
z/OS

DFSMS:

Using

Data

Sets

SC26-7410-04

���

z/OS

DFSMS:

Using

Data

Sets

SC26-7410-04

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

637.

Fifth

Edition,

September

2004

This

edition

applies

to

Version

1

Release

6

of

z/OS®

(5694-A01),

Version

1

Release

6

of

z/OS.e

(5655-G52),

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

This

edition

replaces

SC26-7410-03.

IBM®

welcomes

your

comments.

A

form

for

readers’

comments

may

be

provided

at

the

back

of

this

publication,

or

you

may

address

your

comments

to

the

following

address:

International

Business

Machines

Corporation

Department

55JA,

Mail

Station

P384

2455

South

Road

Poughkeepsie,

NY

12601-5400

United

States

of

America

FAX

(United

States

&

Canada):

1+845+432-9405

FAX

(Other

Countries):

Your

International

Access

Code

+1+845+432-9405

IBMLink™

(United

States

customers

only):

IBMUSM10(MHVRCFS)

Internet

e-mail:

mhvrcfs@us.ibm.com

World

Wide

Web:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If

you

would

like

a

reply,

be

sure

to

include

your

name,

address,

telephone

number,

or

FAX

number.

Make

sure

to

include

the

following

in

your

comment

or

note:

v

Title

and

order

number

of

this

document

v

Page

number

or

topic

related

to

your

comment

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1987,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

About

This

Document

.

.

.

.

.

.

.

. xvii

Major

Divisions

of

This

Document

.

.

.

.

.

. xvii

Required

product

knowledge

.

.

.

.

.

.

.

. xvii

Referenced

documents

.

.

.

.

.

.

.

.

.

. xviii

Accessing

z/OS

DFSMS

documents

on

the

Internet

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xviii

Using

LookAt

to

look

up

message

explanations

xviii

Accessing

z/OS

licensed

documents

on

the

Internet

xix

Summary

of

Changes

.

.

.

.

.

.

.

. xxi

Summary

of

Changes

for

SC26-7410-04

z/OS

Version

1

Release

6

.

.

.

.

.

.

.

.

.

.

. xxi

New

Information

.

.

.

.

.

.

.

.

.

.

. xxi

Changed

Information

.

.

.

.

.

.

.

.

.

. xxi

Summary

of

Changes

for

SC26-7410-03

z/OS

Version

1

Release

5

.

.

.

.

.

.

.

.

.

.

. xxi

New

Information

.

.

.

.

.

.

.

.

.

.

. xxi

Changed

Information

.

.

.

.

.

.

.

.

. xxii

Moved

Information

.

.

.

.

.

.

.

.

.

. xxii

Summary

of

Changes

for

SC26-7410-02

z/OS

Version

1

Release

3

.

.

.

.

.

.

.

.

.

.

. xxii

New

Information

.

.

.

.

.

.

.

.

.

.

. xxii

Changed

Information

.

.

.

.

.

.

.

.

. xxiii

Part

1.

All

Data

Sets

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Working

with

Data

Sets

.

.

. 3

Data

Storage

and

Management

.

.

.

.

.

.

.

. 3

System-Managed

Data

Sets

.

.

.

.

.

.

.

. 4

Distributed

File

Manager

.

.

.

.

.

.

.

.

. 4

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Basic

Direct

Access

Method

.

.

.

.

.

.

.

. 4

Basic

Partitioned

Access

Method

.

.

.

.

.

.

. 5

Basic

Sequential

Access

Method

.

.

.

.

.

.

. 5

Data-in-Virtual

(DIV)

.

.

.

.

.

.

.

.

.

. 5

Indexed

Sequential

Access

Method

.

.

.

.

.

. 5

Object

Access

Method

.

.

.

.

.

.

.

.

.

. 6

Queued

Sequential

Access

Method

.

.

.

.

.

. 6

Virtual

Storage

Access

Method

.

.

.

.

.

.

. 6

Access

to

z/OS

UNIX

Files

.

.

.

.

.

.

.

. 7

Selection

of

an

Access

Method

.

.

.

.

.

.

. 7

Direct

Access

Storage

Device

(DASD)

Volumes

.

.

. 8

DASD

Labels

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Track

Format

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Track

Overflow

.

.

.

.

.

.

.

.

.

.

.

. 9

VSAM

Record

Addressing

.

.

.

.

.

.

.

.

. 9

Actual

and

Relative

Addressing

with

Non-VSAM

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

. 10

Magnetic

Tape

Volumes

.

.

.

.

.

.

.

.

.

. 11

Using

Magnetic

Tape

Labels

.

.

.

.

.

.

.

. 11

Specifying

the

File

Sequence

Number

.

.

.

.

. 12

Identifying

Unlabeled

Tapes

.

.

.

.

.

.

.

. 14

Using

Tape

Marks

.

.

.

.

.

.

.

.

.

.

. 14

Data

Management

Macros

.

.

.

.

.

.

.

.

. 15

Data

Set

Processing

.

.

.

.

.

.

.

.

.

.

.

. 16

Allocating

Data

Sets

.

.

.

.

.

.

.

.

.

. 16

Processing

Data

Sets

through

Programs

.

.

.

. 17

Using

Access

Methods

.

.

.

.

.

.

.

.

.

. 17

Using

Addressing

Modes

.

.

.

.

.

.

.

.

. 18

Using

Hiperspace

and

Hiperbatch

.

.

.

.

.

. 18

Processing

VSAM

Data

Sets

.

.

.

.

.

.

.

. 18

Processing

PDSs,

PDSEs,

and

UNIX

Directories

19

Processing

Sequential

Data

Sets

and

Members

of

PDSEs

and

PDSs

.

.

.

.

.

.

.

.

.

.

. 19

Processing

UNIX

Files

with

an

Access

Method

. 20

Processing

EXCP,

EXCPVR,

and

XDAP

Macros

21

Distributed

Data

Management

(DDM)

Attributes

.

. 21

Virtual

I/O

for

Temporary

Data

Sets

.

.

.

.

.

. 22

Data

Set

Names

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Catalogs

and

Volume

Table

of

Contents

.

.

.

.

. 23

VTOC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Catalogs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Data

Set

Names

and

Metadata

.

.

.

.

.

.

. 24

Security

of

Data

Set

Names

.

.

.

.

.

.

.

. 25

Chapter

2.

Using

the

Storage

Management

Subsystem

.

.

.

.

.

.

. 27

Using

Automatic

Class

Selection

Routines

.

.

.

. 29

Allocating

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 30

Allocating

Data

Sets

with

JCL

.

.

.

.

.

.

. 30

Allocating

System-Managed

Data

Sets

with

the

Access

Method

Services

ALLOCATE

Command

. 32

Allocating

Data

Sets

with

the

TSO

ALLOCATE

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Allocating

Data

Sets

with

Dynamic

Allocation

.

. 34

Chapter

3.

Allocating

Space

on

Direct

Access

Volumes

.

.

.

.

.

.

.

.

.

. 35

Specification

of

Space

Requirements

.

.

.

.

.

. 35

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Average

Record

Length

.

.

.

.

.

.

.

.

. 36

Tracks

or

Cylinders

.

.

.

.

.

.

.

.

.

.

. 36

Absolute

Track

.

.

.

.

.

.

.

.

.

.

.

. 37

Additional

Space-Allocation

Options

.

.

.

.

. 37

Maximum

Data

Set

Size

.

.

.

.

.

.

.

.

.

. 37

Maximum

Size

on

One

Volume

.

.

.

.

.

.

. 37

Maximum

Number

of

Volumes

.

.

.

.

.

.

. 37

Maximum

VSAM

Data

Set

Size

.

.

.

.

.

.

. 37

Primary

and

Secondary

Space

Allocation

without

the

Guaranteed

Space

Attribute

.

.

.

.

.

.

.

. 38

Multivolume

VSAM

Data

Sets

.

.

.

.

.

.

. 38

Multivolume

Non-VSAM

Data

Sets

.

.

.

.

. 38

Extended-Format

Data

Sets

.

.

.

.

.

.

.

. 38

Allocation

of

Data

Sets

with

the

Guaranteed

Space

Attribute

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

©

Copyright

IBM

Corp.

1987,

2004

iii

Guaranteed

Space

with

DISP=NEW

or

MOD

.

. 39

Guaranteed

Space

for

VSAM

.

.

.

.

.

.

. 39

Guaranteed

Space

with

DISP=OLD

or

SHR

.

.

. 40

Guaranteed

Space

with

Extended-Format

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Guaranteed

Space

Example

.

.

.

.

.

.

.

. 40

Allocation

of

Data

Sets

with

the

Space

Constraint

Relief

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Extension

to

Another

DASD

Volume

.

.

.

.

.

. 41

Examples

of

Dynamic

Volume

Count

When

Defining

a

Data

Set

.

.

.

.

.

.

.

.

.

.

. 42

Examples

of

Dynamic

Volume

Count

When

Allocating

an

Existing

Data

Set

.

.

.

.

.

.

. 43

Multiple

Volume

Considerations

for

Sequential

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Additional

Information

on

Space

Allocation

.

.

. 44

Chapter

4.

Backing

Up

and

Recovering

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Using

REPRO

for

Backup

and

Recovery

.

.

.

.

. 46

Using

EXPORT

and

IMPORT

for

Backup

and

Recovery

of

VSAM

Data

Sets

.

.

.

.

.

.

.

. 47

Structure

of

an

Exported

Data

Set

.

.

.

.

.

. 48

EXPORT

and

IMPORT

Commands

.

.

.

.

. 48

Writing

a

Program

for

Backup

and

Recovery

.

.

. 48

Using

Concurrent

Copy

for

Backup

and

Recovery

49

Updating

a

Data

Set

After

Recovery

.

.

.

.

.

. 49

Synchronizing

Catalog

and

VSAM

Data

Set

Information

During

Recovery

.

.

.

.

.

.

.

. 49

Handling

an

Abnormal

Termination

.

.

.

.

. 50

Using

VERIFY

to

Process

Improperly

Closed

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

CICS

VSAM

Recovery

.

.

.

.

.

.

.

.

.

.

. 52

Chapter

5.

Protecting

Data

Sets

.

.

.

. 53

z/OS

Security

Server

(RACF)

.

.

.

.

.

.

.

. 53

RACF

Protection

for

VSAM

Data

Sets

.

.

.

. 53

Generic

and

Discrete

Profiles

for

VSAM

Data

Sets

54

RACF

Protection

for

Non-VSAM

Data

Sets

.

.

. 54

Hiding

Data

Set

Names

.

.

.

.

.

.

.

.

. 55

Data

Set

Password

Protection

.

.

.

.

.

.

.

. 55

Passwords

for

VSAM

Data

Sets

.

.

.

.

.

.

. 56

Passwords

for

Non-VSAM

Data

Sets

.

.

.

.

. 59

User-Security-Verification

Routine

.

.

.

.

.

.

. 60

Erasure

of

Residual

Data

.

.

.

.

.

.

.

.

.

. 60

Erasing

DASD

Data

.

.

.

.

.

.

.

.

.

. 60

Erasing

Tape

Data

.

.

.

.

.

.

.

.

.

.

. 61

Authorized

Program

Facility

and

Access

Method

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Access

Method

Services

Cryptographic

Option

.

. 63

Data

Enciphering

and

Deciphering

.

.

.

.

. 63

REPRO

ENCIPHER

and

DECIPHER

on

ICSF

.

. 66

Part

2.

VSAM

Data

Sets

.

.

.

.

.

. 69

Chapter

6.

Organizing

VSAM

Data

Sets

73

VSAM

Data

Formats

.

.

.

.

.

.

.

.

.

.

. 73

Data

Set

Size

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Control

Intervals

.

.

.

.

.

.

.

.

.

.

. 74

Control

Information

Fields

.

.

.

.

.

.

.

. 74

Compressed

Control

Information

Field

.

.

.

. 75

Control

Areas

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Spanned

Records

.

.

.

.

.

.

.

.

.

.

. 76

Selection

of

VSAM

Data

Set

Types

.

.

.

.

.

.

. 77

Entry-Sequenced

Data

Sets

.

.

.

.

.

.

.

. 78

Simulated

VSAM

Access

to

UNIX

files

.

.

.

. 80

Key-Sequenced

Data

Sets

.

.

.

.

.

.

.

.

. 81

Linear

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

. 84

Fixed-Length

Relative-Record

Data

Sets

.

.

.

. 85

Variable-Length

Relative-Record

Data

Sets

.

.

. 86

Summary

of

VSAM

Data

Set

Types

.

.

.

.

. 86

Extended-Format

VSAM

Data

Sets

.

.

.

.

.

.

. 87

Restrictions

on

Defining

Extended-Format

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

VSAM

Data

Striping

.

.

.

.

.

.

.

.

.

. 88

Compressed

Data

.

.

.

.

.

.

.

.

.

.

. 92

Access

to

Records

in

a

VSAM

Data

Set

.

.

.

.

. 93

Access

to

Entry-Sequenced

Data

Sets

.

.

.

.

. 94

Access

to

Key-Sequenced

Data

Sets

.

.

.

.

. 94

Access

to

Linear

Data

Sets

.

.

.

.

.

.

.

. 95

Access

to

Fixed-Length

Relative-Record

Data

Sets

95

Access

to

Variable-Length

Relative-Record

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Access

to

Records

through

Alternate

Indexes

.

.

. 96

Alternate

Index

Structure

for

a

Key-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Alternate

Index

Structure

for

an

Entry-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Building

of

an

Alternate

Index

.

.

.

.

.

.

. 98

Automatic

Upgrade

of

Alternate

Indexes

.

.

. 99

Data

Compression

.

.

.

.

.

.

.

.

.

.

.

. 99

Chapter

7.

Defining

VSAM

Data

Sets

101

Using

Cluster

Names

for

Data

and

Index

Components

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Defining

a

Data

Set

with

Access

Method

Services

102

Naming

a

Cluster

.

.

.

.

.

.

.

.

.

.

. 102

Specifying

Cluster

Information

.

.

.

.

.

. 104

Using

Access

Method

Services

Parameters

.

.

. 104

Allocating

Space

for

VSAM

Data

Sets

.

.

.

. 106

Calculating

Space

for

the

Data

Component

of

a

KSDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Calculating

Space

for

the

Index

Component

.

. 110

Using

ALTER

to

Modify

Attributes

of

a

Component

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Using

ALTER

to

Rename

Data

Sets

.

.

.

.

. 110

Defining

a

Data

Set

with

JCL

.

.

.

.

.

.

.

. 111

Loading

a

VSAM

Data

Set

.

.

.

.

.

.

.

.

. 111

Using

REPRO

to

Copy

a

VSAM

Data

Set

.

.

. 112

Using

a

Program

to

Load

a

Data

Set

.

.

.

.

. 113

Reusing

a

VSAM

Data

Set

as

a

Work

File

.

.

. 114

Copying

and

Merging

Data

Sets

.

.

.

.

.

.

. 115

Defining

Alternate

Indexes

.

.

.

.

.

.

.

.

. 117

Naming

an

Alternate

Index

.

.

.

.

.

.

.

. 117

Specifying

Alternate

Index

Information

.

.

.

. 117

Building

an

Alternate

Index

.

.

.

.

.

.

. 119

Maintaining

Alternate

Indexes

.

.

.

.

.

.

. 119

Defining

a

Path

.

.

.

.

.

.

.

.

.

.

.

. 120

Defining

a

Page

Space

.

.

.

.

.

.

.

.

.

. 121

Checking

for

Problems

in

Catalogs

and

Data

Sets

122

iv

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Listing

Catalog

Entries

.

.

.

.

.

.

.

.

. 122

Printing

the

Contents

of

Data

Sets

.

.

.

.

. 123

Deleting

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

. 123

Chapter

8.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

.

.

.

.

. 125

Example

of

Defining

a

VSAM

Data

Set

.

.

.

.

. 126

Examples

of

Defining

Temporary

VSAM

Data

Sets

128

Example

1:

Defining

a

Temporary

VSAM

Data

Set

Using

ALLOCATE

.

.

.

.

.

.

.

.

. 128

Example

2:

Creating

a

Temporary

Data

Set

with

Default

Parameter

Values

.

.

.

.

.

.

.

. 129

Examples

of

Defining

Alternate

Indexes

and

Paths

129

JCL

Statements

.

.

.

.

.

.

.

.

.

.

.

. 129

Commands

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Chapter

9.

Processing

VSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Creating

an

Access

Method

Control

Block

.

.

.

. 134

Creating

an

Exit

List

.

.

.

.

.

.

.

.

.

.

. 134

Opening

a

Data

Set

.

.

.

.

.

.

.

.

.

.

. 135

Creating

a

Request

Parameter

List

.

.

.

.

.

. 136

Manipulating

the

Contents

of

Control

Blocks

.

.

. 138

Generating

a

Control

Block

.

.

.

.

.

.

.

. 138

Testing

the

Contents

of

ACB,

EXLST,

and

RPL

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Modifying

the

Contents

of

an

ACB,

EXLST,

or

RPL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Displaying

the

Contents

of

ACB,

EXLST,

and

RPL

Fields

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Requesting

Access

to

a

Data

Set

.

.

.

.

.

.

. 139

Inserting

and

Adding

Records

.

.

.

.

.

.

. 140

Retrieving

Records

.

.

.

.

.

.

.

.

.

. 142

Updating

Records

.

.

.

.

.

.

.

.

.

.

. 144

Deleting

Records

.

.

.

.

.

.

.

.

.

.

. 145

Deferring

and

Forcing

Buffer

Writing

.

.

.

. 145

Retaining

and

Positioning

Data

Buffers

.

.

.

. 145

Processing

Multiple

Strings

.

.

.

.

.

.

.

. 146

Making

Concurrent

Requests

.

.

.

.

.

.

. 147

Using

a

Path

to

Access

Records

.

.

.

.

.

. 147

Making

Asynchronous

Requests

.

.

.

.

.

. 148

Ending

a

Request

.

.

.

.

.

.

.

.

.

.

. 149

Closing

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

. 149

Operating

in

SRB

or

Cross-Memory

Mode

.

.

.

. 150

Using

VSAM

Macros

in

Programs

.

.

.

.

.

. 151

Chapter

10.

Optimizing

VSAM

Performance

.

.

.

.

.

.

.

.

.

.

.

. 155

Optimizing

Control

Interval

Size

.

.

.

.

.

.

. 155

Control

Interval

Size

Limitations

.

.

.

.

.

. 155

Data

Control

Interval

Size

.

.

.

.

.

.

.

. 157

Index

Control

Interval

Size

.

.

.

.

.

.

.

. 158

How

VSAM

Adjusts

Control

Interval

Size

.

.

. 158

Optimizing

Control

Area

Size

.

.

.

.

.

.

.

. 159

Advantages

of

a

Large

Control

Area

Size

.

.

. 160

Disadvantages

of

a

Large

Control

Area

Size

.

. 160

Optimizing

Free

Space

Distribution

.

.

.

.

.

. 160

Selecting

the

Optimal

Percentage

of

Free

Space

162

Altering

the

Free

Space

Specification

When

Loading

a

Data

Set

.

.

.

.

.

.

.

.

.

. 163

Determining

I/O

Buffer

Space

for

Nonshared

Resource

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Obtaining

Buffers

Above

16

MB

.

.

.

.

.

. 164

Tuning

for

System-Managed

Buffering

.

.

.

. 165

Allocating

Buffers

for

Concurrent

Data

Set

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Allocating

Buffers

for

Direct

Access

.

.

.

.

. 170

Allocating

Buffers

for

Sequential

Access

.

.

. 173

Allocating

Buffers

for

a

Path

.

.

.

.

.

.

. 174

Acquiring

Buffers

.

.

.

.

.

.

.

.

.

.

. 174

Using

Index

Options

.

.

.

.

.

.

.

.

.

.

. 175

Increasing

Virtual

Storage

for

Index

Set

Records

175

Avoiding

Control

Area

Splits

.

.

.

.

.

.

. 175

Putting

the

Index

and

Data

on

Separate

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Obtaining

Diagnostic

Information

.

.

.

.

.

. 176

Migrating

from

the

Mass

Storage

System

.

.

.

. 176

Using

Hiperbatch

.

.

.

.

.

.

.

.

.

.

.

. 176

Chapter

11.

Processing

Control

Intervals

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Access

to

a

Control

Interval

.

.

.

.

.

.

.

. 178

Structure

of

Control

Information

.

.

.

.

.

.

. 179

CIDF—Control

Interval

Definition

Field

.

.

. 180

RDF—Record

Definition

Field

.

.

.

.

.

.

. 180

User

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Improved

Control

Interval

Access

.

.

.

.

.

. 185

Opening

an

Object

for

Improved

Control

Interval

Access

.

.

.

.

.

.

.

.

.

.

.

. 185

Processing

a

Data

Set

with

Improved

Control

Interval

Access

.

.

.

.

.

.

.

.

.

.

.

. 185

Fixing

Control

Blocks

and

Buffers

in

Real

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Control

Blocks

in

Common

(CBIC)

Option

.

.

. 186

Chapter

12.

Sharing

VSAM

Data

Sets

189

Subtask

Sharing

.

.

.

.

.

.

.

.

.

.

.

. 190

Building

a

Single

Control

Block

Structure

.

.

. 190

Resolving

Exclusive

Control

Conflicts

.

.

.

. 191

Preventing

Deadlock

in

Exclusive

Control

of

Shared

Resources

.

.

.

.

.

.

.

.

.

.

. 193

Cross-Region

Sharing

.

.

.

.

.

.

.

.

.

.

. 195

Cross-Region

Share

Options

.

.

.

.

.

.

. 195

Read

Integrity

During

Cross-Region

Sharing

.

. 196

Write

Integrity

During

Cross-Region

Sharing

197

Cross-System

Sharing

.

.

.

.

.

.

.

.

.

. 198

Control

Block

Update

Facility

(CBUF)

.

.

.

.

. 199

Considerations

for

CBUF

Processing

.

.

.

.

. 200

Checkpoints

for

Shared

Data

Sets

.

.

.

.

.

. 201

Techniques

of

Data

Sharing

.

.

.

.

.

.

.

.

. 201

Cross-Region

Sharing

.

.

.

.

.

.

.

.

.

. 201

Cross-System

Sharing

.

.

.

.

.

.

.

.

. 203

User

Access

to

VSAM

Shared

Information

.

.

. 204

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

.

.

.

.

.

.

. 205

Provision

of

a

Resource

Pool

.

.

.

.

.

.

.

. 205

Building

a

Resource

Pool:

BLDVRP

.

.

.

.

. 205

Connecting

a

Data

Set

to

a

Resource

Pool:

OPEN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Contents

v

Deleting

a

Resource

Pool

Using

the

DLVRP

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Management

of

I/O

Buffers

for

Shared

Resources

210

Deferring

Write

Requests

.

.

.

.

.

.

.

. 210

Relating

Deferred

Requests

by

Transaction

ID

211

Writing

Buffers

Whose

Writing

is

Deferred:

WRTBFR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Accessing

a

Control

Interval

with

Shared

Resources

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Restrictions

and

Guidelines

for

Shared

Resources

214

Chapter

14.

Using

VSAM

Record-Level

Sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Controlling

Access

to

VSAM

Data

Sets

.

.

.

.

. 217

Accessing

Data

Sets

Using

DFSMStvs

and

VSAM

Record-Level

Sharing

.

.

.

.

.

.

.

.

.

.

. 217

Record-Level

Sharing

CF

Caching

.

.

.

.

. 218

Using

VSAM

RLS

with

CICS

.

.

.

.

.

.

. 219

Using

VSAM

RLS

Outside

of

CICS

.

.

.

.

. 222

Read

Sharing

of

Recoverable

Data

Sets

.

.

.

. 222

Read-Sharing

Integrity

across

KSDS

CI

and

CA

Splits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Read

and

Write

Sharing

of

Nonrecoverable

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Using

Non-RLS

Access

to

VSAM

Data

Sets

.

. 223

Comparing

RLS

Access

and

Non-RLS

Access

223

Requesting

VSAM

RLS

Run-Mode

.

.

.

.

. 226

Using

VSAM

RLS

Read

Integrity

Options

.

.

. 226

Using

VSAM

RLS

with

ESDS

.

.

.

.

.

.

.

. 227

Specifying

Read

Integrity

.

.

.

.

.

.

.

.

. 228

Specifying

a

Timeout

Value

for

Lock

Requests

.

. 228

Chapter

15.

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

.

.

.

.

.

.

.

.

.

. 229

EXAMINE

Command

.

.

.

.

.

.

.

.

.

. 229

Types

of

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 229

EXAMINE

Users

.

.

.

.

.

.

.

.

.

.

. 229

How

to

Run

EXAMINE

.

.

.

.

.

.

.

.

.

. 230

Deciding

to

Run

INDEXTEST,

DATATEST,

or

Both

Tests

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Skipping

DATATEST

on

Major

INDEXTEST

Errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Examining

a

User

Catalog

.

.

.

.

.

.

.

. 230

Understanding

Message

Hierarchy

.

.

.

.

. 231

Controlling

Message

Printout

.

.

.

.

.

.

. 231

Samples

of

Output

from

EXAMINE

Runs

.

.

.

. 232

INDEXTEST

and

DATATEST

Tests

of

an

Error-Free

Data

Set

.

.

.

.

.

.

.

.

.

. 232

INDEXTEST

and

DATATEST

Tests

of

a

Data

Set

with

a

Structural

Error

.

.

.

.

.

.

.

.

. 232

INDEXTEST

and

DATATEST

Tests

of

a

Data

Set

with

a

Duplicate

Key

Error

.

.

.

.

.

.

.

. 233

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

.

.

.

.

.

. 235

Guidelines

for

Coding

Exit

Routines

.

.

.

.

.

. 235

Programming

Guidelines

.

.

.

.

.

.

.

.

. 236

Multiple

Request

Parameter

Lists

or

Data

Sets

237

Return

to

a

Main

Program

.

.

.

.

.

.

.

. 237

IGW8PNRU

Routine

for

Batch

Override

.

.

.

. 238

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 238

Programming

Considerations

.

.

.

.

.

.

. 238

EODAD

Exit

Routine

to

Process

End

of

Data

.

.

. 239

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 239

Programming

Considerations

.

.

.

.

.

.

. 240

EXCEPTIONEXIT

Exit

Routine

.

.

.

.

.

.

. 240

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 240

Programming

Considerations

.

.

.

.

.

.

. 240

JRNAD

Exit

Routine

to

Journalize

Transactions

.

. 241

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 241

Programming

Considerations

.

.

.

.

.

.

. 241

LERAD

Exit

Routine

to

Analyze

Logical

Errors

.

. 247

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 248

Programming

Considerations

.

.

.

.

.

.

. 248

RLSWAIT

Exit

Routine

.

.

.

.

.

.

.

.

.

. 248

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 249

Request

Environment

.

.

.

.

.

.

.

.

.

. 249

SYNAD

Exit

Routine

to

Analyze

Physical

Errors

250

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 250

Programming

Considerations

.

.

.

.

.

.

. 250

Example

of

a

SYNAD

User-Written

Exit

Routine

251

UPAD

Exit

Routine

for

User

Processing

.

.

.

. 252

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 253

Programming

Considerations

.

.

.

.

.

.

. 254

User-Security-Verification

Routine

.

.

.

.

.

. 255

Chapter

17.

Using

31-Bit

Addressing

Mode

with

VSAM

.

.

.

.

.

.

.

.

.

. 257

VSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Chapter

18.

Using

Job

Control

Language

for

VSAM

.

.

.

.

.

.

.

. 259

Using

JCL

Statements

and

Keywords

.

.

.

.

. 259

Data

Set

Name

.

.

.

.

.

.

.

.

.

.

.

. 259

Disposition

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Creating

VSAM

Data

Sets

with

JCL

.

.

.

.

.

. 260

Temporary

VSAM

Data

Sets

.

.

.

.

.

.

. 262

Examples

Using

JCL

to

Allocate

VSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Retrieving

an

Existing

VSAM

Data

Set

.

.

.

.

. 266

Migration

Consideration

.

.

.

.

.

.

.

.

. 266

Keywords

Used

to

Process

VSAM

Data

Sets

.

. 266

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

.

.

.

.

.

. 269

Access

to

a

Key-Sequenced

Data

Set

Index

.

.

. 269

Access

to

an

Index

with

GETIX

and

PUTIX

.

. 269

Access

to

the

Index

Component

Alone

.

.

.

. 269

Prime

Index

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Index

Levels

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Format

of

an

Index

Record

.

.

.

.

.

.

.

.

. 273

Header

Portion

.

.

.

.

.

.

.

.

.

.

.

. 273

Free

Control

Interval

Entry

Portion

.

.

.

.

. 275

Index

Entry

Portion

.

.

.

.

.

.

.

.

.

. 275

Key

Compression

.

.

.

.

.

.

.

.

.

.

.

. 276

Index

Update

Following

a

Control

Interval

Split

279

Index

Entries

for

a

Spanned

Record

.

.

.

.

. 280

vi

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

||

Part

3.

Non-VSAM

Data

Sets

and

UNIX

Files

.

.

.

.

.

.

.

.

.

.

.

. 281

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

.

.

.

.

.

. 287

Format

Selection

.

.

.

.

.

.

.

.

.

.

.

. 287

Fixed-Length

Record

Formats

.

.

.

.

.

.

.

. 288

Standard

Format

.

.

.

.

.

.

.

.

.

.

. 289

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Variable-Length

Record

Formats

.

.

.

.

.

.

. 290

Format-V

Records

.

.

.

.

.

.

.

.

.

.

. 290

Spanned

Format-VS

Records

(Sequential

Access

Method)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Spanned

Format-V

Records

(Basic

Direct

Access

Method)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

Undefined-Length

Record

Format

.

.

.

.

.

. 296

ISO/ANSI

Tapes

.

.

.

.

.

.

.

.

.

.

.

. 297

Character

Data

Conversion

.

.

.

.

.

.

.

. 297

Format-F

Records

.

.

.

.

.

.

.

.

.

.

. 298

Format-D

Records

.

.

.

.

.

.

.

.

.

.

. 300

ISO/ANSI

Format-DS

and

Format-DBS

Records

302

Format-U

Records

.

.

.

.

.

.

.

.

.

.

. 305

Record

Format—Device

Type

Considerations

.

.

. 305

Using

Optional

Control

Characters

.

.

.

.

. 306

Using

Direct

Access

Storage

Devices

(DASD)

307

Using

Magnetic

Tape

.

.

.

.

.

.

.

.

.

. 307

Using

a

Printer

.

.

.

.

.

.

.

.

.

.

.

. 308

Using

a

Card

Reader

and

Punch

.

.

.

.

.

. 309

Using

a

Paper

Tape

Reader

.

.

.

.

.

.

.

. 310

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

.

.

.

.

.

.

.

. 311

Processing

Sequential

and

Partitioned

Data

Sets

312

Using

OPEN

to

Prepare

a

Data

Set

for

Processing

317

Filling

in

the

DCB

.

.

.

.

.

.

.

.

.

.

. 318

Specifying

the

Forms

of

Macros,

Buffering

Requirements,

and

Addresses

.

.

.

.

.

.

. 320

Coding

Processing

Methods

.

.

.

.

.

.

. 320

Selecting

Data

Set

Options

.

.

.

.

.

.

.

.

. 321

Block

Size

(BLKSIZE)

.

.

.

.

.

.

.

.

.

. 321

Data

Set

Organization

(DSORG)

.

.

.

.

.

. 327

Key

Length

(KEYLEN)

.

.

.

.

.

.

.

.

. 328

Record

Length

(LRECL)

.

.

.

.

.

.

.

.

. 328

Record

Format

(RECFM)

.

.

.

.

.

.

.

. 328

Write

Validity

Check

Option

(OPTCD=W)

.

.

. 329

DD

Statement

Parameters

.

.

.

.

.

.

.

. 329

Changing

and

Testing

the

DCB

and

DCBE

.

.

. 330

Using

the

DCBD

Macro

.

.

.

.

.

.

.

.

. 331

Changing

an

Address

in

the

DCB

.

.

.

.

. 331

Using

the

IHADCBE

Macro

.

.

.

.

.

.

. 332

Using

CLOSE

to

End

the

Processing

of

a

Data

Set

332

Issuing

the

CHECK

Macro

.

.

.

.

.

.

.

. 332

Closing

a

Data

Set

Temporarily

.

.

.

.

.

. 332

Using

CLOSE

TYPE=T

with

Sequential

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Releasing

Space

.

.

.

.

.

.

.

.

.

.

. 334

Managing

Buffer

Pools

When

Closing

Data

Sets

335

Opening

and

Closing

Data

Sets:

Considerations

335

Parameter

Lists

with

31-Bit

Addresses

.

.

.

. 335

Open

and

Close

of

Multiple

Data

Sets

at

the

Same

Time

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Factors

to

Consider

When

Allocating

Direct

Access

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 336

Guidelines

for

Opening

and

Closing

Data

Sets

336

Open/Close/EOV

Errors

.

.

.

.

.

.

.

. 336

Installation

Exits

.

.

.

.

.

.

.

.

.

.

. 337

Positioning

Volumes

.

.

.

.

.

.

.

.

.

.

. 338

Releasing

Data

Sets

and

Volumes

.

.

.

.

.

. 338

Processing

End-of-Volume

.

.

.

.

.

.

.

. 338

Positioning

During

End-of-Volume

.

.

.

.

. 339

Forcing

End-of-Volume

.

.

.

.

.

.

.

.

. 340

Managing

SAM

Buffer

Space

.

.

.

.

.

.

.

. 341

Constructing

a

Buffer

Pool

.

.

.

.

.

.

.

.

. 342

Building

a

Buffer

Pool

.

.

.

.

.

.

.

.

. 343

Building

a

Buffer

Pool

and

a

Record

Area

.

.

. 343

Getting

a

Buffer

Pool

.

.

.

.

.

.

.

.

.

. 344

Constructing

a

Buffer

Pool

Automatically

.

.

. 344

Freeing

a

Buffer

Pool

.

.

.

.

.

.

.

.

.

. 344

Constructing

a

Buffer

Pool:

Examples

.

.

.

. 345

Controlling

Buffers

.

.

.

.

.

.

.

.

.

.

. 346

Queued

Access

Method

.

.

.

.

.

.

.

.

. 346

Basic

Access

Method

.

.

.

.

.

.

.

.

.

. 347

QSAM

in

an

Application

.

.

.

.

.

.

.

. 347

Exchange

Buffering

.

.

.

.

.

.

.

.

.

. 349

Choosing

Buffering

Techniques

and

GET/PUT

Processing

Modes

.

.

.

.

.

.

.

.

.

.

.

. 350

Using

Buffering

Macros

with

Queued

Access

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

RELSE—Release

an

Input

Buffer

.

.

.

.

.

. 350

TRUNC—Truncate

an

Output

Buffer

.

.

.

. 350

Using

Buffering

Macros

with

Basic

Access

Method

351

GETBUF—Get

a

Buffer

from

a

Pool

.

.

.

.

. 351

FREEBUF—Return

a

Buffer

to

a

Pool

.

.

.

. 351

Chapter

22.

Accessing

Records

.

.

. 353

Accessing

Data

with

READ

and

WRITE

.

.

.

. 353

Using

the

Data

Event

Control

Block

(DECB)

.

. 353

Grouping

Related

Control

Blocks

in

a

Paging

Environment

.

.

.

.

.

.

.

.

.

.

.

. 353

Using

Overlapped

I/O

with

BSAM

.

.

.

.

. 353

Reading

a

Block

.

.

.

.

.

.

.

.

.

.

. 355

Writing

a

Block

.

.

.

.

.

.

.

.

.

.

.

. 356

Ensuring

I/O

Initiation

with

the

TRUNC

Macro

356

Testing

Completion

of

a

Read

or

Write

Operation

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Waiting

for

Completion

of

a

Read

or

Write

Operation

.

.

.

.

.

.

.

.

.

.

.

.

. 357

Handling

Exceptional

Conditions

on

Tape

.

.

. 358

Accessing

Data

with

GET

and

PUT

.

.

.

.

.

. 359

GET—Retrieve

a

Record

.

.

.

.

.

.

.

.

. 359

PUT—Write

a

Record

.

.

.

.

.

.

.

.

.

. 359

PUTX—Write

an

Updated

Record

.

.

.

.

. 360

PDAB—Parallel

Input

Processing

(QSAM

Only)

360

Analyzing

I/O

Errors

.

.

.

.

.

.

.

.

.

. 363

SYNADAF—Perform

SYNAD

Analysis

Function

363

SYNADRLS—Release

SYNADAF

Message

and

Save

Areas

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Device

Support

Facilities

(ICKDSF):

Diagnosing

I/O

Problems

.

.

.

.

.

.

.

.

.

.

.

. 364

Contents

vii

Limitations

with

Using

SRB

or

Cross-Memory

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Chapter

23.

Sharing

Non-VSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

Enhanced

Data

Integrity

for

Shared

Sequential

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

Setting

Up

the

Enhanced

Data

Integrity

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Synchronizing

the

Enhanced

Data

Integrity

Function

on

Multiple

Systems

.

.

.

.

.

.

. 370

Using

the

START

IFGEDI

Command

.

.

.

. 370

Bypassing

the

Enhanced

Data

Integrity

Function

for

Applications

.

.

.

.

.

.

.

.

.

.

. 371

Diagnosing

Data

Integrity

Warnings

and

Violations

.

.

.

.

.

.

.

.

.

.

.

.

. 371

PDSEs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Direct

Data

Sets

(BDAM)

.

.

.

.

.

.

.

.

. 374

Factors

to

Consider

When

Opening

and

Closing

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Control

of

Checkpoint

Data

Sets

on

Shared

DASD

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

System

Use

of

Search

Direct

for

Input

Operations

377

Chapter

24.

Spooling

and

Scheduling

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

. 379

Job

Entry

Subsystem

.

.

.

.

.

.

.

.

.

.

. 379

SYSIN

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 380

SYSOUT

Data

Set

.

.

.

.

.

.

.

.

.

.

.

. 380

Chapter

25.

Processing

Sequential

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

. 383

Creating

a

Sequential

Data

Set

.

.

.

.

.

.

.

. 383

Retrieving

a

Sequential

Data

Set

.

.

.

.

.

.

. 384

Concatenating

Data

Sets

Sequentially

.

.

.

.

. 385

Concatenating

Like

Data

Sets

.

.

.

.

.

.

. 386

Concatenating

Unlike

Data

Sets

.

.

.

.

.

. 390

Modifying

Sequential

Data

Sets

.

.

.

.

.

.

. 392

Updating

in

Place

.

.

.

.

.

.

.

.

.

.

. 392

Using

Overlapped

Operations

.

.

.

.

.

.

. 392

Extending

a

Data

Set

.

.

.

.

.

.

.

.

.

. 393

Achieving

Device

Independence

.

.

.

.

.

.

. 393

Device-Dependent

Macros

.

.

.

.

.

.

.

. 394

DCB

and

DCBE

Subparameters

.

.

.

.

.

. 395

Improving

Performance

for

Sequential

Data

Sets

395

Limitations

on

Using

Chained

Scheduling

with

Non-DASD

Data

Sets

.

.

.

.

.

.

.

.

.

. 396

DASD

and

Tape

Performance

.

.

.

.

.

.

. 397

Determining

the

Length

of

a

Block

when

Reading

with

BSAM,

BPAM,

or

BDAM

.

.

.

.

.

.

.

. 398

Writing

a

Short

Format-FB

Block

with

BSAM

or

BPAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Using

Hiperbatch

.

.

.

.

.

.

.

.

.

.

.

. 400

Processing

Extended-Format

Sequential

Data

Sets

400

Characteristics

of

Extended-Format

Data

Sets

400

Allocating

Extended-Format

Data

Sets

.

.

.

. 401

Allocating

Compressed-Format

Data

Sets

.

.

. 402

Opening

and

Closing

Extended-Format

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Reading,

Writing,

and

Updating

Extended-Format

Data

Sets

Using

BSAM

and

QSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Concatenating

Extended-Format

Data

Sets

with

Other

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 404

Extending

Striped

Sequential

Data

Sets

.

.

.

. 404

Migrating

to

Extended-Format

Data

Sets

.

.

. 404

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

.

.

.

.

.

.

.

.

.

.

. 407

Structure

of

a

PDS

.

.

.

.

.

.

.

.

.

.

.

. 407

PDS

Directory

.

.

.

.

.

.

.

.

.

.

.

.

. 408

Allocating

Space

for

a

PDS

.

.

.

.

.

.

.

.

. 411

Calculating

Space

.

.

.

.

.

.

.

.

.

.

. 411

Allocating

Space

with

SPACE

and

AVGREC

.

. 412

Creating

a

PDS

.

.

.

.

.

.

.

.

.

.

.

.

. 412

Creating

a

PDS

Member

with

BSAM

or

QSAM

413

Converting

PDSs

.

.

.

.

.

.

.

.

.

.

. 413

Copying

a

PDS

or

Member

to

Another

Data

Set

413

Adding

Members

.

.

.

.

.

.

.

.

.

.

. 414

Processing

a

Member

of

a

PDS

.

.

.

.

.

.

. 416

BLDL—Construct

a

Directory

Entry

List

.

.

. 416

DESERV

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

FIND—Position

to

the

Starting

Address

of

a

Member

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

STOW—Update

the

Directory

.

.

.

.

.

.

. 421

Retrieving

a

Member

of

a

PDS

.

.

.

.

.

.

. 422

Modifying

a

PDS

.

.

.

.

.

.

.

.

.

.

.

. 426

Updating

in

Place

.

.

.

.

.

.

.

.

.

.

. 426

Rewriting

a

Member

.

.

.

.

.

.

.

.

.

. 429

Concatenating

PDSs

.

.

.

.

.

.

.

.

.

.

. 429

Sequential

Concatenation

.

.

.

.

.

.

.

. 429

Partitioned

Concatenation

.

.

.

.

.

.

.

. 429

Reading

a

PDS

Directory

Sequentially

.

.

.

.

. 430

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

.

.

.

.

.

. 431

Advantages

of

PDSEs

.

.

.

.

.

.

.

.

.

. 431

PDSE

and

PDS

Similarities

.

.

.

.

.

.

.

. 433

PDSE

and

PDS

Differences

.

.

.

.

.

.

.

. 433

Structure

of

a

PDSE

.

.

.

.

.

.

.

.

.

.

. 433

PDSE

Logical

Block

Size

.

.

.

.

.

.

.

.

. 434

Reuse

of

Space

.

.

.

.

.

.

.

.

.

.

.

. 434

Directory

Structure

.

.

.

.

.

.

.

.

.

. 435

Relative

Track

Addresses

(TTR)

.

.

.

.

.

. 435

Processing

PDSE

Records

.

.

.

.

.

.

.

.

. 436

Using

BLKSIZE

with

PDSEs

.

.

.

.

.

.

. 437

Using

KEYLEN

with

PDSEs

.

.

.

.

.

.

. 437

Reblocking

PDSE

Records

.

.

.

.

.

.

.

. 437

Processing

Short

Blocks

.

.

.

.

.

.

.

.

. 438

Processing

SAM

Null

Segments

.

.

.

.

.

. 439

Allocating

Space

for

a

PDSE

.

.

.

.

.

.

.

. 439

PDSE

Space

Considerations

.

.

.

.

.

.

. 439

Summary

of

PDSE

Storage

Requirements

.

.

. 442

Defining

a

PDSE

.

.

.

.

.

.

.

.

.

.

.

. 442

Creating

a

PDSE

Member

.

.

.

.

.

.

.

.

. 443

Creating

a

PDSE

Member

with

BSAM

or

QSAM

443

Adding

or

Replacing

PDSE

Members

Serially

444

Adding

or

Replacing

Multiple

PDSE

Members

Concurrently

.

.

.

.

.

.

.

.

.

.

.

. 445

viii

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

||

Copying

a

PDSE

or

Member

to

Another

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

Processing

a

Member

of

a

PDSE

.

.

.

.

.

.

. 446

Establishing

Connections

to

Members

.

.

.

. 446

Using

the

BLDL

Macro

to

Construct

a

Directory

Entry

List

.

.

.

.

.

.

.

.

.

.

.

.

. 447

Using

the

BSP

Macro

to

Backspace

a

Physical

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

Using

the

Directory

Entry

Services

.

.

.

.

. 448

Using

the

FIND

Macro

to

Position

to

the

Beginning

of

a

Member

.

.

.

.

.

.

.

.

. 455

Using

ISITMGD

to

Determine

Whether

the

Data

Set

Is

System

Managed

.

.

.

.

.

.

.

.

. 456

Using

the

NOTE

Macro

to

Provide

Relative

Position

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

Using

the

POINT

Macro

to

Position

to

a

Block

457

Switching

between

Members

.

.

.

.

.

.

. 458

Using

the

STOW

Macro

to

Update

the

Directory

459

Retrieving

a

Member

of

a

PDSE

.

.

.

.

.

.

. 460

Sharing

PDSEs

.

.

.

.

.

.

.

.

.

.

.

.

. 462

Sharing

within

a

Computer

System

.

.

.

.

. 462

Sharing

Violations

.

.

.

.

.

.

.

.

.

.

. 462

Multiple

System

Sharing

of

PDSEs

.

.

.

.

. 463

Normal

or

Extended

PDSE

Sharing

.

.

.

.

. 465

Modifying

a

Member

of

a

PDSE

.

.

.

.

.

.

. 466

Updating

in

Place

.

.

.

.

.

.

.

.

.

.

. 466

Extending

a

PDSE

Member

.

.

.

.

.

.

.

. 466

Deleting

a

PDSE

Member

.

.

.

.

.

.

.

. 467

Renaming

a

PDSE

Member

.

.

.

.

.

.

.

. 467

Reading

a

PDSE

Directory

.

.

.

.

.

.

.

.

. 467

Concatenating

PDSEs

.

.

.

.

.

.

.

.

.

.

. 468

Sequential

Concatenation

.

.

.

.

.

.

.

. 468

Partitioned

Concatenation

.

.

.

.

.

.

.

. 468

Converting

PDSs

to

PDSEs

and

Back

.

.

.

.

. 469

PDSE

to

PDS

Conversion

.

.

.

.

.

.

.

. 470

Restrictions

on

Converting

PDSEs

.

.

.

.

. 470

Improving

Performance

.

.

.

.

.

.

.

.

.

. 470

Recovering

Space

in

Fragmented

PDSEs

.

.

.

. 470

PDSE

Address

Spaces

.

.

.

.

.

.

.

.

.

. 470

Chapter

28.

Processing

z/OS

UNIX

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

Accessing

the

z/OS

UNIX

File

System

.

.

.

.

. 473

Characteristics

of

UNIX

Directories

and

Files

474

Access

Methods

Used

.

.

.

.

.

.

.

.

. 474

Using

HFS

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 475

Creating

HFS

Data

Sets

.

.

.

.

.

.

.

.

. 475

Creating

Additional

Directories

.

.

.

.

.

. 476

Creating

z/OS

UNIX

Files

.

.

.

.

.

.

.

.

. 477

Creating

a

UNIX

File

with

BSAM

or

QSAM

.

. 477

Creating

a

UNIX

File

Using

JCL

.

.

.

.

.

. 479

JCL

Parameters

for

UNIX

Files

.

.

.

.

.

. 480

Creating

a

Macro

Library

in

a

UNIX

Directory

481

Managing

UNIX

Files

and

Directories

.

.

.

.

. 482

Specifying

Security

Settings

for

UNIX

Files

and

Directories

.

.

.

.

.

.

.

.

.

.

.

.

. 482

Editing

UNIX

Files

.

.

.

.

.

.

.

.

.

. 483

Using

ISHELL

to

Manage

UNIX

Files

and

Directories

.

.

.

.

.

.

.

.

.

.

.

.

. 484

Copying

UNIX

Files

or

Directories

.

.

.

.

. 485

Services

and

Utilities

for

UNIX

Files

.

.

.

.

.

. 486

Services

and

Utilities

Cannot

be

Used

with

UNIX

Files

.

.

.

.

.

.

.

.

.

.

.

.

. 487

z/OS

UNIX

Signals

.

.

.

.

.

.

.

.

.

. 487

z/OS

UNIX

Fork

Service

.

.

.

.

.

.

.

. 487

SMF

Records

.

.

.

.

.

.

.

.

.

.

.

. 488

Reading

UNIX

Files

Using

BPAM

.

.

.

.

.

. 488

Using

Macros

for

UNIX

Files

.

.

.

.

.

.

. 488

BLDL—Constructing

a

Directory

Entry

List

.

. 488

CHECK—Checking

for

I/O

Completion

.

.

. 489

CLOSE—to

Close

the

DCB

.

.

.

.

.

.

.

. 489

FIND—Positioning

to

the

Starting

Address

of

a

File

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

READ—Reading

a

UNIX

File

.

.

.

.

.

.

. 490

STOW

DISC—Closing

a

UNIX

File

.

.

.

.

. 490

Concatenating

UNIX

Files

and

Directories

.

.

.

. 490

Sequential

Concatenation

.

.

.

.

.

.

.

. 490

Partitioned

Concatenation

.

.

.

.

.

.

.

. 491

Chapter

29.

Processing

Generation

Data

Groups

.

.

.

.

.

.

.

.

.

.

.

. 493

Data

Set

Organization

of

Generation

Data

Sets

.

. 494

Absolute

Generation

and

Version

Numbers

.

.

. 494

Relative

Generation

Number

.

.

.

.

.

.

.

. 495

Programming

Considerations

for

Multiple-Step

Jobs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

Cataloging

Generation

Data

Groups

.

.

.

.

. 496

Submitting

Multiple

Jobs

to

Update

a

Generation

Data

Group

.

.

.

.

.

.

.

.

. 496

Naming

Generation

Data

Groups

for

ISO/ANSI

Version

3

or

Version

4

Labels

.

.

.

.

.

.

.

. 497

Creating

a

New

Generation

.

.

.

.

.

.

.

.

. 498

Allocating

a

Generation

Data

Set

.

.

.

.

.

. 498

Passing

a

Generation

Data

Set

.

.

.

.

.

.

. 501

Rolling

In

a

Generation

Data

Set

.

.

.

.

.

. 501

Controlling

Expiration

of

a

Rolled-Off

Generation

Data

Set

.

.

.

.

.

.

.

.

.

. 502

Creating

an

ISAM

Data

Set

as

Part

of

a

Generation

Data

Group

.

.

.

.

.

.

.

.

. 502

Retrieving

a

Generation

Data

Set

.

.

.

.

.

.

. 502

Reclaiming

Generation

Data

Sets

.

.

.

.

.

.

. 503

Turning

on

GDS

Reclaim

Processing

.

.

.

.

. 503

Turning

off

GDS

Reclaim

Processing

.

.

.

.

. 503

Building

a

Generation

Data

Group

Index

.

.

.

. 504

Chapter

30.

Using

I/O

Device

Control

Macros

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

Using

the

CNTRL

Macro

to

Control

an

I/O

Device

505

Using

the

PRTOV

Macro

to

Test

for

Printer

Overflow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 506

Using

the

SETPRT

Macro

to

Set

Up

the

Printer

.

. 506

Using

the

BSP

Macro

to

Backspace

a

Magnetic

Tape

or

Direct

Access

Volume

.

.

.

.

.

.

.

. 507

Using

the

NOTE

Macro

to

Return

the

Relative

Address

of

a

Block

.

.

.

.

.

.

.

.

.

.

. 507

Using

the

POINT

Macro

to

Position

to

a

Block

.

. 508

Using

the

SYNCDEV

Macro

to

Synchronize

Data

509

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

.

.

.

.

.

. 511

General

Guidance

.

.

.

.

.

.

.

.

.

.

.

. 511

Contents

ix

||

|

|

Programming

Considerations

.

.

.

.

.

.

. 512

Status

Information

Following

an

Input/Output

Operation

.

.

.

.

.

.

.

.

.

.

.

.

. 512

EODAD

End-of-Data-Set

Exit

Routine

.

.

.

.

. 519

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 519

Programming

Considerations

.

.

.

.

.

.

. 519

SYNAD

Synchronous

Error

Routine

Exit

.

.

.

. 520

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 523

Programming

Considerations

.

.

.

.

.

.

. 525

DCB

Exit

List

.

.

.

.

.

.

.

.

.

.

.

.

. 527

Register

Contents

for

Exits

from

EXLST

.

.

. 529

Serialization

.

.

.

.

.

.

.

.

.

.

.

.

. 529

Allocation

Retrieval

List

.

.

.

.

.

.

.

.

.

. 530

Programming

Conventions

.

.

.

.

.

.

.

. 530

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

. 530

DCB

ABEND

Exit

.

.

.

.

.

.

.

.

.

.

.

. 531

Recovery

Requirements

.

.

.

.

.

.

.

.

. 533

DCB

Abend

Installation

Exit

.

.

.

.

.

.

. 535

DCB

OPEN

Exit

.

.

.

.

.

.

.

.

.

.

.

. 535

Calls

to

DCB

OPEN

Exit

for

Sequential

Concatenation

.

.

.

.

.

.

.

.

.

.

.

. 535

Installation

DCB

OPEN

Exit

.

.

.

.

.

.

. 536

Defer

Nonstandard

Input

Trailer

Label

Exit

List

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 536

Block

Count

Unequal

Exit

.

.

.

.

.

.

.

.

. 536

EOV

Exit

for

Sequential

Data

Sets

.

.

.

.

.

. 537

FCB

Image

Exit

.

.

.

.

.

.

.

.

.

.

.

.

. 538

JFCB

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 539

JFCBE

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

. 540

Open/Close/EOV

Standard

User

Label

Exit

.

.

. 541

Open/EOV

Nonspecific

Tape

Volume

Mount

Exit

545

Open/EOV

Volume

Security

and

Verification

Exit

548

QSAM

Parallel

Input

Exit

.

.

.

.

.

.

.

.

. 550

User

Totaling

for

BSAM

and

QSAM

.

.

.

.

.

. 550

Appendix

A.

Using

Direct

Access

Labels

.

.

.

.

.

.

.

.

.

.

.

.

.

. 553

Direct

Access

Storage

Device

Architecture

.

.

.

. 553

Volume

Label

Group

.

.

.

.

.

.

.

.

.

.

. 554

Data

Set

Control

Block

(DSCB)

.

.

.

.

.

.

. 556

User

Label

Groups

.

.

.

.

.

.

.

.

.

.

. 556

Appendix

B.

Using

the

Double-Byte

Character

Set

(DBCS)

.

.

.

.

.

.

.

. 559

DBCS

Character

Support

.

.

.

.

.

.

.

.

. 559

Record

Length

When

Using

DBCS

Characters

.

. 559

Fixed-Length

Records

.

.

.

.

.

.

.

.

. 559

Variable-Length

Records

.

.

.

.

.

.

.

.

. 560

Appendix

C.

Processing

Direct

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 561

Using

the

Basic

Direct

Access

Method

(BDAM)

.

. 561

Processing

a

Direct

Data

Set

Sequentially

.

.

.

. 562

Organizing

a

Direct

Data

Set

.

.

.

.

.

.

.

. 562

By

Range

of

Keys

.

.

.

.

.

.

.

.

.

.

. 562

By

Number

of

Records

.

.

.

.

.

.

.

.

. 562

With

Indirect

Addressing

.

.

.

.

.

.

.

. 563

Creating

a

Direct

Data

Set

.

.

.

.

.

.

.

.

. 563

Restrictions

in

Creating

a

Direct

Data

Set

Using

QSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 563

With

Direct

Addressing

with

Keys

.

.

.

.

. 563

With

BDAM

to

Allocate

a

VIO

Data

Set

.

.

. 564

Referring

to

a

Record

.

.

.

.

.

.

.

.

.

.

. 565

Record

Addressing

.

.

.

.

.

.

.

.

.

. 565

Extended

Search

.

.

.

.

.

.

.

.

.

.

. 565

Exclusive

Control

for

Updating

.

.

.

.

.

. 566

Feedback

Option

.

.

.

.

.

.

.

.

.

.

. 566

Adding

or

Updating

Records

.

.

.

.

.

.

.

. 566

Format-F

with

Keys

.

.

.

.

.

.

.

.

.

. 566

Format-F

without

Keys

.

.

.

.

.

.

.

.

. 567

Format-V

or

Format-U

with

Keys

.

.

.

.

.

. 567

Format-V

or

Format-U

without

Keys

.

.

.

. 567

Tape-to-Disk

Add—Direct

Data

Set

.

.

.

.

. 568

Tape-to-Disk

Update—Direct

Data

Set

.

.

.

. 569

With

User

Labels

.

.

.

.

.

.

.

.

.

.

. 569

Sharing

DCBs

.

.

.

.

.

.

.

.

.

.

.

.

. 570

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

.

.

.

.

.

.

.

. 571

Using

the

Basic

Indexed

Sequential

Access

Method

(BISAM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 571

Using

the

Queued

Indexed

Sequential

Access

Method

(QISAM)

.

.

.

.

.

.

.

.

.

.

.

. 571

Processing

ISAM

Data

Sets

.

.

.

.

.

.

.

.

. 572

Organizing

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 572

Prime

Area

.

.

.

.

.

.

.

.

.

.

.

.

. 574

Index

Areas

.

.

.

.

.

.

.

.

.

.

.

.

. 574

Overflow

Areas

.

.

.

.

.

.

.

.

.

.

.

. 576

Creating

an

ISAM

Data

Set

.

.

.

.

.

.

.

.

. 576

One-Step

Method

.

.

.

.

.

.

.

.

.

.

. 576

Full-Track-Index

Write

Option

.

.

.

.

.

.

. 577

Multiple-Step

Method

.

.

.

.

.

.

.

.

. 578

Resume

Load

.

.

.

.

.

.

.

.

.

.

.

. 579

Allocating

Space

.

.

.

.

.

.

.

.

.

.

.

. 579

Prime

Data

Area

.

.

.

.

.

.

.

.

.

.

. 581

Specifying

a

Separate

Index

Area

.

.

.

.

.

. 582

Specifying

an

Independent

Overflow

Area

.

.

. 582

Specifying

a

Prime

Area

and

Overflow

Area

.

. 582

Calculating

Space

Requirements

.

.

.

.

.

.

. 582

Step

1.

Number

of

Tracks

Required

.

.

.

.

. 582

Step

2.

Overflow

Tracks

Required

.

.

.

.

. 583

Step

3.

Index

Entries

Per

Track

.

.

.

.

.

. 583

Step

4.

Determine

Unused

Space

.

.

.

.

.

. 584

Step

5.

Calculate

Tracks

for

Prime

Data

Records

584

Step

6.

Cylinders

Required

.

.

.

.

.

.

.

. 585

Step

7.

Space

for

Cylinder

Indexes

and

Track

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 585

Step

8.

Space

for

Master

Indexes

.

.

.

.

.

. 585

Summary

of

Indexed

Sequential

Space

Requirements

Calculations

.

.

.

.

.

.

.

. 586

Retrieving

and

Updating

.

.

.

.

.

.

.

.

. 587

Sequential

Retrieval

and

Update

.

.

.

.

.

. 587

Direct

Retrieval

and

Update

.

.

.

.

.

.

. 588

Adding

Records

.

.

.

.

.

.

.

.

.

.

.

. 592

Inserting

New

Records

.

.

.

.

.

.

.

.

. 593

Adding

New

Records

to

the

End

of

a

Data

Set

594

Maintaining

an

Indexed

Sequential

Data

Set

.

.

. 595

Buffer

Requirements

.

.

.

.

.

.

.

.

.

. 597

Work

Area

Requirements

.

.

.

.

.

.

.

. 598

Space

for

the

Highest-Level

Index

.

.

.

.

. 599

Device

Control

.

.

.

.

.

.

.

.

.

.

.

. 600

x

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

SETL—Specifying

Start

of

Sequential

Retrieval

600

ESETL—Ending

Sequential

Retrieval

.

.

.

. 601

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

.

.

.

.

.

.

.

. 603

Upgrading

ISAM

Applications

to

VSAM

.

.

.

. 604

How

an

ISAM

Program

Can

Process

a

VSAM

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 605

Conversion

of

an

Indexed

Sequential

Data

Set

.

. 609

JCL

for

Processing

with

the

ISAM

Interface

.

.

. 610

Restrictions

on

the

Use

of

the

ISAM

Interface

.

. 612

Example:

Converting

a

Data

Set

.

.

.

.

.

. 614

Example:

Issuing

a

SYNADAF

Macro

.

.

.

. 615

Appendix

F.

Converting

Character

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 617

Coded

Character

Sets

Sorted

by

CCSID

.

.

.

.

. 617

Coded

Character

Sets

Sorted

by

Default

LOCALNAME

.

.

.

.

.

.

.

.

.

.

.

.

. 620

CCSID

Conversion

Groups

.

.

.

.

.

.

.

.

. 626

CCSID

Decision

Tables

.

.

.

.

.

.

.

.

.

. 629

Tables

for

Default

Conversion

Codes

.

.

.

.

. 634

Converting

from

EBCDIC

to

ASCII

.

.

.

.

. 634

Converting

from

ASCII

to

EBCDIC

.

.

.

.

. 634

Appendix

G.

Accessibility

.

.

.

.

.

. 635

Using

assistive

technologies

.

.

.

.

.

.

.

. 635

Keyboard

navigation

of

the

user

interface

.

.

.

. 635

z/OS

information

.

.

.

.

.

.

.

.

.

.

.

. 635

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 637

Programming

interface

information

.

.

.

.

.

. 638

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 638

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 639

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 653

Contents

xi

xii

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Figures

1.

DASD

Volume

Track

Formats

.

.

.

.

.

.

. 9

2.

REPRO

Encipher

and

Decipher

Operations

65

3.

VSAM

Logical

Record

Retrieval

.

.

.

.

.

. 73

4.

Control

Interval

Format

.

.

.

.

.

.

.

. 74

5.

Record

Definition

Fields

of

Control

Intervals

75

6.

Data

Set

with

Nonspanned

Records

.

.

.

. 76

7.

Data

Set

with

Spanned

Records

.

.

.

.

.

. 77

8.

Entry-Sequenced

Data

Set

.

.

.

.

.

.

.

. 79

9.

Example

of

RBAs

of

an

Entry-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

10.

Record

of

a

Key-Sequenced

Data

Set

.

.

.

. 81

11.

Inserting

Records

into

a

Key-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

12.

Inserting

a

Logical

Record

into

a

CI

.

.

.

. 83

13.

Fixed-length

Relative-Record

Data

Set

.

.

.

. 85

14.

Control

Interval

Size

.

.

.

.

.

.

.

.

. 88

15.

Primary

and

Secondary

Space

Allocations

for

Striped

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 89

16.

Control

Interval

in

a

Control

Area

.

.

.

.

. 90

17.

Layering

(Four-Stripe

Data

Set)

.

.

.

.

.

. 91

18.

Alternate

Index

Structure

for

a

Key-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

19.

Alternate

Index

Structure

for

an

Entry-Sequenced

Data

Set

.

.

.

.

.

.

.

. 98

20.

VSAM

Macro

Relationships

.

.

.

.

.

.

. 152

21.

Skeleton

VSAM

Program

.

.

.

.

.

.

.

. 153

22.

Control

Interval

Size,

Physical

Track

Size,

and

Track

Capacity

.

.

.

.

.

.

.

.

.

.

. 157

23.

Determining

Free

Space

.

.

.

.

.

.

.

. 162

24.

Scheduling

Buffers

for

Direct

Access

.

.

.

. 172

25.

General

Format

of

a

Control

Interval

179

26.

Format

of

Control

Information

for

Nonspanned

Records

.

.

.

.

.

.

.

.

. 182

27.

Format

of

Control

Information

for

Spanned

Records

.

.

.

.

.

.

.

.

.

.

.

.

. 183

28.

Exclusive

Control

Conflict

Resolution

192

29.

Relationship

Between

the

Base

Cluster

and

the

Alternate

Index

.

.

.

.

.

.

.

.

. 194

30.

VSAM

RLS

address

and

data

spaces

and

requestor

address

spaces

.

.

.

.

.

.

.

. 218

31.

CICS

VSAM

non-RLS

access

.

.

.

.

.

. 220

32.

CICS

VSAM

RLS

.

.

.

.

.

.

.

.

.

. 220

33.

Example

of

a

JRNAD

exit

.

.

.

.

.

.

. 243

34.

Example

of

a

SYNAD

exit

routine

.

.

.

. 252

35.

Relation

of

Index

Entry

to

Data

Control

Interval

.

.

.

.

.

.

.

.

.

.

.

.

. 270

36.

Relation

of

Index

Entry

to

Data

Control

Interval

.

.

.

.

.

.

.

.

.

.

.

.

. 271

37.

Levels

of

a

Prime

Index

.

.

.

.

.

.

.

. 272

38.

General

Format

of

an

Index

Record

.

.

.

. 273

39.

Format

of

the

Index

Entry

Portion

of

an

Index

Record

.

.

.

.

.

.

.

.

.

.

. 276

40.

Format

of

an

Index

Record

.

.

.

.

.

.

. 276

41.

Example

of

Key

Compression

.

.

.

.

.

. 279

42.

Control

Interval

Split

and

Index

Update

280

43.

Fixed-Length

Records

.

.

.

.

.

.

.

.

. 288

44.

Nonspanned,

Format-V

Records

.

.

.

.

. 290

45.

Spanned

Format-VS

Records

(Sequential

Access

Method)

.

.

.

.

.

.

.

.

.

.

. 292

46.

Spanned

Format-V

Records

for

Direct

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

47.

Undefined-Length

Records

.

.

.

.

.

.

. 296

48.

Fixed-Length

Records

for

ISO/ANSI

Tapes

299

49.

Nonspanned

Format-D

Records

for

ISO/ANSI

Tapes

As

Seen

by

the

Program

.

. 302

50.

Spanned

Variable-Length

(Format-DS)

Records

for

ISO/ANSI

Tapes

As

Seen

by

the

Program

.

.

.

.

.

.

.

.

.

.

.

.

. 303

51.

Reading

a

Sequential

Data

Set

.

.

.

.

.

. 315

52.

Reentrant—Above

the

16

MB

Line

.

.

.

. 316

53.

Sources

and

Sequence

of

Operations

for

Completing

the

DCB

.

.

.

.

.

.

.

.

. 318

54.

Opening

Three

Data

Sets

at

the

Same

Time

321

55.

Changing

a

Field

in

the

DCB

.

.

.

.

.

. 331

56.

Closing

Three

Data

Sets

at

the

Same

Time

332

57.

Record

Processed

when

LEAVE

or

REREAD

is

Specified

for

CLOSE

TYPE=T

.

.

.

.

. 333

58.

Constructing

a

Buffer

Pool

from

a

Static

Storage

Area

.

.

.

.

.

.

.

.

.

.

.

. 345

59.

Constructing

a

Buffer

Pool

Using

GETPOOL

and

FREEPOOL

.

.

.

.

.

.

.

.

.

.

. 346

60.

Simple

Buffering

with

MACRF=GL

and

MACRF=PM

.

.

.

.

.

.

.

.

.

.

.

. 348

61.

Simple

Buffering

with

MACRF=GM

and

MACRF=PM

.

.

.

.

.

.

.

.

.

.

.

. 348

62.

Simple

Buffering

with

MACRF=GL

and

MACRF=PL

.

.

.

.

.

.

.

.

.

.

.

. 349

63.

Simple

Buffering

with

MACRF=GL

and

MACRF=PM-UPDAT

Mode

.

.

.

.

.

.

. 349

64.

Parallel

Processing

of

Three

Data

Sets

362

65.

JCL,

Macros,

and

Procedures

Required

to

Share

a

Data

Set

Using

Multiple

DCBs

.

.

. 366

66.

Macros

and

Procedures

Required

to

Share

a

Data

Set

Using

a

Single

DCB

.

.

.

.

.

. 367

67.

Creating

a

Sequential

Data

Set—Move

Mode,

Simple

Buffering

.

.

.

.

.

.

.

.

.

. 384

68.

Retrieving

a

Sequential

Data

Set—Locate

Mode,

Simple

Buffering

.

.

.

.

.

.

.

. 385

69.

Like

Concatenation

Read

through

BSAM

390

70.

Reissuing

a

READ

or

GET

for

Unlike

Concatenated

Data

Sets

.

.

.

.

.

.

.

. 391

71.

One

Method

of

Determining

the

Length

of

a

Record

when

Using

BSAM

to

Read

Undefined-Length

or

Blocked

Records

.

.

. 399

72.

A

Partitioned

Data

Set

(PDS)

.

.

.

.

.

. 408

73.

A

PDS

Directory

Block

.

.

.

.

.

.

.

. 408

74.

A

PDS

Directory

Entry

.

.

.

.

.

.

.

. 409

75.

Creating

One

Member

of

a

PDS

.

.

.

.

. 413

76.

Creating

Members

of

a

PDS

Using

STOW

415

77.

BLDL

List

Format

.

.

.

.

.

.

.

.

.

. 417

78.

DESERV

GET

by

NAME_LIST

Control

Block

Structure

.

.

.

.

.

.

.

.

.

.

.

.

. 418

©

Copyright

IBM

Corp.

1987,

2004

xiii

79.

DESERV

GET

by

PDSDE

Control

Block

Structure

.

.

.

.

.

.

.

.

.

.

.

.

. 419

80.

DESERV

GET_ALL

Control

Block

Structure

420

81.

Retrieving

One

Member

of

a

PDS

.

.

.

.

. 422

82.

Retrieving

Several

Members

and

Subgroups

of

a

PDS

without

Overlapping

I/O

Time

and

CPU

Time

.

.

.

.

.

.

.

.

.

.

.

.

. 424

83.

Reading

a

Member

of

a

PDS

or

PDSE

using

Asynchronous

BPAM

.

.

.

.

.

.

.

.

. 425

84.

Updating

a

Member

of

a

PDS

.

.

.

.

.

. 428

85.

A

Partitioned

Data

Set

Extended

(PDSE)

432

86.

TTRs

for

a

PDSE

Member

(Unblocked

Records)

.

.

.

.

.

.

.

.

.

.

.

.

. 435

87.

TTRs

for

Two

PDSE

Members

(LRECL=80,

BLKSIZE=800)

.

.

.

.

.

.

.

.

.

.

. 436

88.

Example

of

How

PDSE

Records

Are

Reblocked

.

.

.

.

.

.

.

.

.

.

.

.

. 438

89.

Example

of

Reblocking

When

the

Block

Size

Has

Been

Changed

.

.

.

.

.

.

.

.

.

. 438

90.

Creating

One

Member

of

a

PDSE

.

.

.

.

. 443

91.

Adding

PDSE

Members

Serially

.

.

.

.

. 445

92.

Replacing

Multiple

PDSE

Members

Concurrently

.

.

.

.

.

.

.

.

.

.

.

. 445

93.

DESERV

GET

by

NAME_LIST

Control

Block

Structure

.

.

.

.

.

.

.

.

.

.

.

.

. 450

94.

DESERV

GET

by

PDSDE

Control

Block

Structure

.

.

.

.

.

.

.

.

.

.

.

.

. 451

95.

DESERV

GET_ALL

Control

Block

Structure

452

96.

DESERV

GET_NAMES

Control

Block

Structure

.

.

.

.

.

.

.

.

.

.

.

.

. 453

97.

DESERV

RELEASE

Input

Control

Block

Structure

.

.

.

.

.

.

.

.

.

.

.

.

. 454

98.

DESERV

UPDATE

.

.

.

.

.

.

.

.

.

. 455

99.

ISITMGD

Example

.

.

.

.

.

.

.

.

.

. 456

100.

Using

NOTE

and

FIND

to

Switch

Between

Members

of

a

Concatenated

PDSE

.

.

.

. 459

101.

STOW

INITIALIZE

Example

.

.

.

.

.

. 460

102.

Retrieving

One

Member

of

a

PDSE

.

.

.

. 460

103.

Retrieving

Several

Members

of

a

PDSE

or

PDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

104.

OPEN

Success/Failure

.

.

.

.

.

.

.

. 463

105.

OPEN

for

UPDAT

and

Positioning

to

a

Member

Decision

Table

.

.

.

.

.

.

.

. 464

106.

UNIX

Directories

and

Files

in

a

File

System

474

107.

Creating

a

UNIX

File

with

QSAM

.

.

.

.

. 478

108.

Edit-Entry

Panel

.

.

.

.

.

.

.

.

.

. 484

109.

ISPF

Shell

Panel

.

.

.

.

.

.

.

.

.

. 484

110.

Using

OPUT

to

Copy

Members

of

a

PDS

or

PDSE

to

a

UNIX

File

.

.

.

.

.

.

.

.

. 485

111.

A

Partitioned

Concatenation

of

PDS

extents,

PDSEs,

and

UNIX

directories

.

.

.

.

.

. 491

112.

Status

Indicators—BDAM,

BPAM,

BSAM,

and

QSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 518

113.

Parameter

List

Passed

to

DCB

Abend

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

. 531

114.

Recovery

Work

Area

.

.

.

.

.

.

.

.

. 534

115.

Defining

an

FCB

Image

for

a

3211

.

.

.

. 539

116.

Parameter

List

Passed

to

User

Label

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

. 541

117.

IECOENTE

Macro

Parameter

List

.

.

.

.

. 546

118.

IECOEVSE

Macro

Parameter

List

.

.

.

.

. 549

119.

Direct

Access

Labeling

.

.

.

.

.

.

.

. 554

120.

Initial

Volume

Label

Format

.

.

.

.

.

. 555

121.

User

Header

and

Trailer

Labels

on

DASD

or

Tape

.

.

.

.

.

.

.

.

.

.

.

.

.

. 556

122.

Creating

a

Direct

Data

Set

(Tape-to-Disk)

564

123.

Adding

Records

to

a

Direct

Data

Set

568

124.

Updating

a

Direct

Data

Set

.

.

.

.

.

.

. 569

125.

Indexed

Sequential

Data

Set

Organization

574

126.

Format

of

Track

Index

Entries

.

.

.

.

.

. 575

127.

Creating

an

Indexed

Sequential

Data

Set

578

128.

Sequentially

Updating

an

Indexed

Sequential

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 588

129.

Directly

Updating

an

Indexed

Sequential

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 591

130.

Directly

Updating

an

Indexed

Sequential

Data

Set

with

Variable-Length

Records

.

.

.

.

. 593

131.

Adding

Records

to

an

Indexed

Sequential

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 595

132.

Deleting

Records

from

an

Indexed

Sequential

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 596

133.

Use

of

ISAM

Processing

Programs

.

.

.

. 604

134.

CCSID

Conversion

Group

1

.

.

.

.

.

.

. 627

135.

CCSID

Conversion

Group

2

.

.

.

.

.

.

. 627

136.

CCSID

Conversion

Group

3

.

.

.

.

.

.

. 627

137.

CCSID

Conversion

Group

4

.

.

.

.

.

.

. 627

138.

CCSID

Conversion

Group

5

.

.

.

.

.

.

. 628

xiv

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Tables

1.

Data

Management

Access

Methods

.

.

.

.

. 15

2.

Access

Method

Services

Commands

.

.

.

. 16

3.

Data

Set

Activity

for

Non-System-Managed

and

System-Managed

Data

Sets

.

.

.

.

.

. 28

4.

Differences

Between

Stripes

in

Sequential

and

VSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 39

5.

Entry-Sequenced

Data

Set

Processing

.

.

.

. 79

6.

Key-Sequenced

Data

Set

Processing

.

.

.

. 82

7.

RRDS

Processing

.

.

.

.

.

.

.

.

.

.

. 85

8.

Variable-Length

RRDS

Processing

.

.

.

.

. 86

9.

Comparison

of

ESDS,

KSDS,

Fixed-Length

RRDS,

Variable-Length

RRDS,

and

Linear

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

10.

Adding

Data

to

Various

Types

of

Output

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

11.

Effect

of

RPL

Options

on

Data

Buffers

and

Positioning

.

.

.

.

.

.

.

.

.

.

.

. 145

12.

Relationship

between

SHAREOPTIONS

and

VSAM

Functions

.

.

.

.

.

.

.

.

.

. 200

13.

VSAM

user-written

exit

routines

.

.

.

.

. 236

14.

Contents

of

registers

at

entry

to

IGW8PNRU

exit

routine

.

.

.

.

.

.

.

.

.

.

.

. 238

15.

Contents

of

registers

at

entry

to

EODAD

exit

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

16.

Contents

of

registers

at

entry

to

EXCEPTIONEXIT

routine

.

.

.

.

.

.

. 240

17.

Contents

of

registers

at

entry

to

JRNAD

exit

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

18.

Contents

of

parameter

list

built

by

VSAM

for

the

JRNAD

exit

.

.

.

.

.

.

.

.

.

.

. 245

19.

Contents

of

registers

at

entry

to

LERAD

exit

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

20.

Contents

of

registers

for

RLSWAIT

exit

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

21.

Contents

of

registers

at

entry

to

SYNAD

exit

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

22.

Conditions

when

exits

to

UPAD

routines

are

taken

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

23.

Contents

of

registers

at

entry

to

UPAD

exit

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

24.

Parameter

list

passed

to

UPAD

routine

254

25.

Communication

with

user-security-
verification

routine

.

.

.

.

.

.

.

.

.

. 256

26.

31-Bit

Address

Keyword

Parameters

.

.

.

. 258

27.

Format

of

the

Header

of

an

Index

Record

273

28.

Segment

Control

Codes

.

.

.

.

.

.

.

. 293

29.

Tape

Density

(DEN)

Values

.

.

.

.

.

.

. 307

30.

Optimum

and

Maximum

Block

Size

Supported

.

.

.

.

.

.

.

.

.

.

.

. 324

31.

Rules

for

Setting

Block

Sizes

for

Tape

Data

Sets

or

Compressed

Format

Data

Sets

.

.

. 327

32.

Buffering

Technique

and

GET/PUT

Processing

Modes

.

.

.

.

.

.

.

.

.

. 350

33.

Messages

for

Data

Integrity

Processing

372

34.

Different

Conditions

for

Data

Integrity

Violations

.

.

.

.

.

.

.

.

.

.

.

.

. 373

35.

PDSE

and

PDS

Differences

.

.

.

.

.

.

. 433

36.

DE

Services

Function

Summary

.

.

.

.

. 448

37.

Access

Methods

That

UNIX

Files

Use

474

38.

Access

Permissions

for

UNIX

Files

and

Directories

.

.

.

.

.

.

.

.

.

.

.

. 483

39.

DCB

Exit

Routines

.

.

.

.

.

.

.

.

.

. 512

40.

Data

Event

Control

Block

.

.

.

.

.

.

. 513

41.

Exception

Code

Bits—BISAM

.

.

.

.

.

. 514

42.

Event

Control

Block

.

.

.

.

.

.

.

.

. 515

43.

Exception

Code

Bits—BDAM

.

.

.

.

.

. 517

44.

Contents

of

Registers

at

Entry

to

EODAD

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

. 519

45.

Exception

Code

Bits—QISAM

.

.

.

.

.

. 521

46.

Register

Contents

on

Entry

to

SYNAD

Routine—BDAM,

BPAM,

BSAM,

and

QSAM

. 523

47.

Register

Contents

on

Entry

to

SYNAD

Routine—BISAM

.

.

.

.

.

.

.

.

.

. 524

48.

Register

Contents

on

Entry

to

SYNAD

Routine—QISAM

.

.

.

.

.

.

.

.

.

. 524

49.

DCB

Exit

List

Format

and

Contents

.

.

.

. 528

50.

Option

Mask

Byte

Settings

.

.

.

.

.

.

. 532

51.

Conditions

for

Which

Recovery

Can

Be

Attempted

.

.

.

.

.

.

.

.

.

.

.

. 533

52.

System

Response

to

Block

Count

Exit

Return

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

. 537

53.

System

Response

to

a

User

Label

Exit

Routine

Return

Code

.

.

.

.

.

.

.

.

.

.

.

. 543

54.

Saving

and

Restoring

General

Registers

547

55.

Requests

for

Indexed

Sequential

Data

Sets

580

56.

QISAM

Error

Conditions

.

.

.

.

.

.

.

. 605

57.

BISAM

Error

Conditions

.

.

.

.

.

.

.

. 606

58.

Register

Contents

for

DCB-Specified

ISAM

SYNAD

Routine

.

.

.

.

.

.

.

.

.

. 607

59.

Register

Contents

for

AMP-Specified

ISAM

SYNAD

Routine

.

.

.

.

.

.

.

.

.

. 607

60.

ABEND

Codes

Issued

by

the

ISAM

Interface

608

61.

DEB

Fields

Supported

by

ISAM

Interface

608

62.

DCB

Fields

Supported

by

ISAM

Interface

610

63.

Output

DISP=NEW,OLD

.

.

.

.

.

.

.

. 630

64.

Output

DISP=MOD

(IBM

V4

tapes

only)

630

65.

Input

.

.

.

.

.

.

.

.

.

.

.

.

.

. 632

©

Copyright

IBM

Corp.

1987,

2004

xv

xvi

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

About

This

Document

This

document

is

intended

for

system

and

application

programmers.

This

document

is

intended

to

help

you

use

access

methods

to

process

virtual

storage

access

method

(VSAM)

data

sets,

sequential

data

sets,

partitioned

data

sets

(PDSs),

partitioned

data

sets

extended

(PDSEs),

z/OS

UNIX

files,

and

generation

data

sets

in

the

DFSMS

environment.

This

document

also

explains

how

to

use

access

method

services

commands,

macro

instructions,

and

JCL

to

process

data

sets.

For

information

about

the

accessibility

features

of

z/OS,

for

users

who

have

a

physical

disability,

see

Appendix

G,

“Accessibility,”

on

page

635.

Major

Divisions

of

This

Document

This

document

is

divided

into

four

major

parts:

v

Part

1

covers

general

topics

for

all

data

sets.

v

Part

2

covers

the

processing

of

VSAM

data

sets.

v

Part

3

covers

the

processing

of

non-VSAM

data

sets

and

UNIX

files.

v

Part

4

covers

the

following

topics:

–

Using

direct

access

labels.

–

Copying

and

printing

Kanji

characters

using

the

double-byte

character

set.

–

Processing

direct

data

sets.

–

Processing

indexed

sequential

data

sets.

–

Using

ISAM

programs

with

VSAM

data

sets.

–

Converting

character

sets.

Required

product

knowledge

To

use

this

document

effectively,

you

should

be

familiar

with

the

following

information:

v

IBM®

support

and

how

it

is

structured

v

Assembler

language

v

Job

control

language

(JCL)

v

Diagnostic

techniques

You

should

also

understand

how

to

use

access

method

services

commands,

catalogs,

and

storage

administration,

which

the

following

documents

describe.

Topic

Document

Access

method

services

commands

z/OS

DFSMS

Access

Method

Services

for

Catalogs

describes

the

access

method

services

commands

used

to

process

virtual

storage

access

method

(VSAM)

data

sets.

Catalogs

z/OS

DFSMS:

Managing

Catalogs

describes

how

to

create

master

and

user

catalogs.

Storage

administration

z/OS

DFSMSdfp

Storage

Administration

Reference

and

z/OS

DFSMS:

Implementing

System-Managed

Storage

describe

storage

administration.

Macros

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

describes

the

macros

used

to

process

VSAM

and

non-VSAM

data

sets.

©

Copyright

IBM

Corp.

1987,

2004

xvii

|
|
|
|
|
|

Topic

Document

z/OS®

UNIX®

System

Services

z/OS

UNIX

System

Services

User’s

Guide

describes

how

to

process

z/OS

UNIX

files.

Referenced

documents

For

a

complete

list

of

DFSMS

documents

and

related

z/OS

documents

referenced

by

this

document,

see

the

z/OS

Information

Roadmap.

You

can

obtain

a

softcopy

version

of

this

document

and

other

DFSMS

documents

from

sources

listed

here.

This

document

refers

to

the

following

documents:

Document

Title

Description

z/OS

Collection,

SK2T-6700

CD-ROM

that

includes

the

DFSMS

library

and

other

z/OS

element

libraries.

http://www.ibm.com/servers/eservers

/zseries/zos

z/OS

web

site

that

includes

the

unlicensed

documents

from

DFSMS

library

and

other

z/OS

element

libraries.

Character

Data

Representation

Architecture

Reference

and

Registry

Document

that

includes

information

about

coded

character

set

identifiers

in

the

character

data

representation

architecture

repository.

Accessing

z/OS

DFSMS

documents

on

the

Internet

In

addition

to

making

softcopy

documents

available

on

CD-ROM,

IBM

provides

access

to

unlicensed

z/OS

softcopy

documents

on

the

Internet.

To

view,

search,

and

print

z/OS

documents,

go

to

the

z/OS

Internet

Library:

http://www.ibm.com/eserver/zseries/zos/bkserv/

Using

LookAt

to

look

up

message

explanations

LookAt

is

an

online

facility

that

lets

you

look

up

explanations

for

most

of

the

IBM

messages

you

encounter,

as

well

as

for

some

system

abends

and

codes.

Using

LookAt

to

find

information

is

faster

than

a

conventional

search

because

in

most

cases

LookAt

goes

directly

to

the

message

explanation.

You

can

use

LookAt

from

the

following

locations

to

find

IBM

message

explanations

for

z/OS

elements

and

features,

z/VM®,

and

VSE:

v

The

Internet.

You

can

access

IBM

message

explanations

directly

from

the

LookAt

Web

site

at

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v

Your

z/OS

TSO/E

host

system.

You

can

install

code

on

your

z/OS

or

z/OS.e

systems

to

access

IBM

message

explanations,

using

LookAt

from

a

TSO/E

command

line

(for

example,

TSO/E

prompt,

ISPF,

or

z/OS

UNIX

System

Services

running

OMVS).

v

Your

Windows®

workstation.

You

can

install

code

to

access

IBM

message

explanations

on

the

z/OS

Collection

(SK3T-4269),

using

LookAt

from

a

Windows

DOS

command

line.

v

Your

wireless

handheld

device.

You

can

use

the

LookAt

Mobile

Edition

with

a

handheld

device

that

has

wireless

access

and

an

Internet

browser

(for

example,

xviii

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|

|||

||
|

|
|
|
|
|

|
|
|
|
|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

Internet

Explorer

for

Pocket

PCs,

Blazer,

or

Eudora

for

Palm

OS,

or

Opera

for

Linux

handheld

devices).

Link

to

the

LookAt

Mobile

Edition

from

the

LookAt

Web

site.

You

can

obtain

code

to

install

LookAt

on

your

host

system

or

Windows

workstation

from

a

disk

on

your

z/OS

Collection

(SK3T-4269),

or

from

the

LookAt

Web

site

(click

Download,

and

select

the

platform,

release,

collection,

and

location

that

suit

your

needs).

More

information

is

available

in

the

LOOKAT.ME

files

available

during

the

download

process.

Accessing

z/OS

licensed

documents

on

the

Internet

z/OS

licensed

documentation

is

available

on

the

Internet

in

PDF

format

at

the

IBM

Resource

Link™

Web

site

at:

http://www.ibm.com/servers/resourcelink

Licensed

documents

are

available

only

to

customers

with

a

z/OS

license.

Access

to

these

documents

requires

an

IBM

Resource

Link

user

ID

and

password,

and

a

key

code.

With

your

z/OS

order

you

received

a

Memo

to

Licensees,

(GI10-0671),

that

includes

this

key

code.

1

To

obtain

your

IBM

Resource

Link

user

ID

and

password,

log

on

to:

http://www.ibm.com/servers/resourcelink

To

register

for

access

to

the

z/OS

licensed

documents:

1.

Sign

in

to

Resource

Link

using

your

Resource

Link

user

ID

and

password.

2.

Select

User

Profiles

located

on

the

left-hand

navigation

bar.

Note:

You

cannot

access

the

z/OS

licensed

documents

unless

you

have

registered

for

access

to

them

and

received

an

e-mail

confirmation

informing

you

that

your

request

has

been

processed.

Printed

licensed

documents

are

not

available

from

IBM.

You

can

use

the

PDF

format

on

either

z/OS

Licensed

Product

Library

CD-ROM

or

IBM

Resource

Link

to

print

licensed

documents.

1.

z/OS.e

customers

received

a

Memo

to

Licensees,

(GI10-0684)

that

includes

this

key

code.

About

This

Document

xix

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

xx

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Summary

of

Changes

This

document

contains

terminology,

maintenance,

and

editorial

changes.

Technical

changes

or

additions

to

the

text

and

illustrations

are

indicated

by

a

vertical

line

to

the

left

of

each

change.

You

might

notice

changes

in

the

style

and

structure

of

some

content

in

this

document—for

example,

more

specific

headings

for

notes,

such

as

Tip

and

Requirement.

The

changes

are

ongoing

improvements

to

the

consistency

and

retrievability

of

information

in

DFSMS

documents.

Summary

of

Changes

for

SC26-7410-04

z/OS

Version

1

Release

6

This

document

contains

information

that

was

previously

presented

in

z/OS

DFSMS:

Using

Data

Sets,

SC26-7410-03.

The

following

sections

summarize

the

changes

to

that

information.

New

Information

This

edition

includes

the

following

new

enhancements:

v

Restartable

PDSE

address

space.

For

more

information,

see

“PDSE

Address

Spaces”

on

page

470.

Changed

Information

The

following

information

changed

in

this

edition:

v

Corrected

information

about

allocating

space

for

a

linear

data

set

in

“Linear

Data

Sets”

on

page

108.

v

Added

information

about

using

entry-sequenced

data

sets

(ESDSs)

with

VSAM

record-level

sharing

to

“Using

VSAM

RLS

with

ESDS”

on

page

227.

v

Added

information

about

using

64-bit

real

storage

to

“Constructing

a

Buffer

Pool”

on

page

342.

v

Added

information

about

using

partitioned

data

sets

(PDSs)

as

generation

data

sets

(GDS)

to

“Data

Set

Organization

of

Generation

Data

Sets”

on

page

494.

v

Updated

information

about

coded

character

set

identifiers

(CCSID)

in

Appendix

F,

“Converting

Character

Sets,”

on

page

617.

v

This

book

has

been

enabled

for

z/OS

LibraryCenter

advanced

searches

by

command

name.

