other bytes of R1 are
unchanged. CC: no change.
ICM R1,M3,D2(B2) [BF,RS]
Insert consecutive bytes from address D2(B2)
into register R1 depending on 4-bit mask M3.
For each 1 in mask, a byte is read from
memory and copied at the corresponding
location in the register. For each 0 in mask, no
memory is read and the corresponding byte in
register is unchanged. CC: arithmetic by value
of the selected bytes as a signed integer.
L R1,D2(X2,B2) [58,RX]
Load full-word from address D2(X2,B2) into
register R1. CC: no change.

LA R1,D2(X2,B2) [41,RX]
Load effective address D2(X2,B2) into register
R1. The unused high bits of the address
(depends on addressing mode) are cleared.
Doesn't access memory nor check the
address! CC: no change.
LCR R1,R2 [13,RR]
Load signed value in register R2 into register
R1 with opposite sign (change sign). CC:
arithmetic, 3 on overflow.
LH R1,D2(X2,B2) [48,RX]
Load signed half-word from address D2(X2,B2)
into register R1 (and extend the sign). CC: no
change.
LHI R1,I2 [A78,RI]
Load signed half-word I2 into register R1 (and
extend the sign). CC: no change.
LM R1,R3,D2(B2) [98,RS]
Load values into several registers numbered
R1 through R3 inclusive from subsequent full-
words starting at address D2(B2). CC: no
change.
LNR R1,R2 [11,RR]
Load signed value in register R2 into register
R1 with negative sign. CC: arithmetic.
LPR R1,R2 [10,RR]
Load signed value in register R2 into register
R1 with positive sign (absolute value). CC:
arithmetic, 3 on overflow.
LR R1,R2 [18,RR]
Load value in register R2 into register R1. CC:
no change.
LTR R1,R2 [12,RR]
Load value in register R2 into register R1. CC:
arithmetic by the value.
MVC D1(L,B1),D2(B2) [D2,SS]
Copy L (up to 256) consecutive bytes of
memory from address D2(B2) to address
D1(B1). The operation is done byte-wise from
lower addresses, and the areas may overlap.

CC: no change.
MVCL R1,R2 [0E,RR]
Copy or fill consecutive bytes of memory.
Uses even-odd register pairs R1, R1+1, R2,
R2+1 as follows:

R1 - lowest address of target area
R1+1 - 24-bit length of target area
R2 - lowest address of source area
R2+1 - 24-bit length of source area,

highest byte is fill character
The amount of bytes copied is given by lower
length, and then the target area is filled with
fill character up to the specified length. The
registers used are changed like the move
were done byte by byte. CC: comparison of
lengths, 3 if areas overlap.
MVI D1(B1),I2 [92,SI]
Store byte I2 to address D1(B1). CC: no change.
ST R1,D2(X2,B2) [50,RX]
Store full-word in register R1 to address
D2(X2,B2). CC: no change.
STC R1,D2(X2,B2) [42,RX]
Store lowest byte in register R1 to address
D2(X2,B2). CC: no change.
STCM R1,M3,D2(B2) [BE,RS]
Store selected bytes in register R1 to address
D2(B2) depending on 4-bit mask M3. Selected
bytes are stored consecutively in memory. For
each 1 in mask, the corresponding byte is
read from register and copied into memory.
For each 0 in mask, no store is done. CC: no
change.
STH R1,D2(X2,B2) [40,RX]
Store lower half-word in register R1 to address
D2(X2,B2). CC: no change.
STM R1,R3,D2(B2) [90,RS]
Store values of several registers numbered R1

through R3 inclusive to subsequent full-words
starting at address D2(B2). CC: no change.