Summary

of

Changes

for

SC26-7410-03

z/OS

Version

1

Release

5

This

document

contains

information

that

was

previously

presented

in

z/OS

DFSMS:

Using

Data

Sets,

SC26-7410-02.

The

following

sections

summarize

the

changes

to

that

information.

New

Information

This

edition

includes

the

following

new

enhancements:

v

You

can

specify

a

maximum

file

sequence

number

up

to

65

535

for

a

data

set

on

a

tape

volume.

v

The

JOBCAT

and

STEPCAT

DD

statements

are

now

disabled

by

default.

©

Copyright

IBM

Corp.

1987,

2004

xxi

v

When

the

name-hiding

function

is

in

effect,

you

can

retrieve

the

names

of

data

sets

only

if

you

have

read

access

to

the

data

sets

or

VTOC.

v

VSAM

automatically

determines

the

resources

required

to

upgrade

VSAM

alternate

indexes.

v

Unrelated

messages

do

not

appear

between

the

lines

of

a

multiple-line

VSAM

message,

so

that

the

operator

can

interpret

the

information

more

easily.

v

The

system

consolidates

adjacent

extents

for

VSAM

data

sets

when

extending

data

on

the

same

volume.

v

You

can

activate

the

enhanced

data

integrity

function

to

prevent

users

from

concurrently

opening

a

shared

sequential

data

set

for

output

or

update

processing.

v

You

can

use

extended-format

sequential

data

sets

with

a

maximum

of

59

stripes.

v

You

can

use

the

basic

partitioned

access

method

(BPAM)

to

read

z/OS

UNIX

files.

v

Users

can

specify

whether

to

reclaim

generation

data

sets

(GDSs)

automatically.

Changed

Information

The

following

information

changed

in

this

edition:

v

You

must

specify

the

directory

block

size

when

allocating

of

PDSE

and

PDS

data

sets.

v

The

page

space

size

limit

is

now

4

GB.

v

You

can

use

Integrated

Cryptographic

Service

Facility

(ICSF)

with

the

access

method

services

REPRO

ENCIPHER

command.

v

End-of-volume

processing

extends

to

the

same

volume

or

to

a

new

volume.

v

The

large

block

interface

(LBI)

section

has

new

information

on

writing

format-U

or

format-D

blocks

without

BUFOFF=L.

v

You

can

define

a

VSAM

striped

data

set

as

reusable.

v

The

system

affixes

a

32-byte

suffix

to

each

block

for

compressed

extended-format

data

sets.

v

Additional

information

on

specifying

normal

or

extended

sharing

for

PDSEs

is

provided.

v

Recommendations

for

updating

generation

data

groups

with

concurrent

jobs

have

been

improved.

Moved

Information

The

following

information

has

moved

to

a

new

location

in

this

document:

v

The

information

on

using

magnetic

tape

volumes

is

in

“Magnetic

Tape

Volumes”

on

page

11.

v

The

information

on

hierarchical

file

system

(HFS)

data

sets

is

now

in

Chapter

28,

“Processing

z/OS

UNIX

Files,”

on

page

473.

Summary

of

Changes

for

SC26-7410-02

z/OS

Version

1

Release

3

This

document

contains

information

that

was

previously

presented

in

z/OS

Version

1

Release

1

DFSMS:

Using

Data

Sets

(SC26-7410-01).

The

following

sections

summarize

the

changes

to

that

information.

New

Information

This

edition

includes

the

following

new

information:

v

Data

set

naming

conventions

v

Virtual

input/output

(VIO)

limit

v

Real

addresses

greater

than

2

GB

available

for

all

VSAM

data

sets

xxii

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

Caching

all

or

some

of

the

VSAM

record

level

sharing

(RLS)

data

in

a

coupling

facility

(CF)

cache

structure

v

VSAM

RLS

system-managed

duplexing

rebuild

process,

and

validity

checking

for

a

user-managed

rebuild

or

alter

process

v

Dynamic

volume

count

for

space

constraint

relief

when

you

store

data

sets

on

DASD

volumes

v

A

summary

of

the

effects

of

specifying

all

extents

(ALX)

or

maximum

contiguous

extents

(MXIG)

for

virtual

input/output

(VIO)

data

sets

Changed

Information

The

following

information

changed

in

this

edition:

v

Allocation

of

HFS

data

sets

requiring

directory

block

size

v

Requirements

for

the

ENCIPHER

and

DECIPHER

functions

of

the

REPRO

command

v

Relative

byte

address

(RBA)

in

an

entry-sequenced

data

set

v

Processing

techniques

for

VSAM

system-managed

buffering

v

Calculating

the

index

control

interval

size

for

a

key-sequenced

data

set

v

Extensions

of

VSAM

data

sets

when

you

specify

zero

as

a

secondary

allocation

quantity

v

Sharing

of

non-VSAM

data

sets

v

Use

of

the

BYPASSLLA

option

with

the

BLDL

list

v

Partitioned

concatenation

of

PDSs

and

PDSEs

v

Processing

restrictions

for

PDSEs

v

Rules

for

updating

a

data

set

in

place

v

Conversion

of

the

exclamation

point

character

between

EBCDIC

and

ASCII

v

Direct

insertion

of

records

into

a

key-sequenced

data

set

v

Addition

of

QSAM

LRECL

value

v

Sharing

of

PDSEs

by

multiple

systems

in

a

sysplex

Summary

of

Changes

xxiii

xxiv

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Part

1.

All

Data

Sets

Chapter

1.

Working

with

Data

Sets

.

.

.

.

.

. 3

Data

Storage

and

Management

.

.

.

.

.

.

.

. 3

System-Managed

Data

Sets

.

.

.

.

.

.

.

. 4

Distributed

File

Manager

.

.

.

.

.

.

.

.

. 4

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Basic

Direct

Access

Method

.

.

.

.

.

.

.

. 4

Basic

Partitioned

Access

Method

.

.

.

.

.

.

. 5

Basic

Sequential

Access

Method

.

.

.

.

.

.

. 5

Data-in-Virtual

(DIV)

.

.

.

.

.

.

.

.

.

. 5

Indexed

Sequential

Access

Method

.

.

.

.

.

. 5

Object

Access

Method

.

.

.

.

.

.

.

.

.

. 6

Queued

Sequential

Access

Method

.

.

.

.

.

. 6

Virtual

Storage

Access

Method

.

.

.

.

.

.

. 6

Access

to

z/OS

UNIX

Files

.

.

.

.

.

.

.

. 7

Selection

of

an

Access

Method

.

.

.

.

.

.

. 7

Direct

Access

Storage

Device

(DASD)

Volumes

.

.

. 8

DASD

Labels

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Track

Format

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Track

Overflow

.

.

.

.

.

.

.

.

.

.

.

. 9

VSAM

Record

Addressing

.

.

.

.

.

.

.

.

. 9

Actual

and

Relative

Addressing

with

Non-VSAM

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

. 10

Actual

Addresses

.

.

.

.

.

.

.

.

.

. 10

Relative

Addresses

.

.

.

.

.

.

.

.

.

. 10

Magnetic

Tape

Volumes

.

.

.

.

.

.

.

.

.

. 11

Using

Magnetic

Tape

Labels

.

.

.

.

.

.

.

. 11

Specifying

the

File

Sequence

Number

.

.

.

.

. 12

Example

of

Creating

a

Tape

Data

Set

with

a

File

Sequence

Number

Greater

than

9999

.

. 12

Example

of

Creating

a

Tape

Data

Set

Using

Any

File

Sequence

Number

.

.

.

.

.

.

. 13

Identifying

Unlabeled

Tapes

.

.

.

.

.

.

.

. 14

Using

Tape

Marks

.

.

.

.

.

.

.

.

.

.

. 14

Data

Management

Macros

.

.

.

.

.

.

.

.

. 15

Data

Set

Processing

.

.

.

.

.

.

.

.

.

.

.

. 16

Allocating

Data

Sets

.

.

.

.

.

.

.

.

.

. 16

Access

Method

Services

.

.

.

.

.

.

.

. 16

ALLOCATE

Command

.

.

.

.

.

.

.

. 16

JCL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Processing

Data

Sets

through

Programs

.

.

.

. 17

Using

Access

Methods

.

.

.

.

.

.

.

.

.

. 17

Using

Addressing

Modes

.

.

.

.

.

.

.

.

. 18

VSAM

Addressing

Modes

.

.

.

.

.

.

. 18

Non-VSAM

Addressing

Modes

.

.

.

.

.

. 18

Using

Hiperspace

and

Hiperbatch

.

.

.

.

.

. 18

Processing

VSAM

Data

Sets

.

.

.

.

.

.

.

. 18

Processing

PDSs,

PDSEs,

and

UNIX

Directories

19

Processing

Sequential

Data

Sets

and

Members

of

PDSEs

and

PDSs

.

.

.

.

.

.

.

.

.

.

. 19

BSAM

Processing

.

.

.

.

.

.

.

.

.

. 19

QSAM

Processing

.

.

.

.

.

.

.

.

.

. 20

Processing

UNIX

Files

with

an

Access

Method

. 20

Processing

EXCP,

EXCPVR,

and

XDAP

Macros

21

Distributed

Data

Management

(DDM)

Attributes

.

. 21

Virtual

I/O

for

Temporary

Data

Sets

.

.

.

.

.

. 22

Data

Set

Names

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Catalogs

and

Volume

Table

of

Contents

.

.

.

.

. 23

VTOC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Catalogs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Data

Set

Names

and

Metadata

.

.

.

.

.

.

. 24

Security

of

Data

Set

Names

.

.

.

.

.

.

.

. 25

Chapter

2.

Using

the

Storage

Management

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Using

Automatic

Class

Selection

Routines

.

.

.

. 29

Allocating

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 30

Allocating

Data

Sets

with

JCL

.

.

.

.

.

.

. 30

Allocating

an

HFS

Data

Set

.

.

.

.

.

.

. 31

Allocating

System-Managed

Data

Sets

.

.

. 31

Allocating

Non-System-Managed

Data

Sets

.

. 32

Allocating

System-Managed

Data

Sets

with

the

Access

Method

Services

ALLOCATE

Command

. 32

Allocating

a

Data

Set

Using

Class

Specifications

.

.

.

.

.

.

.

.

.

.

.

. 32

Allocating

a

VSAM

Data

Set

Using

Class

Specifications

.

.

.

.

.

.

.

.

.

.

.

. 32

Allocating

a

System-Managed

Non-VSAM

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Allocating

a

PDSE

.

.

.

.

.

.

.

.

.

. 33

Allocating

a

New

Non-System-Managed

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Allocating

Data

Sets

with

the

TSO

ALLOCATE

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Allocating

Data

Sets

with

Dynamic

Allocation

.

. 34

Chapter

3.

Allocating

Space

on

Direct

Access

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Specification

of

Space

Requirements

.

.

.

.

.

. 35

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Average

Record

Length

.

.

.

.

.

.

.

.

. 36

Tracks

or

Cylinders

.

.

.

.

.

.

.

.

.

.

. 36

Absolute

Track

.

.

.

.

.

.

.

.

.

.

.

. 37

Additional

Space-Allocation

Options

.

.

.

.

. 37

Maximum

Data

Set

Size

.

.

.

.

.

.

.

.

.

. 37

Maximum

Size

on

One

Volume

.

.

.

.

.

.

. 37

Maximum

Number

of

Volumes

.

.

.

.

.

.

. 37

Maximum

VSAM

Data

Set

Size

.

.

.

.

.

.

. 37

Primary

and

Secondary

Space

Allocation

without

the

Guaranteed

Space

Attribute

.

.

.

.

.

.

.

. 38

Multivolume

VSAM

Data

Sets

.

.

.

.

.

.

. 38

Multivolume

Non-VSAM

Data

Sets

.

.

.

.

. 38

Extended-Format

Data

Sets

.

.

.

.

.

.

.

. 38

Allocation

of

Data

Sets

with

the

Guaranteed

Space

Attribute

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Guaranteed

Space

with

DISP=NEW

or

MOD

.

. 39

Guaranteed

Space

for

VSAM

.

.

.

.

.

.

. 39

Guaranteed

Space

with

DISP=OLD

or

SHR

.

.

. 40

Guaranteed

Space

with

Extended-Format

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Guaranteed

Space

Example

.

.

.

.

.

.

.

. 40

Allocation

of

Data

Sets

with

the

Space

Constraint

Relief

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 41

©

Copyright

IBM

Corp.

1987,

2004

1

Extension

to

Another

DASD

Volume

.

.

.

.

.

. 41

Examples

of

Dynamic

Volume

Count

When

Defining

a

Data

Set

.

.

.

.

.

.

.

.

.

.

. 42

Examples

of

Dynamic

Volume

Count

When

Allocating

an

Existing

Data

Set

.

.

.

.

.

.

. 43

Multiple

Volume

Considerations

for

Sequential

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Additional

Information

on

Space

Allocation

.

.

. 44

Chapter

4.

Backing

Up

and

Recovering

Data

Sets

45

Using

REPRO

for

Backup

and

Recovery

.

.

.

.

. 46

Using

EXPORT

and

IMPORT

for

Backup

and

Recovery

of

VSAM

Data

Sets

.

.

.

.

.

.

.

. 47

Structure

of

an

Exported

Data

Set

.

.

.

.

.

. 48

EXPORT

and

IMPORT

Commands

.

.

.

.

. 48

Writing

a

Program

for

Backup

and

Recovery

.

.

. 48

Using

Concurrent

Copy

for

Backup

and

Recovery

49

Updating

a

Data

Set

After

Recovery

.

.

.

.

.

. 49

Synchronizing

Catalog

and

VSAM

Data

Set

Information

During

Recovery

.

.

.

.

.

.

.

. 49

Handling

an

Abnormal

Termination

.

.

.

.

. 50

Using

VERIFY

to

Process

Improperly

Closed

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Recovering

from

Errors

Due

to

an

Improperly

Closed

VSAM

Data

Set

.

.

.

.

.

.

.

. 51

Using

VERIFY

with

Catalogs

.

.

.

.

.

. 51

CICS

VSAM

Recovery

.

.

.

.

.

.

.

.

.

.

. 52

Chapter

5.

Protecting

Data

Sets

.

.

.

.

.

.

. 53

z/OS

Security

Server

(RACF)

.

.

.

.

.

.

.

. 53

RACF

Protection

for

VSAM

Data

Sets

.

.

.

. 53

Generic

and

Discrete

Profiles

for

VSAM

Data

Sets

54

RACF

Protection

for

Non-VSAM

Data

Sets

.

.

. 54

Hiding

Data

Set

Names

.

.

.

.

.

.

.

.

. 55

Data

Set

Password

Protection

.

.

.

.

.

.

.

. 55

Passwords

for

VSAM

Data

Sets

.

.

.

.

.

.

. 56

Passwords

to

Authorize

Access

.

.

.

.

.

. 56

Password-Protection

Precautions

.

.

.

.

. 57

Data

Set

and

Catalog

Protection

.

.

.

.

. 58

Password

Prompting

.

.

.

.

.

.

.

.

. 58

Passwords

for

Non-VSAM

Data

Sets

.

.

.

.

. 59

Assigning

a

Password

.

.

.

.

.

.

.

.

. 59

Protecting

a

Data

Set

When

You

Define

It

.

. 59

Supplying

a

Password

for

a

Catalog

.

.

.

. 59

Handling

Incorrect

Passwords

.

.

.

.

.

. 60

Entering

a

Record

in

the

PASSWORD

Data

Set

60

User-Security-Verification

Routine

.

.

.

.

.

.

. 60

Erasure

of

Residual

Data

.

.

.

.

.

.

.

.

.

. 60

Erasing

DASD

Data

.

.

.

.

.

.

.

.

.

. 60

System

Erasure

of

Data

.

.

.

.

.

.

.

. 61

RAMAC

Virtual

Array

.

.

.

.

.

.

.

.

. 61

Erasing

Tape

Data

.

.

.

.

.

.

.

.

.

.

. 61

Authorized

Program

Facility

and

Access

Method

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Access

Method

Services

Cryptographic

Option

.

. 63

Data

Enciphering

and

Deciphering

.

.

.

.

. 63

Encryption

of

VSAM

Data

Sets

.

.

.

.

.

. 65

Data

Encryption

Keys

.

.

.

.

.

.

.

.

. 66

Secondary

Key-Encrypting

Keys

.

.

.

.

. 66

REPRO

ENCIPHER

and

DECIPHER

on

ICSF

.

. 66

2

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

1.

Working

with

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Data

Storage

and

Management

3

Access

Methods

4

Direct

Access

Storage

Device

(DASD)

Volumes

8

Magnetic

Tape

Volumes

11

Data

Management

Macros

15

Data

Set

Processing

16

Distributed

Data

Management

(DDM)

Attributes

21

Virtual

I/O

for

Temporary

Data

Sets

22

Data

Set

Names

22

Catalogs

and

Volume

Table

of

Contents

23

A

data

set

is

a

collection

of

logically

related

data

and

can

be

a

source

program,

a

library

of

macros,

or

a

file

of

data

records

used

by

a

processing

program.

Data

records

are

the

basic

unit

of

information

used

by

a

processing

program.

By

placing

your

data

into

volumes

of

organized

data

sets,

you

can

save

and

process

the

data.

You

can

also

print

the

contents

of

a

data

set

or

display

the

contents

on

a

terminal.

Exception:

z/OS

UNIX

files

are

different

from

the

typical

data

set

because

they

are

byte

oriented

rather

than

record

oriented.

Data

Storage

and

Management

You

can

store

data

on

secondary

storage

devices,

such

as

a

direct

access

storage

device

(DASD)

or

magnetic

tape

volume.

The

term

DASD

applies

to

disks

or

to

a

mass

storage

medium

on

which

a

computer

stores

data.

A

volume

is

a

standard

unit

of

secondary

storage.

You

can

store

all

types

of

data

sets

on

DASD

but

only

sequential

data

sets

on

magnetic

tape.

Mountable

tape

volumes

can

reside

in

an

automated

tape

library.

For

information

about

magnetic

tape

volumes,

see

z/OS

DFSMS:

Using

Magnetic

Tapes.

You

can

also

direct

a

sequential

data

set

to

or

from

spool,

a

UNIX

file,

a

TSO/E

terminal,

a

unit

record

device,

virtual

I/O

(VIO),

or

a

dummy

data

set.

Each

block

of

data

on

a

DASD

volume

has

a

distinct

location

and

a

unique

address,

making

it

possible

to

find

any

record

without

extensive

searching.

You

can

store

and

retrieve

records

either

directly

or

sequentially.

Use

DASD

volumes

for

storing

data

and

executable

programs,

including

the

operating

system

itself,

and

for

temporary

working

storage.

You

can

use

one

DASD

volume

for

many

different

data

sets,

and

reallocate

or

reuse

space

on

the

volume.

Data

management

is

the

part

of

the

operating

system

that

organizes,

identifies,

stores,

catalogs,

and

retrieves

all

the

information

(including

programs)

that

your

installation

uses.

Data

management

does

these

main

tasks:

v

Sets

aside

(allocates)

space

on

DASD

volumes.

v

Automatically

retrieves

cataloged

data

sets

by

name.

©

Copyright

IBM

Corp.

1987,

2004

3

v

Mounts

magnetic

tape

volumes

in

the

drive.

v

Establishes

a

logical

connection

between

the

application

program

and

the

medium.

v

Controls

access

to

data.

v

Transfers

data

between

the

application

program

and

the

medium.

System-Managed

Data

Sets

The

Storage

Management

Subsystem

(SMS)

is

an

operating

environment

that

automates

the

management

of

storage.

Storage

management

uses

the

values

provided

at

allocation

time

to

determine,

for

example,

on

which

volume

to

place

your

data

set,

and

how

many

tracks

to

allocate

for

it.

Storage

management

also

manages

tape

data

sets

on

mountable

volumes

that

reside

in

an

automated

tape

library.

With

SMS,

users

can

allocate

data

sets

more

easily.

The

data

sets

allocated

through

SMS

are

called

system-managed

data

sets

or

SMS-managed

data

sets.

For

information

about

allocating

system-managed

data

sets,

see

Chapter

2,

“Using

the

Storage

Management

Subsystem,”

on

page

27.

If

you

are

a

storage

administrator,

also

see

z/OS

DFSMSdfp

Storage

Administration

Reference

for

information

about

using

SMS.

Distributed

File

Manager

With

distributed

file

manager

(DFM)

target

server,

applications

running

on

a

processor

with

the

DFM

source

server

can

create

or

access

certain

types

of

SMS-managed

data

sets.

They

can

also

access

certain

types

of

non-SMS-managed

data

sets

on

an

System/390

processor

running

DFSMS,

with

the

DFM

target

server.

See

z/OS

DFSMS

DFM

Guide

and

Reference

for

details

about

the

supported

data

set

types

and

a

discussion

of

considerations

in

making

them

available

for

remote

access.

Also

see

“Distributed

Data

Management

(DDM)

Attributes”

on

page

21.

Access

Methods

An

access

method

defines

the

technique

that

is

used

to

store

and

retrieve

data.

Access

methods

have

their

own

data

set

structures

to

organize

data,

macros

to

define

and

process

data

sets,

and

utility

programs

to

process

data

sets.

Access

methods

are

identified

primarily

by

the

data

set

organization.

For

example,

use

the

basic

sequential

access

method

(BSAM)

or

queued

sequential

access

method

(QSAM)

with

sequential

data

sets.

However,

there

are

times

when

an

access

method

identified

with

one

organization

can

be

used

to

process

a

data

set

organized

in

a

different

manner.

For

example,

a

sequential

data

set

(not

extended-format

data

set)

created

using

BSAM

can

be

processed

by

the

basic

direct

access

method

(BDAM),

and

vice

versa.

Another

example

is

UNIX

files,

which

you

can

process

using

BSAM,

QSAM,

basic

partitioned

access

method

(BPAM),

or

virtual

storage

access

method

(VSAM).

Basic

Direct

Access

Method

BDAM

arranges

records

in

any

sequence

your

program

indicates,

and

retrieves

records

by

actual

or

relative

address.

If

you

do

not

know

the

exact

location

of

a

record,

you

can

specify

a

point

in

the

data

set

where

a

search

for

the

record

is

to

begin.

Data

sets

organized

this

way

are

called

direct

data

sets.

Optionally,

BDAM

uses

hardware

keys.

Hardware

keys

are

less

efficient

than

the

optional

software

keys

in

virtual

sequential

access

method

(VSAM).

Working

with

Data

Sets

4

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Related

reading:

See

the

following

material:

v

“Track

Format”

on

page

8

v

Appendix

C,

“Processing

Direct

Data

Sets,”

on

page

561

Basic

Partitioned

Access

Method

Basic

partitioned

access

method

(BPAM)

arranges

records

as

members

of

a

partitioned

data

set

(PDS)

or

a

partitioned

data

set

extended

(PDSE)

on

DASD.

You

can

use

BPAM

to

view

a

UNIX

directory

and

its

files

as

if

it

were

a

PDS.

You

can

view

each

PDS,

PDSE,

or

UNIX

member

sequentially

with

BSAM

or

QSAM.

A

PDS

or

PDSE

includes

a

directory

that

relates

member

names

to

locations

within

the

data

set.

Use

the

PDS,

PDSE,

or

UNIX

directory

to

retrieve

individual

members.

For

program

libraries

(load

modules

and

program

objects),

the

directory

contains

program

attributes

that

are

required

to

load

and

rebind

the

member.

Although

UNIX

files

can

contain

program

objects,

program

management

does

not

access

UNIX

files

through

BPAM.

The

following

describes

some

of

the

characteristics

of

PDSs,

PDSEs,

and

UNIX

files:

Partitioned

data

set

PDSs

can

have

any

type

of

sequential

records.

Partitioned

data

set

extended

A

PDSE

has

a

different

internal

storage

format

than

a

PDS,

which

gives

PDSEs

improved

usability

characteristics.

You

can

use

a

PDSE

in

place

of

most

PDSs,

but

you

cannot

use

a

PDSE

for

certain

system

data

sets.

z/OS

UNIX

files

UNIX

files

are

byte

streams

and

do

not

contain

records.

BPAM

converts

the

bytes

in

UNIX

files

to

records.

You

can

use

BPAM

to

read

but

not

write

to

UNIX

files.

BPAM

access

is

like

BSAM

access.

Basic

Sequential

Access

Method

BSAM

arranges

records

sequentially

in

the

order

in

which

they

are

entered.

A

data

set

that

has

this

organization

is

a

sequential

data

set.

The

user

organizes

records

with

other

records

into

blocks.

This

is

basic

access.

You

can

use

BSAM

with

the

following

data

types:

v

sequential

data

sets

v

extended-format

data

sets

v

z/OS

UNIX

files

Data-in-Virtual

(DIV)

The

data-in-virtual

(DIV)

macro

provides

access

to

VSAM

linear

data

sets.

For

more

information,

see

z/OS

MVS

Programming:

Assembler

Services

Guide.

Indexed

Sequential

Access

Method

ISAM

refers

to

two

access

methods:

basic

indexed

sequential

access

method

(BISAM)

and

queued

indexed

sequential

access

method

(QISAM).

Data

sets

that

ISAM

processes

are

called

indexed

sequential

data

sets.

ISAM

arranges

records

in

sequence

by

key

fields,

and

retrieves

records

by

key.

The

structure

of

multilevel

indexes

in

ISAM

is

similar

to

the

structure

of

indexes

in

VSAM.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

5

Recommendation:

Do

not

use

ISAM.

The

system

supports

ISAM

only

for

compatibility

with

other

IBM

operating

systems.

You

should

plan

to

convert

all

indexed

sequential

data

sets

to

VSAM

data

sets.

Indexed

sequential

data

sets

cannot

be

system

managed.

See

Appendix

D,

“Processing

Indexed

Sequential

Data

Sets,”

on

page

571.

Object

Access

Method

Object

access

method

(OAM)

processes

very

large,

named

byte

streams

(objects)

that

have

no

record

boundary

or

other

internal

orientation.

These

objects

can

be

recorded

in

a

DB2

database

or

on

an

optical

storage

volume.

For

information

about

OAM,

see

z/OS

DFSMS

OAM

Application

Programmer’s

Reference

and

z/OS

DFSMS

OAM

Planning,

Installation,

and

Storage

Administration

Guide

for

Object

Support.

Queued

Sequential

Access

Method

QSAM

arranges

records

sequentially

in

the

order

that

they

are

entered

to

form

sequential

data

sets,

which

are

the

same

as

those

data

sets

that

BSAM

creates.

The

system

organizes

records

with

other

records.

QSAM

anticipates

the

need

for

records

based

on

their

order.

To

improve

performance,

QSAM

reads

these

records

into

storage

before

they

are

requested.

This

is

called

queued

access.

You

can

use

QSAM

with

the

following

data

types:

v

sequential

data

sets

v

extended-format

data

sets

v

z/OS

UNIX

files

Virtual

Storage

Access

Method

VSAM

arranges

records

by

an

index

key,

relative

record

number,

or

relative

byte

addressing.

VSAM

is

used

for

direct

or

sequential

processing

of

fixed-length

and

variable-length

records

on

DASD.

Data

that

is

organized

by

VSAM

is

cataloged

for

easy

retrieval

and

is

stored

in

one

of

five

types

of

data

sets.

v

Entry-sequenced

data

set

(ESDS).

Contains

records

in

the

order

in

which

they

were

entered.

Records

are

added

to

the

end

of

the

data

set

and

can

be

accessed.

v

Key-sequenced

data

set

(KSDS).

Contains

records

in

ascending

collating

sequence.

Records

can

be

accessed

by

a

field,

called

a

key,

or

by

a

relative

byte

address.

v

Linear

data

set

(LDS).

Contains

data

that

has

no

record

boundaries.

Linear

data

sets

contain

none

of

the

control

information

that

other

VSAM

data

sets

do.

Linear

data

sets

must

be

cataloged

in

a

catalog.

v

Relative

record

data

set

(RRDS).

Contains

records

in

relative

record

number

order,

and

the

records

can

be

accessed

only

by

this

number.

There

are

two

types

of

relative

record

data

sets.

–

Fixed-length

RRDS:

The

records

must

be

of

fixed

length.

–

Variable-length

RRDS:

The

records

can

vary

in

length.

Throughout

this

document,

the

term

RRDS

refers

to

both

types

of

relative

record

data

sets,

unless

they

need

to

be

differentiated.

v

z/OS

UNIX

files.

A

UNIX

file

can

be

accessed

as

if

it

were

a

VSAM

entry-sequenced

data

set

(ESDS).

Although

UNIX

files

are

not

actually

stored

as

entry-sequenced

data

sets,

the

system

attempts

to

simulate

the

characteristics

of

such

a

data

set.

To

identify

or

access

a

UNIX

file,

specify

the

path

that

leads

to

it.

Working

with

Data

Sets

6

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Any

type

of

VSAM

data

set

can

be

in

extended

format.

Extended-format

data

sets

have

a

different

internal

storage

format

than

data

sets

that

are

not

extended.

This

storage

format

gives

extended-format

data

sets

additional

usability

characteristics

and

possibly

better

performance

due

to

striping.

You

can

choose

for

an

extended-format

key-sequenced

data

set

to

be

in

the

compressed

format.

Extended-format

data

sets

must

be

SMS

managed.

You

cannot

use

an

extended-format

data

set

for

certain

system

data

sets.

Recommendation:

Do

not

use

BISAM

or

QISAM.

Use

VSAM

instead.

Access

to

z/OS

UNIX

Files

Programs

can

access

the

information

in

UNIX

files

through

z/OS

UNIX

System

Services

(z/OS

UNIX)

calls,

such

as

open(pathname),

read(file

descriptor),

and

write(file

descriptor).

Programs

can

also

access

the

information

in

UNIX

files

through

the

BSAM,

BPAM,

QSAM,

and

VSAM

access

methods.

When

you

use

BSAM

or

QSAM,

a

UNIX

file

is

simulated

as

a

single-volume

sequential

data

set.

When

you

use

VSAM,

a

UNIX

file

is

simulated

as

an

ESDS.

When

you

use

BPAM,

a

UNIX

directory

and

its

files

are

simulated

as

a

partitioned

data

set

directory

and

its

members.

You

can

use

the

following

types

of

UNIX

files

with

the

access

methods:

v

Regular

files,

including

files

accessed

through

Network

File

System

(NFS),

temporary

file

system

(TFS),

HFS,

or

zSeries

file

system

(zFS)

v

Character

special

files

v

First-in-first-out

(FIFO)

special

files

v

Symbolic

links

Restriction:

You

cannot

use

the

following

types

of

UNIX

files

with

the

access

methods:

v

UNIX

directories,

except

indirectly

through

BPAM

v

External

links

Files

can

reside

on

other

systems.

The

access

method

user

can

use

NFS

to

access

them.

Selection

of

an

Access

Method

In

selecting

an

access

method

for

a

data

set,

consider

the

organization

of

the

data

set,

what

you

need

to

specify

through

macros,

and

the

device

type:

v

VSAM

data

sets,

PDSEs,

PDSs,

extended-format

data

sets,

direct

data

sets,

indexed

sequential

data

sets,

and

UNIX

files

must

be

stored

on

DASD

volumes.

v

Sequential

data

sets

can

be

on

DASD

or

tape

volumes,

or

these

data

sets

can

be

read

from

or

written

to

a

unit

record

device

or

TSO/E

terminal.

They

can

be

spooled

data

sets.

Spooled

data

sets

named

SYSOUT

can

be

directed

over

a

network.

Sequential

data

sets

also

can

be

dummy

data

sets.

In

addition,

you

should

select

a

data

organization

according

to

the

type

of

processing

you

want

to

do:

sequential

or

direct.

For

example,

RRDSs

or

key-sequenced

data

sets

are

best

for

applications

that

use

only

direct

access,

or

both

direct

and

sequential

access.

Sequential

or

VSAM

entry-sequenced

data

sets

are

best

for

batch

processing

applications

and

for

sequential

access.

Restriction:

You

cannot

process

VSAM

data

sets

with

non-VSAM

access

methods,

although

you

can

use

DIV

macros

to

access

linear

data

sets.

You

cannot

process

non-VSAM

data

sets

except

for

UNIX

files

with

VSAM.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

7

See

z/OS

TSO/E

Command

Reference

for

information

about

using

BSAM

and

QSAM

to

read

from

and

write

to

a

TSO/E

terminal

in

line

mode.

Direct

Access

Storage

Device

(DASD)

Volumes

Although

DASD

volumes

differ

in

physical

appearance,

capacity,

and

speed,

they

are

similar

in

data

recording,

data

checking,

data

format,

and

programming.

The

recording

surface

of

each

volume

is

divided

into

many

concentric

tracks.

The

number

of

tracks

and

their

capacity

vary

with

the

device.

Each

device

has

an

access

mechanism

that

contains

read/write

heads

to

transfer

data

as

the

recording

surface

rotates

past

them.

DASD

Labels

The

operating

system

uses

groups

of

labels

to

identify

DASD

volumes

and

the

data

sets

they

contain.

Application

programs

generally

do

not

use

these

labels

directly.

DASD

volumes

must

use

standard

labels.

Standard

labels

include

a

volume

label,

a

data

set

label

for

each

data

set,

and

optional

user

labels.

A

volume

label,

stored

at

track

0

of

cylinder

0,

identifies

each

DASD

volume.

A

utility

program

initializes

each

DASD

volume

before

it

is

used

on

the

system.

The

initialization

program

generates

the

volume

label

and

builds

the

volume

table

of

contents

(VTOC).

The

VTOC

is

a

structure

that

contains

the

data

set

labels.

See

Appendix

A,

“Using

Direct

Access

Labels,”

on

page

553

for

information

about

direct

access

labels.

Track

Format

Information

is

recorded

on

all

DASD

volumes

in

a

standard

format.

This

format

is

called

count-key

data

(CKD)

or

extended

count-key

data

(ECKD).

Each

track

contains

a

record

0

(also

called

track

descriptor

record

or

capacity

record)

and

data

records.

Historically,

S/390

hardware

manuals

and

software

manuals

have

used

inconsistent

terminology

to

refer

to

units

of

data

written

on

DASD

volumes.

Hardware

manuals

call

them

records.

Software

manuals

call

them

blocks

and

use

“record”

for

something

else.

The

DASD

sections

of

this

document

use

both

terms

as

appropriate.

Software

records

are

described

in

Chapter

6,

“Organizing

VSAM

Data

Sets,”

on

page

73

and

Chapter

20,

“Selecting

Record

Formats

for

Non-VSAM

Data

Sets,”

on

page

287.

For

these

data

formats,

one

or

more

of

the

following

is

true:

v

Each

VSAM

control

interval

consists

of

one

or

more

contiguous

blocks.

Control

intervals

are

grouped

into

control

areas.

v

Each

non-VSAM

block

contains

part

of

a

record

or

one

or

more

records.

Examples

of

these

programming

interfaces

are

BSAM,

BDAM,

and

EXCP.

v

Each

VSAM

record

occupies

multiple

control

intervals

or

all

or

part

of

a

control

interval.

Each

non-VSAM

record

occupies

multiple

blocks

or

all

or

part

of

a

block.

An

example

is

QSAM.

v

The

application

program

might

regard

byte

streams

as

being

grouped

in

records.

The

program

does

not

see

blocks.

Examples

of

such

programs

include

UNIX

files

and

OAM

objects.

Working

with

Data

Sets

8

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

process

of

grouping

records

into

blocks

is

called

blocking.

The

extraction

of

records

from

blocks

is

called

unblocking.

Blocking

or

unblocking

might

be

done

by

the

application

program

or

the

operating

system.

In

z/OS

UNIX,

blocking

means

suspension

of

program

execution.

Although

IBM

does

not

recommend

the

use

of

ISAM,

BDAM

and

ISAM

use

the

data

area

of

record

zero

to

contain

information

about

the

remaining

space

on

the

track.

BDAM

uses

the

track

descriptor

record

to

contain

the

number

of

empty

bytes

following

the

last

user

data

record

on

the

track.

ISAM

uses

the

track

descriptor

record

for

that

purpose

for

variable-length

format

data

sets.

Figure

1

shows

the

two

different

data

formats,

count-data

and

count-key-data,

only

one

of

which

can

be

used

for

a

particular

data

set.

An

exception

is

PDSs

that

are

not

PDSEs.

The

directory

blocks

are

in

count-key-data

format,

and

the

member

blocks

normally

are

in

count-data

format.

Count-Data

Format:

Records

are

formatted

without

keys.

The

key

length

is

0.

The

count

area

contains

8-bytes

that

identify

the

location

of

the

block

by

cylinder,

head,

and

record

numbers,

and

its

data

length.

Count-Key-Data

Format:

The

blocks

are

written

with

hardware

keys.

The

key

area

(1

-

255

bytes)

contains

a

record

key

that

specifies

the

data

record,

such

as

the

part

number,

account

number,

sequence

number,

or

some

other

identifier.

In

data

sets,

only

ISAM,

BDAM,

BSAM,

EXCP,

and

PDS

directories

use

blocks

with

hardware

keys.

Outside

data

sets,

the

VTOC

and

the

volume

label

contain

hardware

keys.

Tip:

The

use

of

hardware

keys

is

less

efficient

than

the

use

of

software

keys

(which

VSAM

uses).

Track

Overflow

The

operating

system

no

longer

supports

the

track

overflow

feature.

The

system

ignores

any

request

for

it.

VSAM

Record

Addressing

You

identify

VSAM

records

by

their

key,

record

number,

or

relative

byte

address

in

the

data

set.

See

“Selection

of

VSAM

Data

Set

Types”

on

page

77.

Count Data Count Data Count Data

Count Data Count DataKey Count DataKey. . .

. . .

Track Descriptor
Record (RO)

Track Descriptor
Record (RO)

Block (R1) Block (Rn)

Block (R1) Block (Rn)

Count-Data Format

Count-Key-Data Format

Figure

1.

DASD

Volume

Track

Formats

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

9

Actual

and

Relative

Addressing

with

Non-VSAM

Access

Methods

With

certain

access

methods,

you

can

access

data

non-sequentially.

You

can

use

addresses

to

identify

block

locations.

Use

two

types

of

addresses

to

store

and

retrieve

data

on

DASD

volumes:

actual

addresses

and

relative

addresses.

When

sequentially

processing

a

multiple

volume

data

set

with

a

BSAM

DCB,

except

for

extended-format

data

sets,

you

can

refer

to

only

records

of

the

current

volume.

Actual

Addresses

When

the

system

returns

the

actual

address

of

a

block

on

a

direct

access

volume

to

your

program,

it

is

in

the

form

MBBCCHHR,

in

which

the

characters

represent

the

following

values:

M

1-byte

binary

number

specifying

the

relative

extent

number.

Each

extent

is

a

set

of

consecutive

tracks

allocated

for

the

data

set.

BBCCHH

Three

2-byte

binary

numbers

specifying

the

cell

(bin),

cylinder,

and

head

number

for

the

block

(its

track

address).

The

cylinder

and

head

numbers

are

recorded

in

the

count

area

for

each

block.

All

DASDs

require

that

the

bin

number

(BB)

be

zero.

R

1-byte

binary

number

specifying

the

relative

block

number

on

the

track.

The

block

number

is

also

recorded

in

the

count

area.

If

your

program

stores

actual

addresses

in

your

data

set,

and

you

refer

to

those

addresses,

the

data

set

must

be

treated

as

unmovable.

Data

sets

that

are

unmovable

cannot

reside

on

system-managed

volumes.

If

you

store

actual

addresses

in

another

data

set,

those

addresses

become

nonvalid

if

the

first

data

set

is

moved

or

migrated.

Although

you

can

mark

the

data

set

with

the

unmovable

attribute

in

DSORG,

that

prevents

the

data

set

from

being

SMS

managed.

Relative

Addresses

BDAM,

BSAM,

BPAM,

and

ISAM

use

relative

block

addresses

and

relative

track

addresses.

BDAM

uses

relative

block

addresses.

BSAM

(except

with

extended-format

data

sets),

BPAM,

and

BDAM

use

relative

track

addresses.

ISAM

records

are

accessed

by

key

or

sequentially.

BSAM

and

BPAM

relative

addresses

are

relative

to

the

data

set

on

the

current

volume.

BDAM

relative

addresses

are

relative

to

the

data

set

and

go

across

all

volumes.

The

relative

block

address

is

a

3-byte

binary

number

that

shows

the

position

of

the

block,

starting

from

the

first

block

of

the

data

set.

Allocation

of

noncontiguous

sets

of

blocks

does

not

affect

the

number.

The

first

block

of

a

data

set

always

has

a

relative

block

address

of

0.

The

relative

track

address

has

the

form

TTR:

TT

An

unsigned

2-byte

binary

number

specifying

the

position

of

the

track

starting

from

the

first

track

allocated

for

the

data

set.

The

TT

for

the

first

track

is

0.

Allocation

of

noncontiguous

sets

of

tracks

does

not

affect

the

TT

number.

R

1-byte

binary

number

specifying

the

number

of

the

block

starting

from

the

first

block

on

the

track

TT.

The

R

value

for

the

first

block

of

data

on

a

track

is

1.

Working

with

Data

Sets

10

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

With

some

devices,

such

as

the

IBM

3380

Model

K,

a

data

set

can

contain

more

than

32

767

tracks.

Therefore,

assembler

halfword

instructions

could

result

in

non-valid

data

being

processed.

Relative

Block

Addresses

for

Extended-Format

Data

Sets.

For

extended-format

data

sets,

block

locator

tokens

(BLTs)

provide

addressing

capability.

You

can

use

a

BLT

transparently,

as

if

it

were

a

relative

track

record

(TTR).

The

NOTE

macro

returns

a

4-byte

value

in

which

the

three

high-order

bytes

are

the

BLT

value

and

the

fourth

byte

is

a

zero.

Your

program

uses

the

value

from

the

NOTE

macro

as

input

to

the

POINT

macro,

which

provides

positioning

within

a

sequential

data

set

through

BSAM.

The

BLT

is

essentially

the

relative

block

number

(RBN)

within

each

logical

volume

of

the

data

set

(where

the

first

block

has

an

RBN

of

1).

For

compressed

format

data

sets,

the

relative

block

numbers

represent

uncompressed

simulated

blocks,

not

the

real

compressed

blocks.

A

multistriped

data

appears

to

the

user

as

a

single

logical

volume.

Therefore,

for

a

multistriped

data

set,

the

RBN

is

relative

to

the

beginning

of

the

data

set

and

incorporates

all

stripes.

Relative

Track

Addresses

for

PDSEs.

For

PDSEs,

the

relative

track

addresses

(TTRs)

do

not

represent

the

actual

track

and

record

location.

Instead,

the

TTRs

are

tokens

that

define

the

record’s

position

within

the

data

set.

See

“Relative

Track

Addresses

(TTR)”

on

page

435

for

a

description

of

TTRs

for

PDSE

members

and

blocks.

Relative

Track

Addresses

for

UNIX

files.

For

UNIX

files,

the

relative

track

addresses

(TTRs)

do

not

represent

the

actual

track

and

record

location.

Instead,

the

TTRs

are

tokens

that

define

a

BPAM

logical

connection

to

a

UNIX

member

or

the

record’s

position

within

the

file.

Magnetic

Tape

Volumes

This

section

discusses

using

tape

labels

and

specifying

the

file

sequence

number

for

data

sets

that

are

stored

on

magnetic

tape

volumes.

Because

data

sets

on

magnetic

tape

devices

must

be

organized

sequentially,

the

procedure

for

allocating

space

is

different

from

allocating

space

on

DASD.

All

data

sets

that

are

stored

on

a

given

magnetic

tape

volume

must

be

recorded

in

the

same

density.

See

z/OS

DFSMS:

Using

Magnetic

Tapes

for

information

about

magnetic

tape

volume

labels

and

tape

processing.

Related

reading:

For

information

about

nonstandard

label

processing

routines,

see

z/OS

DFSMS

Installation

Exits.

Using

Magnetic

Tape

Labels

The

operating

system

uses

groups

of

labels

to

identify

magnetic

tape

volumes

and

the

data

sets

that

they

contain.

Application

programs

generally

do

not

use

these

labels

directly.

Magnetic

tape

volumes

can

have

standard

or

nonstandard

labels,

or

they

can

be

unlabeled.

DASD

volumes

must

use

standard

labels.

Standard

labels

include

a

volume

label,

a

data

set

label

for

each

data

set,

and

optional

user

labels.

A

volume

label,

stored

at

track

0

of

cylinder

0,

identifies

each

DASD

volume.

International

Organization

for

Standardization

(ISO)

and

the

American

National

Standards

Institute

(ANSI)

tape

labels

are

similar

to

IBM

standard

labels.

ASCII

permits

data

on

magnetic

tape

to

be

transferred

from

one

computer

to

another,

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

11

even

though

the

two

computers

can

be

products

of

different

manufacturers.

IBM

standard

labels

are

coded

in

the

extended

binary-coded-decimal

interchange

code

(EBCDIC).

ISO/ANSI

labels

are

coded

in

the

American

National

Standard

Code

for

Information

Interchange

(ASCII).

Specifying

the

File

Sequence

Number

When

a

new

data

set

is

to

be

placed

on

a

magnetic

tape

volume,

you

must

specify

the

file

sequence

number

if

the

data

set

is

not

the

first

one

on

the

reel

or

cartridge.

The

maximum

value

of

the

file

sequence

number

of

a

data

set

on

a

tape

volume

is

65

535

for

the

following

tapes:

v

Standard

label

(SL)

tapes

v

Standard

user

label

(SUL)

tapes

v

Leading

tape

mark

(LTM)

tapes

v

Unlabeled

(NL)

tapes

v

Bypass

label

processing

(BLP)

tapes

Restriction:

The

ISO/ANSI

(AL)

labeled

tapes

do

not

allow

a

file

sequence

number

greater

than

9999.

Related

reading:

For

additional

information

about

using

file

sequence

numbers,

see

z/OS

DFSMSdfp

Using

DFSMSdfp

in

the

z/OS

V1R6

Environment

and

z/OS

DFSMS:

Using

Magnetic

Tapes.

You

can

specify

the

file

sequence

number

in

one

of

the

following

ways:

v

Code

the

file

sequence

number

as

the

first

value

of

the

LABEL

keyword

on

the

DD

statement

or

using

the

DYNALLOC,

macro

for

dynamic

allocation.

The

maximum

file

sequence

number

is

9999

when

it

is

specified

this

way.

v

Catalog

each

data

set

using

the

appropriate

file

sequence

number

and

volume

serial

number.

If

you

use

IDCAMS,

IEHPROGM,

or

the

CATALOG

macro,

the

maximum

file

sequence

number

is

65

535.

Issue

the

OPEN

macro

because

the

catalog

provides

the

file

sequence

number.

If

you

use

DISP=(,CATLG),

the

maximum

file

sequence

number

is

9999.

OPEN

uses

the

file

sequence

number

from

the

catalog

if

you

do

not

specify

it

on

the

DD

statement

or

dynamic

allocation.

v

Use

the

RDJFCB

macro

to

read

the

job

file

control

block

(JFCB),

set

the

file

sequence

number

in

the

JFCB,

and

issue

the

OPEN,

TYPE=J

macro

for

a

new

or

uncataloged

data

set.

The

maximum

file

sequence

number

is

65

535.

This

method

overrides

other

sources

of

the

file

sequence

number.

Related

reading:

For

more

information

on

the

OPEN

macro,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

For

more

information

on

the

RDJFCB

and

OPEN,

TYPE=J

macros,

see

z/OS

DFSMSdfp

Advanced

Services.

For

more

information

on

IEHPROGM,

see

z/OS

DFSMSdfp

Utilities.

Example

of

Creating

a

Tape

Data

Set

with

a

File

Sequence

Number

Greater

than

9999

The

following

example

shows

how

to

use

the

OPEN,TYPE=J

and

RDJFCB

macros

to

create

a

cataloged

tape

data

set

with

a

file

sequence

number

of

10

011.

The

file

sequence

number

is

stored

in

the

JFCB.

In

the

JCL

statement,

specify

the

LABEL=(1,labeltype)

parameter,

where

labeltype

is

the

type

of

tape

label

such

as

SL

or

NL.

This

example

works

with

any

file

sequence

number

from

1

to

65

535

if

the

Working

with

Data

Sets

12

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

previous

file

exists

on

the

specified

tape

or

on

a

volume

that

is

named

in

the

JFCB

or

JFCB

extension.

When

the

system

unallocates

the

data

set,

it

creates

an

entry

for

the

data

set

in

the

catalog.

Example:

//*

STEP05

//*

Create

a

tape

data

set

with

a

file

sequence

number

of

10

011.

//*

Update

the

file

sequence

number

(FSN)

in

JFCB

using

OPEN

TYPE=J

macro.

//*--

//STEP05

EXEC

ASMHCLG

//C.SYSIN

DD

*

.

.

.

L

6,=F’10011’

CREATE

FSN

10011

RDJFCB

(DCBAD)

READ

JFCB

STCM

6,B’0011’,JFCBFLSQ

STORE

NEW

FSN

IN

JFCB

OPEN

(DCBAD,(OUTPUT)),TYPE=J

CREATE

FILE

PUT

DCBAD,RECORD

WRITE

RECORD

CLOSE

DCBAD

CLOSE

FILE

.

.

.

DCBAD

DCB

DDNAME=DD1,DSORG=PS,EXLST=LSTA,MACRF=PM,LRECL=80,RECFM=FB

LSTA

DS

0F

RJFCB

EXIT

LIST

DC

X'87’

CODE

FOR

JFCB

DC

AL3(JFCBAREA)

POINTER

TO

JFCB

AREA

JFCBAREA

DS

XL176

JFCB

AREA

IEFJFCBN

DEFINE

THE

JFCB

FIELDS

RECORD

DC

CL80’RECORD10011’

RECORD

AREA

END

//*

JCL

FOR

ALLOCATING

TAPE

DATA

SET

//DD1

DD

DSN=DATASET1,UNIT=TAPE,VOL=SER=TAPE01,DISP=(NEW,CATLG),

//

LABEL=(1,SL)

Result:

The

output

displays

information

about

the

new

tape

data

set

with

a

file

sequence

number

of

10

011:

IEC205I

DD1,OCEFS005,G.STEP05,FILESEQ=10011,

COMPLETE

VOLUME

LIST,

DSN=DS10011,VOLS=TAPE01,TOTALBLOCKS=1

Example

of

Creating

a

Tape

Data

Set

Using

Any

File

Sequence

Number

You

can

use

the

previous

example

with

OPEN,

TYPE=J

to

create

a

tape

data

set

with

a

file

sequence

number

of

9999,

if

you

change

the

L

6,10011

line

to

L

6,9999.

The

following

example

shows

how

to

use

the

OPEN

macro

to

create

several

tape

data

sets

with

file

sequence

numbers

ranging

from

1

to

10

010.

In

the

JCL

statement,

specify

the

LABEL=(fsn,labeltype)

parameter,

where

fsn

is

the

file

sequence

number

and

labeltype

is

the

type

of

tape

label

such

as

SL

or

NL.

Example:

//*

STEP06

//*

Create

files

1

through

10

010

on

a

single

volume.

//*--

//STEP06

EXEC

ASMHCLG

//C.SYSIN

DD

*

.

.

.

L

6,=F’10010’

CREATE

10

010

FILES

LA

5,1

START

AT

FILE

1

AND

DS1

RDJFCB

(DCBAD)

READ

JFCB

MVC

JFCBAREA(44),=CL44’DS’

DSNAME

IS

’DSfsn’

WHERE

*

fsn

IS

FSN

1

TO

10

010

*

*

This

loop

creates

file

sequence

numbers

from

1

to

10

010.

*

LOOP

EQU

*

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

13

STCM

5,B'0011’,JFCBAREA+68

STORE

NEW

FSN

IN

JFCB

CVD

5,WORKAREA

UPDATE

DSNAME

UNPK

JFCBAREA+2(5),WORKAREA(8)

LOAD

JFCB

OI

JFCBAREA+6,X'F0’

SET

DSfsn

MVC

RECORD+6(5),JFCBAREA+2

MOVE

FSN

INTO

RECORD

*

RECORD

FORMAT

IS

’RECORDfsn’

OPEN

(DCBAD,

(OUTPUT)),TYPE=J

CREATE

FILE

NUMBER

PUT

DCBAD,RECORD

WRITE

RECORD

CLOSE

(DCBAD,LEAVE)

CLOSE

FILE

NUMBER

CONTIN

EQU

*

RDJFCB

(DCBAD)

READ

JFCB

SR

5,5

ICM

5,B’0011’,JFCBAREA+68

GET

CURRENT

FSN

LA

5,1(5)

INCREMENT

FSN

BCT

6,LOOP

CONTINUE

PROCESSING

UNTIL

DONE

.

.

.

*

DEFINITIONS

DS

0D

SAVE

DC

18F’0’

DCBAD

DCB

DDNAME=DD1,DSORG=PS,EXLST=LSTA,MACRF=PM,BLKSIZE=80,RECFM=F

LSTA

DS

0F

RJFCB

EXIT

LIST

DC

X’87’

DC

AL3(JFCBAREA)

JFCBAREA

DC

50F’0’

JFCB

AREA

RECORD

DC

CL80’RECORD’

RECORD

AREA

DS

0D

WORKAREA

DC

2F’0’

WORK

AREA

END

/*

*

JCL

FOR

ALLOCATING

TAPE

DATA

SET

Result:

This

excerpt

from

the

output

shows

information

about

the

tape

data

set

with

a

file

sequence

number

of

9999:

IEC205I

DD1,OCEFS001,G.STEP06,FILESEQ=09999,

COMPLETE

VOLUME

LIST,

DSN=DS09999,VOLS=TAPE01,TOTALBLOCKS=1

Identifying

Unlabeled

Tapes

When

you

want

to

store

a

data

set

on

unlabeled

tape

volumes,

the

system

needs

a

volume

serial

number

to

identify

each

volume.

If

the

data

set

is

in

an

automatic

tape

library,

the

system

uses

the

volume

serial

number

that

is

encoded

in

the

bar

code

on

the

outside

of

each

cartridge.

If

the

data

set

is

not

in

an

automatic

tape

library,

it

is

advisable

to

specify

enough

volume

serial

numbers

to

contain

the

data

set.

If

you

do

not

specify

any

volume

serial

numbers

or

do

not

specify

enough

of

them,

the

system

or

a

tape

management

system

assigns

a

serial

number

to

each

unidentified

volume.

If

the

system

assigns

a

serial

number,

the

serial

number

is

in

the

form

Lxxxyy,

in

which

xxx

is

the

data

set

sequence

number

and

yy

is

the

volume

sequence

number

for

the

data

set.

If

you

want

to

catalog

or

pass

data

sets

that

reside

on

unlabeled

volumes,

specify

the

volume

serial

numbers

for

the

required

volumes.

Specifying

the

volume

serial

numbers

ensures

that

data

sets

residing

on

multiple

volumes

are

not

cataloged

or

passed

with

duplicate

volume

serial

numbers.

Retrieving

such

data

sets

can

give

unpredictable

errors.

Using

Tape

Marks

A

tape

mark

must

follow

each

data

set

and

data

set

label

group.

Tape

marks

cannot

exist

within

a

data

set.

When

a

program

writes

data

on

a

standard

labeled

or

unlabeled

tape,

the

system

automatically

reads

and

writes

labels

and

tape

Working

with

Data

Sets

14

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

marks.

Two

tape

marks

follow

the

last

trailer

label

group

on

a

standard-label

volume.

On

an

unlabeled

volume,

the

two

tape

marks

appear

after

the

last

data

set.

When

a

program

writes

data

on

a

nonstandard

labeled

tape,

the

installation

must

supply

routines

to

process

labels

and

tape

marks

and

to

position

the

tape.

If

you

want

the

system

to

retrieve

a

data

set,

the

installation

routine

that

creates

nonstandard

labels

must

write

tape

marks.

Otherwise,

tape

marks

are

not

required

after

nonstandard

labels

because

installation

routines

manage

positioning

of

the

tape

volumes.

Data

Management

Macros

You

can

use

macros

to

process

all

the

data

set

types

supported

by

the

access

methods

just

described.

Macros

control

data

set

allocation,

input

and

output,

the

buffering

techniques

used,

and

data

security.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

information

about

data

management

macros.

See

z/OS

DFSMSdfp

Advanced

Services

for

information

about

system

programming

macros.

Table

1

contains

a

summary

of

data

management

access

methods:

Table

1.

Data

Management

Access

Methods

Data

Set

Organization

Access

Methods

Direct

BDAM

ESDS

VSAM

Indexed

Sequential

BISAM

QISAM

KSDS

VSAM

LDS

VSAM

DIV1

Partitioned2

BPAM

BSAM3

QSAM

RRDS4

VSAM

Sequential5

BSAM

QSAM

UNIX

file6

BSAM7

QSAM7

BPAM

VSAM8

Notes:

1.

The

data-in-virtual

(DIV)

macro,

which

is

used

to

access

a

linear

data

set,

is

described

in

z/OS

MVS

Programming:

Assembler

Services

Guide.

2.

PDSs

and

PDSEs

are

both

partitioned

organization

data

sets.

3.

BSAM

and

QSAM

cannot

be

used

to

create

or

modify

user

data

in

directory

entries.

4.

Refers

to

fixed-length

and

variable-length

RRDSs.

5.

Sequential

data

sets

and

extended-format

data

sets

are

both

sequential

organization

data

sets.

6.

A

UNIX

file

can

be

in

any

type

of

z/OS

UNIX

file

system

such

as

HFS,

NFS,

TFS,

or

zFS.

7.

When

you

access

a

UNIX

file

with

BSAM

or

QSAM,

the

file

is

simulated

as

a

single-volume

sequential

data

set.

8.

When

you

access

a

UNIX

file

with

VSAM,

the

file

is

simulated

as

an

ESDS.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

15

Data

sets

can

also

be

organized

as

PDSE

program

libraries.

PDSE

program

libraries

can

be

accessed

with

BSAM,

QSAM,

or

the

program

management

binder.

The

first

member

written

in

a

PDSE

library

determines

the

library

type,

either

program

or

data.

Recommendation:

Do

not

use

these

non-VSAM

macros:

DCB

(BDAM,

BISAM,

QISAM)

ESETL

FREEDBUF

GET

(QISAM)

PUT

(QISAM)

READ

(BDAM,

BISAM)

RELEX

SETL

WRITE

(BDAM,

BISAM)

Data

Set

Processing

To

process

a

data

set,

first

allocate

it

(establish

a

link

to

it),

then

access

the

data

using

macros

for

the

access

method

that

you

have

chosen.

For

information

about

accessing

UNIX

files,

see

“Processing

UNIX

Files

with

an

Access

Method”

on

page

20.

Allocating

Data

Sets

Allocate

means

either

or

both

of

two

things:

v

To

set

aside

(create)

space

for

a

new

data

set

on

a

disk.

v

To

establish

a

logical

link

between

a

job

step

and

any

data

set.

Related

reading:

For

information

about

dynamic

allocation,

see

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

You

can

use

any

of

the

following

methods

to

allocate

a

data

set.

Access

Method

Services

You

can

define

data

sets

and

establish

catalogs

by

using

a

multifunction

services

program

called

access

method

services.

Use

the

following

commands

with

all

data

sets.

Table

2.

Access

Method

Services

Commands

Command

Description

ALLOCATE

Allocate

a

new

data

set

ALTER

Change

the

attributes

of

a

data

set

DEFINE

NONVSAM

Catalog

a

data

set

DELETE

Delete

a

data

set

LISTCAT

List

catalog

entries

PRINT

Print

a

data

set

ALLOCATE

Command

You

can

issue

the

ALLOCATE

command

either

through

access

method

services

or

TSO/E

to

define

VSAM

and

non-VSAM

data

sets.

Working

with

Data

Sets

16

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

JCL

All

data

sets

can

be

defined

directly

through

JCL.

Related

reading:

For

information

about

access

method

services

commands

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

For

information

about

TSO

commands,

see

z/OS

TSO/E

Command

Reference.

For

information

about

using

JCL,

see

z/OS

MVS

JCL

Reference

and

z/OS

MVS

JCL

User’s

Guide.

Processing

Data

Sets

through

Programs

Programs

process

data

sets

in

the

following

sequence:

1.

Allocate

the

data

set

to

establish

the

logical

link

between

a

program

and

a

data

set.

You

can

do

this

either

outside

the

program

with

JCL

or

the

TSO

ALLOCATE

command

or

inside

the

program

with

dynamic

allocation.

2.

Open

the

data

set,

identifying

it

with

a

DDNAME.

3.

Do

reads

and

writes

using

an

access

method.

4.

Close

the

data

set.

5.

Deallocate

the

data

set.

There

are

three

ways

to

do

this:

v

For

non-VSAM

data

sets

only,

specifying

FREE=CLOSE

when

closing

the

data

set.

(The

FREE=CLOSE

parameter

is

ignored

for

VSAM

data

sets.)

v

Your

program

can

call

dynamic

deallocation.

v

During

the

step

termination

process,

the

operating

system

automatically

deallocates

any

remaining

allocated

data

sets.

Using

Access

Methods

All

the

access

methods

described

in

this

document

allow

you

to

do

the

following:

v

Share

a

data

set

among

different

systems,

different

jobs

in

a

single

system,

multiple

access

method

control

blocks

(ACBs)

or

data

control

blocks

(DCBs)

in

a

task,

or

different

subtasks

in

an

address

space.

See

Chapter

12,

“Sharing

VSAM

Data

Sets,”

on

page

189

for

information

about

sharing

a

VSAM

data

set.

See

Chapter

23,

“Sharing

Non-VSAM

Data

Sets,”

on

page

365

for

information

about

sharing

a

non-VSAM

data

set.

v

Share

buffers

and

control

blocks

among

VSAM

data

sets.

See

Chapter

13,

“Sharing

Resources

Among

VSAM

Data

Sets,”

on

page

205.

v

Provide

user

exit

routines

to

analyze

logical

and

physical

errors,

and

to

perform

end-of-data

processing.

See

Chapter

31,

“Using

Non-VSAM

User-Written

Exit

Routines,”

on

page

511

and

Chapter

16,

“Coding

VSAM

User-Written

Exit

Routines,”

on

page

235.

v

Back

up

and

recover

data

sets.

See

Chapter

4,

“Backing

Up

and

Recovering

Data

Sets,”

on

page

45.

v

Maintain

data

security

and

integrity.

See

Chapter

5,

“Protecting

Data

Sets,”

on

page

53.

BSAM,

QSAM,

BPAM,

and

VSAM

convert

between

record-oriented

data

and

byte-stream

oriented

data

that

is

stored

in

UNIX

files.

Non-VSAM

access

methods

also

let

you:

v

Convert

non-VSAM

data

from

ASCII

to

EBCDIC,

and

the

reverse.

v

Position

and

reposition

tape

volumes

automatically.

v

Process

user

labels

for

data

sets

on

DASD

and

magnetic

tape.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

17

Using

Addressing

Modes

The

24-bit

and

31-bit

access

method

interfaces

use

real

addresses

above

the

2

GB

bar.

When

you

use

a

24-bit

or

31-bit

addressing

mode,

different

rules

apply

for

VSAM

programs

and

non-VSAM

programs.

VSAM

Addressing

Modes

You

can

use

either

24-bit

or

31-bit

addressing

mode

for

VSAM

programs.

You

can

issue

the

OPEN

and

CLOSE

macros

for

any

access

method

in

24-bit

or

31-bit

addressing

mode.

VSAM

lets

you

create

buffers,

user

exits,

shared

resource

pools,

and

some

control

blocks

in

virtual

storage

above

16

MB.

Your

program

must

run

in

31-bit

addressing

mode

to

access

these

areas

above

16

MB.

See

Chapter

17,

“Using

31-Bit

Addressing

Mode

with

VSAM,”

on

page

257.

Non-VSAM

Addressing

Modes

You

can

run

most

BSAM,

BPAM,

QSAM,

and

BDAM

macros

in

24-bit

or

31-bit

addressing

mode.

Data

to

which

the

macros

refer

must

reside

below

the

16

MB

line

if

you

run

the

macro

in

24-bit

mode.

The

BSAM,

BPAM,

QSAM,

and

BDAM

access

methods

let

you

create

certain

data

areas,

buffers,

certain

user

exits,

and

some

control

blocks

in

virtual

storage

above

the

16

MB

line

if

you

run

the

macro

in

31-bit

mode.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Using

Hiperspace

and

Hiperbatch

Hiperbatch

can

significantly

reduce

the

execution

time

of

batch

job

streams

that

access

QSAM

or

VSAM

data

sets.

Hiperspace

improves

the

performance

for

VSAM

applications

that

use

local

shared

resources

(LSR).

Batch

LSR

lets

you

use

the

advantages

of

Hiperspace

for

VSAM

applications

that

use

nonshared

resources

without

changing

the

application.

See

“Using

Hiperbatch”

on

page

400

and

“Using

Hiperspace

Buffers

with

LSR”

on

page

206.

Processing

VSAM

Data

Sets

There

are

two

types

of

VSAM

macro

instructions:

v

Control

block

macros.

Generate

control

blocks

of

information

that

VSAM

needs

to

process

the

data

set.

v

Request

macros.

Retrieve,

update,

delete,

or

insert

logical

records.

VSAM

has

two

major

parts:

v

Catalog

management.

VSAM

maintains

extensive

information

about

data

sets

and

direct

access

storage

space

in

a

catalog.

The

catalog’s

collection

of

information

about

a

particular

data

set

defines

that

data

set’s

characteristics.

Every

VSAM

data

set

must

be

defined

in

a

catalog.

You

cannot,

for

example,

load

records

into

a

VSAM

data

set

until

it

has

been

defined.

See

z/OS

DFSMS:

Managing

Catalogs

for

information

about

catalog

management.

v

Record

management.

You

can

use

VSAM

to

organize

records

into

four

types

of

data

sets:

key-sequenced,

entry-sequenced,

linear,

or

relative

record.

The

primary

difference

among

these

types

of

data

sets

is

the

way

their

records

are

stored

and

accessed.

Restriction:

VSAM

data

sets

cannot

be

concatenated

in

JCL

statements.

Working

with

Data

Sets

18

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Processing

PDSs,

PDSEs,

and

UNIX

Directories

The

following

guidelines

apply

to

processing

PDSs,

PDSEs,

and

UNIX

directories:

v

Use

BPAM

to

process

the

directory

of

a

PDS,

PDSE,

or

UNIX

file.

v

Each

PDS

or

PDSE

must

be

on

one

direct-access

volume.

However,

you

can

concatenate

multiple

input

data

sets

that

are

on

the

same

or

different

volumes.

v

A

PDSE

can

be

used

as

a

data

library

or

program

library,

but

not

both.

The

first

member

stowed

in

a

library

determines

the

library

type.

v

You

can

use

BSAM

or

QSAM

macros

to

add

or

retrieve

PDS

and

PDSE

members

without

specifying

the

BLDL,

FIND,

or

STOW

macro.

Code

the

DSORG=PS

parameter

in

the

DCB

macro,

and

the

DDNAME

parameter

of

the

JCL

DD

statement

with

both

the

data

set

and

member

names

as

follows:

//ddname

DD

DSN=LIBNAME(MEMNAME),...

v

You

can

use

BSAM

or

QSAM

macros

to

add

or

retrieve

UNIX

files.

The

OPEN

and

CLOSE

macros

handle

data

set

positioning

and

directory

maintenance.

Code

the

DSORG=PS

parameter

in

the

DCB

macro,

and

the

DDNAME

parameter

of

the

JCL

DD

statement

with

a

complete

path

and

filename

as

follows:

//ddname

DD

PATH=’/dir1/dir2/file’,

...

You

can

then

use

BPAM

to

read

files

as

if

they

were

members

of

a

PDS

or

PDSE.

v

When

you

create

a

PDS,

the

SPACE

parameter

defines

the

size

of

the

data

set

and

its

directory

so

the

system

can

allocate

data

set

space.

For

a

PDS,

the

SPACE

parameter

preformats

the

directory.

The

specification

of

SPACE

for

a

PDSE

is

different

from

the

specification

for

a

PDS.

See

“Allocating

Space

for

a

PDSE”

on

page

439.

v

You

can

use

the

STOW

macro

to

add,

delete,

change,

or

replace

a

member

name

or

alias

in

the

PDS

or

PDSE

directory,

or

clear

a

PDSE

directory.

You

can

also

use

the

STOW

macro

to

delete

all

the

members

of

a

PDSE.

However,

you

cannot

use

the

STOW

macro

to

delete

all

the

members

of

a

PDS.

For

program

libraries,

you

cannot

use

STOW

to

add

or

replace

a

member

name

or

alias

in

the

directory.

v

You

can

read

multiple

members

of

PDSs,

PDSEs,

or

UNIX

directories

by

passing

a

list

of

members

to

BLDL;

then

use

the

FIND

macro

to

position

to

a

member

before

processing

it.

v

You

can

code

a

DCBE

and

use

31-bit

addressing

for

BPAM.

v

PDSs,

PDSEs,

members,

and

UNIX

files

cannot

use

sequential

data

striping.

See

Chapter

26,

“Processing

a

Partitioned

Data

Set

(PDS),”

on

page

407

and

Chapter

27,

“Processing

a

Partitioned

Data

Set

Extended

(PDSE),”

on

page

431.

Also

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

information

about

coding

the

DCB

(BPAM)

and

DCBE

macros.

Processing

Sequential

Data

Sets

and

Members

of

PDSEs

and

PDSs

To

process

a

sequential

data

set

or

members

of

a

PDS

or

PDSE,

you

can

use

BSAM

or

QSAM.

You

can

be

in

31-bit

addressing

mode

when

issuing

BSAM

and

QSAM

macros.

Data

areas

can

be

above

the

16

MB

line

for

BSAM

and

QSAM

macros,

and

you

can

request

that

OPEN

obtain

buffers

above

the

16

MB

line

for

QSAM.

This

permits

larger

amounts

of

data

to

be

transferred.

BSAM

Processing

When

you

use

BSAM

to

process

a

sequential

data

set

and

members

of

a

PDS

or

PDSE,

the

following

rules

apply:

v

BSAM

can

read

a

member

of

a

PDSE

program

library,

but

not

write

the

member.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

19

v

The

application

program

must

block

and

unblock

its

own

input

and

output

records.

BSAM

only

reads

and

writes

data

blocks.

v

The

application

program

must

manage

its

own

input

and

output

buffers.

It

must

give

BSAM

a

buffer

address

with

the

READ

macro,

and

it

must

fill

its

own

output

buffer

before

issuing

the

WRITE

macro.

v

The

application

program

must

synchronize

its

own

I/O

operations

by

issuing

a

CHECK

macro

for

each

READ

and

WRITE

macro

issued.

v

BSAM

lets

you

process

blocks

in

a

nonsequential

order

by

repositioning

with

the

NOTE

and

POINT

macros.

v

You

can

read

and

write

direct

access

storage

device

record

keys

with

BSAM.

PDSEs

and

extended-format

data

sets

are

an

exception.

v

BSAM

automatically

updates

the

directory

when

a

member

of

a

PDS

or

PDSE

is

added

or

deleted.

QSAM

Processing

When

you

use

QSAM

to

process

a

sequential

data

set

and

members

of

a

PDS

or

PDSE,

the

following

rules

apply:

v

QSAM

processes

all

record

formats

except

blocks

with

keys.

v

QSAM

blocks

and

unblocks

records

for

you

automatically.

v

QSAM

manages

all

aspects

of

I/O

buffering

for

you

automatically.

The

GET

macro

retrieves

the

next

sequential

logical

record

from

the

input

buffer.

The

PUT

macro

places

the

next

sequential

logical

record

in

the

output

buffer.

v

QSAM

gives

you

three

transmittal

modes:

move,

locate,

and

data.

The

three

modes

give

you

greater

flexibility

managing

buffers

and

moving

data.

Processing

UNIX

Files

with

an

Access

Method

The

most

common

type

of

UNIX

file

system

is

the

hierarchical

file

system.

A

HFS

data

set

contains

a

hierarchical

file

system.

Examples

of

other

types

of

UNIX

file

systems

are

Network

File

System

(NFS),

temporary

file

system

(TFS),

and

zSeries

File

System

(zFS).

Use

z/OS

UNIX

System

Services

to

access

UNIX

files.

For

more

information,

see

z/OS

UNIX

System

Services

User’s

Guide.

Programs

can

access

the

information

in

UNIX

files

through

z/OS

UNIX

system

calls

or

through

standard

z/OS

access

methods

and

macro

instructions.

To

identify

and

access

a

data

file,

specify

the

path

leading

to

it.

You

can

access

a

UNIX

file

through

BSAM

or

QSAM

(DCB

DSORG=PS),

BPAM

(DSORG=PO),

or

VSAM

(simulated

as

an

ESDS)

by

specifying

PATH=pathname

in

the

JCL

data

definition

(DD)

statement,

SVC

99,

or

TSO

ALLOCATE

command.

BSAM,

QSAM,

BPAM,

and

VSAM

use

the

following

types

of

UNIX

files:

v

Regular

files

v

Character

special

files

v

First-in-first-out

(FIFO)

special

files

v

Hard

or

soft

links

v

Named

pipes

BPAM

permits

read-only

access

to

UNIX

directories.

BSAM,

QSAM,

and

VSAM

do

not

support

the

following

types

of

UNIX

files:

v

Directories,

except

BPAM,

which

does

not

support

direct

reading

of

the

directory

v

External

links

Working

with

Data

Sets

20

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Data

can

reside

on

a

system

other

than

the

one

the

user

program

is

running

on

without

using

shared

DASD.

The

other

system

can

be

MVS

or

non-MVS.

NFS

transports

the

data.

Because

the

system

stores

UNIX

files

in

a

byte

stream,

UNIX

files

cannot

simulate

all

the

characteristics

of

sequential

data

sets,

partitioned

data

sets,

or

ESDSs.

Certain

macros

and

services

have

incompatibilities

or

restrictions

when

they

process

UNIX

files.

For

example:

v

Data

set

labels

and

unit

control

blocks

(UCBs)

do

not

exist

for

UNIX

files.

Any

service

that

relies

on

a

DSCB

or

UCB

for

information

might

not

work

with

these

files.

v

With

traditional

MVS

data

sets,

other

than

VSAM

linear

data

sets,

the

system

maintains

record

boundaries.

That

is

not

true

with

byte-stream

files

such

as

UNIX

files.

Related

Reading:

For

more

information

about

the

following

topics,

see:

v

Chapter

28,

“Processing

z/OS

UNIX

Files,”

on

page

473

v

“Simulated

VSAM

Access

to

UNIX

files”

on

page

80

v

For

information

on

coding

the

DCB

and

DCBE

macros

for

BSAM,

QSAM,

BPAM,

and

EXCP,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Processing

EXCP,

EXCPVR,

and

XDAP

Macros

It

is

possible

to

control

an

I/O

device

directly

while

processing

a

data

set

with

almost

any

data

organization

without

using

a

specific

access

method.

The

EXCP

(execute

channel

program),

EXCPVR,

and

XDAP

macros

use

the

system

function

that

provides

for

scheduling

and

queuing

I/O

requests,

efficient

use

of

channels

and

devices,

data

protection,

interruption

procedures,

error

recognition,

and

retry.

See

z/OS

DFSMSdfp

Advanced

Services

for

information

about

the

EXCP,

EXCPVR,

and

XDAP

macros.

Guideline:

Do

not

use

the

EXCP

and

XDAP

macros

to

access

data.

These

macros

cannot

be

used

to

process

PDSEs,

extended-format

data

sets,

VSAM

data

sets,

UNIX

files,

dummy

data

sets,

TSO/E

terminals,

spooled

data

sets,

or

OAM

objects.

The

use

of

EXCP,

EXCPVR,

and

XDAP

require

detailed

knowledge

of

channel

programs,

error

recovery,

and

physical

data

format.

Use

BSAM,

QSAM,

BPAM,

or

VSAM

instead

of

the

EXCP

and

XDAP

macros

to

access

data.

Distributed

Data

Management

(DDM)

Attributes

Distributed

file

manager

is

the

z/OS

implementation

of

Systems

Application

Architecture

(SAA)

distributed

data

management

(DDM).

Distributed

file

manager

facilitates

access

by

programs

running

on

non-MVS

systems

to

data

sets

stored

on

an

MVS

system.

Distributed

file

manager

allows

you

to

use

remote

record

and

stream

access

to

sequential

and

VSAM

data

sets

and

PDSE

members.

DDM

attributes

associated

with

these

data

sets

and

members

can

be

propagated

when

the

data

sets

and

members

are

moved

or

copied.

Distributed

file

manager

creates

and

associates

DDM

attributes

with

data

sets.

The

DDM

attributes

describe

the

characteristics

of

the

data

set,

such

as

the

file

size

class

and

last

access

date.

The

end

user

can

determine

whether

a

specific

data

set

has

associated

DDM

attributes

by

using

the

ISMF

Data

Set

List

panel

and

the

IDCAMS

DCOLLECT

command.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

21

Distributed

file

manager

also

provides

the

ability

to

process

data

sets

along

with

their

associated

attributes.

Any

DDM

attributes

associated

with

a

data

set

cannot

be

propagated

with

the

data

set

unless

DFSMShsm

uses

DFSMSdss

as

its

data

mover.

See

z/OS

DFSMS

DFM

Guide

and

Reference

for

information

about

the

DDM

file

attributes.

Virtual

I/O

for

Temporary

Data

Sets

Temporary

data

sets

can

be

handled

by

a

function

called

virtual

I/O

(VIO).

Data

sets

for

which

VIO

is

specified

are

located

in

external

page

storage.

However,

to

the

access

methods,

the

data

sets

appear

to

reside

on

real

direct

access

storage

devices.

A

VIO

data

set

must

be

a

non-VSAM

data

set;

it

can

be

sequential,

partitioned,

or

direct,

but

not

a

PDSE

or

extended-format.

VIO

simulates

a

real

device

and

provides

the

following

advantages:

v

Elimination

of

some

of

the

usual

I/O

device

allocation

and

data

management

overhead

for

temporary

DASD

data

sets.

v

Generally

more

efficient

use

of

direct

access

storage

space.

A

VIO

data

set

appears

to

the

application

program

to

occupy

one

unshared

virtual

(simulated)

direct

access

storage

volume.

This

simulated

volume

is

like

a

real

direct

access

storage

volume

except

for

the

number

of

tracks

and

cylinders.

A

VIO

data

set

can

occupy

up

to

65

535

tracks

even

if

the

device

being

simulated

does

not

have

that

many

tracks.

A

VIO

data

set

always

occupies

a

single

extent

(area)

on

the

simulated

device.

The

size

of

the

extent

is

equal

to

the

primary

space

amount

plus

15

times

the

secondary

amount

(VIO

data

size

=

primary

space

+

(15

×

secondary

space)).

An

easy

way

to

specify

the

largest

possible

VIO

data

set

in

JCL

is

SPACE=(TRK,65535).

You

can

set

this

limit

lower.

Specifying

ALX

(all

extents)

or

MXIG

(maximum

contiguous

extents)

on

the

SPACE

parameter

results

in

the

largest

extent

allowed

on

the

simulated

device,

which

can

be

less

than

65

535

tracks.

There

is

no

performance

or

resource

penalty

for

overestimating

how

much

space

you

need

unless

your

system’s

accounting

functions

charge

for

it.

Do

not

allocate

a

VIO

data

set

with

zero

space.

Failure

to

allocate

space

to

a

VIO

data

set

will

cause

unpredictable

results

when

reading

or

writing.

A

summary

of

the

effects

of

ALX

or

MXIG

with

VIO

data

sets

follows.

Simulated

IBM

Device

Number

of

Cylinders

3380

885

3390

1113

9345

1440

Data

Set

Names

When

you

allocate

a

new

data

set

(or

when

the

operating

system

does),

you

must

give

the

data

set

a

unique

name.

Usually,

the

data

set

name

is

the

dsname

value

in

JCL.

The

following

rules

apply

to

naming

data

sets:

Working

with

Data

Sets

22

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

If

quotation

marks

delimit

a

data

set

name

in

a

JCL

DD

statement,

JCL

processing

cannot

perform

syntax

checking

on

the

statement,

and

SMS

rejects

the

input

based

on

its

parsing

of

the

data

set

name.

SMS

does

not

allow

the

name

to

be

catalogued

because

quoted

data

sets

cannot

be

SMS

managed.

v

IDCAMS

does

not

allow

the

specification

of

non-valid

data

set

names.

v

When

you

invoke

Dynamic

Allocation

services

or

directly

invoke

SVC

26,

it

is

possible

to

create

data

set

names

that

are

not

valid.

When

the

CATALOG

routine

is

called

to

add

the

data

set

to

a

catalog,

there

is

no

way

to

determine

whether

the

original

name

was

in

JCL

or

whether

quotation

marks

delimit

the

name.

The

catalog

component

validates

the

syntax

of

a

data

set

name

and

fails

the

request

if

the

syntax

is

not

valid,

unless

the

syntax-checking

option

for

data

set

names

is

off.

See

the

description

of

the

MODIFY

CATALOG

command’s

DSNCHECK

parameter

in

z/OS

DFSMS:

Managing

Catalogs.

A

data

set

name

can

be

from

one

to

a

series

of

twenty-two

joined

name

segments.

Each

name

segment

represents

a

level

of

qualification.

For

example,

the

data

set

name

DEPT58.SMITH.DATA3

is

composed

of

three

name

segments.

The

first

name

on

the

left

is

called

the

high-level

qualifier,

the

last

is

the

low-level

qualifier.

Each

name

segment

(qualifier)

is

1

to

8

characters,

the

first

of

which

must

be

alphabetic

(A

to

Z)

or

national

(#

@

$).

The

remaining

seven

characters

are

either

alphabetic,

numeric

(0

-

9),

national,

a

hyphen

(-).

Name

segments

are

separated

by

a

period

(.).

Data

set

names

must

not

exceed

44

characters,

including

all

name

segments

and

periods.

See

“Naming

a

Cluster”

on

page

102

and

“Naming

an

Alternate

Index”

on

page

117

for

examples

of

naming

a

VSAM

data

set.

Restriction:

The

use

of

name

segments

longer

than

8

characters

would

produce

unpredictable

results.

You

should

use

only

the

low-level

qualifier

GxxxxVyy,

in

which

xxxx

and

yy

are

numbers,

in

the

names

of

generation

data

sets.

Define

a

data

set

with

GxxxxVyy

as

the

low-level

qualifier

of

non-generation

data

sets

only

if

a

generation

data

group

with

the

same

base

name

does

not

exist.

However,

IBM

recommends

that

you

restrict

GxxxxVyy

qualifiers

to

generation

data

sets,

to

avoid

confusing

generation

data

sets

with

other

types

of

non-VSAM

data

sets.

For

example,

the

following

names

are

not

valid

data

set

names:

v

A

name

that

is

longer

than

8

characters

(HLQ.ABCDEFGHI.XYZ)

v

A

name

that

contains

two

successive

periods

(HLQ..ABC)

v

A

name

that

ends

with

a

period

(HLQ.ABC.)

v

A

name

that

contains

a

segment

that

does

not

start

with

an

alphabetic

or

national

character

(HLQ.123.XYZ)

Catalogs

and

Volume

Table

of

Contents

DFSMS

uses

a

catalog

and

a

volume

table

of

contents

(VTOC)

on

each

DASD

to

manage

the

storage

and

placement

of

data

sets.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

23

VTOC

The

VTOC

lists

the

data

sets

that

reside

on

its

volume,

along

with

information

about

the

location

and

size

of

each

data

set,

and

other

data

set

attributes.

See

z/OS

DFSMSdfp

Advanced

Services

for

information

about

the

VTOC

structure.

(Application

programmers

usually

do

not

need

to

know

the

contents

of

the

VTOC.)

Also

see

Appendix

A,

“Using

Direct

Access

Labels,”

on

page

553.

Catalogs

A

catalog

describes

data

set

attributes

and

indicates

the

volumes

on

which

a

data

set

is

located.

Data

sets

can

be

cataloged,

uncataloged,

or

recataloged.

All

system-managed

DASD

data

sets

are

cataloged

automatically

in

a

catalog.

Cataloging

of

data

sets

on

magnetic

tape

is

not

required

but

usually

it

simplifies

users

jobs.

All

data

sets

can

be

cataloged

in

a

catalog.

All

types

of

data

sets

can

be

cataloged

through:

v

Job

control

language

(DISP

parameter)

v

Access

method

services

(ALLOCATE

or

DEFINE

commands)

v

TSO

ALLOCATE

command

v

Dynamic

allocation

(SVC

99)

or

DYNALLOC

macro

Non-VSAM

data

sets

can

also

be

cataloged

through

the

catalog

management

macros

(CATALOG

and

CAMLST).

An

existing

data

set

can

be

cataloged

through

the

access

method

services

DEFINE

RECATALOG

command.

Access

method

services

is

also

used

to

establish

aliases

for

data

set

names

and

to

connect

user

catalogs

to

the

master

catalog.

See

z/OS

DFSMS:

Managing

Catalogs

for

information

about

using

catalog

management

macros.

Data

Set

Names

and

Metadata

z/OS

provides

application

programming

interfaces

(APIs),

utility,

and

service

aids

programs

so

that

you

can

access

the

names

of

data

sets

and

their

metadata.

Metadata

is

information

about

data.

The

APIs

that

access

data

set

names

include

the

following:

OBTAIN

macro

Reads

a

data

set

control

block

(DSCB)

from

a

VTOC.

CVAF

macros

Reads

a

VTOC

and

VTOC

index.

These

macros

are

CVAFDIR,

CVAFDSM,

CVAFFILT,

CVAFSEQ,

and

CVAFTST.

RDJFCB

macro

You

can

use

the

RDJFCB

macro

to

learn

the

name

of

a

data

set

and

the

volume

serial

number

of

a

VSAM

data

set.

You

also

can

use

RDJFCB

with

the

OPEN

TYPE=J

macro

to

read

a

VTOC.

When

you

use

the

RDJFCB

macro,

use

a

DCB

and

the

exit

list

for

the

DCB

because

using

an

ACB

and

VSAM

exit

list

would

not

work.

OPEN

TYPE=J

macro

Can

be

used

to

open

and

read

a

VTOC.

This

macro

supplies

a

job

file

control

block

(JFCB),

which

represents

the

information

in

the

DD

statement.

VSAM

does

not

support

OPEN

TYPE=J.

LOCATE

macro

Locates

and

extracts

information

from

catalogs.

Working

with

Data

Sets

24

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|
|

|

Catalog

search

interface

Locates

and

extracts

information

from

catalogs.

For

more

information,

see

z/OS

DFSMS:

Managing

Catalogs.

Related

reading:

For

more

information

on

these

macros,

see

z/OS

DFSMSdfp

Advanced

Services.

The

utility

and

service

aid

programs

include:

ISPF

A

full-screen

editor

and

dialog

manager,

it

generates

standard

screen

panels

and

interactive

dialogues

between

the

application

programmer

and

terminal

user.

For

more

information,

see

z/OS

ISPF

User’s

Guide.

ISMF

Is

the

interactive

interface

of

DFSMS

that

allows

you

to

access

the

storage

management

functions.

For

more

information,

see

z/OS

DFSMS:

Using

the

Interactive

Storage

Management

Facility.

IEHLIST

utility

Lists

entries

in

the

directory

of

a

PDS

or

PDSE,

or

entries

in

a

non-indexed

or

indexed

VTOC.

For

more

information,

see

z/OS

DFSMSdfp

Utilities.

SPZAP

service

aid

Edits

data

sets

on

a

DASD.

You

also

can

use

SPZAP

to

apply

fixes

to

programs

to

bring

them

up

to

the

current

level

of

the

operating

system.

Because

SPZAP

can

alter

data

sets,

use

Resource

Access

Control

Facility

(RACF®)

or

an

equivalent

security

product

to

protect

those

data

sets

that

you

do

not

want

changed.

(RACF

is

a

component

of

the

z/OS

Security

Server.)

For

more

information,

see

z/OS

MVS

Diagnosis:

Tools

and

Service

Aids.

Security

of

Data

Set

Names

You

can

prevent

unauthorized

users

from

accessing

data

set

names

that

they

do

not

already

know.

This

function

is

called

RACF

name-hiding.

If

the

user’s

request

includes

the

fully-qualified

data

set

name,

the

system

does

not

hide

the

name

unless

you

are

using

ISPF

3.4

or

the

catalog

search

interface

(CSI)

to

access

the

data

set.

(ISPF

3.4

and

CSI

treat

fully-qualified

data

set

names

like

generic

names.)

If

name-hiding

is

in

effect,

you

cannot

access

the

names

of

protected

data

sets

using

the

programs

listed

in

“Data

Set

Names

and

Metadata”

on

page

24.

For

more

information,

see

“Hiding

Data

Set

Names”

on

page

55.

Working

with

Data

Sets

Chapter

1.

Working

with

Data

Sets

25

26

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

2.

Using

the

Storage

Management

Subsystem

This

chapter

covers

the

following

topics.

Topic

Location

Using

Automatic

Class

Selection

Routines

29

Allocating

Data

Sets

30

When

you

allocate

or

define

a

data

set

to

use

SMS,

you

specify

your

data

set

requirements

by

using

a

data

class,

a

storage

class,

and

a

management

class.

Typically,

you

do

not

need

to

specify

these

classes

because

a

storage

administrator

has

set

up

automatic

class

selection

(ACS)

routines

to

determine

which

classes

to

use

for

a

data

set.

Descriptions

of

the

classes

follow:

v

A

data

class

is

a

named

list

of

data

set

allocation

and

space

attributes

that

SMS

assigns

to

a

data

set

when

it

is

allocated.

You

can

also

use

a

data

class

with

a

non-system-managed

data

set.

v

A

storage

class

is

a

named

list

of

data

set

service

or

performance

objectives

that

SMS

uses

to

identify

performance

and

availability

requirements

for

data

sets.

The

object

access

method

(OAM)

uses

storage

classes

to

control

the

placement

of

objects

in

an

object

storage

hierarchy.

Each

data

set

has

a

storage

class

if

and

only

if

the

data

set

is

SMS-managed.

v

A

management

class

is

a

named

list

of

management

attributes

that

DFSMShsm

uses

to

control

action

for

retention,

migration,

backup,

and

release

of

allocated

but

unused

space

in

data

sets.

OAM

uses

management

classes

to

control

action

for

the

retention,

backup,

and

class

transition

of

objects

in

an

object

storage

hierarchy.

DFSMSrmm

can

use

the

management

class

name

assigned

to

a

tape

data

set

to

identify

a

policy

which

should

be

used

to

manage

the

data

set.

For

non-system-managed

tape

data

sets,

DFSMSrmm

calls

the

management

class

ACS

routine.

See

z/OS

DFSMSrmm

Implementation

and

Customization

Guide.

Your

storage

administrator

defines

the

attributes

of

each

class

in

an

SMS

configuration.

An

SMS

configuration

is

a

complete

set

of

definitions,

ACS

routines,

and

other

system

information

SMS

uses

to

manage

your

data

sets.

The

definitions

group

data

sets

according

to

common

characteristics.

As

you

allocate

new

data

sets,

the

ACS

routines

assign

those

characteristics.

With

the

information

contained

in

the

SMS

configuration,

SMS

manages

your

data

sets

most

effectively

with

a

knowledgeable

use

of

the

available

hardware.

See

z/OS

DFSMSdfp

Storage

Administration

Reference

for

information

about

using

SMS

classes

and

managing

data

sets

and

volumes.

The

Storage

Management

Subsystem

(SMS)

can

manage

tape

data

sets

on

native

volumes

in

a

tape

library

and

on

the

logical

volumes

in

a

Virtual

Tape

Server

(VTS).

DFSMSrmm

provides

some

services

for

the

stacked

volumes

contained

in

a

Virtual

Tape

Server.

See

z/OS

DFSMSrmm

Implementation

and

Customization

Guide.

Some

requirements

for

using

SMS

follow:

v

Extended-format

data

sets

and

compressed-format

data

sets

must

be

system

managed.

©

Copyright

IBM

Corp.

1987,

2004

27

v

SMS

must

be

active

when

you

allocate

a

new

data

set

to

be

SMS

managed.

v

Job

steps

in

which

a

JOBCAT

or

STEPCAT

DD

statement

is

used

cannot

use

system-managed

data

sets.

v

Your

storage

administrator

must

be

aware

that

ACS

routines

are

used

for

data

sets

created

with

distributed

file

manager

(DFM).

These

data

sets

must

be

system

managed.

If

the

storage

class

ACS

routine

does

not

assign

a

storage

class,

distributed

file

manager

deletes

the

just-created

data

set,

because

distributed

file

manager

does

not

create

non-system-managed

data

sets.

Distributed

file

manager

does,

however,

access

non-system-managed

data

sets.

Table

3

lists

the

storage

management

functions

and

products

you

can

use

with

system-managed

and

non-system-managed

data

sets.

For

details,

see

z/OS

DFSMSdfp

Storage

Administration

Reference.

Table

3.

Data

Set

Activity

for

Non-System-Managed

and

System-Managed

Data

Sets

Activity

Allocation

Non-System-Managed

Data

System-Managed

Data

Data

placement

JCL,

storage

pools

ACS,

storage

groups

Allocation

control

Software

user

installation

exits

ACS

Allocation

authorization,

definition

RACF3,

JCL,

IDCAMS,

TSO/E,

DYNALLOC

RACF3,

data

class,

JCL,

IDCAMS,

TSO/E,

DYNALLOC

Access

Access

authorization

RACF3

RACF3

Read/write

performance,

availability

Manual

placement,

JCL,

DFSMSdss1,

DFSMShsm2

Management

and

storage

class

Access

method

access

to

UNIX

byte

stream

Not

available

JCL

(PATH=)

Space

Management

Backup

DFSMShsm2,

DFSMSdss1,

utilities

Management

class

Expiration

JCL

Management

class

Release

unused

space

DFSMSdss1,

JCL

Management

class,

JCL

Deletion

DFSMShsm2,

JCL,

utilities

Management

class,

JCL

Migration

DFSMShsm2

Data

and

management

class,

JCL

Notes:

1.

DFSMSdss:

Moves

data

(dump,

restore,

copy,

and

move)

between

volumes

on

DASD

devices,

manages

space,

and

converts

data

sets

or

volumes

to

SMS

control.

See

z/OS

DFSMSdss

Storage

Administration

Guide

for

information

about

using

DFSMSdss.

2.

DFSMShsm:

Manages

space,

migrates

data,

and

backs

up

data

through

SMS

classes

and

groups.

See

z/OS

DFSMShsm

Managing

Your

Own

Data

for

information

about

using

DFSMShsm.

3.

RACF:

Controls

access

to

data

sets

and

use

of

system

facilities.

The

following

types

of

data

sets

cannot

be

system

managed:

v

Data

sets

having

the

same

name

as

an

already

cataloged

data

set

v

DASD

data

sets

not

cataloged

Using

the

Storage

Management

Subsystem

28

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

Unmovable

data

sets

(DSORG

is

xxU)

except

when

set

by

a

checkpoint

function

v

Data

sets

with

absolute

track

allocations

(ABSTR

value

for

SPACE

parameter

on

DD

statement)

v

ISAM

data

sets

v

Tape

data

sets

v

Spooled

data

sets

Direct

data

sets

(BDAM)

can

be

system-managed

but

if

a

program

uses

OPTCD=A,

the

program

might

become

dependent

on

where

the

data

set

is

on

the

disk.

For

example,

the

program

might

record

the

cylinder

and

head

numbers

in

a

data

set.

Such

a

data

set

should

not

be

migrated

or

moved.

You

can

specify

a

management

class

that

prevents

automatic

migration.

Tape

volumes

in

a

system-managed

tape

library

can

be

managed

as

system-managed

storage

classes.

Using

Automatic

Class

Selection

Routines

ACS

routines

determine

if

a

data

set

is

system

managed

and

which

classes

are

to

be

used.

You

can

use

a

storage

class

and

a

management

class

only

with

system-managed

data

sets.

You

can

use

a

data

class

for

data

sets

that

are

either

system

managed

or

not

system

managed,

and

for

data

sets

on

either

DASD

or

tape

volumes.

SMS

can

manage

tape

data

sets

on

physical

volumes

in

a

tape

library

and

on

the

logical

volumes

in

a

Virtual

Tape

Server

(VTS).

DFSMSrmm

provides

some

services

for

the

stacked

volumes

contained

in

a

Virtual

Tape

Server

(see

z/OS

DFSMSrmm

Implementation

and

Customization

Guide).

Your

storage

administrator

defines

the

data

classes,

storage

classes,

and

management

classes

your

installation

will

use.

Your

storage

administrator

provides

a

description

of

each

named

class,

including

when

to

use

the

class.

Recommendation:

Your

storage

administrator

must

code

storage

class

ACS

routines

to

ensure

data

sets

allocated

by

remote

applications

using

distributed

file

management

are

system

managed.

Using

a

data

class,

you

can

easily

allocate

data

sets

without

specifying

all

of

the

data

set

attributes

normally

required.

Your

storage

administrator

can

define

standard

data

set

attributes

and

use

them

to

create

data

classes,

for

use

when

you

allocate

your

data

set.

For

example,

your

storage

administrator

might

define

a

data

class

for

data

sets

whose

names

end

in

LIST

and

OUTLIST

because

they

have

similar

allocation

attributes.

The

ACS

routines

can

then

be

used

to

assign

this

data

class,

if

the

data

set

names

end

in

LIST

or

OUTLIST.

You

can

request

a

data

class

explicitly,

by

specifying

it

in

the

DD

statement,

DYNALLOC

macro,

the

TSO

or

IDCAMS

ALLOCATE

command,

or

the

DEFINE

CLUSTER

command.

Request

a

data

class

implicitly,

by

not

specifying

a

data

class

and

letting

the

ACS

routines

assign

the

data

class

defined

by

your

storage

administrator.

Whichever

method

is

used,

you

need

to

know:

v

The

data

set

characteristics

v

The

data

class

that

describes

what

this

data

set

looks

like

v

Whether

the

ACS

routines

will

pick

this

data

class

automatically

v

Which

characteristics

to

code

in

the

JCL

to

override

the

data

class

attributes

Using

the

Storage

Management

Subsystem

Chapter

2.

Using

the

Storage

Management

Subsystem

29

You

can

override

any

of

the

attributes

specified

in

the

assigned

data

class

by

specifying

the

values

in

the

DD

statement,

or

the

ALLOCATE

or

the

DEFINE

CLUSTER

commands.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

(ALLOCATE

and

DEFINE

CLUSTER

command

sections)

for

information

about

the

attributes

that

can

be

assigned

through

the

SMS

class

parameters,

and

examples

of

defining

data

sets.

Another

way

to

allocate

a

data

set

without

specifying

all

of

the

data

set

attributes

normally

required

is

to

model

the

data

set

after

an

existing

data

set.

You

can

do

this

by

referring

to

the

existing

data

set

in

the

DD

statement

for

the

new

data

set,

using

the

JCL

keywords

LIKE

or

REFDD.

See

z/OS

MVS

JCL

Reference

and

z/OS

MVS

JCL

User’s

Guide.

Allocating

Data

Sets

Allocation

has

two

related

meanings:

1.

Setting

aside

DASD

space

for

a

new

data

set.

2.

Connecting

a

program

to

a

new

or

existing

data

set

or

to

a

device.

The

program

can

then

use

the

DD

name

to

issue

an

OPEN

macro

and

use

an

access

method

to

read

or

write

data.

To

allocate

a

new

data

set

on

DASD,

you

can

use

any

of

the

following

methods:

v

JCL

DD

statements.

See

z/OS

MVS

JCL

Reference.

v

Access

method

services

ALLOCATE

command

or

DEFINE

command.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

the

syntax

and

more

examples.

v

TSO

ALLOCATE

command.

See

z/OS

TSO/E

Command

Reference

for

the

syntax

and

more

examples.

v

DYNALLOC

macro

using

the

SVC

99

parameter

list.

See

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

There

are

two

ways

to

cause

a

new

data

set

to

be

system-managed:

v

Specify

the

SMS

parameter

STORCLAS

explicitly.

You

can

also

specify

MGMTCLAS

and

DATACLAS.

v

Let

the

ACS

routines

assign

the

SMS

classes

to

the

data

set.

To

allocate

non-system-managed

data

sets,

you

can

specify

the

DATACLAS

parameter.

Do

not

specify

the

MGMTCLAS

and

STORCLAS

parameters.

Allocating

Data

Sets

with

JCL

To

allocate

a

new

data

set

using

JCL,

specify

DISP=(NEW,CATLG,DELETE).

If

the

application

program

completes

normally,

the

data

set

is

cataloged,

but

if

the

application

program

fails,

the

data

set

is

deleted.

All

system-managed

data

sets

are

automatically

cataloged,

even

if

you

use

a

disposition

of

KEEP.

To

update

an

existing

data

set,

specify

a

DISP

value

of

OLD,

MOD,

or

SHR.

Do

not

use

DISP=SHR

while

updating

a

sequential

data

set

unless

you

have

some

other

means

of

serialization

because

you

might

lose

data.

To

share

a

data

set

during

access,

specify

a

DISP

value

of

SHR.

If

a

DISP

value

of

NEW,

OLD,

or

MOD

is

specified,

the

data

set

cannot

be

shared.

Using

the

Storage

Management

Subsystem

30

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Tip:

If

SMS

is

active

and

a

new

data

set

is

a

type

that

SMS

can

manage,

it

is

impossible

to

determine

if

the

data

set

will

be

system-managed

based

solely

on

the

JCL

because

an

ACS

routine

can

assign

a

storage

class

to

any

data

set.

Allocating

an

HFS

Data

Set

An

HFS

data

set

is

allocated

if

the

DSNTYPE

value

is

HFS

and

the

SPACE

parameter

specifies

the

number

of

directory

blocks,

in

either

JCL

or

the

data

class.

You

must

specify

the

number

of

directory

blocks

for

an

HFS

data

set,

but

the

value

has

no

effect

on

allocation.

Related

reading:

For

more

information,

see

“Using

HFS

Data

Sets”

on

page

475.

Allocating

System-Managed

Data

Sets

Allocating

a

new

data

set

under

SMS,

using

the

ACS

routines

defined

by

your

storage

administrator,

is

easier

than

without

SMS.

With

SMS

it

is

unnecessary

to

specify

the

UNIT,

VOL=SER,

SPACE,

or

the

DCB

parameters

in

the

DD

statement.

For

this

allocation

to

succeed,

the

ACS

routines

must

select

a

data

class

that

defines

the

space

and

data

set

attributes

required

by

the

application.

You

can

request

the

name

of

the

data

class,

storage

class,

and

management

class

in

the

JCL

DD

statement.

However,

in

most

cases,

the

ACS

routines

pick

the

classes

needed

for

the

data

set.

Allocating

a

PDSE.

The

DSNTYPE

parameter

determines

if

the

data

set

is

allocated

as

a

PDSE

or

as

a

PDS.

A

DSNTYPE

of

LIBRARY

causes

the

data

set

to

be

a

PDSE.

The

DSNTYPE

parameter

can

be

specified

in

the

JCL

DD

statement,

the

data

class,

or

the

system

default,

or

by

using

the

JCL

LIKE

keyword

to

refer

to

an

existing

PDSE.

If

the

SPACE

parameter

is

omitted

in

the

DD

statement,

it

must

be

supplied

by

the

data

class.

You

can

omit

STORCLAS

and

DATACLAS

in

the

DD

statement

if

the

default

storage

class

and

data

class

contain

the

data

set

attributes

you

want.

A

PDSE

also

can

be

allocated

using

access

method

services.

When

first

allocated,

the

PDSE

is

neither

a

program

library

or

a

data

library.

If

the

first

member

written,

by

either

the

binder

or

by

IEBCOPY,

is

a

program

object,

the

library

becomes

a

program

library

and

remains

such

until

the

last

member

has

been

deleted.

If

the

first

member

written

is

not

a

program

object,

then

the

PDSE

becomes

a

data

library.

Program

objects

and

other

types

of

data

cannot

be

mixed

in

the

same

PDSE

library.

Allocating

an

Extended-Format

Data

Set.

Extended

format

data

sets

must

be

system-managed.

The

mechanism

for

requesting

extended

format

is

through

the

SMS

data

class

DSNTYPE=EXT

parameter

and

subparameters

R

(required)

or

P

(preferred).

The

storage

administrator

can

specify

R

to

ensure

the

data

set

is

extended.

Then,

for

VSAM

data

sets

the

storage

administrator

can

set

the

extended

addressability

attribute

to

Y

to

request

extended

addressability.

In

addition

to

a

DSNTYPE

of

EXTENDED,

COMPACTION=YES

in

a

data

class

definition

must

be

specified

if

you

want

to

request

allocation

of

an

extended

format

data

set

in

the

compressed

format.

A

compressed

data

set

can

be

created

using

the

LIKE

keyword

on

the

DD

statement

and

not

just

through

a

data

class.

Allocating

a

VSAM

Data

Set.

See

Chapter

18,

“Using

Job

Control

Language

for

VSAM,”

on

page

259

for

information

about

allocating

VSAM

data

sets

using

JCL.

Using

the

Storage

Management

Subsystem

Chapter

2.

Using

the

Storage

Management

Subsystem

31

Allocating

Non-System-Managed

Data

Sets

If

your

installation

is

running

SMS,

you

can

use

a

data

class

with

a

non-system-managed

data

set,

such

as

a

tape

data

set.

The

DCB

information

defined

in

the

data

class

is

used

as

the

default.

If

you

do

not

use

a

data

class,

you

need

to

supply

in

the

JCL,

or

in

the

program,

the

DCB

information

such

as

LRECL

and

RECFM,

and

the

DSORG.

You

cannot

use

data

class

if

your

installation

is

not

running

SMS.

Allocating

System-Managed

Data

Sets

with

the

Access

Method

Services

ALLOCATE

Command

The

examples

in

the

following

sections

show

you

how

to

allocate

a

new

data

set

to

the

job

step

using

the

access

method

services

ALLOCATE

command.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

(ALLOCATE

section).

Allocating

a

Data

Set

Using

Class

Specifications

In

the

following

example,

the

ALLOCATE

command

is

used

to

allocate

a

new

data

set

using

the

SMS

classes.

SMS

must

be

active.

The

data

set

can

be

VSAM

or

non-VSAM.

//ALLOC

JOB

...

//STEP1

EXEC

PGM=IDCAMS,DYNAMNBR=1

//SYSPRINT

DD

SYSOUT=A

//SYSIN

DD

*

ALLOC

-

DSNAME(ALX.ALLOCATE.EXAMP1)

-

NEW

CATALOG

-

DATACLAS(STANDARD)

-

STORCLAS(FAST)

-

MGMTCLAS(VSAM)

/*

The

command

parameters

follow:

v

DSNAME

specifies

the

name

of

the

data

set

being

allocated

is

ALX.ALLOCATE.EXAMP1.

v

NEW

specifies

the

data

set

being

allocated

is

new.

Allocating

a

VSAM

Data

Set

Using

Class

Specifications

The

following

example

uses

the

ALLOCATE

command

to

allocate

a

new

VSAM

data

set.

Data

class

is

not

assigned,

and

attributes

assigned

through

the

default

data

class

will

be

overridden

by

explicitly

specified

parameters:

//ALLOC

JOB

...

//STEP1

EXEC

PGM=IDCAMS,DYNAMNBR=1

//SYSPRINT

DD

SYSOUT=A

//SYSIN

DD

*

ALLOC

-

DSNAME(ALX.ALLOCATE.EXAMP2)

-

NEW

CATALOG

-

SPACE(10,2)

-

AVBLOCK(80)

-

AVGREC(K)

-

LRECL(80)

-

RECORG(ES)

-

STORCLAS(FAST)

-

MGMTCLAS(VSAM)

/*

Allocating

a

System-Managed

Non-VSAM

Data

Set

The

following

example

uses

the

ALLOCATE

command

to

allocate

a

non-VSAM

data

set.

ALLOCATE,

unlike

DEFINE

NONVSAM,

lets

you

specify

the

SMS

classes

for

a

non-VSAM

data

set:

Using

the

Storage

Management

Subsystem

32

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

//ALLOC

JOB

...

//STEP1

EXEC

PGM=IDCAMS

//SYSPRINT

DD

SYSOUT=A

//SYSABEND

DD

SYSOUT=A

//SYSIN

DD

*

ALLOC

-

DSNAME(NONVSAM.EXAMPLE)

-

NEW

-

DATACLAS(PS000000)

-

MGMTCLAS(S1P01M01)

-

STORCLAS(S1P01S01)

/*

Allocating

a

PDSE

The

following

example

shows

the

ALLOCATE

command

used

with

the

DSNTYPE

keyword

to

create

a

PDSE.

DSNTYPE(LIBRARY)

indicates

the

data

set

being

allocated

is

a

PDSE.

//ALLOC

EXEC

PGM=IDCAMS,DYNAMNBR=1

//SYSPRINT

DD

SYSOUT=A

//SYSIN

DD

*

ALLOC

-

DSNAME(XMP.ALLOCATE.EXAMPLE1)

-

NEW

-

STORCLAS(SC06)

-

MGMTCLAS(MC06)

-

DSNTYPE(LIBRARY)

/*

Allocating

a

New

Non-System-Managed

Data

Set

The

following

example

uses

the

ALLOCATE

command

to

allocate

a

new

data

set:

//ALLOC

JOB

...

//STEP1

EXEC

PGM=IDCAMS,DYNAMNBR=1

//SYSPRINT

DD

SYSOUT=A

//SYSIN

DD

*

ALLOC

-

DSNAME(XMP.ALLOCATE.EXAMP3)

-

NEW

CATALOG

-

SPACE(10,5)

TRACKS

-

BLKSIZE(1000)

-

LRECL(100)

-

DSORG(PS)

-

UNIT(3380)

-

VOL(338002)

-

RECFM(F,B)

/*

Allocating

Data

Sets

with

the

TSO

ALLOCATE

Command

The

following

example

allocates

a

new

sequential

data

set

with

space

allocated

in

tracks:

ALLOC

DA(EX1.DATA)

DSORG(PS)

SPACE(2,0)

TRACKS

LRECL(80)

RECFM(F,B)

NEW

The

new

data

set

name:

GOLD.EX1.DATA

The

number

of

tracks:

2

The

logical

record

length:

80

The

block

size:

determined

by

the

system

The

record

format:

fixed

block

You

do

not

have

to

specify

the

user

ID,

GOLD,

as

an

explicit

qualifier.

Because

the

BLKSIZE

parameter

is

omitted,

the

system

determines

a

block

size

that

optimizes

space

usage.

Using

the

Storage

Management

Subsystem

Chapter

2.

Using

the

Storage

Management

Subsystem

33

The

following

example

allocates

a

new

VSAM

entry-sequenced

data

set,

with

a

logical

record

length

of

80,

a

block

size

of

8000,

on

two

tracks.

To

allocate

a

VSAM

data

set,

specify

the

RECORG

keyword

on

the

ALLOCATE

command.

RECORG

is

mutually

exclusive

with

DSORG

and

with

RECFM.

To

allocate

a

key-sequenced

data

set,

you

also

must

specify

the

KEYLEN

parameter.

RECORG

specifies

the

type

of

data

set

you

want.

ALLOC

DA(EX2.DATA)

RECORG(ES)

SPACE(2,0)

TRACKS

LRECL(80)

BLKSIZE(8192)

NEW

ES—Entry-sequenced

data

set

KS—Key-sequenced

data

set

LS—Linear

data

set

RR—Relative

record

data

set

Allocating

Data

Sets

with

Dynamic

Allocation

See

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide

for

examples

of

allocating

a

data

set

using

the

DYNALLOC

macro.

To

allocate

a

VSAM

data

set

using

the

DYNALLOC

macro

with

the

SVC

99

parameter

list,

specify

text

unit

800B

-

RECORG.

Using

the

Storage

Management

Subsystem

34

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

3.

Allocating

Space

on

Direct

Access

Volumes

This

chapter

covers

the

following

topics.

Topic

Location

Specification

of

Space

Requirements

35

Maximum

Data

Set

Size

37

Primary

and

Secondary

Space

Allocation

without

the

Guaranteed

Space

Attribute

38

Allocation

of

Data

Sets

with

the

Guaranteed

Space

Attribute

39

Allocation

of

Data

Sets

with

the

Space

Constraint

Relief

Attributes

41

Extension

to

Another

DASD

Volume

41

Multiple

Volume

Considerations

for

Sequential

Data

Sets

43

Additional

Information

on

Space

Allocation

44

Specification

of

Space

Requirements

You

can

specify

the

amount

of

space

required

in

blocks,

records,

tracks,

or

cylinders.

When

creating

a

DASD

data

set,

specify

the

amount

of

space

needed

explicitly

by

using

the

SPACE

parameter,

or

specify

the

amount

of

space

implicitly

by

using

the

information

available

in

a

data

class.

The

data

class

is

not

used

if

SMS

is

inactive

at

the

time

of

your

allocation.

The

system

can

use

a

data

class

if

SMS

is

active

even

if

the

data

set

is

not

SMS

managed.

For

system-managed

data

sets,

the

system

selects

the

volumes.

Therefore,

you

do

not

need

to

specify

a

volume

when

you

define

your

data

set.

If

you

specify

your

space

request

by

average

record

length,

space

allocation

is

independent

of

device

type.

Device

independence

is

especially

important

to

system-managed

storage.

Blocks

When

the

amount

of

space

required

is

expressed

in

blocks,

you

must

specify

the

number

and

average

length

of

the

blocks

within

the

data

set,

as

in

this

example:

//

DD

SPACE=(300,(5000,100)),

...

300

=

average

block

length

in

bytes

5000

=

primary

quantity

(number

of

blocks)

100

=

secondary

quantity,

to

be

allocated

if

the

primary

quantity

is

not

enough

(in

blocks)

From

this

information,

the

operating

system

estimates

and

allocates

the

number

of

tracks

required.

The

system

uses

this

block

length

value

only

to

calculate

space.

This

value

does

not

have

to

be

the

same

as

the

BLKSIZE

value.

If

the

data

set

is

extended

format,

the

system

adds

32

to

this

value

when

calculating

space.

©

Copyright

IBM

Corp.

1987,

2004

35

Recommendation:

For

sequential

and

partitioned

data

sets,

let

the

system

calculate

the

block

size

instead

of

requesting

space

by

average

block

length.

See

“System-Determined

Block

Size”

on

page

323.

If

the

average

block

length

of

the

real

data

does

not

match

the

value

coded

here,

the

system

might

allocate

much

too

little

or

much

too

much

space.

Average

Record

Length

When

the

amount

of

space

required

is

expressed

in

average

record

length,

you

must

specify

the

number

of

records

within

the

data

set

and

their

average

length.

Use

the

AVGREC

keyword

to

modify

the

scale

of

your

request.

When

AVGREC

is

specified,

the

first

subparameter

of

SPACE

becomes

the

average

record

length.

The

system

applies

the

scale

value

to

the

primary

and

secondary

quantities

specified

for

the

SPACE

keyword.

Possible

values

for

the

AVGREC

keyword

follow:

U—Use

a

scale

of

1

K—Use

a

scale

of

1024

M—Use

a

scale

of

1048576

When

the

AVGREC

keyword

is

specified,

the

values

specified

for

primary

and

secondary

quantities

in

the

SPACE

keyword

are

multiplied

by

the

scale

and

those

new

values

will

be

used

in

the

space

allocation.

For

example,

the

following

request

results

in

the

primary

and

secondary

quantities

being

multiplied

by

1024:

//

DD

SPACE=(80,(20,2)),AVGREC=K,

...

80

=

average

record

length

in

bytes

80

*

20

*

1024

=

1.6

MB

=

primary

space

80

*

2

*

1024

=

160

KB

=

secondary

space,

to

be

allocated

if

the

primary

space

is

not

enough

From

this

information,

the

operating

system

estimates

and

allocates

the

number

of

tracks

required

using

one

of

the

following

block

lengths,

in

the

order

indicated:

1.

4096,

if

the

data

set

is

a

PDSE.

2.

The

BLKSIZE

parameter

on

the

DD

statement

or

the

BLKSIZE

subparameter

of

the

DCB

parameter

on

the

DD.

3.

The

system

determined

block

size,

if

available.

4.

A

default

value

of

4096.

For

an

extended-format

data

set,

the

operating

system

uses

a

value

32

larger

than

the

above

block

size.

The

primary

and

secondary

space

are

divided

by

the

block

length

to

determine

the

number

of

blocks

requested.

The

operating

system

determines

how

many

blocks

of

the

block

length

can

be

written

on

one

track

of

the

device.

The

primary

and

secondary

space

in

blocks

is

then

divided

by

the

number

of

blocks

per

track

to

obtain

a

track

value,

as

shown

in

the

examples

below.

These

examples

assume

a

block

length

of

23200.

Two

blocks

of

block

length

23200

can

be

written

on

a

3380

device:

(1.6MB

/

23200)

/

2

=

36

=

primary

space

in

tracks

(160KB

/

23200)

/

2

=

4

=

secondary

space

in

tracks

In

the

preceding

calculations,

the

system

does

not

consider

if

it

is

a

compressed

format

data

set.

This

means

the

calculation

is

done

with

the

user-perceived

uncompressed

block

size

and

not

the

actual

block

size

that

the

system

calculates.

Tracks

or

Cylinders

The

following

example

shows

the

amount

of

space

required

in

tracks

or

cylinders:

Allocating

Space

on

Direct

Access

Volume

36

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

//

DD

SPACE=(TRK,(100,5)),

...

//

DD

SPACE=(CYL,(3,1)),

...

Absolute

Track

If

the

data

set

contains

location-dependent

information

in

the

form

of

an

actual

track

address

(such

as

MBBCCHHR

or

CCHHR),

you

can

request

space

in

the

number

of

tracks

and

the

beginning

address.

In

this

example,

500

tracks

is

required,

beginning

at

relative

track

15,

which

is

cylinder

1,

track

0:

//

DD

SPACE=(ABSTR,(500,15)),UNIT=3380,

...

Restriction:

Data

sets

that

request

space

by

absolute

track

are

not

eligible

to

be

system

managed

and

they

interfere

with

DASD

space

management

done

by

the

space

management

products

and

the

storage

administrator.

Avoid

using

absolute

track

allocation.

Additional

Space-Allocation

Options

The

DD

statement

provides

flexibility

in

specifying

space

requirements.

See

z/OS

MVS

JCL

Reference

about

option

information.

Maximum

Data

Set

Size

This

section

contains

information

about

the

following

maximum

amounts

for

data

sets:

v

Maximum

size

on

one

volume

v

Maximum

number

of

volumes

v

Maximum

size

for

a

VSAM

data

set

Maximum

Size

on

One

Volume

Most

types

of

data

sets

are

limited

to

65

535

total

tracks

allocated

on

any

one

volume,

and

if

a

greater

number

of

tracks

is

required,

this

attempt

to

create

a

data

set

will

fail.

Data

sets

that

are

not

limited

to

65

535

total

tracks

allocated

on

any

one

volume

are:

v

Extended-format

sequential

v

UNIX

files

v

PDSE

v

VSAM

If

a

virtual

input-output

(VIO)

data

set

is

to

be

SMS

managed,

the

VIO

maximum

size

is

2

000

000

KB,

as

defined

in

the

Storage

Group

VIO

Maxsize

parameter.

Maximum

Number

of

Volumes

PDS

and

PDSE

data

sets

are

limited

to

one

volume.

All

other

DASD

data

sets

are

limited

to

59

volumes.

A

data

set

on

a

VIO

simulated

device

is

limited

to

65

535

tracks

and

is

limited

to

one

volume.

Tape

data

sets

are

limited

to

255

volumes.

Maximum

VSAM

Data

Set

Size

A

VSAM

data

set

is

limited

to

4

GB

across

all

volumes

unless

Extended

Addressability

is

specified

in

the

SMS

data

class

definition.

System

requirements

restrict

the

number

of

volumes

that

can

be

used

for

one

data

set

to

59.

Allocating

Space

on

Direct

Access

Volume

Chapter

3.

Allocating

Space

on

Direct

Access

Volumes

37

Primary

and

Secondary

Space

Allocation

without

the

Guaranteed

Space

Attribute

Space

is

allocated

for

non-system-managed

data

sets

or

system-managed

data

sets

without

the

guaranteed

space

attribute

in

the

storage

class

as

follows.

If

you

allocate

a

new

data

set

and

specify

SPACE=(TRK,(2,4));

this

initially

allocates

two

tracks

for

the

data

set.

As

each

record

is

written

to

the

data

set

and

these

two

tracks

are

used

up,

the

system

automatically

obtains

four

more

tracks.

When

these

four

tracks

are

used,

another

four

tracks

are

obtained.

The

same

sequence

is

followed

until

the

extent

limit

for

the

type

of

data

set

is

reached.

v

A

sequential

data

set

can

have

16

extents

on

each

volume.

v

An

extended-format

sequential

data

set

can

have

123

extents

per

volume.

v

A

PDS

can

have

16

extents.

v

A

direct

data

set

can

have

16

extents

on

each

volume.

v

A

VSAM

data

set

can

have

up

to

255

extents

per

component.

v

A

striped

VSAM

data

set

can

have

up

to

255

extents

per

stripe.

v

A

PDSE

can

have

123

extents.

v

An

HFS

data

set

can

have

123

extents

on

each

volume.

You

can

allocate

space

for

a

multivolume

data

set

the

same

as

for

a

single

volume

data

set.

DASD

space

is

initially

allocated

on

the

first

volume

only

(exceptions

are

striped

extended-format

data

sets

and

guaranteed

space

data

sets).

When

the

primary

allocation

of

space

is

filled,

space

is

allocated

in

secondary

storage

amounts

(if

specified).

The

extents

can

be

allocated

on

other

volumes.

VIO

space

allocation

is

handled

differently

from

other

data

sets.

See

“Virtual

I/O

for

Temporary

Data

Sets”

on

page

22.

Multivolume

VSAM

Data

Sets

When

a

multivolume

VSAM

data

set

extends

to

the

next

volume,

the

data

class

specifies

if

the

initial

space

allocated

on

that

volume

is

the

primary

or

secondary

amount.

The

default

is

the

primary

amount.

After

the

primary

amount

of

space

is

used

up,

space

is

allocated

in

secondary

amounts.

By

using

a

data

class,

it

is

possible

to

indicate

whether

to

take

a

primary

or

secondary

amount

when

VSAM

extends

to

a

new

volume.

The

previous

comments

do

not

pertain

to

VSAM

data

that

is

striped.

See

Chapter

6,

“Organizing

VSAM

Data

Sets,”

on

page

73

about

VSAM

data

in

the

striped

format.

Multivolume

Non-VSAM

Data

Sets

When

a

multivolume

non-VSAM,

non-extended-format

data

set

extends

to

the

next

volume,

the

initial

space

allocated

on

that

volume

is

the

secondary

amount.

Extended-Format

Data

Sets

When

space

for

a

striped

extended-format

data

set

is

allocated,

the

system

divides

the

primary

amount

among

the

volumes.

If

it

does

not

divide

evenly,

the

system

rounds

the

amount

up.

For

extended-format

data

sets,

when

the

primary

space

on

any

volume

is

filled,

the

system

allocates

space

on

that

volume.

The

amount

is

the

secondary

amount

divided

by

the

number

of

stripes.

If

the

secondary

amount

cannot

be

divided

evenly,

the

system

rounds

up

the

amount.

Data

sets

allocated

in

the

extended-format

achieve

the

added

benefits

of

improved

error

detection

when

writing

to

DASD

as

well

as

the

use

of

a

more

efficient

and

functionally

complete

interface

to

the

I/O

subsystem.

Allocating

Space

on

Direct

Access

Volume

38

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

4

shows

how

stripes

for

an

extended-format

sequential

data

set

are

different

from

stripes

for

an

extended-format

VSAM

data

set.

Table

4.

Differences

Between

Stripes

in

Sequential

and

VSAM

Data

Sets

Sequential

Extended-Format

Striped

VSAM

Extended-Format

Striped

The

data

set

can

have

a

maximum

of

59

stripes.

The

data

set

can

have

a

maximum

of

16

stripes.

Each

stripe

must

reside

on

one

volume

and

cannot

be

extended

to

another

volume.

Each

stripe

can

reside

on

one

or

more

volumes.

There

is

no

advantage

to

increasing

the

number

of

stripes

for

VSAM

to

be

able

to

acquire

additional

space.

When

extending

a

stripe

to

a

new

volume,

the

system

derives

the

amount

of

the

first

space

allocated

according

to

the

Additional

Volume

Amount

in

the

data

class.

This

space

derived

from

the

primary

or

secondary

space.

The

default

value

is

the

primary

space

amount.

After

the

system

fills

a

track,

it

writes

the

following

blocks

on

a

track

in

the

next

stripe.

After

the

system

writes

a

control

interval

(CI),

it

writes

the

next

CI

on

a

track

in

the

next

stripe.

A

CI

cannot

span

stripes.

You

can

use

the

BSAM

and

QSAM

access

methods.

You

can

use

the

VSAM

access

method.

Allocation

of

Data

Sets

with

the

Guaranteed

Space

Attribute

You

can

allocate

space

and

load

a

guaranteed

space

data

set

in

one

step

or

in

separate

steps.

Guaranteed

Space

with

DISP=NEW

or

MOD

When

you

code

DISP=NEW

or

DISP=MOD,

space

is

allocated

to

system-managed

multivolume

(non-extended-format)

data

sets

with

the

guaranteed

space

attribute

in

the

storage

class,

as

follows:

1.

Initially,

primary

space

is

preallocated

on

all

the

volumes.

2.

When

the

primary

amount

on

the

first

volume

is

used

up,

a

secondary

amount

is

allocated

on

the

first

volume

until

the

volume

is

out

of

space

or

the

data

set

has

reached

its

extent

limit.

3.

The

preallocated

primary

space

on

the

next

volume

is

then

used.

4.

When

the

primary

space

on

the

next

volume

is

used

up,

a

secondary

amount

is

allocated.

5.

Secondary

amounts

continue

to

be

allocated

until

the

volume

is

out

of

space

or

the

data

set

extent

limit

is

reached.

All

succeeding

volumes

follow

the

same

sequence.

Guaranteed

Space

for

VSAM

For

nonstriped

VSAM

data

sets,

space

is

allocated

to

system-managed

multivolume

data

sets

with

the

guaranteed

space

attribute

in

the

storage

class,

as

follows:

v

Initially,

primary

space

is

preallocated

on

all

the

volumes.

v

When

the

primary

amount

on

the

first

volume

is

used

up,

a

secondary

amount

is

allocated

on

the

first

volume

until

the

volume

is

out

of

space

or

the

data

set

has

reached

its

extent

limit.

Allocating

Space

on

Direct

Access

Volume

Chapter

3.

Allocating

Space

on

Direct

Access

Volumes

39

v

The

preallocated

primary

space

on

the

next

volume

is

then

used.

v

When

the

primary

space

on

the

next

volume

is

used

up,

a

secondary

amount

is

allocated.

v

Secondary

amounts

continue

to

be

allocated

until

the

volume

is

out

of

space

or

the

data

set

extent

limit

is

reached.

For

a

non-EA

data

set,

if

the

extend

fails,

the

system

attemps

to

extend

to

a

new

volume

by

the

primary

amount.

All

succeeding

volumes

follow

the

same

sequence.

Guaranteed

Space

with

DISP=OLD

or

SHR

When

you

code

DISP=OLD

or

DISP=SHR,

space

is

allocated

to

system-managed

multivolume

(non-extended-format)

data

sets

with

the

guaranteed

space

attribute

in

the

storage

class,

as

follows:

1.

Initially,

the

system

preallocated

primary

space

on

all

the

volumes

when

you

coded

DISP=NEW.

2.

When

the

allocated

space

on

each

volume

is

used

up,

the

system

switches

to

the

next

volume.

Some

volumes

might

already

have

secondary

space

allocations

because

you

extended

the

data

set

when

you

coded

DISP=NEW

or

DISP=MOD

earlier.

The

system

will

use

those

secondary

allocations.

3.

The

existing

space

on

the

next

volume

is

then

used.

4.

The

system

will

attempt

to

allocate

new

space

only

on

the

last

volume.

On

that

volume

secondary

amounts

continue

to

be

allocated

until

the

volume

is

out

of

space

or

the

data

set

extent

limit

is

reached.

The

system

works

this

way

so

that

it

is

similar

to

nonguaranteed

preallocated

space

on

non-SMS

volumes.

Guaranteed

Space

with

Extended-Format

Data

Sets

When

guaranteed

space

is

specified

for

a

multivolume

extended-format

sequential

data

set,

the

primary

space

is

preallocated

on

all

the

volumes.

Because

data

is

written

to

an

extended-format

data

set

using

data

striping

(logically

consecutive

tracks

or

CIs

are

written

to

the

data

set

in

a

circular

manner),

secondary

space

is

not

allocated

until

the

preallocated

primary

space

on

all

volumes

is

used

up.

For

a

striped

VSAM

data

set

with

guaranteed

space

that

has

more

than

16

volumes,

only

the

first

16

volumes

have

preallocated

space.

The

secondary

amount

specified

is

divided

by

the

number

of

volumes

and

rounded

up

for

allocation

on

each

volume.

The

amount

of

preallocated

space

for

VSAM

striped

data

is

limited

to

16

volumes.

Guaranteed

Space

Example

The

following

example

allocates

100

MB

of

primary

space

on

each

of

five

volumes:

//DD1

DD

DSN=ENG.MULTIFILE,DISP=(,KEEP),STORCLAS=GS,

//

SPACE=(1,(100,25)),AVGREC=M,UNIT=(3380,5)

1.

After

100

MB

is

used

on

the

first

volume,

25

MB

extents

of

secondary

space

is

allocated

on

it

until

the

extent

limit

is

reached

or

the

volume

is

full.

The

system

assumes

DISP=NEW

because

the

user

omitted

the

first

DISP

value.

2.

If

more

space

is

needed,

the

100

MB

of

preallocated

primary

space

is

used

on

the

second

volume.

Then,

more

secondary

space

is

allocated

on

that

volume.

3.

The

same

process

is

repeated

on

each

volume.

Allocating

Space

on

Direct

Access

Volume

40

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Allocation

of

Data

Sets

with

the

Space

Constraint

Relief

Attributes

To

reduce

allocation

failures,

three

data

class

attributes

can

influence

the

allocation

and

extension

of

data

sets

to

new

volumes.

Allocations

that

might

have

failed

for

lack

of

space

can

succeed.

These

three

attributes

follow:

v

Space

Constraint

Relief

(values

are

YES

or

NO)

v

Reduce

Space

Up

To

%

(0

-

99%)

v

Dynamic

Volume

Count

(1

-

59

or

blank)

Allocations

and

extends

to

new

volumes

proceed

normally

until

space

cannot

be

obtained

by

normal

means.

The

system

performs

space

constraint

relief

in

two

situations:

when

a

new

data

set

is

allocated

and

when

a

data

set

is

extended

to

a

new

volume.

During

EOV

processing,

space

constraint

relief

affects

the

primary

or

secondary

allocation

amount

for

VSAM

data

sets,

or

the

secondary

allocation

amount

for

non-VSAM

data

sets.

During

CREATE

processing,

the

primary

quantity

might

be

reduced

for

both

non-VSAM

and

VSAM

data

sets.

Exception:

The

system

does

not

use

space

constraint

relief

when

data

sets

are

extended

on

the

same

volume.

Space

constraint

relief,

if

requested,

occurs

in

one

or

two

methods,

depending

on

the

volume

count

that

you

specified

for

the

failing

allocation.

1.

If

the

volume

count

is

greater

than

1,

SMS

attempts

to

satisfy

the

allocation

by

spreading

the

requested

primary

allocation

over

more

than

one

volume,

but

no

more

than

the

volume

count

specified.

2.

If

method

1

also

fails

or

if

the

volume

count

is

1,

SMS

modifies

the

requested

primary

space

or

the

secondary

space

for

extension,

by

the

percentage

that

you

specified

in

the

REDUCE

SPACE

UP

TO

parameter.

The

allocation

fails

as

before

if

either

or

both

methods

1

and

2

are

not

successful.

Recommendation:

You

can

specify

0%

in

the

data

class

for

this

parameter

so

space

is

not

reduced.

SMS

removes

the

5-extent-at-a-time

limit.

(For

example,

sequential

data

sets

can

have

a

maximum

of

16

extents.)

Without

this

change,

the

system

tries

to

satisfy

your

primary

or

secondary

space

request

with

no

more

than

five

extents.

If

you

request

a

large

amount

of

space

or

the

space

is

fragmented,

the

system

might

need

more

than

five

extents.

Restriction:

VSAM

and

non-VSAM

multistriped

data

sets

do

not

support

space

constraint

relief.

However,

single-striped

VSAM

and

non-VSAM

data

sets

use

space

constraint

relief.

Extension

to

Another

DASD

Volume

The

system

attempts

to

extend

to

another

DASD

volume

if

all

of

the

following

conditions

exist:

v

The

current

volume

does

not

have

the

secondary

space

amount

available,

or

the

data

set

reached

the

extent

limit

for

that

type

of

data

set,

or

the

application

program

issued

the

FEOV

macro.

Allocating

Space

on

Direct

Access

Volume

Chapter

3.

Allocating

Space

on

Direct

Access

Volumes

41

v

The

volume

count

has

not

yet

been

reached.

For

a

system-managed

data

set,

the

volume

count

was

determined

when

the

data

set

was

created

(DISP=NEW)

and

is

the

largest

of

the

volume

count

(VOL=(,,,nn)),

the

number

of

volumes

coded

with

the

VOL

parameter,

and

the

unit

count

(UNIT=(xxxx,nn)).

For

either

system-managed

or

non-system-managed

data

sets,

the

volume

count

can

come

from

the

data

class.

The

volume

count

can

be

increased

after

data

set

creation

with

the

IDCAMS

ADDVOL

command.

v

The

dynamic

volume

count

has

not

been

reached

for

a

system-managed

data

set.

You

can

define

the

Space

Constraint

Relief

and

Dynamic

Volume

Count

attributes

in

the

data

class.

If

Space

Constraint

Relief=YES,

you

can

specify

a

dynamic

volume

count

from

1

to

59

for

SMS

to

extend

a

data

set

automatically

to

another

volume

or

volumes.

For

more

information,

see

z/OS

DFSMSdfp

Storage

Administration

Reference.

v

A

secondary

allocation

amount

is

available.

This

can

come

from

the

data

class

when

the

data

set

was

created

even

if

the

data

set

is

not

system

managed.

When

the

data

set

is

created

with

DISP=NEW

or

IDCAMS

DEFINE,

the

secondary

amount

permanently

overrides

data

class

for

the

data

set.

For

a

non-VSAM

data

set

the

above

two

sources

of

the

secondary

amount

can

be

overridden

temporarily

with

DISP

other

than

NEW.

Examples

of

Dynamic

Volume

Count

When

Defining

a

Data

Set

These

examples

are

of

using

the

Volume

Count

attribute

from

the

data

class

or

volume

count

information

from

a

JCL,

TSO,

or

IDCAMS

command.

Using

the

dynamic

volume

count

causes

the

number

of

primary

volumes

to

increase,

if

necessary.

The

use

of

dynamic

volume

count

does

not

add

any

candidate

volumes

to

the

catalog:

1.

Example

1:

Volume

count:

6

Dynamic

volume

count:

0

Required

volumes:

1

Volumes

in

catalog:

1

primary,

5

candidates

2.

Example

2:

Volume

count:

6

Dynamic

volume

count:

12

Required

volumes:

1

Volumes

in

catalog:

1

primary,

5

candidates

3.

Example

3:

Volume

Count:

6

Dynamic

volume

count:

12

Required

volumes:

7

Volumes

in

catalog:

7

primary,

0

candidates

4.

Example

4:

Volume

count:

6

Dynamic

volume

count:

12

Required

volumes:

13

Volumes

in

catalog:

None;

request

fails

In

example

2,

although

the

catalog

contains

only

five

candidate

volumes,

the

data

set

can

be

extended

to

11

candidate

volumes,

including

the

primary

volume.

Allocating

Space

on

Direct

Access

Volume

42

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Examples

of

Dynamic

Volume

Count

When

Allocating

an

Existing

Data

Set

In

the

following

examples,

a

list

of

specific

volumes

is

returned

to

allocation,

and

a

count

of

nonspecific

volumes.

Also,

the

allocation

in

Example

7

fails

because

the

total

volume

count

exceeds

the

limit

of

59

volumes.

1.

Example

5:

VSAM

KSDS

Specific

volume

count:

2

Nonspecific

volume

count:

4

Cluster

dynamic

volume

count:

20

Specific

volumes

returned

to

allocation:

2

Nonspecific

volumes

returned

to

allocation:

18

Total

count

of

volumes

returned

to

allocation:

20

2.

Example

6:

VSAM

Path

Specific

volume

count

(base

cluster):

5

Nonspecific

volume

count

(base

cluster):

1

Specific

and

total

volume

count

(alternate

index):

1

Base

cluster

dynamic

volume

count:

20

Specific

volumes

returned

to

allocation:

6

Nonspecific

volumes

returned

to

allocation:

15

Total

count

of

volumes

returned

to

allocation:

21

3.

Example

7:

Alternate

Indexes

in

Upgrade

Set

Specific

and

total

volume

count

(base

cluster):

5

Specific

and

total

volume

count

(first

alternate

index):

1

Specific

and

total

volume

count

(second

alternate

index):

1

Base

cluster

dynamic

volume

count:

59

Specific

volumes

returned

to

allocation:

7

Nonspecific

volumes

returned

to

allocation:

54

Total

count

of

volumes

returned

to

allocation:

61

Multiple

Volume

Considerations

for

Sequential

Data

Sets

Consider

the

following

when

working

with

multiple

volumes:

Your

program

is

extending

a

sequential

data

set

if

it

uses

the

EXTEND

or

OUTINX

option

of

OPEN

or

it

uses

the

OUTPUT

or

OUTIN

option

of

OPEN

with

DISP=MOD

on

the

DD

statement.

If

you

plan

to

rewrite

a

multivolume

sequential

data

set

that

is

not

SMS

managed,

and

you

might

later

extend

the

data

set,

you

should

delete

and

reallocate

the

data

set.

This

avoids

the

problems

described

in

item

2

below

and

the

system

will

extend

on

the

volume

that

you

want.

1.

When

writing

to

a

sequential

data

set,

EOV

turns

off

the

last

volume

bit

as

it

finishes

each

volume

and

CLOSE

turns

on

the

last

volume

bit

in

the

DSCB

on

the

current

volume.

It

identifies

the

last

volume

containing

data,

not

necessarily

the

last

volume

allocated

to

the

data

set.

The

DSCB

on

a

later

volume

can

also

have

this

bit

on,

either

due

to

earlier

writings

or

due

to

guaranteed

space.

2.

Writing

with

the

DISP=MOD,

OPEN

EXTEND,

or

OUTINX

option

works

differently

with

system-managed

and

non-system-managed

data

sets.

On

system-managed

volumes,

OPEN

determines

where

to

start

writing

using

the

following

algorithm.

No

matter

which

volume

you

finish

writing

on,

OPEN

will

find

that

volume

to

resume.

Starting

with

the

first

volume,

OPEN

searches

for

the

last

volume

bit.

The

first

new

block

will

be

written

immediately

after

the

previous

last

block.

If

the

old

last

block

was

short,

it

does

not

get

larger.

This

specifically

applies

to

SMS

volumes.

Writing

with

the

DISP=MOD,

OPEN

EXTEND,

or

OUTINX

option

on

non-SMS

volumes,

OPEN

determines

where

to

start

writing

using

the

following

algorithm:

It

looks

first

on

the

last

volume

in

the

JFCB

or

its

extensions

to

see

if

its

DSCB

has

the

last

volume

bit

ON.

If

it

is

not

ON,

OPEN

searches

the

other

volumes

in

order

starting

with

the

first

volume.

This

means

that

if

the

last

Allocating

Space

on

Direct

Access

Volume

Chapter

3.

Allocating

Space

on

Direct

Access

Volumes

43

volume

and

an

earlier

volume

each

have

the

last

volume

bit

ON,

your

added

data

will

not

be

reachable

when

reading

sequentially.

For

striped

data

sets,

which

are

SMS

only,

the

last

volume

bit

works

a

little

different

but

it

has

the

same

effect

as

for

other

SMS

data

sets.

The

bit

is

ON

on

the

last

volume,

even

if

that

volume

does

not

contain

the

last

record

of

the

data

set.

OPEN

uses

the

DS1LSTAR

fields

to

calculate

the

volume

containing

the

last

record.

3.

With

partial

release,

CLOSE

releases

the

unused

space

only

on

the

current

volume

except

with

a

striped

data

set.

It

does

not

release

space

on

later

volumes

that

can

contain

data

either

from

a

prior

writing

or

due

to

guaranteed

space.

With

a

system-managed

data

sets

this

has

no

effect

on

a

later

use

of

DISP=MOD

but

it

does

mean

that

the

space

on

the

later

volumes

can

be

there

due

to

guaranteed

space

allocation.

Additional

Information

on

Space

Allocation

If

you

want

to

know

how

many

DASD

tracks

your

data

set

requires,

see

the

appropriate

device

document.

See

z/OS

DFSMSdfp

Storage

Administration

Reference

for

information

about

allocating

space

for

system-managed

data

sets.

See

“Allocating

Space

for

a

PDS”

on

page

411

and

“Allocating

Space

for

a

PDSE”

on

page

439

for

information

about

PDS/PDSE

space

allocation.

Allocating

Space

on

Direct

Access

Volume

44

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

4.

Backing

Up

and

Recovering

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Using

REPRO

for

Backup

and

Recovery

46

Using

EXPORT

and

IMPORT

for

Backup

and

Recovery

of

VSAM

Data

Sets

47

Writing

a

Program

for

Backup

and

Recovery

48

Using

Concurrent

Copy

for

Backup

and

Recovery

49

Updating

a

Data

Set

After

Recovery

49

Synchronizing

Catalog

and

VSAM

Data

Set

Information

During

Recovery

49

It

is

important

to

establish

backup

and

recovery

procedures

for

data

sets

so

you

can

replace

a

destroyed

or

damaged

data

set

with

its

backup

copy.

Generally

data

administrators

set

up

automated

procedures

for

backup

so

you

do

not

have

to

be

concerned

with

doing

it

yourself.

SMS

facilitates

this

automation

by

means

of

management

class.

There

are

several

methods

of

backing

up

and

recovering

VSAM

and

non-VSAM

data

sets:

v

Using

Data

Facility

Storage

Management

Subsystem

Hierarchical

Storage

Manager

(DFSMShsm™).

You

can

use

DFSMShsm

only

if

DSS

and

DFSMShsm

are

installed

on

your

system

and

your

data

sets

are

cataloged

in

a

catalog.

For

information

about

using

DFSMShsm

backup

and

recovery,

see

z/OS

DFSMShsm

Managing

Your

Own

Data.

v

Using

the

access

method

services

REPRO

command.

v

Using

the

Data

Facility

Storage

Management

Subsystem

Data

Set

Services

(DFSMSdss™)

DUMP

and

RESTORE

commands.

You

can

use

DSS

if

it

is

installed

on

your

system

and

your

data

sets

are

cataloged

in

a

catalog.

For

uncataloged

data

sets,

DSS

provides

full

volume,

and

physical

or

logical

data

set

dump

functions.

For

compressed

extended

format

data

sets,

DFSMShsm

processes

the

compressed

data

sets

using

DFSMSdss

as

the

data

mover.

When

using

DFSMSdss

for

logical

dump/restore

with

VSAM

compressed

data

sets,

the

target

data

set

allocation

must

be

consistent

with

the

source

data

set

allocation.

For

DFSMShsm,

a

VSAM

extended

format

data

set

migrated

and/or

backed

up

will

only

be

recalled

and/or

recovered

as

an

extended

format

data

set.

For

information

about

using

DFSMSdss,

see

z/OS

DFSMSdss

Storage

Administration

Reference.

v

Writing

your

own

program

for

backup

and

recovery.

v

For

VSAM

data

sets,

using

the

access

method

services

EXPORT

and

IMPORT

commands.

v

For

PDSs

using

IEBCOPY

utility.

v

Using

concurrent

copy

to

take

an

instantaneous

copy.

You

can

use

concurrent

copy

if

your

data

set

resides

on

DASD

attached

to

IBM

storage

controls

that

support

the

concurrent

copy

function.

Each

of

these

methods

of

backup

and

recovery

has

its

advantages.

You

need

to

decide

the

best

method

for

the

particular

data

you

want

to

back

up.

For

the

©

Copyright

IBM

Corp.

1987,

2004

45

requirements

and

processes

of

archiving,

backing

up,

and

recovering

data

sets

using

DFSMShsm,

DSS,

or

ISMF,

see

z/OS

DFSMShsm

Managing

Your

Own

Data,

which

also

contains

information

on

disaster

recovery.

Using

REPRO

for

Backup

and

Recovery

Use

the

REPRO

command

to

create

a

duplicate

data

set

for

back

up.

For

information

about

using

REPRO,

see

“Copying

and

Merging

Data

Sets”

on

page

115.

Using

REPRO

for

backup

and

recovery

has

the

following

advantages:

v

Backup

copy

is

accessible.

The

backup

copy

obtained

by

using

REPRO

is

accessible

for

processing.

It

can

be

a

VSAM

data

set

or

a

sequential

data

set.

v

Type

of

data

set

can

be

changed.

The

backup

copy

obtained

by

using

REPRO

can

be

a

different

type

of

data

set

than

the

original.

For

example,

you

could

back

up

a

VSAM

key-sequenced

data

set

by

copying

it

to

a

VSAM

entry-sequenced

data

set.

A

compressed

VSAM

key-sequenced

data

set

cannot

be

copied

to

a

VSAM

entry-sequenced

data

set

using

REPRO.

The

data

component

of

a

compressed

key-sequenced

data

set

cannot

be

accessed

by

itself.

v

Key-sequenced

data

set

or

variable-length

RRDS

is

reorganized.

Using

REPRO

for

backup

results

in

data

reorganization

and

the

recreation

of

an

index

for

a

key-sequenced

data

set

or

variable-length

RRDS.

The

data

records

are

rearranged

physically

in

ascending

key

sequence

and

free-space

quantities

are

restored.

(Control

interval

and

control

area

splits

can

have

placed

the

records

physically

out

of

order.)

When

a

key-sequenced

data

set

is

reorganized,

absolute

references

using

the

relative

byte

address

(RBA)

are

no

longer

valid.

If

you

are

accessing

a

data

set

using

RLS,

see

Chapter

14,

“Using

VSAM

Record-Level

Sharing,”

on

page

217.

REPRO

provides

you

with

several

options

for

creating

backup

copies

and

using

them

for

data

set

recovery.

The

following

are

suggested

ways

to

use

REPRO:

1.

Use

REPRO

to

copy

the

data

set

to

a

data

set

with

a

different

name.

Either

change

your

references

to

the

original

copy

or

delete

the

original

and

rename

the

copy.

2.

Create

a

backup

copy

on

another

catalog,

then

use

the

backup

copy

to

replace

the

original.

v

Define

a

data

set

on

another

catalog,

and

use

REPRO

to

copy

the

original

data

set

into

the

new

data

set

you

have

defined.

v

You

can

leave

the

backup

copy

in

the

catalog

it

was

copied

to

when

you

want

to

replace

the

original

with

the

backup

copy.

Then,

change

the

JCL

statements

to

reflect

the

name

of

the

catalog

that

contains

the

backup

copy.
3.

Create

a

copy

of

a

nonreusable

VSAM

data

set

on

the

same

catalog,

then

delete

the

original

data

set,

define

a

new

data

set,

and

load

the

backup

copy

into

the

newly

defined

data

set.

v

To

create

a

backup

copy,

define

a

data

set,

and

use

REPRO

to

copy

the

original

data

set

into

the

newly

defined

data

set.

If

you

define

the

backup

data

set

on

the

same

catalog

as

the

original

data

set

or

if

the

data

set

is

SMS

managed,

the

backup

data

set

must

have

a

different

name.

v

To

recover

the

data

set,

use

the

DELETE

command

to

delete

the

original

data

set

if

it

still

exists.

Next,

redefine

the

data

set

using

the

DEFINE

command,

then

restore

it

with

the

backup

copy

using

the

REPRO

command.

Backing

Up

and

Recovering

Data

Sets

46

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

4.

Create

a

copy

of

a

reusable

VSAM

data

set,

then

load

the

backup

copy

into

the

original

data

set.

When

using

REPRO,

the

REUSE

attribute

permits

repeated

backups

to

the

same

VSAM

reusable

target

data

set.

v

To

create

a

backup

copy,

define

a

data

set,

and

use

REPRO

to

copy

the

original

reusable

data

set

into

the

newly

defined

data

set.

v

To

recover

the

data

set,

load

the

backup

copy

into

the

original

reusable

data

set.
5.

Create

a

backup

copy

of

a

data

set,

then

merge

the

backup

copy

with

the

damaged

data

set.

When

using

REPRO,

the

REPLACE

parameter

lets

you

merge

a

backup

copy

into

the

damaged

data

set.

You

cannot

use

the

REPLACE

parameter

with

entry-sequenced

data

sets,

because

records

are

always

added

to

the

end

of

an

entry-sequenced

data

set.

v

To

create

a

backup

copy,

define

a

data

set,

and

use

REPRO

to

copy

the

original

data

set

into

the

newly

defined

data

set.

v

To

recover

the

data

set,

use

the

REPRO

command

with

the

REPLACE

parameter

to

merge

the

backup

copy

with

the

destroyed

data

set.

With

a

key-sequenced

data

set,

each

source

record

whose

key

matches

a

target

record’s

key

replaces

the

target

record.

Otherwise,

the

source

record

is

inserted

into

its

appropriate

place

in

the

target

cluster.

With

a

fixed-length

or

variable-length

RRDS,

each

source

record,

whose

relative

record

number

identifies

a

data

record

in

the

target

data

set,

replaces

the

target

record.

Otherwise,

the

source

record

is

inserted

into

the

empty

slot

its

relative

record

number

identifies.

When

only

part

of

a

data

set

is

damaged,

you

can

replace

only

the

records

in

the

damaged

part

of

the

data

set.

The

REPRO

command

lets

you

specify

a

location

to

begin

copying

and

a

location

to

end

copying.
6.

If

the

index

of

a

key-sequenced

data

set

or

variable-length

RRDS

becomes

damaged,

follow

this

procedure

to

rebuild

the

index

and

recover

the

data

set.

This

does

not

apply

to

a

compressed

key-sequenced

data

set.

It

is

not

possible

to

REPRO

just

the

data

component

of

a

compressed

key-sequenced

data

set.

v

Use

REPRO

to

copy

the

data

component

only.

Sort

the

data.

v

Use

REPRO

with

the

REPLACE

parameter

to

copy

the

cluster

and

rebuild

the

index.

Restrictions:

1.

Do

not

use

JOBCAT

or

STEPCAT

DD

statements

for

system-managed

data

sets.

The

JOBCAT

or

STEPCAT

DD

statement

fails

if

it

references

a

system-managed

catalog,

or

if

the

data

set

that

is

being

searched

is

system

managed.

Also,

you

must

connect

all

referenced

catalogs

to

the

system

master

catalog.

2.

JOBCAT

and

STEPCAT

DD

statements

are

disabled

by

default.

For

information

on

enabling

JOBCAT

and

STEPCAT

DD

statements,

see

z/OS

DFSMS:

Managing

Catalogs.

Using

EXPORT

and

IMPORT

for

Backup

and

Recovery

of

VSAM

Data

Sets

Using

EXPORT/IMPORT

for

backup

and

recovery

has

the

following

advantages:

v

Key-sequenced

data

set

or

variable-length

RRDS

is

reorganized.

Using

EXPORT

for

backup

results

in

data

reorganization

and

the

recreation

of

an

index

for

a

key-sequenced

data

set

or

variable-length

RRDS.

The

data

records

are

rearranged

physically

in

ascending

key

sequence

and

free-space

quantities

are

balanced.

(Control

interval

and

control

area

splits

can

have

placed

the

records

physically

out

of

order.)

When

a

key-sequenced

data

set

is

reorganized,

absolute

references

using

the

RBA

are

no

longer

valid.

Backing

Up

and

Recovering

Data

Sets

Chapter

4.

Backing

Up

and

Recovering

Data

Sets

47

v

Redefinition

is

easy.

Because

most

catalog

information

is

exported

along

with

the

data

set,

you

are

not

required

to

define

a

data

set

before

importing

the

copy.

The

IMPORT

command

deletes

the

original

copy,

defines

the

new

object,

and

copies

the

data

from

the

exported

copy

into

the

newly

defined

data

set.

v

Attributes

can

be

changed

or

added.

When

you

IMPORT

a

data

set

for

recovery,

you

can

specify

the

OBJECTS

parameter

to

show

new

or

changed

attributes

for

the

data

set.

Importing

a

data

set

lets

you

change

the

name

of

the

data

set,

the

key

ranges,

the

volumes

on

which

the

data

set

is

to

reside,

and

the

SMS

classes.

For

information

about

accessing

a

data

set

using

RLS,

see

Chapter

14,

“Using

VSAM

Record-Level

Sharing,”

on

page

217.

Structure

of

an

Exported

Data

Set

An

exported

data

set

is

an

unloaded

copy

of

the

data

set.

The

backup

copy

can

be

only

a

sequential

data

set.

Most

catalog

information

is

exported

along

with

the

data

set,

easing

the

problem

of

redefinition.

The

backup

copy

contains

all

of

the

information

necessary

to

redefine

the

VSAM

cluster

or

alternate

index

when

you

IMPORT

the

copy.

EXPORT

and

IMPORT

Commands

When

you

export

a

copy

of

a

data

set

for

backup,

specify

the

TEMPORARY

attribute.

Exporting

a

data

set

means

that

the

data

set

is

not

to

be

deleted

from

the

original

system.

You

can

export

entry-sequenced

or

linear

data

set

base

clusters

in

control

interval

mode

by

specifying

the

CIMODE

parameter.

When

CIMODE

is

forced

for

a

linear

data

set,

a

RECORDMODE

specification

is

overridden.

Use

the

IMPORT

command

to

totally

replace

a

VSAM

cluster

whose

backup

copy

was

built

using

the

EXPORT

command.

The

IMPORT

command

uses

the

backup

copy

to

replace

the

cluster’s

contents

and

catalog

information.

You

can

protect

an

exported

data

set

by

specifying

the

INHIBITSOURCE

or

INHIBITTARGET

parameters.

Using

these

parameters

means

the

source

or

target

data

set

cannot

be

accessed

for

any

operation

other

than

retrieval.

IMPORT

will

not

propagate

distributed

data

management

(DDM)

attributes

if

you

specify

the

INTOEMPTY

parameter.

Distributed

file

manager

(DFM)

will

reestablish

the

DDM

attributes

when

the

imported

data

set

is

first

accessed.

Compressed

data

must

not

be

considered

portable.

IMPORT

will

not

propagate

extended

format

or

compression

information

if

the

user

specifies

the

INTOEMPTY

parameter.

Writing

a

Program

for

Backup

and

Recovery

There

are

two

methods

of

creating

your

own

program

for

backup

and

recovery:

v

If

you

periodically

process

a

data

set

sequentially,

you

can

easily

create

a

backup

copy

as

a

by-product

of

normal

processing.

The

backup

copy

can

be

used

like

one

made

by

REPRO.

v

You

can

write

your

own

program

to

back

up

your

data

sets.

Whenever

possible,

this

program

should

be

integrated

into

the

regular

processing

procedures.

In

VSAM,

the

JRNAD

user

exit

routine

is

one

way

to

write

your

own

backup

program.

When

you

request

a

record

for

update,

VSAM

calls

the

JRNAD

exit

Backing

Up

and

Recovering

Data

Sets

48

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

routine

to

copy

the

record

you

are

going

to

update,

and

write

it

to

a

different

data

set.

When

you

return

to

VSAM,

VSAM

completes

the

requested

update.

If

something

goes

wrong,

you

have

a

backup

copy.

See

“JRNAD

Exit

Routine

to

Journalize

Transactions”

on

page

241.

Using

Concurrent

Copy

for

Backup

and

Recovery

Concurrent

copy

takes

what

appears

to

be

an

instantaneous

copy

of

data.

The

copy

can

be

a

backup

copy

(such

as

to

tape)

or

for

replicating

a

database

from

one

set

of

DASD

volumes

to

another.

Concurrent

copy

also

benefits

the

nondatabase

environment

by

permitting

a

backup

or

copy

occur

with

only

a

very

short

serialization.

Using

concurrent

copy

for

backup

has

the

following

advantages:

v

It

has

little

or

no

disruption.

v

It

is

logically

consistent.

v

It

is

not

necessary

to

take

down

the

application

using

the

data.

v

It

runs

without

regard

to

how

the

data

is

being

used

by

the

application.

v

It

works

for

any

kind

of

DSS

dump

or

copy

operation.

v

It

eliminates

the

unavailability

of

DFSMShsm

while

control

data

sets

are

being

backed

up.

DFSMShsm

can

use

concurrent

copy

to

copy

its

own

control

data

sets

and

journal.

Running

concurrent

copy

(like

any

copy

or

backup)

during

off-peak

hours

results

in

better

system

throughput.

Related

reading:

For

information

about

using

concurrent

copy,

see

z/OS

DFSMSdss

Storage

Administration

Guidey.

Updating

a

Data

Set

After

Recovery

After

replacing

a

damaged

data

set

with

its

backup

copy,

you

can

update

the

restored

data

set.

To

update

the

restored

data

set,

rerun

the

jobs

that

updated

the

original

between

the

time

it

was

backed

up

and

the

time

it

became

inaccessible.

Synchronizing

Catalog

and

VSAM

Data

Set

Information

During

Recovery

Because

the

physical

and

logical

description

of

a

VSAM

data

set

is

contained

in

its

catalog

entries,

VSAM

requires

up-to-date

catalog

entries

to

access

data

sets.

If

either

your

data

set

or

your

catalog

is

damaged,

your

recovery

procedure

must

match

both

data

set

and

catalog

entry

status.

Recovery

by

reloading

the

data

set

automatically

takes

care

of

this

problem.

A

new

catalog

entry

is

built

when

the

data

set

is

reloaded.

Backing

up

the

data

sets

in

a

user

catalog

lets

you

recover

from

damage

to

the

catalog.

You

can

import

the

backup

copy

of

a

data

set

whose

entry

is

lost

or

you

can

redefine

the

entry

and

reload

the

backup

copy.

For

information

about

backing

up

and

recovering

a

catalog,

see

z/OS

DFSMS:

Managing

Catalogs

and

z/OS

DFSMShsm

Managing

Your

Own

Data.

Backing

Up

and

Recovering

Data

Sets

Chapter

4.

Backing

Up

and

Recovering

Data

Sets

49

Handling

an

Abnormal

Termination

When

a

user

program

closes

a

VSAM

data

set,

the

system

uses

the

data

set’s

end-of-data

information

to

update

its

cataloged

information.

If

a

system

failure

occurs

before

the

user

program

closes

the

data

set,

its

cataloged

information

is

not

updated

and

any

records

in

unwritten

buffers

are

not

written

to

the

data

set.

If

an

error

occurs

while

a

component

is

opened

for

update

processing,

it

can

improperly

close

(leaving

the

open-for-output

indicator

on).

At

OPEN,

VSAM

implicitly

issues

a

VERIFY

command

when

it

detects

an

open-for-output

indicator

on

and

issues

an

informational

message

stating

whether

the

VERIFY

command

is

successful.

When

the

last

CLOSE

for

a

VSAM

data

set

completes

successfully,

VSAM

turns

off

the

open-for-output

indicator.

If

the

data

set

is

opened

for

input,

however,

VSAM

leaves

the

open-for-output

indicator

on.

It

is

the

successful

CLOSE

after

an

OPEN

for

output

that

causes

the

open-for-output

indicator

to

turn

off.

Before

you

use

any

data

set

that

was

not

successfully

closed,

determine

the

status

of

the

data

in

the

data

set.

Turning

off

the

open-for-output

indicator

in

the

catalog

does

not

make

the

data

set

error

free.

Using

VERIFY

to

Process

Improperly

Closed

Data

Sets

You

can

use

a

VSAM

VERIFY

macro

call

with

certain

types

of

opened

VSAM

data

sets

to

ensure

that

fields

in

the

VSAM

control

blocks

are

accurate.

The

VERIFY

macro

does

not

change

the

data

in

the

data

set.

VERIFY

does

not

correct

missing

or

duplicate

records

or

repair

any

damage

in

the

index

structure.

The

verification

of

control-block

fields

enables

you

to

perform

recovery

actions

on

the

improperly

closed

data

set,

if

necessary.

You

can

also

use

the

IDCAMS

VERIFY

command

to

verify

a

VSAM

data

set.

When

you

issue

this

command,

IDCAMS

opens

the

VSAM

data

set

for

output,

issues

a

VSAM

VERIFY

macro

call,

and

closes

the

data

set.

The

IDCAMS

VERIFY

command

and

the

verification

by

VSAM

OPEN

are

the

same.

Neither

changes

the

data

in

the

verified

data

set.

The

catalog

will

be

updated

from

the

verified

information

in

the

VSAM

control

blocks

when

the

VSAM

data

set

which

was

opened

for

output

is

successfully

closed.

The

actual

VSAM

control-block

fields

that

get

updated

depend

on

the

type

of

data

set

being

verified.

VSAM

control

block

fields

that

can

be

updated

include

“High

used

RBA/CI”

for

the

data

set,

“High

key

RBA/CI”,

“number

of

index

levels”,

and

“RBA/CI

of

the

first

sequence

set

record”.

The

VERIFY

command

should

be

used

following

a

system

failure

that

caused

a

component

opened

for

update

processing

to

be

improperly

closed.

Clusters,

alternate

indexes,

entry-sequenced

data

sets,

and

catalogs

can

be

verified.

Paths

over

an

alternate

index

and

linear

data

sets

cannot

be

verified.

Paths

defined

directly

over

a

base

cluster

can

be

verified.

The

VERIFY

macro

will

perform

no

function

when

VSAM

RLS

is

being

used.

VSAM

RLS

is

responsible

for

maintaining

data

set

information

in

a

shared

environment.

Although

the

data

and

index

components

of

a

key-sequenced

cluster

or

alternate

index

can

be

verified,

the

timestamps

of

the

two

components

are

different

following

the

separate

verifies,

possibly

causing

further

OPEN

errors.

Therefore,

use

the

cluster

or

alternate

index

name

as

the

target

of

your

VERIFY

command.

Backing

Up

and

Recovering

Data

Sets

50

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

You

should

issue

the

VERIFY

command

every

time

you

open

a

VSAM

cluster

that

is

shared

across

systems.

For

information

about

using

VERIFY

with

clusters

that

are

shared,

see

“Cross-System

Sharing”

on

page

198.

Recovering

from

Errors

Due

to

an

Improperly

Closed

VSAM

Data

Set

Sometimes

a

data

set

is

closed

properly,

but

an

error

occurred.

The

most

likely

error

is

an

incorrect

high

RBA

in

the

catalog.

Other

possible

errors

are

an

incomplete

write

to

a

DASD

or

duplicate

data

exists.

One

way

to

avoid

these

errors

is

by

doing

synchronous

direct

inserts.

Another

way

is

by

using

abnormal

termination

user

exits

in

which

you

issue

a

CLOSE

(perhaps

with

the

TYPE=T

parameter)

to

close

the

data

set

properly.

If

you

suspect

that

a

write

operation

is

incomplete,

issue

either

an

IMPORT

or

REPRO

command

to

get

an

old

copy

of

the

data.

Intermediate

updates

or

inserts

are

lost.

You

must

have

an

exported

version

of

the

data

set

available

to

use

IMPORT.

Use

a

backup

copy

for

REPRO.

Duplicate

data

in

a

key-sequenced

data

set,

the

least

likely

error

to

occur,

can

result

from

a

failure

during

a

control

interval

or

control

area

split.

To

reduce

the

number

of

splits,

specify

free

space

for

both

control

intervals

and

control

areas.

If

the

failure

occurred

before

the

index

was

updated,

the

insert

is

lost,

no

duplicate

exits,

and

the

data

set

is

usable.

If

the

failure

occurred

between

updating

the

index

and

writing

the

updated

control

interval

into

secondary

storage,

some

data

is

duplicated.

However,

you

can

access

both

versions

of

the

data

by

using

addressed

processing.

If

you

want

the

current

version,

use

REPRO

to

copy

it

to

a

temporary

data

set

and

again

to

copy

it

back

to

a

new

key-sequenced

data

set.

If

you

have

an

exported

copy

of

the

data,

use

the

IMPORT

command

to

obtain

a

reorganized

data

set

without

duplicate

data.

If

the

index

is

replicated

and

the

error

occurred

between

the

write

operations

for

the

index

control

intervals,

but

the

output

was

not

affected,

both

versions

of

the

data

can

be

retrieved.

The

sequence

of

operations

for

a

control

area

split

is

similar

to

that

for

a

control

interval

split.

To

recover

the

data,

use

the

REPRO

or

IMPORT

command

in

the

same

way

as

for

the

failure

described

in

the

previous

paragraph.

Use

the

journal

exit

(JRNAD)

to

determine

control

interval

and

control

area

splits

and

the

RBA

range

affected.

Using

VERIFY

with

Catalogs

VSAM

OPEN

calls

VERIFY

when

it

opens

a

catalog.

You

cannot

use

VERIFY

to

correct

catalog

records

for

a

key-sequenced

data

set,

or

a

fixed-length

or

variable-length

RRDS

after

load-mode

failure.

An

entry-sequenced

data

set

defined

with

the

RECOVERY

attribute

can

be

verified

after

a

create

(load)

mode

failure;

however,

you

cannot

run

VERIFY

against

an

empty

data

set

or

a

linear

data

set.

Any

attempt

to

do

either

will

result

in

a

VSAM

logical

error.

For

information

about

VSAM

issuing

the

implicit

VERIFY

command,

see

“Opening

a

Data

Set”

on

page

135.

Backing

Up

and

Recovering

Data

Sets

Chapter

4.

Backing

Up

and

Recovering

Data

Sets

51

CICS

VSAM

Recovery

IBM

CICS®

VSAM

Recovery

(CICSVR)

recovers

lost

or

damaged

VSAM

data

sets.

CICSVR

is

for

organizations

where

the

availability

and

integrity

of

VSAM

data

is

vital.

CICSVR

provides

automated

complete

recovery,

forward

recovery,

and

backout

functions,

as

well

as

logging

for

batch

applications.

The

following

are

some

of

the

tasks

that

you

can

perform

with

CICSVR:

v

Perform

complete

recovery

to

restore

and

recover

lost

or

damaged

VSAM

data

sets

that

were

updated

by

CICS

and

batch

applications.

v

Perform

logging

for

batch

applications.

v

Recover

groups

of

VSAM

data

sets.

v

Process

backup-while-open

(BWO)

VSAM

data

sets.

v

Automate

the

creation

and

submission

of

recovery

jobs

using

an

ISPF

dialog

interface.

v

Use

Change

Accumulation

to

consolidate

log

records

and

reduce

the

amount

of

time

required

to

recover

a

VSAM

data

set.

v

Use

Selective

Forward

Recovery

to

control

which

log

records

get

applied

to

the

VSAM

data

set

when

you

recover

it.

Related

reading:

For

more

information,

see

IBM

CICS

VSAM

Recovery

Implementation

Guide.

Backing

Up

and

Recovering

Data

Sets

52

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

5.

Protecting

Data

Sets

You

can

prevent

unauthorized

access

to

payroll

data,

sales

forecast

data,

and

all

other

data

sets

that

require

special

security

attention.

You

can

protect

confidential

data

in

a

data

set

using

Resource

Access

Control

Facility

(RACF)

or

passwords.

This

chapter

covers

the

following

topics.

Topic

Location

Data

Set

Password

Protection

55

User-Security-Verification

Routine

60

Erasure

of

Residual

Data

60

Authorized

Program

Facility

and

Access

Method

Services

62

Access

Method

Services

Cryptographic

Option

63

z/OS

Security

Server

(RACF)

The

z/OS

Security

Server

is

the

primary

tool

that

IBM

recommends

for

managing

security.

Often

the

Security

Server

is

called

the

Resource

Access

Control

Facility

(RACF).

In

the

MVS™

environment,

you

can

use

RACF

identify

and

verify

users’

authority

to

access

data

and

to

use

system

facilities.

RACF

protection

can

apply

to

a

catalog

and

to

individual

VSAM

data

sets.

The

system

ignores

password

protection

for

SMS-managed

data

sets.

See

“Data

Set

Password

Protection”

on

page

55.

If

a

discrete

profile

or

a

generic

profile

does

not

protect

a

data

set,

password

protection

is

in

effect.

Related

reading:

For

more

information

about

RACF,

see

z/OS

Security

Server

RACF

Security

Administrator’s

Guide.

RACF

Protection

for

VSAM

Data

Sets

A

catalog

that

contains

a

VSAM

data

set

does

not

have

to

be

RACF

protected

for

its

data

sets

to

be

RACF

protected.

RACF

and

password

protection

can

coexist

for

the

same

VSAM

data

set.

The

RACF

authorization

levels

of

alter,

control,

update,

and

read

correspond

to

the

VSAM

password

levels

of

master,

control,

update,

and

read.

To

have

password

protection

take

effect

for

a

non-system-managed

data

set,

the

catalog

that

contains

the

data

set

must

be

either

RACF

protected

or

password

protected,

and

the

data

set

itself

must

not

be

defined

to

RACF.

Although

passwords

are

not

supported

for

an

RACF-protected

data

set,

they

can

still

provide

protection

if

the

data

set

is

moved

to

a

system

that

does

not

have

RACF

protection.

If

a

user-security-verification

routine

(USVR)

exists,

it

is

not

invoked

for

RACF-defined

data

sets.

©

Copyright

IBM

Corp.

1987,

2004

53

Deleting

any

type

of

RACF-protected

entry

from

an

RACF-protected

catalog

requires

alter-level

authorization

for

the

catalog

or

the

entry

being

deleted.

Altering

the

passwords

in

an

RACF-protected

catalog

entry

requires

RACF

alter

authority

for

the

entry

being

altered

or

the

operations

attribute.

Alter

authority

for

the

catalog

itself

is

not

sufficient

for

this

operation.

Note:

VSAM

OPEN

routines

bypass

RACF

security

checking

if

the

program

issuing

OPEN

is

in

supervisor

state

or

protection

key

0.

Generic

and

Discrete

Profiles

for

VSAM

Data

Sets

For

cataloged

clusters,

a

generic

profile

is

used

to

verify

access

to

the

entire

cluster,

or

any

of

its

components.

Discrete

profiles

for

the

individual

components

might

exist,

but

only

the

cluster’s

profile

(generic

or

discrete)

is

used

to

protect

the

components

in

the

cluster.

Profiles

that

automatic

data

set

protection

(ADSP)

processing

defines

during

a

data

set

define

operation

are

cluster

profiles

only.

If

a

data

set

protected

by

a

discrete

profile

is

moved

to

a

system

where

RACF

is

not

installed,

no

user

is

given

authority

to

access

the

data

set.

However,

if

the

data

set

is

protected

with

a

generic

profile,

access

authority

is

determined

by

normal

VSAM

password

protection.

RACF

Protection

for

Non-VSAM

Data

Sets

You

can

define

a

data

set

to

RACF

automatically

or

explicitly.

The

automatic

definition

occurs

when

space

is

allocated

for

the

DASD

data

set,

if

you

have

the

automatic

data

set

protection

attribute,

or

if

you

code

PROTECT=YES

or

SECMODEL=(,)

in

the

DD

statement.

SECMODEL=(,)

lets

you

specify

the

name

of

the

model

profile

RACF

should

use

in

creating

a

discrete

profile

for

your

data

set.

The

explicit

definition

of

a

data

set

to

RACF

is

by

use

of

the

RACF

command

language.

Multivolume

data

sets.

To

protect

multivolume

non-VSAM

DASD

and

tape

data

sets,

you

must

define

each

volume

of

the

data

set

to

RACF

as

part

of

the

same

volume

set.

v

When

an

RACF-protected

data

set

is

opened

for

output

and

extended

to

a

new

volume,

the

new

volume

is

automatically

defined

to

RACF

as

part

of

the

same

volume

set.

v

When

a

multivolume

physical-sequential

data

set

is

opened

for

output,

and

any

of

the

data

set’s

volumes

are

defined

to

RACF,

either

each

subsequent

volume

must

be

RACF-protected

as

part

of

the

same

volume

set,

or

the

data

set

must

not

yet

exist

on

the

volume.

v

The

system

automatically

defines

all

volumes

of

an

extended

sequential

data

set

to

RACF

when

the

space

is

allocated.

v

When

an

RACF-protected

multivolume

tape

data

set

is

opened

for

output,

either

each

subsequent

volume

must

be

RACF-protected

as

part

of

the

same

volume

set,

or

the

tape

volume

must

not

yet

be

defined

to

RACF.

v

If

the

first

volume

opened

is

not

RACF

protected,

no

subsequent

volume

can

be

RACF

protected.

If

a

multivolume

data

set

is

opened

for

input

(or

a

nonphysical-sequential

data

set

is

opened

for

output),

no

such

consistency

check

is

performed

when

subsequent

volumes

are

accessed.

Protecting

Data

Sets

54

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Tape

data

sets.

You

can

use

RACF

to

provide

access

control

to

tape

volumes

that

have

no

labels

(NL),

IBM

standard

labels

(SL),

ISO/ANSI

standard

labels

(AL),

or

tape

volumes

referred

to

with

bypass

label

processing

(BLP).

RACF

protection

of

tape

data

sets

is

provided

on

a

volume

basis

or

on

a

data

set

basis.

A

tape

volume

is

defined

to

RACF

explicitly

by

use

of

the

RACF

command

language,

or

automatically.

A

tape

data

set

is

defined

to

RACF

whenever

a

data

set

is

opened

for

OUTPUT,

OUTIN,

or

OUTINX

and

RACF

tape

data

set

protection

is

active,

or

when

the

data

set

is

the

first

file

in

a

sequence.

All

data

sets

on

a

tape

volume

are

RACF

protected

if

the

volume

is

RACF

protected.

If

a

data

set

is

defined

to

RACF

and

is

password

protected,

access

to

the

data

set

is

authorized

only

through

RACF.

If

a

tape

volume

is

defined

to

RACF

and

the

data

sets

on

the

tape

volume

are

password

protected,

access

to

any

of

the

data

sets

is

authorized

only

through

RACF.

Tape

volume

protection

is

activated

by

issuing

the

RACF

command

SETROPTS

CLASSACT(TAPEVOL).

Tape

data

set

name

protection

is

activated

by

issuing

the

RACF

command

SETROPTS

CLASSACT(TAPEDSN).

Data

set

password

protection

is

bypassed.

The

system

ignores

data

set

password

protection

for

system-managed

DASD

data

sets.

ISO/ANSI

Version

3

and

Version

4

installation

exits

that

run

under

RACF

will

receive

control

during

ISO/ANSI

volume

label

processing.

Control

goes

to

the

RACHECK

preprocessing

and

postprocessing

installation

exits.

The

same

IECIEPRM

exit

parameter

list

passed

to

ISO/ANSI

installation

exits

is

passed

to

the

RACF

installation

exits

if

the

accessibility

code

is

any

alphabetic

character

from

A

through

Z.

Related

reading:

For

more

information

about

these

exits,

see

z/OS

DFSMS

Installation

Exits.

Note:

ISO/ANSI

Version

4

tapes

also

permits

special

characters

!*″%&’()+,-./:;<=>?_

and

numeric

0-9.

Hiding

Data

Set

Names

To

ensure

that

your

enterprise’s

information

is

protected,

the

security

administrator

can

enable

RACF

name-hiding

for

those

data

sets

that

contain

critical

information.

When

name-hiding

is

in

effect,

you

cannot

obtain

data

set

names

unless

you

have

at

least

READ

authority

to

access

that

data

set.

If

you

have

access

to

the

RACF

FACILITY

class

STGADMIN.IFG.READVTOC.volser

for

the

VTOC,

you

can

see

all

data

sets

on

the

volume

including

the

ones

for

which

you

do

not

have

RACF

READ

authority.

If

you

don’t

have

access

to

STGADMIN.IFG.READVTOC.volser

for

a

volume

on

the

VTOC,

you

can

display

only

data

sets

for

which

you

have

specific

READ

access.

Related

reading:

For

more

information

on

name-hiding

and

RACF

protection

of

data

set

names,

see

z/OS

DFSMSdfp

Using

DFSMSdfp

in

the

z/OS

V1R6

Environment

and

z/OS

Security

Server

RACF

Security

Administrator’s

Guide.

Data

Set

Password

Protection

Passwords

are

ignored

for

all

system-managed

data

sets,

new

and

existing.

However,

passwords

can

still

be

defined

for

system-managed

data

sets,

and

used

to

protect

those

data

sets

when

you

are

sharing

them

with

non-SMS

systems

that

do

not

have

RACF

or

an

equivalent

product.

Protecting

Data

Sets

Chapter

5.

Protecting

Data

Sets

55

Passwords

for

VSAM

Data

Sets

To

use

password

protection

effectively,

you

need

to

understand

the

difference

between

operations

on

a

catalog

and

operations

on

a

data

set

represented

by

a

catalog

entry:

v

Referring

to

a

catalog

entry

when

new

entries

are

defined

(ALLOCATE

or

DEFINE),

or

existing

entries

are

altered

(ALTER),

deleted

(DELETE),

or

listed

(LISTCAT).

v

Using

the

data

set

represented

by

a

catalog

entry

when

it

is

connected

to

a

user’s

program

(OPEN),

or

disconnected

(CLOSE).

Different

passwords

might

be

needed

for

each

type

of

operation.

Operations

on

a

catalog

can

be

authorized

by

the

catalog’s

password

or,

sometimes,

by

the

password

of

the

data

set

defined

in

the

catalog.

For

information

about

password

levels,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

The

following

are

examples

of

passwords

required

for

defining,

listing,

and

deleting

non-system-managed

catalog

entries:

v

Defining

a

non-system-managed

data

set

in

a

password-protected

catalog

requires

the

catalog’s

update

(or

higher)

password.

v

Listing,

altering,

or

deleting

a

data

set’s

catalog

entry

requires

the

appropriate

password

of

either

the

catalog

or

the

data

set.