Arithmetic Instructions
A R1,D2(X2,B2) [5A,RX]
Add signed full-word at address D2(X2,B2) to
value in register R1. CC: arithmetic, 3 on
overflow.
AH R1,D2(X2,B2) [4A,RX]
Add signed half-word at address D2(X2,B2) to
value in register R1. CC: arithmetic, 3 on
overflow.
AHI R1,I2 [A7A,RI]
Add signed half-word constant I2 to value in
register R1. To subtract a constant, use
negative value. CC: arithmetic, 3 on overflow.
AL R1,D2(X2,B2) [5E,RX]
Add unsigned full-word at address D2(X2,B2) to
unsigned value in register R1. CC: low bit of
CC is set if the result is nonzero, high bit of CC
is set if there was overflow (carry).
ALR R1,R2 [1E,RR]
Add unsigned value in register R2 to
unsigned value in register R1. CC: same as AL
instruction.
AR R1,R2 [1A,RR]
Add signed value in register R2 to value in
register R1. CC: arithmetic, 3 on overflow.
C R1,D2(X2,B2) [59,RX]
Compare signed full-word at address D2(X2,B2)
to value in register R1. Doesn't change
anything. CC: comparison.
CH R1,D2(X2,B2) [49,RX]
Compare signed half-word at address
D2(X2,B2) to value in register R1. Doesn't
change anything. CC: comparison.
CR R1,R2 [19,RR]
Compare signed value in register R2 to value
in register R1. Doesn't change anything. CC:
comparison.
D R1,D2(X2,B2) [5D,RX]
Integer division. Dividend is 64-bit value

formed from values in even-odd register pair
R1, R1+1. Divisor is signed full-word from
address D2(X2,B2). The resulting quotient is
stored in register R1+1 and the remainder in
register R1. May cause fixed-point divide
exception if divisor is 0 or quotient is not
small enough.
CC: no change.
DR R1,R2 [1D,RR]
Integer division, works almost same as D
instruction, except the divisor is value in
register R2. CC: no change.
M R1,D2(X2,B2) [5C,RX]
Multiplication. The multiplicand is value in
register R1+1 and the multiplier is full-word at
address D2(X2,B2). The result is a 64-bit signed
value stored into even-odd register pair R1,
R1+1. The value in register R1 doesn't affect
the result! CC: no change.
MH R1,D2(X2,B2) [4C,RX]
Multiply signed value in register R1 by signed
half-word at address D2(X2,B2). The result is
stored in R1, overflow is ignored. CC: no
change.
MHI R1,I2 [A7C,RI]
Multiply signed value in register R1 by signed
half-word constant I2. The result is stored in
R1, overflow is ignored. CC: no change.
MR R1,R2 [1C,RR]
Multiplication, works almost same as M
instruction, except the multiplier is value in
register R2 (can be one of the registers in the
even-odd register pair specified by R1). CC: no
change.
S R1,D2(X2,B2) [5B,RX]
Subtract signed full-word at address D2(X2,B2)
from value in register R1. CC: arithmetic, 3 on
overflow.
SH R1,D2(X2,B2) [4B,RX]
Subtract signed half-word at address D2(X2,B2)

from value in register R1. CC: arithmetic, 3 on
overflow.
SL R1,D2(X2,B2) [5F,RX]
Subtract unsigned full-word at address
D2(X2,B2) from unsigned value in register R1.
CC: low bit of CC is set if the result is nonzero,
high bit of CC is not set if there was underflow
(borrow).
SLR R1,R2 [1F,RR]
Subtract unsigned value in register R2 from
unsigned value in register R1. CC: same as SL
instruction.
SR R1,R2 [1B,RR]
Subtract signed value in register R2 from
value in register R1. CC: arithmetic, 3 on
overflow.

Logical Instructions
CL R1,D2(X2,B2) [55,RX]
Compare unsigned full-word at address
D2(X2,B2) to unsigned value in register R1.
Doesn't change anything. CC: comparison.
CLC D1(L,B1),D2(B2) [D5,SS]
Compare L (up to 256) consecutive bytes of
memory areas at addresses D1(B1) and D2(B2).
The operation is done byte-wise from lower
addresses (lexicographic comparison). CC:
unsigned comparison of the first differing byte
values, 0 if areas are equal.
CLCL R1,R2 [0F,RR]
Compare two memory areas. Uses even-odd
register pairs R1, R1+1, R2, R2+1 as follows:

R1 - lowest address of first area
R1+1 - 24-bit length of first area
R2 - lowest address of second area
R2+1 - 24-bit length of second area,

highest byte is fill character
The amount of bytes compared is given by
higher length (the shorter area is extended
with fill character). The registers used are