However,

if

the

catalog,

but

not

the

data

set,

is

protected,

no

password

is

needed

to

list,

alter,

or

delete

the

data

set’s

catalog

entry.

OPEN

and

CLOSE

operations

on

a

data

set

can

be

authorized

by

the

password

pointed

to

by

the

PASSWD

parameter

of

the

ACB

macro.

For

information

about

the

password

level

required

for

each

type

of

operation,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Passwords

to

Authorize

Access

You

can

define

passwords

for

access

to

clusters,

cluster

components

(data

and

index),

page

spaces,

alternate

indexes,

alternate

index

components

(data

and

index),

paths,

master

and

user

catalogs.

Different

passwords

have

various

degrees

of

security,

with

higher

levels

providing

greater

protection

than

lower

levels:

v

Full

access.

The

full

access

password

is

the

master

password,

which

lets

you

perform

all

operations

(retrieving,

updating,

inserting,

and

deleting)

on

an

entire

VSAM

data

set

and

any

index

and

catalog

record

associated

with

it.

The

master

password

permits

all

operations

and

bypasses

any

additional

verification

checking

by

the

user-security-verification

routine.

v

Control

access.

The

control-access

password

authorizes

you

to

use

control

interval

access.

For

more

information,

see

Chapter

11,

“Processing

Control

Intervals,”

on

page

177.

v

Update

access.

The

update-access

password

authorizes

you

to

retrieve,

update,

insert,

or

delete

records

in

a

data

set.

The

update

password

does

not

let

you

alter

passwords

or

other

security

information.

v

Read

access.

The

read-only

password

allows

you

to

examine

data

records

and

catalog

records,

but

not

add,

alter,

or

delete

them,

nor

see

password

information

in

a

catalog

record.

Each

higher-level

password

allows

all

operations

permitted

by

lower

levels.

Any

level

can

be

null

(not

specified),

but

if

a

low-level

password

is

specified,

the

DEFINE

and

ALTER

commands

give

the

higher

passwords

the

value

of

the

highest

password

specified.

For

example,

if

only

a

read-level

password

is

specified,

the

read-level

becomes

the

update-,

control-,

and

master-level

password

as

well.

If

you

Protecting

Data

Sets

56

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

specify

a

read

password

and

a

control

password,

the

control

password

value

becomes

the

master-level

password

as

well.

However,

in

this

case,

the

update-level

password

is

null

because

the

value

of

the

read-level

password

is

not

given

to

higher

passwords.

Catalogs

are

themselves

VSAM

data

sets,

and

can

have

passwords.

For

some

operations

(for

example,

listing

all

the

catalog’s

entries

with

their

passwords

or

deleting

catalog

entries),

the

catalog’s

passwords

can

be

used

instead

of

the

entry’s

passwords.

If

the

master

catalog

is

protected,

the

update-

or

higher-level

password

is

required

when

defining

a

user

catalog,

because

all

user

catalogs

have

an

entry

in

the

master

catalog.

When

deleting

a

protected

user

catalog,

the

user

catalog’s

master

password

must

be

specified.

Some

access

method

services

operations

might

involve

more

than

one

password

authorization.

For

example,

importing

a

data

set

involves

defining

the

data

set

and

loading

records

into

it.

If

the

catalog

into

which

the

data

set

is

being

imported

is

password

protected,

its

update-level

(or

higher-level)

password

is

required

for

the

definition;

if

the

data

set

is

password

protected,

its

update-level

(or

higher-level)

password

is

required

for

the

load.

The

IMPORT

command

lets

you

specify

the

password

of

the

catalog;

the

password,

if

any,

of

the

data

set

being

imported

is

obtained

by

the

commands

from

the

exported

data.

Every

VSAM

data

set

is

represented

in

a

catalog

by

two

or

more

components:

a

cluster

component

and

a

data

component,

or,

if

the

data

set

is

a

key-sequenced

data

set,

a

cluster

component,

a

data

component,

and

an

index

component.

Of

the

two

or

three

components,

the

cluster

component

is

the

controlling

component.

Each

of

the

two

or

three

components

can

have

its

own

set

of

four

passwords;

the

passwords

you

assign

have

no

relationship

to

each

other.

For

example,

password

protecting

a

cluster

but

not

the

cluster’s

data

component,

lets

you

issue

LISTCAT

to

determine

the

name

of

your

cluster’s

data

component,

open

the

data

component,

and

access

records

in

it,

even

though

the

cluster

itself

is

password

protected.

One

reason

for

password-protecting

the

components

of

a

cluster

is

to

prevent

access

to

the

index

of

a

key-sequenced

data

set.

(One

way

to

gain

access

to

an

index

is

to

open

it

independently

of

the

cluster.)

Password-Protection

Precautions

When

you

use

protection

commands

for

a

non-system-managed

catalog

or

for

a

data

set,

you

need

to

observe

certain

password-protection

precautions,

which

the

following

lists

describe.

For

a

Catalog.

Observe

the

following

precautions

when

you

use

protection

commands

for

a

non-system-managed

catalog:

v

To

create

a

non-system-managed

catalog

entry

using

the

DEFINE

command,

the

update-level

or

higher-level

password

of

the

catalog

is

required.

v

To

modify

a

catalog

entry

using

the

ALTER

command,

the

master

password

of

the

entry,

or

the

master

password

of

the

catalog

that

contains

the

entry,

is

required.

However,

if

the

entry

to

be

modified

is

a

non-VSAM

or

generation

data

group

entry,

the

update-level

password

of

the

catalog

is

sufficient.

v

To

gain

access

to

passwords

in

a

catalog

(for

example,

to

list

or

change

passwords),

specify

the

master-level

password

of

either

the

entry

or

the

catalog.

A

master-level

password

must

be

specified

with

the

DEFINE

command

to

model

an

entry’s

passwords.

Protecting

Data

Sets

Chapter

5.

Protecting

Data

Sets

57

v

To

delete

a

protected

data

set

entry

from

a

catalog,

requires

the

master-level

password

of

the

entry

or

the

master-level

password

of

the

catalog

containing

the

entry.

However,

if

the

entry

in

a

catalog

describes

a

VSAM

data

space,

the

update-level

password

of

the

catalog

is

sufficient.

v

To

delete

a

non-VSAM,

generation

data

group,

or

alias

entry,

the

update-level

password

of

the

catalog

is

sufficient.

v

To

list

catalog

entries

with

the

read-level

passwords,

specify

the

read

password

of

the

entry

or

the

catalog’s

read-level

password.

However,

entries

without

passwords

can

be

listed

without

specifying

the

catalog’s

read-level

password.

v

To

list

the

passwords

associated

with

a

catalog

entry,

specify

the

master

password

of

the

entry

or

the

catalog’s

master

password.

To

avoid

unnecessary

prompts,

specify

the

catalog’s

password,

which

permits

access

to

all

entries

the

operation

affects.

A

catalog’s

master-level

password

lets

you

refer

to

all

catalog

entries.

However,

a

protected

cluster

cannot

be

processed

with

the

catalog’s

master

password.

Specification

of

a

password

where

none

is

required

is

always

ignored.

For

a

Data

Set.

Observe

the

following

precautions

when

you

use

protection

commands

for

a

data

set:

v

To

access

a

VSAM

data

set

using

its

cluster

name

instead

of

data

or

index

names,

specify

the

proper

level

password

for

the

cluster

even

if

the

data

or

index

passwords

are

null.

v

To

access

a

VSAM

data

set

using

its

data

or

index

name

instead

of

its

cluster

name,

specify

the

proper

data

or

index

password.

However,

if

cluster

passwords

are

defined,

the

master

password

of

the

cluster

can

be

specified

instead

of

the

data

or

index

password.

v

Null

means

no

password

was

specified,

if

a

cluster

has

only

null

passwords,

access

the

data

set

using

the

cluster

name

without

specifying

passwords,

even

if

the

data

and

index

entries

of

the

cluster

have

defined

passwords.

Using

null

passwords

permits

unrestricted

access

to

the

VSAM

cluster

but

protects

against

unauthorized

modification

of

the

data

or

index

as

separate

components.

Data

Set

and

Catalog

Protection

If

you

define

passwords

for

any

data

sets

in

a

catalog,

you

must

also

protect

the

catalog

by

defining

passwords

for

the

catalog

or

by

defining

the

catalog

to

RACF.

If

you

do

not

protect

the

catalog,

no

password

checking

takes

place

during

operations

on

the

data

set’s

catalog

entries

or

during

open

processing

of

data

sets

cataloged

in

that

catalog.

Password

Prompting

Computer

operators

and

TSO/E

terminal

users

should

supply

a

correct

password

if

a

processing

program

does

not

give

the

correct

one

when

it

tries

to

open

a

password-protected

data

set.

When

the

data

set

is

defined,

use

the

CODE

parameter

to

specify

a

code

instead

of

the

data

set

name

to

prompt

the

operator

or

terminal

user

for

a

password.

The

prompting

code

keeps

your

data

secure

by

not

permitting

the

operator

or

terminal

user

to

know

both

the

name

of

the

data

set

and

its

password.

A

data

set’s

code

is

used

for

prompting

for

any

operation

against

a

password-protected

data

set.

The

catalog

code

is

used

for

prompting

when

the

catalog

is

opened

as

a

data

set,

when

an

attempt

is

made

to

locate

catalog

entries

that

describe

the

catalog,

and

when

an

entry

is

to

be

defined

in

the

catalog.

Protecting

Data

Sets

58

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

you

do

not

specify

a

prompting

code,

VSAM

identifies

the

job

for

which

a

password

is

needed

with

the

JOBNAME

and

DSNAME

for

background

jobs

or

with

the

DSNAME

alone

for

foreground

(TSO/E)

jobs.

When

you

define

a

data

set,

use

the

ATTEMPTS

parameter

to

specify

the

number

of

times

the

computer

operator

or

terminal

user

is

permitted

to

give

the

password

when

a

processing

program

is

trying

to

open

a

data

set.

If

the

ATTEMPTS

parameter

is

coded

with

0,

no

password

prompting

is

done.

If

you

exceed

the

allowed

number

of

attempts

When

you

use

System

Management

Facilities,

a

record

is

written

to

the

SMF

data

set

to

indicate

a

security

violation.

If

you

are

logged

in

to

TSO/E,

VSAM

tries

the

login

password

before

prompting

at

your

terminal.

Using

the

TSO/E

login

password

counts

as

one

attempt.

Passwords

for

Non-VSAM

Data

Sets

IBM

recommends

not

using

passwords

for

data

sets.

The

security

provided

by

data

set

passwords

is

not

as

good

as

security

provided

by

RACF.

See

z/OS

DFSMSdfp

Advanced

Services.

The

system

ignores

data

set

password

protection

for

system-managed

data

sets.

Assigning

a

Password

Use

the

PROTECT

macro

or

the

IEHPROGM

PROTECT

command

to

assign

a

password

to

the

non-VSAM

data

set.

See

z/OS

DFSMSdfp

Advanced

Services

and

z/OS

DFSMSdfp

Utilities.

Protecting

a

Data

Set

When

You

Define

It

When

you

define

a

non-VSAM

data

set

in

a

catalog,

the

data

set

is

not

protected

with

passwords

in

its

catalog

entry.

However,

you

can

password-protect

the

catalog.

Two

levels

of

protection

options

for

your

data

set

are

available.

Specify

these

options

in

the

LABEL

field

of

a

DD

statement

with

the

parameter

PASSWORD

or

NOPWREAD.

See

z/OS

MVS

JCL

Reference.

v

Password

protection

(specified

by

the

PASSWORD

parameter)

makes

a

data

set

unavailable

for

all

types

of

processing

until

a

correct

password

is

entered

by

the

system

operator,

or

for

a

TSO/E

job

by

the

TSO/E

user.

v

No-password-read

protection

(specified

by

the

NOPWREAD

parameter)

makes

a

data

set

available

for

input

without

a

password,

but

requires

that

the

password

be

entered

for

output

or

delete

operations.

The

system

sets

the

data

set

security

indicator

either

in

the

standard

header

label

1,

as

shown

in

z/OS

DFSMS:

Using

Magnetic

Tapes,

or

in

the

data

set

control

block

(DSCB).

After

you

have

requested

security

protection

for

magnetic

tapes,

you

cannot

remove

it

with

JCL

unless

you

overwrite

the

protected

data

set.

Supplying

a

Password

for

a

Catalog

If

the

catalog

is

update

protected,

you

must

supply

the

catalog’s

update-

or

higher-level

password

to

define,

delete,

or

alter

a

non-VSAM

data

set.

The

password

can

be

supplied

as

a

subparameter

of

the

command’s

CATALOG

parameter,

or

as

a

response

to

the

password-prompting

message.

Protecting

Data

Sets

Chapter

5.

Protecting

Data

Sets

59

Handling

Incorrect

Passwords

If

an

incorrect

password

is

entered

twice

when

a

password

is

being

requested

by

the

open

or

EOV

routine,

the

system

issues

an

ABEND

913.

For

a

SCRATCH

or

RENAME

request,

a

return

code

is

given.

Entering

a

Record

in

the

PASSWORD

Data

Set

In

addition

to

requesting

password

protection

in

your

JCL,

you

must

enter

at

least

one

record

for

each

protected

data

set

in

a

data

set

named

PASSWORD.

The

PASSWORD

data

set

must

be

created

on

the

system-residence

volume.

The

system-residence

volume

contains

the

nucleus

of

the

operating

system.

The

system

programmer

should

also

request

password

protection

for

the

PASSWORD

data

set

itself

to

prevent

both

reading

and

writing

without

knowledge

of

the

password.

For

a

data

set

on

direct

access

storage

devices,

place

the

data

set

under

protection

when

you

enter

its

password

in

the

PASSWORD

data

set.

Use

the

PROTECT

macro

or

the

IEHPROGM

utility

program

to

add,

change,

or

delete

an

entry

in

the

PASSWORD

data

set.

Using

either

of

these

methods,

the

system

updates

the

DSCB

of

the

data

set

to

reflect

its

protected

status.

Therefore,

you

do

not

need

to

use

JCL

whenever

you

add,

change,

or

remove

security

protection

for

a

data

set

on

direct

access

storage

devices.

For

information

about

maintaining

the

PASSWORD

data

set,

including

the

PROTECT

macro,

see

z/OS

DFSMSdfp

Advanced

Services.

For

information

about

the

IEHPROGM

utility,

see

z/OS

DFSMSdfp

Utilities.

User-Security-Verification

Routine

Besides

password

protection,

VSAM

lets

you

protect

data

by

specifying

a

program

that

verifies

a

user’s

authorization.

“User-Security-Verification

Routine”

on

page

255

describes

specific

requirements.

To

use

this

additional

protection,

specify

the

name

of

your

authorization

routine

in

the

AUTHORIZATION

parameter

of

the

DEFINE

or

ALTER

command.

If

a

password

exists

for

the

type

of

operation

you

are

performing,

you

must

specify

the

password,

either

in

the

command

or

in

response

to

prompting.

VSAM

calls

the

user-security-verification

routine

only

after

it

verifies

the

password.

VSAM

bypasses

this

routine

whenever

you

specify

a

correct

master

password,

whether

the

operation

requires

the

master

password.

You

can

use

the

USVR

to

detect

VSAM

password

usage.

Erasure

of

Residual

Data

When

you

release

media

space,

you

can

erase

your

data.

Erasing

DASD

Data

When

you

delete

any

DASD

data

set

or

release

part

of

the

space,

the

system

makes

the

space

available

for

allocation

for

new

data

sets.

There

are

ways

that

the

creator

of

the

new

data

set

can

read

residual

data

that

was

in

the

previous

data

set.

To

prevent

others

from

reading

your

deleted

data,

run

a

program

that

overwrites

the

data

before

you

delete

it.

Alternatively,

you

can

have

the

system

erase

(overwrite)

the

data

during

data

set

deletion

or

space

release,

with

its

erase-on-scratch

function.

The

system

erasure

is

faster

than

a

program

that

writes

new

data.

If

the

system

erasure

fails,

then

the

deletion

or

space

release

fails.

To

have

the

system

erase

sensitive

data

with

RACF,

the

system

programmer

can

start

the

erase

feature

with

the

RACF

SETROPTS

command.

This

feature

controls

Protecting

Data

Sets

60

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

the

erasure

of

DASD

space

when

it

is

releases.

Space

release

occurs

when

you

delete

a

data

set

or

release

part

of

a

data

set.

SETROPTS

selects

one

of

the

following

methods

for

erasing

the

space:

v

The

system

erases

all

released

space.

v

The

system

erases

space

only

in

data

sets

that

have

a

security

level

greater

than

or

equal

to

a

certain

level.

v

The

system

erases

space

in

a

data

set

only

if

its

RACF

data

set

profile

specifies

the

ERASE

option.

v

The

system

never

erases

space.

If

the

ERASE

option

is

set

in

the

RACF

profile,

you

cannot

override

the

option

by

specifying

NOERASE

in

access

methods

services

commands.

System

Erasure

of

Data

If

DASD

data

erasure

is

in

effect

and

you

use

any

of

the

following

items,

the

system

overwrites

the

entire

data

set

area:

v

The

DELETE

subparameter

in

the

JCL

DISP

parameter

of

a

data

definition

(DD)

statement

v

The

TSO

DELETE

command

(for

non-VSAM

objects)

v

The

SCRATCH

macro

v

The

SCRATCH

control

statement

for

the

IEHPROGM

utility

program

v

The

access

method

services

DELETE

command

For

a

sequential,

partitioned,

PDSE,

or

VSAM

extended-format

data

set,

if

DASD

data

erasure

is

in

effect,

the

system

also

overwrites

the

released

area

when

you

use

any

of

the

following:

v

RLSE

subparameter

in

the

JCL

SPACE

parameter

in

a

DD

statement

to

which

a

program

writes

v

Partial

release

option

in

the

management

class

v

PARTREL

macro

RAMAC

Virtual

Array

With

RAMAC®

Virtual

Array,

the

DDSR

option

of

IXFP

does

almost

the

same

thing

as

the

erase-on-scratch

function.

The

storage

administrator

uses

DDSR

to

manage

disk

space

more

efficiently.

DDSR

has

the

side

effect

of

usually

erasing

released

tracks,

even

if

you

do

not

request

the

ERASE

option.

DDSR

is

faster

than

the

erase-on-scratch

function

on

other

types

of

disks.

Without

erase-on-scratch,

however,

DDSR

is

less

secure.

The

erasure

might

not

complete

before

data

set

deletion

or

space

release.

After

a

successful

erasure,

your

data

remains

physically

on

disk,

in

a

compressed

form,

but

is

not

accessible

by

any

software.

If

you

request

erase-on-scratch

on

a

RAMAC

Virtual

Array

for

which

DDSR

is

active,

the

system

optimizes

the

erasure

so

that

it

happens

much

faster

than

on

other

kinds

of

disks.

The

erasure

is

guaranteed

to

complete

before

data

set

deletion

or

space

release.

After

a

successful

erasure,

your

data

is

not

accessible

by

any

software.

Erasing

Tape

Data

If

you

want

to

prevent

the

reading

of

residual

data

on

tape

volumes,

you

can

implement

some

method

of

overwriting

the

volume.

A

DFSMSrmm™

user

can

define

security

classes

in

EDGRMMxx,

a

DFSMSrmm

PARMLIB

member,

by

using

name

masks

to

identify

data

sets

that

must

be

erased

before

the

volume

can

be

released

for

use

as

scratch.

If

DFSMSrmm

determines

that

the

security

class

of

a

data

set

requires

erasure,

DFSMSrmm

sets

release

actions

of

ERASE

and

INIT

for

Protecting

Data

Sets

Chapter

5.

Protecting

Data

Sets

61

any

volume

that

contains

the

data

set.

When

all

data

sets

on

the

volume

have

expired,

DFSMSrmm

holds

the

volume

until

these

actions

have

been

confirmed.

To

automate

the

overwriting

of

residual

data,

schedule

a

regular

EDGINERS

job

to

process

volumes

that

have

the

erase

action

pending.

DFSMSrmm

selects

the

volumes

to

process

and

prompts

the

operator

to

mount

each

one.

After

verifying

that

the

correct

volume

is

mounted,

DFSMSrmm

erases

the

volume,

using

the

hardware-security

erase

feature,

where

supported,

to

free

the

channel

for

other

activity

during

the

erasure.

If

the

hardware-security

erase

feature

is

not

available,

DFSMSrmm

overwrites

volumes

with

a

bit

pattern

of

X'FF'.

When

erasing

volumes,

DFSMSrmm

also

reinitializes

them

so

that

the

correct

volume

labels

are

written,

and

the

volumes

are

ready

for

reuse

in

a

single

operation.

Authorized

Program

Facility

and

Access

Method

Services

The

authorized

program

facility

(APF)

limits

the

use

of

sensitive

system

services

and

resources

to

authorized

system

and

user

programs.

For

information

about

program

authorization,

see

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

All

access

method

services

load

modules

are

contained

in

SYS1.LINKLIB,

and

the

root

segment

load

module

(IDCAMS)

is

link

edited

with

the

SETCODE

AC(1)

attribute.

APF

authorization

is

established

at

the

job

step

level.

If,

during

the

execution

of

an

APF-authorized

job

step,

a

load

request

is

satisfied

from

an

unauthorized

library,

the

task

is

abnormally

terminated.

It

is

the

installation’s

responsibility

to

ensure

that

a

load

request

cannot

be

satisfied

from

an

unauthorized

library

during

access

method

services

processing.

The

following

situations

could

cause

the

invalidation

of

APF

authorization

for

access

method

services:

v

An

access

method

services

module

is

loaded

from

an

unauthorized

library.

v

A

user-security-verification

routine

(USVR)

is

loaded

from

an

unauthorized

library

during

access

method

services

processing.

v

An

exception

exit

routine

is

loaded

from

an

unauthorized

library

during

access

method

services

processing.

v

A

user-supplied

special

graphics

table

is

loaded

from

an

unauthorized

library

during

access

method

services

processing.

Because

APF

authorization

is

established

at

the

job-step

task

level,

access

method

services

is

not

authorized

if

invoked

by

an

unauthorized

application

program

or

unauthorized

terminal

monitor

program

(TMP).

The

system

programmer

must

enter

the

names

of

those

access

method

services

commands

that

require

APF

authorization

to

run

under

TSO/E

in

the

authorized

command

list.

Programs

that

are

designed

to

be

called

from

an

APF-authorized

program

should

never

be

linked

or

bound

with

APF

authorization.

Someone

could

invoke

the

routine

directly

through

JCL,

and

it

would

be

operating

with

APF

authorization

in

an

environment

for

which

it

was

not

designed.

Programs

that

you

intend

to

be

called

by

an

APF-authorized

program

should

be

in

APF-authorized

libraries.

Protecting

Data

Sets

62

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

following

restricted

access

method

services

functions

cannot

be

requested

in

an

unauthorized

state:

DEFINE—When

the

RECATALOG

parameter

is

specified

DELETE—When

the

RECOVERY

parameter

is

specified

EXPORT—When

the

object

to

be

exported

is

a

catalog

IMPORT—When

the

object

to

be

imported

is

a

catalog

PRINT—When

the

object

to

be

printed

is

a

catalog

REPRO—When

copying

a

catalog

or

when

the

catalog

unload/reload

is

to

be

used

VERIFY—When

a

catalog

is

to

be

verified

If

the

above

functions

are

required

and

access

method

services

is

invoked

from

an

application

program

or

TSO/E

terminal

monitor

program,

the

invoking

program

must

be

authorized.

For

information

about

authorizing

for

TSO/E

and

ISPF,

see

z/OS

DFSMSdfp

Storage

Administration

Reference.

Access

Method

Services

Cryptographic

Option

Although

you

can

provide

security

for

online

data

by

using

such

facilities

as

VSAM

password

protection

and

RACF,

these

facilities

do

not

protect

data

when

it

is

stored

offline.

Sensitive

data

stored

offline

is

susceptible

to

misuse.

Cryptography

is

an

effective

means

of

protecting

offline

data,

if

the

enciphering

techniques

are

adequate.

The

enciphering

function

is

available

by

using

the

access

method

services

REPRO

ENCIPHER

command.

The

data

remains

protected

until

you

use

the

REPRO

DECIPHER

command

to

decipher

it

with

the

correct

key.

When

you

use

the

REPRO

ENCIPHER

command,

you

can

specify

whether

to

use

the

Programmed

Cryptographic

Facility

or

Integrated

Cryptographic

Service

Facility

(ICSF)

to

manage

the

cryptographic

keys,

depending

on

which

cryptographic

facility

is

running

as

a

started

task.

You

can

use

the

REPRO

ENCIPHER

and

REPRO

DECIPHER

to

perform

simple

encryption

and

decryption

of

sensitive

data.

The

data

remains

protected

until

you

use

the

REPRO

DECIPHER

option

to

decipher

it

with

the

correct

key.

If

you

also

have

cryptographic

hardware

and

RACF,

you

can

use

these

REPRO

commands

with

ICSF

to

perform

more

sophisticated

encryption

and

decryption.

Related

reading:

For

information

on

using

the

REPRO

command

to

encrypt

and

decrypt

data,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

For

information

on

using

ICSF,

z/OS

Cryptographic

Services

ICSF

Overview.

Data

Enciphering

and

Deciphering

In

the

following

three

types

of

offline

environments,

the

enciphering

of

sensitive

data

adds

to

data

security:

v

Data

sets

are

transported

to

another

installation,

where

data

security

is

required

during

transportation

and

while

the

data

is

stored

at

the

other

location.

v

Data

sets

are

stored

for

long

periods

of

time

at

a

permanent

storage

location

Protecting

Data

Sets

Chapter

5.

Protecting

Data

Sets

63

v

Data

sets

are

stored

offline

at

the

site

at

which

they

are

normally

used.

You

can

use

the

REPRO

command

to

copy

a

plaintext

(not

enciphered)

data

set

to

another

data

set

in

enciphered

form.

Enciphering

converts

data

to

an

unintelligible

form

called

a

ciphertext.

You

can

then

store

the

enciphered

data

set

offline

or

send

it

to

a

remote

location.

When

desired,

you

can

bring

back

the

enciphered

data

set

online

and

use

the

REPRO

command

to

recover

the

plaintext

from

the

ciphertext

by

copying

the

enciphered

data

set

to

another

data

set

in

plaintext

(deciphered)

form.

Enciphering

and

deciphering

are

based

on

an

8-byte

binary

value

called

the

key.

Using

the

REPRO

DECIPHER

option,

you

can

either

decipher

the

data

on

the

system

that

it

was

enciphered

on,

or

decipher

the

data

on

another

system

that

has

the

required

key

to

decipher

the

data.

The

input

data

set

for

the

decipher

operation

must

be

an

enciphered

copy

of

a

data

set

produced

by

REPRO.

The

output

data

set

for

the

encipher

operation

can

only

be

a

VSAM

entry-sequenced,

linear,

or

sequential

data

set.

The

target

(output)

data

set

of

both

an

encipher

and

a

decipher

operation

must

be

empty.

If

the

target

data

set

is

a

VSAM

data

set

that

has

been

defined

with

the

reusable

attribute,

use

the

REUSE

parameter

of

REPRO

to

reset

it

to

empty.

For

both

REPRO

ENCIPHER

and

REPRO

DECIPHER,

if

the

input

data

set

(INDATASET)

is

system

managed,

the

output

data

set

(OUTDATASET)

can

be

either

system

managed

or

not

system

managed,

and

must

be

cataloged.

The

REPRO

ENCIPHER

parameter

indicates

that

REPRO

is

to

produce

an

enciphered

copy

of

the

data

set.

The

INFILE

or

INDATASET

parameter

identifies

and

allocates

the

plaintext

(not

enciphered)

source

data

set.

The

REPRO

DECIPHER

parameter

indicates

that

REPRO

is

to

produce

a

deciphered

copy

of

the

data

set.

The

OUTFILE

or

OUTDATASET

parameter

identifies

and

allocates

a

target

data

set

to

contain

the

plaintext

data.

Figure

2

on

page

65

is

a

graphic

representation

of

the

input

and

output

data

sets

involved

in

REPRO

ENCIPHER

and

DECIPHER

operations.

Protecting

Data

Sets

64

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

When

you

encipher

a

data

set,

specify

any

of

the

delimiter

parameters

available

with

the

REPRO

command

(SKIP,

COUNT,

FROMADDRESS,

FROMKEY,

FROMNUMBER,

TOADDRESS,

TOKEY,

TONUMBER)

that

are

appropriate

to

the

data

set

being

enciphered.

However,

you

cannot

specify

delimiter

parameters

when

deciphering

a

data

set.

If

DECIPHER

is

specified

together

with

any

REPRO

delimiter

parameter,

your

REPRO

command

terminates

with

a

message.

When

the

REPRO

command

copies

and

enciphers

a

data

set,

it

precedes

the

enciphered

data

records

with

one

or

more

records

of

clear

header

data.

The

header

data

preceding

the

enciphered

data

contains

information

necessary

for

the

deciphering

of

the

enciphered

data,

such

as:

v

Number

of

header

records

v

Number

of

records

to

be

ciphered

as

a

unit

v

Key

verification

data

v

Enciphered

data

encrypting

keys

Tip:

If

the

output

data

set

for

the

encipher

operation

is

a

compressed

format

data

set,

little

or

no

space

is

saved.

Save

space

for

the

output

if

the

input

data

set

is

in

compressed

format

and

is

compressed.

Encryption

of

VSAM

Data

Sets

When

a

VSAM

relative

record

data

set

(RRDS)

is

enciphered,

the

record

size

of

the

output

data

set

must

be

at

least

four

bytes

greater

than

the

record

size

of

the

RRDS.

(The

extra

four

bytes

are

needed

to

prefix

a

relative

record

number

to

the

output

record.)

Specify

the

record

size

of

an

output

VSAM

entry-sequenced

data

set

through

the

RECORDSIZE

parameter

of

the

DEFINE

CLUSTER

command.

Specify

the

record

size

of

an

output

sequential

data

set

through

the

DCB

LRECL

parameter

in

the

DD

statement

of

the

output

data

set.

When

an

enciphered

RRDS

is

deciphered

with

a

RRDS

as

the

target,

any

empty

slots

in

the

original

data

set

are

reestablished.

When

a

linear

data

set

is

enciphered,

both

the

input

and

output

data

sets

must

be

linear

data

sets.

Restriction:

You

should

not

build

an

alternate

index

over

a

VSAM

entry-sequenced

data

set

that

is

the

output

of

a

REPRO

ENCIPHER

operation.

Source Data Set
(Plaintext)

Target Data Set
(Plaintext)

Target Data Set
(Ciphertext)

Source Data Set
(Ciphertext)

VSAM ESDS,
LDS or SAM

VSAM ESDS,
LDS or SAMREPRO

Encipher
REPRO
Decipher

Any data set
REPRO can copy
into (except
catalogs):

VSAM
ESDS
KSDS
LDS
RRDS
ISAM
SAM

VSAM
ESDS
KSDS
LDS
RRDS
SAM

Input InputEncipher DecipherOutput Output

Figure

2.

REPRO

Encipher

and

Decipher

Operations

Protecting

Data

Sets

Chapter

5.

Protecting

Data

Sets

65

Data

Encryption

Keys

Use

the

plaintext

data

encrypting

key

to

encipher

or

decipher

the

data

using

the

Data

Encryption

Standard.

REPRO

lets

you

supply

an

8-byte

value

as

the

plaintext

data

encrypting

key.

If

you

do

not

supply

the

data

encrypting

key,

REPRO

provides

an

8-byte

value

to

be

used

as

the

plaintext

data

encrypting

key.

Using

the

REPRO

DECIPHER

option,

you

can

either

decipher

the

data

on

the

system

that

it

was

enciphered

on

or

decipher

the

data

on

another

system

that

has

this

functional

capability

and

the

required

key

to

decipher

the

data.

Given

the

same

key,

encipher

and

decipher

are

inverse

operations.

If

you

supply

your

own

plaintext

data

encrypting

key

on

ENCIPHER

or

DECIPHER

through

the

REPRO

command,

you

risk

exposing

that

key

when

the

command

is

listed

on

SYSPRINT.

To

avoid

this

exposure,

direct

REPRO

to

a

data

encrypting

key

data

set

to

obtain

the

plaintext

data

encrypting

key.

Secondary

Key-Encrypting

Keys

When

you

want

to

decipher

the

data,

you

must

supply

the

data

encrypting

key

that

enciphered

the

data.

However,

as

a

security

precaution,

you

might

want

to

supply

the

data

encrypting

key

in

a

disguised

form.

When

enciphering

the

data

set,

supply

the

name

of

a

key-encrypting

key.

The

REPRO

command

uses

the

key-encrypting

keys

indicated

by

the

supplied

name

to

disguise

the

data

encrypting

key.

When

deciphering

the

data

set,

supply

the

name

of

the

file

key

and

the

disguised

data

encrypting

key

rather

than

the

plaintext

data

encrypting

key.

In

this

way,

the

actual

plaintext

data

encrypting

key

is

not

revealed.

You

can

use

the

Programmed

Cryptographic

Facility

or

ICSF

to

install

the

secondary

key-encrypting

keys.

If

you

are

using

the

Programmed

Cryptographic

Facility,

use

the

Programmed

Cryptographic

Facility

key

generator

utility

to

set

up

the

key

pairs.

If

you

are

using

ICSF,

use

the

Key

Generation

Utility

Program

(KGUP)

to

set

up

the

key

pairs

on

both

the

encrypting

and

decrypting

systems.

The

key

generator

utility

generates

the

key-encrypting

keys

you

request

and

stores

the

keys,

in

enciphered

form,

in

the

cryptographic

key

data

set

(CKDS).

It

lists

the

external

name

of

each

secondary

key

and

the

plaintext

form

of

the

secondary

key.

If

the

secondary

encrypting

key

is

to

be

used

on

a

system

other

than

the

system

on

which

the

keys

were

generated,

the

utility

must

also

be

run

on

the

other

system

to

define

the

same

plaintext

key-encrypting

keys.

The

plaintext

key-encrypting

keys

can

be

defined

in

the

CKDS

of

the

other

system

with

different

key

names.

If

you

want

to

manage

your

own

private

keys,

no

key-encrypting

keys

are

used

to

encipher

the

data

encrypting

key;

it

is

your

responsibility

to

ensure

the

secure

nature

of

your

private

data

encrypting

key.

Related

reading:

For

more

information

on

setting

up

keys

with

KGUP,

see

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide.

REPRO

ENCIPHER

and

DECIPHER

on

ICSF

In

planning

to

use

the

ENCIPHER

and

DECIPHER

functions

of

the

REPRO

command,

you

should

be

aware

of

the

following

requirements:

v

Code

COMPAT(YES)

for

the

data

set

for

the

ICSF

options.

This

option

enables

REPRO

to

invoke

the

Programmed

Cryptographic

Facility

macros

on

ICSF.

v

If

you

are

migrating

from

PCF

to

ICSF,

convert

the

Programmed

Cryptographic

Facility

CKDS

to

ICSF

format.

New

ICSF

users

do

not

need

to

perform

this

conversion.

Protecting

Data

Sets

66

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

If

you

are

using

ICSF,

you

must

start

it

before

executing

the

REPRO

command.

If

you

are

using

the

Programmed

Cryptographic

Facility,

you

must

start

it

before

executing

the

REPRO

command.

Protecting

Data

Sets

Chapter

5.

Protecting

Data

Sets

67

Protecting

Data

Sets

68

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Part

2.

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

.

.

.

. 73

VSAM

Data

Formats

.

.

.

.

.

.

.

.

.

.

. 73

Data

Set

Size

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Control

Intervals

.

.

.

.

.

.

.

.

.

.

. 74

Control

Information

Fields

.

.

.

.

.

.

.

. 74

Compressed

Control

Information

Field

.

.

.

. 75

Control

Areas

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Spanned

Records

.

.

.

.

.

.

.

.

.

.

. 76

Selection

of

VSAM

Data

Set

Types

.

.

.

.

.

.

. 77

Entry-Sequenced

Data

Sets

.

.

.

.

.

.

.

. 78

Simulated

VSAM

Access

to

UNIX

files

.

.

.

. 80

Record

Processing

for

UNIX

Files

.

.

.

.

. 80

Restrictions

on

UNIX

Files

.

.

.

.

.

.

. 80

Services

and

Utilities

for

UNIX

Files

.

.

.

. 81

Key-Sequenced

Data

Sets

.

.

.

.

.

.

.

.

. 81

Free

Space

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Considerations

for

Increasing

Keys

and

Space

82

Insertion

of

a

Logical

Record

in

a

CI

.

.

.

. 83

Prime

Index

.

.

.

.

.

.

.

.

.

.

.

. 84

Key

Compression

.

.

.

.

.

.

.

.

.

. 84

Control

Interval

Splits

.

.

.

.

.

.

.

.

. 84

Linear

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

. 84

Fixed-Length

Relative-Record

Data

Sets

.

.

.

. 85

Variable-Length

Relative-Record

Data

Sets

.

.

. 86

Summary

of

VSAM

Data

Set

Types

.

.

.

.

. 86

Extended-Format

VSAM

Data

Sets

.

.

.

.

.

.

. 87

Restrictions

on

Defining

Extended-Format

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

VSAM

Data

Striping

.

.

.

.

.

.

.

.

.

. 88

Layering

Concept

for

Data

Striping

.

.

.

. 90

Other

Considerations

for

Data

Striping

.

.

. 91

Compressed

Data

.

.

.

.

.

.

.

.

.

.

. 92

Access

to

Records

in

a

VSAM

Data

Set

.

.

.

.

. 93

Access

to

Entry-Sequenced

Data

Sets

.

.

.

.

. 94

Access

to

Key-Sequenced

Data

Sets

.

.

.

.

. 94

Keyed-Sequential

Access

.

.

.

.

.

.

.

. 94

Keyed-Direct

Access

.

.

.

.

.

.

.

.

. 94

Skip-Sequential

Access

.

.

.

.

.

.

.

.

. 95

Addressed

Access

.

.

.

.

.

.

.

.

.

. 95

Access

to

Linear

Data

Sets

.

.

.

.

.

.

.

. 95

Access

to

Fixed-Length

Relative-Record

Data

Sets

95

Keyed-Sequential

Access

.

.

.

.

.

.

.

. 95

Skip-Sequential

Access

.

.

.

.

.

.

.

.

. 95

Keyed-Direct

Access

.

.

.

.

.

.

.

.

. 95

Access

to

Variable-Length

Relative-Record

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Keyed-Sequential

Access

.

.

.

.

.

.

.

. 95

Skip-Sequential

Access

.

.

.

.

.

.

.

.

. 96

Keyed-Direct

Access

.

.

.

.

.

.

.

.

. 96

Access

to

Records

through

Alternate

Indexes

.

.

. 96

Alternate

Index

Structure

for

a

Key-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Alternate

Index

Structure

for

an

Entry-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Building

of

an

Alternate

Index

.

.

.

.

.

.

. 98

Automatic

Upgrade

of

Alternate

Indexes

.

.

. 99

Data

Compression

.

.

.

.

.

.

.

.

.

.

.

. 99

Chapter

7.

Defining

VSAM

Data

Sets

.

.

.

.

. 101

Using

Cluster

Names

for

Data

and

Index

Components

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Defining

a

Data

Set

with

Access

Method

Services

102

Naming

a

Cluster

.

.

.

.

.

.

.

.

.

.

. 102

Duplicate

Data

Set

Names

.

.

.

.

.

.

. 103

Temporary

Data

Set

Names

.

.

.

.

.

. 103

Specifying

Cluster

Information

.

.

.

.

.

. 104

Using

Access

Method

Services

Parameters

.

.

. 104

Descriptive

Parameters

.

.

.

.

.

.

.

. 104

Performance

Parameters

.

.

.

.

.

.

.

. 105

Security

and

Integrity

Parameters

.

.

.

. 106

Allocating

Space

for

VSAM

Data

Sets

.

.

.

. 106

Partial

Release

.

.

.

.

.

.

.

.

.

.

. 107

Small

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 107

Multiple

Cylinder

Data

Sets

.

.

.

.

.

. 108

Linear

Data

Sets

.

.

.

.

.

.

.

.

.

. 108

Using

VSAM

Extents

.

.

.

.

.

.

.

.

. 108

VSAM

Extent

Consolidation

.

.

.

.

.

. 109

Calculating

Space

for

the

Data

Component

of

a

KSDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Calculating

Space

for

the

Index

Component

.

. 110

Using

ALTER

to

Modify

Attributes

of

a

Component

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Using

ALTER

to

Rename

Data

Sets

.

.

.

.

. 110

Defining

a

Data

Set

with

JCL

.

.

.

.

.

.

.

. 111

Loading

a

VSAM

Data

Set

.

.

.

.

.

.

.

.

. 111

Using

REPRO

to

Copy

a

VSAM

Data

Set

.

.

. 112

Using

a

Program

to

Load

a

Data

Set

.

.

.

.

. 113

Reusing

a

VSAM

Data

Set

as

a

Work

File

.

.

. 114

Copying

and

Merging

Data

Sets

.

.

.

.

.

.

. 115

Defining

Alternate

Indexes

.

.

.

.

.

.

.

.

. 117

Naming

an

Alternate

Index

.

.

.

.

.

.

.

. 117

Specifying

Alternate

Index

Information

.

.

.

. 117

Specifying

Descriptive

Information

for

an

Alternate

Index

.

.

.

.

.

.

.

.

.

.

. 118

Specifying

RECORDSIZE

for

an

Alternate

Index

with

Nonunique

Keys

.

.

.

.

.

. 118

Building

an

Alternate

Index

.

.

.

.

.

.

. 119

Maintaining

Alternate

Indexes

.

.

.

.

.

.

. 119

How

Reorganization

Affects

Alternate

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Alternate

Index

Backups

.

.

.

.

.

.

.

. 120

Defining

a

Path

.

.

.

.

.

.

.

.

.

.

.

. 120

Defining

a

Page

Space

.

.

.

.

.

.

.

.

.

. 121

Checking

for

Problems

in

Catalogs

and

Data

Sets

122

Listing

Catalog

Entries

.

.

.

.

.

.

.

.

. 122

Printing

the

Contents

of

Data

Sets

.

.

.

.

. 123

Deleting

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

. 123

Chapter

8.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

.

.

.

.

.

.

.

.

.

. 125

Example

of

Defining

a

VSAM

Data

Set

.

.

.

.

. 126

Examples

of

Defining

Temporary

VSAM

Data

Sets

128

©

Copyright

IBM

Corp.

1987,

2004

69

Example

1:

Defining

a

Temporary

VSAM

Data

Set

Using

ALLOCATE

.

.

.

.

.

.

.

.

. 128

Example

2:

Creating

a

Temporary

Data

Set

with

Default

Parameter

Values

.

.

.

.

.

.

.

. 129

Examples

of

Defining

Alternate

Indexes

and

Paths

129

JCL

Statements

.

.

.

.

.

.

.

.

.

.

.

. 129

Commands

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Chapter

9.

Processing

VSAM

Data

Sets

.

.

.

. 133

Creating

an

Access

Method

Control

Block

.

.

.

. 134

Creating

an

Exit

List

.

.

.

.

.

.

.

.

.

.

. 134

Opening

a

Data

Set

.

.

.

.

.

.

.

.

.

.

. 135

Creating

a

Request

Parameter

List

.

.

.

.

.

. 136

Manipulating

the

Contents

of

Control

Blocks

.

.

. 138

Generating

a

Control

Block

.

.

.

.

.

.

.

. 138

Testing

the

Contents

of

ACB,

EXLST,

and

RPL

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Modifying

the

Contents

of

an

ACB,

EXLST,

or

RPL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Displaying

the

Contents

of

ACB,

EXLST,

and

RPL

Fields

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Requesting

Access

to

a

Data

Set

.

.

.

.

.

.

. 139

Inserting

and

Adding

Records

.

.

.

.

.

.

. 140

Insertions

into

an

Entry-Sequenced

Data

Set

140

Insertions

into

a

Key-Sequenced

Data

Set

.

. 140

Insertions

into

a

Fixed-Length

Relative-Record

Data

Set

.

.

.

.

.

.

. 141

Insertions

into

a

Variable-Length

Relative-Record

Data

Set

.

.

.

.

.

.

. 141

Insertions

into

a

Linear

Data

Set

.

.

.

.

. 142

Retrieving

Records

.

.

.

.

.

.

.

.

.

. 142

Sequential

Retrieval

.

.

.

.

.

.

.

.

. 142

POINT

Macro

for

Positioning

.

.

.

.

.

. 143

Direct

Retrieval

.

.

.

.

.

.

.

.

.

.

. 144

Updating

Records

.

.

.

.

.

.

.

.

.

.

. 144

Changing

Record

Length

.

.

.

.

.

.

. 144

Processing

the

Data

Component

of

a

Key-Sequenced

Data

Set

.

.

.

.

.

.

.

. 144

Deleting

Records

.

.

.

.

.

.

.

.

.

.

. 145

Deferring

and

Forcing

Buffer

Writing

.

.

.

. 145

Retaining

and

Positioning

Data

Buffers

.

.

.

. 145

Processing

Multiple

Strings

.

.

.

.

.

.

.

. 146

Making

Concurrent

Requests

.

.

.

.

.

.

. 147

Using

a

Path

to

Access

Records

.

.

.

.

.

. 147

Making

Asynchronous

Requests

.

.

.

.

.

. 148

Specifying

Asynchronous

Mode

.

.

.

.

. 148

Checking

for

Completion

of

Asynchronous

Requests

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Ending

a

Request

.

.

.

.

.

.

.

.

.

.

. 149

Closing

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

. 149

Operating

in

SRB

or

Cross-Memory

Mode

.

.

.

. 150

Using

VSAM

Macros

in

Programs

.

.

.

.

.

. 151

Chapter

10.

Optimizing

VSAM

Performance

.

. 155

Optimizing

Control

Interval

Size

.

.

.

.

.

.

. 155

Control

Interval

Size

Limitations

.

.

.

.

.

. 155

Physical

Block

Size

and

Track

Capacity

.

.

. 156

Track

Allocations

versus

Cylinder

Allocations

157

Data

Control

Interval

Size

.

.

.

.

.

.

.

. 157

Index

Control

Interval

Size

.

.

.

.

.

.

.

. 158

How

VSAM

Adjusts

Control

Interval

Size

.

.

. 158

Optimizing

Control

Area

Size

.

.

.

.

.

.

.

. 159

Advantages

of

a

Large

Control

Area

Size

.

.

. 160

Disadvantages

of

a

Large

Control

Area

Size

.

. 160

Optimizing

Free

Space

Distribution

.

.

.

.

.

. 160

Selecting

the

Optimal

Percentage

of

Free

Space

162

Altering

the

Free

Space

Specification

When

Loading

a

Data

Set

.

.

.

.

.

.

.

.

.

. 163

Determining

I/O

Buffer

Space

for

Nonshared

Resource

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Obtaining

Buffers

Above

16

MB

.

.

.

.

.

. 164

Virtual

Storage

Constraint

Relief

.

.

.

.

. 165

Dynamic

Allocation

Options

for

Reducing

Storage

Usage

.

.

.

.

.

.

.

.

.

.

. 165

Tuning

for

System-Managed

Buffering

.

.

.

. 165

Processing

Techniques

.

.

.

.

.

.

.

. 166

Internal

Processing

Techniques

.

.

.

.

. 167

Processing

Guidelines

and

Restrictions

.

.

. 167

General

Considerations

for

the

Use

of

SMB

169

Allocating

Buffers

for

Concurrent

Data

Set

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Allocating

Buffers

for

Direct

Access

.

.

.

.

. 170

Data

Buffers

for

Direct

Access

.

.

.

.

.

. 170

Index

Buffers

for

Direct

Access

.

.

.

.

. 170

Example

of

Buffer

Allocation

for

Direct

Access

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Allocating

Buffers

for

Sequential

Access

.

.

. 173

Allocating

Buffers

for

a

Path

.

.

.

.

.

.

. 174

Acquiring

Buffers

.

.

.

.

.

.

.

.

.

.

. 174

Using

Index

Options

.

.

.

.

.

.

.

.

.

.

. 175

Increasing

Virtual

Storage

for

Index

Set

Records

175

Avoiding

Control

Area

Splits

.

.

.

.

.

.

. 175

Putting

the

Index

and

Data

on

Separate

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Obtaining

Diagnostic

Information

.

.

.

.

.

. 176

Migrating

from

the

Mass

Storage

System

.

.

.

. 176

Using

Hiperbatch

.

.

.

.

.

.

.

.

.

.

.

. 176

Chapter

11.

Processing

Control

Intervals

.

.

. 177

Access

to

a

Control

Interval

.

.

.

.

.

.

.

. 178

Structure

of

Control

Information

.

.

.

.

.

.

. 179

CIDF—Control

Interval

Definition

Field

.

.

. 180

RDF—Record

Definition

Field

.

.

.

.

.

.

. 180

Control

Field

Values

for

Nonspanned

Key-Sequenced,

Entry-Sequenced,

and

Variable-Length

Relative

Record

Data

Sets

.

. 181

Control

Field

Values

for

Spanned

Key-Sequenced

and

Entry-Sequenced

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Control

Field

Values

for

Fixed-Length

Relative-Record

Data

Sets

.

.

.

.

.

.

. 184

User

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Improved

Control

Interval

Access

.

.

.

.

.

. 185

Opening

an

Object

for

Improved

Control

Interval

Access

.

.

.

.

.

.

.

.

.

.

.

. 185

Processing

a

Data

Set

with

Improved

Control

Interval

Access

.

.

.

.

.

.

.

.

.

.

.

. 185

Fixing

Control

Blocks

and

Buffers

in

Real

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Control

Blocks

in

Common

(CBIC)

Option

.

.

. 186

Chapter

12.

Sharing

VSAM

Data

Sets

.

.

.

. 189

70

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Subtask

Sharing

.

.

.

.

.

.

.

.

.

.

.

. 190

Building

a

Single

Control

Block

Structure

.

.

. 190

Resolving

Exclusive

Control

Conflicts

.

.

.

. 191

Preventing

Deadlock

in

Exclusive

Control

of

Shared

Resources

.

.

.

.

.

.

.

.

.

.

. 193

Data

Set

Name

Sharing

.

.

.

.

.

.

.

. 193

Consistent

Processing

Options

.

.

.

.

.

. 194

Shared

Subtasks

.

.

.

.

.

.

.

.

.

. 195

Cross-Region

Sharing

.

.

.

.

.

.

.

.

.

.

. 195

Cross-Region

Share

Options

.

.

.

.

.

.

. 195

Read

Integrity

During

Cross-Region

Sharing

.

. 196

Invalidating

Index

Buffers

.

.

.

.

.

.

. 197

Invalidating

Data

Buffers

.

.

.

.

.

.

. 197

Write

Integrity

During

Cross-Region

Sharing

197

Cross-System

Sharing

.

.

.

.

.

.

.

.

.

. 198

Control

Block

Update

Facility

(CBUF)

.

.

.

.

. 199

Considerations

for

CBUF

Processing

.

.

.

.

. 200

Checkpoints

for

Shared

Data

Sets

.

.

.

.

.

. 201

Techniques

of

Data

Sharing

.

.

.

.

.

.

.

.

. 201

Cross-Region

Sharing

.

.

.

.

.

.

.

.

.

. 201

Cross-System

Sharing

.

.

.

.

.

.

.

.

. 203

User

Access

to

VSAM

Shared

Information

.

.

. 204

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

Provision

of

a

Resource

Pool

.

.

.

.

.

.

.

. 205

Building

a

Resource

Pool:

BLDVRP

.

.

.

.

. 205

Using

Hiperspace

Buffers

with

LSR

.

.

.

. 206

Deciding

the

Size

of

a

Virtual

Resource

Pool

207

Displaying

Information

about

an

Unopened

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Displaying

Statistics

about

a

Buffer

Pool

.

. 208

Connecting

a

Data

Set

to

a

Resource

Pool:

OPEN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Deleting

a

Resource

Pool

Using

the

DLVRP

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Management

of

I/O

Buffers

for

Shared

Resources

210

Deferring

Write

Requests

.

.

.

.

.

.

.

. 210

Relating

Deferred

Requests

by

Transaction

ID

211

Writing

Buffers

Whose

Writing

is

Deferred:

WRTBFR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Handling

Exits

to

Physical

Error

Analysis

Routines

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Using

the

JRNAD

Exit

with

Shared

Resources

.

.

.

.

.

.

.

.

.

.

.

. 212

Accessing

a

Control

Interval

with

Shared

Resources

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Locating

an

RBA

in

a

Buffer

Pool:

SCHBFR

213

Marking

a

Buffer

for

Output:

MRKBFR

.

.

. 213

Restrictions

and

Guidelines

for

Shared

Resources

214

Chapter

14.

Using

VSAM

Record-Level

Sharing

217

Controlling

Access

to

VSAM

Data

Sets

.

.

.

.

. 217

Accessing

Data

Sets

Using

DFSMStvs

and

VSAM

Record-Level

Sharing

.

.

.

.

.

.

.

.

.

.

. 217

Record-Level

Sharing

CF

Caching

.

.

.

.

. 218

Using

VSAM

RLS

with

CICS

.

.

.

.

.

.

. 219

Recoverable

and

Nonrecoverable

Data

Sets

221

CICS

Transactional

Recovery

for

VSAM

Recoverable

Data

Sets

.

.

.

.

.

.

.

. 221

Using

VSAM

RLS

Outside

of

CICS

.

.

.

.

. 222

Read

Sharing

of

Recoverable

Data

Sets

.

.

.

. 222

Read-Sharing

Integrity

across

KSDS

CI

and

CA

Splits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Read

and

Write

Sharing

of

Nonrecoverable

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Using

Non-RLS

Access

to

VSAM

Data

Sets

.

. 223

Comparing

RLS

Access

and

Non-RLS

Access

223

Share

Options

.

.

.

.

.

.

.

.

.

.

. 223

Locking

.

.

.

.

.

.

.

.

.

.

.

.

. 223

VSAM

Options

Not

Used

by

RLS

.

.

.

. 225

Requesting

VSAM

RLS

Run-Mode

.

.

.

.

. 226

Using

VSAM

RLS

Read

Integrity

Options

.

.

. 226

Using

VSAM

RLS

with

ESDS

.

.

.

.

.

.

.

. 227

Specifying

Read

Integrity

.

.

.

.

.

.

.

.

. 228

Specifying

a

Timeout

Value

for

Lock

Requests

.

. 228

Chapter

15.

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

.

.

.

. 229

EXAMINE

Command

.

.

.

.

.

.

.

.

.

. 229

Types

of

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 229

EXAMINE

Users

.

.

.

.

.

.

.

.

.

.

. 229

How

to

Run

EXAMINE

.

.

.

.

.

.

.

.

.

. 230

Deciding

to

Run

INDEXTEST,

DATATEST,

or

Both

Tests

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Skipping

DATATEST

on

Major

INDEXTEST

Errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Examining

a

User

Catalog

.

.

.

.

.

.

.

. 230

Understanding

Message

Hierarchy

.

.

.

.

. 231

Controlling

Message

Printout

.

.

.

.

.

.

. 231

Samples

of

Output

from

EXAMINE

Runs

.

.

.

. 232

INDEXTEST

and

DATATEST

Tests

of

an

Error-Free

Data

Set

.

.

.

.

.

.

.

.

.

. 232

INDEXTEST

and

DATATEST

Tests

of

a

Data

Set

with

a

Structural

Error

.

.

.

.

.

.

.

.

. 232

INDEXTEST

and

DATATEST

Tests

of

a

Data

Set

with

a

Duplicate

Key

Error

.

.

.

.

.

.

.

. 233

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

Guidelines

for

Coding

Exit

Routines

.

.

.

.

.

. 235

Programming

Guidelines

.

.

.

.

.

.

.

.

. 236

Multiple

Request

Parameter

Lists

or

Data

Sets

237

Return

to

a

Main

Program

.

.

.

.

.

.

.

. 237

IGW8PNRU

Routine

for

Batch

Override

.

.

.

. 238

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 238

Programming

Considerations

.

.

.

.

.

.

. 238

EODAD

Exit

Routine

to

Process

End

of

Data

.

.

. 239

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 239

Programming

Considerations

.

.

.

.

.

.

. 240

EXCEPTIONEXIT

Exit

Routine

.

.

.

.

.

.

. 240

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 240

Programming

Considerations

.

.

.

.

.

.

. 240

JRNAD

Exit

Routine

to

Journalize

Transactions

.

. 241

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 241

Programming

Considerations

.

.

.

.

.

.

. 241

Journalizing

Transactions

.

.

.

.

.

.

. 242

RBA

Changes

.

.

.

.

.

.

.

.

.

.

. 242

Control

Interval

Splits

.

.

.

.

.

.

.

. 242

Parameter

List

.

.

.

.

.

.

.

.

.

.

. 244

LERAD

Exit

Routine

to

Analyze

Logical

Errors

.

. 247

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 248

Part

2.

VSAM

Data

Sets

71

|

|

Programming

Considerations

.

.

.

.

.

.

. 248

RLSWAIT

Exit

Routine

.

.

.

.

.

.

.

.

.

. 248

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 249

Request

Environment

.

.

.

.

.

.

.

.

.

. 249

SYNAD

Exit

Routine

to

Analyze

Physical

Errors

250

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 250

Programming

Considerations

.

.

.

.

.

.

. 250

Example

of

a

SYNAD

User-Written

Exit

Routine

251

UPAD

Exit

Routine

for

User

Processing

.

.

.

. 252

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 253

Programming

Considerations

.

.

.

.

.

.

. 254

User-Security-Verification

Routine

.

.

.

.

.

. 255

Chapter

17.

Using

31-Bit

Addressing

Mode

with

VSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

VSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Chapter

18.

Using

Job

Control

Language

for

VSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Using

JCL

Statements

and

Keywords

.

.

.

.

. 259

Data

Set

Name

.

.

.

.

.

.

.

.

.

.

.

. 259

Disposition

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Creating

VSAM

Data

Sets

with

JCL

.

.

.

.

.

. 260

Temporary

VSAM

Data

Sets

.

.

.

.

.

.

. 262

Data

Set

Names

.

.

.

.

.

.

.

.

.

. 262

Allocation

.

.

.

.

.

.

.

.

.

.

.

. 262

Restrictions

for

Temporary

VSAM

Data

Sets

262

Examples

Using

JCL

to

Allocate

VSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Example

1:

Allocate

a

Key-Sequenced

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Example

2:

Allocate

a

System-Managed

Key-Sequenced

Data

Set

Using

Keywords

.

. 264

Example

3:

Allocate

a

VSAM

Data

Set

Using

Keyword

Defaults

.

.

.

.

.

.

.

.

.

. 264

Example

4:

Allocate

a

Temporary

VSAM

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Example

5:

Allocate

a

Temporary

VSAM

Data

Set

Taking

All

Defaults

.

.

.

.

.

. 265

Retrieving

an

Existing

VSAM

Data

Set

.

.

.

.

. 266

Migration

Consideration

.

.

.

.

.

.

.

.

. 266

Keywords

Used

to

Process

VSAM

Data

Sets

.

. 266

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

.

.

.

.

.

.

.

. 269

Access

to

a

Key-Sequenced

Data

Set

Index

.

.

. 269

Access

to

an

Index

with

GETIX

and

PUTIX

.

. 269

Access

to

the

Index

Component

Alone

.

.

.

. 269

Prime

Index

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Index

Levels

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Format

of

an

Index

Record

.

.

.

.

.

.

.

.

. 273

Header

Portion

.

.

.

.

.

.

.

.

.

.

.

. 273

Free

Control

Interval

Entry

Portion

.

.

.

.

. 275

Index

Entry

Portion

.

.

.

.

.

.

.

.

.

. 275

Key

Compression

.

.

.

.

.

.

.

.

.

.

.

. 276

Index

Update

Following

a

Control

Interval

Split

279

Index

Entries

for

a

Spanned

Record

.

.

.

.

. 280

72

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

VSAM

Data

Formats

73

VSAM

Data

Striping

88

Selection

of

VSAM

Data

Set

Types

77

Extended-Format

VSAM

Data

Sets

87

Access

to

Records

in

a

VSAM

Data

Set

93

Access

to

Records

through

Alternate

Indexes

96

Data

Compression

99

VSAM

Data

Formats

The

organization

of

data

in

all

VSAM

data

sets,

except

linear

data

sets,

is

arranged

in

records,

also

called

logical

records.

A

logical

record

is

the

user

record

requested

from,

or

given

to,

the

VSAM

record

management

function.

Logical

records

of

VSAM

data

sets

are

stored

differently

from

logical

records

in

non-VSAM

data

sets.

VSAM

stores

records

in

control

intervals.

A

control

interval

is

a

continuous

area

of

direct

access

storage

that

VSAM

uses

to

store

data

records

and

control

information

that

describes

the

records.

Whenever

a

record

is

retrieved

from

direct

access

storage,

the

entire

control

interval

containing

the

record

is

read

into

a

VSAM

I/O

buffer

in

virtual

storage.

The

desired

record

is

transferred

from

the

VSAM

buffer

to

a

user-defined

buffer

or

work

area.

Figure

3

shows

how

a

logical

record

is

retrieved

from

direct

access

storage.

Data

Set

Size

The

maximum

size

of

a

VSAM

data

set

is

4

GB

(1

073

741

824

bytes)

unless

it

is

defined

with

a

data

class

that

specifies

a

DSNTYPE

of

EXT

(extended

format)

with

the

extended

addressability

(also

in

the

data

class)

set

to

Y

(yes).

A

VSAM

data

set

DASD storage

CI I/O path

CI = Control interval
R = Record

Virtual storage

I/O buffer

R1 R2 R3

R2
Work
area

Figure

3.

VSAM

Logical

Record

Retrieval

©

Copyright

IBM

Corp.

1987,

2004

73

can

be

expanded

to

123

extents

per

volume

and

up

to

255

extents

per

component.

A

striped

VSAM

component

can

have

up

to

255

extents.

VSAM

attempts

to

extend

a

data

set

when

the

total

number

of

extents

is

less

than

250.

Each

attempt

to

extend

the

data

set

might

result

in

up

to

five

extents.

Related

reading:

For

information

about

space

allocation

for

VSAM

data

sets,

see

“Allocating

Space

for

VSAM

Data

Sets”

on

page

106.

Control

Intervals

The

size

of

control

intervals

can

vary

from

one

VSAM

data

set

to

another,

but

all

the

control

intervals

within

the

data

portion

of

a

particular

data

set

must

be

the

same

length.

Use

the

access

method

services

DEFINE

command

and

let

VSAM

select

the

size

of

a

control

interval

for

a

data

set,

or

request

a

particular

control

interval

size.

For

information

about

selecting

the

best

control

interval

size,

see

“Optimizing

Control

Interval

Size”

on

page

155.

A

control

interval

consists

of:

v

Logical

records

v

Free

space

v

Control

information

fields

In

a

linear

data

set

all

of

the

control

interval

bytes

are

data

bytes.

There

is

no

imbedded

control

information.

Control

Information

Fields

Figure

4

contains

control

information

consisting

of

two

types

of

fields:

one

control

interval

definition

field

(CIDF),

and

one

or

more

record

definition

fields

(RDFs).

CIDFs

are

4

bytes

long,

and

contain

the

amount

and

location

of

free

space.

RDFs

are

3

bytes

long,

and

describe

the

length

of

records

and

how

many

adjacent

records

are

of

the

same

length.

If

two

or

more

adjacent

records

have

the

same

length,

only

two

RDFs

are

used

for

this

group.

One

RDF

gives

the

length

of

each

record,

and

the

other

gives

the

number

of

consecutive

records

of

the

same

length.

Figure

5

shows

RDFs

for

records

of

the

same

and

different

lengths:

Figure

4.

Control

Interval

Format

Organizing

VSAM

Data

Sets

74

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

a

record

exceeds

the

maximum

record

length,

an

error

message

is

generated.

If

a

record

in

an

entry-sequenced

or

key-sequenced

data

set,

or

variable-length

RRDS

is

smaller

than

the

maximum

record

length,

VSAM

saves

disk

space

by

storing

the

actual

record

length

in

the

RDF.

However,

in

a

fixed-length

RRDS,

records

do

not

vary

in

length.

The

RDF

reflects

the

length

of

the

record

slot,

and

cannot

be

adjusted.

Compressed

Control

Information

Field

Compressed

data

records

in

an

extended-format

key-sequenced

data

set

have

a

different

format

than

noncompressed

data

records.

This

format

includes

a

record

prefix

that

contains

internal

compression

information.

When

the

record

is

a

spanned

record,

each

segment

of

the

record

contains

a

segment

prefix

with

R1 R2 R3 FS RDF
2

RDF
3

CIDF

Record length 160 160 160 3 3 422

Control interval 1

Control interval size = 512 bytes
Record length = 160-byte records
Record definition fields: Only 2 RDFs are needed because all
records are the same length.

R1 R2 R3 R4 FS RDF
4

RDF
3

RDF
2

RDF
1

CIDF

130 70 110 46 3 3 3 3 4140

Control interval 2

Control interval size = 512 bytes
Record length: All records have different lengths
Record definition fields: One RDF is required for each logical record
(RDF 1 for record 1, RDF 2 for record 2, and so forth.)

R1 R2 R3 R4 R5 FS RDF RDF RDF RDF CIDF

FS = Free space

80 80 80 93 63 3 3 3 3 4100

Control Interval 3

Control interval size = 512 bytes
Record length: Records 1 through 3 are 80-byte records
Records 4 and 5 have different length
Record definition fields: Two RDFs are used for records 1 through 3
Record 4 and 5 each have their own RDF

Figure

5.

Record

Definition

Fields

of

Control

Intervals

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

75

information

similar

to

the

record

prefix

for

describing

the

segment.

The

length

of

the

record

prefix

for

nonspanned

records

is

3

bytes,

and

the

length

for

spanned

records

is

5

bytes.

The

stored

record

format

has

no

affect

on

the

data

seen

by

the

user

as

a

result

of

a

VSAM

GET

request.

In

addition,

no

special

processing

is

required

to

place

the

record

in

the

data

set

in

a

compressed

format.

The

presence

of

the

record

prefix

does

result

in

several

incompatibilities

that

can

affect

the

definition

of

the

key-sequenced

data

set

or

access

to

the

records

in

the

key-sequenced

data

set.

When

a

VSAM

data

set

is

in

compressed

format,

VSAM

must

be

used

to

extract

and

expand

each

record

to

obtain

data

that

is

usable.

If

a

method

other

than

VSAM

is

used

to

process

a

compressed

data

set

and

the

method

does

not

recognize

the

record

prefix,

the

end

result

is

unpredictable

and

could

result

in

loss

of

data.

See

“Compressed

Data”

on

page

92.

Control

Areas

The

control

intervals

in

a

VSAM

data

set

are

grouped

together

into

fixed-length

contiguous

areas

of

direct

access

storage

called

control

areas.

A

VSAM

data

set

is

actually

composed

of

one

or

more

control

areas.

The

number

of

control

intervals

in

a

control

area

is

fixed

by

VSAM.

The

maximum

size

of

a

control

area

is

one

cylinder,

and

the

minimum

size

is

one

track

of

DASD

storage.

When

you

specify

the

amount

of

space

to

be

allocated

to

a

data

set,

you

implicitly

define

the

control

area

size.

For

information

about

defining

an

alternate

index,

see

“Defining

Alternate

Indexes”

on

page

117.

For

information

about

defining

an

alternate

index,

see

“Optimizing

Control

Area

Size”

on

page

159.

Spanned

Records

Sometimes

a

record

is

larger

than

the

control

interval

size

used

for

a

particular

data

set.

In

VSAM,

you

do

not

need

to

break

apart

or

reformat

such

records,

because

you

can

specify

spanned

records

when

defining

a

data

set.

The

SPANNED

parameter

permits

a

record

to

extend

across

or

span

control

interval

boundaries.

Spanned

records

might

reduce

the

amount

of

DASD

space

required

for

a

data

set

when

data

records

vary

significantly

in

length,

or

when

the

average

record

length

is

larger

compared

to

the

CI

size.

The

following

figures

show

the

use

of

spanned

records

for

more

efficient

use

of

space.

In

Figure

6,

each

control

interval

is

10

240

bytes

long.

In

Figure

6

control

interval

1

contains

a

2000-byte

record.

Control

interval

2

contains

a

10

000-byte

record.

Control

interval

3

contains

a

2000-byte

record.

All

together,

these

three

records

use

30

720

bytes

of

storage.

R R RFree space Free spaceFS
Con-
trol
info

Con-
trol
info

Con-
trol
info

CI1

CI length 10240 bytes

CI2 CI3

Figure

6.

Data

Set

with

Nonspanned

Records

Organizing

VSAM

Data

Sets

76

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Figure

7

contains

a

data

set

with

the

same

space

requirements

as

in

Figure

6,

but

one

that

permits

spanned

records.

The

control

interval

size

is

reduced

to

4096

bytes.

When

the

record

to

be

stored

is

larger

than

the

control

interval

size,

the

record

is

spanned

between

control

intervals.

In

Figure

7,

control

interval

1

contains

a

2000-byte

record.

Control

intervals

2,

3,

and

4

together

contain

one

10

000-byte

record.

Control

interval

3

contains

a

2000-byte

record.

By

changing

control

interval

size

and

permitting

spanned

records,

you

can

store

the

three

records

in

20

480

bytes,

reducing

the

amount

of

storage

needed

by

10

240

bytes.

Remember

the

following

rules:

v

A

spanned

record

always

begins

on

a

control

interval

boundary

and

fills

more

than

one

control

interval

within

a

single

control

area.

v

For

compressed

data

sets

with

spanned

records,

the

length

of

the

record

prefix

is

5

bytes.

Because

of

the

additional

5

bytes,

the

key

offset

plus

the

key

length

(that

is,

relative

key

position)

must

be

less

than

or

equal

to

the

CI

size

less

15.

v

For

key-sequenced

data

sets,

the

entire

key

field

of

a

spanned

record

must

be

in

the

first

control

interval.

v

The

control

interval

containing

the

last

segment

of

a

spanned

record

might

also

contain

unused

space.

Use

the

unused

space

only

to

extend

the

spanned

record;

it

cannot

contain

all

or

part

of

any

other

record.

v

Spanned

records

can

only

be

used

with

key-sequenced

data

sets

and

entry-sequenced

data

sets.

v

To

span

control

intervals,

you

must

specify

the

SPANNED

parameter

when

you

define

your

data

set.

VSAM

decides

whether

a

record

is

spanned

or

nonspanned,

depending

on

the

control

interval

length

and

the

record

length.

Spanned/nonspanned

can

also

be

specified

in

the

data

class.

v

Locate

mode

(OPTCD=LOC

on

the

RPL)

is

not

a

valid

processing

mode

for

spanned

records.

A

nonzero

return

code

will

be

issued

if

locate

mode

is

used.

Selection

of

VSAM

Data

Set

Types

VSAM

supports

several

data

set

types:

entry-sequenced

(ESDS),

key-sequenced

(KSDS),

linear

(LDS),

fixed-length,

and

variable-length

relative

record

(RRDS).

Before

you

select

a

data

set

type,

consider

the

following

questions:

v

Will

you

need

to

access

the

records

in

sequence,

randomly,

or

both

ways?

v

Are

all

the

records

the

same

length?

v

Will

the

record

length

change?

v

How

often

will

you

need

to

move

records?

v

How

often

will

you

need

to

delete

records?

v

Do

you

want

spanned

records?

v

Do

you

want

to

keep

the

data

in

order

by

the

contents

of

the

record?

v

Do

you

want

to

access

the

data

by

an

alternate

index?

R R
R

seg
3

R seg 1 R seg 2FS FS FS
Con-
trol
info

Con-
trol
info

Con-
trol
info

Con-
trol
info

Con-
trol
info

CI1

CI length 4096 bytes

CI3CI2 CI4 CI5

Figure

7.

Data

Set

with

Spanned

Records

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

77

v

Do

you

want

to

use

access

method

services

utilities

with

an

IBM

DB2®

cluster?

Entry-sequenced

data

sets

are

best

for

the

following

kinds

of

applications:

v

Applications

that

require

sequential

access

only.

It

is

better

to

use

entry-sequenced

data

sets

or

variable-length

RRDSs

for

sequential

access,

because

they

support

variable-length

records

and

can

be

expanded

as

records

are

added.

v

Online

applications

that

need

to

use

an

existing

entry-sequenced

data

set.

If

you

want

to

use

an

entry-sequenced

data

set

in

an

online

application,

load

the

data

set

sequentially

by

a

batch

program

and

access

the

data

set

directly

by

the

relative

byte

address

(RBA).

Key-sequenced

data

sets

are

best

for

the

following

kinds

of

applications:

v

Applications

that

require

that

each

record

have

a

key

field.

v

Applications

that

require

both

direct

and

sequential

access.

v

Applications

that

use

high-level

languages

which

do

not

support

RBA

use.

v

Online

applications

usually

use

key-sequenced

data

sets.

v

You

want

to

access

the

data

by

an

alternate

index.

v

The

advantage

of

key-sequenced

data

sets

over

fixed-length

RRDS

using

direct

access

is

ease

of

programming.

v

You

want

to

have

compressed

data.

Linear

data

sets,

although

rarely

used,

are

best

for

the

following

kinds

of

applications:

v

Specialized

applications

that

store

data

in

linear

data

sets

v

Data-in-virtual

(DIV)

Relative-record

data

sets

are

best

for

the

following

kinds

of

applications:

v

Applications

that

require

direct

access

only.

v

Applications

in

which

there

is

a

one-to-one

correspondence

between

records

and

relative

record

numbers.

For

example,

you

could

assign

numeric

keys

to

records

sequentially,

starting

with

the

value

1.

Then,

you

could

access

a

RRDS

both

sequentially

and

directly

by

key.

v

Fixed-length

RRDSs

use

less

storage

and

are

usually

faster

at

retrieving

records

than

key-sequenced

data

sets

or

variable-length

RRDSs.

v

If

the

records

vary

in

length,

use

a

variable-length

RRDS.

v

Variable-length

RRDSs

can

be

used

for

COBOL

applications.

Entry-Sequenced

Data

Sets

An

entry-sequenced

data

set

is

comparable

to

a

sequential

(non-VSAM)

data

set.

It

contains

records

that

can

be

either

spanned

or

nonspanned.

As

Figure

8

on

page

79

shows,

records

are

sequenced

by

the

order

of

their

entry

in

the

data

set,

rather

than

by

a

key

field

in

the

logical

record.

Organizing

VSAM

Data

Sets

78

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Records

are

added

only

at

the

end

of

the

data

set.

Existing

records

cannot

be

deleted.

If

you

want

to

delete

a

record,

you

must

flag

that

record

as

inactive.

As

far

as

VSAM

is

concerned,

the

record

is

not

deleted.

Records

can

be

updated,

but

they

cannot

be

lengthened.

To

change

the

length

of

a

record

in

an

entry-sequenced

data

set,

you

must

store

it

either

at

the

end

of

the

data

set

(as

a

new

record)

or

in

the

place

of

a

record

of

the

same

length

that

you

have

flagged

as

inactive

or

that

is

no

longer

required.

When

a

record

is

loaded

or

added,

VSAM

indicates

its

relative

byte

address

(RBA).

The

RBA

is

the

offset

of

this

logical

record

from

the

beginning

of

the

data

set.

The

first

record

in

a

data

set

has

an

RBA

of

0.

The

value

of

the

RBA

for

the

second

and

subsequent

records

depends

on

whether

the

file

is

spanned

and

on

the

control

interval

size

chosen

for

the

file,

either

manually

or

automatically.

In

general,

it

is

not

possible

to

predict

the

RBA

of

each

record,

except

for

the

case

of

fixed-length

records

and

a

known

control

interval

size.

For

a

more

detailed

description

of

the

internal

format

of

VSAM

files,

see

“VSAM

Data

Formats”

on

page

73.

You

build

an

alternate

index

to

keep

track

of

these

RBAs.

Although

an

entry-sequenced

data

set

does

not

contain

an

index

component,

alternate

indexes

are

permitted.

See

“Defining

Alternate

Indexes”

on

page

117.

Figure

9

shows

the

record

lengths

and

corresponding

RBAs

for

the

data

set

shown

in

Figure

8.

Table

5

lists

the

operations

and

types

of

access

for

processing

entry-sequenced

data

sets.

Table

5.

Entry-Sequenced

Data

Set

Processing

Operation

Sequential

Access

Direct

Access

Loading

the

data

set

Yes

No

Adding

records

Space

after

the

last

record

is

used

for

adding

records

No

Retrieving

records

Yes

(returned

in

entry

sequence)

Yes

(by

RBA)

Updating

records

Yes,

but

you

cannot

change

the

record

length

Yes

(by

RBA),

but

you

cannot

change

the

record

length

Deleting

records

Records

cannot

be

deleted,

but

you

can

reuse

its

space

for

a

record

of

the

same

length

Records

cannot

be

deleted,

but

you

can

reuse

its

space

for

a

record

of

the

same

length

R5

R1 R2 R3

R4

Figure

8.

Entry-Sequenced

Data

Set

R1 R2 R3 R4 R5

Record Length

RBA X'00' X'62' X'9A' X'D6' X'11C' X'162'

98 56 60 70 70

Figure

9.

Example

of

RBAs

of

an

Entry-Sequenced

Data

Set

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

79

Simulated

VSAM

Access

to

UNIX

files

You

can

have

simulated

VSAM

access

to

a

UNIX

file

(simulated

as

an

ESDS)

by

specifying

PATH=pathname

in

the

JCL

DD

statement,

SVC

99,

or

TSO

ALLOCATE

command.

For

information

about

access

using

MVS

access

methods,

see

“Processing

UNIX

Files

with

an

Access

Method”

on

page

20.

When

you

use

simulated

VSAM,

the

application

program

sees

the

UNIX

file

as

if

it

were

an

ESDS.

Because

the

system

does

not

actually

store

UNIX

files

as

ESDSs,

the

system

cannot

simulate

all

the

characteristics

of

an

ESDS.

Certain

macros

and

services

have

incompatibilities

or

restrictions

when

dealing

with

UNIX

files.

Related

reading:

For

information

about

VSAM

interfaces

and

UNIX

files,

see

Chapter

28,

“Processing

z/OS

UNIX

Files,”

on

page

473

and

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Record

Processing

for

UNIX

Files

Record

boundaries

are

not

maintained

within

binary

files.

Text

files

are

presumed

to

be

EBCDIC.

Repositioning

functions

(such

as

POINT,

CLOSE

TYPE=T,

GET

DIRECT)

are

not

permitted

for

FIFO

or

character

special

files.

When

a

file

is

accessed

as

binary,

the

length

of

each

record

is

returned

in

the

RPL,

except,

possibly,

the

last

record.

Use

the

SHOWCB

macro

with

FIELDS=RECLEN

to

retrieve

the

length.

When

a

file

is

accessed

as

text,

if

any

record

in

the

file

consists

of

zero

bytes

(that

is,

a

text

delimiter

is

followed

by

another

text

delimiter),

the

record

returned

consists

of

one

blank.

If

any

record

is

longer

than

the

length

of

the

buffer,

it

results

in

an

error

return

code

for

GET

(for

an

ACB).

Restrictions

on

UNIX

Files

The

following

VSAM

restrictions

are

associated

with

UNIX

files:

v

Only

ESDS

is

simulated.

v

No

file

sharing

or

buffer

sharing

is

supported

except

for

multiple

readers

and,

of

course,

for

a

reader

and

a

writer

for

FIFO.

v

STRNO

>

1

is

not

supported.

v

Chained

RPLs

are

not

supported.

v

Shared

resources

is

not

supported.

v

Updated

and

backward

processing

is

not

supported.

v

Direct

processing

or

POINT

for

FIFO

and

character

special

files

are

not

supported.

v

There

is

no

catalog

support

for

HFS

data

sets.

v

Alternate

indexes

are

not

supported.

v

There

is

no

support

for

JRNAD,

UPAD,

or

the

EXCEPTION

exit.

v

There

is

no

cross-memory

support.

v

ERASE,

VERIFY,

and

SHOWCAT

are

not

supported.

v

Certain

SHOWCB

requests

return

dummy

values.

v

Variable-length

binary

records

do

not

retain

record

boundaries

during

conversion

to

a

byte

stream.

During

reading,

each

record,

except

the

last,

is

assumed

to

be

the

maximum

length.

Organizing

VSAM

Data

Sets

80

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

To

specify

the

maximum

record

size,

code

the

LRECL

keyword

on

the

JCL

DD

statement,

SVC

99,

or

TSO

ALLOCATE.

If

not

specified,

the

default

is

32

767.

v

On

return

from

a

synchronous

PUT

or

a

CHECK

associated

with

an

asynchronous

PUT,

it

is

not

guaranteed

that

data

written

has

been

synchronized

to

the

output

device.

To

ensure

data

synchronization,

use

ENDREQ,

CLOSE,

or

CLOSE

TYPE=T.

v

There

is

no

CI

(control

interval)

access

(MACRF=CNV).

Services

and

Utilities

for

UNIX

Files

The

following

services

and

utilities

support

UNIX

files:

v

Access

method

services

(IDCAMS)

REPRO—REPRO

by

DD

name

is

supported

and

uses

QSAM.

v

IDCAMS

PRINT—PRINT

by

DD

name

is

supported

and

uses

QSAM.

Instead

of

displaying

’RBA

OF

RECORD’,

PRINT

displays

’RECORD

NUMBER’.

v

DEVTYPE

macro—DEVTYPE

provides

information

related

to

the

UNIX

file.

If

PATH

is

specified

in

the

DD

statement,

DEVTYPE

returns

a

return

code

of

0,

a

UCBTYP

simulated

value

of

X’00000103’,

and

a

maximum

block

size

of

32

760.

The

following

services

and

utilities

do

not

support

UNIX

files.

Unless

stated

otherwise,

these

services

and

utilities

return

an

error

or

unpredictable

value

when

issued

for

a

UNIX

file:

v

IDCAMS—ALTER,

DEFINE,

DELETE,

DIAGNOSE,

EXAMINE,

EXPORT,

IMPORT,

LISTCAT,

and

VERIFY

v

OBTAIN,

SCRATCH,

RENAME,

TRKCALC,

and

PARTREL

macros

These

macros

require

a

DSCB

or

UCB.

HFS

data

sets

do

not

have

DSCBs

or

valid

UCBs.

Guideline:

ISPF

Browse/Edit

does

not

support

UNIX

files,

but

you

can

use

the

OBROWSE

command.

Key-Sequenced

Data

Sets

In

a

key-sequenced

data

set,

logical

records

are

placed

in

the

data

set

in

ascending

collating

sequence

by

a

field,

called

the

key.

Figure

10

shows

that

the

key

contains

a

unique

value,

such

as

an

employee

number

or

invoice

number,

that

determines

the

record’s

collating

position

in

the

data

set.

The

key

must

be

in

the

same

position

in

each

record,

the

key

data

must

be

contiguous,

and

each

record’s

key

must

be

unique.

After

it

is

specified,

the

value

of

4265
Part number

Key Field

The key must be:

Unique
In the same position in each record
In the first segment of a spanned record

654
Invoice number

1598
Unit price

100
Quantity

Figure

10.

Record

of

a

Key-Sequenced

Data

Set

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

81

the

key

cannot

be

altered,

but

the

entire

record

can

be

erased

or

deleted.

For

compressed

data

sets,

the

key

itself

and

any

data

before

the

key

will

not

be

compressed.

When

a

new

record

is

added

to

the

data

set,

it

is

inserted

in

its

collating

sequence

by

key,

as

shown

in

Figure

11.

Table

6

lists

the

operations

and

types

of

access

for

processing

key-sequenced

data

sets.

Table

6.

Key-Sequenced

Data

Set

Processing

Operation

Sequential

Access

Direct

or

Skip-Sequential

Access

Loading

the

data

set

Yes

No

Adding

records

Yes

(records

must

be

written

in

key

sequence)

Yes

(records

are

added

randomly

by

key)

Retrieving

records

Yes

(records

are

returned

in

key

sequence)

Yes

(by

key)

Updating

records

Yes

Yes

Deleting

records

Yes

Yes

Free

Space

When

a

key-sequenced

data

set

is

defined,

unused

space

can

be

scattered

throughout

the

data

set

to

permit

records

to

be

inserted

or

lengthened.

The

unused

space

is

called

free

space.

When

a

new

record

is

added

to

a

control

interval

(CI)

or

an

existing

record

is

lengthened,

subsequent

records

are

moved

into

the

following

free

space

to

make

room

for

the

new

or

lengthened

record.

Conversely,

when

a

record

is

deleted

or

shortened,

the

space

given

up

is

reclaimed

as

free

space

for

later

use.

When

you

define

your

data

set,

use

the

FREESPACE

parameter

to

specify

what

percentage

of

each

CI

is

to

be

set

aside

as

free

space

when

the

data

set

is

initially

loaded.

Within

each

CA,

reserve

free

space

by

using

free

CIs.

If

you

have

free

space

in

your

CA,

it

is

easier

to

avoid

splitting

your

control

area

when

you

want

to

insert

additional

records

or

lengthen

existing

records.

When

you

define

your

data

set,

specify

what

percentage

of

the

control

area

is

to

be

set

aside

as

free

space,

using

the

FREESPACE

parameter.

For

information

about

specifying

the

optimal

amount

of

CI

and

CA

free

space,

see

“Optimizing

Free

Space

Distribution”

on

page

160.

Considerations

for

Increasing

Keys

and

Space

The

structure

of

VSAM

prime

indexes

for

a

KSDS

and

a

VRRDS

is

built

to

create

a

single

index

record

at

the

lowest

level

of

the

index,

the

sequence

set,

to

provide

198 389

654

Key Field

771

Figure

11.

Inserting

Records

into

a

Key-Sequenced

Data

Set

Organizing

VSAM

Data

Sets

82

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

pointers

to

each

CI

within

a

single

CA.

Each

entry

contains

a

compressed

value

representing

the

highest

key

that

can

be

contained

within

that

control

interval.

The

value

stored

for

the

control

interval

containing

records

with

the

highest

key

in

that

control

area

represents

the

highest

record-key

value

that

can

be

contained

in

that

control

area.

Once

all

the

records

are

deleted

from

any

single

control

interval,

the

current

high-key

value

is

no

longer

associated

with

that

control

interval’s

entry

in

the

sequence

set

record.

It

becomes

a

“free”

control

interval

in

which

records

containing

any

key

within

the

range

of

keys

for

that

control

area

can

be

inserted.

This

is

called

a

CI

reclaim.

However,

this

does

not

apply

when

it

is

the

last

empty

control

interval

within

the

control

area.

In

that

case,

the

high-key

value

for

that

control

interval

is

maintained

and

it

becomes

the

highest

key

for

any

record

that

can

be

inserted

into

that

control

area.

There

is

no

reclaim

capability

for

control

areas

that

is

comparable

to

that

provided

for

control

intervals.

What

can

occasionally

be

observed

as

a

normal

result

of

not

reclaiming

control

areas

is

data

sets

that

just

continue

to

grow

in

size.

This

will

result

when

applications

continually

add

records

with

keys

that

are

in

ascending

sequence,

followed

by

another

or

the

same

application

that

deletes

old

records

after

they

have

undergone

some

type

of

processing.

During

the

deletion

processing,

the

high-key

value

that

was

associated

with

that

CA

will

be

maintained,

requiring

that

only

records

falling

within

that

high-key

range

are

eligible

for

insertion

into

that

control

area.

Since

the

record

keys

are

always

getting

higher,

no

additional

records

will

qualify

for

insertion

into

these

empty

control

areas.

The

result

is

a

data

set

in

which

a

majority

of

the

space

is

occupied

by

empty

control

intervals.

When

such

a

condition

is

detected,

the

only

option

a

user

has

to

reclaim

this

space

is

to

rebuild

the

data

set.

This

will

require

a

logical

copy

of

the

data

set,

followed

by

a

deletion

of

the

old

data

set

and

a

reload

operation

from

the

logical

copy.

For

more

information,

see

z/OS

DFSMS:

Managing

Catalogs.

Insertion

of

a

Logical

Record

in

a

CI

Figure

12

shows

how

CI

free

space

is

used

to

insert

and

delete

a

logical

record

in

a

KSDS

or

variable-length

RRDS.

Two

logical

records

are

stored

in

the

first

control

interval

shown

in

Figure

12.

Each

logical

record

has

a

key

(11

and

14).

The

second

control

interval

shows

what

happens

when

you

insert

a

logical

record

with

a

key

of

12.

Figure

12.

Inserting

a

Logical

Record

into

a

CI

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

83

1.

Logical

record

12

is

inserted

in

its

correct

collating

sequence

in

the

CI.

2.

The

CI

definition

field

(CIDF)

is

updated

to

show

the

reduction

of

available

free

space.

3.

A

corresponding

record

definition

field

(RDF)

is

inserted

in

the

appropriate

location

to

describe

the

length

of

the

new

record.

When

a

record

is

deleted,

the

procedure

is

reversed,

and

the

space

occupied

by

the

logical

record

and

corresponding

RDF

is

reclaimed

as

free

space.

Prime

Index

A

key-sequenced

data

set

always

has

a

prime

index

that

relates

key

values

to

the

relative

locations

of

the

logical

records

in

a

data

set.

The

prime

index,

or

simply

index,

has

two

uses

in

locating:

v

The

collating

position

when

inserting

records

v

Records

for

retrieval

When

initially

loading

a

data

set,

records

must

be

presented

to

VSAM

in

key

sequence.

The

index

for

a

key-sequenced

data

set

is

built

automatically

by

VSAM

as

the

data

set

is

loaded

with

records.

When

a

data

control

interval

is

completely

loaded

with

logical

records,

free

space,

and

control

information,

VSAM

makes

an

entry

in

the

index.

The

entry

consists

of

the

highest

possible

key

in

the

data

control

interval

and

a

pointer

to

the

beginning

of

that

control

interval.

Key

Compression

The

key

in

an

index

entry

is

stored

by

VSAM

in

a

compressed

form.

Compressing

the

key

eliminates

from

the

front

and

back

of

a

key

those

bytes

that

are

not

necessary

to

distinguish

it

from

the

adjacent

keys.

Compression

helps

achieve

a

smaller

index

by

reducing

the

size

of

keys

in

index

entries.

VSAM

automatically

does

key

compression

in

any

key-sequenced

data

set.

It

is

independent

of

whether

the

data

set

is

in

compressed

format.

Control

Interval

Splits

When

a

data

set

is

first

loaded,

the

key

sequence

of

data

records

and

their

physical

order

are

the

same.

However,

when

data

records

are

inserted,

control

interval

splits

can

occur,

causing

the

data

control

intervals

to

have

a

physical

order

that

differs

from

the

key

sequence.

Linear

Data

Sets

A

linear

data

set

is

a

VSAM

data

set

with

a

control

interval

size

of

4096

bytes

to

32

768

bytes

in

increments

of

4096

bytes.

A

linear

data

set

does

not

have

imbedded

control

information.

All

linear

data

set

bytes

are

data

bytes.

A

linear

data

set

is

processed

as

an

entry-sequenced

data

set,

with

certain

restrictions.

Because

a

linear

data

set

does

not

contain

control

information

(CIDFs

and

RDFs),

it

cannot

be

accessed

as

if

it

contained

individual

records.

Access

a

linear

data

set

with

the

DIV

macro.

If

you

use

DIV

to

access

a

data

set,

the

control

interval

size

must

be

4096;

otherwise,

the

data

set

will

not

be

processed.

Related

reading:

For

information

about

using

data-in-virtual

(DIV),

see

z/OS

MVS

Programming:

Assembler

Services

Guide.

Organizing

VSAM

Data

Sets

84

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Fixed-Length

Relative-Record

Data

Sets

A

fixed-length

RRDS

consists

of

several

fixed-length

slots.

A

fixed-length

RRDS

is

defined

using

NUMBERED

and

a

RECORDSIZE

whose

average

and

maximum

lengths

are

the

same.

Each

slot

has

a

unique

relative

record

number,

and

the

slots

are

sequenced

by

ascending

relative

record

number.

Each

record

occupies

a

slot

and

is

stored

and

retrieved

by

the

relative

record

number

of

that

slot.

The

position

of

a

data

record

is

fixed;

its

relative

record

number

cannot

change.

A

fixed-length

RRDS

cannot

have

a

prime

index

or

an

alternate

index.

Because

the

slot

can

either

contain

data

or

be

empty,

a

data

record

can

be

inserted

or

deleted

without

affecting

the

position

of

other

data

records

in

the

fixed-length

RRDS.

The

record

definition

field

(RDF)

shows

whether

the

slot

is

occupied

or

empty.

Free

space

is

not

provided

in

a

fixed-length

RRDS

because

the

entire

data

set

is

divided

into

fixed-length

slots.

In

a

fixed-length

RRDS,

each

control

interval

contains

the

same

number

of

slots.

The

number

of

slots

is

determined

by

the

control

interval

size

and

the

record

length.

Figure

13

shows

the

structure

of

a

fixed-length

RRDS

after

adding

a

few

records.

Each

slot

has

a

relative

record

number

and

an

RDF.

Table

7

shows

the

access

options

available

for

RRDS

processing.

Table

7

lists

the

operations

and

types

of

access

for

processing

fixed-length

RRDSs.

Table

7.

RRDS

Processing

Operation

Sequential

Access

Direct

or

Skip-

Sequential

Access

Loading

the

data

set

Yes

Yes

Adding

records

Yes

(empty

slots

are

used)

Yes

(empty

slots

are

used)

Retrieving

records

Yes

Yes

(by

relative

record

number)

Figure

13.

Fixed-length

Relative-Record

Data

Set

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

85

Table

7.

RRDS

Processing

(continued)

Operation

Sequential

Access

Direct

or

Skip-

Sequential

Access

Updating

records

Yes

Yes

Deleting

records

Yes

(a

slot

given

up

by

a

deleted

record

can

be

reused)

Yes

(a

slot

given

up

by

a

deleted

record

can

be

reused)

Variable-Length

Relative-Record

Data

Sets

A

variable-length

RRDS

(VRRDS)

is

similar

to

a

fixed-length

RRDS,

except

that

it

contains

variable-length

records.

Each

record

has

a

unique

relative

record

number,

and

is

placed

in

ascending

relative

record

number

order.

Each

record

is

stored

and

retrieved

using

its

relative

record

number.

Unlike

a

fixed-length

RRDS,

a

variable-length

RRDS

does

not

have

slots.

The

relative

record

number

of

a

record

cannot

change.

When

that

record

is

erased,

the

relative

record

number

can

be

reused

for

a

new

record.

You

must

load

the

variable-length

RRDS

sequentially

in

ascending

relative

record

number

order.

To

define

a

variable-length

RRDS,

specify

NUMBERED

and

RECORDSIZE.

The

average

record

length

and

maximum

record

length

in

RECORDSIZE

must

be

different.

Free

space

is

used

for

inserting

and

lengthening

variable-length

RRDS

records.

When

a

record

is

deleted

or

shortened,

the

space

given

up

is

reclaimed

as

free

space

for

later

use.

When

you

define

your

data

set,

use

the

FREESPACE

parameter

to

specify

what

percentage

of

each

control

interval

and

control

area

is

to

be

set

aside

as

free

space

when

the

data

set

is

initially

loaded.

“Insertion

of

a

Logical

Record

in

a

CI”

on

page

83

shows

how

free

space

is

used

to

insert

and

delete

a

logical

record.

A

variable-length

RRDS

cannot

have

spanned

records

and

alternate

indexes.

VRRDS

is

a

KSDS

processed

as

an

RRDS

so

a

prime

index

is

created.

Variable-length

RRDS

performance

is

similar

to

a

key-sequenced

data

set,

and

is

slower

than

for

a

fixed-length

RRDS.

Table

8

shows

the

operations

available

for

key-sequenced

data

sets

and

direct

or

skip-sequential

access.

Table

8.

Variable-Length

RRDS

Processing

Operation

Sequential

Access

Direct

or

Skip-

Sequential

Access

Loading

the

data

set

Yes,

in

ascending

relative

record

number

order

No

Adding

records

Yes

Yes

(free

space

is

used)

Retrieving

records

Yes

Yes

(by

relative

record

number)

Updating

records

Yes

Yes

Deleting

records

Yes

(free

space

is

reclaimed)

Yes

(free

space

is

reclaimed)

Summary

of

VSAM

Data

Set

Types

Table

9

summarizes

what

each

data

set

format

offers.

Organizing

VSAM

Data

Sets

86

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

9.

Comparison

of

ESDS,

KSDS,

Fixed-Length

RRDS,

Variable-Length

RRDS,

and

Linear

Data

Sets

ESDS

KSDS

Fixed-Length

RRDS

Variable-Length

RRDS

Linear

Data

Sets

Records

are

in

order

as

they

are

entered

Records

are

in

collating

sequence

by

key

field

Records

are

in

relative

record

number

order

Records

are

in

relative

record

number

order

No

processing

at

record

level

Direct

access

by

RBA

Direct

access

by

key

or

by

RBA

Direct

access

by

relative

record

number

Direct

access

by

relative

record

number

Access

with

data-in-virtual

(DIV)

Alternate

indexes

permitted1

Alternate

indexes

permitted

No

alternate

indexes

permitted

No

alternate

indexes

permitted

No

alternate

indexes

permitted

A

record’s

RBA

cannot

change

A

record’s

RBA

can

change

A

record’s

relative

record

number

cannot

change

A

record’s

relative

record

number

cannot

change

No

processing

at

record

level

Space

at

the

end

of

the

data

set

is

used

for

adding

records

Free

space

is

used

for

inserting

and

lengthening

records

Empty

slots

in

the

data

set

are

used

for

adding

records

Free

space

is

used

for

inserting

and

lengthening

records

No

processing

at

record

level

A

record

cannot

be

deleted,

but

you

can

reuse

its

space

for

a

record

of

the

same

length1

Space

given

up

by

a

deleted

or

shortened

record

becomes

free

space

A

slot

given

up

by

a

deleted

record

can

be

reused

Space

given

up

by

a

deleted

or

shortened

record

becomes

free

space

No

processing

at

record

level

Spanned

records

permitted

Spanned

records

permitted

No

spanned

records

No

spanned

records

No

spanned

records

Extended

format

permitted1

Extended

format

or

compression

permitted

Extended

format

permitted

Extended

format

permitted

Extended

format

permitted

Note:

1.

Not

supported

for

HFS

data

sets.

Extended-Format

VSAM

Data

Sets

There

are

four

types

of

VSAM

extended-format

data

sets:

v

Data

compression

v

Data

striping

v

Extended

addressability

(EA)

v

Any

combination

of

the

above

VSAM

data

sets

must

also

be

in

extended-format

to

be

eligible

for

the

following

advanced

functions:

v

Partial

space

release

(PARTREL)

v

Candidate

volume

space

v

System-managed

buffering

(SMB)

An

extended-format

data

set

for

VSAM

can

be

allocated

for

key-sequenced

data

sets,

entry-sequenced

data

sets,

variable-length

or

fixed-length

relative-record

data

sets,

and

linear

data

sets.

Certain

types

of

key-sequenced

data

set

types

are

excluded.

The

following

data

sets

cannot

have

an

extended

format:

v

Catalogs

v

Other

system

data

sets

v

Temporary

data

sets

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

87

When

a

data

set

is

allocated

as

an

extended

format

data

set,

the

data

and

index

are

extended

format.

Any

alternate

indexes

related

to

an

extended

format

cluster

are

also

extended

format.

If

a

data

set

is

allocated

as

an

extended

format

data

set,

32

bytes

(X’20’)

are

added

to

each

physical

block.

Consequently,

when

the

control

interval

size

is

calculated

or

explicitly

specified,

this

physical

block

overhead

may

increase

the

amount

of

space

actually

needed

for

the

data

set.

Figure

14

shows

the

percentage

increase

in

space

as

indicated.

Other

control

intervals

do

not

result

in

an

increase

in

needed

space

Restrictions

on

Defining

Extended-Format

Data

Sets

The

following

restrictions

apply

to

defining

extended-format

data

sets:

v

An

extended-format

data

set

does

not

permit

the

indexes

to

be

imbedded

with

the

data

(IMBED

parameter)

or

the

data

to

be

split

into

key

ranges

(KEYRANGES

parameter).

v

Extended-format

data

sets

must

be

SMS

managed.

The

mechanism

for

requesting

extended

format

for

VSAM

data

sets

is

using

the

SMS

data

class

DSNTYPE=EXT

parameter

and

the

subparameter

R

or

P

to

indicate

required

or

preferred.

v

An

open

for

improved

control

interval

(ICI)

processing

is

not

permitted

for

extended

format

data

sets.

VSAM

Data

Striping

To

use

striped

data,

a

data

set

must

be

in

extended

format.

All

VSAM

data

set

organizations

are

supported

for

striped

data:

v

Key-sequenced

data

set

(KSDS)

v

Entry-sequenced

data

set

(ESDS)

v

Relative-record

data

set

(RRDS)

v

Variable-length

relative-record

data

set

(VRRDS)

v

Linear

data

set

(LDS)

A

striped

data

set

has

tracks

that

spread

across

multiple

devices,

as

is

the

case

for

sequential

access

method

or

the

CIs

for

VSAM.

This

format

allows

a

single

application

request

for

records

in

multiple

tracks

or

CIs

to

be

satisfied

by

concurrent

I/O

requests

to

multiple

volumes.

The

result

is

improved

performance

for

sequential

data

access

by

achieving

data

transfer

into

the

application

at

a

rate

greater

than

any

single

I/O

path.

The

scheduling

of

I/O

to

multiple

devices

to

satisfy

a

single

application

request

is

referred

to

as

an

I/O

packet.

-

3390

Direct

Access

Device

Control

Interval

Size

Additional

Space

Required

512

2.1%

1536

4.5%

18432

12.5%

-

3380

Direct

Access

Device

Control

Interval

Size

Additional

Space

Required

512

2.2%

1024

3.2%

Figure

14.

Control

Interval

Size

Organizing

VSAM

Data

Sets

88

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

VSAM

data

striping

applies

only

to

data

sets

that

are

defined

with

more

than

one

stripe.

Any

data

set

listed

with

one

stripe

is

in

the

extended

format

and

is

not

considered

to

be

a

striped

data

set.

Figure

15

illustrates

primary

and

secondary

space

allocations

on

multiple

volumes

for

a

striped

VSAM

data

set.

Figure

16

shows

examples

of

the

CIs

within

a

control

area

(CA)

on

multiple

volumes

for

a

four-stripe

VSAM

data

set.

Layer 1:

VOLA - single primary allocation

VOLB - single primary allocation

VOLC - single primary allocation

Layer 2:

VOLA - single secondary allocation

VOLD - single allocation

VOLC - single allocation

secondary

secondary

Layer 3:

VOLE - two secondary allocations

VOLF - two allocations

VOLG - two allocations

secondary

secondary

Stripe 1 Stripe 2 Stripe 3

VOLB VOLC

VOLD

VOLA

VOLF VOLGVOLE

Primary space allocation

Secondary space allocation

DA6D4999

Figure

15.

Primary

and

Secondary

Space

Allocations

for

Striped

Data

Sets

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

89

Layering

Concept

for

Data

Striping

Layering

is

a

concept

generally

associated

with

data

that

is

striped.

A

layer

in

a

striped

environment

is

defined

as

the

relationship

of

the

volumes

that

make

up

the

total

number

of

stripes.

That

is,

those

volumes

that

will

participate

as

part

of

the

I/O

packet.

Once

any

volume

or

volumes,

up

to

a

maximum

of

stripe

count,

composing

this

I/O

packet

changes,

this

constitutes

another

layer.

As

relates

to

striped

data,

the

volumes

that

constitute

this

I/O

packet

should

be

viewed

in

the

same

context

as

a

single

volume

data

set,

as

opposed

to

multivolume

if

the

data

were

not

striped.

Once

the

data

set

extends

to

a

second

layer,

this

would

be

analogous

to

a

multivolume

nonstriped

data

set.

Again,

the

definition

of

striped

is

a

stripe

count

greater

than

1.

The

sequential

access

method

(SAM)

does

not

support

the

concept

of

multilayering.

VSAM

supports

multilayering.

Figure

17

shows

an

example

of

the

concept

of

layering

with

a

four-stripe

data

set.

Figure

16.

Control

Interval

in

a

Control

Area

Organizing

VSAM

Data

Sets

90

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Other

Considerations

for

Data

Striping

To

use

data

striping,

you

also

need

to

consider

space

allocation,

control

area

size,

and

processing.

Space

Allocation

for

Striped

VSAM

Data

Sets:

The

general

rules

discussed

for

striped

extended

format

data

sets

apply

to

striped

VSAM

data

sets.

When

the

system

allocates

space

for

a

striped

extended-format

data

set,

the

system

divides

the

primary

amount

among

the

volumes.

If

it

does

not

divide

evenly,

the

system

rounds

up

the

amount.

For

extended-format

data

sets,

when

the

primary

space

on

any

volume

is

full,

the

system

allocates

space

on

that

volume.

The

amount

is

the

secondary

amount

divided

by

the

number

of

stripes.

If

the

secondary

amount

does

not

divide

evenly,

the

system

rounds

up

the

amount.

Some

additional

considerations

apply

to

the

control

area

(CA)

for

VSAM.

All

allocations

must

be

rounded

to

a

CA

boundary.

The

number

of

stripes

influences

the

size

of

the

control

area,

resulting

in

some

differences

in

allocation

quantity

required

to

meet

the

stripe

count

and

CA

requirements.

The

following

section

on

CA

size

considerations

discusses

this

in

more

detail.

All

data

set

extends

are

as

described

for

striped

data

set

extends.

Basically,

the

system

divides

the

secondary

amount

by

the

stripe

count

and

allocates

the

result

to

each

stripe.

This

occurs

in

all

cases,

including

a

data

set

with

the

guaranteed

space

attribute

from

the

associated

storage

class

(SC),

as

well

as

extending

to

a

new

layer.

Restriction:

Volume

High

Used

RBA

statistics

do

not

apply

for

multistriped

VSAM

data

sets.

The

high-use

RBA

is

kept

on

the

volume

for

the

first

stripe

because

the

value

is

the

same

for

all

stripes.

Secondary

Allocation

Quantity

of

Zero:

When

you

specify

a

secondary

allocation

quantity

of

zero

for

nonstriped

VSAM

data

sets,

an

extend

causes

the

allocation

to

occur

on

a

new

volume,

using

the

primary-space

amount.

You

can

also

use

this

feature

to

spread

data

over

multiple

volumes.

For

striped

VSAM

data

sets,

Figure

17.

Layering

(Four-Stripe

Data

Set)

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

91

extensions

occur

by

stripe

and

can

occur

on

the

same

volume

or

on

a

new

volume,

using

the

primary-space

amount

when

a

secondary-space

amount

of

zero

is

specified.

Increased

Number

of

Extents:

A

striped

VSAM

data

set

can

have

255

extents

per

stripe

in

the

data

component.

Only

the

data

component

is

striped.

The

index

component

of

a

striped

VSAM

data

set

has

a

limit

of

255

extents,

regardless

of

striping.

Because

a

striped

VSAM

data

set

can

have

a

maximum

of

16

stripes,

a

striped

data

component

can

have

a

maximum

of

4080

extents.

Allocation

Restrictions:

The

Space

Constraint

Relief

attribute

will

not

be

considered

for

striped

data

sets.

The

intended

purposes

for

data

striping

follow:

v

Spread

the

data

across

volumes

(a

basic

implementation

technique

for

any

data

that

is

striped).

v

Provide

>5

extent

relief

(completed

for

all

allocations

for

VSAM

striped

data,

regardless

of

the

specification).

Control

Area

Size

Calculation:

The

control

area

(CA)

size

for

striped

VSAM

data

is

a

factor

of

the

stripe

count

stripes.

A

VSAM

striped

data

set

can

be

striped

up

to

a

count

of

16.

The

minimum

size

for

an

allocation

is

a

single

track.

The

maximum

CA

size

is

a

cylinder.

Traditionally

that

would

have

meant

that

the

maximum

CA

size,

based

on

3390

geometry,

would

be

15

tracks.

That

changes

with

striped

VSAM

data

set

in

that

the

maximum

CA

size

now

has

to

accommodate

the

maximum

stripe

count

(16),

and

the

maximum

CA

now

becomes

16

tracks.

The

required

allocation

quantity

now

becomes

a

factor

of

both

user

specified

amount

and

stripe

count.

As

an

example,

take

a

specification

for

space

of

TRACKS(1

1)

with

the

following

results:

v

For

nonstriped,

traditional

VSAM,

a

control

areas

size

of

one

track

with

a

resulting

primary

and

secondary

allocation

quantity

of

1

track.

v

For

a

striped

data

set

with

a

striped

count

=

maximum

=16,

the

control

area

size

is

then

16

tracks

with

a

resulting

primary

and

secondary

quantity

of

16

tracks.

A

larger

CA

results

in

a

larger

number

of

control

intervals

(CIs)

in

the

CA,

resulting

in

a

larger

number

of

entries

to

index

in

a

data

set

organization

containing

an

index

(KSDS

and

VRRDS),

with

the

end

result

being

a

requirement

for

a

larger

index

CI

size.

Processing

Considerations

for

Striped

Data

Sets:

The

basic

restrictions

associated

with

data

sets

in

the

extended

format

also

apply

to

striped

data

sets.

In

addition,

VSAM

striped

data

sets

do

not

support:

v

RLS

access

v

Improved

CI

access

For

the

alternate

index,

neither

the

data

nor

the

index

will

be

striped.

Compressed

Data

To

use

compression,

a

data

set

must

be

in

extended

format.

Only

extended-format

key-sequenced

data

sets

can

be

compressed.

The

compressed

data

records

have

a

slightly

different

format

than

logical

records

in

a

data

set

that

will

not

hold

compressed

data.

This

results

in

several

incompatibilities

that

can

affect

the

definition

of

the

data

set

or

access

to

records

in

the

data

set:

Organizing

VSAM

Data

Sets

92

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

The

maximum

record

length

for

nonspanned

data

sets

is

three

bytes

less

than

the

maximum

record

length

of

data

sets

that

do

not

contain

compressed

data

(this

length

is

CISIZE−10).

v

The

relative

byte

address

(RBA)

of

another

record,

or

the

address

of

the

next

record

in

a

buffer,

cannot

be

determined

using

the

length

of

the

current

record

or

the

length

of

the

record

provided

to

VSAM.

v

The

length

of

the

stored

record

can

change

when

updating

a

record

without

any

length

change.

v

The

key

and

any

data

in

front

of

the

key

will

not

be

compressed.

Data

sets

with

large

key

lengths

and

RKP

data

lengths

might

not

be

good

candidates

for

compression.

v

Only

the

data

component

of

the

base

cluster

is

eligible

for

compression.

Alternate

indexes

are

not

eligible

for

compression.

v

The

global

shared

resources

(GSR)

option

is

not

permitted

for

compressed

data

sets.

In

addition

to

these

incompatibilities,

the

data

set

must

meet

certain

requirements

to

permit

compression

at

the

time

it

is

allocated:

v

The

data

set

must

have

a

primary

allocation

of

at

least

5

MBs,

or

8

MBs

if

no

secondary

allocation

is

specified.

v

The

maximum

record

length

specified

must

be

at

least

key

offset

plus

key

length

plus

forty

bytes.

v

Compressed

data

sets

must

be

SMS

managed.

The

mechanism

for

requesting

compression

for

VSAM

data

sets

is

through

the

SMS

data

class

COMPACTION=Y

parameter.

Spanned

record

data

sets

require

the

key

offset

plus

the

key

length

to

be

less

than

or

equal

to

the

control

interval

size

minus

fifteen.

These

specifications

regarding

the

key

apply

to

alternate

keys

as

well

as

primary

keys.

Compressed

data

sets

cannot

be

accessed

using

control

interval

(CI)

processing

except

for

VERIFY

and

VERIFY

REFRESH

processing

and

may

not

be

opened

for

improved

control

interval

(ICI)

processing.

A

compressed

data

set

can

be

created

using

the

LIKE

keyword

and

not

just

using

a

data

class.

Access

to

Records

in

a

VSAM

Data

Set

You

can

use

addressed-sequential

and

addressed-direct

access

for

the

following

types

of

data

sets:

v

Entry-sequenced

data

sets

v

Key-sequenced

data

sets

You

can

use

keyed-sequential,

keyed-direct,

and

skip-sequential

access

for

the

following

types

of

data

sets:

v

Key-sequenced

data

sets

v

Fixed-length

RRDSs

v

Variable-length

RRDS

All

types

of

VSAM

data

sets,

including

linear,

can

be

accessed

by

control

interval

access,

but

this

is

used

only

for

very

specific

applications.

CI

mode

processing

is

not

permitted

when

accessing

a

compressed

data

set.

The

data

set

can

be

opened

for

CI

mode

processing

to

permit

VERIFY

and

VERIFY

REFRESH

processing

only.

Control

interval

access

is

described

in

Chapter

11,

“Processing

Control

Intervals,”

on

page

177.

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

93

Access

to

Entry-Sequenced

Data

Sets

Entry-sequenced

data

sets

are

accessed

by

address,

either

sequentially

or

directly.

When

addressed

sequential

processing

is

used

to

process

records

in

ascending

relative

byte

address

(RBA)

sequence,

VSAM

automatically

retrieves

records

in

stored

sequence.

To

access

a

record

directly

from

an

entry-sequenced

data

set,

you

must

supply

the

RBA

for

the

record

as

a

search

argument.

For

information

about

obtaining

the

RBA,

see

“Entry-Sequenced

Data

Sets”

on

page

78.

Skip-sequential

processing

is

not

supported

for

entry-sequenced

data

sets.

Access

to

Key-Sequenced

Data

Sets

The

most

effective

way

to

access

records

of

a

key-sequenced

data

set

is

by

key,

using

the

associated

prime

index.

Keyed-Sequential

Access

Sequential

access

is

used

to

load

a

key-sequenced

data

set

and

to

retrieve,

update,

add,

and

delete

records

in

an

existing

data

set.

When

you

specify

sequential

as

the

mode

of

access,

VSAM

uses

the

index

to

access

data

records

in

ascending

or

descending

sequence

by

key.

When

retrieving

records,

you

do

not

need

to

specify

key

values

because

VSAM

automatically

obtains

the

next

logical

record

in

sequence.

Sequential

processing

can

be

started

anywhere

within

the

data

set.

While

positioning

is

not

always

required

(for

example,

the

first

use

of

a

data

set

starts

with

the

first

record),

it

is

best

to

specify

positioning

using

one

of

the

following

methods:

v

Use

the

POINT

macro.

v

Issue

a

direct

request

with

note

string

positioning

(NSP),

and

change

the

request

parameter

list

with

the

MODCB

macro

from

“direct”

to

“sequential”

or

“skip

sequential”.

v

Use

MODCB

to

change

the

request

parameter

list

to

last

record

(LRD),

backward

(BWD),

and

direct

NSP;

then

change

the

RPL

to

SEQ,

BWD,

and

SEQ.

Sequential

access

enables

you

to

avoid

searching

the

index

more

than

once.

Sequential

is

faster

than

direct

for

accessing

multiple

data

records

in

ascending

key

order.

Keyed-Direct

Access

Direct

access

is

used

to

retrieve,

update,

delete

and

add

records.

When

direct

processing

is

used,

VSAM

searches

the

index

from

the

highest

level

index-set

record

to

the

sequence-set

for

each

record

to

be

accessed.

Searches

for

single

records

with

random

keys

is

usually

done

faster

with

direct

processing.

You

need

to

supply

a

key

value

for

each

record

to

be

processed.

For

retrieval

processing,

either

supply

the

full

key

or

a

generic

key.

The

generic

key

is

the

high-order

portion

of

the

full

key.

For

example,

you

might

want

to

retrieve

all

records

whose

keys

begin

with

the

generic

key

AB,

regardless

of

the

full

key

value.

Direct

access

lets

you

avoid

retrieving

the

entire

data

set

sequentially

to

process

a

small

percentage

of

the

total

number

of

records.

Organizing

VSAM

Data

Sets

94

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Skip-Sequential

Access

Skip-sequential

access

is

used

to

retrieve,

update,

delete,

and

add

records.

When

skip-sequential

is

specified

as

the

mode

of

access,

VSAM

retrieves

selected

records,

but

in

ascending

sequence

of

key

values.

Skip-sequential

processing

lets

you

avoid

retrieving

a

data

set

or

records

in

the

following

inefficient

ways:

v

Entire

data

set

sequentially

to

process

a

small

percentage

of

the

total

number

of

records

v

Desired

records

directly,

which

would

cause

the

prime

index

to

be

searched

from

the

top

to

the

bottom

level

for

each

record

Addressed

Access

Another

way

of

accessing

a

key-sequenced

data

set

is

addressed

access,

using

the

RBA

of

a

logical

record

as

a

search

argument.

If

you

use

addressed

access

to

process

key-sequenced

data,

you

should

be

aware

that

RBAs

might

change

when

a

control

interval

split

occurs

or

when

records

are

added,

deleted,

or

changed

in

size.

With

compressed

data

sets,

the

RBAs

for

compressed

records

are

not

predictable.

Therefore,

access

by

address

is

not

suggested

for

normal

use.

Access

to

Linear

Data

Sets

You

can

access

a

linear

data

set

with

the

DIV

macro.

Related

reading:

For

information

about

using

data-in-virtual

(DIV),

see

z/OS

MVS

Programming:

Assembler

Services

Guide.

Access

to

Fixed-Length

Relative-Record

Data

Sets

The

relative

record

number

is

always

used

as

a

search

argument

for

a

fixed-length

RRDS.

Keyed-Sequential

Access

Sequential

processing

of

a

fixed-length

RRDS

is

the

same

as

sequential

processing

of

an

entry-sequenced

data

set.

Empty

slots

are

automatically

skipped

by

VSAM.

Skip-Sequential

Access

Skip-sequential

processing

is

treated

like

direct

requests,

except

that

VSAM

maintains

a

pointer

to

the

record

it

just

retrieved.

When

retrieving

subsequent

records,

the

search

begins

from

the

pointer,

rather

than

from

the

beginning

of

the

data

set.

Records

must

be

retrieved

in

ascending

sequence.

Keyed-Direct

Access

A

fixed-length

RRDS

can

be

processed

directly

by

supplying

the

relative

record

number

as

a

key.

VSAM

converts

the

relative

record

number

to

an

RBA

and

determines

the

control

interval

containing

the

requested

record.

If

a

record

in

a

slot

flagged

as

empty

is

requested,

a

no-record-found

condition

is

returned.

You

cannot

use

an

RBA

value

to

request

a

record

in

a

fixed-length

RRDS.

Access

to

Variable-Length

Relative-Record

Data

Sets

The

relative

record

number

is

used

as

a

search

argument

for

a

variable-length

RRDS.

Keyed-Sequential

Access

Sequential

processing

of

a

variable-length

RRDS

is

the

same

as

for

an

entry-sequenced

data

set.

On

retrieval,

relative

record

numbers

that

do

not

exist

are

skipped.

On

insert,

if

no

relative

record

number

is

supplied,

VSAM

uses

the

next

available

relative

record

number.

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

95

Skip-Sequential

Access

Skip-sequential

processing

is

used

to

retrieve,

update,

delete,

and

add

variable-length

RRDS

records.

Records

must

be

retrieved

in

ascending

sequence.

Keyed-Direct

Access

A

variable-length

RRDS

can

be

processed

directly

by

supplying

the

relative

record

number

as

a

key.

If

you

want

to

store

a

record

in

a

specific

relative

record

position,

use

direct

processing

and

assign

the

desired

relative

record

number.

VSAM

uses

the

relative

record

number

to

locate

the

control

interval

containing

the

requested

record.

You

cannot

use

an

RBA

value

to

request

a

record

in

a

variable-length

RRDS.

Access

to

Records

through

Alternate

Indexes

You

can

use

access

method

services

to

define

and

build

one

or

more

alternate

indexes

over

a

key-sequenced

or

entry-sequenced

data

set,

which

is

called

the

base

cluster.

An

alternate

index

provides

access

to

records

by

using

more

than

one

key.

The

alternate

index

accesses

records

in

the

same

way

as

the

prime

index

of

a

key-sequenced

data

set.

An

alternate

index

eliminates

the

need

to

store

multiple

copies

of

the

same

information

for

different

applications.

The

alternate

index

is

built

from

all

the

records

in

a

base

cluster.

However,

it

is

not

possible

to

build

an

alternate

index

from

only

specific

records

in

the

base

cluster.

Unlike

a

primary

key,

which

must

be

unique,

the

key

of

an

alternate

index

can

refer

to

more

than

one

record

in

the

base

cluster.

An

alternate-key

value

that

points

to

more

than

one

record

is

nonunique.

If

the

alternate

key

points

to

only

one

record,

the

pointer

is

unique.

Restriction:

The

maximum

number

of

nonunique

pointers

associated

with

an

alternate

index

data

record

cannot

exceed

32

767.

Alternate

indexes

are

not

supported

for

linear

data

sets,

RRDS,

or

reusable

data

sets

(data

sets

defined

with

the

REUSE

attribute).

For

information

about

defining

and

building

alternate

indexes,

see

“Defining

Alternate

Indexes”

on

page

117.

The

alternate

index

is

a

key-sequenced

data

set;

it

consists

of

an

index

component

and

a

data

component.

The

records

in

the

data

component

contain

an

alternate

key

and

one

or

more

pointers

to

data

in

the

base

cluster.

For

an

entry-sequenced

base

cluster,

the

pointers

are

RBA

values.

For

a

key-sequenced

base

cluster,

the

pointers

are

primary-key

values.

Each

record

in

the

data

component

of

an

alternate

index

is

of

variable

length

and

contains

header

data,

the

alternate

key,

and

at

least

one

pointer

to

a

base

data

record.

Header

data

is

fixed

length

and

provides

the

following

information:

v

Whether

the

alternate

index

data

record

contains

primary

keys

or

RBA

pointers

v

Whether

the

alternate

index

data

record

contains

unique

or

nonunique

keys

v

The

length

of

each

pointer

v

The

length

of

the

alternate

key

v

The

number

of

pointers

Alternate

Index

Structure

for

a

Key-Sequenced

Data

Set

Figure

18

on

page

97

shows

the

structure

of

an

alternate

index

with

nonunique

keys

connected

to

a

key-sequenced

data

set.

The

person’s

name

is

the

alternate

key

in

this

example.

The

customer

number

is

the

primary

key.

Organizing

VSAM

Data

Sets

96

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

you

ask

to

access

records

with

the

alternate

key

of

BEN,

VSAM

does

the

following:

1.

VSAM

scans

the

index

component

of

the

alternate

index,

looking

for

a

value

greater

than

or

equal

to

BEN.

2.

The

entry

FRED

points

VSAM

to

a

data

control

interval

in

the

alternate

index.

3.

VSAM

scans

the

alternate

index

data

control

interval

looking

for

an

entry

that

matches

the

search

argument,

BEN.

4.

When

located,

the

entry

BEN

has

an

associated

key,

21.

The

key,

21,

points

VSAM

to

the

index

component

of

the

base

cluster.

5.

VSAM

scans

the

index

component

for

an

entry

greater

than

or

equal

to

the

search

argument,

21.

6.

The

index

entry,

38,

points

VSAM

to

a

data

control

interval

in

the

base

cluster.

The

record

with

a

key

of

21

is

passed

to

the

application

program.

RBAs

are

always

written

as

fullword

binary

integers.

Figure

18.

Alternate

Index

Structure

for

a

Key-Sequenced

Data

Set

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

97

Alternate

Index

Structure

for

an

Entry-Sequenced

Data

Set

Figure

19

illustrates

the

structure

of

an

alternate

index

connected

to

an

entry-sequenced

data

set.

The

salesman’s

name

is

the

alternate

key

in

this

example.

If

you

ask

to

access

records

with

the

alternate

key

of

BEN,

VSAM

does

the

following:

1.

VSAM

scans

the

index

component

of

the

alternate

index,

looking

for

a

value

greater

than

or

equal

to

BEN.

2.

The

entry

FRED

points

VSAM

to

a

data

control

interval

in

the

alternate

index.

3.

VSAM

scans

the

alternate

index

data

control

interval

looking

for

an

entry

that

matches

the

search

argument,

BEN.

4.

When

located,

the

entry

BEN

has

an

associated

pointer,

400,

that

points

to

an

RBA

in

the

base

cluster.

5.

VSAM

retrieves

the

record

with

an

RBA

of

X'400'

from

the

base

cluster.

Building

of

an

Alternate

Index

When

you

build

an

alternate

index,

the

alternate

key

can

be

any

field

in

the

base

data

set’s

records

that

has

a

fixed

length

and

a

fixed

position

in

each

record.

The

H
D
R

H
D
R

H
D
R

FRED

FRED

41

TOM

MIKE

TOM

Free space

Free space

Free space

Free space

Free space

TOM

BEN

MIKE

BILL

BEN

Data

RBA

Alternate
Index

Base
Cluster

Note: RBAs are always written as full word binary integers.

Index

TOM

36

X'00'

X'400'

X'800'

X'140'

X'540'

X'940'

X'280'

X'680'

X'A80'

X'3C0'

X'7C0'

X'BC0'

21

41

BILL

TOM

FRED

FRED

FRED

000

10

10

12

54

140

54

540 940
Con-
trol
info

Con-
trol
info

Con-
trol
info

Con-
trol
info

Con-
trol
info

400

12

23

23

39

a

b
c

d

e

Figure

19.

Alternate

Index

Structure

for

an

Entry-Sequenced

Data

Set

Organizing

VSAM

Data

Sets

98

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

alternate-key

field

must

be

in

the

first

segment

of

a

spanned

record.

Keys

in

the

data

component

of

an

alternate

index

are

not

compressed;

the

entire

key

is

represented

in

the

alternate-index

data

record.

A

search

for

a

given

alternate

key

reads

all

the

base

cluster

records

containing

this

alternate

key.

For

example,

Figure

18

on

page

97

and

Figure

19

on

page

98

show

that

one

salesman

has

several

customers.

For

the

key-sequenced

data

set,

several

primary-key

pointers

(customer

numbers)

are

in

the

alternate-index

data

record.

There

is

one

for

each

occurrence

of

the

alternate

key

(salesman’s

name)

in

the

base

data

set.

For

the

entry-sequenced

data

set,

several

RBA

pointers

are

in

the

alternate

index

data

record.

There

is

one

for

each

occurrence

of

the

alternate

key

(salesman’s

name)

in

the

base

data

set.

The

pointers

are

ordered

by

arrival

time.

Before

a

base

cluster

can

be

accessed

through

an

alternate

index,

a

path

must

be

defined.

A

path

provides

a

way

to

gain

access

to

the

base

data

through

a

specific

alternate

index.

To

define

a

path

use

the

access

method

services

command

DEFINE

PATH.

For

information

about

defining

an

alternate

index,

see

“Defining

Alternate

Indexes”

on

page

117.

For

information

about

defining

a

path,

see

“Defining

a

Path”

on

page

120.

Automatic

Upgrade

of

Alternate

Indexes

VSAM

determines

the

number

of

resources

required

to

complete

upgrading

all

the

alternate

indexes

defined

for

the

base

VSAM

cluster.

If

there

are

insufficient

resources,

the

request

fails

and

the

application

has

the

option

of

retrying

the

failed

request.

Data

Compression

When

deciding

whether

to

compress

data,

consider

the

following

guidelines

and

rules:

v

Compress

when

an

existing

data

set

is

approaching

the

4

gigabyte

VSAM

size

limit

or

when

you

have

capacity

constraints

v

Only

SMS-managed

data

is

eligible

for

compression

v

The

data

set

must

be

an

extended

format

key-sequenced

data

set

v

Control

interval

access

is

not

permitted.

v

Compression

could

require

excessive

amounts

of

storage

when

processed

in

locate

mode

(OPTCD=LOC).

v

The

GSR

option

is

not

permitted

for

compressed

data

sets.

You

can

convert

an

application

to

compression

processing

if

the

application

uses

data

that

can

be

highly

compressible

based

on

the

structure

or

type

of

data.

One

consideration

could

be

the

length

of

the

data

records:

v

The

records

can

be

large

relative

to

the

size

of

a

control

interval.

v

Smaller

control

interval

sizes

can

be

desirable

because

of

the

random

structure

of

the

data.

v

When

a

smaller

control

interval

size

is

used

without

compressing

data

records,

the

length

of

the

records

can

require

a

spanned

data

set.

Records

placed

in

a

spanned

data

set

are

less

likely

to

span

control

intervals

when

compression

is

used.

The

result

could

improve

performance

when

VSAM

processes

the

data

because

the

amount

of

input/output

required

to

GET

or

PUT

the

record

is

reduced.

Organizing

VSAM

Data

Sets

Chapter

6.

Organizing

VSAM

Data

Sets

99

Any

program

other

than

DFSMSdss,

REPRO,

and

any

other

physical

data

copy/move

program

that

does

direct

input/output

to

DASD

for

data

sets

which

have

data

in

compressed

format

can

compromise

data

integrity.

These

programs

must

be

modified

to

access

the

data

using

VSAM

keyed

access

to

permit

expansion

of

compressed

data.

Organizing

VSAM

Data

Sets

100

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Using

Cluster

Names

for

Data

and

Index

Components

102

Defining

a

Data

Set

with

Access

Method

Services

102

Defining

a

Data

Set

with

JCL

111

Loading

a

VSAM

Data

Set

111

Copying

and

Merging

Data

Sets

115

Defining

Alternate

Indexes

117

Defining

a

Page

Space

121

Checking

for

Problems

in

Catalogs

and

Data

Sets

122

Deleting

Data

Sets

123

This

chapter

explains

how

to

define

VSAM

data

sets.

Other

chapters

provide

examples

and

related

information:

v

For

an

example

of

defining

a

VSAM

data

set,

see

Chapter

8,

“Defining

and

Manipulating

VSAM

Data

Sets:

Examples,”

on

page

125.

v

For

examples

of

defining

VSAM

data

sets,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

v

For

information

about

defining

a

data

set

using

RLS,

see

“Locking”

on

page

223.

VSAM

data

sets

are

defined

using

either

access

method

services

commands

or

JCL

dynamic

allocation.

A

summary

of

defining

a

VSAM

data

sets

follows:

1.

VSAM

data

sets

must

be

cataloged.

If

you

want

to

use

a

new

catalog,

use

access

method

services

commands

to

create

a

catalog.

The

procedure

for

defining

a

catalog

is

described

in

z/OS

DFSMS:

Managing

Catalogs.

2.

Define

a

VSAM

data

set

in

a

catalog

using

the

TSO

ALLOCATE

command,

the

access

method

services

ALLOCATE

or

DEFINE

CLUSTER

command,

dynamic

allocation,

or

JCL.

Before

you

can

define

a

VSAM

data

set

with

dynamic

allocation

or

JCL,

SMS

must

be

active

on

your

system.

Dynamic

allocation

and

JCL

do

not

support

most

of

the

DEFINE

options

available

with

access

method

services.

3.

Load

the

data

set

with

either

the

access

method

services

REPRO

command

or

your

own

loading

program.

4.

Optionally,

define

any

alternate

indexes

and

relate

them

to

the

base

cluster.

Use

the

access

method

services

DEFINE

ALTERNATEINDEX,

DEFINE

PATH,

and

BLDINDEX

commands

to

do

this.

After

any

of

these

steps,

you

can

use

the

access

method

services

LISTCAT

and

PRINT

commands

to

verify

what

has

been

defined,

loaded,

or

processed.

The

LISTCAT

and

PRINT

commands

are

useful

for

identifying

and

correcting

problems.

©

Copyright

IBM

Corp.

1987,

2004

101

Using

Cluster

Names

for

Data

and

Index

Components

For

a

key-sequenced

data

set,

a

cluster

is

the

combination

of

the

data

component

and

the

index

component.

The

cluster

provides

a

way

to

treat

the

index

and

data

components

as

a

single

component

with

its

own

name.

You

can

also

give

each

component

a

name.

Fixed-length

RRDSs,

entry-sequenced

data

sets,

and

linear

data

sets

are

considered

to

be

clusters

without

index

components.

To

be

consistent,

cluster

names

are

normally

used

for

processing

these

data

sets.

Defining

a

Data

Set

with

Access

Method

Services

VSAM

data

sets

can

be

defined

with

either

the

DEFINE

CLUSTER

command

or

the

ALLOCATE

command.

When

a

cluster

is

defined,

VSAM

uses

the

following

catalog

entries

to

describe

the

cluster:

v

A

cluster

entry

describes

the

cluster

as

a

single

component.

v

A

data

entry

describes

the

cluster’s

data

component.

v

For

a

key-sequenced

data

set,

an

index

entry

describes

the

cluster’s

index

component.

All

of

the

cluster’s

attributes

are

recorded

in

the

catalog.

The

information

that

is

stored

in

the

catalog

provides

the

details

needed

to

manage

the

data

set

and

to

access

the

VSAM

cluster

or

the

individual

components.

If

you

use

DEFINE

CLUSTER,

attributes

of

the

data

and

index

components

can

be

specified

separately

from

attributes

of

the

cluster.

v

If

attributes

are

specified

for

the

cluster

and

not

the

data

and

index

components,

the

attributes

of

the

cluster

(except

for

password

and

USVR

security

attributes)

apply

to

the

components.

v

If

an

attribute

that

applies

to

the

data

or

index

component

is

specified

for

both

the

cluster

and

the

component,

the

component

specification

overrides

the

cluster’s

specification.

If

you

use

ALLOCATE,

attributes

can

be

specified

only

at

the

cluster

level.

Naming

a

Cluster

You

specify

a

name

for

the

cluster

when

defining

it.

Usually,

the

cluster

name

is

given

as

the

dsname

in

JCL.

A

cluster

name

that

contains

more

than

8

characters

must

be

segmented

by

periods;

1

to

8

characters

can

be

specified

between

periods.

A

name

with

a

single

segment

is

called

an

unqualified

name.

A

name

with

more

than

1

segment

is

called

a

qualified

name.

Each

segment

of

a

qualified

name

is

called

a

qualifier.

You

can,

optionally,

name

the

components

of

a

cluster.

Naming

the

data

component

of

an

entry-sequenced

cluster

or

a

linear

data

set,

or

the

data

and

index

components

of

a

key-sequenced

cluster,

makes

it

easier

to

process

the

components

individually.

If

you

do

not

explicitly

specify

a

data

or

index

component

name

when

defining

a

VSAM

data

set

or

alternate

index,

VSAM

generates

a

name.

Also,

when

you

define

a

user

catalog,

VSAM

generates

only

an

index

name

for

the

user

catalog

(the

name

of

the

user

catalog

is

also

the

data

component

name).

VSAM

uses

the

following

format

to

generate

names

for

both

system-managed

and

non-system-managed

data

sets:

1.

If

the

last

qualifier

of

the

name

is

CLUSTER,

replace

the

last

qualifier

with

DATA

for

the

data

component

and

INDEX

for

the

index

component.

Defining

VSAM

Data

Sets

102

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Cluster

name:

SALES.REGION2.CLUSTER

Generated

data

name

=

SALES.REGION2.DATA

Generated

index

name

=

SALES.REGION2.INDEX

2.

ELSE

if

the

cluster

name

is

less

than

or

equal

to

38

characters,

then

append

.DATA

to

the

end

of

the

cluster

name

for

the

data

component

and

a

.INDEX

for

the

index

component.

Cluster

name:

DEPT64.ASSET.INFO

Generated

data

name

=

DEPT64.ASSET.INFO.DATA

Generated

index

name

=

DEPT64.ASSET.INFO.INDEX

3.

ELSE

if

the

cluster

name

is

between

39

and

42

characters

inclusive,

then

append

a

.D

to

the

end

of

the

cluster

name

for

the

data

component

and

a

.I

for

the

index

component.

Cluster

name:

DEPTABCD.RESOURCE.REGION66.DATA1234.STUFF

Generated

data

name

=

DEPTABCD.RESOURCE.REGION66.DATA1234.STUFF.D

Generated

index

name

=

DEPTABCD.RESOURCE.REGION66.DATA1234.STUFF.I

4.

ELSE

if

the

name

is

longer

than

42

characters,

and

the

last

qualifier

is

not

CLUSTER,

use

the

first

(N-1)

qualifiers

of

the

cluster,

alternate

index,

or

user

catalog

name

up

to

the

first

four

qualifiers,

and

append

as

many

8-character

qualifiers

as

necessary

to

produce

a

5-qualifier

name.

Cluster

name:

DIV012.GROUP16.DEPT98.DAILYLOG.DEC1988.BACK

Generated

data

name

=

DIV012.GROUP16.DEPT98.DAILYLOG.TY7RESNO

Generated

index

name

=

DIV012.GROUP16.DEPT98.DAILYLOG.YIIQHNTR

After

a

name

is

generated,

VSAM

searches

the

catalog

to

ensure

that

the

name

is

unique.

If

a

duplicate

name

is

found,

VSAM

continues

generating

new

names

using

the

format

outlined

in

4

until

a

unique

one

is

produced.

Duplicate

Data

Set

Names

VSAM

prevents

you

from

cataloging

two

objects

with

the

same

name

in

the

same

catalog.

VSAM

also

prevents

you

from

altering

the

name

of

an

object

so

that

its

new

name

duplicates

the

name

of

another

object

in

the

same

catalog.

VSAM

does

not

prevent

duplication

of

names

from

one

catalog

to

another

however.

If

you

have

multiple

catalogs,

you

should

ensure

that

a

data

set

name

in

one

catalog

is

not

duplicated

in

another

catalog.

The

multilevel

alias

facility

assigns

a

data

set

name

to

a

unique

catalog.

However,

if

the

number

of

alias

levels

searched

is

changed,

it

is

possible

that

duplicate

data

set

names

could

occur.

If

the

number

of

alias

search

levels

is

changed,

the

former

name

cannot

be

located

with

the

multilevel

alias

facility

unless

the

levels

are

changed

back.

See

z/OS

DFSMS:

Managing

Catalogs.

z/OS

DFSMS

Access

Method

Services

for

Catalogs

describes

the

order

in

which

one

of

the

catalogs

available

to

the

system

is

selected

to

contain

the

to-be-defined

catalog

entry.

When

you

define

an

object,

you

should

ensure

that

the

catalog

the

system

selects

is

the

catalog

you

want

the

object

entered.

Data

set

name

duplication

is

not

prevented

when

a

user

catalog

is

imported

into

a

system.

No

check

is

made

to

determine

if

the

imported

catalog

contains

an

entry

name

that

already

exists

in

another

catalog

in

the

system.

Temporary

Data

Set

Names

You

can

use

the

access

method

services

ALLOCATE

or

TSO

ALLOCATE

command

to

define

a

temporary

system-managed

VSAM

data

set.

A

temporary

system-managed

data

set

can

also

be

allocated

directly

through

JCL.

Temporary

system-managed

VSAM

data

sets

do

not

require

that

you

specify

a

data

set

name.

If

you

specify

a

data

set

name

it

must

begin

with

&

or

&&:

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

103

DSNAME(&CLUSTER)

See

“Examples

of

Defining

Temporary

VSAM

Data

Sets”

on

page

128

for

information

about

using

the

ALLOCATE

command

to

define

a

temporary

system-managed

VSAM

data

set.

See

“Temporary

VSAM

Data

Sets”

on

page

262

for

information

about

restrictions

on

using

temporary

data

sets.

Specifying

Cluster

Information

When

you

define

a

cluster,

you

can

directly

specify

certain

descriptive,

performance,

security

and

integrity

information.

Other

sources

provide

information

you

omit

or

the

system

does

not

let

you

provide.

If

the

Storage

Management

Subsystem

(SMS)

is

active,

and

you

are

defining

a

system-managed

cluster,

you

can

explicitly

specify

the

data

class,

management

class,

and

storage

class

parameters

and

take

advantage

of

attributes

defined

by

your

storage

administrator.

You

can

also

implicitly

specify

the

SMS

classes

by

taking

the

system

determined

defaults

if

such

defaults

have

been

established

by

your

storage

administrator.

The

SMS

classes

are

assigned

only

at

the

cluster

level.

You

cannot

specify

them

at

the

data

or

index

level.

If

SMS

is

active

and

you

are

defining

a

non-system-managed

cluster,

you

can

also

explicitly

specify

the

data

class

or

take

the

data

class

default

if

one

is

available.

Management

class

and

storage

class

are

not

supported

for

non-system-managed

data

sets.

If

you

are

defining

a

non-system-managed

data

set

and

you

do

not

specify

the

data

class,

you

must

explicitly

specify

all

necessary

descriptive,

performance,

security,

and

integrity

information

through

other

access

method

services

parameters.

Most

of

these

parameters

can

be

specified

for

the

data

component,

the

index

component,

or

both.

Specify

information

for

the

entire

cluster

with

the

CLUSTER

parameter.

Specify

information

for

only

the

data

component

with

the

DATA

parameter

and

for

only

the

index

component

with

the

INDEX

parameter.

See

“Using

Access

Method

Services

Parameters”

for

an

explanation

of

the

types

of

descriptive,

performance,

security,

and

integrity

information

specified

using

these

parameters.

Both

the

data

class

and

some

other

access

method

services

parameters

can

be

used

to

specify

values

to

the

same

parameter,

for

example,

the

control

interval

size.

The

system

uses

the

following

order

of

precedence,

or

filtering,

to

determine

which

parameter

value

to

assign.

1.

Explicitly

specified

DEFINE

command

parameters

2.

Modeled

attributes

(assigned

by

specifying

the

MODEL

parameter

on

the

DEFINE

command)

3.

Data

class

attributes

4.

DEFINE

command

parameter

defaults

Using

Access

Method

Services

Parameters

If

you

do

not

use

the

SMS

classes

to

specify

the

necessary

descriptive,

performance,

security,

and

integrity

information,

you

must

use

access

method

services

parameters.

Descriptive

Parameters

The

following

access

method

services

parameters

provide

descriptive

information:

Defining

VSAM

Data

Sets

104

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

INDEXED|NONINDEXED|NUMBERED|LINEAR

parameter—Specifies

the

type

of

data

organization

used

(key

sequenced,

entry

sequenced,

relative

record,

or

linear).

v

RECORDSIZE

parameter—Specifies

the

average

and

maximum

lengths

of

data

records.

The

RECORDSIZE

parameter

is

not

used

for

a

linear

data

set.

A

variable-length

RRDS

is

defined

using

NUMBERED

and

RECORDSIZE,

where

the

average

and

maximum

record

length

must

be

different.

If

the

actual

length

of

an

entry-sequenced,

key-sequenced,

or

variable-length

RRDS

record

is

less

than

the

maximum

record

length,

VSAM

saves

disk

space

by

storing

the

actual

record

length

in

the

record

definition

field

(RDF).

The

RDF

is

not

adjusted

for

fixed-length

RRDSs.

v

KEYS

parameter—Specifies

the

length

and

position

of

the

key

field

in

the

records

of

a

key-sequenced

data

set.

v

CATALOG

parameter—Specifies

the

name

and

password

of

the

catalog

in

which

the

cluster

is

to

be

defined.

v

VOLUMES

parameter—Specifies

the

volume

serial

numbers

of

the

volumes

on

which

space

is

allocated

for

the

cluster.

You

can

specify

up

to

59

DASD

volumes.

v

RECORDS|KILOBYTES|MEGABYTES|TRACKS|CYLINDERS

parameter—Specifies

the

amount

of

space

to

allocate

for

the

cluster.

The

CYLINDERS,

TRACKS,

MEGABYTES,

KILOBYTES,

and

RECORDS

parameters

are

permitted

for

a

linear

data

set.

If

you

specify

the

RECORDS

parameter

for

a

linear

data

set,

the

system

allocates

space

with

the

number

of

control

intervals

equal

to

the

number

of

records.

(Linear

data

sets

do

not

have

records;

they

have

objects

that

are

contiguous

strings

of

data.)

v

RECATALOG

parameter—Specifies

if

an

entry

is

recreated

from

information

in

the

VSAM

volume

data

set

(VVDS),

or

defined

for

the

first

time.

v

REUSE|NOREUSE

parameter—Specifies

if

the

cluster

is

reusable

for

temporary

storage

of

data.

See

“Reusing

a

VSAM

Data

Set

as

a

Work

File”

on

page

114.

v

BUFFERSPACE

parameter—Specifies

the

minimum

amount

of

I/O

buffer

space

that

must

be

allocated

to

process

the

data

set.

See

“Determining

I/O

Buffer

Space

for

Nonshared

Resource”

on

page

164.

Performance

Parameters

The

following

access

method

services

parameters

provide

performance

information.

All

these

performance

options

are

discussed

in

Chapter

10,

“Optimizing

VSAM

Performance,”

on

page

155.

v

CONTROLINTERVALSIZE

parameter—Specifies

the

control

interval

size

for

VSAM

to

use

(instead

of

letting

VSAM

calculate

the

size).

The

size

of

the

control

interval

must

be

large

enough

to

hold

a

data

record

of

the

maximum

size

specified

in

the

RECORDSIZE

parameter

unless

the

data

set

was

defined

with

the

SPANNED

parameter.

Specify

the

CONTROLINTERVALSIZE

parameter

for

data

sets

that

use

shared

resource

buffering,

so

you

know

what

control

interval

size

to

code

on

the

BLDVRP

macro.

v

SPANNED

parameter—Specifies

whether

records

can

span

control

intervals.

The

SPANNED

parameter

is

not

permitted

for

fixed-length

and

variable-length

RRDSs,

and

linear

data

sets.

v

SPEED|RECOVERY

parameter—Specifies

whether

to

preformat

control

areas

during

initial

loading

of

a

data

set.

See

“Using

a

Program

to

Load

a

Data

Set”

on

page

113.

v

VOLUMES

parameter

for

the

index

component—Specifies

whether

to

place

the

cluster’s

index

on

a

separate

volume

from

data.

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

105

v

FREESPACE

parameter—Specifies

the

amount

of

free

space

to

remain

in

the

data

component

of

a

key-sequenced

data

set

or

variable-length

RRDS’s

control

intervals

and

control

areas

when

the

data

records

are

loaded.

Security

and

Integrity

Parameters

The

following

access

method

services

parameters

provide

security

and

integrity

information.

See

Chapter

5,

“Protecting

Data

Sets,”

on

page

53

for

more

information

about

the

types

of

data

protection

available.

v

Passwords—Because

passwords

are

not

supported

for

system-managed

data

sets,

this

information

pertains

to

non-system-managed

data

sets

only.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

v

AUTHORIZATION

parameter—Specifies

your

own

authorization

routine

to

verify

that

a

requester

has

the

right

to

gain

access

to

data.

v

EXCEPTIONEXIT

parameter—Specifies

an

I/O

error-handling

routine

(the

exception

exit

routine)

that

is

entered

if

the

program

does

not

specify

a

SYNAD

exit.

See

Chapter

16,

“Coding

VSAM

User-Written

Exit

Routines,”

on

page

235

for

information

about

VSAM

user-written

exit

routines.

v

WRITECHECK

parameter—Specifies

whether

to

verify

that

write

operations

have

completed

and

that

the

data

can

be

read.

v

SHAREOPTIONS

parameter—Specifies

whether

and

to

what

extent

data

is

to

be

shared

among

systems,

and

jobs.

v

ERASE

parameter—Specifies

whether

to

erase

the

information

a

data

set

contains

when

you

delete

the

data

set.

To

control

the

erasure

of

data

in

a

VSAM

component

whose

cluster

is

RACF

protected

and

cataloged,

you

can

use

an

ERASE

attribute

in

a

generic

or

discrete

profile.

For

information

about

specifying

and

using

the

ERASE

option,

see

“Erasing

DASD

Data”

on

page

60

and

“Generic

and

Discrete

Profiles

for

VSAM

Data

Sets”

on

page

54.

Restriction:

IDCAMS

ignores

the

KEYRANGES

parameter.

For

more

information

about

converting

key-range

data

sets,

see

the

z/OS

DFSMShsm

Implementation

and

Customization

Guide.

Allocating

Space

for

VSAM

Data

Sets

When

you

define

a

data

set,

you

or

SMS

must

specify

the

amount

of

space

to

allocate

for

the

data

set.

If

SMS

is

active,

you

can

specify

a

data

class

and

take

advantage

of

the

space

allocation

set

by

your

storage

administrator.

If

you

want

to

specify

space

explicitly,

you

can

specify

it

for

VSAM

data

sets

in

units

of

records,

kilobytes,

megabytes,

tracks,

or

cylinders.

To

maintain

device

independence,

specify

records,

kilobytes

or

megabytes.

The

amount

of

space

you

allocate

depends

on

the

size

of

your

data

set

and

the

index

options

you

selected.

“Using

Index

Options”

on

page

175

explains

the

index

options

that

improve

performance.

If

a

guaranteed

space

storage

class

(STORAGECLASS

parameter)

is

assigned

to

the

data

set

and

volume

serial

numbers

are

specified,

primary

space

is

allocated

on

all

specified

volumes

if

the

following

conditions

are

met.

If

these

conditions

are

not

met,

the

command

fails

and

IGDxxxxI

messages

are

printed:

v

All

volumes

specified

belong

to

the

same

storage

group.

v

The

storage

group

to

which

these

volumes

belong

is

in

the

list

of

storage

groups

selected

by

the

ACS

routines

for

this

allocation.

Defining

VSAM

Data

Sets

106

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

You

can

specify

space

allocation

at

the

cluster

or

alternate-index

level,

at

the

data

level

only,

or

at

both

the

data

and

index

levels.

It

is

best

to

allocate

space

at

the

cluster

or

data

levels.

VSAM

allocates

space

if:

v

Allocation

is

specified

at

the

cluster

or

alternate

index

level

only,

the

amount

needed

for

the

index

is

subtracted

from

the

specified

amount.

The

remainder

of

the

specified

amount

is

assigned

to

data.

v

Allocation

is

specified

at

the

data

level

only,

the

specified

amount

is

assigned

to

data.

The

amount

needed

for

the

index

is

in

addition

to

the

specified

amount.

v

Allocation

is

specified

at

both

the

data

and

index

levels,

the

specified

data

amount

is

assigned

to

data

and

the

specified

index

amount

is

assigned

to

the

index.

v

Secondary

allocation

is

specified

at

the

data

level,

secondary

allocation

must

be

specified

at

the

index

level

or

the

cluster

level.

VSAM

acquires

space

in

increments

of

control

areas.

The

control

area

size

generally

is

based

on

primary

and

secondary

space

allocations.

See

“Optimizing

Control

Area

Size”

on

page

159

for

information

about

optimizing

control

area

size.

Partial

Release

Partial

release

is

used

to

release

unused

space

from

the

end

of

an

extended

format

data

set

and

is

specified

through

SMS

management

class

or

by

the

JCL

RLSE

subparameter.

All

space

after

the

high

used

RBA

is

released

on

a

CA

boundary

up

to

the

high

allocated

RBA.

If

the

high

used

RBA

is

not

on

a

CA

boundary,

the

high

used

amount

is

rounded

to

the

next

CA

boundary.

Partial

release

restrictions

include:

v

Partial

release

processing

is

supported

only

for

extended

format

data

sets.

v

Only

the

data

component

of

the

VSAM

cluster

is

eligible

for

partial

release.

v

Alternate

indexes

opened

for

path

or

upgrade

processing

are

not

eligible

for

partial

release.

The

data

component

of

an

alternate

index

when

opened

as

cluster

could

be

eligible

for

partial

release.

v

Partial

release

processing

is

not

supported

for

temporary

close.

v

Partial

release

processing

is

not

supported

for

data

sets

defined

with

guaranteed

space.

VSAM

CLOSE

will

request

partial

release

processing

only

if:

v

Partial

release

was

specified

through

SMS

management

class

or

by

the

JCL

SPACE=(,,RLSE)

parameter

on

the

DD

statement.

v

The

data

set

is

defined

as

extended

format.

v

The

data

set

was

opened

for

OUTPUT

processing.

v

This

is

the

last

ACB

closing

for

the

data

set

(this

includes

all

closes

in

the

current

address

space,

other

address

spaces

in

the

system,

and

other

systems).

Small

Data

Sets

If

you

allocate

space

for

a

data

set

in

a

unit

smaller

than

one

cylinder,

VSAM

allocates

space

in

tracks

when

defining

the

data

set.

For

data

sets

less

than

1

cylinder

in

size,

it

is

best

to

specify

the

maximum

number

of

tracks

required

in

the

primary

allocation

for

the

data

component,

1

track

for

the

sequence

set

index

(which

should

not

be

imbedded),

and

no

secondary

allocation

for

either

data

or

index.

VSAM

checks

the

smaller

of

primary

and

secondary

space

values

against

the

specified

device’s

cylinder

size.

If

the

smaller

quantity

is

greater

than

or

equal

to

the

device’s

cylinder

size,

the

control

area

is

set

equal

to

the

cylinder

size.

If

the

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

107

smaller

quantity

is

less

than

the

device’s

cylinder

size,

the

size

of

the

control

area

is

set

equal

to

the

smaller

space

quantity.

The

minimum

control

area

size

is

one

track.

See

“Optimizing

Control

Area

Size”

on

page

159

for

information

about

creating

small

control

areas.

Multiple

Cylinder

Data

Sets

First,

calculate

the

amount

of

space

needed

for

the

primary

allocation.

If

the

data

set

is

larger

than

one

cylinder,

calculate

and

specify

the

number

of

cylinders

needed

for

data

in

a

newly

defined

data

set

for

the

primary

allocation.

Make

the

secondary

allocation

equal

to

or

greater

than

one

cylinder,

but

less

than

the

primary

allocation.

“Calculating

Space

for

the

Data

Component

of

a

KSDS”

on

page

109

demonstrates

how

to

calculate

the

size

of

a

data

set.

See

“Using

Index

Options”

on

page

175

for

information

about

index

options.

Linear

Data

Sets

You

must

allocate

space

in

tracks,

cylinders,

records,

kilobytes,

or

megabytes

for

a

linear

data

set.

When

you

define

a

linear

data

set,

you

can

specify

a

control

interval

size

of

4096

to

32

768

bytes

in

increments

of

4096

bytes.

If

not

an

integer

multiple

of

4096,

the

control

interval

size

is

rounded

up

to

the

next

4096

increment.

The

system

chooses

the

best

physical

record

size

to

use

the

track

size

geometry.

For

example,

if

you

specify

CISIZE(16384),

the

block

size

is

set

to

16

384.

If

the

specified

BUFFERSPACE

is

greater

than

8192

bytes,

it

is

decremented

to

a

multiple

of

4096.

If

BUFFERSPACE

is

less

than

8192,

access

method

services

issues

a

message

and

fails

the

command.

Using

VSAM

Extents

A

primary

space

allocation

is

the

initial

amount

of

allocated

space.

When

the

primary

amount

on

the

first

volume

is

used

up,

a

secondary

amount

is

allocated

on

that

volume.

Each

time

a

new

record

does

not

fit

in

the

allocated

space,

the

system

allocates

more

space

in

the

secondary

space

amount.

The

system

repeats

allocating

this

space

until

the

volume

is

out

of

space

or

the

volume

extent

limit

of

123

is

reached.

For

nonstriped

VSAM

data

sets,

you

can

specify

in

the

SMS

data

class

parameter

whether

to

use

primary

or

secondary

allocation

amounts

when

extending

to

a

new

volume.

You

can

expand

the

space

for

a

nonstriped

VSAM

component

to

255

extents.

You

can

expand

the

space

for

a

striped

VSAM

data

component

to

255

times

the

number

of

stripes.

The

system

reserves

the

last

four

extents

for

extending

a

component

when

the

system

cannot

allocate

the

last

extent

in

one

piece.

For

both

guaranteed

and

nonguaranteed

space

allocations,

when

you

allocate

space

for

your

data

set,

you

can

specify

both

a

primary

and

a

secondary

allocation.

Guaranteed

and

nonguaranteed

space

allocation

work

similarly

until

the

system

extends

the

data

set

to

a

new

volume.

The

difference

is

that

the

guaranteed

space

data

set

uses

the

“candidate

with

space”

amount

that

is

already

allocated

on

that

volume.

With

guaranteed

space

allocations,

the

primary

allocation

is

allocated

on

the

first

volume

as

“PRIME”

and

all

of

the

other

guaranteed

space

volumes

as

“candidate

with

space”.

When

all

of

the

space

on

the

primary

volume

is

used,

the

system

gets

space

on

the

primary

volume

using

the

secondary

amount.

When

no

more

space

Defining

VSAM

Data

Sets

108

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|

|
|
|
|
|

can

be

allocated

on

the

primary

volume,

the

system

uses

the

“candidate

with

space”

amount

on

the

next

volume.

Subsequent

extends

again

use

the

secondary

amounts

to

allocate

space

until

the

volume

is

full.

Then

the

system

uses

the

“candidate

with

space”

amount

on

the

next

volume,

and

so

forth.

VSAM

Extent

Consolidation

The

system

consolidates

adjacent

extents

for

VSAM

data

sets

when

extending

on

the

same

volume.

VSAM

extent

consolidation

is

automatic

and

requires

no

action

on

your

part.

If

the

extents

are

adjacent,

the

new

extent

is

incorporated

into

the

previous

extent.

Example:

The

old

extent

begins

on

cylinder

6,

track

0,

and

ends

on

cylinder

9,

track

14,

and

the

new

extent

begins

on

cylinder

10,

track

0,

and

ends

on

cylinder

12,

track

14.

The

two

extents

are

combined

into

one

extent

beginning

on

cylinder

6,

track

0,

and

ending

on

cylinder

12,

track

14.

Instead

of

two

extents,

there

is

only

one

extent.

Because

VSAM

combines

the

two

extents,

it

does

not

increment

the

extent

count,

which

reduces

the

amount

of

extents.

Example:

You

allocate

a

VSAM

data

set

with

CYLINDERS(3

1).

The

data

set

initially

gets

three

cylinders

and

an

additional

cylinder

every

time

the

data

set

is

extended.

Suppose

you

extend

this

data

set

five

times.

If

none

of

the

extents

are

adjacent,

the

LISTCAT

output

shows

allocations

of

cylinders

3,1,1,1,1,1,

or

a

total

of

eight

cylinders.

Results:

Depending

on

which

extents

are

adjacent,

the

LISTCAT

output

might

show

allocations

of

cylinders

5,1,1,1,

or

cylinders

3,5,

or

cylinders

3,2,3,

as

follows:

v

For

the

5,1,1,1

example,

only

the

first

three

extents

are

adjacent.

v

For

the

3,5

example,

the

first

and

second

extent

are

not

adjacent,

but

the

third

through

eighth

extent

are

adjacent.

v

For

the

3,2,3

example,

the

first

and

second

extent

are

not

adjacent,

the

second

and

third

extents

are

adjacent,

the

third

and

fourth

extents

are

not

adjacent,

and

the

last

three

extents

are

adjacent.

All

types

of

SMS-managed

VSAM

data

sets

(KSDS,

ESDS,

RRDS,

VRRDS,

and

LDS)

use

extent

consolidation.

Restriction:

VSAM

does

not

support

extent

reduction

for

the

following

types

of

data

sets:

v

Key-range

data

sets

v

System

data

sets

such

as

page

spaces

v

Catalogs

v

VVDSs

v

Non-system

managed

data

sets

v

Imbedded

or

replicated

indexes

v

VSAM

data

sets

that

you

access

using

record-level

sharing

Calculating

Space

for

the

Data

Component

of

a

KSDS

You

can

use

the

following

formula

for

any

DASD.

The

number

of

blocks

per

track

and

control

intervals

per

track

depends

on

the

DASD

you

are

using.

The

following

example

shows

how

to

calculate

the

size

of

the

data

component

for

a

key-sequenced

data

set.

The

following

are

assumed

for

the

calculations:

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

109

Device

type.

3390

Unit

of

space

allocation.

Cylinders

Data

control

interval

size.

1024

bytes

Physical

block

size

(calculated

by

VSAM).

1024

bytes

Record

size.

200

bytes

Free

space

definition

–

control

interval.

20%

Free

space

definition

–

control

area.

10%

Number

of

records

to

be

loaded.

3000

You

can

calculate

space

for

the

data

component

as

follows:

1.

Number

of

bytes

of

free

space

(20%

×

1024)

=

204

(round

down)

2.

Number

of

loaded

records

per

control

interval

(1024–10–204)/200=4.

3.

Number

of

physical

blocks

per

track

=

33.

4.

Number

of

control

intervals

per

track

=

33.

5.

Maximum

number

of

control

intervals

per

control

area

(33

×

15)=495.

6.

Number

of

loaded

control

intervals

per

control

area

=

446

(495

–

10%

×

495).

7.

Number

of

loaded

records

per

cylinder

(4

×

446)

=

1784.

8.

Total

space

for

data

component

(3000/1784)

(rounded)

=

2

cylinders.

The

value

(1024

–

10)

is

the

control

interval

length

minus

10

bytes

for

two

RDFs

and

one

CIDF.

The

record

size

is

200

bytes.

On

an

IBM

3380,

31

physical

blocks

with

1024

bytes

can

be

stored

on

one

track.

The

value

(33

×

15)

is

the

number

of

physical

blocks

per

track

multiplied

by

the

number

of

data

tracks

per

cylinder

(16

minus

1

for

the

imbedded

sequence

set

control

interval).

Calculating

Space

for

the

Index

Component

There

is

no

specific

formula

for

calculating

the

space

required

for

the

index

component.

Use

the

access

method

services

command

LISTCAT

to

see

how

much

space

was

allocated

to

the

index

component.

Using

ALTER

to

Modify

Attributes

of

a

Component

After

a

data

set

has

been

defined,

you

can

change

some

of

its

attributes

using

the

access

method

services

command,

ALTER.

You

identify

the

component

by

name,

and

specify

the

new

attributes.

ALTER

can

also

be

used

to

change

an

entry-sequenced

data

set,

with

the

proper

attributes,

to

a

linear

data

set.

The

contents

of

the

data

set

are

not

modified.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

an

example

of

changing

an

entry-sequenced

data

set

to

a

linear

data

set.

You

cannot

use

ALTER

to

change

a

fixed-length

RRDS

into

a

variable-length

RRDS,

or

vice

versa.

Using

ALTER

to

Rename

Data

Sets

You

can

use

the

ALTER

command

to

rename

VSAM

data

sets

and

members

of

PDSs

and

PDSEs,

and

to

convert

VSAM

data

sets

from

non-system

managed

to

system

managed.

ALTER

can

also

convert

system-managed

data

sets

to

non-system

managed.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

to

determine

which

values

or

attributes

you

can

alter

for

a

particular

data

set

type.

Defining

VSAM

Data

Sets

110

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Defining

a

Data

Set

with

JCL

SMS

must

be

active

on

your

system

before

you

can

use

JCL

to

define

a

VSAM

data

set.

Any

VSAM

data

set

can

be

defined

using

JCL,

except

for

a

variable-length

RRDS.

Defining

a

VSAM

data

set

using

JCL

has

certain

advantages.

It

takes

less

time

to

input

and

it

makes

syntax

for

defining

the

VSAM

data

set

very

similar

to

that

used

for

accessing

it.

DB2

provides

striping

on

partitioned

table

spaces.

Each

of

the

partitions

is

a

separate

linear

data

set.

Striping

is

used

to

perform

parallel

I/O

concurrently

against

more

than

one

of

these

partitions.

The

benefit

of

striping

is

only

achievable

if

multiple

partitions

do

not

get

allocated

on

the

same

volume.

You

can

achieve

volume

separation

without

resorting

to

the

storage

class

guaranteed

space

allocations

on

system-managed

volumes.

Allocate

all

of

the

partitions

in

a

single

IEFBR14

job

step

using

JCL.

If

an

adequate

number

of

volumes

exist

in

the

storage

groups,

and

the

volumes

are

not

above

the

allocation

threshold,

the

SMS

allocation

algorithms

with

SRM

will

ensure

each

partition

is

allocated

on

a

separate

volume.

DB2

striping

is

unrelated

to

VSAM

striping

(see

“Extended-Format

VSAM

Data

Sets”

on

page

87).

You

can

use

both

DB2

striping

and

VSAM

striping

for

the

same

set

of

linear

extended

format

data

sets.

Related

reading:

See

Chapter

18,

“Using

Job

Control

Language

for

VSAM,”

on

page

259

for

information

about

the

JCL

keywords

used

to

define

a

VSAM

data

set.

See

z/OS

MVS

JCL

Reference

and

z/OS

MVS

JCL

User’s

Guide

for

information

about

JCL

keywords

and

the

use

of

JCL.

Loading

a

VSAM

Data

Set

After

a

data

set

is

defined,

you

can

load

records

into

it

from

a

source

data

set.

Depending

on

the

type

of

VSAM

data

set

being

loaded,

the

source

data

set

records

might

or

might

not

need

to

be

in

a

particular

order.

v

Records

being

loaded

into

an

entry-sequenced

data

set

do

not

have

to

be

submitted

in

any

particular

order.

Entry-sequenced

data

set

records

are

sequenced

by

their

time

of

arrival

rather

than

by

any

field

in

the

logical

record.

v

Fixed-length

RRDS

records

are

placed

into

slots

specified

either

by

a

user-supplied

or

a

VSAM-supplied

relative

record

number.

The

relative

record

number

is

not

part

of

the

logical

record,

so

it

is

not

necessary

that

the

records

be

submitted

in

any

particular

order.

v

Records

being

loaded

into

a

key-sequenced

data

set

must

be

in

ascending

order

by

key,

with

no

duplicate

keys

in

the

input

data

set.

v

Records

being

loaded

into

a

variable-length

RRDS

must

be

in

ascending

order

by

key,

with

no

duplicate

keys

in

the

input

data

set.

If

they

are

loaded

in

sequential

mode,

VSAM

assigns

the

relative

record

number.

With

entry-sequenced

or

key-sequenced

data

sets,

or

RRDSs,

you

can

load

all

the

records

either

in

one

job

or

in

several

jobs.

If

you

use

multiple

jobs

to

load

records

into

a

data

set,

VSAM

stores

the

records

from

subsequent

jobs

in

the

same

manner

that

it

stored

records

from

preceding

jobs,

extending

the

data

set

as

required.

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

111

Using

REPRO

to

Copy

a

VSAM

Data

Set

The

REPRO

command

lets

you

retrieve

records

from

a

sequential,

indexed-sequential,

or

VSAM

data

set

and

store

them

in

VSAM

format

in

a

key-sequenced,

entry-sequenced,

relative-record,

or

a

sequential

data

set.

The

REPRO

command

is

also

used

to

load

data

from

one

linear

data

set

into

another

linear

data

set.

When

records

are

to

be

stored

in

key

sequence,

index

entries

are

created

and

loaded

into

an

index

component

as

data

control

intervals

and

control

areas

are

filled.

Free

space

is

left

as

indicated

in

the

cluster

definition

in

the

catalog,

and,

if

indicated

in

the

definition,

records

are

stored

on

particular

volumes

according

to

key

ranges.

VSAM

data

sets

must

be

cataloged.

Sequential

and

indexed

sequential

data

sets

need

not

be

cataloged.

Sequential

data

sets

that

are

system

managed

must

be

cataloged.

If

a

sequential

or

indexed-sequential

data

set

is

not

cataloged,

include

the

appropriate

volume

and

unit

parameters

on

your

DD

statement.

Also,

supply

a

minimum

set

of

DCB

parameters

when

the

input

data

set

is

sequential

or

indexed

sequential,

and/or

the

output

data

set

is

sequential.

The

following

table

shows

the

four

key

parameters:

Parameters

User

Can

Supply

Default

if

Not

Supplied

DSORG

IS

PS

RECFM

F,

FB,

V,

VB,

VS,

VBS

U

BLKSIZE

Block

size

None

LRECL

Logical

record

length

BLKSIZE

for

F

or

FB

BLKSIZE-4

for

V,

VB,

VS,

VBS

The

only

way

to

specify

the

DSORG

parameter

is

to

use

the

DD

statement.

The

DCB

parameters

RECFM,

BLKSIZE,

and

LRECL

can

be

supplied

using

the

DSCB

or

header

label

of

a

standard

labeled

tape,

or

by

the

DD

statement.

The

system

can

determine

the

optimum

block

size.

If

you

use

REPRO

to

copy

to

a

sequential

data

set,

you

do

not

need

to

supply

a

block

size

because

the

system

determines

the

block

size

when

it

opens

the

data

set.

You

can

optionally

supply

a

BLKSIZE

value

using

JCL

or

when

you

define

the

output

data

set.

If

you

are

loading

a

VSAM

data

set

into

a

sequential

data

set,

you

must

remember

that

the

3-byte

VSAM

record

definition

field

(RDF)

is

not

included

in

the

VSAM

record

length.

When

REPRO

attempts

to

copy

a

VSAM

record

whose

length

is

more

than

the

non-VSAM

LRECL−4,

a

recoverable

error

occurs

and

the

record

is

not

copied.

(Each

non-VSAM

record

has

a

four-byte

prefix

that

is

included

in

the

length.

Thus,

the

length

of

each

VSAM

variable-length

record

is

four

bytes

less

than

the

length

of

the

non-VSAM

record.)

Access

method

services

does

not

support

records

greater

than

32

760

bytes

for

non-VSAM

data

sets

(LRECL=X

is

not

supported).

If

the

logical

record

length

of

a

non-VSAM

input

data

set

is

greater

than

32

760

bytes,

or

if

a

VSAM

data

set

defined

with

a

record

length

greater

than

32

760

is

to

be

copied

to

a

sequential

data

set,

the

REPRO

command

terminates

with

an

error

message.

Defining

VSAM

Data

Sets

112

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Records

in

an

indexed

sequential

data

set

that

have

a

fixed-length,

unblocked

format

with

a

relative-key

position

of

zero

are

preceded

by

the

key

string

when

used

as

input.

The

records

in

the

output

data

set

must

have

a

record

length

defined

that

includes

the

extended

length

caused

by

the

key

string.

To

copy

“dummy”

indexed-sequential

records

(with

X'FF'

in

the

first

byte),

specify

the

DUMMY

option

in

the

ENVIRONMENT

parameter.

The

REPRO

operation

is

terminated

if:

v

One

physical

I/O

error

is

found

while

writing

to

the

output

data

set

v

A

total

of

four

errors

is

found

in

any

combination

of

the

following:

–

Logical

error

while

writing

to

the

output

data

set

–

Logical

error

while

reading

the

input

data

set

–

Physical

error

while

reading

the

input

data

set

Related

reading:

For

information

about

physical

and

logical

errors,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Using

a

Program

to

Load

a

Data

Set

To

use

your

own

program

to

load

a

key-sequenced

data

set,

first

sort

the

records

(or

build

them)

in

key

sequence,

then

store

them

sequentially

(using

the

PUT

macro).

When

you

are

initially

loading

a

data

set,

direct

access

is

not

permitted.

For

more

information

about

inserting

records

into

a

data

set,

see

“Inserting

and

Adding

Records”

on

page

140.

VSAM

uses

the

high-used

RBA

field

to

determine

whether

a

data

set

is

empty.

An

implicit

verify

can

update

the

high-used

RBA.

Immediately

after

definition

of

a

data

set,

the

high-used

RBA

value

is

zero.

An

empty

data

set

cannot

be

verified.

The

terms

create

mode,

load

mode,

and

initial

data

set

load

are

synonyms

for

the

process

of

inserting

records

into

an

empty

VSAM

data

set.

To

start

loading

an

empty

VSAM

data

set,

call

the

VSAM

OPEN

macro.

Following

a

successful

open,

the

load

continues

while

records

are

added

and

concludes

when

the

data

set

is

closed.

Restriction:

If

an

entry-sequenced

data

set

fails

to

load,

you

cannot

open

it.

Certain

restrictions

apply

during

load

mode

processing:

v

PUT

and

CHECK

are

the

only

macros

you

can

use.

v

Do

not

use

improved

control

interval

processing.

v

You

cannot

do

update

or

input

processing

until

the

data

set

has

been

loaded

and

closed.

v

Specify

only

one

string

in

the

ACB

(STRNO>1

is

not

permitted).

v

Do

not

specify

local

shared

resources

(LSR)

or

global

shared

resources

(GSR).

v

You

cannot

share

the

data

set.

v

Direct

processing

is

not

permitted

(except

relative

record

keyed

direct).

If

the

design

of

your

application

calls

for

direct

processing

during

load

mode,

you

can

avoid

this

restriction

by

following

these

steps:

1.

Open

the

empty

data

set

for

load

mode

processing.

2.

Sequentially

write

one

or

more

records,

which

could

be

dummy

records.

3.

Close

the

data

set

to

terminate

load

mode

processing.

4.

Reopen

the

data

set

for

normal

processing.

You

can

now

resume

loading

or

do

direct

processing.

When

using

this

method

to

load

a

VSAM

data

set,

be

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

113

cautious

about

specifying

partial

release.

Once

the

data

set

is

closed,

partial

release

will

attempt

to

release

all

space

not

used.

For

information

about

using

user-written

exit

routines

when

loading

records

into

a

data

set,

see

Chapter

16,

“Coding

VSAM

User-Written

Exit

Routines,”

on

page

235.

During

load

mode,

each

control

area

can

be

preformatted

as

records

are

loaded

into

it.

Preformatting

is

useful

for

recovery

if

an

error

occurs

during

loading.

However,

performance

is

better

during

initial

data

set

load

without

preformatting.

The

RECOVERY

parameter

of

the

access

method

services

DEFINE

command

is

used

to

indicate

that

VSAM

is

to

preformat

control

areas

during

load

mode.

In

the

case

of

a

fixed-length

RRDS

and

SPEED,

a

control

area

in

which

a

record

is

inserted

during

load

mode

will

always

be

preformatted.

With

RECOVERY,

all

control

areas

will

be

preformatted.

Preformatting

clears

all

previous

information

from

the

direct

access

storage

area

and

writes

end-of-file

indicators.

For

VSAM,

an

end-of-file

indicator

consists

of

a

control

interval

with

a

CIDF

equal

to

zeros.

v

For

an

entry-sequenced

data

set,

VSAM

writes

an

end-of-file

indicator

in

every

control

interval

in

the

control

area.

v

For

a

key-sequenced

data

set,

VSAM

writes

an

end-of-file

indicator

in

the

first

control

interval

in

the

control

area

following

the

preformatted

control

area.

(The

preformatted

control

area

contains

free

control

intervals.)

v

For

a

fixed-length

RRDS,

VSAM

writes

an

end-of-file

indicator

in

the

first

control

interval

in

the

control

area

following

the

preformatted

control

area.

All

RDFs

in

an

empty

preformatted

control

interval

are

marked

“slot

empty”.

As

records

are

loaded

into

a

preformatted

control

area

of

an

entry-sequenced

data

set,

an

end-of-file

indicator

following

the

records

indicates

how

far

loading

has

progressed.

You

can

then

resume

loading

at

that

point,

after

verifying

the

data

set.

(You

cannot

open

the

data

set

unless

you

first

verify

it.)

If

an

error

occurs

that

prevents

loading

from

continuing,

you

can

identify

the

last

successfully

loaded

record

by

reading

to

end

of

file.

The

SPEED

parameter

does

not

preform

at

the

data

control

areas.

It

writes

an

end-of-file

indicator

only

after

the

last

record

is

loaded.

Performance

is

better

if

you

use

the

SPEED

parameter

and

if

using

extended

format

data

sets.

Extended

format

data

sets

may

use

system-managed

buffering.

This

permits

the

number

of

data

buffers

to

be

optimized

for

load

mode

processing.

This

can

be

used

with

the

REPRO

parameter

for

a

new

data

set

for

reorganization

or

recovery.

If

an

error

occurs

that

prevents

loading

from

continuing,

you

cannot

identify

the

last

successfully

loaded

record

and

you

might

have

to

reload

the

records

from

the

beginning.

For

a

key-sequenced

data

set,

the

SPEED

parameter

only

affects

the

data

component.

Rule:

Remember

that,

if

you

specify

SPEED,

it

will

be

in

effect

for

load

mode

processing.

After

load

mode

processing,

RECOVERY

will

be

in

effect,

regardless

of

the

DEFINE

specification.

Reusing

a

VSAM

Data

Set

as

a

Work

File

VSAM

enables

you

to

define

reusable

data

sets

to

use

as

work

files.

Define

the

data

set

as

reusable

and

specify

that

it

be

reset

when

you

open

it.

You

also

can

reuse

a

striped

VSAM

data

set.

Defining

VSAM

Data

Sets

114

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

A

data

set

that

is

not

reusable

can

be

loaded

only

once.

After

the

data

set

is

loaded,

it

can

be

read

and

written

to,

and

the

data

in

it

can

be

modified.

However,

the

only

way

to

remove

the

set

of

data

is

to

use

the

access

method

services

command

DELETE,

which

deletes

the

entire

data

set.

If

you

want

to

use

the

data

set

again,

define

it

with

the

access

method

services

command

DEFINE,

by

JCL,

or

by

dynamic

allocation.

Instead

of

using

the

DELETE

-

DEFINE

sequence,

you

can

specify

the

REUSE

parameter

in

the

DEFINE

CLUSTER|ALTERNATEINDEX

command.

The

REUSE

parameter

lets

you

treat

a

filled

data

set

as

if

it

were

empty

and

load

it

again

and

again

regardless

of

its

previous

contents.

A

reusable

data

set

can

be

a

KSDS,

an

ESDS,

an

LDS,

or

a

RRDS

that

resides

on

one

or

more

volumes.

A

reusable

base

cluster

cannot

have

an

alternate

index,

and

it

cannot

be

associated

with

key

ranges.

When

a

reusable

data

set

is

opened

with

the

reset

option,

it

cannot

be

shared

with

other

jobs.

VSAM

uses

a

high-used

relative

byte

address

(RBA)

field

to

determine

if

a

data

set

is

empty

or

not.

Immediately

after

you

define

a

data

set,

the

high-used

RBA

value

is

zero.

After

loading

and

closing

the

data

set,

the

high-used

RBA

is

equal

to

the

offset

of

the

last

byte

in

the

data

set.

In

a

reusable

data

set,

you

can

reset

to

zero

this

high-used

RBA

field

at

OPEN

by

specifying

MACRF=RST

in

the

ACB

at

OPEN.

VSAM

can

use

this

reusable

data

set

like

a

newly

defined

data

set.

For

compressed

format

data

sets,

in

addition

to

the

high-used

RBA

field

being

reset

to

zero

for

MACRF=RST,

OPEN

resets

the

compressed

and

uncompressed

data

set

sizes

to

zero.

The

system

does

not

reset

the

compression

dictionary

token

and

reuses

it

to

compress

the

new

data.

Because

the

dictionary

token

is

derived

from

previous

data,

this

action

could

affect

the

compression

ratio

depending

on

the

nature

of

the

new

data.

Copying

and

Merging

Data

Sets

You

might

want

to

copy

a

data

set

or

merge

two

data

sets

for

a

variety

of

reasons.