changed like the comparison was done byte
by byte, until differing bytes are encountered.
CC: unsigned comparison of the first differing
bytes, 0 if areas are equal.
CLI D1(B1),I2 [95,SI]
Compare unsigned byte at address D1(B1) with
unsigned byte I2. CC: comparison.
CLM R1,M3,D2(B2) [BD,RS]
Compare selected bytes in register R1 to
consecutive bytes at address D2(B2)
depending on 4-bit mask M3. For each 1 in
mask, the corresponding byte is compared
with a byte in memory (and memory pointer
incremented for next byte). For each 0 in
mask, no comparison is done. CC: unsigned
comparison of the first differing byte selected
by mask, 0 if all selected bytes are equal.
CLR R1,R2 [15,RR]
Compare unsigned value in register R2 to
unsigned value in register R1. Doesn't change
anything. CC: comparison.
N R1,D2(X2,B2) [54,RX]
Logically AND register R1 with full-word at
address D2(X2,B2). CC: logical.
NC D1(L,B1),D2(B2) [D4,SS]
Logically AND L (up to 256) consecutive bytes
of memory at address D1(B1) with L
consecutive bytes of memory at address
D2(B2). The operation is done byte-wise from
lower addresses, and the areas may overlap.
CC: 0 if all bytes are zero, 1 otherwise.
NI D1(B1),I2 [94,SI]
Logically AND byte at address D1(B1) with
constant byte I2. CC: logical.
NR R1,R2 [14,RR]
Logically AND register R1 with register R2. CC:
logical.
O R1,D2(X2,B2) [56,RX]
Logically OR register R1 with full-word at
address D2(X2,B2). CC: logical.

OC D1(L,B1),D2(B2) [D6,SS]
Logically OR L (up to 256) consecutive bytes
of memory at address D1(B1) with L
consecutive bytes of memory at address
D2(B2). The operation is done byte-wise from
lower addresses, and the areas may overlap.
CC: 0 if all bytes are zero, 1 otherwise.
OI D1(B1),I2 [96,SI]
Logically OR byte at address D1(B1) with
constant byte I2. CC: logical.
OR R1,R2 [16,RR]
Logically OR register R1 with register R2. CC:
logical.
SLA R1,D2(B2) [8B,RS]
Shift the bits of register R1 to the left
arithmetically (protect the sign bit). The
amount to be shifted is given by low 6 bits of
effective address D2(B2). CC: arithmetic.
SLDA R1,D2(B2) [8F,RS]
Shift the bits of signed 64-bit value formed
from even-odd register pair R1, R1+1 to the
left arithmetically (protect the sign). The
amount to be shifted is given by low 6 bits of
effective address D2(B2). CC: arithmetic of the
64-bit value.
SLDL R1,D2(B2) [8D,RS]
Shift the bits of 64-bit value formed from
even-odd register pair R1, R1+1 to the left.
The amount to be shifted is given by low 6
bits of effective address D2(B2). CC: no
change.
SLL R1,D2(B2) [89,RS]
Shift the bits of register R1 to the left. The
amount to be shifted is given by low 6 bits of
effective address D2(B2). CC: no change.
SRA R1,D2(B2) [8A,RS]
Shift the bits of register R1 to the right
arithmetically (extend the sign bit). The
amount to be shifted is given by low 6 bits of
effective address D2(B2). CC: arithmetic.

SRDAR1,D2(B2) [8E,RS]
Shift the bits of signed 64-bit value formed
from even-odd register pair R1, R1+1 to the
right arithmetically (extend the sign). The
amount to be shifted is given by low 6 bits of
effective address D2(B2). CC: arithmetic of the
64-bit value.
SRDL R1,D2(B2) [8C,RS]
Shift the bits of 64-bit value formed from
even-odd register pair R1, R1+1 to the right.
The amount to be shifted is given by low 6
bits of effective address D2(B2). CC: no
change.
SRL R1,D2(B2) [88,RS]
Shift the bits of register R1 to the right. The
amount to be shifted is given by low 6 bits of
effective address D2(B2). CC: no change.
TM D1(B1),I2 [91,SI]
Test the bits of byte at address D1(B1)
according to mask byte I2. Only the bits which
have corresponding bit set in the mask are
tested. CC: 0 if tested bits are all zero, 1 if
tested bits are mixed (some zero, some one),
2 if tested bits are all one.
X R1,D2(X2,B2) [57,RX]
Logically XOR register R1 with full-word at
address D2(X2,B2). CC: logical.
XC D1(L,B1),D2(B2) [D7,SS]
Logically XOR L (up to 256) consecutive bytes
of memory at address D1(B1) with L
consecutive bytes of memory at address
D2(B2). The operation is done byte-wise from
lower addresses, and the areas may overlap.
CC: 0 if all bytes are zero, 1 otherwise.
XI D1(B1),I2 [97,SI]
Logically XOR byte at address D1(B1) with
constant byte I2. CC: logical.
XR R1,R2 [17,RR]
Logically XOR register R1 with register R2. CC:
logical.