For

example,

you

might

want

to

create

a

test

copy,

you

might

want

two

copies

to

use

for

two

different

purposes,

or

you

might

want

to

keep

a

copy

of

back

records

before

updating

a

data

set.

You

can

use

the

access

method

services

REPRO

command

to

copy

data

sets.

For

information

about

accessing

a

data

set

using

RLS,

see

Chapter

14,

“Using

VSAM

Record-Level

Sharing,”

on

page

217.

You

can

use

the

REPRO

command

to

do

any

of

the

following:

v

Copy

or

merge

a

VSAM

data

set

into

another

VSAM

data

set.

v

Copy

or

merge

a

sequential

data

set

into

another

sequential

data

set.

v

Copy

an

alternate

index

as

a

key-sequenced

VSAM

data

set.

v

Copy

a

VSAM

data

set

whose

records

are

fixed

length

into

an

empty

fixed-length

RRDS.

v

Convert

a

sequential

or

indexed

sequential

data

set

into

a

VSAM

data

set.

v

Copy

a

VSAM

data

set

into

a

sequential

data

set.

v

Copy

a

data

set

(other

than

a

catalog)

to

reorganize

it.

Data

sets

are

reorganized

automatically.

v

Copy

individual

members

of

a

PDS

or

PDSE.

A

PDS

or

PDSE

cannot

be

copied,

but

individual

members

can

be

copied.

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

115

When

copying

to

a

key-sequenced

data

set,

the

records

to

be

copied

must

be

in

ascending

order,

with

no

duplicates

in

the

input

data

set.

All

the

keys

must

be

unique.

With

an

entry-sequenced

data

set,

the

records

to

be

copied

can

be

in

any

order.

Because

data

is

copied

as

single

logical

records

in

either

key

order

or

physical

order,

automatic

reorganization

can

take

place

as

follows:

v

Physical

relocation

of

logical

records

v

Alteration

of

a

record’s

physical

position

within

the

data

set

v

Redistribution

of

free

space

throughout

the

data

set

v

Reconstruction

of

the

VSAM

indexes

If

you

are

copying

to

or

from

a

sequential

data

set

that

is

not

cataloged,

you

must

include

the

appropriate

volume

and

unit

parameters

on

your

DD

statements.

For

more

information

about

these

parameters

see

“Using

REPRO

to

Copy

a

VSAM

Data

Set”

on

page

112.

Table

10

describes

how

the

data

from

the

input

data

set

is

added

to

the

output

data

set

when

the

output

data

set

is

an

empty

or

nonempty

entry-sequenced,

sequential,

key-sequenced,

or

linear

data

set,

or

fixed-length

or

variable-length

RRDS.

Table

10.

Adding

Data

to

Various

Types

of

Output

Data

Sets

Type

of

Data

Set

Empty

Nonempty

Entry

sequenced

Loads

new

data

set

in

sequential

order.

Adds

records

in

sequential

order

to

the

end

of

the

data

set.

Sequential

Loads

new

data

set

in

sequential

order.

Adds

records

in

sequential

order

to

the

end

of

the

data

set.

Key

sequenced

Loads

new

data

set

in

key

sequence

and

builds

an

index.

Merges

records

by

key

and

updates

the

index.

Unless

the

REPLACE

option

is

specified,

records

whose

key

duplicates

a

key

in

the

output

data

set

are

lost.

Linear

Loads

new

linear

data

set

in

relative

byte

order.

Adds

data

to

control

intervals

in

sequential

order

to

the

end

of

the

data

set.

Fixed-length

RRDS

Loads

a

new

data

set

in

relative

record

sequence,

beginning

with

relative

record

number

1.

Records

from

another

fixed-length

or

variable-length

RRDS

are

merged,

keeping

their

old

record

numbers.

Unless

the

REPLACE

option

is

specified,

a

new

record

whose

number

duplicates

an

existing

record

number

is

lost.

Records

from

any

other

type

of

organization

cannot

be

copied

into

a

nonempty

fixed-length

RRDS.

Variable-length

RRDS

Loads

a

new

data

set

in

relative

record

sequence,

beginning

with

relative

record

number

1.

Records

from

another

fixed-length

or

variable-length

RRDS

are

merged,

keeping

their

old

record

numbers.

Unless

the

REPLACE

option

is

specified,

a

new

record

whose

number

duplicates

an

existing

record

number

is

lost.

Records

from

any

other

type

of

organization

cannot

be

copied

into

a

nonempty

fixed-length

RRDS.

The

REPRO

operation

is

terminated

if:

v

One

physical

I/O

error

is

found

while

writing

to

the

output

data

set

v

A

total

of

four

errors

is

found

in

any

combination

of

the

following:

–

Logical

error

while

writing

to

the

output

data

set

–

Logical

error

while

reading

the

input

data

set

–

Physical

error

while

reading

the

input

data

set.

Defining

VSAM

Data

Sets

116

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Defining

Alternate

Indexes

An

alternate

index

is

a

key-sequenced

data

set

containing

index

entries

organized

by

the

alternate

keys

of

its

associated

base

data

records.

It

provides

another

way

of

locating

records

in

the

data

component

of

a

cluster.

An

alternate

index

can

be

defined

over

a

key-sequenced

or

entry-sequenced

cluster.

An

alternate

index

cannot

be

defined

for

a

reusable

cluster,

a

fixed-

or

variable-length

RRDS,

a

catalog,

another

alternate

index,

a

linear

data

set,

or

a

non-VSAM

data

set.

The

data

class

parameter

can

be

specified

for

a

system-managed

alternate

index.

Access

method

services

DEFINE

will

assign

the

same

management

class

and

storage

class

as

the

alternate

index’s

base

cluster.

If

a

base

cluster

is

defined

as

extended

format,

then

the

alternate

index

it

relates

to

must

be

able

to

be

defined

as

extended

format.

Alternate

indexes

cannot

be

compressed.

See

“Access

to

Records

through

Alternate

Indexes”

on

page

96

for

information

about

the

structure

of

an

alternate

index.

The

sequence

for

building

an

alternate

index

is

as

follows:

1.

Define

the

base

cluster,

using

either

the

ALLOCATE

command,

the

DEFINE

CLUSTER

command,

or

JCL.

2.

Load

the

base

cluster

either

by

using

the

REPRO

command

or

by

writing

your

own

program

to

load

the

data

set.

3.

Define

the

alternate

index,

using

the

DEFINE

ALTERNATEINDEX

command.

4.

Relate

the

alternate

index

to

the

base

cluster,

using

the

DEFINE

PATH

command.

The

base

cluster

and

alternate

index

are

described

by

entries

in

the

same

catalog.

5.

Build

the

alternate

index,

using

the

BLDINDEX

command.

VSAM

uses

three

catalog

entries

to

describe

an

alternate

index:

v

An

alternate

index

entry

describes

the

alternate

index

as

a

key-sequenced

cluster.

v

A

data

entry

describes

the

alternate

index’s

data

component.

v

An

index

entry

describes

the

alternate

index’s

index

component.

Except

for

data

class,

attributes

of

the

alternate

index’s

data

and

index

components

can

be

specified

separately

from

the

attributes

of

the

whole

alternate

index.

If

attributes

are

specified

for

the

whole

alternate

index

and

not

for

the

data

and

index

components,

these

attributes

(except

for

password

and

USVR

security

attributes)

apply

to

the

components

as

well.

If

the

attributes

are

specified

for

the

components,

they

override

any

attributes

specified

for

the

entire

alternate

index.

Naming

an

Alternate

Index

You

specify

an

entry

name

for

an

alternate

index

when

you

define

it.

You

can

specify

the

entry

name

as

the

dsname

in

a

JCL

DD

statement.

For

details

on

how

VSAM

can

generate

component

names

for

you,

see

“Naming

a

Cluster”

on

page

102.

Specifying

Alternate

Index

Information

When

you

define

an

alternate

index,

you

specify

descriptive

information

and

performance,

security,

and

data

integrity

options.

The

information

can

apply

to

the

alternate

index’s

data

component,

its

index

component,

or

the

whole

alternate

index.

Information

for

the

entire

alternate

index

is

specified

with

the

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

117

ALTERNATEINDEX

parameter

and

its

subparameters.

Information

for

the

data

component

or

the

index

component

is

specified

with

the

parameter

DATA

or

INDEX.

Passwords

are

not

supported

for

system-managed

alternate

indexes.

To

define

an

alternate

index,

you

must

have

RACF

alter

authority

for

the

base

cluster.

Specifying

Descriptive

Information

for

an

Alternate

Index

You

need

to

specify

the

following

descriptive

information

for

an

alternate

index:

v

The

name

and

password

of

the

base

cluster

related

to

the

alternate

index,

as

specified

in

the

RELATE

parameter.

The

RELATE

entry

name

must

be

selected

so

that

the

multilevel

alias

facility

selects

the

correct

catalog.

See

z/OS

DFSMS:

Managing

Catalogs

for

information

about

the

multilevel

alias

facility

and

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

information

about

the

order

of

catalog

search.

v

Amount

of

space

to

allocate

for

the

alternate

index,

as

specified

in

the

CYLINDERS|KILOBYTES|MEGABYTES|RECORDS|TRACKS

parameter.

v

Volume

serial

numbers

of

the

volumes

on

which

space

is

allocated

for

the

alternate

index,

as

designated

in

the

VOLUMES

parameter.

If

you

specify

the

VOLUMES

parameter

for

system-managed

data

sets,

however,

the

volumes

designated

might

or

might

not

be

used,

and

sometimes

can

result

in

a

failure.

You

can

indicate

nonspecific

volumes

for

a

system-managed

data

set

by

designating

an

asterisk

(*)

for

each

volume

serial.

SMS

then

determines

the

volume

serial.

The

default

is

one

volume.

Note

that

if

both

specific

and

nonspecific

volumes

are

designated,

the

specified

volume

serials

must

be

named

first.

v

The

minimum

amount

of

I/O

buffer

space

that

OPEN

must

provide

when

the

program

processes

the

alternate

index’s

data,

as

designated

in

the

BUFFERSPACE

parameter.

v

Name

and

password

of

the

catalog

containing

the

alternate

index’s

entries,

as

designated

in

the

CATALOG

parameter.

This

must

be

the

same

catalog

that

contains

the

base

cluster’s

entries.

v

Data

class,

for

alternate

indexes,

to

take

advantage

of

the

attributes

assigned

by

the

storage

administrator.

v

Length

and

position

of

the

alternate

key

field

in

data

records

of

the

base

cluster,

as

specified

in

the

KEYS

parameter.

v

Average

and

maximum

lengths

of

alternate

index

records,

as

specified

in

the

RECORDSIZE

parameter.

v

Whether

the

alternate

index

is

reusable,

as

specified

in

the

REUSE

parameter.

v

Whether

the

data

set

is

extended

format

and

whether

it

has

extended

addressability.

These

characteristics

for

the

alternate

index

are

the

same

as

those

for

the

cluster.

The

performance

options

and

the

security

and

integrity

information

for

the

alternate

index

are

the

same

as

that

for

the

cluster.

See

“Using

Access

Method

Services

Parameters”

on

page

104.

Specifying

RECORDSIZE

for

an

Alternate

Index

with

Nonunique

Keys

When

you

define

an

alternate

index

with

many

nonunique

keys,

specify

a

RECORDSIZE

value

that

is

large

enough

to

handle

all

the

nonunique

keys.

All

occurrences

of

primary

keys

for

a

particular

alternate

key

must

be

within

a

single

alternate

index

logical

record.

If

the

maximum

RECORDSIZE

value

is

1000,

for

Defining

VSAM

Data

Sets

118

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

example,

you

would

not

be

able

to

support

as

many

nonunique

keys

as

you

would

if

the

maximum

RECORDSIZE

value

were

5000.

Building

an

Alternate

Index

When

an

alternate

index

is

built

by

BLDINDEX

processing,

the

alternate

index’s

volume

and

the

base

cluster’s

volume

must

be

mounted.

Any

volumes

identified

with

the

WORKFILES

parameter

must

also

be

mounted.

If

one

of

the

data

sets

identified

by

the

WORKFILES

ddname

is

system

managed,

the

other

data

set

must

be

either

a

system-managed

data

set

or

a

non-system-managed

data

set

cataloged

in

the

catalog

determined

by

the

catalog

search

order.

The

base

cluster

cannot

be

empty

(that

is,

its

high-used

RBA

value

cannot

be

zero).

Each

record’s

alternate

key

value

must

be

unique,

unless

the

alternate

index

was

defined

with

the

NONUNIQUEKEY

attribute.

Access

method

services

opens

the

base

cluster

to

read

the

data

records

sequentially,

sorts

the

information

obtained

from

the

data

records,

and

builds

the

alternate

index

data

records.

The

base

cluster’s

data

records

are

read

and

information

is

extracted

to

form

the

key-pointer

pair:

v

When

the

base

cluster

is

entry

sequenced,

the

alternate-key

value

and

the

data

record’s

RBA

form

the

key-pointer

pair.

v

When

the

base

cluster

is

key

sequenced,

the

alternate-key

value

and

the

primary-key

value

of

the

data

set

record

form

the

key-pointer

pair.

The

key-pointer

pairs

are

sorted

in

ascending

alternate-key

order.

After

the

key-pointer

pairs

are

sorted

into

ascending

alternate

key

order,

access

method

services

builds

alternate

index

records

for

key-pointer

pairs.

When

all

alternate

index

records

are

built

and

loaded

into

the

alternate

index,

the

alternate

index

and

its

base

cluster

are

closed.

You

cannot

build

an

alternate

index

over

an

extended

addressable

entry-sequenced

data

set.

Related

reading:

For

information

about

calculating

the

amount

of

virtual

storage

required

to

sort

records,

using

the

BLDINDEX

command,

and

the

catalog

search

order,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Maintaining

Alternate

Indexes

VSAM

assumes

alternate

indexes

are

always

synchronized

with

the

base

cluster

and

does

not

check

synchronization

during

open

processing.

Therefore,

all

structural

changes

made

to

a

base

cluster

must

be

reflected

in

its

alternate

index

or

indexes.

This

is

called

index

upgrade.

You

can

maintain

your

own

alternate

indexes

or

have

VSAM

maintain

them.

When

the

alternate

index

is

defined

with

the

UPGRADE

attribute

of

the

DEFINE

command,

VSAM

updates

the

alternate

index

whenever

there

is

a

change

to

the

associated

base

cluster.

VSAM

opens

all

upgrade

alternate

indexes

for

a

base

cluster

whenever

the

base

cluster

is

opened

for

output.

If

you

are

using

control

interval

processing,

you

cannot

use

UPGRADE.

See

Chapter

11,

“Processing

Control

Intervals,”

on

page

177.

You

can

define

a

maximum

of

125

alternate

indexes

in

a

base

cluster

with

the

UPGRADE

attribute.

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

119

All

the

alternate

indexes

of

a

given

base

cluster

that

have

the

UPGRADE

attribute

belong

to

the

upgrade

set.

The

upgrade

set

is

updated

whenever

a

base

data

record

is

inserted,

erased,

or

updated.

The

upgrading

is

part

of

a

request

and

VSAM

completes

it

before

returning

control

to

your

program.

If

upgrade

processing

is

interrupted

because

of

a

machine

or

program

error

so

that

a

record

is

missing

from

the

base

cluster

but

its

pointer

still

exists

in

the

alternate

index,

record

management

will

synchronize

the

alternate

index

with

the

base

cluster

by

letting

you

reinsert

the

missing

base

record.

However,

if

the

pointer

is

missing

from

the

alternate

index,

that

is,

the

alternate

index

does

not

reflect

all

the

base

cluster

data

records,

you

must

rebuild

your

alternate

index

to

resolve

this

discrepancy.

Note

that

when

you

use

SHAREOPTIONS

2,

3,

and

4,

you

must

continue

to

ensure

read/write

integrity

when

issuing

concurrent

requests

(such

as

GETs

and

PUTs)

on

the

base

cluster

and

its

associated

alternate

indexes.

Failure

to

ensure

read/write

integrity

might

temporarily

cause

“No

Record

Found”

or

“No

Associated

Base

Record”

errors

for

a

GET

request.

You

can

bypass

such

errors

by

reissuing

the

GET

request,

but

it

is

best

to

prevent

the

errors

by

ensuring

read/write

integrity.

If

you

specify

NOUPGRADE

in

the

DEFINE

command

when

the

alternate

index

is

defined,

insertions,

deletions,

and

changes

made

to

the

base

cluster

will

not

be

reflected

in

the

associated

alternate

index.

When

a

path

is

opened

for

update,

the

base

cluster

and

all

the

alternate

indexes

in

the

upgrade

set

are

allocated.

If

updating

the

alternate

indexes

is

unnecessary,

you

can

specify

NOUPDATE

in

the

DEFINE

PATH

command

and

only

the

base

cluster

is

allocated.

In

that

case,

VSAM

does

not

automatically

upgrade

the

alternate

index.

If

two

paths

are

opened

with

MACRF=DSN

specified

in

the

ACB

macro,

the

NOUPDATE

specification

of

one

can

be

nullified

if

the

other

path

is

opened

with

UPDATE

specified.

How

Reorganization

Affects

Alternate

Indexes

If

you

reorganize

a

base

cluster,

you

do

not

need

to

rebuild

the

alternate

indexes,

because

the

relationships

between

the

base

cluster

and

the

alternate

indexes

have

not

changed.

If

you

unload

a

VSAM

data

set,

delete

the

existing

cluster

on

DASD,

redefine

the

CLUSTER

on

DASD,

then

load

the

new

data

set

from

the

unloaded

copy,

then

you

do

not

need

to

rebuild

the

alternate

index.

Alternate

Index

Backups

You

can

use

DFSMShsm

to

back

up

a

base

cluster

and

its

associate

alternate

indexes.

For

more

information

see

z/OS

DFSMShsm

Managing

Your

Own

Data.

Defining

a

Path

After

an

alternate

index

is

defined,

you

need

to

establish

the

relationship

between

an

alternate

index

and

its

base

cluster,

using

the

access

method

services

command,

DEFINE

PATH.

You

must

name

the

path

and

can

also

give

it

a

password.

The

path

name

refers

to

the

base

cluster/alternate

index

pair.

When

you

access

the

data

set

through

the

path,

you

must

specify

the

path

name

in

the

DSNAME

parameter

in

the

JCL.

When

your

program

opens

a

path

for

processing,

both

the

alternate

index

and

its

base

cluster

are

opened.

When

data

in

a

key-sequenced

base

cluster

is

read

or

written

using

the

path’s

alternate

index,

keyed

processing

is

used.

RBA

processing

is

permitted

only

for

reading

or

writing

an

entry-sequenced

data

set’s

base

cluster.

Defining

VSAM

Data

Sets

120

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Related

reading:

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

information

about

using

the

DEFINE

PATH

command.

Defining

a

Page

Space

A

page

space

is

a

system

data

set

that

contains

pages

of

virtual

storage.

The

pages

are

stored

into

and

retrieved

from

the

page

space

by

the

auxiliary

storage

manager.

A

page

space

is

an

entry-sequenced

cluster

that

is

preformatted

(unlike

other

data

sets)

and

is

contained

on

a

single

volume.

You

cannot

open

a

page

space

as

a

user

data

set.

A

page

space

has

a

size

limit

of

4

GB.

A

page

space

has

a

maximum

size

equal

to

16

777

215

slots

(records).

However,

the

actual

usable

page

space

is

much

less

because

it

has

a

size

limit

of

4

GB.

The

considerations

for

defining

a

page

space

are

much

like

those

for

defining

a

cluster.

The

DEFINE

PAGESPACE

command

has

many

of

the

same

parameters

as

the

DEFINE

CLUSTER

command,

so

the

information

you

must

supply

for

a

page

space

is

similar

to

what

you

would

specify

for

a

cluster.

A

page

space

data

set

cannot

be

in

extended

format.

For

a

3390

DASD,

the

maximum

size

of

a

page

space

that

you

can

specify

on

the

DEFINE

PAGESPACE

with

CYLINDERS

is

5

825.

You

can

define

a

page

space

in

a

user

catalog,

then

move

the

catalog

to

a

new

system,

and

establish

it

as

the

system’s

master

catalog.

For

page

spaces

to

be

system

managed,

they

must

be

cataloged,

and

you

must

let

the

system

determine

which

catalog

to

use.

Page

spaces

also

cannot

be

duplicate

data

sets.

The

system

cannot

use

a

page

space

if

its

entry

is

in

a

user

catalog.

When

you

issue

a

DEFINE

PAGESPACE

command,

the

system

creates

an

entry

in

the

catalog

for

the

page

space,

then

preformats

the

page

space.

If

an

error

occurs

during

the

preformatting

process

(for

example,

an

I/O

error

or

an

allocation

error),

the

page

space’s

entry

remains

in

the

catalog

even

though

no

space

for

it

exists.

Issue

a

DELETE

command

to

remove

the

page

space’s

catalog

entry

before

you

redefine

the

page

space.

Each

page

space

is

represented

by

two

entries

in

the

catalog:

a

cluster

entry

and

a

data

entry.

(A

page

space

is

an

entry-sequenced

cluster.)

Both

of

these

entries

should

be

password

protected

if

the

page

space

is

password

protected.

The

system

recognizes

a

page

space

if

it

is

defined

as

a

system

data

set

at

system

initialization

time

or

if

it

is

named

in

SYS1.PARMLIB.

To

be

used

as

a

page

space,

it

must

be

defined

in

a

master

catalog.

Recommendations:

1.

When

you

define

page

spaces

during

system

initialization,

use

the

ALTER

command

to

add

passwords

to

each

entry

because

passwords

cannot

be

specified

during

system

initialization.

The

passwords

you

specify

with

the

DEFINE

PAGESPACE

command

are

put

in

both

the

page

space’s

cluster

entry

and

its

data

entry.

Unless

you

ensure

that

the

catalog

containing

the

page

space

entry

is

either

password

protected

or

RACF

protected,

a

user

can

list

the

catalog’s

contents

and

find

out

each

entry’s

passwords.

2.

Passwords

are

ignored

for

system-managed

data

sets.

For

these,

you

must

have

RACF

alter

authority.

Related

reading:

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

121

v

For

information

about

using

the

DEFINE

PAGESPACE

parameter

to

define

the

page

size,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

v

For

details

on

specifying

information

for

a

data

set,

especially

for

system-managed

data

sets,

see

“Specifying

Cluster

Information”

on

page

104

and

“Using

Access

Method

Services

Parameters”

on

page

104.

v

For

information

about

how

VSAM

handles

duplicate

data

sets,

see

“Duplicate

Data

Set

Names”

on

page

103.

Checking

for

Problems

in

Catalogs

and

Data

Sets

VSAM

provides

you

with

several

means

of

locating

problems

in

your

catalogs

and

data

sets.

This

section

describes

procedures

for

listing

catalog

entries

and

printing

the

contents

of

data

sets.

You

can

also

use

the

access

method

services

REPRO

command

to

copy

a

data

set

to

an

output

device.

For

more

information

about

REPRO

see

“Copying

and

Merging

Data

Sets”

on

page

115.

The

access

method

services

VERIFY

command

provides

a

means

of

checking

and

restoring

end-of-data-set

values

after

system

failure.

The

access

method

services

EXAMINE

command

lets

the

user

analyze

and

report

on

the

structural

inconsistencies

of

key-sequenced

data

set

clusters.

The

EXAMINE

command

is

described

in

Chapter

15,

“Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors,”

on

page

229.

Related

reading:

For

more

information

about

VERIFY,

see

“Using

VERIFY

to

Process

Improperly

Closed

Data

Sets”

on

page

50.

For

information

about

using

the

DIAGNOSE

command

to

indicate

the

presence

of

nonvalid

data

or

relationships

in

the

BCS

and

VVDS,

see

z/OS

DFSMS:

Managing

Catalogs.

Listing

Catalog

Entries

After

you

define

a

catalog

or

data

set,

use

the

access

method

services

command

LISTCAT

to

list

all

or

part

of

a

catalog’s

entries.

LISTCAT

shows

information

about

objects

defined

in

the

catalog,

such

as:

v

Attributes

of

the

object,

including

SMS

attributes

v

Creation

and

expiration

dates

v

Protection

specification

v

Statistics

on

dynamic

usage

or

data

set

accessing

represented

by

the

entry

v

Space

allocation

v

Volume

information

v

Structure

of

the

data

set

The

listing

can

be

customized

by

limiting

the

number

of

entries,

and

the

information

about

each

entry,

that

is

printed.

You

can

obtain

the

same

list

while

using

the

interactive

storage

management

facility

(ISMF)

by

issuing

the

CATLIST

line

operator

on

the

Data

Set

List

panel.

The

list

is

placed

into

a

data

set,

which

you

can

view

immediately

after

issuing

the

request.

Related

reading:

See

z/OS

DFSMS:

Using

the

Interactive

Storage

Management

Facility

for

information

about

the

CATLIST

line

operator.

Defining

VSAM

Data

Sets

122

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Printing

the

Contents

of

Data

Sets

If

a

problem

occurs,

you

can

use

the

access

method

services

command

PRINT

to

print

part

or

all

of

the

contents

of

a

fixed-length

or

variable-length

RRDS;

a

key-sequenced,

linear,

or

entry-sequenced

VSAM

data

set;

an

alternate

index;

or

a

catalog.

If

you

use

the

relative

byte

address,

you

can

print

part

of

a

linear

data

set.

Partial

printing

is

rounded

up

to

4096

byte

boundaries.

The

components

of

a

key-sequenced

data

set

or

an

alternate

index

can

be

printed

individually

by

specifying

the

component

name

as

the

data

set

name.

An

alternate

index

is

printed

as

though

it

were

a

key-sequenced

cluster.

Entry-sequenced

and

linear

data

sets

are

printed

in

physical

sequential

order.

Key-sequenced

data

sets

can

be

printed

in

key

order

or

in

physical-sequential

order.

Fixed-length

or

variable-length

RRDSs

are

printed

in

relative

record

number

sequence.

A

base

cluster

can

be

printed

in

alternate

key

sequence

by

specifying

a

path

name

as

the

data

set

name

for

the

cluster.

Only

the

data

content

of

logical

records

is

printed.

System-defined

control

fields

are

not

printed.

Each

record

printed

is

identified

by

one

of

the

following:

v

The

relative

byte

address

(RBA)

for

entry-sequenced

data

sets.

v

The

key

for

indexed-sequential

and

key-sequenced

data

sets,

and

for

alternate

indexes

v

The

record

number

for

fixed-length

or

variable-length

RRDSs.

Related

reading:

See

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide

for

information

about

program

authorization.

See

“Authorized

Program

Facility

and

Access

Method

Services”

on

page

62

for

information

about

using

the

PRINT

command

to

print

a

catalog.

Restriction:

If

the

system

finds

four

logical

and/or

physical

errors

while

attempting

to

read

the

input,

printing

ends

abnormally.

Deleting

Data

Sets

Use

the

access

method

services

DELETE

command,

described

in

z/OS

DFSMS

Access

Method

Services

for

Catalogs,

to

delete

data

sets,

catalogs,

and

objects.

DELETE

entry

name

removes

the

data

set

from

the

volume

on

which

it

resides,

and

the

catalog

entry

for

the

data

set.

You

can

delete

the

entire

cluster,

or

just

the

alternate

index,

path,

or

alias,

for

example.

Use

DELETE

entry

name

VVR

FILE

(ddname)

to

delete

an

uncataloged

VSAM

data

set.

DELETE

entry

name

VVR

FILE

(ddname)

removes

the

VSAM

volume

record

(VVR)

from

the

VSAM

volume

data

set

(VVDS),

and

the

data

set

control

block

from

the

volume

table

of

contents

(VTOC).

Use

the

ERASE

parameter

if

you

want

to

erase

the

components

of

a

cluster

or

alternate

index

when

deleting

it.

ERASE

overwrites

the

data

set.

Use

the

NOSCRATCH

parameter

if

you

do

not

want

the

data

set

entry

(DSCB)

removed

from

the

VTOC.

NOSCRATCH

nullifies

an

ERASE

parameter

on

the

same

DELETE

command.

Use

access

method

services

to

delete

a

VSAM

cluster

or

a

path

which

has

associated

alternate

indexes

defined

with

NOUPGRADE.

However,

if

you

perform

the

delete

using

JCL

by

specifying

a

DD

statement

with

DISP=(OLD,DELETE),

all

volumes

that

are

necessary

to

delete

the

alternate

index

are

not

allocated.

The

delete

operation

fails

with

an

error

message

when

the

job

step

ends.

Defining

VSAM

Data

Sets

Chapter

7.

Defining

VSAM

Data

Sets

123

124

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

8.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

This

chapter

covers

the

following

topics.

Topic

Location

Example

of

Defining

a

VSAM

Data

Set

126

Examples

of

Defining

Temporary

VSAM

Data

Sets

128

Examples

of

Defining

Alternate

Indexes

and

Paths

129

The

following

set

of

examples

contain

a

wide

range

of

functions

available

through

access

method

services

commands

that

let

you

define:

v

VSAM

data

sets

v

Temporary

VSAM

data

sets

v

Alternate

indexes

and

paths

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

examples

of

the

other

functions

available

through

access

method

services.

An

existing

system

catalog

is

assumed

to

be

security

protected

at

the

update-password,

control-password,

and

master-password

levels.

Because

passwords

are

not

supported

for

system-managed

data

sets

and

catalogs,

assume

that

you

have

RACF

authority

for

the

operation

being

performed

in

the

examples

that

define

or

manipulate

system-managed

data

sets

and

catalogs.

©

Copyright

IBM

Corp.

1987,

2004

125

Example

of

Defining

a

VSAM

Data

Set

The

following

example

shows

a

typical

sequence

of

commands

to

create

a

catalog,

define

a

data

set

(that

is

cataloged

in

the

newly

created

catalog),

load

the

data

set

with

data,

list

the

data

set’s

catalog

entry,

and

print

the

data

set:

//DEFINE

JOB

...

//STEP1

EXEC

PGM=IDCAMS

//SYSPRINT

DD

SYSOUT=*

//SYSIN

DD

*

DEFINE

USERCATALOG

(NAME

(USERCATX)

ICFCATALOG

CYLINDERS(15

5)

-

VOLUMES(VSER05))

DATA

(CYLINDERS(3

1))

IF

LASTCC

=

0

THEN

-

DEFINE

CLUSTER(NAME

(EXAMPL1.KSDS)

VOLUMES(VSER05))

-

DATA

(KILOBYTES

(50

5))

/*

//STEP2

EXEC

PGM=IDCAMS

//SYSPRINT

DD

SYSOUT=*

//SYSABEND

DD

SYSOUT=*

//AMSDUMP

DD

SYSOUT=*

//INDSET4

DD

DSNAME=SOURCE.DATA,DISP=OLD,

//

VOL=SER=VSER02,UNIT=3380

//SYSIN

DD

*

REPRO

INFILE(INDSET4)

OUTDATASET(EXAMPL1.KSDS)

IF

LASTCC

=

0

THEN

-

LISTCAT

ENTRIES(EXAMPL1.KSDS)

IF

LASTCC

=

0

THEN

-

PRINT

INDATASET(EXAMPL1.KSDS)

/*

The

following

access

method

services

commands

are

used

in

this

example:

DEFINE

USERCATALOG

Create

the

catalog

DEFINE

CLUSTER

Define

the

data

set

REPRO

Load

the

data

set

LISTCAT

List

the

catalog

entry

PRINT

Print

the

data

set

See

Chapter

18,

“Using

Job

Control

Language

for

VSAM,”

on

page

259

for

examples

of

creating

VSAM

data

sets

through

JCL.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

more

details

and

examples

of

these

or

other

access

method

services

commands.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

126

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

first

DEFINE

command

defines

a

user

catalog

named

USERCATX.

The

USERCATALOG

keyword

specifies

that

a

user

catalog

is

to

be

defined.

The

command’s

parameters

follow.

NAME

NAME

is

required

and

names

the

catalog

being

defined.

ICFCATALOG

Specifies

the

catalog

format.

CYLINDERS

Specifies

the

amount

of

space

to

be

allocated

from

the

volume’s

available

space.

If

it

is

specified

for

a

system-managed

catalog,

it

overrides

the

DATACLAS

space

specification.

A

space

parameter

is

required.

VOLUMES

Specifies

the

volume

to

contain

the

catalog.

If

the

catalog

is

system-managed,

then

the

system

picks

the

volume.

SMS

ignores

the

value

that

is

specified

in

the

VOLUMES

parameter.

However,

if

the

catalog

belongs

to

a

storage

class

with

guaranteed

space,

SMS

selects

the

volume

that

you

specify

in

the

VOLUMES

parameter.

You

also

can

write

an

ACS

routine

that

uses

the

volume

specified

in

the

VOLUMES

parameter

to

select

a

storage

class.

DATA

DATA

is

required

when

attributes

are

to

be

explicitly

specified

for

the

data

component

of

the

cluster.

CYLINDERS

Specifies

the

amount

of

space

allocated

for

the

data

component.

A

space

parameter

is

required.

The

second

DEFINE

command

defines

a

key-sequenced

data

set

named

EXAMPL1.KSDS.

The

command’s

parameters

are:

CLUSTER

The

CLUSTER

keyword

is

required,

and

specifies

that

a

cluster

is

to

be

defined.

The

CLUSTER

keyword

is

followed

by

the

parameters

specified

for

the

whole

clusters,

and,

optionally,

by

the

parameters

specified

separately

for

the

data

and

index

components.

NAME

NAME

is

required

and

specifies

the

cluster

being

defined.

VOLUMES

Specifies

the

volumes

that

a

cluster’s

components

are

allocated

space.

You

can

specify

up

to

59

volumes

per

cluster

for

system-managed

clusters.

DATA

DATA

is

required

when

parameters

are

explicitly

specified

for

the

data

component

of

the

cluster.

KILOBYTES

Specifies

the

amount

of

space

allocated

for

the

data

component.

The

REPRO

command

here

loads

the

VSAM

key-sequenced

data

set

named

EXAMPL1.KSDS

from

an

existing

data

set

called

SOURCE.DATA

(that

is

described

by

the

INDSET4

DD

statement).

The

command’s

parameters

are:

INFILE

Identifies

the

data

set

containing

the

source

data.

The

ddname

of

the

DD

statement

for

this

data

set

must

match

the

name

specified

on

this

parameter.

OUTDATASET

Identifies

the

name

of

the

data

set

to

be

loaded.

Access

method

services

dynamically

allocates

the

data

set.

The

data

set

is

cataloged

in

the

master

catalog.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

Chapter

8.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

127

Because

the

cluster

component

is

not

password

protected,

a

password

is

not

required.

If

the

REPRO

operation

is

successful,

the

data

set’s

catalog

entry

is

listed,

and

the

contents

of

the

data

set

just

loaded

are

printed.

LISTCAT

Lists

catalog

entries.

The

ENTRIES

parameter

identifies

the

names

of

the

entries

to

be

listed.

PRINT

Prints

the

contents

of

a

data

set.

The

INDATASET

parameter

is

required

and

identifies

the

name

of

the

data

set

to

be

printed.

Access

method

services

dynamically

allocates

the

data

set.

The

data

set

is

cataloged

in

the

master

catalog.

No

password

is

required

because

the

cluster

component

is

not

password

protected.

Examples

of

Defining

Temporary

VSAM

Data

Sets

The

following

examples

uses

the

ALLOCATE

command

to

define

a

new

temporary

VSAM

data

set.

See

“Example

4:

Allocate

a

Temporary

VSAM

Data

Set”

on

page

265

for

an

example

of

creating

temporary

VSAM

data

sets

through

JCL.

For

information

on

using

JCL

to

define

a

permanent

VSAM

data

set,

see

“Examples

Using

JCL

to

Allocate

VSAM

Data

Sets”

on

page

263.

Example

1:

Defining

a

Temporary

VSAM

Data

Set

Using

ALLOCATE

//ALLOC

JOB

...

//STEP1

EXEC

PGM=IDCAMS

//SYSPRINT

DD

SYSOUT=A

//SYSIN

DD

*

ALLOC

-

DSNAME(&CLUSTER)

-

NEW

-

RECORG(ES)

-

SPACE(1,10)

-

AVGREC(M)

-

LRECL(256)

-

STORCLAS(TEMP)

/*

The

command’s

parameters

are:

DSNAME

Specifies

the

data

set

name.

If

you

specify

a

data

set

name

for

a

system-managed

temporary

data

set,

it

must

begin

with

&

or

&&.

The

DSNAME

parameter

is

optional

for

temporary

data

sets

only.

If

you

do

not

specify

a

DSNAME,

the

system

generates

a

qualified

data

set

name

for

the

temporary

data

set.

NEW

Specifies

that

a

new

data

set

is

created

in

this

job

step.

RECORG

Specifies

a

VSAM

entry-sequenced

data

set.

SPACE

Specifies

an

average

record

length

of

1

and

a

primary

quantity

of

10.

AVGREC

Specifies

that

the

primary

quantity

specified

on

the

SPACE

keyword

represent

the

number

of

records

in

megabytes

(multiplier

of

1,048,576).

LRECL

Specifies

a

record

length

of

256

bytes.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

128

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

STORCLAS

Specifies

a

storage

class

for

the

temporary

data

set.

The

STORCLAS

keyword

is

optional.

If

you

do

not

specify

STORCLAS

for

the

new

data

set

and

your

storage

administrator

has

provided

an

ACS

routine,

the

ACS

routine

can

select

a

storage

class.

Example

2:

Creating

a

Temporary

Data

Set

with

Default

Parameter

Values

The

following

example

shows

the

minimum

number

of

parameters

required

to

create

a

temporary

non-VSAM

sequential

data

set.

If

you

want

to

create

a

temporary

VSAM

data

set,

specify

the

RECORG

parameter.

//ALLOC

JOB

...

//STEP1

EXEC

PGM=IDCAMS

//SYSPRINT

DD

SYSOUT=A

//SYSIN

DD

*

ALLOC

-

FILE(ddname)

NEW

-

RECORG(ES)

*/

If

no

DSNAME

name

is

specified,

the

system

generates

one.

If

no

STORCLAS

name

is

specified,

and

your

storage

administrator

has

provided

an

ACS

routine,

the

ACS

routine

can

select

a

storage

class.

Examples

of

Defining

Alternate

Indexes

and

Paths

In

this

section,

the

access

method

services

DEFINE

ALTERNATEINDEX

and

DEFINE

PATH

commands

are

used

to

define

alternate

indexes

and

a

path.

JCL

Statements

The

IDCUT1

and

IDCUT2

DD

statements

describe

the

DSNAMES

and

a

volume

containing

data

space

made

available

to

BLDINDEX

for

defining

and

using

two

sort

work

data

sets

in

the

event

an

external

sort

is

performed.

The

data

space

is

not

used

by

BLDINDEX

if

enough

virtual

storage

is

available

to

perform

an

internal

sort.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

Chapter

8.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

129

|
|
|
|
|
|
|
|
|

Commands

The

first

DEFINE

command

defines

a

VSAM

alternate

index

over

the

base

cluster

EXAMPL1.KSDS.

NAME

NAME

is

required

and

names

the

object

being

defined.

RELATE

RELATE

is

required

and

specifies

the

name

of

the

base

cluster

on

which

the

alternate

index

is

defined.

MASTERPW

and

UPDATEPW

Specifies

the

master

and

update

passwords,

respectively,

for

the

alternate

index.

KEYS

Specifies

the

length

of

the

alternate

key

and

its

offset

in

the

base-cluster

record.

RECORDSIZE

Specifies

the

length

of

the

alternate-index

record.

The

average

and

maximum

record

lengths

are

40

and

50

bytes,

respectively.

Because

the

alternate

index

is

being

defined

with

the

NONUNIQUEKEY

attribute,

the

index

must

be

large

enough

to

contain

the

primary

keys

for

all

occurrences

of

any

one

alternate

key.

VOLUMES

VOLUMES

is

required

only

for

non-system-managed

data

sets

and

specifies

the

volume

that

contains

the

alternate

index

(EXAMPL1.AIX).

CYLINDERS

Specifies

the

amount

of

space

allocated

to

the

alternate

index.

A

space

parameter

is

required.

NONUNIQUEKEY

Specifies

that

the

base

cluster

can

contain

multiple

occurrences

of

any

one

alternate

key.

UPGRADE

Specifies

that

the

alternate

index

is

to

reflect

all

changes

made

to

the

base-cluster

records,

such

as

additions

or

deletions

of

records.

CATALOG

Because

the

master

catalog

is

password

protected,

the

CATALOG

parameter

is

required.

It

specifies

the

name

of

the

master

catalog

and

its

update

or

master

password,

which

is

required

for

defining

in

a

protected

catalog.

The

second

DEFINE

command

defines

a

path

over

the

alternate

index.

After

the

alternate

index

is

built,

opening

with

the

path

name

causes

processing

of

the

base

cluster

through

the

alternate

index.

NAME

The

NAME

parameter

is

required

and

names

the

object

being

defined.

PATHENTRY

The

PATHENTRY

parameter

is

required

and

specifies

the

name

of

the

alternate

index

over

which

the

path

is

defined

and

its

master

password.

READPW

Specifies

a

read

password

for

the

path;

it

is

propagated

to

the

master-password

level.

CATALOG

The

CATALOG

parameter

is

required,

because

the

master

catalog

is

password

protected.

It

specifies

the

name

of

the

master

catalog

and

its

update

or

master

password

that

is

required

for

defining

in

a

protected

catalog.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

130

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

BLDINDEX

command

builds

an

alternate

index.

Assume

that

enough

virtual

storage

is

available

to

perform

an

internal

sort.

However,

DD

statements

with

the

default

ddnames

of

IDCUT1

and

IDCUT2

are

provided

for

two

external

sort

work

data

sets

if

the

assumption

is

incorrect

and

an

external

sort

must

be

performed.

INDATASET

The

INDATASET

parameter

identifies

the

base

cluster.

Access

method

services

dynamically

allocates

the

base

cluster.

The

base

cluster’s

cluster

entry

is

not

password

protected

even

though

its

data

and

index

components

are.

OUTDATASET

The

OUTDATASET

parameter

identifies

the

alternate

index.

Access

method

services

dynamically

allocates

the

alternate

index.

The

update-

or

higher-level

password

of

the

alternate

index

is

required.

CATALOG

The

CATALOG

parameter

specifies

the

name

of

the

master

catalog.

If

it

is

necessary

for

BLDINDEX

to

use

external

sort

work

data

sets,

they

will

be

defined

in

and

deleted

from

the

master

catalog.

The

master

password

permits

these

actions.

The

PRINT

command

causes

the

base

cluster

to

be

printed

using

the

alternate

key,

using

the

path

defined

to

create

this

relationship.

The

INDATASET

parameter

identifies

the

path

object.

Access

method

services

dynamically

allocates

the

path.

The

read

password

of

the

path

is

required.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

Chapter

8.

Defining

and

Manipulating

VSAM

Data

Sets:

Examples

131

132

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Creating

an

Access

Method

Control

Block

134

Creating

an

Exit

List

134

Opening

a

Data

Set

135

Creating

a

Request

Parameter

List

136

Manipulating

the

Contents

of

Control

Blocks

138

Requesting

Access

to

a

Data

Set

139

Closing

Data

Sets

149

Operating

in

SRB

or

Cross-Memory

Mode

150

Using

VSAM

Macros

in

Programs

151

To

process

VSAM

data

sets,

you

use

VSAM

macros.

You

can

use

the

following

procedure

for

processing

a

VSAM

data

set

to

read,

update,

add,

or

delete

data:

1.

Create

an

access

method

control

block

to

identify

the

data

set

to

be

opened

using

the

ACB

or

GENCB

macro.

2.

Create

an

exit

list

to

specify

the

optional

exit

routines

that

you

supply,

using

the

EXLST

or

GENCB

macro.

3.

Optionally,

create

a

resource

pool,

using

the

BLDVRP

macro.

(See

Chapter

13,

“Sharing

Resources

Among

VSAM

Data

Sets,”

on

page

205.)

4.

Connect

your

program

to

the

data

set

you

want

to

process,

using

the

OPEN

macro.

5.

Create

a

request

parameter

list

to

define

your

request

for

access,

using

the

RPL

or

GENCB

macro.

6.

Manipulate

the

control

block

contents

using

the

GENCB,

TESTCB,

MODCB

and

SHOWCB

macros.

7.

Request

access

to

the

data

set,

using

one

or

more

of

the

VSAM

request

macros

(GET,

PUT,

POINT,

ERASE,

CHECK,

and

ENDREQ).

8.

Disconnect

your

program

from

the

data

set,

using

the

CLOSE

macro.

The

virtual

resource

pool

for

all

components

of

the

clusters

or

alternate

indexes

must

be

successfully

built

before

any

open

is

issued

to

use

the

resource

pool;

otherwise,

the

results

might

be

unpredictable

or

performance

problems

might

occur.

For

information

about

the

syntax

of

each

macro,

and

for

coded

examples

of

the

macros,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

The

ACB,

RPL,

and

EXLST

are

created

by

the

caller

of

VSAM.

When

storage

is

obtained

for

these

blocks,

virtual

storage

management

assigns

the

PSW

key

of

the

requestor

to

the

subpool

storage.

An

authorized

task

can

change

its

PSW

key.

Since

VSAM

record

management

runs

in

the

protect

key

of

its

caller,

such

a

change

©

Copyright

IBM

Corp.

1987,

2004

133

might

make

previously

acquired

control

blocks

unusable

because

the

storage

key

of

the

subpool

containing

these

control

blocks

no

longer

matches

the

VSAM

caller’s

key.

Creating

an

Access

Method

Control

Block

Before

opening

a

data

set

for

processing,

you

must

create

an

access

method

control

block

(ACB)

that:

v

Identifies

the

data

set

to

be

opened

v

Specifies

the

type

of

processing

v

Specifies

the

basic

options

v

Indicates

if

a

user

exit

routine

is

to

be

used

while

the

data

set

is

being

processed

Include

the

following

information

in

your

ACB

for

OPEN

to

prepare

the

kind

of

processing

your

program

requires:

v

The

address

of

an

exit

list

for

your

exit

routines.

Use

the

EXLST

macro

to

construct

the

list.

v

If

you

are

processing

concurrent

requests,

the

number

of

requests

(STRNO)

defined

for

processing

the

data

set.

For

more

information

about

concurrent

requests

see

“Making

Concurrent

Requests”

on

page

147.

v

The

size

of

the

I/O

buffer

virtual

storage

space

and/or

the

number

of

I/O

buffers

that

you

are

supplying

for

VSAM

to

process

data

and

index

records.

v

The

password

required

for

the

type

of

processing

desired.

Passwords

are

not

supported

for

system-managed

data

sets.

You

must

have

RACF

authorization

for

the

type

of

operation

to

be

performed.

v

The

processing

options

that

you

plan

to

use:

–

Keyed,

addressed,

or

control

interval,

or

a

combination

–

Sequential,

direct,

or

skip

sequential

access,

or

a

combination

–

Retrieval,

storage,

or

update

(including

deletion),

or

a

combination

–

Shared

or

nonshared

resources.
v

The

address

and

length

of

an

area

for

error

messages

from

VSAM.

v

If

using

RLS,

see

Chapter

14,

“Using

VSAM

Record-Level

Sharing,”

on

page

217.

You

can

use

the

ACB

macro

to

build

an

access

method

control

block

when

the

program

is

assembled,

or

the

GENCB

macro

to

build

a

control

block

when

the

program

is

run.

See

“Manipulating

the

Contents

of

Control

Blocks”

on

page

138

for

information

about

the

advantages

and

disadvantages

of

using

GENCB.

Creating

an

Exit

List

To

access

exit

routines

during

data

set

processing,

you

must

specify

the

addresses

of

your

exit

routines

using

the

EXLST

macro.

Any

number

of

ACB

macros

in

a

program

can

indicate

the

same

exit

list

for

the

same

exit

routines

to

do

all

the

special

processing

for

them,

or

they

can

indicate

different

exit

lists.

Use

exit

routines

for

the

following

tasks:

v

Analyzing

physical

errors.

When

VSAM

finds

an

error

in

an

I/O

operation

that

the

operating

system’s

error

routine

cannot

correct,

the

error

routine

formats

a

message

for

your

physical

error

analysis

routine

(the

SYNAD

user

exit)

to

act

on.

v

Analyzing

logical

errors.

Errors

not

directly

associated

with

an

I/O

operation,

such

as

an

nonvalid

request,

cause

VSAM

to

exit

to

your

logical

error

analysis

routine

(the

LERAD

user

exit).

Processing

VSAM

Data

Sets

134

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

End-of-data-set

processing.

When

your

program

requests

a

record

beyond

the

last

record

in

the

data

set,

your

end-of-data-set

routine

(the

EODAD

user

exit)

is

given

control.

The

end

of

the

data

set

is

beyond

either

the

highest

addressed

or

the

highest

keyed

record,

if

your

program

is

using

addressed

or

keyed

access.

v

Journalizing

transactions.

To

journalize

the

transactions

against

a

data

set,

you

might

specify

a

journal

routine

(the

JRNAD

user

exit).

To

process

a

key-sequenced

data

set

using

addressed

access,

you

need

to

know

if

any

RBAs

changed

during

keyed

processing.

When

you

are

processing

by

key,

VSAM

exits

to

your

routine

for

noting

RBA

changes

before

writing

a

control

interval

in

which

there

is

an

RBA

change.

When

journalizing

transactions

for

compressed

data

sets,

the

RBAs

and

data

lengths

represent

compressed

data.

VSAM

does

not

exit

to

the

JRNAD

routine

for

RBA

change

if

the

data

set

is

extended

addressable.

v

User

processing.

User

processing

exits

(UPAD)

are

available

to

assist

subsystems

that

need

to

dispatch

new

units

of

work.

The

UPAD

wait

exit

is

given

control

before

VSAM

issues

any

WAIT

SVCs.

Use

the

UPAD

post

exit

to

make

it

easier

to

use

cross-memory

processing.

See

Table

24

on

page

254.

The

EXLST

macro

is

coordinated

with

the

EXLST

parameter

of

an

ACB

or

GENCB

macro

used

to

generate

an

ACB.

To

use

the

exit

list,

you

must

code

the

EXLST

parameter

in

the

ACB.

You

can

use

the

EXLST

macro

to

build

an

exit

list

when

the

program

is

assembled,

or

the

GENCB

macro

to

build

an

exit

list

when

the

program

is

run.

For

information

about

the

advantages

and

disadvantages

of

using

GENCB

see

“Manipulating

the

Contents

of

Control

Blocks”

on

page

138.

Opening

a

Data

Set

Before

accessing

a

data

set,

your

program

must

issue

the

OPEN

macro

to

open

the

data

set

for

processing.

Opening

a

data

set

causes

VSAM

to

take

the

following

actions:

v

Verify

that

the

data

set

matches

the

description

specified

in

the

ACB

or

GENCB

macro

(for

example,

MACRF=KEY

implies

that

the

data

set

is

a

key-sequenced

data

set).

v

Construct

the

internal

control

blocks

that

VSAM

needs

to

process

your

requests

for

access

to

the

data

set.

To

determine

which

processing

options

to

use,

VSAM

merges

information

from

the

data

definition

(DD)

statement

and

catalog

definition

of

the

data

set

with

information

in

the

access

method

control

block

and

exit

list.

The

order

of

precedence

follows:

1.

The

DD

statement

AMP

parameters

2.

The

ACB,

EXLST,

or

GENCB

parameters

3.

The

catalog

entry

for

the

data

set
For

example,

if

both

an

ACB

or

GENCB

macro

and

the

DD

statement

have

values

for

buffer

space,

the

values

in

the

DD

statement

override

those

in

the

macro.

The

catalog

entry

is

the

minimum

buffer

space

when

it

is

not

specified

in

the

DD

statement

or

macro

or

when

it

is

less

than

the

amount

specified

in

the

data

set

definition.

v

Check

for

consistency

of

updates

to

the

prime

index

and

data

components

if

you

are

opening

a

key-sequenced

data

set,

an

alternate

index,

or

a

path.

If

separate

updates

occur

to

data

set

and

its

index,

VSAM

issues

a

warning

message

to

indicate

a

time

stamp

discrepancy.

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

135

v

An

error

during

OPEN

can

cause

a

component

that

is

open

for

update

processing

to

close

improperly,

leaving

on

the

open-for-output

indicator.

When

VSAM

detects

an

open-for-output

indicator,

it

issues

an

implicit

VERIFY

command

and

a

message

that

indicates

whether

the

VERIFY

command

was

successful.

If

a

subsequent

OPEN

is

issued

for

update,

VSAM

turns

off

the

open-for-output

indicator

at

CLOSE.

If

the

data

set

was

open

for

input,

however,

VSAM

leaves

on

the

open-for-output

indicator.

v

Check

the

password

your

program

specified

in

the

ACB

PASSWD

parameter

against

the

appropriate

password

(if

any)

in

the

catalog

definition

of

the

data.

The

system

does

not

support

passwords

for

system-managed

data

sets.

A

password

of

one

level

authorizes

you

to

do

everything

that

a

password

of

a

lower

level

authorizes.

You

must

have

RACF

authorization

for

the

operation.

The

password

requirement

depends

on

the

kind

of

access

that

is

specified

in

the

access

method

control

block:

–

Full

access

lets

you

perform

all

operations

(retrieve,

update,

insert,

and

delete)

on

a

data

set

on

any

associated

index

or

catalog

record.

The

master

password

lets

you

delete

or

alter

the

catalog

entry

for

the

data

set

or

catalog

it

protects.

–

Control-interval

update

access

requires

the

control

password

or

RACF

control

authority.

The

control

lets

you

use

control-interval

access

to

retrieve,

update,

insert,

or

delete

records

in

the

data

set

it

protects.

For

information

about

the

use

of

control-interval

access,

see

Chapter

11,

“Processing

Control

Intervals,”

on

page

177.

Control-interval

read

access

requires

only

the

read

password

or

RACF

read

authority,

that

lets

you

examine

control

intervals

in

the

data

set

it

protects.

The

read

password

or

RACF

read

authority

does

not

let

you

add,

change,

or

delete

records.

–

Update

access

requires

the

update

password,

which

lets

you

retrieve,

update,

insert,

or

delete

records

in

the

data

set

it

protects.

–

Read

access

requires

the

read

password,

that

lets

you

examine

records

in

the

data

set

it

protects.

The

read

password

does

not

permit

you

to

add,

change,

or

delete

records.

Note:

RACF

protection

supersedes

password

protection

for

a

data

set.

RACF

checking

is

bypassed

for

a

caller

that

is

in

supervisor

state

or

key

0.

For

more

information

on

password

and

RACF

protection,

see

Chapter

5,

“Protecting

Data

Sets,”

on

page

53.

Creating

a

Request

Parameter

List

After

you

have

connected

your

program

to

a

data

set,

you

can

issue

requests

for

access.

A

request

parameter

list

defines

a

request.

This

list

identifies

the

data

set

to

which

the

request

is

directed

by

naming

the

ACB

macro

that

defines

the

data

set.

Each

request

macro

(GET,

PUT,

ERASE,

POINT,

CHECK,

and

ENDREQ)

gives

the

address

of

the

request

parameter

list

that

defines

the

request.

You

can

use

the

RPL

macro

to

generate

a

request

parameter

list

(RPL)

when

your

program

is

assembled,

or

the

GENCB

macro

to

build

a

request

parameter

list

when

your

program

is

run.

For

information

about

the

advantages

and

disadvantages

of

using

GENCB,

see

“Manipulating

the

Contents

of

Control

Blocks”

on

page

138.

When

you

define

your

request,

specify

only

the

processing

options

appropriate

for

that

particular

request.

Parameters

not

required

for

a

request

are

ignored.

For

Processing

VSAM

Data

Sets

136

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

example,

if

you

switch

from

direct

to

sequential

retrieval

with

a

request

parameter

list,

you

do

not

have

to

zero

out

the

address

of

the

field

containing

the

search

argument

(ARG=address).

The

following

information

defines

your

request:

v

Access

by

address

(RBA),

key,

or

relative

record

number.

Address

access

can

be

sequential

or

direct.

Key

or

relative

record

number

access

can

be

sequential,

skip

sequential,

or

direct.

Access

can

be

forward

(next

sequential

record)

or

backward

(previous

sequential

record).

Access

can

be

for

updating

or

not

updating.

A

nonupdate

direct

request

to

retrieve

a

record

causes

VSAM

to

position

to

the

following

record

for

subsequent

sequential

access.

For

more

information

about

VSAM

positioning,

see

“POINT

Macro

for

Positioning”

on

page

143.

v

RPLs

(including

RPLs

defined

by

a

chain),

either

synchronous,

so

that

VSAM

does

not

give

control

back

to

your

program

until

the

request

completes,

or

asynchronous,

so

that

your

program

can

continue

to

process

or

issue

other

requests

while

the

request

is

active.

With

asynchronous

requests,

your

program

must

use

the

CHECK

macro

to

suspend

its

processing

until

the

request

completes.

For

more

information

about

synchronous

and

asynchronous

processing,

see

“Making

Asynchronous

Requests”

on

page

148.

v

For

a

keyed

request,

either

a

generic

key

(a

leading

portion

of

the

key

field),

or

a

full

key

to

which

the

key

field

of

the

record

is

to

be

compared.

v

For

retrieval,

either

a

data

record

to

be

placed

in

a

work

area

in

your

program

or

the

address

of

the

record

within

VSAM’s

buffer

to

be

passed

to

your

program.

For

requests

that

involve

updating

or

inserting,

the

work

area

in

your

program

contains

the

data

record.

v

For

a

request

to

directly

access

a

control

interval,

specify

the

RBA

of

the

control

interval.

With

control

interval

access,

you

are

responsible

for

maintaining

the

control

information

in

the

control

interval.

If

VSAM’s

buffers

are

used,

VSAM

permits

control

interval

and

stored

record

operations

simultaneously.

If

your

program

provides

its

own

buffers,

only

control

interval

processing

is

permitted.

For

information

about

control

interval

access,

see

Chapter

11,

“Processing

Control

Intervals,”

on

page

177.

You

can

chain

request

parameter

lists

together

to

define

a

series

of

actions

for

a

single

GET

or

PUT.

For

example,

each

parameter

list

in

the

chain

could

contain

a

unique

search

argument

and

point

to

a

unique

work

area.

A

single

GET

macro

would

retrieve

a

record

for

each

request

parameter

list

in

the

chain.

All

RPLs

in

a

chain

must

refer

to

the

same

ACB.

A

chain

of

request

parameter

lists

is

processed

serially

as

a

single

request.

(Chaining

request

parameter

lists

is

not

the

same

as

processing

concurrent

requests

in

parallel.

Processing

in

parallel

requires

that

VSAM

keep

track

of

many

positions

in

a

data

set.)

Each

request

parameter

list

in

a

chain

should

have

the

same

OPTCD

subparameters.

Having

different

subparameters

can

cause

logical

errors.

You

cannot

chain

request

parameter

lists

for

updating

or

deleting

records—only

for

retrieving

records

or

storing

new

records.

You

cannot

process

records

in

the

I/O

buffer

with

chained

request

parameter

lists.

(RPL

OPTCD=UPD

and

RPL

OPTCD=LOC

are

nonvalid

for

a

chained

request

parameter

list.)

With

chained

request

parameter

lists,

a

POINT,

a

sequential

or

skip-sequential

GET,

or

a

direct

GET

with

positioning

requested

(RPL

OPTCD=NSP)

causes

VSAM

to

position

itself

at

the

record

following

the

record

identified

by

the

last

request

parameter

list

in

the

chain.

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

137

When

you

are

using

chained

RPLs,

if

an

error

occurs

anywhere

in

the

chain,

the

RPLs

following

the

one

in

error

are

made

available

without

being

processed

and

are

posted

complete

with

a

feedback

code

of

zero.

Manipulating

the

Contents

of

Control

Blocks

VSAM

provides

a

set

of

macros,

GENCB,

TESTCB,

MODCB,

and

SHOWCB,

to

let

you

manipulate

the

contents

of

control

blocks

at

execution

time.

Use

these

macros

to

generate,

test,

modify,

and

display

the

contents

of

fields

in

the

access

method

control

block,

the

exit

list,

and

the

request

parameter

list.

You

do

not

have

to

know

the

format

of

the

control

block

when

you

use

these

macros.

The

GENCB,

MODCB,

TESTCB,

and

SHOWCB

macros

build

a

parameter

list

that

describes,

in

codes,

the

actions

indicated

by

the

parameters

you

specify.

The

parameter

list

is

passed

to

VSAM

to

take

the

indicated

actions.

An

error

can

occur

if

you

specify

the

parameters

incorrectly.

If

you

issue

a

MODCB,

SHOWCB,

or

TESTCB

for

a

non-VSAM

ACB,

unpredictable

results

occur.

Generating

a

Control

Block

The

GENCB

macro

can

be

used

to

generate

an

access

method

control

block,

an

exit

list,

or

a

request

parameter

list

when

your

program

is

run.

Generating

the

control

block

at

execution

time

with

GENCB

has

the

advantage

of

requiring

no

reassembly

of

the

program

when

you

adopt

a

new

version

of

VSAM

in

which

control

block

formats

might

have

changed.

If

you

use

the

ACB,

EXLST,

and

RPL

macros

to

build

control

blocks,

and

adopt

a

subsequent

release

of

VSAM

in

which

the

control

block

format

has

changed,

you

have

to

reassemble

your

program.

GENCB

also

gives

you

the

ability

to

generate

multiple

copies

of

the

ACB,

EXLST,

or

RPL

to

be

used

for

concurrent

requests.

The

disadvantage

of

using

GENCB

is

that

the

path

length

is

longer.

It

takes

more

instructions

to

build

a

control

block

using

GENCB

than

to

code

the

control

block

directly.

You

can

use

the

WAREA

parameter

to

provide

an

area

of

storage

in

which

to

generate

the

control

block.

This

work

area

has

a

64K

(X'FFFF')

size

limit.

If

you

do

not

provide

storage

when

you

generate

control

blocks,

the

ACB,

RPL,

and

EXLST

reside

below

16

MB

unless

LOC=ANY

is

specified.

Testing

the

Contents

of

ACB,

EXLST,

and

RPL

Fields

With

the

TESTCB

macro,

VSAM

compares

the

contents

of

a

field

you

specify

with

a

value

that

you

specify.

To

show

the

result

of

this

comparison,

VSAM

sets

the

condition

code

in

the

PSW

(program

status

word).

Only

one

keyword

can

be

specified

each

time

TESTCB

is

issued.

Use

TESTCB

to

find

out:

v

If

an

action

has

been

done

by

VSAM

or

your

program

(for

example,

opening

a

data

set

or

activating

an

exit).

v

What

kind

of

a

data

set

is

being

processed

to

alter

your

program

logic

as

a

result

of

the

test.

After

issuing

a

TESTCB

macro,

examine

the

PSW

condition

code.

If

the

TESTCB

is

not

successful,

register

15

contains

an

error

code

and

VSAM

passes

control

to

an

error

routine,

if

one

has

been

specified.

For

a

keyword

specified

as

an

option

or

a

name,

you

test

for

an

equal

or

unequal

comparison;

for

a

keyword

specified

as

an

address

or

a

number,

you

test

for

an

equal,

unequal,

high,

low,

not-high,

or

not-low

condition.

Processing

VSAM

Data

Sets

138

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

VSAM

compares

A

to

B,

where

A

is

the

contents

of

the

field

and

B

is

the

value

to

compare.

A

low

condition

means,

for

example,

A

is

lower

than

B

—

that

is,

the

value

in

the

control

block

is

lower

than

the

value

you

specified.

If

you

specify

a

list

of

option

codes

for

a

keyword

(for

example,

MACRF=(ADR,DIR)),

each

of

them

must

equal

the

corresponding

value

in

the

control

block

for

you

to

get

an

equal

condition.

Some

of

the

fields

can

be

tested

at

any

time;

others,

only

after

a

data

set

is

opened.

The

ones

that

can

be

tested

only

after

a

data

set

is

opened

can,

for

a

key-sequenced

data

set,

pertain

either

to

the

data

or

to

the

index,

as

specified

in

the

OBJECT

parameter.

You

can

display

fields

using

the

SHOWCB

macro

at

the

same

time

you

test

the

fields.

Modifying

the

Contents

of

an

ACB,

EXLST,

or

RPL

The

MODCB

macro

lets

you

customize

the

control

blocks

generated

with

the

GENCB

macro.

The

MODCB

macro

can

be

used

to

modify

the

contents

of

an

access

method

control

block,

an

exit

list,

or

a

request

parameter

list.

Typical

reasons

to

modify

a

request

parameter

list

are

to

change

the

length

of

a

record

(RECLEN)

when

you

are

processing

a

data

set

whose

records

are

not

all

the

same

length,

and

to

change

the

type

of

request

(OPTCD),

such

as

from

direct

to

sequential

access

or

from

full-key

search

argument

to

generic

key

search

argument.

Displaying

the

Contents

of

ACB,

EXLST,

and

RPL

Fields

The

SHOWCB

macro

causes

VSAM

to

move

the

contents

of

various

fields

in

an

access

method

control

block,

an

exit

list,

or

a

request

parameter

list

into

your

work

area.

You

might

want

to

learn

the

reason

for

an

error

or

to

collect

statistics

about

a

data

set

to

permit

your

program

to

print

a

message

or

keep

records

of

transactions.

Requesting

Access

to

a

Data

Set

After

your

program

is

opened

and

a

request

parameter

list

is

built,

use

the

action

request

macros

GET,

PUT,

ERASE,

POINT,

CHECK,

and

ENDREQ.

Each

request

macro

uses

a

request

parameter

list

that

defines

the

action

to

be

taken.

For

example,

when

a

GET

macro

points

to

a

request

parameter

list

that

specifies

synchronous,

sequential

retrieval,

the

next

record

in

sequence

is

retrieved.

When

an

ENDREQ

macro

points

to

a

request

parameter

list,

any

current

request

(for

example,

a

PUT)

for

that

request

parameter

list

finishes,

and

the

resources

held

by

the

request

parameter

list

are

released.

The

action

request

macros

lets

you

do

the

following

tasks:

v

Insert

new

records

v

Retrieve

existing

records

v

Point

to

existing

records

v

Update

existing

records

v

Delete

existing

records

v

Write

buffers

v

Retain

buffers

v

Perform

multistring

processing

v

Perform

concurrent

requests

v

Access

records

using

a

path

v

Check

for

completion

of

asynchronous

requests

v

End

request

processing

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

139

Inserting

and

Adding

Records

Record

insertions

in

VSAM

data

sets

occur

in

several

ways:

v

PUT

RPL

OPTCD=DIR,NSP—Inserting

records

directly.

VSAM

remembers

its

position

for

subsequent

sequential

access.

v

PUT

RPL

OPTCD=DIR,NUP—Inserting

a

record

directly.

VSAM

does

not

remember

its

position.

v

PUT

RPL

OPTCD=SEQ,NUP

or

NSP—Inserting

records

sequentially.

VSAM

remembers

its

position

for

subsequent

sequential

access.

v

PUT

RPL

OPTCD=SKP,NUP

or

NSP—Inserting

records

in

skip

sequential

order.

VSAM

remembers

its

position

for

subsequent

sequential

access.

Insertions

into

an

Entry-Sequenced

Data

Set

VSAM

does

not

insert

new

records

into

an

entry-sequenced

data

set.

All

records

are

added

at

the

end

of

the

data

set.

Insertions

into

a

Key-Sequenced

Data

Set

Insertions

into

a

key-sequenced

data

set

use

the

free

space

provided

during

the

definition

of

the

data

set

or

the

free

space

that

develops

because

of

control

interval

and

control

area

splits.

To

create

a

data

set

or

make

mass

insertions,

use

RPL

OPTCD=SEQ,NUP

or

NSP.

RPL

OPTCD=SEQ,NUP

or

NSP

inserts

the

records

sequentially

and

maintains

free

space

during

load

mode

and

during

mass

insertions.

All

the

other

types

use

the

direct

insert

strategy.

If

MACRF=SIS

is

specified

in

the

ACB,

all

inserts

use

sequential

insert

strategy.

With

addressed

access

of

a

key-sequenced

data

set,

VSAM

does

not

insert

or

add

new

records.

Sequential

Insertion.

If

the

new

record

belongs

after

the

last

record

of

the

control

interval

and

the

record

contains

free

space,

the

new

record

is

inserted

into

the

existing

control

interval.

If

the

control

interval

does

not

contain

sufficient

free

space,

the

new

record

is

inserted

into

a

new

control

interval

without

a

true

split.

If

the

new

record

does

not

belong

at

the

end

of

the

control

interval

and

there

is

free

space

in

the

control

interval,

it

is

placed

in

sequence

into

the

existing

control

interval.

If

adequate

free

space

does

not

exist

in

the

control

interval,

a

control

interval

split

occurs

at

the

point

of

insertion.

The

new

record

is

inserted

into

the

original

control

interval

and

the

following

records

are

inserted

into

a

new

control

interval.

Mass

Sequential

Insertion.

When

VSAM

detects

two

or

more

records

to

be

inserted

in

sequence

into

a

collating

position

(between

two

records)

in

a

data

set,

VSAM

uses

a

technique

called

mass

sequential

insertion

to

buffer

the

records

being

inserted,

and

to

reduce

I/O

operations.

Using

sequential

instead

of

direct

access

takes

advantage

of

this

technique.

Also

extend

your

data

set

(resume

loading)

by

using

sequential

insertion

to

add

records

beyond

the

highest

key

or

relative

record

number.

There

are

possible

restrictions

to

extending

a

data

set

into

a

new

control

area

depending

on

the

specified

share

options.

See

Chapter

12,

“Sharing

VSAM

Data

Sets,”

on

page

189.

Mass

sequential

insertion

observes

control

interval

and

control

area

free

space

specifications

when

the

new

records

are

a

logical

extension

of

the

control

interval

or

control

area

(that

is,

when

the

new

records

are

added

beyond

the

highest

key

or

relative

record

number

used

in

the

control

interval

or

control

area).

Processing

VSAM

Data

Sets

140

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

When

several

groups

of

records

in

sequence

are

to

be

mass

inserted,

each

group

can

be

preceded

by

a

POINT

with

RPL

OPTCD=KGE

to

establish

positioning.

KGE

specifies

that

the

key

you

provide

for

a

search

argument

must

be

equal

to

the

key

or

relative

record

number

of

a

record.

Direct

Insertion—CI

Split.

If

the

control

interval

has

enough

available

space,

the

record

is

inserted.

If

the

control

interval

does

not

have

enough

space

to

hold

the

record,

the

entire

CI

is

split,

unless

the

record

is

the

last

key

in

the

file.

The

last

record

is

always

placed

in

a

new,

empty

CI

and

does

not

show

up

as

a

CI

split.

Direct

Insertion—CA

Split.

If

no

additional

CI

is

available

to

allow

a

CI

split,

the

CA

is

split.

For

the

last

record

in

the

file,

however,

the

new

record

is

inserted

as

the

first

record

in

a

new,

empty

CA.

This

does

not

show

up

as

a

CA

split.

If

the

new

record

belongs

after

the

last

record

of

the

control

interval

and

there

is

still

space,

the

new

record

is

added

to

the

end

of

the

existing

control

interval.

If

the

control

interval

does

not

contain

sufficient

free

space,

the

new

record

is

inserted

into

an

unused

control

interval.

Insertions

into

a

Fixed-Length

Relative-Record

Data

Set

You

can

insert

records

into

a

fixed-length

RRDS

either

sequentially

or

directly.

Sequential

Insertion.

Insertions

into

a

fixed-length

RRDS

go

into

empty

slots.

When

a

record

is

inserted

sequentially

into

a

fixed-length

RRDS

it

is

assigned

the

next

relative

record

number

in

sequence.

If

the

slot

is

not

empty,

VSAM

sets

an

error

return

code,

indicating

a

duplicate

record.

The

assigned

number

is

returned

in

the

argument

field

of

the

RPL.

Direct

Insertion.

Direct

or

skip-sequential

insertion

of

a

record

into

a

fixed-length

RRDS

places

the

record

as

specified

by

the

relative

record

number

in

the

argument

field

of

the

RPL.

You

must

insert

the

record

into

a

slot

that

does

not

contain

a

record.

If

the

slot

specified

does

contain

a

record,

VSAM

sets

an

error

return

code

in

the

RPL

and

rejects

the

request.

If

the

insertion

is

to

the

end

of

the

control

interval,

the

record

is

placed

in

a

new

control

interval.

Insertions

into

a

Variable-Length

Relative-Record

Data

Set

A

variable-length

RRDS

is

processed

in

the

same

way

as

a

fixed-length

RRDS,

with

the

following

exceptions:

v

You

must

specify

the

record

length

in

the

RECLEN

field

of

the

RPL

macro.

v

Insertions

into

a

variable-length

RRDS

use

the

free

space

provided

during

the

definition

of

the

data

set

or

the

free

space

that

develops

because

of

control

interval

and

control

area

splits.

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

141

As

for

a

fixed-length

RRDS,

you

can

insert

records

into

a

variable-length

RRDS

either

sequentially

or

directly.

Sequential

Insertion.

When

a

record

is

inserted

sequentially

into

a

variable-length

RRDS,

it

is

assigned

the

next

available

relative

record

number

in

sequence.

The

assigned

number

is

returned

in

the

argument

field

of

the

RPL.

Use

mass

sequential

insertion

with

a

variable-length

RRDS.

Direct

Insertion.

Direct

or

skip-sequential

insertion

of

a

record

into

a

variable-length

RRDS

places

the

record

as

specified

by

the

relative

record

number

in

the

argument

field

of

the

RPL.

If

you

specify

a

duplicate

relative

record

number,

VSAM

sets

an

error

return

code

in

the

RPL

and

rejects

the

request.

Insertions

into

a

Linear

Data

Set

Linear

data

sets

cannot

be

processed

at

the

record

level.

Use

of

the

GET,

PUT

and

POINT

macros

is

not

permitted

at

the

record

level.

You

must

use

the

DIV

macro

to

process

a

linear

data

set.

See

z/OS

MVS

Programming:

Assembler

Services

Guide

for

information

about

using

DIV.

Retrieving

Records

The

GET

macro

is

used

to

retrieve

records.

To

retrieve

records

for

update,

use

the

GET

macro

with

the

PUT

macro.

When

you

retrieve

records

either

sequentially

or

directly,

VSAM

returns

the

length

of

the

retrieved

record

to

the

RECLEN

field

of

the

RPL.

Sequential

Retrieval

Records

can

be

retrieved

sequentially

using

keyed

access

or

addressed

access.

Keyed

Sequential

Retrieval.

The

first

time

your

program

accesses

a

data

set

for

keyed

sequential

access

(RPL

OPTCD=(KEY,SEQ)),

VSAM

is

positioned

at

the

first

record

in

the

data

set

in

key

sequence

if

and

only

if

the

following

is

true:

1.

Nonshared

resources

are

being

used.

2.

There

have

not

been

any

previous

requests

against

the

file.

If

VSAM

picks

a

string

that

has

been

used

previously

this

implicit

positioning

does

not

occur.

Therefore,

with

concurrent

or

multiple

RPL’s,

it

is

best

to

initiate

your

own

POINTs

and

positioning

to

prevent

logic

errors.

With

shared

resources,

you

must

always

use

a

POINT

macro

to

establish

position.

A

GET

macro

can

then

retrieve

the

record.

Certain

direct

requests

can

also

hold

position.

See

Table

11

on

page

145

for

details

on

when

positioning

is

retained

or

released.

VSAM

checks

positioning

when

processing

modes

are

changed

between

requests.

For

keyed

sequential

retrieval

of

a

fixed-length

or

variable-length

RRDS,

the

relative

record

number

is

treated

as

a

full

key.

If

a

deleted

record

is

found

during

sequential

retrieval,

it

is

skipped

and

the

next

record

is

retrieved.

The

relative

record

number

of

the

retrieved

record

is

returned

in

the

argument

field

of

the

RPL.

Processing

VSAM

Data

Sets

142

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Addressed

Sequential

Retrieval.

Retrieval

by

address

is

identical

to

retrieval

by

key,

except

the

search

argument

is

a

RBA,

which

must

be

matched

to

the

RBA

of

a

record

in

the

data

set.

When

a

processing

program

opens

a

data

set

with

nonshared

resources

for

addressed

access,

VSAM

is

positioned

at

the

record

with

RBA

of

zero

to

begin

addressed

sequential

processing.

A

sequential

GET

request

causes

VSAM

to

retrieve

the

data

record

at

which

it

is

positioned,

and

positions

VSAM

at

the

next

record.

The

address

specified

for

a

GET

or

a

POINT

must

correspond

to

the

beginning

of

a

data

record;

otherwise

the

request

is

not

valid.

Spanned

records

stored

in

a

key-sequenced

data

set

cannot

be

retrieved

using

addressed

retrieval.

You

cannot

predict

the

RBAs

of

compressed

records.

GET-previous

(backward-sequential)

processing

is

a

variation

of

normal

keyed

or

addressed-sequential

processing.

Instead

of

retrieving

the

next

record

in

ascending

sequence

(relative

to

current

positioning

in

the

data

set),

GET-previous

processing

retrieves

the

next

record

in

descending

sequence.

To

process

records

in

descending

sequence,

specify

BWD

in

the

RPL

OPTCD

parameter.

Select

GET-previous

processing

for

POINT,

GET,

PUT

(update

only),

and

ERASE

operations.

The

initial

positioning

by

POINT,

other

than

POINT

LRD,

requires

that

you

specify

a

key.

The

following

GET-previous

processing

does

not

need

any

specified

key

to

retrieve

the

next

record

in

descending

sequence.

GET-previous

processing

is

not

permitted

with

control

interval

or

skip-sequential

processing.

POINT

Macro

for

Positioning

You

can

use

the

POINT

macro

to

begin

retrieving

records

sequentially

at

a

place

other

than

the

beginning

of

the

data

set.

The

POINT

macro

places

VSAM

at

the

record

with

the

specified

key

or

relative

byte

address.

However,

it

does

not

provide

data

access

to

the

record.

If

you

specify

a

generic

key

(a

leading

portion

of

the

key

field),

the

record

pointed

to

is

the

first

of

the

records

having

the

same

generic

key.

The

POINT

macro

can

position

VSAM

for

either

forward

or

backward

processing,

if

FWD

or

BWD

was

specified

in

the

RPL

OPTCD

parameter.

If,

after

positioning,

you

issue

a

direct

request

through

the

same

request

parameter

list,

VSAM

drops

positioning

unless

NSP

or

UPD

was

specified

in

the

RPL

OPTCD

parameter.

When

a

POINT

is

followed

by

a

VSAM

GET/PUT

request,

both

the

POINT

and

the

subsequent

request

must

be

in

the

same

processing

mode.

For

example,

a

POINT

with

RPL

OPTCD=(KEY,SEQ,FWD)

must

be

followed

by

GET/PUT

with

RPL

OPTCD=(KEY,SEQ,FWD);

otherwise,

the

GET/PUT

request

is

rejected.

For

skip-sequential

retrieval,

you

must

indicate

the

key

of

the

next

record

to

be

retrieved.

VSAM

skips

to

the

next

record’s

index

entry

by

using

horizontal

pointers

in

the

sequence

set

to

find

the

appropriate

sequence-set

index

record

and

scan

its

entries.

The

key

of

the

next

record

to

be

retrieved

must

always

be

higher

in

sequence

than

the

key

of

the

preceding

record

retrieved.

If

your

request

fails,

with

an

error

code,

positioning

cannot

be

maintained.

To

determine

if

positioning

is

maintained

when

a

logical

error

occurs,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Positioning

is

always

released

when

you

specify

the

ENDREQ

macro.

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

143

Direct

Retrieval

Records

can

also

be

retrieved

directly

using

keyed

access

or

addressed

access.

Keyed

Direct

Retrieval.

For

a

key-sequenced

data

set

does

not

depend

on

prior

positioning.

VSAM

searches

the

index

from

the

highest

level

down

to

the

sequence

set

to

retrieve

a

record.

Specify

the

record

to

be

retrieved

by

supplying

one

of

the

following:

v

The

exact

key

of

the

record

v

An

approximate

key,

less

than

or

equal

to

the

key

field

of

the

record

v

A

generic

key

You

can

use

an

approximate

specification

when

you

do

not

know

the

exact

key.

If

a

record

actually

has

the

key

specified,

VSAM

retrieves

it.

Otherwise,

it

retrieves

the

record

with

the

next

higher

key.

Generic

key

specification

for

direct

processing

causes

VSAM

to

retrieve

the

first

record

having

that

generic

key.

If

you

want

to

retrieve

all

the

records

with

the

generic

key,

specify

RPL

OPTCD=NSP

in

your

direct

request.

That

causes

VSAM

to

position

itself

at

the

next

record

in

key

sequence.

Then

retrieve

the

remaining

records

sequentially.

To

use

direct

or

skip-sequential

access

to

process

a

fixed-length

or

variable-length

RRDS,

you

must

supply

the

relative

record

number

of

the

record

you

want

in

the

argument

field

of

the

RPL

macro.

For

a

variable-length

RRDS,

you

also

must

supply

the

record

length

in

the

RECLEN

field

of

the

RPL

macro.

If

you

request

a

deleted

record,

the

request

causes

a

no-record-found

logical

error.

A

fixed-length

RRDS

has

no

index.

VSAM

takes

the

number

of

the

record

to

be

retrieved

and

calculates

the

control

interval

that

contains

it

and

its

position

within

the

control

interval.

Addressed

Direct

Retrieval.

Requires

the

RBA

of

each

individual

record

is

specified;

previous

positioning

is

not

applicable.

With

direct

processing,

optionally

specify

RPL

OPTCD=NSP

to

indicate

the

position

is

maintained

following

the

GET.

Your

program

can

then

process

the

following

records

sequentially

in

either

a

forward

or

backward

direction.

Updating

Records

The

GET

and

PUT

macros

are

used

to

update

records.

A

GET

for

update

retrieves

the

record

and

the

following

PUT

for

update

stores

the

record

the

GET

retrieved.

When

you

update

a

record

in

a

key-sequenced

data

set,

you

cannot

alter

the

primary-key

field.

Changing

Record

Length

You

can

update

the

contents

of

a

record

with

addressed

access,

but

you

cannot

alter

the

record’s

length.

To

change

the

length

of

a

record

in

an

entry-sequenced

data

set,

you

must

store

it

either

at

the

end

of

the

data

set

(as

a

new

record)

or

in

the

place

of

an

inactive

record

of

the

same

length.

You

are

responsible

for

marking

the

old

version

of

the

record

as

inactive.

Processing

the

Data

Component

of

a

Key-Sequenced

Data

Set

You

can

process

the

data

component

separately

from

the

index

component.

Processing

the

data

component

separately

lets

you

print

or

dump

the

data

component

and

the

index

component

of

a

key-sequenced

data

set

individually.

Processing

VSAM

Data

Sets

144

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

However,

do

not

process

only

the

data

component

if

you

plan

to

update

the

data

set.

Always

open

the

cluster

when

updating

a

key-sequenced

data

set.

Deleting

Records

After

a

GET

for

update

retrieves

a

record,

an

ERASE

macro

can

delete

the

record.

The

ERASE

macro

can

be

used

only

with

a

key-sequenced

data

set

or

a

fixed-length

or

variable-length

RRDS.

When

you

delete

a

record

in

a

key-sequenced

data

set

or

variable-length

RRDS,

the

record

is

physically

erased.

The

space

the

record

occupied

is

then

available

as

free

space.

You

can

erase

a

record

from

the

base

cluster

of

a

path

only

if

the

base

cluster

is

a

key-sequenced

data

set.

If

the

alternate

index

is

in

the

upgrade

set

in

which

UPGRADE

was

specified

when

the

alternate

index

was

defined,

it

is

modified

automatically

when

you

erase

a

record.

If

the

alternate

key

of

the

erased

record

is

unique,

the

alternate

index

data

record

with

that

alternate

key

is

also

deleted.

When

you

erase

a

record

from

a

fixed-length

RRDS,

the

record

is

set

to

binary

zeros

and

the

control

information

for

the

record

is

updated

to

indicate

an

empty

slot.

Reuse

the

slot

by

inserting

another

record

of

the

same

length

into

it.

With

an

entry-sequenced

data

set,

you

are

responsible

for

marking

a

record

you

consider

to

be

deleted.

As

far

as

VSAM

is

concerned,

the

record

is

not

deleted.

Reuse

the

space

occupied

by

a

record

marked

as

deleted

by

retrieving

the

record

for

update

and

storing

in

its

place

a

new

record

of

the

same

length.

Deferring

and

Forcing

Buffer

Writing

For

integrity

reasons,

it

is

sometimes

desirable

to

force

the

data

buffer

to

be

written

after

a

PUT

operation.

At

other

times,

it

is

desirable

to

defer

the

writing

of

a

buffer

when

possible

to

improve

performance.

At

the

time

the

PUT

is

issued,

if

the

RPL

OPTCD

specifies

direct

processing

(DIR),

and

NSP

is

not

specified,

forced

writing

of

the

buffer

occurs.

Otherwise,

writing

is

deferred.

An

ERASE

request

follows

the

same

buffer

writing

rules

as

the

PUT

request.

If

LSR

and

GSR

deferred

writes

are

not

specified,

an

ENDREQ

macro

always

forces

the

current

modified

data

buffer

to

be

written.

Retaining

and

Positioning

Data

Buffers

Some

operations

retain

positioning

while

others

release

it.

In

a

similar

way,

some

operations

hold

onto

a

buffer

and

others

release

it

with

its

contents.

Table

11

shows

which

RPL

options

result

in

the

retention

of

data

buffers

and

positioning,

and

which

options

result

in

the

release

of

data

buffers

and

positioning.

Table

11.

Effect

of

RPL

Options

on

Data

Buffers

and

Positioning

RPL

Options

Retained

Released

SEQ

*

SKP

*

DIR

NSP

*

DIR

(no

NSP)

*

DIR

LOC

*

UPD

(with

Get)

*

Note:

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

145

1.

A

sequential

GET

request

for

new

control

intervals

releases

the

previous

buffer.

2.

The

ENDREQ

macro

and

the

ERASE

macro

with

RPL

OPTCD=DIR

release

data

buffers

and

positioning.

3.

Certain

options

that

retain

positioning

and

buffers

on

normal

completion

cannot

do

so

if

the

request

fails

with

an

error

code.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

to

determine

if

positioning

is

maintained

if

a

logical

error

occurs.

The

following

operation

uses

but

immediately

releases

a

buffer

and

does

not

retain

positioning:

GET

RPL

OPTCD=(DIR,NUP,MVE)

Processing

Multiple

Strings

In

multiple

string

processing,

there

can

be

multiple

independent

RPLs

within

an

address

space

for

the

same

data

set.

The

data

set

can

have

multiple

tasks

that

share

a

common

control

block

structure.

There

are

several

ACB

and

RPL

arrangements

to

indicate

that

multiple

string

processing

occurs:

v

In

the

first

ACB

opened,

STRNO

or

BSTRNO

is

greater

than

1.

v

Multiple

ACBs

are

opened

for

the

same

data

set

within

the

same

address

space

and

are

connected

to

the

same

control

block

structure.

v

Multiple

concurrent

RPLs

are

active

against

the

same

ACB

using

asynchronous

requests.

v

Multiple

RPLs

are

active

against

the

same

ACB

using

synchronous

processing

with

each

requiring

positioning

to

be

held.

If

you

are

doing

multiple

string

update

processing,

you

must

consider

VSAM

lookaside

processing

and

the

rules

surrounding

exclusive

use.

Lookaside

means

VSAM

checks

its

buffers

to

see

if

the

control

interval

is

already

present

when

requesting

an

index

or

data

control

interval.

For

GET

nonupdate

requests,

an

attempt

is

made

to

locate

a

buffer

already

in

storage.

As

a

result,

a

down-level

copy

of

the

data

can

be

obtained

either

from

buffers

attached

to

this

string

or

from

secondary

storage.

For

GET

to

update

requests,

the

buffer

is

obtained

in

exclusive

control,

and

read

from

the

device

for

the

latest

copy

of

the

data.

If

the

buffer

is

already

in

exclusive

control

of

another

string,

the

request

fails

with

an

exclusive

control

feedback

code.

If

you

are

using

shared

resources,

the

request

can

be

queued,

or

can

return

an

exclusive

control

error.

The

exclusive

use

rules

follow:

1.

If

a

given

string

obtains

a

record

with

a

GET

for

update

request,

the

control

interval

is

not

available

for

update

or

insert

processing

by

another

string.

2.

If

a

given

string

is

in

the

process

of

a

control

area

split

caused

by

an

update

with

length

change

or

an

insert,

that

string

obtains

exclusive

control

of

the

entire

control

area

being

split.

Other

strings

cannot

process

insert

or

update

requests

against

this

control

area

until

the

split

is

complete.

If

you

are

using

nonshared

resources,

VSAM

does

not

queue

requests

that

have

exclusive

control

conflicts,

and

you

are

required

to

clear

the

conflict.

If

a

conflict

is

found,

VSAM

returns

a

logical

error

return

code,

and

you

must

stop

activity

and

clear

the

conflict.

If

the

RPL

that

caused

the

conflict

had

exclusive

control

of

a

Processing

VSAM

Data

Sets

146

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

control

interval

from

a

previous

request,

you

issue

an

ENDREQ

before

you

attempt

to

clear

the

problem.

Clear

the

conflict

in

one

of

three

ways:

v

Queue

until

the

RPL

holding

exclusive

control

of

the

control

interval

releases

that

control,

then

reissue

the

request.

v

Issue

an

ENDREQ

against

the

RPL

holding

exclusive

control

to

force

it

to

release

control

immediately.

v

Use

shared

resources

and

issue

MRKBFR

MARK=RLS.

Note:

If

the

RPL

includes

a

correctly

specified

MSGAREA

and

MSGLEN,

the

address

of

the

RPL

holding

exclusive

control

is

provided

in

the

first

word

of

the

MSGAREA.

The

RPL

field,

RPLDDDD,

contains

the

RBA

of

the

requested

control

interval.

Making

Concurrent

Requests

With

VSAM,

you

can

maintain

concurrent

positioning

for

many

requests

to

a

data

set.

Strings

(sometimes

called

place

holders)

are

like

cursors,

each

represents

a

position

in

the

data

set

and

are

like

holding

your

finger

in

a

book

to

keep

the

place.

The

same

ACB

is

used

for

all

requests,

and

the

data

set

needs

to

be

opened

only

once.

This

means,

for

example,

you

could

be

processing

a

data

set

sequentially

using

one

RPL,

and

at

the

same

time,

using

another

RPL,

directly

access

selected

records

from

the

same

data

set.

Keep

in

mind,

though,

that

strings

are

not

“owned”

by

the

RPL

any

longer

than

the

request

holds

its

position.

Once

a

request

gives

up

its

position

(for

example,

with

an

ENDREQ),

that

string

is

free

to

be

used

by

another

request

and

must

be

repositioned

in

the

data

set

by

the

user.

For

each

request,

a

string

defines

the

set

of

control

blocks

for

the

exclusive

use

of

one

request.

For

example,

if

you

use

three

RPLs,

you

should

specify

three

strings.

If

the

number

of

strings

you

specify

is

not

sufficient,

and

you

are

using

NSR,

the

operating

system

dynamically

extends

the

number

of

strings

as

needed

by

the

concurrent

requests

for

the

ACB.

Strings

allocated

by

dynamic

string

addition

are

not

necessarily

in

contiguous

storage.

Dynamic

string

addition

does

not

occur

with

LSR

and

GSR.

Instead,

you

get

a

logic

error

if

you

have

more

requests

than

available

strings.

The

maximum

number

of

strings

that

can

be

defined

or

added

by

the

system

is

255.

Therefore,

the

maximum

number

of

concurrent

requests

holding

position

in

one

data

set

at

any

one

time

is

255.

Using

a

Path

to

Access

Records

When

you

are

processing

records

sequentially

using

a

path,

records

from

the

base

cluster

are

returned

according

to

ascending

or,

if

you

are

retrieving

the

previous

record,

descending

alternate

key

values.

If

there

are

several

records

with

a

nonunique

alternate

key,

those

records

are

returned

in

the

order

they

were

entered

into

the

alternate

index.

READNEXT

and

READPREV

returns

these

nonunique

alternate

index

records

in

the

same

sequence.

VSAM

sets

a

return

code

in

the

RPL

when

there

is

at

least

one

more

record

with

the

same

alternate

key

to

be

processed.

For

example,

if

there

are

three

data

records

with

the

alternate

key

1234,

the

return

code

would

be

set

during

the

retrieval

of

records

one

and

two

and

would

be

reset

during

retrieval

of

the

third

record.

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

147

When

you

use

direct

or

skip-sequential

access

to

process

a

path,

a

record

from

the

base

data

set

is

returned

according

to

the

alternate

key

you

specified

in

the

argument

field

of

the

RPL

macro.

If

the

alternate

key

is

not

unique,

the

record

first

entered

with

that

alternate

key

is

returned

and

a

feedback

code

(duplicate

key)

is

set

in

the

RPL.

To

retrieve

the

remaining

records

with

the

same

alternate

key,

specify

RPL

OPTCD=NSP

when

retrieving

the

first

record

with

a

direct

request,

and

switch

to

sequential

processing.

You

can

insert

and

update

data

records

in

the

base

cluster

using

a

path

if:

v

The

PUT

request

does

not

result

in

nonunique

alternate

keys

in

an

alternate

index

(defined

with

the

UNIQUEKEY

attribute).

However,

if

a

nonunique

alternate

key

is

generated

and

the

NONUNIQUEKEY

attribute

is

specified,

updating

can

occur.

v

You

do

not

change

the

key

of

reference

between

the

time

the

record

was

retrieved

for

update

and

the

PUT

is

issued.

v

You

do

not

change

the

primary

key.

When

the

alternate

index

is

in

the

upgrade

set,

the

alternate

index

is

modified

automatically

by

inserting

or

updating

a

data

record

in

the

base

cluster.

If

the

updating

of

the

alternate

index

results

in

an

alternate

index

record

with

no

pointers

to

the

base

cluster,

the

alternate-index

record

is

erased.

Rule:

When

you

use

SHAREOPTIONS

2,

3,

and

4,

you

must

continue

to

ensure

read/write

integrity

when

issuing

concurrent

requests

(such

as

GETs

and

PUTs)

on

the

base

cluster

and

its

associated

alternate

indexes.

Failure

to

ensure

read/write

integrity

might

temporarily

cause

“No

Record

Found”

or

“No

Associated

Base

Record”

errors

for

a

GET

request.

Bypass

such

errors

by

reissuing

the

GET

request,

but

it

is

best

to

prevent

the

errors

by

ensuring

read/write

integrity.

Making

Asynchronous

Requests

In

synchronous

mode,

VSAM

does

not

return

to

your

program

from

a

PUT

or

GET

operation

until

it

has

completed

the

operation.

In

asynchronous

mode,

VSAM

returns

control

to

your

program

before

completing

a

PUT

or

a

GET.

A

program

in

asynchronous

mode

can

perform

other

useful

work

while

a

VSAM

PUT

or

GET

is

completed.

Asynchronous

mode

can

improve

throughput

with

direct

processing

because

it

permits

processing

to

overlap

with

accesses

from

and

to

the

direct

access

device.

When

reading

records

directly,

each

read

often

involves

a

seek

on

the

direct

access

device,

a

slow

operation.

In

synchronous

mode,

this

seek

time

does

not

overlap

with

other

processing.

Specifying

Asynchronous

Mode

To

specify

asynchronous

mode,

you

must

specify

OPTCD=ASY

rather

than

OPTCD=SYN

in

the

RPL.

Checking

for

Completion

of

Asynchronous

Requests

Suppose

your

program

is

ready

to

process

the

next

record,

but

VSAM

is

still

trying

to

obtain

that

record.

(The

next

record

is

not

yet

read

in

from

the

direct

access

device.)

You

might

need

to

stop

execution

of

the

program

and

wait

for

VSAM

to

complete

reading

in

the

record.

The

CHECK

macro

stops

executing

the

program

until

the

operation

in

progress

is

complete.

You

must

issue

a

CHECK

macro

after

each

request

for

an

RPL.

If

you

attempt

another

request

without

an

intervening

CHECK,

that

request

is

rejected.

Processing

VSAM

Data

Sets

148

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Once

the

request

is

completed,

CHECK

releases

control

to

the

next

instruction

in

your

program,

and

frees

up

the

RPL

for

use

by

another

request.

Ending

a

Request

Suppose

you

determine

that

you

do

not

want

to

complete

a

request

that

you

initiated.

For

example,

suppose

you

determine

during

the

processing

immediately

following

a

GET

that

you

do

not

want

the

record

you

just

requested.

You

can

use

the

ENDREQ

macro

to

cancel

the

request.

Using

the

ENDREQ

macro

has

the

following

advantages:

v

Avoids

checking

an

unwanted

asynchronous

request.

v

Writes

any

unwritten

data

or

index

buffers

in

use

by

the

string.

v

Cancels

the

VSAM

positioning

on

the

data

set

for

the

RPL.

Recommendation:

If

you

issue

the

ENDREQ

macro,

it

is

important

that

you

check

the

ENDREQ

return

code

to

make

sure

it

completes

successfully.

If

an

asynchronous

request

does

not

complete

ENDREQ

successfully,

you

must

issue

the

CHECK

macro.

The

data

set

cannot

be

closed

until

all

asynchronous

requests

successfully

complete

either

ENDREQ

or

CHECK.

ENDREQ

waits

for

the

target

RPL

to

post,

so

it

should

not

be

issued

in

an

attempt

to

end

a

hung

request.

Closing

Data

Sets

The

CLOSE

macro

disconnects

your

program

from

a

data

set.

It

causes

VSAM

to

take

the

following

actions:

v

Write

any

unwritten

data

or

index

records

whose

contents

have

changed.

v

Update

the

catalog

entry

for

the

data

set

if

necessary

(if

the

location

of

the

end-of-file

indicator

has

changed,

for

example).

v

Write

SMF

records

if

SMF

is

being

used.

v

Restore

control

blocks

to

the

status

they

had

before

the

data

set

was

opened.

v

Release

virtual

storage

obtained

during

OPEN

processing

for

additional

VSAM

control

blocks

and

VSAM

routines.

v

Release

(only

for

extended

format

key-sequenced

data

sets)

all

space

after

the

high-used

RBA

(on

a

CA

boundary)

up

to

the

high-allocated

RBA

if

partial

release

was

specified

at

open

time.

If

a

record

management

error

occurs

while

CLOSE

is

flushing

buffers,

the

data

set’s

catalog

information

is

not

updated.

The

catalog

cannot

properly

reflect

the

data

set’s

status

and

the

index

cannot

accurately

reflect

some

of

the

data

records.

If

the

program

enters

an

abnormal

termination

routine

(ABEND),

all

open

data

sets

are

closed.

The

VSAM

CLOSE

invoked

by

ABEND

does

not

update

the

data

set’s

catalog

information,

it

does

not

complete

outstanding

I/O

requests,

and

buffers

are

not

flushed.

The

catalog

cannot

properly

reflect

the

cluster’s

status,

and

the

index

cannot

accurately

reference

some

of

the

data

records.

Use

the

access

method

services

VERIFY

command

to

correct

catalog

information.

The

use

of

VERIFY

is

described

in

“Using

VERIFY

to

Process

Improperly

Closed

Data

Sets”

on

page

50.

When

processing

asynchronous

VSAM

requests,

all

strings

must

be

quiesced

by

issuing

the

CHECK

macro

or

the

ENDREQ

macro

before

issuing

CLOSE

or

CLOSE

TYPE=T

(temporary

CLOSE).

CLOSE

TYPE=T

causes

VSAM

to

complete

any

outstanding

I/O

operations,

update

the

catalog

if

necessary,

and

write

any

required

SMF

records.

Processing

can

continue

after

a

temporary

CLOSE

without

issuing

an

OPEN

macro.

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

149

If

a

VSAM

data

set

is

closed

and

CLOSE

TYPE=T

is

not

specified,

you

must

reopen

the

data

set

before

performing

any

additional

processing

on

it.

When

you

issue

a

temporary

or

a

permanent

CLOSE

macro,

VSAM

updates

the

data

set’s

catalog

records.

If

your

program

ends

with

an

abnormal

end

(ABEND)

without

closing

a

VSAM

data

set

the

data

set’s

catalog

records

are

not

updated,

and

contain

inaccurate

statistics.

It

is

the

user’s

responsibility

to

ensure

that

shared

DD

statements

are

not

dynamically

deallocated

until

all

ACBs

that

share

these

DD

statements

are

closed.

For

more

information

about

dynamic

allocation,

see

z/OS

MVS

JCL

User’s

Guide.

Restriction:

The

following

close

options

are

ignored

for

VSAM

data

sets:

v

FREE=CLOSE

JCL

parameter

v

FREE=CLOSE

requested

through

dynamic

allocation,

DALCLOSE

Operating

in

SRB

or

Cross-Memory

Mode

VSAM

is

the

only

access

method

that

operates

in

service

request

block

(SRB)

or

cross-memory

mode.

The

SRB

or

cross-memory

mode

enables

you

to

use

structures

in

other

address

spaces

to

increase

the

amount

of

space

available.

SRB

and

cross-memory

modes

are

supervisor

modes

of

operation

reserved

for

authorized

users.

Cross-memory

is

a

complex

concept,

and

there

are

several

warnings

and

restrictions

associated

with

it.

See

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

VSAM

operates

only

in

cross-memory

or

SRB

mode

for

synchronous,

supervisor

state

requests

with

shared

resources

or

improved

control

interval

(ICI)

access.

For

data

sets

not

processed

with

ICI,

an

attempt

to

invoke

VSAM

asynchronously,

in

problem

state,

or

with

nonshared

resources

in

either

cross-memory

or

SRB

mode

results

in

a

logical

error.

This

error

is

not

generated

for

ICI.

VSAM

does

not

synchronize

cross-memory

mode

requests.

For

non-ICI

processing,

the

RPL

must

specify

WAITX,

and

a

UPAD

exit

(user

processing

exit

routine)

must

be

provided

in

an

exit

list

to

handle

the

wait

and

post

processing

for

cross-memory

requests;

otherwise

a

VSAM

error

code

is

returned.

For

cross-memory

mode

requests,

VSAM

does

not

do

wait

processing

when

a

UPAD

for

wait

returns

to

VSAM.

For

non-cross-memory

task

mode,

however,

if

the

UPAD

taken

for

wait

returns

with

ECB

not

posted,

VSAM

issues

a

WAIT

supervisor

call

instruction

(SVC).

For

either

mode,

when

a

UPAD

is

taken

for

post

processing

returns,

VSAM

assumes

the

ECB

has

been

marked

complete

and

does

not

do

post

processing.

ICI

in

cross-memory

mode

assumes

(without

checking)

the

request

is

synchronous.

UPAD

is

not

required.

If

UPAD

routine

is

not

provided,

I/O

wait

and

post

processing

is

done

by

suspend

and

resume.

There

is

no

resource

wait/post

processing

for

ICI.

See

“Improved

Control

Interval

Access”

on

page

185

for

information

about

ICI.

SRB

mode

does

not

require

UPAD.

If

a

UPAD

is

provided

for

an

SRB

mode

request,

it

is

taken

only

for

I/O

wait

and

resource

wait

processing.

In

cross-memory

or

SRB

mode,

record

management

cannot

issue

any

supervisor

call

instructions

(SVCs).

Whenever

VSAM

cannot

avoid

issuing

an

SVC,

it

sets

an

Processing

VSAM

Data

Sets

150

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

RPL

return

code

to

indicate

that

you

must

change

processing

mode

so

that

you

are

running

under

a

task

control

block

(TCB)

in

the

address

space

in

which

the

data

set

was

opened.

You

cannot

be

in

cross-memory

mode.

Then

reissue

the

request

to

permit

the

SVC

to

be

issued

by

VSAM.

The

requirement

for

VSAM

to

issue

an

SVC

is

kept

to

a

minimum.

Areas

identified

as

requiring

a

TCB

not

in

cross-memory

mode

are

EXCEPTIONEXIT,

loaded

exits,

EOV

(end-of-volume),

dynamic

string

addition,

and

alternate

index

processing.

If

a

logical

error

or

an

end-of-data

condition

occurs

during

cross-memory

or

SRB

processing,

VSAM

attempts

to

enter

the

LERAD

(logical

error)

or

EODAD

(end-of-data-set)

exit

routine.

If

the

routine

must

be

loaded,

it

cannot

be

taken

because

loading

involves

an

SVC;

VSAM

sets

the

RPL

feedback

to

indicate

“invalid

TCB”.

If

an

I/O

error

occurs

during

cross-memory

or

SRB

processing

and

an

EXCEPTIONEXIT

or

loaded

SYNAD

(physical

error

exit)

routine

is

specified,

these

routines

cannot

be

taken;

the

RPL

feedback

indicates

an

I/O

error

condition.

See

Chapter

16,

“Coding

VSAM

User-Written

Exit

Routines,”

on

page

235

for

more

information.

Using

VSAM

Macros

in

Programs

At

this

point

it

is

important

to

see

how

all

of

these

macros

work

together

in

a

program.

Figure

20

shows

the

relationship

between

JCL

and

the

VSAM

macros

in

a

program.

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

151

Figure

21

on

page

153

is

a

skeleton

program

that

shows

the

relationship

of

VSAM

macros

to

each

other

and

to

the

rest

of

the

program.

()label OPEN

GET|PUT

RPL

ACB

EXLST [JRNAD=([A|N[,L])]
[SYNAD=([A|N[,L])]
.

address
address

[ACB=]address

[,OPTCD= [DIR|SEQ|SKP]
[.])]
.

.
[,DDNAME=]ddname

[,BUFND=]
[,BUFNI=]
[,BUFSP=]
[,MACRF=([DIR][,SEQ][,SKP]

[,IN][,OUT]
[,NRS][,RST]

[,STRNO=]
[,PASSWD=]
[,EXLST=]
.

number
number
number

number
address

address

RPL=address

()],)address[,(options

// DD DSNAME= ,DISP=(OLD|SHR)ddname dsname

()label

(label)

(label)

()label

Figure

20.

VSAM

Macro

Relationships

Processing

VSAM

Data

Sets

152

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

START

CSECT

SAVE(14,12)

Standard

entry

code

.

B

INIT

Branch

around

file

specs

MASACB

ACB

DDNAME=MASDS,AM=VSAM,

File

specs

X

MACRF=(KEY,SEQ,OUT),

X

EXLST=EXITS,

X

RMODE31=ALL

MASRPL

RPL

ACB=MASACB,

X

OPTCD=(KEY,SEQ,NUP,MVE,SYN),

X

AREA=WA,

X

AREALEN=80,

X

RECLEN=80

EXITS

EXLST

LERAD=LOGER,

X

JRNAD=JOURN

TRANDCB

DCB

DDNAME=TRANDS,

X

DSORG=PS,

X

MACRF=GM,

X

EODAD=EOTRF,

X

LRECL=80,

X

BLKSIZE=80,

X

RECFM=F

INIT

.

Program

initialization

.

OPEN

(MASACB,,TRANDCB)

Connect

data

sets

.

GET

TRANDCB,WA

Processing

loop

.

PUT

RPL=MASRPL

.

EOTRF

CLOSE

(MASACB,,TRANDCB)

Disconnect

data

sets

.

RETURN

(14,12)

Return

to

calling

routine

LOGER

Exit

routines

.

JOURN

.

.

WA

DS

CL80

Work

area

END

Figure

21.

Skeleton

VSAM

Program

Processing

VSAM

Data

Sets

Chapter

9.

Processing

VSAM

Data

Sets

153

Processing

VSAM

Data

Sets

154

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

10.

Optimizing

VSAM

Performance

This

chapter

covers

the

following

topics,

describing

many

of

the

options

and

factors

that

influence

or

determine

the

performance

of

both

VSAM

and

the

operating

system.

Topic

Location

Optimizing

Control

Interval

Size

155

Optimizing

Control

Area

Size

159

Optimizing

Free

Space

Distribution

160

Using

Index

Options

175

Obtaining

Diagnostic

Information

176

Migrating

from

the

Mass

Storage

System

176

Using

Hiperbatch

176

Most

of

the

options

are

specified

in

the

access

method

services

DEFINE

command

when

a

data

set

is

defined.

Sometimes

options

can

be

specified

in

the

ACB

and

GENCB

macros

and

in

the

DD

AMP

parameter.

Optimizing

Control

Interval

Size

You

can

let

VSAM

select

the

size

of

a

control

interval

for

a

data

set,

you

can

request

a

particular

control

interval

size

in

the

DEFINE

command,

or

you

can

specify

data

class

in

DEFINE

and

use

the

CISIZE

attribute

assigned

by

your

storage

administrator.

You

can

improve

VSAM’s

performance

by

specifying

a

control

interval

size

in

the

DEFINE

command,

depending

on

the

particular

storage

and

access

requirements

for

your

data

set.

See

“Control

Intervals”

on

page

74

for

information

about

the

structure

and

contents

of

control

intervals.

Control

interval

size

affects

record

processing

speed

and

storage

requirements

in

the

following

ways:

v

Buffer

space.

Data

sets

with

large

control

interval

sizes

require

more

buffer

space

in

virtual

storage.

For

information

about

how

much

buffer

space

is

required,

see

“Determining

I/O

Buffer

Space

for

Nonshared

Resource”

on

page

164.

v

I/O

operations.

Data

sets

with

large

control

interval

sizes

require

fewer

I/O

operations

to

bring

a

given

number

of

records

into

virtual

storage;

fewer

index

records

must

be

read.

It

is

best

to

use

large

control

interval

sizes

for

sequential

and

skip-sequential

access.

Large

control

intervals

are

not

beneficial

for

keyed

direct

processing

of

a

key-sequenced

data

set

or

variable-length

RRDS.

v

Free

space.

Free

space

is

used

more

efficiently

(fewer

control

interval

splits

and

less

wasted

space)

as

control

interval

size

increases

relative

to

data

record

size.

For

more

information

about

efficient

use

of

free

space,

see

“Optimizing

Free

Space

Distribution”

on

page

160.

Control

Interval

Size

Limitations

When

you

request

a

control

interval

size,

you

must

consider

the

length

of

your

records

and

whether

the

SPANNED

parameter

has

been

specified.

©

Copyright

IBM

Corp.

1987,

2004

155

The

valid

control

interval

sizes

and

block

sizes

for

the

data

or

index

component

are

from

512

to

8192

bytes

in

increments

of

512

bytes,

and

from

8

KB

to

32

KB

in

increments

of

2

KB.

When

you

choose

a

CI

size

that

is

not

a

multiple

of

512

or

2048,

VSAM

chooses

the

next

higher

multiple.

For

a

linear

data

set,

the

size

specified

is

rounded

up

to

4096

if

specified

as

4096

or

less.

It

is

rounded

to

the

next

higher

multiple

of

4096

if

specified

as

greater

than

4096.

Example:

2050

is

increased

to

2560.

The

block

size

of

the

index

component

is

always

equal

to

the

control

interval

size.

However,

the

block

size

for

the

data

component

and

index

components

might

differ.

Example:

Valid

control

interval

sizes

are

512,

1024,

1536,

2048,

3584,

4096,

...

8192,

10

240,

and

12

288,

and

so

on.

Related

reading:

For

more

information,

see

the

description

of

the

CONTROLINTERVALSIZE

parameter

of

the

DEFINE

CLUSTER

command

in

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Unless

the

data

set

was

defined

with

the

SPANNED

attribute,

the

control

interval

must

be

large

enough

to

hold

a

data

record

of

the

maximum

size

specified

in

the

RECORDSIZE

parameter.

Because

the

minimum

amount

of

control

information

in

a

control

interval

is

7

bytes,

a

control

interval

is

normally

at

least

7

bytes

larger

than

the

largest

record

in

the

component.

For

compressed

data

sets,

a

control

interval

is

at

least

10

bytes

larger

than

the

largest

record

after

it

is

compressed.

This

allows

for

the

control

information

and

record

prefix.

Since

the

length

of

a

particular

record

is

hard

to

predict

and

since

the

records

might

not

compress,

it

is

best

to

assume

that

the

largest

record

is

not

compressed.

If

the

control

interval

size

you

specify

is

not

large

enough

to

hold

the

maximum

size

record,

VSAM

increases

the

control

interval

size

to

a

multiple

of

the

minimum

physical

block

size.

The

control

interval

size

VSAM

provides

is

large

enough

to

contain

the

record

plus

the

overhead.

For

a

variable-length

RRDS,

a

control

interval

is

at

least

11

bytes

larger

than

the

largest

record.

The

use

of

the

SPANNED

parameter

removes

this

constraint

by

permitting

data

records

to

be

continued

across

control

intervals.

The

maximum

record

size

is

then

equal

to

the

number

of

control

intervals

per

control

area

multiplied

by

control

interval

size

minus

10.

The

use

of

the

SPANNED

parameter

places

certain

restrictions

on

the

processing

options

that

can

be

used

with

a

data

set.

For

example,

records

of

a

data

set

with

the

SPANNED

parameter

cannot

be

read

or

written

in

locate

mode.

For

more

information

about

spanned

records

see

“Spanned

Records”

on

page

76.

Physical

Block

Size

and

Track

Capacity

Figure

22

shows

the

relationship

between

control

interval

size,

physical

block

size,

and

track

capacity

that

is

not

in

extended

format.

Optimizing

VSAM

Performance

156

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

information

about

a

track

is

divided

into

physical

blocks.

Control

interval

size

must

be

a

whole

number

of

physical

blocks.

Control

intervals

can

span

tracks.

However,

poor

performance

results

if

a

control

interval

spans

a

cylinder

boundary,

because

the

read/write

head

must

move

between

cylinders.

The

physical

block

size

is

always

selected

by

VSAM.

VSAM

chooses

the

largest

physical

block

size

that

exactly

divides

into

the

control

interval

size.

The

block

size

is

also

based

on

device

characteristics.

Track

Allocations

versus

Cylinder

Allocations

All

space

specifications

except

cylinders

are

converted

to

the

appropriate

number

of

tracks.

Usually,

cylinder

allocations

provide

better

performance

than

track

allocations.

Performance

also

depends

on

the

control

interval

size,

buffer

size,

the

number

of

buffers,

and

index

options.

Data

Control

Interval

Size

You

can

either

specify

a

data

control

interval

size

or

default

to

a

system-calculated

control-interval

size.

If

you

do

not

specify

a

size,

the

system

calculates

a

default

value

that

best

uses

the

space

on

the

track

for

the

average

record

size

of

spanned

records

or

the

maximum

record

size

of

nonspanned

records.

If

a

CONTROLINTERVALSIZE

value

is

specified

on

the

cluster

level,

this

value

propagates

to

the

component

level

at

which

no

CONTROLINTERVALSIZE

value

has

been

specified.

Normally,

a

4096-byte

data

control

interval

is

reasonably

good

regardless

of

the

DASD

device

used,

processing

patterns,

or

the

processor.

A

linear

data

set

requires

a

control

interval

size

of

4096

to

32768

bytes

in

increments

of

4096

bytes.

However,

there

are

some

special

considerations

that

might

affect

this

choice:

v

If

you

have

very

large

control

intervals,

more

pages

are

required

to

be

fixed

during

I/O

operations.

This

could

adversely

affect

the

operation

of

the

system.

v

Small

records

in

a

data

control

interval

can

result

in

a

large

amount

of

control

information.

Often

free

space

cannot

be

used.

v

The

type

of

processing

you

use

can

also

affect

your

choice

of

control

interval

size:

–

Direct

processing.

When

direct

processing

is

predominant,

a

small

control

interval

is

preferable,

because

you

are

only

retrieving

one

record

at

a

time.

Select

the

smallest

data

control

interval

that

uses

a

reasonable

amount

of

space.

–

Sequential

processing.

When

sequential

processing

is

predominant,

larger

data

control

intervals

can

be

good

choices.

For

example,

given

a

16

KB

data

buffer

space,

it

is

better

to

read

two

8

KB

control

intervals

with

one

I/O

operation

than

four

4

KB

control

intervals

with

two

I/O

operations.

PB - Physical block

Track 1 Track 2 Track 3 Track 4

PB PB PB PB PB PB PB PB PB PB PB PB

CI1 CI2 CI3 CI4 CI5 CI6

Figure

22.

Control

Interval

Size,

Physical

Track

Size,

and

Track

Capacity

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

157

–

Mixed

processing.

If

the

processing

is

a

mixture

of

direct

and

sequential,

a

small

data

control

interval

with

multiple

buffers

for

sequential

processing

can

be

a

good

choice.

If

you

specify

free

space

for

a

key-sequenced

data

set

or

variable-length

RRDS,

the

system

determines

the

number

of

bytes

to

be

reserved

for

free

space.

For

example,

if

control

interval

size

is

4096,

and

the

percentage

of

free

space

in

a

control

interval

has

been

defined

as

20%,

819

bytes

are

reserved.

Free

space

calculations

drop

the

fractional

value

and

use

only

the

whole

number.

To

find

out

what

values

are

actually

set

in

a

defined

data

set,

issue

the

access

method

services

LISTCAT

command.

Index

Control

Interval

Size

For

a

key-sequenced

data

set,

either

specify

an

index

control

interval

size

or

default

to

a

system-calculated

size.

If

you

do

not

specify

a

size,

VSAM

calculates

the

CISIZE

value

based

on

the

expected

key-compression

ratio

of

3:1

and

the

number

of

data

CIs

per

control

area

in

the

data

set.

After

VSAM

determines

the

number

of

CIs

in

a

control

area,

it

estimates

whether

the

user-specified

size

is

large

enough

for

all

the

CIs

in

a

control

area.

(See

“How

VSAM

Adjusts

Control

Interval

Size.”)

If

the

size

is

too

small,

the

system

increases

the

size

of

the

index

control

interval

to

VSAM’s

minimum

acceptable

size.

If

the

specified

size

is

larger

than

the

minimum

size

that

VSAM

calculated,

the

system

uses

specified

size.

You

might

need

a

larger

CI

than

the

size

that

VSAM

calculated,

depending

on

the

allocation

unit,

the

data

CI

size,

the

key

length,

and

the

key

content

as

it

affects

compression.

(It

is

rare

to

have

the

entire

key

represented

in

the

index,

because

of

key

compression.)

If

the

keys

for

the

data

set

do

not

compress

according

to

the

estimated

ratio

(3:1),

the

index

CI

size

that

VSAM

calculated

might

be

too

small,

resulting

in

the

inability

to

address

CIs

in

one

or

more

CAs.

This

results

in

allocated

space

that

is

unusable

in

the

data

set.

After

the

first

define

(DEFINE),

a

catalog

listing

(LISTCAT)

shows

the

number

of

control

intervals

in

a

control

area

and

the

key

length

of

the

data

set.

You

can

use

the

number

of

control

intervals

and

the

key

length

to

estimate

the

size

of

index

record

necessary

to

avoid

a

control

area

split,

which

occurs

when

the

index

control

interval

size

is

too

small.

To

make

a

general

estimate

of

the

index

control

interval

size

needed,

multiply

one

half

of

the

key

length

(KEYLEN)

by

the

number

of

data

control

intervals

per

control

area

(DATA

CI/CA):

(KEYLEN/2)

*

DATA

CI/CA

≤

INDEX

CISIZE

The

use

of

a

2:1

ratio

rather

than

3:1,

which

VSAM

uses,

allows

for

some

of

the

additional

overhead

factors

in

the

actual

algorithm

for

determining

the

CI

size.

How

VSAM

Adjusts

Control

Interval

Size

The

control

interval

sizes

you

specify

when

the

data

set

is

defined

are

not

necessarily

the

ones

that

appear

in

the

catalog.

VSAM

makes

adjustments,

if

possible,

so

that

control

interval

size

conforms

to

proper

size

limits,

minimum

buffer

space,

adequate

index-to-data

size,

and

record

size.

VSAM

makes

the

following

adjustments

when

your

data

set

is

defined.

1.

Specifies

data

and

index

control

interval

size.

After

VSAM

determines

the

number

of

control

intervals

in

a

control

area,

it

estimates

whether

one

index

record

is

large

enough

to

handle

all

control

intervals

in

the

control

area.

If

not,

Optimizing

VSAM

Performance

158

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

the

size

of

the

index

control

interval

is

increased,

if

possible.

If

the

size

cannot

be

increased,

VSAM

decreases

the

number

of

control

intervals

in

the

control

area.

2.

Specifies

maximum

record

size

as

2560

and

data

control

interval

size

as

2560,

and

have

no

spanned

records.

VSAM

adjusts

the

data

control

interval

size

to

3072

to

permit

space

for

control

information

in

the

data

control

interval.

3.

Specifies

buffer

space

as

4K,

index

control

interval

size

as

512,

and

data

control

interval

size

as

2K.

VSAM

decreases

the

data

control

interval

to

1536.

Buffer

space

must

include

space

for

two

data

control

intervals

and

one

index

control

interval

at

DEFINE

time.

For

more

information

about

buffer

space

requirements

see

“Determining

I/O

Buffer

Space

for

Nonshared

Resource”

on

page

164.

Optimizing

Control

Area

Size

You

cannot

explicitly

specify

control-area

size.

Generally,

the

primary

and

secondary

space

allocation

amounts

determine

the

control-area

size:

v

If

either

the

primary

or

secondary

allocation

is

smaller

than

one

cylinder,

the

smaller

value

is

used

as

the

control-area

size.

If

RECORDS

is

specified,

the

allocation

is

rounded

up

to

full

tracks.

v

If

both

primary

and

secondary

allocations

are

equal

to

or

larger

than

one

cylinder,

the

control-area

size

is

one

cylinder,

the

maximum

size

for

a

control

area.

The

following

examples

show

how

the

control-area

size

is

generally

determined

by

the

primary

and

secondary

allocation

amount.

The

index

control-interval

size

and

buffer

space

can

also

affect

the

control-area

size.

The

following

examples

are

based

on

the

assumption

that

the

index

CI

size

is

large

enough

to

handle

all

the

data

CIs

in

the

CA

and

the

buffer

space

is

large

enough

not

to

affect

the

CI

sizes:

v

CYLINDERS(5,10)—Results

in

a

1-cylinder

control-area

size.

v

KILOBYTES(100,50)—The

system

determines

the

control

area

based

on

50

KB,

resulting

in

a

1-track

control-area

size.

v

RECORDS(2000,5)—Assuming

10

records

would

fit

on

a

track,

results

in

a

1-track

control-area

size.

v

TRACKS(100,3)—Results

in

a

3-track

control-area

size.

v

TRACKS(3,100)—Results

in

a

3-track

control-area

size.

A

spanned

record

cannot

be

larger

than

the

size

of

a

control

area

minus

the

size

of

the

control

information

(10

bytes

per

control

interval).

Therefore,

do

not

specify

a

primary

or

secondary

allocation

that

is

not

large

enough

to

contain

the

largest

spanned

record.

Note:

If

space

is

allocated

in

kilobytes,

megabytes,

or

records,

the

system

sets

the

control

area

size

equal

to

multiples

of

the

minimum

number

of

tracks

or

cylinders

required

to

contain

the

specified

kilobytes,

megabytes,

or

records.

Space

is

not

assigned

in

units

of

bytes

or

records.

If

the

control

area

is

smaller

than

a

cylinder,

its

size

will

be

an

integral

multiple

of

tracks,

and

it

can

span

cylinders.

However,

a

control

area

can

never

span

an

extent

of

a

data

set,

which

is

always

composed

of

a

whole

number

of

control

areas.

For

more

information

about

allocating

space

for

a

data

set,

see

“Allocating

Space

for

VSAM

Data

Sets”

on

page

106.

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

159

Advantages

of

a

Large

Control

Area

Size

Control

area

size

has

significant

performance

implications.

One-cylinder

control

areas

have

the

following

advantages:

v

There

is

a

smaller

probability

of

control

area

splits.

v

The

index

is

more

consolidated.

One

index

record

addresses

all

the

control

intervals

in

a

control

area.

If

the

control

area

is

large,

fewer

index

records

and

index

levels

are

required.

For

sequential

access,

a

large

control

area

decreases

the

number

of

reads

of

index

records.

v

There

are

fewer

sequence

set

records.

The

sequence

set

record

for

a

control

area

is

always

read

for

you.

Fewer

records

means

less

time

spent

reading

them.

v

If

the

sequence

set

of

the

index

is

imbedded

on

the

first

track

of

the

control

area,

it

is

replicated

to

reduce

the

rotational

delay

inherent

when

reading

from

the

device.

v

If

you

have

allocated

enough

buffers,

a

large

control

area

lets

you

read

more

buffers

into

storage

at

one

time.

A

large

control

area

is

useful

if

you

are

accessing

records

sequentially.

Disadvantages

of

a

Large

Control

Area

Size

The

following

disadvantages

of

a

one-cylinder

control

area

must

also

be

considered:

v

If

there

is

a

control

area

split,

more

data

is

moved.

v

During

sequential

I/O,

a

large

control

area

ties

up

more

real

storage

and

more

buffers.

Optimizing

Free

Space

Distribution

With

the

DEFINE

command,

either

specify

the

percentage

of

free

space

in

each

control

interval

and

the

percentage

of

free

control

intervals

per

control

area

or

specify

data

class

and

use

the

FREESPACE

attribute

assigned

through

the

ACS

routines

established

by

your

storage

administrator.

Free

space

improves

performance

by

reducing

the

likelihood

of

control

interval

and

control

area

splits.

This,

in

turn,

reduces

the

likelihood

of

VSAM

moving

a

set

of

records

to

a

different

cylinder

away

from

other

records

in

the

key

sequence.

When

there

is

a

direct

insert

or

a

mass

sequential

insert

that

does

not

result

in

a

split,

VSAM

inserts

the

records

into

available

free

space.

The

amount

of

free

space

you

need

depends

on

the

number

and

location

of

records

to

be

inserted,

lengthened,

or

deleted.

Too

much

free

space

can

result

in:

v

Increased

number

of

index

levels,

that

affects

run

times

for

direct

processing.

v

More

direct

access

storage

required

to

contain

the

data

set.

v

More

I/O

operations

required

to

sequentially

process

the

same

number

of

records.

Too

little

free

space

can

result

in

an

excessive

number

of

control

interval

and

control

area

splits.

These

splits

are

time

consuming,

and

have

the

following

additional

effects:

v

More

time

is

required

for

sequential

processing

because

the

data

set

is

not

in

physical

sequence.

v

More

seek

time

is

required

during

processing

because

of

control

area

splits.

Optimizing

VSAM

Performance

160

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Use

LISTCAT

or

the

ACB

JRNAD

exit

to

monitor

control

area

splits.

See

“JRNAD

Exit

Routine

to

Journalize

Transactions”

on

page

241.

When

splits

become

frequent,

reorganize

the

data

set

using

REPRO

or

EXPORT.

Reorganization

creates

a

smaller,

more

efficient

data

set

with

fewer

control

intervals.

However,

reorganizing

a

data

set

is

time

consuming.

Figure

23

shows

how

free

space

is

determined

for

a

control

interval.

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

161

For

this

data

set,

each

control

interval

is

4096

bytes.

In

each

control

interval,

10

bytes

are

reserved

for

control

information.

Because

control

interval

free

space

is

specified

as

20%,

819

bytes

are

reserved

as

free

space.

(4096

×

.20

=

819).

Round

down.

The

free

space

threshold

is

3267

bytes.

The

space

between

the

threshold

and

the

control

information

is

reserved

as

free

space.

Because

the

records

loaded

in

the

data

set

are

500-byte

records,

there

is

not

enough

space

for

another

record

between

byte

3000

and

the

free

space

threshold

at

byte

3267.

These

267

bytes

of

unused

space

are

also

used

as

free

space.

This

leaves

1086

bytes

of

free

space;

enough

to

insert

two

500-byte

records.

Only

86

bytes

are

left

unusable.

When

you

specify

free

space,

ensure

that

the

percentages

of

free

space

you

specify

yield

full

records

and

full

control

intervals

with

a

minimum

amount

of

unusable

space.

Selecting

the

Optimal

Percentage

of

Free

Space

Determine

the

amount

of

control

interval

free

space

based

on

the

percentage

of

record

additions

expected,

and

their

distribution:

No

additions.

If

no

records

will

be

added

and

if

record

sizes

will

not

be

changed,

there

is

no

need

for

free

space.

Few

additions.

If

few

records

will

be

added

to

the

data

set,

consider

a

free

space

specification

of

(0

0).

When

records

are

added,

new

control

areas

are

created

to

provide

room

for

additional

insertions.

If

the

few

records

to

be

added

are

fairly

evenly

distributed,

control

interval

free

space

should

be

equal

to

the

percentage

of

records

to

be

added.

(FSPC

(nn

0),

where

nn

equals

the

percentage

of

records

to

be

added.)

Evenly

distributed

additions.

If

new

records

will

be

evenly

distributed

throughout

the

data

set,

control

area

free

space

should

equal

the

percentage

of

records

to

be

added

to

the

data

set

after

the

data

set

is

loaded.

(FSPC

(0

nn),

where

nn

equals

the

percentage

of

records

to

be

added.)

Unevenly

distributed

additions.

If

new

records

will

be

unevenly

distributed

throughout

the

data

set,

specify

a

small

amount

of

free

space.

Additional

splits,

after

the

first,

in

that

part

of

the

data

set

with

the

most

growth

will

produce

control

intervals

with

only

a

small

amount

of

unneeded

free

space.

Mass

insertion.

If

you

are

inserting

a

group

of

sequential

records,

take

full

advantage

of

mass

insertion

by

using

the

ALTER

command

to

change

free

space

to

R1 R2

500Byte number 1000 2500 3267

Free space threshold

Con-
trol
info

R3 R4 R5 R6

FREESPACE(20 10)
CONTROLINTERVALSIZE(4096)
RECORDSIZE(500 500)

Figure

23.

Determining

Free

Space

Optimizing

VSAM

Performance

162

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

(0

0)

after

the

data

set

is

loaded.

For

more

information

about

mass

insertion

see

“Inserting

and

Adding

Records”

on

page

140.

Additions

to

a

specific

part

of

the

data

set.

If

new

records

will

be

added

to

only

a

specific

part

of

the

data

set,

load

those

parts

where

additions

will

not

occur

with

a

free

space

of

(0

0).

Then,

alter

the

specification

to

(n

n)

and

load

those

parts

of

the

data

set

that

will

receive

additions.

The

example

in

“Altering

the

Free

Space

Specification

When

Loading

a

Data

Set”

demonstrates

this.

Altering

the

Free

Space

Specification

When

Loading

a

Data

Set

The

following

example

uses

the

ALTER

command

to

change

the

FREESPACE

specification

when

loading

a

data

set.

Assume

that

a

large

key-sequenced

data

set

is

to

contain

records

with

keys

from

1

through

300

000.

It

is

expected

to

have

no

inserts

in

key

range

1

through

100

000,

some

inserts

in

key

range

100

001

through

200

000,

and

heavy

inserts

in

key

range

200

001

through

300

000.

An

ideal

data

structure

at

loading

time

would

be:

Key

Range

Free

Space

1

through

100

000

None

100

001

through

200

000

5%

control

area

200

001

through

300

000

5%

control

interval

and

20%

control

area

You

can

build

this

data

structure

as

follows:

1.

DEFINE

CLUSTER

and

do

one

of

the

following:

v

Omit

the

FREESPACE

parameter

v

Specify

FREESPACE

(0

0)

v

Specify

DATACLAS

and

use

the

FREESPACE

attribute

assigned

through

the

automatic

class

selection

routines

established

by

your

storage

administrator.
2.

Load

records

1

through

100

000

with

REPRO

or

any

user

program

using

a

sequential

insertion

technique.

3.

CLOSE

the

data

set.

4.

Change

the

FREESPACE

value

of

the

cluster

with

the

access

method

services

command

ALTER

clustername

FREESPACE

(0

5).

Explicit

specification

of

FREESPACE

overrides

the

data

class

attribute

assigned

by

your

storage

administrator.

5.

Load

records

100

001

through

200

000

with

REPRO

or

any

user

program

using

a

sequential

insertion

technique.

6.

CLOSE

the

data

set.

7.

Change

the

FREESPACE

value

of

the

cluster

with

the

access

method

services

command

ALTER

clustername

FREESPACE

(5

20).

8.

Load

records

200

001

through

300

000

with

REPRO

or

any

user

program

using

a

sequential

insertion

technique.

This

procedure

has

the

following

advantages:

v

It

prevents

wasting

space.

For

example,

if

FREESPACE

(0

10)

were

defined

for

the

whole

data

set,

the

free

space

in

the

first

key

range

would

all

be

wasted.

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

163

v

It

minimizes

control

interval

and

control

area

splits.

If

FREESPACE

(0

0)

were

defined

for

the

whole

data

set,

there

would

be

a

very

large

number

of

control

interval

and

control

area

splits

for

the

first

inserts.

Determining

I/O

Buffer

Space

for

Nonshared

Resource

I/O

buffers

are

used

by

VSAM

to

read

and

write

control

intervals

from

DASD

to

virtual

storage.

For

a

key-sequenced

data

set

or

variable-length

RRDS,

VSAM

requires

a

minimum

of

three

buffers,

two

for

data

control

intervals

and

one

for

an

index

control

interval.

(One

of

the

data

buffers

is

used

only

for

formatting

control

areas

and

splitting

control

intervals

and

control

areas.)

The

VSAM

default

is

enough

space

for

these

three

buffers.

Only

data

buffers

are

needed

for

entry-sequenced,

fixed-length

RRDSs

or

for

linear

data

sets.

To

increase

performance,

there

are

parameters

to

override

the

VSAM

default

values.

There

are

five

places

where

these

parameters

can

be

specified:

v

BUFFERSPACE,

specified

in

the

access

method

services

DEFINE

command.

This

is

the

least

amount

of

storage

ever

provided

for

I/O

buffers.

v

BUFSP,

BUFNI,

and

BUFND,

specified

in

the

VSAM

ACB

macro.

This

is

the

maximum

amount

of

storage

to

be

used

for

a

data

set’s

I/O

buffers.

If

the

value

specified

in

the

ACB

macro

is

greater

than

the

value

specified

in

DEFINE,

the

ACB

value

overrides

the

DEFINE

value.

v

BUFSP,

BUFNI,

and

BUFND,

specified

in

the

JCL

DD

AMP

parameter.

This

is

the

maximum

amount

of

storage

to

be

used

for

a

data

set’s

I/O

buffers.

A

value

specified

in

JCL

overrides

DEFINE

and

ACB

values

if

it

is

greater

than

the

value

specified

in

DEFINE.

v

ACCBIAS

specified

in

the

JCL

DD

AMP

parameter.

Record

access

bias

has

six

specifications:

SYSTEM

Force

system-managed

buffering

and

let

the

system

determine

the

buffering

technique

based

on

the

ACB

MACRF

and

storage-class

specification.

USER

Bypass

system-managed

buffering.

SO

System-managed

buffering

with

sequential

optimization.

SW

System-managed

buffering

weighted

for

sequential

processing.

DO

System-managed

buffering

with

direct

optimization.

DW

System-managed

buffering

weighted

for

direct

optimization.

v

Data

class

Record

Access

Bias

=

SYSTEM

or

USER

VSAM

must

always

have

sufficient

space

available

to

process

the

data

set

as

directed

by

the

specified

processing

options.

Obtaining

Buffers

Above

16

MB

To

increase

the

storage

area

available

below

16

MB

for

your

application

program,

request

VSAM

data

buffers

and

VSAM

control

blocks

from

virtual

storage

above

16

MB.

To

do

this,

specify

the

RMODE31

parameter

on

the

ACB

macro.

See

Chapter

17,

“Using

31-Bit

Addressing

Mode

with

VSAM,”

on

page

257.

Optionally,

specify

RMODE31

in

your

JCL

DD

AMP

parameter

to

let

the

user

override

any

RMODE31

values

specified

when

the

ACB

was

created.

If

you

do

not

specify

RMODE31

in

the

JCL

AMP

parameter

and

ACCBIAS=SYSTEM,

the

default

value,

RMODE31=BUFF,

is

in

effect.

If

you

attempt

to

reference

the

VSAM

buffers

directly

(as

in

LOCATE

mode),

your

program

must

run

in

31-bit

addressing

mode.

Optimizing

VSAM

Performance

164

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

your

program

runs

in

24-bit

addressing

mode

and

you

need

to

access

VSAM

buffers

directly,

code

RMODE31=CB

or

RMODE31=NONE

in

the

JCL

AMP

parameter.

Virtual

Storage

Constraint

Relief

Use

the

LOCANY

parameter

on

the

Hardware

Configuration

Definition

(HCD)

panel

to

define

unit

control

blocks

(UCBs)

either

above

or

below

the

16

MB

line.

Each

device

attached

to

the

system

has

one

or

more

UCBs

associated

with

it.

To

conserve

common

virtual

storage

below

the

16

MB

line,

you

can

define

a

UCB

for

a

device

above

16

MB.

Related

reading:

For

more

information,

see

z/OS

HCD

User’s

Guide.

Dynamic

Allocation

Options

for

Reducing

Storage

Usage

For

application

programs

that

require

24-bit

addresses,

the

system

copies

above

16

MB

UCBs

to

below

16

MB

private,

virtual

storage.

This

copy

is

known

as

a

captured

UCB.

The

system

automatically

captures

an

above

16

MB

UCB

at

allocation

and

releases

the

UCB

at

deallocation.

With

dynamic

allocation,

you

can

choose

not

to

capture

a

UCB

if

affected

applications

can

handle

above

16

MB

UCBs.

The

major

user

of

uncaptured

UCBs

is

DB2.

Use

the

following

dynamic

allocation

options

when

allocating

a

VSAM

data

set

to

use

uncaptured

UCBs

above

the

16

MB

line

and

reduce

storage

usage:

v

XTIOT

option

(S99TIOEX)—This

option

requires

that

your

program

be

APF

authorized,

in

supervisor

state,

or

in

a

system

key.

v

NOCAPTURE

option

(S99ACUCB)—Specify

this

option

to

use

4-byte

actual

UCB

addresses.

This

option

does

not

require

your

program

to

be

authorized.

v

DSAB-above-the-line

option

(S99DSABA)—Specify

this

option

to

place

the

data

set

association

control

block

(DSAB)

above

the

16

MB

line.

You

must

use

this

option

with

S99TIOEX.

Related

reading:

For

more

information,

see

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

Tuning

for

System-Managed

Buffering

VSAM

can

use

a

technique

called

system-managed

buffering

(SMB)

to

determine

the

number

of

buffers

and

the

type

of

buffer

management

to

use

for

VSAM

data

sets.

VSAM

also

determines

the

number

of

buffers

to

locate

in

Hiperspace™

for

use

in

direct

optimization.

To

indicate

that

VSAM

is

to

use

SMB,

specify

either

of

the

following

options:

v

Specify

the

ACCBIAS

subparameter

of

the

JCL

DD

statement

AMP

parameter

and

an

appropriate

value

for

record

access

bias.

v

Specify

Record

Access

Bias

in

the

data

class

and

an

application

processing

option

in

the

ACB.

For

system-managed

buffering

(SMB),

the

data

set

must

use

both

of

the

following

options:

v

System

Management

Subsystem

(SMS)

storage

v

Extended

format

(DSNTYPE=ext

in

the

data

class)

JCL

takes

precedence

over

the

specification

in

the

data

class.

You

must

specify

NSR.

SMB

either

weights

or

optimizes

buffer

handling

toward

sequential

or

direct

processing.

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

165

To

optimize

your

extended

format

data

sets,

use

the

ACCBIAS

subparameter

of

the

AMP

parameter

along

with

related

subparameters

SMBVSP,

SMBDFR,

and

SMBHWT.

You

can

also

use

these

subparameters

with

Record

Access

Bias=SYSTEM

in

the

data

class.

These

subparameters

are

only

for

Direct

Optimized

processing.

Processing

Techniques

The

information

in

this

section

is

for

planning

purposes

only.

It

is

not

absolute

or

exact

regarding

storage

requirements.

You

should

use

it

only

as

a

guideline

for

estimating

storage

requirements.

Individual

observations

might

vary

depending

on

specific

implementations

and

processing.

System-managed

buffering

(SMB),

a

feature

of

DFSMSdfp™,

supports

batch

application

processing.

SMB

takes

the

following

actions:

1.

It

changes

the

defaults

for

processing

VSAM

data

sets.

This

enables

the

system

to

take

better

advantage

of

current

and

future

hardware

technology.

2.

It

initiates

a

buffering

technique

to

improve

application

performance.

The

technique

is

one

that

the

application

program

does

not

specify.

You

can

choose

or

specify

any

of

the

four

processing

techniques

that

SMB

implements:

v

Direct

Optimized

(DO)

v

Sequential

Optimized

(SO)

v

Direct

Weighted

(DW)

v

Sequential

Weighted

(SW)

Direct

Optimized

(DO).

The

DO

processing

technique

optimizes

for

totally

random

record

access.

This

is

appropriate

for

applications

that

access

records

in

a

data

set

in

totally

random

order.

This

technique

overrides

the

user

specification

for

nonshared

resources

(NSR)

buffering

with

a

local

shared

resources

(LSR)

implementation

of

buffering.

The

following

three

options,

SMBVSP,

SMBDFR,

and

SMBHWT,

are

only

for

processing

with

the

Direct

Optimized

technique.

v

SMBVSP.

This

option

specifies

the

amount

of

virtual

storage

to

obtain

for

buffers

when

opening

the

data

set.

You

can

specify

virtual

buffer

size

in

kilobytes,

from

1K

to

2048000K,

or

in

megabytes,

from

1M

to

2048M.

This

value

is

the

total

amount

of

virtual

storage

that

you

can

address

in

a

single

address

space.

This

value

does

not

specify

storage

that

the

system

or

the

access

method

requires.

v

SMBDFR.

This

option

lets

you

defer

writing

buffers

to

the

medium

either

until

the

buffer

is

required

for

a

different

request

or

until

the

data

set

is

closed.

CLOSE

TYPE=T

does

not

write

the

buffers

to

the

medium

when

the

system

uses

LSR

processing

for

direct

optimization.

Defaults

for

deferred

write

processing

depend

upon

the

SHAREOPTIONS

values,

which

you

specify

when

you

define

the

data

set.

The

default

for

SHAREOPTIONS

(1,3)

and

(2,3)

is

deferred

write.

The

default

for

SHAREOPTIONS

(3,3),

(4,3),

and

(x,

4)

is

nondeferred

write.

If

the

user

specifies

a

value

for

SMBDFR,

this

value

always

takes

precedence

over

any

defaults.

v

SMBHWT.

This

option

permits

the

specification

of

a

whole

decimal

value

from

1-99

for

allocating

Hiperspace

buffers.

The

allocation

is

based

on

a

multiple

of

the

number

of

virtual

buffers

that

have

been

allocated.

Optimizing

VSAM

Performance

166

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Sequential

Optimized

(SO).

The

SO

technique

optimizes

processing

for

record

access

that

is

in

sequential

order.

This

is

appropriate

for

backup

and

for

applications

that

read

the

entire

data

set

or

a

large

percentage

of

the

records

in

sequential

order.

Direct

Weighted

(DW).

The

majority

is

direct

processing;

some

is

sequential.

DW

processing

provides

the

minimum

read-ahead

buffers

for

sequential

retrieval

and

the

maximum

index

buffers

for

direct

requests.

Sequential

Weighted

(SW).

The

majority

is

sequential

processing;

some

is

direct.

This

technique

uses

read-ahead

buffers

for

sequential

requests

and

provides

additional

index

buffers

for

direct

requests.

The

read-ahead

will

not

be

as

large

as

the

amount

of

data

transferred

with

SO.

To

implement

SMB,

an

application

program

must

specify

nonshared

resources

(NSR)

buffering,

ACB

MACRF=(NSR).

The

system

does

not

apply

SMB

when

any

VSAM

data

set

is

opened

with

a

request

for

any

other

buffering

option,

MACRF=(LSR|GSR|UBF|RLS).

The

basis

for

the

default

technique

is

the

application

specification

for

ACB

MACRF=(DIR,SEQ,SKP)

Also,

specification

of

the

following

values

in

the

associated

storage

class

(SC)

influence

the

default

technique:

v

Direct

millisecond

response

v

Direct

bias

v

Sequential

millisecond

response

v

Sequential

bias

You

can

specify

the

technique

externally

by

using

the

ACCBIAS

subparameter

of

the

AMP=

parameter.

The

system

invokes

the

function

only

during

data

set

OPEN

processing.

After

SMB

makes

the

initial

decisions

during

that

process,

it

has

no

further

involvement.

Internal

Processing

Techniques

In

addition,

two

internal

techniques

support

data

set

creation

and

load-mode

processing.

A

user

cannot

specify

these

techniques,

which

the

system

invokes

internally

if

the

data

set

is

in

load

mode

(HURBA=0)

and

if

the

following

items

specify

the

SYSTEM

keyword:

v

RECORD

ACCESS

BIAS

for

the

related

data

class

v

ACCBIAS

in

the

AMP=

parameter

of

the

data

set

JCL

The

two

techniques

are

Create

Optimized

(CO)

and

Create

Recovery

Optimized

(CR).

Create

Optimized

(CO):

Maximum

buffers

to

optimize

load

performance

if

you

specify

SPEED

in

the

data

definition.

Create

Recovery

Optimized

(CR):

Maximum

buffers

to

optimize

load

performance

if

you

specify

RECOVERY

in

the

data

definition.

Processing

Guidelines

and

Restrictions

The

following

guidelines

and

restrictions

relate

to

processing

with

each

technique.

Direct

Optimized

(DO)

Guidelines.

DO

could

result

in

a

requirement

for

the

most

additional

processor

virtual

storage.

This

results

in

the

creation

of

a

local

shared

resources

(LSR)

pool

for

each

data

set

opened

with

this

technique

in

a

single

application

program.

The

size

of

the

data

set

is

a

major

factor

in

the

processor

virtual

storage

requirement

for

buffering.

The

size

of

the

pool

is

based

on

the

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

167

actual

data

set

size

at

the

time

the

pool

is

created.

This

means

that

the

processor

virtual

storage

requirement

increases

with

each

OPEN

after

records

have

been

added

and

the

data

set

has

been

extended

beyond

its

previous

size.

A

separate

pool

is

built

for

both

data

and

index

components,

if

applicable,

for

each

data

set.

There

is

no

capability

to

share

a

single

pool

by

multiple

data

sets.

The

index

pool

is

sized

to

accommodate

all

records

in

the

index

component.

The

data

pool

is

sized

to

accommodate

approximately

20%

of

the

user

records

in

the

data

set.

As

discussed

previously,

this

size

can

change

based

on

data

set

growth.

A

maximum

pool

size

for

the

data

component

will

be

identified.

These

buffers

are

acquired

above

the

16

MB

line

unless

overridden

by

the

use

of

the

RMODE31

parameter

on

the

AMP=parameter.

The

use

of

the

SMBVSP

parameter

on

AMP=parameter

can

be

used

to

restrict

the

size

of

the

pool

that

is

built

for

the

data

component.

There

is

no

capability

to

override

the

size

of

the

pool

for

the

index

records.

The

SMBHWT

parameter

can

be

used

to

provide

buffering

in

Hiperspace

in

combination

with

virtual

buffers

for

the

data

component.

The

value

of

this

parameter

is

used

as

a

multiplier

of

the

virtual

buffer

space

for

Hiperspace

buffers.

This

can

reduce

the

size

required

for

an

application

region,

but

does

have

implications

related

to

processor

cycle

requirements.

That

is,

all

application

requests

must

orient

to

a

virtual

buffer

address.

If

the

required

data

is

in

a

Hiperspace

buffer,

the

data

must

be

moved

to

a

virtual

buffer

after

“stealing”

a

virtual

buffer

and

moving

that

buffer

to

a

least

recently

used

(LRU)

Hiperspace

buffer.

If

the

optimum

amount

of

storage

required

for

this

option

is

not

available,

SMB

will

reduce

the

number

of

buffers

and

retry

the

request.

For

data,

SMB

will

make

two

attempts,

with

a

reduced

amount

and

a

minimum

amount.

For

an

index,

SMB

reduces

the

amount

of

storage

only

once,

to

minimum

amount.

If

all

attempts

fail,

the

DW

technique

is

used.

The

system

issues

an

IEC161I

message

to

advise

that

this

has

happened.

In

addition,

SMF

type-64

records

indicate

whether

a

reduced

or

minimum

amount

of

resource

is

being

used

for

a

data

pool

and

whether

DW

is

used.

For

more

information,

see

z/OS

MVS

System

Management

Facilities

(SMF).

Restrictions

on

the

Use

of

Direct

Optimized

(DO).

The

Direct

Optimized

(DO)

technique

is

elected

if

the

ACB

only

specifies

the

MACRF=(DIR)

option

for

accessing

the

data

set.

If

either

SEQ|SKP

are

specified,

either

in

combination

with

DIR

or

independently,

DO

is

not

selected.

The

selection

can

be

overridden

by

the

user

specification

of

ACCBIAS=DO

on

the

AMP=parameter

of

the

associated

DD

statement.

There

are

some

restrictions

for

the

use

of

the

Direct

Optimized

(DO)

technique:

1.

The

application

must

position

the

data

set

to

the

beginning

for

any

sequential

processing.

This

assumes

the

first

retrieval

will

be

set

to

that

point

of

the

data

set.

2.

Data

sets

that

have

alternate

indexes

defined

over

them

are

not

eligible

for

DO.

Sequential

Optimized

(SO)

Guidelines.

This

technique

provides

the

most

efficient

buffers

for

sequential

application

processing

such

as

data

set

backup.

The

size

of

the

data

set

is

not

a

factor

in

the

processor

virtual

storage

that

is

required

for

buffering.

The

buffering

implementation

(NSR)

specified

by

the

application

will

not

be

changed

for

this

technique.

Approximately

500K

of

processor

virtual

storage

for

buffers,

defaulted

to

above

16

MB,

is

required

for

this

technique.

Optimizing

VSAM

Performance

168

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Direct

Weighted

(DW)

Guidelines.

This

technique

is

applicable

for

applications

in

which

the

requests

to

the

records

in

a

VSAM

data

set

are

random

for

the

majority

of

the

accesses.

In

addition,

it

might

also

give

some

sequential

performance

improvement

above

VSAM

defaults.

The

size

of

the

data

set

is

a

minor

factor

in

the

storage

that

is

required

for

buffering.

This

technique

does

not

change

the

buffering

implementation

that

the

application

specified

(NSR).

This

technique

requires

approximately

100K

of

processor

storage

for

buffers,

with

a

default

of

16

MB.

Sequential

Weighted

(SW)

Guidelines.

This

technique

is

applicable

for

applications

where

the

requests

to

the

records

in

a

VSAM

data

set

are

sequential

for

the

majority

of

the

accesses.

In

addition,

this

technique

might

give

some

direct

performance

improvement

over

VSAM

defaults.

The

size

of

the

data

set

is

a

minor

factor

in

the

amount

of

processor

virtual

storage

that

buffering

requires.

This

technique

does

not

change

the

buffering

implementation

that

the

application

specified

(NSR).

This

technique

requires

approximately

100K

of

processor

virtual

storage

for

buffers,

with

the

default

above

16

MB.

Create

Optimized

(CO)

Guidelines.

This

is

the

most

efficient

technique,

as

far

as

physical

I/Os

to

the

data

component,

for

loading

a

VSAM

data

set.

It

only

applies

when

the

data

set

is

in

initial

load

status

and

when

defined

with

the

SPEED

option.

The

system

invokes

it

internally,

with

no

user

control

other

than

the

specification

of

RECORD

ACCESS

BIAS

in

the

data

class

or

an

AMP=(ACCBIAS=)

value

of

SYSTEM.

The

size

of

the

data

set

is

not

a

factor

in

the

amount

of

storage

that

buffering

requires.

This

technique

does

not

change

the

buffering

implementation

that

the

application

specified

(NSR).

This

technique

requires

a

maximum

of

approximately

2

MB

of

processor

virtual

storage

for

buffers,

with

the

default

above

16

MB.

Create

Recovery

Optimized

(CR)

Guidelines.

The

system

uses

this

technique

when

a

data

set

defined

with

the

RECOVERY

option

is

in

initial

load

status.

The

system

invokes

CR

internally,

with

no

user

control

other

than

the

specification

of

RECORD

ACCESS

BIAS

in

the

data

class

or

an

AMP=(ACCBIAS=)

value

of

SYSTEM.

The

size

of

the

data

set

is

not

a

factor

in

the

amount

of

storage

that

buffering

requires.

This

technique

does

not

change

the

buffering

implementation

that

the

application

specified

(NSR).

This

technique

requires

a

maximum

of

approximately

1

MB

of

processor

virtual

storage

for

buffers,

with

the

default

above

16

MB.

To

determine

the

final

SMB

processing

technique

and

additional

resource-handling

information

related

to

SMB,

examine

SMF

type

64

records.

This

is

mainly

for

diagnostic

purposes

because

SMF

type

64

records

are

gathered

during

the

CLOSE

processing

of

a

data

set.

For

more

information

on

SMF

records,

see

z/OS

MVS

System

Management

Facilities

(SMF).

General

Considerations

for

the

Use

of

SMB

The

following

factors

affect

storage

requirements

for

SMB

buffers:

v

Number

of

VSAM

data

sets

opened

for

SMB

within

a

single

application

program

v

Chosen

or

specified

technique

v

Data

set

size

for

some

techniques

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

169

The

storage

for

buffers

for

SMB

techniques

is

obtained

above

16

MB.

If

the

application

runs

as

AMODE=RMODE=24

and

issues

locate-mode

requests

(RPL

OPTCD=(,LOC)),

the

AMP=

parameter

must

specify

RMODE31=NONE

for

data

sets

that

use

SMB.

SMB

might

not

be

the

answer

to

all

application

program

buffering

requirements.

The

main

purpose

of

SMB

is

to

improve

performance

buffering

options

for

batch

application

processing,

beyond

the

options

that

the

standard

defaults

provide.

In

the

case

of

many

large

data

sets

and

apparently

random

access

to

records,

it

might

be

better

to

implement

a

technique

within

the

application

program

to

share

a

common

resource

pool.

The

application

program

designer

might

know

the

access

technique

for

the

data

set,

but

SMB

cannot

predict

it.

In

such

applications,

it

would

be

better

to

let

the

application

program

designer

define

the

size

and

number

of

buffers

for

each

pool.

This

is

not

unlike

the

requirements

of

high-performance

database

systems.

Allocating

Buffers

for

Concurrent

Data

Set

Positioning

To

calculate

the

number

of

buffers

you

need,

you

must

determine

the

number

of

strings

you

will

use.

A

string

is

a

request

to

a

VSAM

data

set

requiring

data

set

positioning.

If

different

concurrent

accesses

to

the

same

data

set

are

necessary,

multiple

strings

are

used.

If

multiple

strings

are

used,

each

string

requires

exclusive

control

of

an

index

I/O

buffer.

Therefore,

the

value

specified

for

the

STRNO

parameter

(in

the

ACB

or

GENCB

macro,

or

AMP

parameter)

is

the

minimum

number

of

index

I/O

buffers

required

when

requests

that

require

concurrent

positioning

are

issued.

Allocating

Buffers

for

Direct

Access

For

a

key-sequenced

data

set

or

variable-length

RRDS,

increase

performance

for

direct

processing

by

increasing

the

number

of

index

buffers.

Direct

processing

always

requires

a

top-down

search

through

the

index.

Many

data

buffers

do

not

increase

performance,

because

only

one

data

buffer

is

used

for

each

access.

Data

Buffers

for

Direct

Access

Because

VSAM

does

not

read

ahead

buffers

for

direct

processing,

only

the

minimum

number

of

data

buffers

are

needed.

Only

one

data

buffer

is

used

for

each

access.

If

you

specify

more

data

buffers

than

the

minimum,

this

has

little

beneficial

effect.

When

processing

a

data

set

directly,

VSAM

reads

only

one

data

control

interval

at

a

time.

For

output

processing

(PUT

for

update),

VSAM

immediately

writes

the

updated

control

interval,

if

OPTCD=NSP

is

not

specified

in

the

RPL

macro.

Index

Buffers

for

Direct

Access

If

the

number

of

I/O

buffers

provided

for

index

records

is

greater

than

the

number

of

requests

that

require

concurrent

positioning

(STRNO),

one

buffer

is

used

for

the

highest-level

index

record.

Any

additional

buffers

are

used,

as

required,

for

other

index-set

index

records.

With

direct

access,

you

should

provide

at

least

enough

index

buffers

to

be

equal

to

the

value

of

the

STRNO

parameter

of

the

ACB,

plus

one

if

you

want

VSAM

to

keep

the

highest-level

index

record

always

resident.

Unused

index

buffers

do

not

degrade

performance,

so

you

should

always

specify

an

adequate

number.

For

optimum

performance,

the

number

of

index

buffers

should

at

least

equal

the

number

of

high-level

index

set

control

intervals

plus

one

per

string

to

contain

the

entire

high-level

index

set

and

one

sequence

set

control

interval

per

string

in

virtual

storage.

Optimizing

VSAM

Performance

170

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

VSAM

reads

index

buffers

one

at

a

time,

and

if

you

use

shared

resources,

keep

your

entire

index

set

in

storage.

Index

buffers

are

loaded

when

the

index

is

referred

to.

When

many

index

buffers

are

provided,

index

buffers

are

not

reused

until

a

requested

index

control

interval

is

not

in

storage.

Note

that

additional

index

buffers

is

not

used

for

more

than

one

sequence

set

buffer

per

string

unless

shared

resource

pools

are

used.

For

large

data

sets,

specify

the

number

of

index

buffers

equal

to

the

number

of

index

levels.

VSAM

keeps

as

many

index-set

records

as

the

buffer

space

allows

in

virtual

storage.

Ideally,

the

index

would

be

small

enough

to

permit

the

entire

index

set

to

remain

in

virtual

storage.

Because

the

characteristics

of

the

data

set

cannot

allow

a

small

index,

you

should

be

aware

of

how

an

index

I/O

buffers

is

used

to

determine

how

many

to

provide.

Example

of

Buffer

Allocation

for

Direct

Access

The

following

example

(see

Figure

24),

demonstrates

how

buffers

are

scheduled

for

direct

access.

Assume

the

following:

v

Two

strings

v

Three-level

index

structure

as

shown

v

Three

data

buffers

(one

for

each

string,

and

one

for

splits)

v

Four

index

buffers

(one

for

highest

level

of

index,

one

for

second

level,

and

one

for

each

string)

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

171

The

following

requests

happen.

Request

1.

A

control

interval

from

CA2

is

requested

by

string

1.

v

The

highest

level

index

set,

IS1,

is

read

into

an

index

buffer.

IS1

remains

in

this

buffer

for

all

requests.

v

IS1

points

to

IS2,

that

is

read

into

a

second

index

buffer.

v

IS2

points

to

the

sequence

set,

SS2,

that

is

read

into

an

index

buffer

for

string

1.

v

SS2

points

to

a

control

interval

in

CA2.

This

control

interval

is

read

into

a

data

buffer

for

string

1.

Request

2.

A

control

interval

from

CA3

is

requested

by

string

2.

v

IS1

and

IS2

remain

in

their

respective

buffers.

v

SS3

is

read

into

an

index

buffer

for

string

2.

v

SS3

points

to

a

control

interval

in

CA3.

This

control

interval

is

read

into

a

data

buffer

for

string

2.

Request

3.

The

first

control

interval

in

CA6

is

requested

by

string

1.

v

IS1

remains

in

its

buffer.

v

Since

IS1

now

points

to

IS3,

IS3

is

read

into

the

second

index

buffer,

replacing

IS2.

Figure

24.

Scheduling

Buffers

for

Direct

Access

Optimizing

VSAM

Performance

172

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

SS6

is

read

into

an

index

buffer

for

string

1.

v

SS6

points

to

the

first

control

interval

in

CA6.

This

control

interval

is

read

into

a

data

buffer

for

string

1.

Request

4.

The

first

control

interval

in

CA6

is

now

requested

by

string

2.

v

IS1

and

IS3

remain

in

their

respective

buffers.

v

SS6

is

read

into

an

index

buffer

for

string

2.

v

SS6

points

to

the

first

control

interval

in

CA6.

This

control

interval

is

read

into

a

data

buffer

for

string

2.

v

If

the

string

1

request

for

this

control

interval

was

a

GET

for

update,

the

control

interval

would

be

held

in

exclusive

control,

and

string

2

would

not

be

able

to

access

it.

Suggested

number

of

buffers

for

direct

processing:

Index

buffers

Minimum

=

STRNO

Maximum

=

Number

of

Index

Set

Records

+

STRNO

Data

buffers

STRNO

+

1

Allocating

Buffers

for

Sequential

Access

When

you

are

accessing

data

sequentially,

increase

performance

by

increasing

the

number

of

data

buffers.

When

there

are

multiple

data

buffers,

VSAM

uses

a

read-ahead

function

to

read

the

next

data

control

intervals

into

buffers

before

they

are

needed.

Having

only

one

index

I/O

buffer

does

not

hinder

performance,

because

VSAM

gets

to

the

next

control

interval

by

using

the

horizontal

pointers

in

sequence

set

records

rather

than

the

vertical

pointers

in

the

index

set.

Extra

index

buffers

have

little

effect

during

sequential

processing.

Suggested

number

of

buffers

for

initial

load

mode

processing:

Index

buffers

=

3

Data

buffers

=

2

*

(number

of

Data

CI/CA)

For

straight

sequential

processing

environments,

start

with

four

data

buffers

per

string.

One

buffer

is

used

only

for

formatting

control

areas

and

splitting

control

intervals

and

control

areas.

The

other

three

are

used

to

support

the

read-ahead

function,

so

that

sequential

control

intervals

are

placed

in

buffers

before

any

records

from

the

control

interval

are

requested.

By

specifying

enough

data

buffers,

you

can

access

the

same

amount

of

data

per

I/O

operation

with

small

data

control

intervals

as

with

large

data

control

intervals.

When

SHAREOPTIONS

4

is

specified

for

the

data

set,

the

read-ahead

function

can

be

ineffective

because

the

buffers

are

refreshed

when

each

control

interval

is

read.

Therefore,

for

SHAREOPTIONS

4,

keeping

data

buffers

at

a

minimum

can

actually

improve

performance.

If

you

experience

a

performance

problem

waiting

for

input

from

the

device,

you

should

specify

more

data

buffers

to

improve

your

job’s

run

time.

More

data

buffers

let

you

do

more

read-ahead

processing.

An

excessive

number

of

buffers,

however,

can

cause

performance

problems,

because

of

excessive

paging.

For

mixed

processing

situations

(sequential

and

direct),

start

with

two

data

buffers

per

string

and

increase

BUFND

to

three

per

string,

if

paging

is

not

a

problem.

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

173

When

processing

the

data

set

sequentially,

VSAM

reads

ahead

as

buffers

become

available.

For

output

processing

(PUT

for

update),

VSAM

does

not

immediately

write

the

updated

control

interval

from

the

buffer

unless

a

control

interval

split

is

required.

The

POINT

macro

does

not

cause

read-ahead

processing

unless

RPL

OPTCD=SEQ

is

specified;

POINT

positions

the

data

set

for

subsequent

sequential

retrieval.

Suggested

number

of

buffers

for

sequential

access:

Index

buffers

=

STRNO

Data

buffers

=

3

+

STRNO

(minimum)

Allocating

Buffers

for

a

Path

Processing

data

sets

using

a

path

can

increase

the

number

of

buffers

that

need

to

be

allocated,

since

buffers

are

needed

for

the

alternate

index,

the

base

cluster,

and

any

alternate

indexes

in

the

upgrade

set.

The

BUFSP,

BUFND,

BUFNI,

and

STRNO

parameters

apply

only

to

the

path’s

alternate

index

when

the

base

cluster

is

opened

for

processing

with

its

alternate

index.

The

minimum

number

of

buffers

are

allocated

to

the

base

cluster

unless

the

cluster’s

BUFFERSPACE

value

(specified

in

the

DEFINE

command)

or

BSTRNO

value

(specified

in

the

ACB

macro)

permits

more

buffers.

VSAM

assumes

direct

processing

and

extra

buffers

are

allocated

between

data

and

index

components

accordingly.

Two

data

buffers

and

one

index

buffer

are

always

allocated

for

each

alternate

index

in

the

upgrade

set.

If

the

path’s

alternate

index

is

a

member

of

the

upgrade

set,

the

minimum

buffer

increase

for

each

allocation

is

one

for

data

buffers

and

one

for

index

buffers.

Buffers

are

allocated

to

the

alternate

index

as

though

it

were

a

key-sequenced

data

set.

When

a

path

is

opened

for

output

and

the

path

alternate

index

is

in

the

upgrade

set,

specify

ACB

MACRF=DSN

and

the

path

alternate

index

shares

buffers

with

the

upgrade

alternate

index.

Acquiring

Buffers

Data

and

index

buffers

are

acquired

and

allocated

only

when

the

data

set

is

opened.

VSAM

dynamically

allocates

buffers

based

on

parameters

in

effect

when

the

program

opens

the

data

set.

Parameters

that

influence

the

buffer

allocation

are

in

the

program’s

ACB:

MACRF=(IN|OUT,

SEQ|SKP,

DIR),

STRNO=n,

BUFSP=n,

BUFND=n,

and

BUFNI=n.

Other

parameters

that

influence

buffer

allocation

are

in

the

DD

statement’s

AMP

specification

for

BUFSP,

BUFND,

and

BUFNI,

and

the

BUFFERSPACE

value

in

the

data

set’s

catalog

record.

If

you

open

a

data

set

whose

ACB

includes

MACRF=(SEQ,DIR),

buffers

are

allocated

according

to

the

rules

for

sequential

processing.

If

the

RPL

is

modified

later

in

the

program,

the

buffers

allocated

when

the

data

set

was

opened

do

not

change.

Data

and

index

buffer

allocation

(BUFND

and

BUFNI)

can

be

specified

only

by

the

user

with

access

to

modify

the

ACB

parameters,

or

through

the

AMP

parameter

of

the

DD

statement.

Any

program

can

be

assigned

additional

buffer

space

by

modifying

the

data

set’s

BUFFERSPACE

value,

or

by

specifying

a

larger

BUFSP

value

with

the

AMP

parameter

in

the

data

set’s

DD

statement.

When

a

buffer’s

contents

are

written,

the

buffer’s

space

is

not

released.

The

control

interval

remains

in

storage

until

overwritten

with

a

new

control

interval;

if

your

program

refers

to

that

control

interval,

VSAM

does

not

have

to

reread

it.

VSAM

Optimizing

VSAM

Performance

174

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

checks

to

see

if

the

desired

control

interval

is

in

storage,

when

your

program

processes

records

in

a

limited

key

range,

you

might

increase

throughput

by

providing

extra

data

buffers.

Buffer

space

is

released

when

the

data

set

is

closed.

Recommendation:

Try

to

have

data

available

just

before

it

is

to

be

used.

If

data

is

read

into

buffers

too

far

ahead

of

its

use

in

the

program,

it

can

be

paged

out.

More

data

or

index

buffers

than

necessary

might

cause

excessive

paging

or

excessive

internal

processing.

There

is

an

optimum

point

at

which

more

buffers

will

not

help.

Using

Index

Options

The

following

options

influence

performance

when

using

the

index

of

a

key-sequenced

data

set

or

variable-length

RRDS.

Each

option

improves

performance,

but

some

require

that

you

provide

additional

virtual

storage

or

auxiliary

storage

space.

The

options

are:

v

Specifying

enough

virtual

storage

to

contain

all

index-set

records

(if

you

are

using

shared

resources).

v

Ensuring

that

the

index

control

interval

is

large

enough

to

contain

the

key

of

each

control

interval

in

the

control

area.

v

Placing

the

index

and

the

data

set

on

separate

volumes.

Increasing

Virtual

Storage

for

Index

Set

Records

To

retrieve

a

record

from

a

key-sequenced

data

set

or

variable-length

RRDS,

or

store

a

record

using

keyed

access,

VSAM

needs

to

examine

the

index

of

that

data

set.

Before

your

processing

program

begins

to

process

the

data

set,

it

must

specify

the

amount

of

virtual

storage

it

is

providing

for

VSAM

to

buffer

index

records.

The

minimum

is

enough

space

for

one

I/O

buffer

for

index

records,

but

a

serious

performance

problem

would

occur

if

an

index

record

were

continually

deleted

from

virtual

storage

to

make

room

for

another,

and

retrieved

again

later

when

it

is

required.

Ample

buffer

space

for

index

records

can

improve

performance.

You

ensure

virtual

storage

for

index-set

records

by

specifying

enough

virtual

storage

for

index

I/O

buffers

when

you

begin

to

process

a

key-sequenced

data

set

or

variable-length

RRDS.

VSAM

keeps

as

many

index-set

records

in

virtual

storage

as

possible.

Whenever

an

index

record

must

be

retrieved

to

locate

a

data

record,

VSAM

makes

room

for

it

by

deleting

the

index

record

that

VSAM

judges

to

be

least

useful

under

the

prevailing

circumstances.

It

is

generally

the

index

record

that

belongs

to

the

lowest

index

level

or

that

has

been

used

the

least.

VSAM

does

not

keep

more

than

one

sequence

set

index

record

per

string

unless

shared

resource

pools

are

used.

Avoiding

Control

Area

Splits

The

second

option

you

might

consider

is

to

ensure

that

the

index-set

control

interval

is

large

enough

to

contain

the

key

of

each

control

interval

in

the

control

area.

This

reduces

the

number

of

control

area

splits.

This

option

also

keeps

to

a

minimum

the

number

of

index

levels

required,

thereby

reducing

search

time

and

improving

performance.

However,

this

option

can

increase

rotational

delay

and

data

transfer

time

for

the

index-set

control

intervals.

It

also

increases

virtual

storage

requirements

for

index

records.

Putting

the

Index

and

Data

on

Separate

Volumes

This

information

applies

to

non-SMS-managed

volumes.

With

SMS-managed

volumes,

SMS

selects

the

volumes.

When

a

key-sequenced

data

set

or

Optimizing

VSAM

Performance

Chapter

10.

Optimizing

VSAM

Performance

175

variable-length

RRDS

is

defined,

the

entire

index

or

the

high-level

index

set

alone

can

be

placed

on

a

volume

separate

from

the

data,

either

on

the

same

or

on

a

different

type

of

device.

Using

different

volumes

lets

VSAM

gain

access

to

an

index

and

to

data

at

the

same

time.

Also,

the

smaller

amount

of

space

required

for

an

index

makes

it

economical

to

use

a

faster

storage

device

for

it.

A

performance

improvement

due

to

separate

volumes

generally

requires

asynchronous

processing

or

multitasking

with

multiple

strings.

Obtaining

Diagnostic

Information

For

information

about

the

generalized

trace

facility

(GTF)

and

other

VSAM

diagnostic

aids,

see

z/OS

DFSMSdfp

Diagnosis

Reference.

The

trace

is

very

useful

for

trying

to

determine

what

VSAM

is

being

asked

to

do.

Migrating

from

the

Mass

Storage

System

Because

MSS

is

no

longer

supported,

you

need

to

migrate

the

data

off

MSS.

If

you

issue

the

ACQRANGE,

CNVTAD,

or

MNTACQ

macros,

you

receive

a

return

code

of

0

and

a

reason

code

of

20,

that

means

these

macros

are

no

longer

supported.

Using

Hiperbatch

Hiperbatch™

is

a

VSAM

extension

designed

to

improve

performance

in

specific

situations.

It

uses

the

data

lookaside

facility

(DLF)

services

in

MVS

to

provide

an

alternate

fast

path

method

of

making

data

available

to

many

batch

jobs.

Through

Hiperbatch,

applications

can

take

advantage

of

the

performance

benefits

of

MVS

without

changing

existing

application

programs

or

the

JCL

used

to

run

them.

For

more

information

about

using

Hiperbatch,

see

MVS

Hiperbatch

Guide.

Optimizing

VSAM

Performance

176

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

11.

Processing

Control

Intervals

This

chapter

covers

the

following

topics.

Topic

Location

Access

to

a

Control

Interval

178

Structure

of

Control

Information

179

User

Buffering

184

Improved

Control

Interval

Access

185

Control

Blocks

in

Common

(CBIC)

Option

186

Control

interval

access

gives

you

access

to

the

contents

of

a

control

interval;

keyed

access

and

addressed

access

give

you

access

to

individual

data

records.

Restriction:

You

cannot

use

control

interval

access

to

access

a

compressed

data

set.

The

data

set

can

be

opened

for

control

interval

access

to

permit

VERIFY

and

VERIFY

REFRESH

processing

only.

With

control

interval

access,

you

have

the

option

of

letting

VSAM

manage

I/O

buffers

or

managing

them

yourself

(user

buffering).

With

keyed

and

addressed

access,

VSAM

always

manages

I/O

buffers.

If

you

select

user

buffering,

you

have

the

further

option

of

using

improved

control

interval

access,

which

provides

faster

processing

than

normal

control

interval

access.

With

user

buffering,

only

control

interval

processing

is

permitted.

See

“Improved

Control

Interval

Access”

on

page

185.

Control

interval

access

permits

greater

flexibility

in

processing

entry-sequenced

data

sets.

With

control

interval

access,

change

the

RBAs

of

records

in

a

control

interval

and

delete

records

by

modifying

the

RDFs

and

the

CIDF.

When

using

control

interval

processing,

you

are

responsible

for

maintaining

alternate

indexes.

If

you

have

specified

keyed

or

addressed

access

(ACB

MACRF={KEY|ADR},...)

and

control

interval

access,

then

those

requests

for

keyed

or

addressed

access

(RPL

OPTCD={

KEY|ADR},...)

cause

VSAM

to

upgrade

the

alternate

indexes.

Those

requests

specifying

control

interval

access

will

not

upgrade

the

alternate

indexes.

You

are

responsible

for

upgrading

them.

Upgrading

an

alternate

index

is

described

in

“Maintaining

Alternate

Indexes”

on

page

119.

Restriction:

You

should

not

update

key-sequenced

data

sets

or

variable-length

RRDSs

with

control

interval

access.

You

cannot

use

control

interval

access

with

compressed

format

data

sets.

When

you

process

control

intervals,

you

are

responsible

for

how

your

processing

affects

indexes,

RDFs,

and

CIDFs.

Bypassing

use

of

the

control

information

in

the

CIDF

and

RDFs

can

make

the

control

interval

unusable

for

record

level

processing.

For

instance,

key-sequenced

data

sets

depend

on

the

accuracy

of

their

indexes

and

the

RDFs

and

the

CIDF

in

each

control

interval.

©

Copyright

IBM

Corp.

1987,

2004

177

Access

to

a

Control

Interval

Control

interval

access

is

specified

entirely

by

the

ACB

MACRF

parameter

and

the

RPL

(or

GENCB)

OPTCD

parameter.

To

prepare

for

opening

a

data

set

for

control

interval

access

with

VSAM

managing

I/O

buffers,

specify:

ACB

MACRF=(CNV,...),...

With

NUB

(no

user

buffering)

and

NCI

(normal

control

interval

access),

specify

in

the

MACRF

parameter

that

the

data

set

is

to

be

opened

for

keyed

and

addressed

access,

and

for

control

interval

access.

For

example,

MACRF=(CNV,

KEY,

SKP,

DIR,

SEQ,

NUB,

NCI,

OUT)

is

a

valid

combination

of

subparameters.

You

define

a

particular

request

for

control

interval

access

by

coding:

RPL

OPTCD=(CNV,...),...

Usually,

control

interval

access

with

no

user

buffering

has

the

same

freedoms

and

limitations

as

keyed

and

addressed

access

have.

Control

interval

access

can

be

synchronous

or

asynchronous,

can

have

the

contents

of

a

control

interval

moved

to

your

work

area

(OPTCD=MVE)

or

left

in

VSAM’s

I/O

buffer

(OPTCD=LOC),

and

can

be

defined

by

a

chain

of

request

parameter

lists

(except

with

OPTCD=LOC

specified).

Except

for

ERASE,

all

the

request

macros

(GET,

PUT,

POINT,

CHECK,

and

ENDREQ)

can

be

used

for

normal

control

interval

access.

To

update

the

contents

of

a

control

interval,

you

must

(with

no

user

buffering)

previously

have

retrieved

the

contents

for

update.

You

cannot

alter

the

contents

of

a

control

interval

with

OPTCD=LOC

specified.

Both

direct

and

sequential

access

can

be

used

with

control

interval

access,

but

skip

sequential

access

may

not.

That

is,

specify

OPTCD=(CNV,DIR)

or

(CNV,SEQ),

but

not

OPTCD=(CNV,SKP).

With

sequential

access,

VSAM

takes

an

EODAD

exit

when

you

try

to

retrieve

the

control

interval

whose

CIDF

is

filled

with

0s

or,

if

there

is

no

such

control

interval,

when

you

try

to

retrieve

a

control

interval

beyond

the

last

one.

A

control

interval

with

such

a

CIDF

contains

no

data

or

unused

space,

and

is

used

to

represent

the

software

end-of-file.

However,

VSAM

control

interval

processing

does

not

prevent

you

from

using

a

direct

GET

or

a

POINT

and

a

sequential

GET

to

retrieve

the

software

end-of-file.

The

search

argument

for

a

direct

request

with

control

interval

access

is

the

RBA

of

the

control

interval

whose

contents

are

desired.

The

RPL

(or

GENCB)

parameters

AREA

and

AREALEN

have

the

same

use

for

control

interval

access

related

to

OPTCD=MVE

or

LOC

as

they

do

for

keyed

and

addressed

access.

With

OPTCD=MVE,

AREA

gives

the

address

of

the

area

into

which

VSAM

moves

the

contents

of

a

control

interval.

With

OPTCD=LOC,

AREA

gives

the

address

of

the

area

into

which

VSAM

puts

the

address

of

the

I/O

buffer

containing

the

contents

of

the

control

interval.

You

can

load

an

entry-sequenced

data

set

with

control

interval

access.

If

you

open

an

empty

entry-sequenced

data

set,

VSAM

lets

you

use

only

sequential

storage.

That

is,

issue

only

PUTs,

with

OPTCD=(CNV,SEQ,NUP).

PUT

with

OPTCD=NUP

stores

information

in

the

next

available

control

interval

(at

the

end

of

the

data

set).

You

cannot

load

or

extend

a

data

set

with

improved

control

interval

access.

VSAM

also

prohibits

you

from

extending

a

fixed-length

or

variable-length

RRDS

through

normal

control

interval

access.

Processing

Control

Intervals

178

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Update

the

contents

of

a

control

interval

in

one

of

two

ways:

v

Retrieve

the

contents

with

OPTCD=UPD

and

store

them

back.

In

this

case,

the

RBA

of

the

control

interval

is

specified

during

the

GET

for

the

control

interval.

v

Without

retrieving

the

contents,

store

new

contents

in

the

control

interval

with

OPTCD=UPD.

(You

must

specify

UBF

for

user

buffering.)