Branch Instructions
BAL R1,D2(X2,B2) [45,RX]
Store the address of the next instruction (from
PSW) into register R1 and then branch to
address D2(X2,B2). Depending on addressing
mode, unused high bits of address stored into
R1 will contain other information from PSW.
CC: no change.
BALR R1,R2 [05,RR]
Similar to the BAL instruction, except the
address of branch is taken from register R2

(but when R2 is zero, no branch is taken).
BAS R1,D2(X2,B2) [4D,RX]
Store the address of the next instruction (from
PSW) into register R1 and then branch to
address D2(X2,B2). Unlike in BAL instruction,
unused high bits of the address (depending
on addressing mode) are cleared. CC: no
change.
BASR R1,R2 [0D,RR]
Similar to the BAS instruction, except the
address of branch is taken from register R2

(but when R2 is zero, no branch is taken).
BC M1,D2(X2,B2) [47,RX]
Branch to address D2(X2,B2) depending on
current condition code and 4-bit mask M1.
Each bit of mask corresponds to possible
value of CC. The branch is taken if the bit of
the mask corresponding to the current value
of condition code is set. Assembler provides
additional mnemonics for various common
mask types. CC: no change.
BCR M1,R2 [07,RR]
Similar to the BC instruction, except the
address of branch is taken from register R2

(but when R2 is zero, no branch is taken).
BCT R1,D2(X2,B2) [46,RX]
Decrement value in register R1. If the result is
not zero, branch to address D2(X2,B2). CC: no
change.

BCTR R1,R2 [06,RR]
Similar to the BCT instruction, except the
address of branch is taken from register R2

(but when R2 is zero, no branch is taken).
BXH R1,R3,D2(B2) [86,RS]
Add value from register R3 (should denote
even-odd register pair) to register R1. The
result is then compared to register R3+1 and
if it is higher, branch is taken to address
D2(B2). Usually used to loop over a table
backwards, so registers are set as follows:

R1 - address of last/current entry
R3 - negative length of table entry
R3+1 - address of table minus one

CC: no change.
BXLE R1,R3,D2(B2) [87,RS]
Add value from register R3 (should denote
even-odd register pair) to register R1. The
result is then compared to register R3+1 and
if it is less or equal, branch is taken to
address D2(B2). Usually used to loop over a
table, so registers are set as follows:

R1 - address of first/current entry
R3 - length of table entry
R3+1 - address of last entry in table

CC: no change.

Decimal Instructions
Packed decimal numbers have 1-31 decimal
digits. Each digit is stored in 4 bits, and last 4
bits of packed number is a sign - either C
(positive), D (negative) or F (positive). Packed
decimal of length k bytes has 2*k-1 digits.
The length of number (in bytes) is included
with the instruction. If the packed decimal has
incorrect sign bits, it is invalid!

AP D1(L1,B1),D2(L2,B2) [FA,SS]
Add packed decimal number at address D2(B2)
(of length L2 bytes) to packed decimal number

at address D1(B1) (of length L1 bytes). CC:
arithmetic, 3 on overflow.
CP D1(L1,B1),D2(L2,B2) [F9,SS]
Compare packed decimal number at address
D2(B2) (of length L2 bytes) to packed decimal
number at address D1(B1) (of length L1 bytes).
CC: comparison.
CVB R1,D2(X2,B2) [4F,RX]
Convert packed decimal number at address
D2(X2,B2) (of length 8 bytes) to signed binary
integer into register R1. CC: no change.
CVD R1,D2(X2,B2) [4E,RX]
Convert signed binary integer in register R1 to
packed decimal number at address D2(X2,B2)
(of length 8 bytes). CC: no change.
DP D1(L1,B1),D2(L2,B2) [FD,SS]
Decimal integer division. Dividend is packed
decimal number at address D1(B1) (of length
L1 bytes) and divisor is packed decimal
number at address D2(B2) (of length L2 bytes).
The resulting quotient is stored as a packed
decimal from address D1(B1) and has length
L1-L2, and the resulting remainder is stored
next as a packed decimal of length L2 (so the
result is in place of original dividend). The
following conditions must hold: L1<=16,
L2<=8, L2<L1. CC: no change.
ED D1(L,B1),D2(B2) [DE,SS]
Format packed decimal number at address
D2(B2) according to mask at address D1(B1) (of
length L1 bytes). The mask is modified byte-
wise from left, and the packed number is read
digit-wise from left. First byte of the mask is
fill byte (unchanged). During execution, there
is binary internal state SS - “significance
start”, 0 at the start. The interpretation of
mask bytes is as follows:
X'20' - digit select - a digit from the packed
decimal number is consumed; if the digit is
zero and SS=0, fill character is printed into

mask, otherwise the digit character is
printed; if the last digit is consumed, SS is set
depending on sign half-byte (0 for +, 1 for -)
X'21' - digit select with significance start - like
digit select, but set SS=1 for the next digit
(unless this was last)
X'22' - field separator
other - skipped if SS=1, replaced by fill
character if SS=0
CC: roughly arithmetic by number edited.
EDMK D1(L,B1),D2(B2) [DF,SS]
Similar to the ED instruction, but will store
address of first significant digit into register 1.
If SS stays 0 or was forced by X'21', register 1
is unchanged. CC: like ED instruction.
MP D1(L1,B1),D2(L2,B2) [FC,SS]
Multiply packed decimal number at address
D1(B1) (of length L1 bytes) by packed decimal
number at address D2(B2) (of length L2 bytes).
The following conditions must hold: L2<=8,
L2<L1, the first operand must have at least L2

leftmost zero bytes. CC: no change.
MVN D1(L,B1),D2(B2) [D1,SS]
Copy low half-bytes (numeric fields) of L (up
to 256) consecutive bytes of memory from
address D1(B1) to address D2(B2). The
operation is done byte-wise from lower
addresses, and the areas may overlap. High
half-bytes in target area are not changed.
CC: no change.
MVO D1(L1,B1),D2(L2,B2) [F1,SS]
Copy half-bytes from source area at address
D2(B2) (of length L2 bytes) to target area at
address D1(B1) (of length L1 bytes), going from
right, but the source data are stored shifted
half-byte to the left (so the last half-byte of
target area is unchanged). The remaining left
half-bytes of target area are zeroed. CC: no
change.
MVZ D1(L,B1),D2(B2) [D3,SS]

Copy high half-bytes (zone fields) of L (up to
256) consecutive bytes of memory from
address D1(B1) to address D2(B2). The
operation is done byte-wise from lower
addresses, and the areas may overlap. Low
half-bytes in target area are not changed.
CC: no change.
PACK D1(L1,B1),D2(L2,B2) [F2,SS]
Convert zoned decimal number (characters)
at address D2(B2) (of length L2 bytes) to
packed decimal number at address D1(B1) (of
length L1 bytes). Zoned number is processed
byte-wise from right. The rightmost 2 half-
bytes of zoned number are stored swapped
into the rightmost byte of packed number.
Then, from each byte of zoned number, lower
half-byte is put as a digit into the packed
number (going from right), until either of
them is exhausted. The remaining of the
packed number is zeroed. There is no check if
the numbers are in correct format, it just
rearranges the half-bytes. CC: no change.
SP D1(L1,B1),D2(L2,B2) [FB,SS]
Subtract packed decimal number at address
D2(B2) (of length L2 bytes) from packed
decimal number at address D1(B1) (of length
L1 bytes). CC: arithmetic, 3 on overflow.
SRP D1(L1,B1),D2(B2),I3 [F0,SS]
Shift digits of (and round) packed number at
address D1(B1) (of length L1 bytes). The
amount to shift to the left is given by low 6
bits of effective address D2(B2), interpreted as
signed number (so negative values shift to
right). Shift to left will insert 0 digits from
right. After shift to right, low 4 bits of I3 are
added to the leftmost lost digit, which
accomplishes rounding of the result:

 I3=0 to round down
 I3=5 to round normally
 I3=9 to round up

CC: arithmetic, 3 on overflow.

UNPK D1(L1,B1),D2(L2,B2) [F3,SS]
Convert packed decimal number at address
D2(B2) (of length L2 bytes) to zoned decimal
number at address D1(B1) (of length L1 bytes).
Packed number is processed digit-wise from
right. The rightmost 2 half-bytes of packed
number are stored swapped into the
rightmost byte of zoned number. Then, from
each digit d of packed number, byte x'Fd' is
put as a digit into the zoned number (going
from right), until either of them is exhausted.
The remainder of the zoned number is filled
with x'F0'. There is no check if the numbers
are in correct format, it just rearranges the
half-bytes. CC: no change.
ZAP D1(L1,B1),D2(L2,B2) [F8,SS]
Set packed decimal number at address D1(B1)
(of length L1 bytes) to 0 and then add packed
decimal number from address D2(B2) (of
length L2 bytes) to it. So it in fact just moves
the 2nd packed number (correcting length).
CC: arithmetic.

Special Instructions
CDS R1,R3,D2(B2) [BB,RS]
Similar to the CS instruction, but with double-
words. The R1 and R3 both denote an even-
odd register pair, and address D2(B2) is a
double-word in memory.
CS R1,R3,D2(B2) [BA,RS]
Compare the value in R1 to full-word at
address D2(B2). If equal, store full-word in
register R3 to address D2(B2) and set CC=0. If
not equal, load full-word from address D2(B2)
into register R1 and set CC=1. The instruction
is atomic and can be used for processor
synchronization.
EX R1,D2(X2,B2) [44,RX]
Fetch an instruction from address D2(X2,B2)
(must be even) and then logically OR the 2nd

byte (usually length specifier) of the
instruction with the lowest byte of register R1

and execute the resulting instruction. The
execution then continues normally with the
next instruction after EX (unless the executed
instruction altered PSW). Doesn't alter the
instruction in memory in any way. CC:
depends on target instruction.
STCK D1(B1) [B205,S]
Store current value of machine TOD clock to
address D1(B1). The TOD clock value has 64
bits, and represents time since 00:00:00 AM
of 1st January 1900. Bit 51 has resolution 1
microsecond, and bit 31 (lowest bit of the first
full-word) has resolution 1.048576 seconds.
CC: 0 if value stored was valid.
SVC I1 [0A,I]
Supervisor call - invoke an operating system
service number I1 (0-255). The current PSW is
saved, and another PSW is retrieved instead
from system location. Anything can be
changed upon return, depends on the service
routine. In z/OS, SVCs 0-127 are reserved for
the system, while SVCs128-255 can be
defined by installation or other programs.
Usually, registers 0,1,14,15 are used to pass
parameters to and from SVC routines.
TR D1(L,B1),D2(B2) [DC,SS]
Translate memory area at address D1(B1) (of
length L, max. 256) using 256-byte
translation table at address D2(B2). Each byte
in the memory area is used as an index to the
translation table and replaced by the value
there. CC: no change.
TRT D1(L,B1),D2(B2) [DD,SS]
Examine each byte (from left to right) of
memory area at address D1(B1) (of length L,
max. 256) using 256-byte translation table at
address D2(B2). Each byte from the examined
area is index to the translation table. If the

value in the translation table is not 0, then
the current address into the examined area is
stored into register 1, the value of translated
byte is inserted into lowest byte of register 2
and no more bytes from the area will be
examined. CC: 0 if all bytes have translated to
0, 1 if we translated to nonzero and there are
still bytes remaining to be examined, 2 if we
translated to nonzero and no bytes remained
to be examined.
TS D1(B1) [93,S]
Set CC with the value of leftmost bit of byte at
address D1(B1), then set the byte with x'FF'.
The instruction is atomic and can be used to
obtain a lock.

Branch Mnemonics
Assembler provides additional mnemonic for
BC instructions:
Mnemonic Equivalent Condition
B addr BC 15,addr Always
NOP addr BC 0,addr Never
BE addr BC 8,addr Op1 = Op2
BNE addr BC 7,addr Op1 != Op2
BL addr BC 4,addr Op1 < Op2
BNL addr BC 11,addr Op1 >= Op2
BH addr BC 2,addr Op1 > Op2
BHL addr BC 13,addr Op1 <= Op2
BZ addr BC 8,addr Result = 0 (or all

bits zeros in TM)
BNZ addr BC 7,addr Result != 0 (or not

all bits zeros in TM)
BM addr BC 4,addr Result < 0 (or bits

mixed in TM)
BNM addr BC 11,addr Result >= 0 (or bits

not mixed in TM)

BP addr BC 2,addr Result > 0
BNP addr BC 13,addr Result <= 0
BO addr BC 1,addr Overflow (or all bits

ones in TM)
BNO addr BC 14,addr Not overflow (or not

all bits ones in TM)
Similar mnemonics exists for BCR instruction
(just add 'R').

Assembler Data Types
Spec Type Length Align Notes
A(...) Address

expression
4 (1-4) 4 Absolute or

relocatable
B'...' Binary

integer
any
(1-256)

1 Binary,
pads 0s left

C'...' Character
string

any
(1-256)

1 Pads blanks
right

D'...' Long float 8 8
F'...' Full-word 4 4 Decimal int
FD'...' Double-word 8 8 Decimal int
H'...' Half-word 2 2 Decimal int
P'...' Packed

decimal
any
(1-16)

1 Decimal,
pads 0s left

S(...) Base reg. +
displacem.

2 2 Address
operand

V(...) External
address

4 (1-4) 4

X'...' Hex integer any
(1-256)

1 Hex, pads
0s left

Y(...) Address
expression

2 (1-2) 2

Z'...' Zoned
decimal

any
(1-16)

1 Decimal,
Pads 0s left

Assembler Instructions
label AMODE [24|31|64|ANY]
Set addressing mode attribute of section
starting at label.
label CSECT
Start a new control section named label.
label DC [r]type[Llen]value
Define data constant. Type of constant is
given by type type (see table). Default length
can be changed to len. Converts value to
appropriate representation and stores it
within the program (advancing location
counter). The expression will be repeated r
times.
label DS [r]type[Llen][value]
Define space for data. Type of constant is
given by type type (see table). Default length
can be changed to len. Discards the actual
value, only advances location counter by its
length. The expression will be repeated r
times.
label DSECT
Start a new dummy section named label.

DROP [reg|label],...
Undefine previous USING instruction. Operand
is either register reg currently used as a base
or label of previous USING (if it was labeled,
then you must use the label). More than one
registers/labels to drop can be specified at
once.

EJECT
Start printing a new page in the listing.

END
End of assembly.
label EQU addr[,len]
Associate an address expression (absolute or
relocatable) addr, and optionally length len,
with symbol label.

LTORG

Force generation of literal pool. Normally,
literal pool is generated at the end of section.

ORG [addr]
Change the current location counter to point
to relocatable address expression addr. If
addr is omitted, change the value of location
counter behind the last generated location.

POP [PRINT|USING][,NOPRINT]
Restore the PRINT or USING status from the
stack.

PRINT ops,...[,NOPRINT]
Select which statements will be printed into
the listing, where ops is comma delimited list
of operands, can be: ON, OFF, [NO]GEN,
[NO]DATA, [NO]MCALL.

PUSH [PRINT|USING][,NOPRINT]
Save the PRINT or USING status to stack.

RMODE [24|31|ANY]
Set residence mode attribute of section
starting at label.

SPACE
Print a space in the listing.

TITLE 'string'
Change the page header in listing to string.
label USING base,reg[,reg..]
Define to assembler that register reg will
contain address base (which may be a name
of a section) and can be used as base register
when resolving symbols to addresses. More
than one register can be specified, then they
are assumed to be incremented by 4K with
respect to the previous one. If label is
specified, then same symbol in two
overlapping USING ranges can be resolved
using the label.symbol notation.
label USING base,addr
Define dependent using. The symbols starting
from the address base (which may be a name
of a section) will be resolved to addresses by
means that addr is resolved.

z/OS Call Conventions
Standard save area (18 words):
+0 Unused
+4 Previous SA (up)
+8 Next SA (down)
+12 Return address (R14)
+16 Entry point (R15)
+20 Register R0
+24 Register R1
… other registers
+68 Register R12
Typical register usage:
R0 – additional value on exit
R1 – address of parameter list on entry
R13 – address of save area provided for
subroutine
R14 – return address
R15 – entry point address on entry, return
code on exit
Typical entry code:
SUB CSECT

STM R14,R12,12(R13)
BASR R12,0
USING *,12
LA R2,SAVEAREA
ST R2,8(,R13)
ST R13,4(,R2)
LR R13,R2
...

SAVEAREA DS 18F
Typical exit code:

...
L R13,4(,R13)
L R14,12(,R13)
LM R0,R12,20(R13)
BR R14

Typical call code:
LA R1,PLIST
L R15,ASUB
BASR R14,R15
...

ASUB DC V(SUB)
PLIST DC A(PARM1)

DC A(PARM2)
...
DC A(PARMN+X'80000000')

Common z/OS Macros
Note: Many parameters and options are
omitted, only the most common are listed.
Usually, where macros expect an address, you
can also use register 2-12 in parentheses
(macros use LA to get the address).
ABEND compcode,[DUMP],[STEP]
Abend current task (or job step if STEP is
specified) with user ABEND code compcode
(value 0-4095), and take a dump if DUMP is
specified.
CALL entry,(addr,...),[VL]
Call a subroutine at entry (symbol or register
(15)). The addr is one or more addresses
(symbols) that will be referenced from the
parameter list created before call. If VL is
coded, then last address of parameter list will
have highest bit set (end of list).
CLOSE (dcb)
Close open DCB at address dcb.
DCB DDNAME=ddname,

MACRF=[P|G][M|L],
DSORG=PS,RECFM=recfm,
LRECL=lrecl,BLKSIZE=blksize,
EODAD=eodad

Generate DCB (data control block) for a
sequential dataset (QSAM). The ddname is a
string used as DD name. The MACRF denotes
macros being used - either GET or PUT in

move or locate mode. Parameters recfm, lrecl
and blksize are same as in JCL. The eodad
parameter is address where the branch is
made if the EOF is encountered during GET.
GET dcb[,area]
Read an input record from the open DCB at
address dcb. In move mode, copy the record
to address area. In locate mode, return the
address of the record read in register 1.
OPEN (dcb,([INPUT|OUTPUT]))
Open DCB at address dcb for input or output,
as specified. The unspecified parameters in
DCB are filled first from the JCL and then from
dataset attributes.
PUT dcb[,area]
Write a record into the open DCB at address
dcb. In move mode, write an output record
from address area. In locate mode, return in
register 1 address where the next output
record should be written.
RETURN (reg1,reg2),[T],RC=rc
Return from a subroutine. Restore registers
reg1 through reg2 from save area (in R13)
and branch to address in register R14
(return). If T is coded, the save area is marked
as used. If RC is coded, return code rc is
stored in R15 upon return.
SAVE (reg1,reg2),[T],'identifier'
Save registers reg1 through reg2 into the
save area (in R13) upon entry to the
subroutine. If T is coded, R14 and R15 will
also be saved. The subroutine will have
identifier string in its header.
STORAGE OBTAIN,LENGTH=len

[,ADDR=addr][,LOC=24]
Obtain block of memory of length len (symbol
or register (0),(2)-(12)) from the system.
Returns address of memory to address addr
(symbol or register (1)-(12), default register
1). If LOC=24 is coded, the memory is

allocated under line, otherwise it is allocated
depending on program residency.
STORAGE RELEASE,LENGTH=len,

ADDR=addr
Release storage at address addr (symbol or
register (1)-(12)) of length len (symbol or
register (0),(2)-(12)) back to the system.
YREGS ,
Define register equates (so one can write R0
instead of 0 and so on).

Common z/OS ABEND Codes
S0C1 Program Check - Operation
Exception:
The processor's PSW is addressing a byte of
storage that is NOT a valid "opcode". Likely
reasons: (1) you have placed data in the path
of execution, (2) you have "branched" to a
data area instead of an executable
instruction, (3) you have overlaid valid
instructions with data.
S0C4 Program Check - Addressing
Exception:
The instruction is attempting to access data
that is outside the range of valid addresses
for your execution. Likely reason: (1) the
content of a register being used as a base to
a field of data has become invalid, or
(perhaps) was never valid.
S0C6 Program Check - Specification
Exception:
The processor's PSW is pointing at an
instruction that has some fundamental
problem. Likely reasons: (1) you have
branched to an odd address (instructions
must be on half-word boundaries), (2) you
have used an odd register where an even-
numbered register is expected.
S0C7 Program Check - Data Exception:

The current instruction is expecting valid
packed decimal data, and has found a field
that doesn't conform to packed decimal rules
for digits and sign. Likely reasons: (1) the
data field was not packed, or (2) the data has
been packed, but the original data was not
digits, or (3) a packed decimal field has been
corrupted, or (4) the reference to a packed
decimal field has the wrong length.
S0C9 Program Check - Fixed-point Divide
Exception:
A 'D' or 'DR' instruction was attempted, but
could not be completed. Likely reasons: (1)
The divisor has value zero, (2) the dividend is
too large in its even/odd register pair such
that the quotient will not fit into a 32-bit
register.
S222 Task canceled by operator:
Operator issued a system command to cancel
the task.
S322 Task terminated by system (TIME
parameter exceeded):
The JOB statement had a TIME parameter,
and your execution exceeded the specified
limit. Likely reason: (1) the program is in a
"loop:, or (2) the program is legitimately a
long-running task and the default time
threshold was exceeded.