Because

no

GET

(or

a

GET

with

OPTCD=NUP)

precedes

the

PUT,

you

have

to

specify

the

RBA

of

the

control

interval

as

the

argument

addressed

by

the

RPL.

Structure

of

Control

Information

With

keyed

access

and

addressed

access,

VSAM

maintains

the

control

information

in

a

control

interval.

With

control

interval

access,

you

are

responsible

for

that

information.

Note:

A

linear

data

set

has

no

control

information

imbedded

in

the

control

interval.

All

of

the

bytes

in

the

control

interval

are

data

bytes;

there

are

no

CIDFs

or

RDFs.

Figure

25

shows

the

relative

positions

of

data,

unused

space,

and

control

information

in

a

control

interval.

For

more

information

about

the

structure

of

a

control

interval,

see

“Control

Intervals”

on

page

74.

Control

information

consists

of

a

CIDF

(control

interval

definition

field)

and,

for

a

control

interval

containing

at

least

one

record,

record

slot,

or

record

segment,

one

or

more

RDFs

(record

definition

fields).

The

CIDF

and

RDFs

are

ordered

from

right

to

left.

The

format

of

the

CIDF

is

the

same

even

if

the

control

interval

size

contains

multiple

smaller

physical

records.

Figure

25.

General

Format

of

a

Control

Interval

Processing

Control

Intervals

Chapter

11.

Processing

Control

Intervals

179

CIDF—Control

Interval

Definition

Field

The

CIDF

is

a

4-byte

field

that

contains

two

2-byte

binary

numbers.

Offset

Length

Description

0(0)

2

The

displacement

from

the

beginning

of

the

control

interval

to

the

beginning

of

the

unused

space,

or,

if

there

is

no

unused

space,

to

the

beginning

of

the

control

information.

The

displacement

is

equal

to

the

length

of

the

data

(records,

record

slots,

or

record

segment).

In

a

control

interval

without

data,

the

number

is

0.

2(2)

2

The

length

of

the

unused

space.

This

number

is

equal

to

the

length

of

the

control

interval,

minus

the

length

of

the

control

information,

minus

the

2-byte

value

at

CIDF+0.

In

a

control

interval

without

data

(records,

record

slots,

or

record

segment),

the

number

is

the

length

of

the

control

interval,

minus

4

(the

length

of

the

CIDF;

there

are

no

RDFs).

In

a

control

interval

without

unused

space,

the

number

is

0.

2(2)

1...

....

Busy

flag;

set

when

the

control

interval

is

being

split;

reset

when

the

split

is

complete.

In

an

entry-sequenced

data

set,

when

there

are

unused

control

intervals

beyond

the

last

one

that

contains

data,

the

first

of

the

unused

control

intervals

contains

a

CIDF

filled

with

0s.

In

a

key-sequenced

data

set

or

an

RRDS,

the

first

control

interval

in

the

first

unused

control

area

(if

any)

contains

a

CIDF

filled

with

0s.

A

CIDF

filled

with

0s

represents

the

software

end-of-file.

RDF—Record

Definition

Field

The

RBAs

of

records

or

relative

record

numbers

of

slots

in

a

control

interval

ascend

from

left

to

right.

RDFs

from

right

to

left

describe

these

records

or

slots

or

a

segment

of

a

spanned

record.

RDFs

describe

records

one

way

for

key-sequenced

data

sets,

entry-sequenced

data

sets,

and

variable-length

RRDSs,

and

another

way

for

fixed-length

RRDSs.

In

a

key-sequenced

or

entry-sequenced

data

set,

records

might

vary

in

length

and

can

span

control

intervals.

In

a

variable-length

RRDS,

records

vary

in

length

but

do

not

span

control

intervals.

v

A

nonspanned

record

with

no

other

records

of

the

same

length

next

to

it

is

described

by

a

single

RDF

that

gives

the

length

of

the

record.

v

Two

or

more

consecutive

nonspanned

records

of

the

same

length

are

described

by

a

pair

of

RDFs.

The

RDF

on

the

right

gives

the

length

of

each

record,

and

the

RDF

on

the

left

gives

the

number

of

consecutive

records

of

the

same

length.

v

Each

segment

of

a

spanned

record

(one

segment

per

control

interval)

is

described

by

a

pair

of

RDFs.

The

RDF

on

the

right

gives

the

length

of

the

segment,

and

the

RDF

on

the

left

gives

its

update

number.

(The

update

number

in

each

segment

is

incremented

by

one

each

time

a

spanned

record

is

updated.

A

difference

among

update

numbers

within

a

spanned

record

means

a

possible

error

in

the

record.)

In

a

fixed-length

RRDS,

records

do

not

vary

in

length

or

span

control

intervals.

Each

record

slot

is

described

by

a

single

RDF

that

gives

its

length

and

indicates

if

it

contains

a

record.

Processing

Control

Intervals

180

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

An

RDF

is

a

3-byte

field

that

contains

a

1-byte

control

field

and

a

2-byte

binary

number,

as

the

following

table

shows.

Offset

Length

and

Bit

Pattern

Description

0(0)

1

Control

Field.

x...

..xx

Reserved.

.x..

....

Indicates

whether

there

is

(1)

or

is

not

(0)

a

paired

RDF

to

the

left

of

this

RDF.

..xx

....

Indicates

whether

the

record

spans

control

intervals:

00

No.

01

Yes;

this

is

the

first

segment.

10

Yes;

this

is

the

last

segment.

11

Yes;

this

is

an

intermediate

segment.

....

x...

Indicates

what

the

2-byte

binary

number

gives:

0

The

length

of

the

record,

segment,

or

slot

described

by

this

RDF.

1

The

number

of

consecutive

nonspanned

records

of

the

same

length,

or

the

update

number

of

the

segment

of

a

spanned

record.

....

.x..

For

a

fixed-length

RRDS,

indicates

whether

the

slot

described

by

this

RDF

does

(0)

or

does

not

(1)

contain

a

record.

1(1)

2

Binary

number:

v

When

bit

4

of

byte

0

is

0,

gives

the

length

of

the

record,

segment,

or

slot

described

by

this

RDF.

v

When

bit

4

of

byte

0

is

1

and

bits

2

and

3

of

byte

0

are

0,

gives

the

number

of

consecutive

records

of

the

same

length.

v

When

bit

4

of

byte

0

is

1

and

bits

2

and

3

of

byte

0

are

not

0,

gives

the

update

number

of

the

segment

described

by

this

RDF.

Control

Field

Values

for

Nonspanned

Key-Sequenced,

Entry-Sequenced,

and

Variable-Length

Relative

Record

Data

Sets

In

a

key-sequenced,

entry-sequenced

data

set,

or

variable-length

RRDS

with

nonspanned

records,

the

possible

hexadecimal

values

in

the

control

field

of

an

RDF

follow.

Left

RDF

Right

RDF

Description

X'00'

The

RDF

at

X'00'

gives

the

length

of

a

single

nonspanned

record.

X'08'

X'40'

The

right

RDF

gives

the

length

of

each

of

two

or

more

consecutive

nonspanned

records

of

the

same

length.

The

left

RDF

gives

the

number

of

consecutive

nonspanned

records

of

the

same

length.

Figure

26

on

page

182

shows

the

contents

of

the

CIDF

and

RDFs

of

a

512-byte

control

interval

containing

nonspanned

records

of

different

lengths.

Processing

Control

Intervals

Chapter

11.

Processing

Control

Intervals

181

The

four

RDFs

and

the

CIDF

comprise

16

bytes

of

control

information

as

follows:

v

RDF4

describes

the

fifth

record.

v

RDF3

describes

the

fourth

record.

v

RDF2

and

RDF1

describe

the

first

three

records.

v

The

first

2-byte

field

in

the

CIDF

gives

the

total

length

of

the

five

records-8a,

which

is

the

displacement

from

the

beginning

of

the

control

interval

to

the

free

space.

v

The

second

2-byte

field

gives

the

length

of

the

free

space,

which

is

the

length

of

the

control

interval

minus

the

total

length

of

the

records

and

the

control

information-512

minus

8a

minus

16,

or

496

minus

8a.

Figure

26.

Format

of

Control

Information

for

Nonspanned

Records

Processing

Control

Intervals

182

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Control

Field

Values

for

Spanned

Key-Sequenced

and

Entry-Sequenced

Data

Sets

A

control

interval

that

contains

the

record

segment

of

a

spanned

record

contains

no

other

data;

it

always

has

two

RDFs.

The

possible

hexadecimal

values

in

their

control

fields

follow.

Left

RDF

Right

RDF

Description

X'18'

X'50'

The

right

RDF

gives

the

length

of

the

first

segment

of

a

spanned

record.

The

left

RDF

gives

the

update

number

of

the

segment.

X'28'

X'60'

The

right

RDF

gives

the

length

of

the

last

segment

of

a

spanned

record.

The

left

RDF

gives

the

update

number

of

the

segment.

X'38'

X'70'

The

right

RDF

gives

the

length

of

an

intermediate

segment

of

a

spanned

record.

The

left

RDF

gives

the

update

number

of

the

segment.

Figure

27

shows

contents

of

the

CIDF

and

RDFs

for

a

spanned

record

with

a

length

of

1306

bytes.

Figure

27.

Format

of

Control

Information

for

Spanned

Records

Processing

Control

Intervals

Chapter

11.

Processing

Control

Intervals

183

There

are

three

512-byte

control

intervals

that

contain

the

segments

of

the

record.

The

number

“n”

in

RDF2

is

the

update

number.

Only

the

control

interval

that

contains

the

last

segment

of

a

spanned

record

can

have

free

space.

Each

of

the

other

segments

uses

all

but

the

last

10

bytes

of

a

control

interval.

In

a

key-sequenced

data

set,

the

control

intervals

might

not

be

contiguous

or

in

the

same

order

as

the

segments

(for

example,

the

RBA

of

the

second

segment

can

be

lower

than

the

RBA

of

the

first

segment).

All

the

segments

of

a

spanned

record

must

be

in

the

same

control

area.

When

a

control

area

does

not

have

enough

control

intervals

available

for

a

spanned

record,

the

entire

record

is

stored

in

a

new

control

area.

Control

Field

Values

for

Fixed-Length

Relative-Record

Data

Sets

In

a

fixed-length

RRDS,

the

possible

hexadecimal

values

in

the

control

field

of

an

RDF

are:

X'04'

The

RDF

at

X'04'

gives

the

length

of

an

empty

slot.

X'00'

The

RDF

at

X'00'

gives

the

length

of

a

slot

that

contains

a

record.

Every

control

interval

in

a

fixed-length

RRDS

contains

the

same

number

of

slots

and

the

same

number

of

RDFs;

one

for

each

slot.

The

first

slot

is

described

by

the

rightmost

RDF.

The

second

slot

is

described

by

the

next

RDF

to

the

left,

and

so

on.

User

Buffering

With

control

interval

access,

you

have

the

option

of

user

buffering.

If

you

use

the

user

buffering

option,

you

need

to

provide

buffers

in

your

own

area

of

storage

for

use

by

VSAM.

User

buffering

is

required

for

improved

control

interval

access

(ICI)

and

for

PUT

with

OPTCD=NUP.

With

ACB

MACRF=(CNV,UBF)

specified

(control

interval

access

with

user

buffering),

the

work

area

specified

by

the

RPL

(or

GENCB)

AREA

parameter

is,

in

effect,

the

I/O

buffer.

VSAM

transmits

the

contents

of

a

control

interval

directly

between

the

work

area

and

direct

access

storage.

If

you

specify

user

buffering,

you

cannot

specify

KEY

or

ADR

in

the

MACRF

parameter;

you

can

only

specify

CNV.

That

is,

you

cannot

intermix

keyed

and

addressed

requests

with

requests

for

control

interval

access.

OPTCD=LOC

is

inconsistent

with

user

buffering

and

is

not

permitted.

Processing

Control

Intervals

184

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Improved

Control

Interval

Access

Improved

control

interval

access

(ICI)

is

faster

than

normal

control

interval

access;

however,

you

can

only

have

one

control

interval

scheduled

at

a

time.

Improved

control

interval

access

works

well

for

direct

processing.

To

use

ICI,

you

have

to

specify

user

buffering

(UBF),

which

provides

the

option

of

specifying

improved

control

interval

access:

ACB

MACRF=(CNV,UBF,ICI,...),...

You

cannot

load

or

extend

a

data

set

using

ICI.

Improved

control

interval

processing

is

not

permitted

for

extended

format

data

sets.

A

processing

program

can

achieve

the

best

performance

with

improved

control

interval

access

by

combining

it

with

SRB

dispatching.

SRB

dispatching

is

described

in

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide

and

“Operating

in

SRB

or

Cross-Memory

Mode”

on

page

150.

Opening

an

Object

for

Improved

Control

Interval

Access

Improved

control

interval

processing

is

faster

because

functions

have

been

removed

from

the

path.

However,

improved

control

interval

processing

causes

several

restrictions:

v

The

object

must

not

be

empty.

v

The

object

must

not

be

compressed.

v

The

object

must

be

one

of

the

following:

–

An

entry-sequenced,

fixed-length,

or

variable-length

RRDS

cluster.

–

The

data

component

of

an

entry-sequenced,

key-sequenced,

linear,

fixed-length,

or

variable-length

RRDS

cluster.

–

The

index

component

of

a

key-sequenced

cluster

(index

records

must

not

be

replicated).
v

Control

intervals

must

be

the

same

size

as

physical

records.

When

you

use

the

access

method

services

DEFINE

command

to

define

the

object,

specify

control

interval

size

equal

to

a

physical

record

size

used

for

the

device

on

which

the

object

is

stored.

VSAM

uses

physical

record

sizes

of

(n

x

512)

and

(n

x

2048),

where

n

is

a

positive

integer

from

1

to

16.

The

physical

record

size

is

always

equal

to

the

control

interval

size

for

an

index

component.

Processing

a

Data

Set

with

Improved

Control

Interval

Access

To

process

a

data

set

with

improved

control

interval

access,

a

request

must

be:

v

Defined

by

a

single

RPL

(VSAM

ignores

the

NXTRPL

parameter).

v

A

direct

GET,

GET

for

update,

or

PUT

for

update

(no

POINT,

no

processing

empty

data

sets).

A

RRDS

with

slots

formatted

is

considered

not

to

be

empty,

even

if

no

slot

contains

a

record.

v

Synchronous

(no

CHECK,

no

ENDREQ).

To

release

exclusive

control

after

a

GET

for

update,

you

must

issue

a

PUT

for

update,

a

GET

without

update,

or

a

GET

for

update

for

a

different

control

interval.

Processing

Control

Intervals

Chapter

11.

Processing

Control

Intervals

185

With

improved

control

interval

access,

the

following

assumptions

are

in

effect

for

VSAM

(with

no

checking):

v

An

RPL

whose

ACB

has

MACRF=ICI

has

OPTCD=(CNV,

DIR,

SYN).

v

A

PUT

is

for

update

(RPL

OPTCD=UPD).

v

Your

buffer

length

(specified

in

RPL

AREALEN=number)

is

correct.

Because

VSAM

does

not

check

these

parameters,

you

should

debug

your

program

with

ACB

MACRF=NCI,

then

change

to

ICI.

With

improved

control

interval

access,

VSAM

does

not

take

JRNAD

exits

and

does

not

keep

statistics

(which

are

normally

available

through

SHOWCB).

Fixing

Control

Blocks

and

Buffers

in

Real

Storage

With

improved

control

interval

access,

you

can

specify

that

control

blocks

are

to

be

fixed

in

real

storage

(ACB

MACRF=(CFX,...)).

If

you

so

specify,

your

I/O

buffers

must

also

be

fixed

in

real

storage.

Having

your

control

blocks

fixed

in

real

storage,

but

not

your

I/O

buffers,

can

cause

physical

errors

or

unpredictable

results.

If

you

specify

MACRF=CFX

without

ICI,

VSAM

ignores

CFX.

NFX

is

the

default;

it

indicates

that

buffers

are

not

fixed

in

real

storage,

except

for

an

I/O

operation.

A

program

must

be

authorized

to

fix

pages

in

real

storage,

either

in

supervisor

state

with

protection

key

0

-

7,

or

link-edited

with

authorization.

(The

authorized

program

facility

(APF)

is

described

in

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide).

An

unauthorized

request

is

ignored.

You

can

use

64-bit

real

storage

for

all

VSAM

data

sets,

whether

they

are

extended-format

data

sets.

You

can

obtain

buffer

storage

from

any

real

address

location

available

to

the

processor.

The

location

can

have

a

real

address

greater

than

2

gigabytes

or

can

be

in

31-bit

real

storage

with

a

real

address

less

than

2

gigabytes.

Control

Blocks

in

Common

(CBIC)

Option

When

you

are

using

improved

control

interval

processing,

the

CBIC

option

lets

you

have

multiple

address

spaces

that

address

the

same

data

and

use

the

same

control

block

structure.

The

VSAM

control

blocks

associated

with

a

VSAM

data

set

are

placed

into

the

common

service

area

(CSA).

The

control

block

structure

and

VSAM

I/O

operations

are

essentially

the

same

whether

the

CBIC

option

is

invoked,

except

for

the

location

of

the

control

block

structure.

The

user-related

control

blocks

are

generated

in

the

protect

key

(0

-

7).

The

system-related

control

blocks

are

generated

in

protect

key

0.

The

VSAM

control

block

structure

generated

when

the

CBIC

option

is

invoked

retains

normal

interfaces

to

the

address

space

that

opened

the

VSAM

data

set

(for

example,

the

DEB

is

chained

to

the

address

space’s

TCB).

The

CBIC

option

is

invoked

when

a

VSAM

data

set

is

opened.

To

invoke

the

CBIC

option,

you

set

the

CBIC

flag

(located

at

offset

X'33'

(ACBINFL2)

in

the

ACB,

bit

2

(ACBCBIC))

to

one.

When

your

program

opens

the

ACB

with

the

CBIC

option

set,

your

program

must

be

in

supervisor

state

with

a

protect

key

from

0

to

7.

Otherwise,

VSAM

will

not

open

the

data

set.

Processing

Control

Intervals

186

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

following

restrictions

apply

to

using

the

CBIC

option:

v

The

CBIC

option

must

be

used

only

when

the

ICI

option

is

also

specified.

v

You

cannot

also

specify

LSR

or

GSR.

v

You

cannot

use

the

following

types

of

data

sets

with

the

CBIC

option:

catalogs,

catalog

recovery

areas,

swap

data

sets,

or

system

data

sets.

v

If

an

address

space

has

opened

a

VSAM

data

set

with

the

CBIC

option,

your

program

cannot

take

a

checkpoint

for

that

address

space.

If

another

address

space

accesses

the

data

set’s

control

block

structure

in

the

CSA

through

VSAM

record

management,

the

following

conditions

should

be

observed:

v

An

OPEN

macro

should

not

be

issued

against

the

data

set.

v

The

ACB

of

the

user

who

opened

the

data

set

with

the

CBIC

option

must

be

used.

v

CLOSE

and

temporary

CLOSE

cannot

be

issued

for

the

data

set

(only

the

user

who

opened

the

data

set

with

the

CBIC

option

can

close

the

data

set).

v

The

address

space

accessing

the

data

set

control

block

structure

must

have

the

same

storage

protect

key

as

the

user

who

opened

the

data

set

with

the

CBIC

option.

v

User

exit

routines

should

be

accessible

from

all

address

spaces

accessing

the

data

set

with

the

CBIC

option.

Processing

Control

Intervals

Chapter

11.

Processing

Control

Intervals

187

Processing

Control

Intervals

188

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

This

chapter

explains

how

to

share

data

sets

within

a

single

system

and

among

multiple

systems.

It

also

describes

considerations

for

sharing

VSAM

data

sets

for

NSR

or

LSR/GSR

access.

For

considerations

about

sharing

VSAM

data

sets

for

RLS

access,

see

Chapter

14,

“Using

VSAM

Record-Level

Sharing,”

on

page

217.

This

chapter

covers

the

following

topics.

Topic

Location

Subtask

Sharing

190

Cross-Region

Sharing

195

Cross-System

Sharing

198

Control

Block

Update

Facility

(CBUF)

199

Techniques

of

Data

Sharing

201

You

can

share

data

sets

between:

v

Different

jobs

in

a

single

operating

system

v

Multiple

ACBs

in

a

task

or

different

subtasks

v

One

ACB

in

a

task

or

different

subtasks

v

Different

operating

systems.

To

share

between

different

operating

systems

safely,

you

need

global

resource

serialization

or

an

equivalent

product

to

implement

VSAM

SHAREOPTIONS,

record-level

sharing

access,

and

OPEN/CLOSE/EOV

serialization.

Failure

to

use

GRS

or

an

equivalent

can

result

in

both

data

set

and

VTOC

corruption.

See

z/OS

MVS

Planning:

Global

Resource

Serialization.

When

you

define

VSAM

data

sets,

you

can

specify

how

the

data

is

to

be

shared

within

a

single

system

or

among

multiple

systems

that

can

have

access

to

your

data

and

share

the

same

direct

access

devices.

Before

you

define

the

level

of

sharing

for

a

data

set,

you

must

evaluate

the

consequences

of

reading

incorrect

data

(a

loss

of

read

integrity)

and

writing

incorrect

data

(a

loss

of

write

integrity)—situations

can

result

when

one

or

more

of

the

data

set’s

users

do

not

adhere

to

guidelines

recommended

for

accessing

shared

data

sets.

The

extent

to

which

you

want

your

data

sets

to

be

shared

depends

on

the

application.

If

your

requirements

are

similar

to

those

of

a

catalog,

where

there

can

be

many

users

on

more

than

one

system,

more

than

one

user

should

be

permitted

to

read

and

update

the

data

set

simultaneously.

At

the

other

end

of

the

spectrum

is

an

application

where

high

security

and

data

integrity

require

that

only

one

user

at

a

time

have

access

to

the

data.

When

your

program

issues

a

GET

request,

VSAM

reads

an

entire

control

interval

into

virtual

storage

(or

obtains

a

copy

of

the

data

from

a

control

interval

already

in

virtual

storage).

If

your

program

modifies

the

control

interval’s

data,

VSAM

ensures

within

a

single

control

block

structure

that

you

have

exclusive

use

of

the

information

in

the

control

interval

until

it

is

written

back

to

the

data

set.

If

the

data

set

is

accessed

by

more

than

one

program

at

a

time,

and

more

than

one

control

block

structure

contains

buffers

for

the

data

set’s

control

intervals,

VSAM

cannot

ensure

that

your

program

has

exclusive

use

of

the

data.

You

must

obtain

exclusive

control

yourself,

using

facilities

such

as

ENQ/RESERVE

and

DEQ.

©

Copyright

IBM

Corp.

1987,

2004

189

|
|
|
|
|

Two

ways

to

establish

the

extent

of

data

set

sharing

are

the

data

set

disposition

specified

in

the

JCL

and

the

share

options

specified

in

the

access

method

services

DEFINE

or

ALTER

command.

If

the

VSAM

data

set

cannot

be

shared

because

of

the

disposition

specified

in

the

JCL,

a

scheduler

allocation

failure

occurs.

If

your

program

attempts

to

open

a

data

set

that

is

in

use

and

the

share

options

specified

do

not

permit

concurrent

use

of

the

data,

the

open

fails,

and

a

return

code

is

set

in

the

ACB

error

field.

During

load

mode

processing,

you

cannot

share

data

sets.

Share

options

are

overridden

during

load

mode

processing.

When

a

shared

data

set

is

opened

for

create

or

reset

processing,

your

program

has

exclusive

control

of

the

data

set

within

your

operating

system.

You

can

use

ENQ/DEQ

to

issue

VSAM

requests,

but

not

to

serialize

the

system

resources

that

VSAM

uses.

Subtask

Sharing

Subtask

sharing

is

the

ability

to

perform

multiple

OPENs

to

the

same

data

set

within

a

task

or

from

different

subtasks

in

a

single

address

space

and

still

share

a

single

control

block

structure.

Subtask

sharing

allows

many

logical

views

of

the

data

set

while

maintaining

a

single

control

block

structure.

With

a

single

control

block

structure,

you

can

ensure

that

you

have

exclusive

control

of

the

buffer

when

updating

a

data

set.

If

you

share

multiple

control

block

structures

within

a

task

or

address

space,

VSAM

treats

this

like

cross-address

space

sharing.

You

must

adhere

to

the

guidelines

and

restrictions

specified

in

“Cross-Region

Sharing”

on

page

195.

Building

a

Single

Control

Block

Structure

To

share

successfully

within

a

task

or

between

subtasks,

you

should

ensure

that

VSAM

builds

a

single

control

block

structure

for

the

data

set.

This

control

block

structure

includes

blocks

for

control

information

and

input/output

buffers.

All

subtasks

access

the

data

set

through

this

single

control

block

structure,

independent

of

the

SHAREOPTION

or

DISP

specifications.

The

three

methods

of

achieving

a

single

control

block

structure

for

a

VSAM

data

set

while

processing

multiple

concurrent

requests

are:

v

A

single

access

method

control

block

(ACB)

and

a

STRNO>1

v

Data

definition

name

(ddname)

sharing,

with

multiple

ACBs

(all

from

the

same

data

set)

pointing

to

a

single

DD

statement.

This

is

the

default.

For

example:

//DD1

DD

DSN=ABC

OPEN

ACB1,DDN=DD1

OPEN

ACB2,DDN=DD1

v

Data

set

name

sharing,

with

multiple

ACBs

pointing

to

multiple

DD

statements

with

different

ddnames.

The

data

set

names

are

related

with

an

ACB

open

specification

(MACRF=DSN).

For

example:

//DD1

DD

DSN=ABC

//DD2

DD

DSN=ABC

OPEN

ACB1,DDN=DD1,MACRF=DSN

OPEN

ACB2,DDN=DD2,MACRF=DSN

Sharing

VSAM

Data

Sets

190

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Multiple

ACBs

must

be

in

the

same

address

space,

and

they

must

be

opening

to

the

same

base

cluster.

The

connection

occurs

independently

of

the

path

selected

to

the

base

cluster.

If

the

ATTACH

macro

is

used

to

create

a

new

task

that

will

be

processing

a

shared

data

set,

let

the

ATTACH

keyword

SZERO

to

default

to

YES

or

code

SZERO=YES.

This

causes

subpool

0

to

be

shared

with

the

subtasks.

For

more

information

about

the

ATTACH

macro

see

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

ALE-DYN.

This

also

applies

to

when

you

are

sharing

one

ACB

in

a

task

or

different

subtasks.

To

ensure

correct

processing

in

the

shared

environment,

all

VSAM

requests

should

be

issued

in

the

same

key

as

the

job

step

TCB

key.

Resolving

Exclusive

Control

Conflicts

In

this

environment

with

a

single

control

block,

VSAM

record

management

serializes

updates

to

any

single

control

interval

and

provides

read

and

write

integrity.

When

a

control

interval

is

not

available

for

the

type

of

user

processing

requested

(shared

or

exclusive),

VSAM

record

management

returns

a

logical

error

code

with

an

exclusive

control

error

indicated

in

the

RPL

feedback

code.

When

this

occurs,

you

must

decide

whether

to

retry

later

or

to

free

the

resource

causing

the

conflict.

See

Figure

28

on

page

192

for

a

diagram

of

exclusive

control

conflict

feedback

and

results

of

different

user

requests.

Sharing

VSAM

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

191

By

default,

if

an

exclusive

control

conflict

is

encountered,

VSAM

defers

the

request

until

the

resource

becomes

available.

You

can

change

this

by

using

the

VSAM

avoid

LSR

error

control

wait

function.

By

using

the

NLW

subparameter

of

the

MACRF

parameter

for

the

ACB

macro,

instead

of

deferring

the

request,

VSAM

returns

the

exclusive

control

return

code

20

(X'14')

to

the

application

program.

The

application

program

can

then

determine

the

next

action.

Alternatively,

you

can

do

this

by

changing

the

GENCB

ACB

macro

in

the

application

program.

To

test

to

see

if

the

new

function

is

in

effect,

the

TESTCB

ACB

macro

can

be

coded

into

the

application

program.

The

application

program

must

be

altered

to

handle

the

exclusive

control

error

return

code.

Register

15

will

contain

8

and

the

RPLERRCD

field

will

contain

20

Figure

28.

Exclusive

Control

Conflict

Resolution

Sharing

VSAM

Data

Sets

192

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

(X'14').

The

address

of

the

RPL

that

owns

the

resource

is

placed

in

the

first

word

in

the

RPL

error

message

area.

The

VSAM

avoid

LSR

exclusive

control

wait

option

cannot

be

changed

after

OPEN.

Preventing

Deadlock

in

Exclusive

Control

of

Shared

Resources

Contention

for

VSAM

data

(the

contents

of

a

control

interval)

can

lead

to

deadlocks,

in

which

a

processing

program

is

prevented

from

continuing

because

its

request

for

data

cannot

be

satisfied.

A

and

B

can

engage

as

contenders

in

four

distinct

ways:

1.

A

wants

exclusive

control,

but

B

has

exclusive

control.

VSAM

refuses

A’s

request:

A

must

either

do

without

the

data

or

retry

the

request.

2.

A

wants

exclusive

control,

but

B

is

only

willing

to

share.

VSAM

queues

A’s

request

(without

notifying

A

of

a

wait)

and

gives

A

use

of

the

data

when

B

releases

it.

3.

A

wants

to

share,

but

B

has

exclusive

control.

VSAM

refuses

A’s

request:

A

must

either

do

without

the

data

or

retry

the

request.

4.

A

wants

to

share,

and

B

is

willing

to

share.

VSAM

gives

A

use

of

the

data,

along

with

B.

VSAM’s

action

in

a

contention

for

data

rests

on

two

assumptions:

v

If

a

processing

program

has

exclusive

control

of

the

data,

it

can

update

or

delete

it.

v

If

a

processing

program

is

updating

or

deleting

the

data,

it

has

exclusive

control.

(The

use

of

MRKBFR,

MARK=OUT

provides

an

exception

to

this

assumption.

A

processing

program

can

update

the

contents

of

a

control

interval

without

exclusive

control

of

them.)

In

1

and

3

above,

B

is

responsible

for

giving

up

exclusive

control

of

a

control

interval

through

an

ENDREQ,

a

MRKBFR

with

MARK=RLS,

or

a

request

for

access

to

a

different

control

interval.

(The

RPL

that

defines

the

ENDREQ,

MRKBFR,

or

request

is

the

one

used

to

acquire

exclusive

control

originally.)

Data

Set

Name

Sharing

Data

set

name

sharing

is

established

by

the

ACB

option

(MACRF=DSN).

To

understand

DSN

sharing,

you

must

understand

a

sphere

and

the

base

of

the

sphere

and

how

they

function.

Spheres.

A

sphere

is

a

VSAM

cluster

and

its

associated

data

sets.

The

cluster

is

originally

defined

with

the

access

method

services

ALLOCATE

command,

the

DEFINE

CLUSTER

command,

or

through

JCL.

The

most

common

use

of

the

sphere

is

to

open

a

single

cluster.

The

base

of

the

sphere

is

the

cluster

itself.

When

opening

a

path

(which

is

the

relationship

between

an

alternate

index

and

base

cluster)

the

base

of

the

sphere

is

again

the

base

cluster.

Opening

the

alternate

index

as

a

data

set

results

in

the

alternate

index

becoming

the

base

of

the

sphere.

In

Figure

29

on

page

194,

DSN

is

specified

for

each

ACB,

and

output

processing

is

specified.

Sharing

VSAM

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

193

Connected

Spheres.

VSAM

connects

an

ACB

to

an

existing

control

block

structure

for

data

set

name

sharing

only

when

the

base

of

the

sphere

is

the

same

for

both

ACBs.

The

following

three

OPEN

statements

show

how

information

is

added

to

a

single

control

block

structure,

permitting

data

set

name

sharing.

1.

OPEN

ACB=(CLUSTER.REAL)

v

Builds

control

block

structure

for

CLUSTER.REAL

v

Builds

control

block

structure

for

CLUSTER.REAL.AIX

2.

OPEN

ACB=(CLUSTER.REAL.PATH)

v

Adds

to

existing

structure

for

CLUSTER.REAL

v

Adds

to

existing

structure

for

CLUSTER.REAL.AIX

3.

OPEN

ACB=(CLUSTER.ALIAS)

Adds

to

existing

structure

for

CLUSTER.REAL

If

you

add

a

fourth

statement,

the

base

of

the

sphere

changes,

and

multiple

control

block

structures

are

created

for

the

alternate

index

CLUSTER.REAL.AIX:

4.

OPEN

ACB=(CLUSTER.REAL.AIX)

v

Does

not

add

to

existing

structure

as

the

base

of

the

sphere

is

not

the

same.

v

SHAREOPTIONS

are

enforced

for

CLUSTER.REAL.AIX

since

multiple

control

block

structures

exist.

Consistent

Processing

Options

To

be

compatible,

both

the

new

ACB

and

the

existing

control

block

structure

must

be

consistent

in

their

specification

of

the

following

processing

options.

v

The

data

set

specification

must

be

consistent

in

both

the

ACB

and

the

existing

control

block

structure.

This

means

that

an

index

of

a

key-sequenced

data

set

that

is

opened

as

an

entry-sequenced

data

set,

does

not

share

the

same

control

block

structure

as

the

key-sequenced

data

set

opened

as

a

key-sequenced

data

set.

v

The

MACRF

options

DFR,

UBF,

ICI,

CBIC,

LSR,

and

GSR

must

be

consistent.

For

example,

if

the

new

ACB

and

the

existing

structure

both

specify

MACRF=DFR,

the

connection

is

made.

If

the

new

ACB

specifies

MACRF=DFR

and

the

existing

structure

specifies

MACRF=DFR,UBF,

no

connection

is

made.

If

compatibility

cannot

be

established,

OPEN

tries

(within

the

limitations

of

the

share

options

specified

when

the

data

set

was

defined)

to

build

a

new

control

block

structure.

If

it

cannot,

OPEN

fails.

CLUSTER.REAL.AIX (UPGRADE)

CLUSTER.REAL.PATH

CLUSTER.REAL
CLUSTER.ALIAS

Figure

29.

Relationship

Between

the

Base

Cluster

and

the

Alternate

Index

Sharing

VSAM

Data

Sets

194

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Shared

Subtasks

When

processing

multiple

subtasks

sharing

a

single

control

block,

concurrent

GET

and

PUT

requests

are

allowed.

A

control

interval

is

protected

for

write

operations

using

an

exclusive

control

facility

provided

in

VSAM

record

management.

Other

PUT

requests

to

the

same

control

interval

are

not

allowed

and

a

logical

error

is

returned

to

the

user

issuing

the

request

macro.

Depending

on

the

selected

buffer

option,

nonshared

(NSR)

or

shared

(LSR/GSR)

resources,

GET

requests

to

the

same

control

interval

as

that

being

updated

can

or

cannot

be

allowed.

Figure

28

on

page

192

illustrates

the

exclusive

control

facility.

When

a

subtask

issues

OPEN

to

an

ACB

that

will

share

a

control

block

structure

that

can

have

been

previously

used,

issue

the

POINT

macro

to

obtain

the

position

for

the

data

set.

In

this

case,

it

should

not

be

assumed

that

positioning

is

at

the

beginning

of

the

data

set.

Cross-Region

Sharing

The

extent

of

data

set

sharing

within

one

operating

system

depends

on

the

data

set

disposition

and

the

cross-region

share

option

specified

when

you

define

the

data

set.

Independent

job

steps

or

subtasks

in

an

MVS

system

or

multiple

systems

with

global

resource

serialization

(GRS)

can

access

a

VSAM

data

set

simultaneously.

For

more

information

about

GRS

see

z/OS

MVS

Planning:

Global

Resource

Serialization.

To

share

a

data

set,

each

user

must

specify

DISP=SHR

in

the

data

set’s

DD

statement.

Cross-Region

Share

Options

The

level

of

cross-region

sharing

permitted

by

VSAM

is

established

(when

the

data

set

is

defined)

with

the

SHAREOPTIONS

value:

v

Cross-region

SHAREOPTIONS

1:

The

data

set

can

be

shared

by

any

number

of

VSAM

control

blocks

for

read

processing,

or

the

data

set

can

be

accessed

by

only

one

VSAM

control

block

for

read

and

write

(OUTPUT)

processing.

With

this

option,

VSAM

ensures

complete

data

integrity

for

the

data

set.

This

setting

does

not

permit

any

type

of

non-RLS

access

when

the

data

set

is

already

open

for

RLS

processing.

v

Cross-region

SHAREOPTIONS

2:

If

the

data

set

has

not

already

been

opened

for

record-level

sharing

(RLS)

processing,

the

data

set

can

be

accessed

by

any

number

of

non-RLS

users

for

read

processing

and

it

can

also

be

accessed

by

one

non-RLS

user

for

write

processing.

With

this

option,

VSAM

ensures

write

integrity

by

obtaining

exclusive

control

for

a

control

interval

when

it

is

to

be

updated.

If

the

data

set

has

already

been

opened

for

RLS

processing,

non-RLS

accesses

for

read

are

allowed.

VSAM

provides

full

read

and

write

integrity

to

its

RLS

users,

but

it

is

the

non-RLS

user’s

responsibility

to

ensure

read

integrity.

If

you

require

read

integrity,

it

is

your

responsibility

to

use

the

ENQ

and

DEQ

macros

appropriately

to

provide

read

integrity

for

the

data

the

program

obtains.

For

information

about

using

ENQ

and

DEQ

see

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

ALE-DYN

and

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

ENF-IXG.

v

Cross-region

SHAREOPTIONS

3:

The

data

set

can

be

fully

shared

by

any

number

of

users.

With

this

option,

each

user

is

responsible

for

maintaining

both

read

and

write

integrity

for

the

data

the

program

accesses.

This

setting

does

not

allow

any

type

of

non-RLS

access

when

the

data

set

is

already

open

for

RLS

processing.

Sharing

VSAM

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

195

|
|
|

This

option

requires

that

the

user’s

program

use

ENQ/DEQ

to

maintain

data

integrity

while

sharing

the

data

set,

including

the

OPEN

and

CLOSE

processing.

User

programs

that

ignore

the

write

integrity

guidelines

can

cause

VSAM

program

checks,

lost

or

inaccessible

records,

uncorrectable

data

set

failures,

and

other

unpredictable

results.

This

option

places

responsibility

on

each

user

sharing

the

data

set.

v

Cross-region

SHAREOPTIONS

4:

The

data

set

can

be

fully

shared

by

any

number

of

users,

and

buffers

used

for

direct

processing

are

refreshed

for

each

request.

This

setting

does

not

allow

any

type

of

non-RLS

access

when

the

data

set

is

already

open

for

RLS

processing.

With

this

option,

as

in

SHAREOPTIONS

3,

each

user

is

responsible

for

maintaining

both

read

and

write

integrity

for

the

data

the

program

accesses.

See

the

description

of

SHAREOPTIONS

3

for

ENQ/DEQ

and

warning

information

that

applies

equally

to

SHAREOPTIONS

4.

With

options

3

and

4

you

are

responsible

for

maintaining

both

read

and

write

integrity

for

the

data

the

program

accesses.

These

options

require

your

program

to

use

ENQ/DEQ

to

maintain

data

integrity

while

sharing

the

data

set,

including

the

OPEN

and

CLOSE

processing.

User

programs

that

ignore

the

write

integrity

guidelines

can

cause

VSAM

program

checks,

lost

or

inaccessible

records,

uncorrectable

data

set

failures,

and

other

unpredictable

results.

These

options

place

heavy

responsibility

on

each

user

sharing

the

data

set.

When

your

program

requires

that

no

updating

from

another

control

block

structure

occur

before

it

completes

processing

of

the

requested

data

record,

your

program

can

issue

an

ENQ

to

obtain

exclusive

use

of

the

VSAM

data

set.

If

your

program

completes

processing,

it

can

relinquish

control

of

the

data

set

with

a

DEQ.

If

your

program

is

only

reading

data

and

not

updating,

it

is

probably

a

good

practice

to

serialize

the

updates

and

have

the

readers

wait

while

the

update

is

occurring.

If

your

program

is

updating,

after

the

update

has

completed

the

ENQ/DEQ

bracket,

the

reader

must

determine

the

required

operations

for

control

block

refresh

and

buffer

invalidation

based

on

a

communication

mechanism

or

assume

that

everything

is

down-level

and

refresh

each

request.

The

extent

of

cross-region

sharing

is

affected

by

using

DISP=SHR

or

DISP=OLD

in

the

DD

statement.

If

the

data

set’s

DD

statement

specifies

DISP=OLD,

only

the

dsname

associated

with

the

DD

statement

is

exclusively

controlled.

In

this

case,

only

the

cluster

name

is

reserved

for

the

OPEN

routine’s

exclusive

use.

You

can

include

DD

statements

with

DISP=OLD

for

each

of

the

cluster’s

components

to

reserve

them

as

well.

Doing

this

ensures

that

all

resources

needed

to

open

the

data

set

will

be

exclusively

reserved

before

your

task

is

initiated.

Protecting

the

cluster

name

with

DISP

processing

and

the

components

by

VSAM

OPEN

SHAREOPTIONS

is

the

normally

accepted

procedure.

When

a

shared

data

set

is

opened

with

DISP=OLD,

or

is

opened

for

reset

processing

(IDCAMS

REUSE

command),

or

is

empty,

the

data

set

is

processed

using

SHAREOPTIONS

1

rules.

Scheduler

disposition

processing

is

the

same

for

VSAM

and

non-VSAM

data

sets.

This

is

the

first

level

of

share

protection.

Read

Integrity

During

Cross-Region

Sharing

You

are

responsible

for

ensuring

read

integrity

when

the

data

set

is

opened

for

sharing

with

cross-region

SHAREOPTIONS

2,

3,

and

4.

When

your

program

issues

a

GET

request,

VSAM

obtains

a

copy

of

the

control

interval

containing

the

requested

data

record.

Another

program

sharing

the

data

set

can

also

obtain

a

copy

of

the

same

control

interval,

and

can

update

the

data

and

write

the

control

Sharing

VSAM

Data

Sets

196

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|

interval

back

into

the

data

set.

When

this

occurs,

your

program

has

lost

read

integrity.

The

control

interval

copy

in

your

program’s

buffer

is

no

longer

the

current

copy.

The

following

should

be

considered

when

you

are

providing

read

integrity:

v

Establish

ENQ/DEQ

procedures

for

all

requests,

read

and

write.

v

Decide

how

to

determine

and

invalidate

buffers

(index

and/or

data)

that

are

possibly

down-level.

v

Do

not

permit

secondary

allocation

for

an

entry-sequenced

data

set

or

for

a

fixed-length

or

variable-length

RRDS.

If

you

do

allow

secondary

allocation

you

should

provide

a

communication

mechanism

to

the

read-only

tasks

that

the

extents

are

increased,

force

a

CLOSE,

then

issue

another

OPEN.

Providing

a

buffer

refresh

mechanism

for

index

I/O

will

accommodate

secondary

allocations

for

a

key-sequenced

data

set.

v

With

an

entry-sequenced

data

set

or

a

fixed-length

or

variable-length

RRDS,

you

must

also

use

the

VERIFY

macro

before

the

GET

macro

to

update

possible

down-level

control

blocks.

v

Generally,

the

loss

of

read

integrity

results

in

down-level

data

records

and

erroneous

no-record-found

conditions.

Invalidating

Index

Buffers

To

invalidate

index

buffers,

you

could

perform

the

following

steps:

1.

In

the

ACB,

specify:

STRNO>1.

MACRF=NSR

to

indicate

nonshared

resources.

Let

the

value

for

BUFNI

default

to

the

minimum.
2.

Ensure

that

your

index

is

a

multilevel

index.

3.

Ensure

that

all

requests

are

for

positioning

by

specifying

the

following:

GET

RPL

OPTCD=DIR

POINT

PUT

RPL

OPTCD=NUP

Invalidating

Data

Buffers

To

invalidate

data

buffers,

ensure

that

all

requests

are

for

positioning

by

specifying

one

of

the

following:

v

GET/PUT

RPL

OPTCD=(DIR,NSP)

followed

by

ENDREQ

v

POINT

GET/PUT

RPL

OPTCD=SEQ

followed

by

ENDREQ

Write

Integrity

During

Cross-Region

Sharing

You

are

responsible

for

ensuring

write

integrity

if

a

data

set

is

opened

with

cross-region

SHAREOPTIONS

3

or

4.

When

an

application

program

issues

a

“direct”

or

“skip-sequential”

PUT-for-update

or

no-update,

(RPL

OPTCD=DIR|SKP),

the

updated

control

interval

is

written

to

direct

access

storage

when

you

obtain

control

following

a

synchronous

request

(RPL

OPTCD=SYN)

or

following

the

CHECK

macro

from

an

asynchronous

request

(RPL

OPTCD=ASY).

To

force

direct

access

I/O

for

a

sequential

PUT

(RPL

OPTCD=SEQ),

the

application

program

must

issue

an

ENDREQ

or

MRKBFR

TYPE=OUT.

Whenever

an

ENDREQ

is

issued,

the

return

code

in

register

15

should

be

checked

to

determine

if

there

is

an

error.

If

there

is

an

error,

normal

check

processing

should

be

performed

to

complete

the

request.

Sharing

VSAM

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

197

The

considerations

that

apply

to

read

integrity

also

apply

to

write

integrity.

The

serialization

for

read

could

be

done

as

a

shared

ENQ

and

for

write

as

an

exclusive

ENQ.

You

must

ensure

that

all

I/O

is

performed

to

DASD

before

dropping

the

serialization

mechanism

(usually

the

DEQ).

Cross-System

Sharing

These

share

options

allow

you

to

specify

SHAREOPTION

1

or

2

sharing

rules

with

SHAREOPTION

3

or

4

record

management

processing.

Use

either

of

the

following

share

options

when

you

define

a

data

set

that

must

be

accessed

or

updated

by

more

than

one

operating

system

simultaneously:

v

Cross-system

SHAREOPTION

3.

The

data

set

can

be

fully

shared.

With

this

option,

the

access

method

uses

the

control

block

update

facility

(CBUF)

to

help.

With

this

option,

as

in

cross-region

SHAREOPTIONS

3,

each

user

is

responsible

for

maintaining

both

read

and

write

integrity

for

the

data

the

program

accesses.

User

programs

that

ignore

write

integrity

guidelines

can

cause

VSAM

program

checks,

uncorrectable

data

set

failures,

and

other

unpredictable

results.

This

option

places

heavy

responsibility

on

each

user

sharing

the

data

set.

The

RESERVE

and

DEQ

macros

are

required

with

this

option

to

maintain

data

set

integrity.

v

Cross-system

SHAREOPTION

4.

The

data

set

can

be

fully

shared,

and

buffers

used

for

direct

processing

are

refreshed

for

each

request.

This

option

requires

that

you

use

the

RESERVE

and

DEQ

macros

to

maintain

data

integrity

while

sharing

the

data

set.

Output

processing

is

limited

to

update

and/or

add

processing

that

does

not

change

either

the

high-used

RBA

or

the

RBA

of

the

high

key

data

control

interval

if

DISP=SHR

is

specified.

For

information

about

using

RESERVE

and

DEQ,

see

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

ALE-DYN

and

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

LLA-SDU.

System-managed

volumes

and

catalogs

that

contain

system-managed

data

sets

must

not

be

shared

with

non-system-managed

systems.

When

sharing

data

sets

in

a

cross-region

or

cross-system

environment,

run

the

VERIFY

macro

before

you

open

a

data

set.

VERIFY

locates

the

current

end

of

the

data

set

and

updates

internal

control

blocks.

When

the

data

set

closes

successfully,

the

system

updates

the

catalog

with

the

information

that

VERIFY

determined.

This

information

and

its

effects

cannot

be

evident

to

all

systems

sharing

the

data

set.

If

run

as

the

first

step

of

a

job

stream,

VERIFY

causes

an

update

to

the

end-of-file

information

in

the

catalog.

To

ensure

data

integrity

in

a

shared

environment,

VSAM

provides

users

of

SHAREOPTIONS

4

(both

cross-region

and

cross-system)

with

the

following

assistance:

v

Each

PUT

request

results

in

the

appropriate

buffer

being

written

immediately

into

the

VSAM

object’s

direct

access

device

space.

VSAM

writes

out

the

buffer

in

the

user’s

address

space

that

contains

the

new

or

updated

data

record.

v

Each

GET

request

results

in

all

the

user’s

input

buffers

being

refreshed.

The

contents

of

each

data

and

index

buffer

used

by

the

user’s

program

is

retrieved

from

the

VSAM

object’s

direct

access

device.

When

the

data

set

is

shared

under

cross-system

SHAREOPTIONS

4,

regardless

of

cross-region

requests,

VSAM

does

not

allow

changes

to

high-used

and

high-key

RBAs.

In

addition,

VSAM

provides

assistance

to

the

application

to

aid

in

preserving

the

integrity

of

the

data:

Sharing

VSAM

Data

Sets

198

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|

v

Control

area

splits

and

the

addition

of

a

new

high-key

record

for

a

new

control

interval

that

results

from

a

control

interval

split

are

not

allowed;

VSAM

returns

a

logical

error

to

the

user’s

program

if

this

condition

should

occur.

v

The

data

and

sequence-set

control

interval

buffers

are

marked

nonvalid

following

I/O

operation

to

a

direct

access

storage

device.

Job

steps

of

two

or

more

systems

can

gain

access

to

the

same

data

set

regardless

of

the

disposition

specified

in

each

step’s

JCL.

To

get

exclusive

control

of

a

volume,

a

task

in

one

system

must

issue

a

RESERVE

macro.

For

other

methods

of

obtaining

exclusive

control

using

global

resource

serialization

(GRS)

see

z/OS

MVS

Planning:

Global

Resource

Serialization.

Control

Block

Update

Facility

(CBUF)

Whenever

a

data

set

is

opened

with

DISP=SHR,

cross-region

SHAREOPTION

3

or

4,

and

cross-system

SHAREOPTION

3,

VSAM

record

management

maintains

a

copy

of

the

critical

control

block

data

in

common

storage.

The

control

block

data

in

the

common

storage

area

is

available

to

each

program

(each

memory)

sharing

the

data

set.

The

common

storage

area

is

available

only

to

regions

within

your

operating

system.

Communicating

this

information

to

another

operating

system

is

your

responsibility.

CBUF

eliminates

the

restriction

that

prohibits

control

area

splits

under

cross-region

SHAREOPTION

4.

Therefore,

you

do

not

need

to

restrict

code

to

prevent

control

area

splits,

or

allow

for

the

control

area

split

error

condition.

The

restriction

to

prohibit

control

area

splits

for

cross-systems

SHAREOPTION

4

still

exists.

CBUF

processing

is

not

provided

if

the

data

set

has

cross-system

SHAREOPTION

4,

but

does

not

reside

on

shared

DASD

when

it

is

opened.

That

is,

the

data

set

is

still

processed

as

a

cross-system

SHAREOPTION

4

data

set

on

shared

DASD.

When

a

key-sequenced

data

set

or

variable-length

RRDS

has

cross-system

SHAREOPTION

4,

control

area

splits

are

prevented.

Also,

split

of

the

control

interval

containing

the

high

key

of

a

key

range

(or

data

set)

is

prevented.

With

control

interval

access,

adding

a

new

control

interval

is

prevented.

Cross-system

sharing

can

be

accomplished

by

sending

the

VSAM

shared

information

(VSI)

blocks

to

the

other

host

at

the

conclusion

of

each

output

request.

Generally,

the

VSIs

will

not

have

changed

and

only

a

check

occurs.

If

you

use

SHAREOPTION

3,

you

must

continue

to

provide

read/write

integrity.

Although

VSAM

ensures

that

SHAREOPTION

3

and

4

users

will

have

correct

control

block

information

if

serialization

is

done

correctly,

the

SHAREOPTION

3

user

will

not

get

the

buffer

invalidation

that

will

occur

with

SHAREOPTION

4.

When

improved

control

interval

processing

is

specified

with

SHAREOPTION

3

or

4,

the

data

set

can

be

opened.

However,

if

another

control

block

structure

extends

the

data

set,

the

control

block

structure

using

improved

control

interval

processing

will

not

be

updated

unless

it

is

closed

and

reopened.

Table

12

on

page

200

shows

how

the

SHAREOPTIONS

specified

in

the

catalog

and

the

disposition

specified

on

the

DD

statement

interact

to

affect

the

type

of

processing.

Sharing

VSAM

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

199

Table

12.

Relationship

between

SHAREOPTIONS

and

VSAM

Functions

(CR

CS)

when

DISP=SHR1

Functions

Provided

(3

3)

CBUF

(3

4)

Data

and

sequence

set

buffers

invalidated.

CA

split

not

allowed.

(4

3)

Data

and

index

component

buffers

invalidated.

CBUF.

(4

4)

Data

and

sequence

set

buffers

invalidated.

CA

split

not

allowed.

Legend:

CA

=

Control

area

CR

=

Cross-region

CS

=

Cross-system

CBUF

=

Control

block

update

facility

Buffer

invalidated

=

Invalidation

of

buffers

is

automatic

Note:

1.

When

DISP=OLD

is

specified

or

the

data

set

is

in

create

or

reset

mode

(regardless

of

the

disposition

specified),

the

share

options

specified

in

the

catalog

are

ignored.

The

data

set

is

processed

under

the

rules

for

SHAREOPTIONS(1

3).

OPEN

ensures

that

the

user

has

exclusive

control

of

the

data

set

within

a

single

system.

If

the

data

set

can

be

shared

between

systems,

VSAM

does

nothing

to

ensure

that

another

system

is

not

accessing

the

data

set

concurrently.

With

cross-system

sharing,

the

user

must

ensure

that

another

system

is

not

accessing

the

data

set

before

specifying

DISP=OLD.

Considerations

for

CBUF

Processing

If

your

program

shares

a

data

set

defined

with

SHAREOPTIONS(3

3)

or

SHAREOPTIONS(4

3),

you

should

note

that:

v

In

a

shared

environment,

VSAM

does

not

allow

you

to

process

the

data

set

in

an

initial

load

or

reset

mode

(create).

VSAM

forces

your

data

set

to

be

processed

as

though

it

were

defined

with

SHAREOPTIONS(1

3).

v

A

user

program

cannot

share

a

system

data

set

(for

example,

the

master

catalog,

page

space

data

sets,

SYS1.

data

sets,

duplex

data

sets,

and

swap

data

sets).

v

The

user’s

program

must

serialize

all

VSAM

requests

against

the

data

set,

using

ENQ/DEQ

(or

a

similar

function).

v

The

user’s

program

must

insure

that

all

VSAM

resources

are

acquired

and

released

within

ENQ/DEQ

protocol

to:

–

Force

VSAM

to

write

sequential

update

and

insert

requests.

–

Release

VSAM’s

positioning

within

the

data

set.
v

VSAM

invalidates

data

and

index

buffers

used

with

cross-region

or

cross-system

SHAREOPTIONS

4

data

sets,

but

does

not

invalidate

buffers

used

with

SHAREOPTIONS

3

data

sets.

When

a

buffer

is

marked

nonvalid,

it

is

identified

as

a

buffer

that

VSAM

must

refresh

(read

in

a

fresh

copy

of

the

control

interval

from

DASD)

before

your

program

can

use

the

buffer’s

contents.

v

Programs

that

use

GSR

and

LSR

can

invalidate

and

force

writing

of

buffers

using

the

MRKBFR

and

WRTBFR

macros.

v

Because

programs

in

many

regions

can

share

the

same

data

set,

an

error

that

occurs

in

one

region

can

affect

programs

in

other

regions

that

share

the

same

data

set.

If

a

logical

error

(register

15=8)

or

physical

error

(register

15=12)

is

detected,

any

control

block

changes

made

before

the

error

was

detected

will

be

propagated

to

the

shared

information

in

common

storage.

Sharing

VSAM

Data

Sets

200

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

When

a

VSAM

data

set

requires

additional

space,

VSAM

end-of-volume

processing

acquires

new

extents

for

the

data

set,

updates

the

VSAM

control

block

structure

for

the

data

set

with

the

new

extent

information,

and

updates

the

critical

control

block

data

in

common

storage

so

that

this

new

space

is

accessible

by

all

regions

that

use

the

data

set.

If

the

occurrence

of

an

abend

or

unexpected

error

prevents

this

space

allocation

from

being

completed,

all

regions

are

prevented

from

further

extending

the

data

set.

To

obtain

additional

space,

you

must

close

the

VSAM

data

set

in

all

regions,

then

reopen

it.

v

To

correct

the

control

blocks

of

a

data

set

after

an

abnormal

termination

(abend),

issue

the

VERIFY

macro

to

update

them.

VERIFY

does

not

modify

the

data

set.

You

must

determine

what

recovery

action

is

required,

if

any.

A

subsequent

CLOSE

updates

the

catalog

record.

The

system

bypasses

the

update

to

the

data

set’s

catalog

record

after

an

abnormal

termination.

v

Implicit

VERIFY

is

invoked

by

the

open-for-output

indicator

in

the

catalog.

When

a

data

set

is

opened

and

the

open-for-output

indicator

is

already

on,

CLOSE

processing

resets

the

indicator

only

if

the

data

set

was

just

opened

for

output;

otherwise

it

leaves

the

bit

on.

v

Data

sets

shared

in

a

cross-region

or

cross-system

environment

should

either

use

the

access

method

services

VERIFY

command

or

issue

the

VERIFY

macro

from

within

the

application

program.

v

Because

programs

in

many

regions

can

share

the

same

data

set,

an

error

in

one

region

can

affect

programs

in

other

regions

that

share

the

data

set.

If

a

logical

error

(register

15=8)

or

physical

error

(register

15=12)

occurs,

control

block

changes

made

before

the

error

was

detected

propagate

to

the

shared

information

control

block

in

common

storage.

When

this

condition

occurs,

that

data

set

can

place

incorrect

information

in

the

catalog.

Check

the

affected

data

set

by

using

the

appropriate

diagnostic

tool

(such

as

EXAMINE)

to

determine

if

the

data

set

has

been

corrupted.

If

the

data

set

is

damaged,

use

an

appropriate

utility,

such

as

REPRO,

to

recover

the

data

set.

Checkpoints

for

Shared

Data

Sets

If

you

issue

a

checkpoint

or

if

a

restart

occurs,

none

of

the

VSAM

data

sets

open

in

your

region

at

that

time

can

be

using

CBUF

processing.

If

you

issue

checkpoints,

you

should

open

the

VSAM

data

sets

that

are

eligible

for

CBUF

processing

with

a

disposition

of

OLD,

or

CLOSE

them

before

the

checkpoint.

Note

that,

if

an

alternate

index

was

using

CBUF

processing,

the

associated

base

cluster

and

any

other

paths

open

over

that

base

cluster

must

also

be

closed

before

the

checkpoint,

even

if

they

are

not

using

CBUF

processing.

Techniques

of

Data

Sharing

This

section

describes

the

different

techniques

of

data

sharing.

Cross-Region

Sharing

To

maintain

write

integrity

for

the

data

set,

your

program

must

ensure

that

there

is

no

conflicting

activity

against

the

data

set

until

your

program

completes

updating

the

control

interval.

Conflicting

activity

can

be

divided

into

two

categories:

1.

A

data

set

that

is

totally

preformatted

and

the

only

write

activity

is

update-in-place.

In

this

case,

the

sharing

problem

is

simplified

by

the

fact

that

data

cannot

change

its

position

in

the

data

set.

The

lock

that

must

be

held

for

any

write

operation

(GET/PUT

RPL

OPTCD=UPD)

is

the

unit

of

transfer

that

is

the

control

Sharing

VSAM

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

201

interval.

It

is

your

responsibility

to

associate

a

lock

with

this

unit

of

transfer;

the

record

key

is

not

sufficient

unless

only

a

single

logical

record

resides

in

a

control

interval.

The

following

is

an

example

of

the

required

procedures:

a.

Issue

a

GET

for

the

RPL

that

has

the

parameters

OPTCD=(SYN,KEY,UPD,DIR),ARG=MYKEY.

b.

Determine

the

RBA

of

the

control

interval

(RELCI)

where

the

record

resides.

This

is

based

on

the

RBA

field

supplied

in

the

RPL(RPLDDDD).

RELCI=CISIZE

*

integer-part-of

(RPLDDDD

/

CISIZE)

c.

Enqueue

MYDATA.DSNAME.RELCI

(the

calculated

value).

d.

Issue

an

ENDREQ.

e.

Issue

a

GET

for

the

RPL

that

has

the

parameters

OPTCD=(SYN,KEY,UPD,DIR),ARG=MYKEY.

This

action

will

do

I/O

and

get

a

refreshed

copy

of

the

buffer.

f.

Determine

the

RBA

of

the

control

interval

(RELCI)

where

the

record

resides.

This

is

based

on

the

RBA

field

supplied

in

the

RPL(RPLDDDD).

RELCI

=

CISIZE

*

integer-part-of

(RPLDDDD

/

CISIZE)

Compare

the

calculated

values.

If

they

are

equal,

you

are

assured

the

control

interval

has

not

moved.

If

they

are

not

equal,

dequeue

resource

from

step

“c”

and

start

over

at

step

“a”.

g.

Issue

a

PUT

for

the

RPL

that

has

the

parameters

OPTCD=(SYN,KEY,DIR,UPD).

This

does

not

hold

position

in

the

buffer.

You

can

do

one

of

the

following:

v

Issue

a

GET

for

the

RPL

that

has

the

parameters

OPTCD=(SYN,KEY,UPD,DIR),ARG=MYKEY.

This

will

acquire

position

of

the

buffer.

v

Issue

a

PUT

for

the

RPL

that

has

the

parameters

OPTCD=(SYN,KEY,DIR,NSP).

This

does

hold

position

in

the

buffer.
h.

Issue

an

ENDREQ.

This

forces

I/O

to

DASD,

will

drop

the

position,

and

cause

data

buffer

invalidation.

i.

Dequeue

MYDATA.DSNAME.RELCI.

Sharing

VSAM

Data

Sets

202

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

2.

A

data

set

in

which

record

additions

and

updates

with

length

changes

are

permitted.

In

this

case,

the

minimum

locking

unit

is

a

control

area

to

accommodate

control

interval

splits.

A

higher

level

lock

must

be

held

during

operations

involving

a

control

area

split.

The

split

activity

must

be

serialized

at

a

data

set

level.

To

perform

a

multilevel

locking

procedure,

you

must

be

prepared

to

use

the

information

provided

during

VSAM

JRNAD

processing

in

your

program.

This

user

exit

is

responsible

for

determining

the

level

of

data

movement

and

obtaining

the

appropriate

locks.

Higher

concurrency

can

be

achieved

by

a

hierarchy

of

locks.

Based

on

the

particular

condition,

one

or

more

of

the

locking

hierarchies

must

be

obtained.

Lock

Condition

Control

Interval

Updating

a

record

in

place

or

adding

a

record

to

a

control

interval

without

causing

a

split.

Control

Area

Adding

a

record

or

updating

a

record

with

a

length

change,

causing

a

control

interval

split,

but

not

a

control

area

split.

Data

Set

Adding

a

record

or

updating

a

record

with

a

length

change,

causing

a

control

area

split.

The

following

is

a

basic

procedure

to

provide

the

necessary

protection.

Note

that,

with

this

procedure,

all

updates

are

locked

at

the

at

the

data

set

level:

SHAREOPTION

=

(4

3)

CBUF

processing

Enqueue

MYDATA.DSNAME

Shared

for

read

only;

exclusive

for

write

Issue

VSAM

request

macros

...

Dequeue

MYDATA.DSNAME

In

any

sharing

situation,

it

is

a

general

rule

that

all

resources

be

obtained

and

released

between

the

locking

protocol.

All

positioning

must

be

released

by

using

all

direct

requests

or

by

issuing

the

ENDREQ

macro

before

ending

the

procedure

with

the

DEQ.

Cross-System

Sharing

With

cross-system

SHAREOPTIONS

3,

you

have

the

added

responsibility

of

passing

the

VSAM

shared

information

(VSI)

and

invalidating

data

and/or

index

buffers.

This

can

be

done

by

using

an

informational

control

record

as

the

low

key

or

first

record

in

the

data

set.

The

following

information

is

required

to

accomplish

the

necessary

index

record

invalidation:

1.

Number

of

data

control

interval

splits

and

index

updates

for

sequence

set

invalidation

2.

Number

of

data

control

area

splits

for

index

set

invalidation

All

data

buffers

should

always

be

invalidated.

See

“Techniques

of

Data

Sharing”

on

page

201

for

the

required

procedures

for

invalidating

buffers.

To

perform

selective

buffer

invalidation,

an

internal

knowledge

of

the

VSAM

control

blocks

is

required.

Sharing

VSAM

Data

Sets

Chapter

12.

Sharing

VSAM

Data

Sets

203

Your

program

must

serialize

the

following

types

of

requests

(precede

the

request

with

an

ENQ

and,

when

the

request

completes,

issue

a

DEQ):

v

All

PUT

requests.

v

POINT,

GET-direct-NSP,

GET-skip,

and

GET-for-update

requests

that

are

followed

by

a

PUT-insert,

PUT-update,

or

ERASE

request.

v

VERIFY

requests.

When

VERIFY

is

run

by

VSAM,

your

program

must

have

exclusive

control

of

the

data

set.

v

Sequential

GET

requests.

User

Access

to

VSAM

Shared

Information

You

can

code

the

following

instructions

to

get

the

length

and

address

of

the

data

to

be

sent

to

another

processor:

v

Load

ACB

address

into

register

RY.

v

To

locate

the

VSI

for

a

data

component:

L

RX,04(,RY)

Put

AMBL

address

into

register

RX

L

1,52(,RX)

Get

data

AMB

address

L

1,68(,1)

Get

VSI

address

LH

0,62(,1)

Load

data

length

LA

1,62(,1)

Point

to

data

to

be

communicated

v

To

locate

the

VSI

information

for

an

index

component

of

a

key-sequenced

data

set:

L

RX,04(,RY)

Put

AMBL

address

into

register

RX

L

1,56(,RX)

Get

index

AMB

address

L

1,68(,1)

Get

VSI

address

LH

0,62(,1)

Load

data

length

LA

1,62(,1)

Point

to

data

to

be

communicated

Similarly,

the

location

of

the

VSI

on

the

receiving

processor

can

be

located.

The

VSI

level

number

must

be

incremented

in

the

receiving

VSI

to

inform

the

receiving

processor

that

the

VSI

has

changed.

To

update

the

level

number,

assuming

the

address

of

the

VSI

is

in

register

1:

LA

0,1

Place

increment

into

register

0

AL

0,64(,1)

Add

level

number

to

increment

ST

0,64(,1)

Save

new

level

number

All

processing

of

the

VSI

must

be

protected

by

using

ENQ/DEQ

to

prevent

simultaneous

updates

to

the

transmitted

data.

If

the

data

set

can

be

shared

between

z/OS

operating

systems,

a

user’s

program

in

another

system

can

concurrently

access

the

data

set.

Before

you

open

the

data

set

specifying

DISP=OLD,

it

is

your

responsibility

to

protect

across

systems

with

ENQ/DEQ

using

the

UCB

option.

This

protection

is

available

with

GRS

or

equivalent

functions.

Sharing

VSAM

Data

Sets

204

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Provision

of

a

Resource

Pool

205

Management

of

I/O

Buffers

for

Shared

Resources

210

Restrictions

and

Guidelines

for

Shared

Resources

214

This

chapter

is

intended

to

help

you

share

resources

among

your

VSAM

data

sets.

VSAM

has

a

set

of

macros

that

lets

you

share

I/O

buffers

and

I/O-related

control

blocks

among

many

VSAM

data

sets.

In

VSAM,

an

I/O

buffer

is

a

virtual

storage

area

from

which

the

contents

of

a

control

interval

are

read

and

written.

Sharing

these

resources

optimizes

their

use,

reducing

the

requirement

for

virtual

storage

and

therefore

reducing

paging

of

virtual

storage.

Sharing

these

resources

is

not

the

same

as

sharing

a

data

set

itself

(that

is,

sharing

among

different

tasks

that

independently

open

it).

Data

set

sharing

can

be

done

with

or

without

sharing

I/O

buffers

and

I/O-related

control

blocks.

For

information

about

data

set

sharing

see

Chapter

12,

“Sharing

VSAM

Data

Sets,”

on

page

189.

There

are

also

macros

that

let

you

manage

I/O

buffers

for

shared

resources.

Sharing

resources

does

not

improve

sequential

processing.

VSAM

does

not

automatically

position

itself

at

the

beginning

of

a

data

set

opened

for

sequential

access,

because

placeholders

belong

to

the

resource

pool,

not

to

individual

data

sets.

When

you

share

resources

for

sequential

access,

positioning

at

the

beginning

of

a

data

set

has

to

be

specified

explicitly

with

the

POINT

macro

or

the

direct

GET

macro

with

RPL

OPTCD=NSP.

You

may

not

use

a

resource

pool

to

load

records

into

an

empty

data

set.

Provision

of

a

Resource

Pool

To

share

resources,

follow

this

procedure

to

provide

a

resource

pool:

1.

Use

the

BLDVRP

macro

to

build

a

resource

pool.

2.

Code

a

MACRF

parameter

in

the

ACB

and

use

OPEN

to

connect

your

data

sets

to

the

resource

pool.

3.

After

you

have

closed

all

the

data

sets,

use

the

DLVRP

macro

to

delete

the

resource

pool.

Building

a

Resource

Pool:

BLDVRP

Issuing

BLDVRP

causes

VSAM

to

share

the

I/O

buffers

and

I/O-related

control

blocks

of

data

sets

whose

ACBs

indicate

the

corresponding

option

for

shared

resources.

Control

blocks

are

shared

automatically;

you

may

control

the

sharing

of

buffers.

When

you

issue

BLDVRP,

you

specify

for

the

resource

pool

the

size

and

number

of

virtual

address

space

buffers

for

each

virtual

buffer

pool.

©

Copyright

IBM

Corp.

1987,

2004

205

Using

Hiperspace

Buffers

with

LSR

If

you

are

using

local

shared

resources

(LSR),

you

can

specify

multiple

4-KB

Hiperspace

buffers

for

each

buffer

pool

in

the

resource

pool.

The

size

of

the

Hiperspace

buffers

must

be

equal

to

the

CISIZE

of

the

data

sets

being

used.

The

use

of

Hiperspace

buffers

can

reduce

the

amount

of

I/O

to

a

direct

access

storage

device

(DASD)

by

caching

data

in

expanded

storage.

The

data

in

a

Hiperspace

buffer

is

preserved

unless

there

is

an

expanded

storage

shortage

and

the

expanded

storage

that

backs

the

Hiperspace

buffer

is

reclaimed

by

the

system.

VSAM

invalidates

a

Hiperspace

buffer

when

it

is

copied

to

a

virtual

address

space

buffer

and,

conversely,

invalidates

a

virtual

address

space

buffer

when

it

is

copied

to

a

Hiperspace

buffer.

Therefore

at

most

there

is

only

one

copy

of

the

control

interval

in

virtual

address

space

and

Hiperspace.

When

a

modified

virtual

address

space

buffer

is

reclaimed,

it

is

copied

to

Hiperspace

and

to

DASD.

For

the

data

pool

or

the

separate

index

pool

at

OPEN

time,

a

data

set

is

assigned

the

one

buffer

pool

with

buffers

of

the

appropriate

size—either

the

exact

control

interval

size

requested,

or

the

next

larger

size

available.

You

may

have

both

a

global

resource

pool

and

one

or

more

local

resource

pools.

Tasks

in

an

address

space

that

have

a

local

resource

pool

may

use

either

the

global

resource

pool,

under

the

restrictions

described

below,

or

the

local

resource

pool.

There

may

be

multiple

buffer

pools

based

on

buffer

size

for

each

resource

pool.

To

share

resources

locally,

a

task

in

the

address

space

issues

BLDVRP

TYPE=LSR,

DATA|INDEX.

To

share

resources

globally,

a

system

task

issues

BLDVRP

TYPE=GSR.

The

program

that

issues

BLDVRP

TYPE=GSR

must

be

in

supervisor

state

with

key

0

-

7.

You

can

share

resources

locally

or

globally,

with

the

following

restrictions:

v

LSR

(local

shared

resources).

You

can

build

up

to

255

data

resource

pools

and

255

index

resource

pools

in

one

address

space.

Each

resource

pool

must

be

built

individually.

The

data

pool

must

exist

before

the

index

pool

with

the

same

share

pool

identification

can

be

built.

The

parameter

lists

for

these

multiple

LSR

pools

can

reside

above

or

below

16

MB.

The

BLDVRP

macro

RMODE31

parameter

indicates

where

VSAM

is

to

obtain

virtual

storage

when

the

LSR

pool

control

blocks

and

data

buffers

are

built.

These

resource

pools

are

built

with

the

BLDVRP

macro

TYPE=LSR

and

DATA|INDEX

specifications.

Specifying

MACRF=LSR

on

the

ACB

or

GENCB-ACB

macros

causes

the

data

set

to

use

the

LSR

pools

built

by

the

BLDVRP

macro.

The

DLVRP

macro

processes

both

the

data

and

index

resource

pools.

v

GSR

(global

shared

resources).

All

address

spaces

for

a

given

protection

key

in

the

system

share

one

resource

pool.

Only

one

resource

pool

can

be

built

for

each

of

the

protection

keys

0

-

7.

With

GSR,

an

access

method

control

block

and

all

related

request

parameter

lists,

exit

lists,

data

areas,

and

extent

control

blocks

must

be

in

the

common

area

of

virtual

storage

with

a

protection

key

the

same

as

the

resource

pool.

To

get

storage

in

the

common

area

with

that

protection

key,

issue

the

GETMAIN

macro

while

in

that

key,

for

storage

in

subpool

241.

If

you

need

to

share

a

data

set

among

address

spaces,

multiple

systems,

or

both,

consider

using

record-level

sharing

(RLS)

instead

of

GSR.

The

separate

index

resource

pools

are

not

supported

for

GSR.

The

Hiperspace

buffers

(specified

in

the

BLDVRP

macro)

are

not

supported

for

GSR.

Sharing

Resources

Among

VSAM

Data

Sets

206

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Generate

ACBs,

RPLs,

and

EXLSTs

with

the

GENCB

macro:

code

the

WAREA

and

LENGTH

parameters.

The

program

that

issues

macros

related

to

that

global

resource

pool

must

be

in

supervisor

state

with

the

same

key.

(The

macros

are

BLDVRP,

CHECK,

CLOSE,

DLVRP,

ENDREQ,

ERASE,

GENCB,

GET,

GETIX,

MODCB,

MRKBFR,

OPEN,

POINT,

PUT,

PUTIX,

SCHBFR,

SHOWCB,

TESTCB,

and

WRTBFR.

The

SHOWCAT

macro

is

not

related

to

a

resource

pool,

because

a

program

can

issue

this

macro

independently

of

an

opened

data

set.)

Deciding

the

Size

of

a

Virtual

Resource

Pool

The

virtual

resource

pool

for

all

components

of

the

clusters

or

alternate

indexes

must

be

successfully

built

before

any

open

is

issued

to

use

the

resource

pool;

otherwise,

the

results

might

be

unpredictable

or

performance

problems

might

occur.

To

specify

the

BUFFERS,

KEYLEN,

and

STRNO

parameters

of

the

BLDVRP

macro,

you

must

know

the

size

of

the

control

intervals,

data

records

(if

spanned),

and

key

fields

in

the

components

that

will

use

the

resource

pool.

You

must

also

know

how

the

components

are

processed.

You

can

use

the

SHOWCAT

and

SHOWCB

macros,

or

the

access

method

services

LISTCAT

command

to

get

this

information.

For

example,

to

find

the

control

interval

size

using

SHOWCB:

open

the

data

set

for

nonshared

resources

processing,

issue

SHOWCB,

close

the

ACB,

issue

BLDVRP,

open

the

ACB

for

LSR

or

GSR.

Tip:

Because

Hiperspace

buffers

are

in

expanded

storage,

you

do

not

need

to

consider

their

size

and

number

when

you

calculate

the

size

of

the

virtual

resource

pool.

For

each

VSAM

cluster

that

will

share

the

virtual

resource

pool

you

are

building,

follow

this

procedure:

1.

Determine

the

number

of

concurrent

requests

you

expect

to

process.

The

number

of

concurrent

requests

represents

STRNO

for

the

cluster.

2.

Specify

BUFFERS=(SIZE(STRNO+1))

for

the

data

component

of

the

cluster.

v

If

the

cluster

is

a

key-sequenced

cluster

and

the

index

CISZ

(control

interval

size)

is

the

same

as

the

data

CISZ,

change

the

specification

to

BUFFERS=(SIZE(2

X

STRNO)+1).

v

If

the

index

CISZ

is

not

the

same

as

the

data

component

CISZ,

specify

BUFFERS=(dataCISZ(STRNO+1),indexCISZ(STRNO)).

Following

this

procedure

provides

the

minimum

number

of

buffers

needed

to

support

concurrently

active

STRNO

strings.

An

additional

string

is

not

dynamically

added

to

a

shared

resource

pool.

The

calculation

can

be

repeated

for

each

cluster

which

will

share

the

resource

pool,

including

associated

alternate

index

clusters

and

clusters

in

the

associated

alternate

index

upgrade

sets.

For

each

cluster

component

having

a

different

CISZ,

add

another

‘,SIZE(NUMBER)’

range

to

the

‘BUFFERS=’

specification.

Note

that

the

data

component

and

index

component

buffers

may

be

created

as

one

set

of

buffers,

or,

by

use

of

the

‘TYPE=’

statement,

may

be

created

in

separate

index

and

data

buffer

sets.

Additional

buffers

may

be

added

to

enhance

performance

of

applications

requiring

read

access

to

data

sets

by

reducing

I/O

requirements.

You

should

also

consider

the

need

for

cross-region

or

cross-system

sharing

of

the

data

sets

where

modified

data

buffers

must

be

written

frequently

to

enhance

read

and

update

integrity.

Many

buffers

is

not

usually

an

advantage

in

such

environments.

In

some

Sharing

Resources

Among

VSAM

Data

Sets

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

207

applications

where

a

resource

pool

is

shared

by

multiple

data

sets

and

not

all

data

set

strings

are

active

concurrently,

less

than

the

recommended

number

of

buffers

may

produce

satisfactory

results.

If

the

specified

number

of

buffers

is

not

adequate,

VSAM

will

return

a

logical

error

indicating

the

out-of-buffer

condition.

Displaying

Information

about

an

Unopened

Data

Set

The

SHOWCAT

macro

lets

you

get

information

about

a

component

before

its

cluster

or

alternate

index

is

opened.

The

program

that

is

to

issue

BLDVRP

can

issue

SHOWCAT

on

all

the

components

to

find

out

the

sizes

of

control

intervals,

records,

and

keys.

This

information

lets

the

program

calculate

values

for

the

BUFFERS

and

KEYLEN

parameters

of

BLDVRP.

A

program

need

not

be

in

supervisor

state

with

protection

key

0

-

7

to

issue

SHOWCAT,

even

though

it

must

be

in

supervisor

state

and

in

protection

key

0

-

7

to

issue

BLDVRP

TYPE=GSR.

The

SHOWCAT

macro

is

described

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Displaying

Statistics

about

a

Buffer

Pool

You

can

use

the

SHOWCB

macro

to

obtain

statistics

about

the

use

of

buffer

pools.

These

statistics

help

you

determine

how

to

improve

both

a

previous

definition

of

a

resource

pool

and

the

mix

of

data

sets

that

use

it.

The

statistics

are

available

through

an

ACB

that

describes

an

open

data

set

that

is

using

the

buffer

pool.

They

reflect

the

use

of

the

buffer

pool

from

the

time

it

was

built

to

the

time

SHOWCB

is

issued.

All

but

one

of

the

statistics

are

for

a

single

buffer

pool.

To

get

statistics

for

the

whole

resource

pool,

issue

SHOWCB

for

each

of

its

buffer

pools.

The

statistics

cannot

be

used

to

redefine

the

resource

pool

while

it

is

in

use.

You

have

to

make

adjustments

the

next

time

you

build

it.

The

use

of

SHOWCB

to

display

an

ACB

is

described

in

“Manipulating

the

Contents

of

Control

Blocks”

on

page

138.

If

the

ACB

has

MACRF=GSR,

the

program

that

issues

SHOWCB

must

be

in

supervisor

state

with

protection

key

0

-

7.

A

program

check

can

occur

if

SHOWCB

is

issued

by

a

program

that

is

not

in

supervisor

state

with

the

same

protection

key

as

the

resource

pool.

For

buffer

pool

statistics,

the

keywords

described

below

are

specified

in

FIELDS.

These

fields

may

be

displayed

only

after

the

data

set

described

by

the

ACB

is

opened.

Each

field

requires

one

fullword

in

the

display

work

area:

Field

Description

BFRFND

The

number

of

requests

for

retrieval

that

could

be

satisfied

without

an

I/O

operation

(the

data

was

found

in

a

buffer).

BUFRDS

The

number

of

reads

to

bring

data

into

a

buffer.

NUIW

The

number

of

nonuser-initiated

writes

(that

VSAM

was

forced

to

do

because

no

buffers

were

available

for

reading

the

contents

of

a

control

interval).

STRMAX

The

maximum

number

of

placeholders

currently

active

for

the

resource

pool

(for

all

the

buffer

pools

in

it).

UIW

The

number

of

user-initiated

writes

(PUTs

not

deferred

or

WRTBFRs,

see

“Deferring

Write

Requests”

on

page

210).

Sharing

Resources

Among

VSAM

Data

Sets

208

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Connecting

a

Data

Set

to

a

Resource

Pool:

OPEN

You

cause

a

data

set

to

use

a

resource

pool

built

by

BLDVRP

by

specifying

LSR

or

GSR

in

the

MACRF

parameter

of

the

data

set’s

ACB

before

you

open

the

data

set.

ACB

MACRF=({NSR|LSR|GSR},...),...

NSR,

the

default,

indicates

the

data

set

does

not

use

shared

resources.

LSR

indicates

it

uses

the

local

resource

pool.

GSR

indicates

it

uses

the

global

resource

pool.

If

the

VSAM

control

blocks

and

data

buffers

reside

above

16

MB,

RMODE31=ALL

must

be

specified

in

the

ACB

before

OPEN

is

issued.

If

the

OPEN

parameter

list

or

the

VSAM

ACB

resides

above

16

MB,

the

MODE=31

parameter

of

the

OPEN

macro

must

also

be

coded.

When

an

ACB

indicates

LSR

or

GSR,

VSAM

ignores

its

BSTRNO,

BUFNI,

BUFND,

BUFSP,

and

STRNO

parameters

because

VSAM

will

use

the

existing

resource

pool

for

the

resources

associated

with

these

parameters.

To

connect

LSR

pools

with

a

SHRPOOL

identification

number

other

than

SHRPOOL=0,

you

must

use

the

SHRPOOL

parameter

of

the

ACB

macro

to

indicate

which

LSR

pool

you

are

connecting.

If

more

than

one

ACB

is

opened

for

LSR

processing

of

the

same

data

set,

the

LSR

pool

identified

by

the

SHRPOOL

parameter

for

the

first

ACB

will

be

used

for

all

subsequent

ACBs.

For

a

data

set

described

by

an

ACB

with

MACRF=GSR,

the

ACB

and

all

related

RPLs,

EXLSTs,

ECBs,

and

data

areas

must

be

in

the

common

area

of

virtual

storage

with

the

same

protection

key

as

the

resource

pool.

Deleting

a

Resource

Pool

Using

the

DLVRP

Macro

After

all

data

sets

using

a

resource

pool

are

closed,

delete

the

resource

pool

by

issuing

the

DLVRP

(delete

VSAM

resource

pool)

macro.

Failure

to

delete

a

local

resource

pool

causes

virtual

storage

to

be

lost

until

the

end

of

the

job

step

or

TSO/E

session.

This

loss

is

protected

with

a

global

resource

pool.

If

the

address

space

that

issued

BLDVRP

terminates

without

having

issued

DLVRP,

the

system

deletes

the

global

resource

pool

when

its

use

count

is

0.

To

delete

an

LSR

pool

with

a

SHRPOOL

identification

number

other

than

SHRPOOL=0,

you

must

use

the

SHRPOOL

parameter

to

indicate

which

resource

pool

you

are

deleting.

If

both

a

data

resource

pool

and

an

index

resource

pool

have

the

same

SHRPOOL

number,

both

will

be

deleted.

If

the

DLVRP

parameter

list

is

to

reside

above

16

MB,

the

MODE=31

parameter

must

be

coded.

Sharing

Resources

Among

VSAM

Data

Sets

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

209

Management

of

I/O

Buffers

for

Shared

Resources

Managing

I/O

buffers

includes:

v

Deferring

writes

for

direct

PUT

requests,

which

reduces

the

number

of

I/O

operations.

v

Writing

buffers

that

have

been

modified

by

related

requests.

v

Locating

buffers

that

contain

the

contents

of

specified

control

intervals.

v

Marking

a

buffer

to

be

written

without

issuing

a

PUT.

v

When

your

program

accesses

an

nonvalid

buffer,

VSAM

refreshes

the

buffer

(that

is,

reads

in

a

fresh

copy

of

the

control

interval)

before

making

its

contents

available

to

your

program.

Managing

I/O

buffers

should

enable

you

to

speed

up

direct

processing

of

VSAM

data

sets

that

are

accessed

randomly.

You

probably

will

not

be

able

to

speed

up

sequential

processing

or

processing

of

a

data

set

whose

activity

is

consistently

heavy.

Deferring

Write

Requests

VSAM

automatically

defers

writes

for

sequential

PUT

requests.

It

normally

writes

out

the

contents

of

a

buffer

immediately

for

direct

PUT

requests.

With

shared

resources,

you

can

cause

writes

for

direct

PUT

requests

to

be

deferred.

Buffers

are

finally

written

out

when:

v

You

issue

the

WRTBFR

macro.

v

VSAM

needs

a

buffer

to

satisfy

a

GET

request.

v

A

data

set

using

a

buffer

pool

is

closed.

(Temporary

CLOSE

is

ineffective

against

a

data

set

that

is

sharing

buffers,

and

ENDREQ

does

not

cause

buffers

in

a

resource

pool

to

be

written.)

Deferring

writes

saves

I/O

operations

when

subsequent

requests

can

be

satisfied

by

the

data

in

the

buffer

pool.

If

you

are

going

to

update

control

intervals

more

than

once,

data

processing

performance

will

be

improved

by

deferring

writes.

You

indicate

that

writes

are

to

be

deferred

by

coding

MACRF=DFR

in

the

ACB,

along

with

MACRF=LSR

or

GSR.

ACB

MACRF=({LSR|GSR},{DFR|NDF},...),...

The

DFR

option

is

incompatible

with

SHAREOPTIONS

4.

(SHAREOPTIONS

is

a

parameter

of

the

DEFINE

command

of

access

method

services.

It

is

described

in

z/OS

DFSMS

Access

Method

Services

for

Catalogs.)

A

request

to

open

a

data

set

with

SHAREOPTIONS

4

for

deferred

writes

is

rejected.

VSAM

notifies

the

processing

program

when

an

unmodified

buffer

has

been

found

for

the

current

request

and

there

will

be

no

more

unmodified

buffers

into

which

to

read

the

contents

of

a

control

interval

for

the

next

request.

(VSAM

will

be

forced

to

write

a

buffer

to

make

a

buffer

available

for

the

next

I/O

request.)

VSAM

sets

register

15

to

0

and

puts

12

(X'0C')

in

the

feedback

field

of

the

RPL

that

defines

the

PUT

request

detecting

the

condition.

VSAM

also

notifies

the

processing

program

when

there

are

no

buffers

available

to

be

assigned

to

a

placeholder

for

a

request.

This

is

a

logical

error

(register

15

contains

8

unless

an

exit

is

taken

to

a

LERAD

routine).

The

feedback

field

in

the

RPL

contains

152

(X'98').

You

may

retry

the

request;

it

gets

a

buffer

if

one

is

freed.

Sharing

Resources

Among

VSAM

Data

Sets

210

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Relating

Deferred

Requests

by

Transaction

ID

You

can

relate

action

requests

(GET,

PUT,

and

so

forth)

according

to

transaction

by

specifying

the

same

ID

in

the

RPLs

that

define

the

requests.

The

purpose

of

relating

the

requests

that

belong

to

a

transaction

is

to

enable

WRTBFR

to

cause

all

the

modified

buffers

used

for

a

transaction

to

be

written.

When

the

WRTBFR

request

is

complete,

the

transaction

is

physically

complete.

RPL

TRANSID=number,...

TRANSID

specifies

a

number

from

0

to

31.

The

number

0,

which

is

the

default,

indicates

that

requests

defined

by

the

RPL

are

not

associated

with

other

requests.

A

number

from

1

to

31

relates

the

requests

defined

by

this

RPL

to

the

requests

defined

by

other

RPLs

with

the

same

transaction

ID.

You

can

find

out

what

transaction

ID

an

RPL

has

by

issuing

SHOWCB

or

TESTCB.

SHOWCB

FIELDS=([TRANSID],...),...

TRANSID

requires

one

fullword

in

the

display

work

area.

TESTCB

TRANSID=number,...

If

the

ACB

to

which

the

RPL

is

related

has

MACRF=GSR,

the

program

issuing

SHOWCB

or

TESTCB

must

be

in

supervisor

state

with

the

same

protection

key

as

the

resource

pool.

With

MACRF=GSR

specified

in

the

ACB

to

which

the

RPL

is

related,

a

program

check

can

occur

if

SHOWCB

or

TESTCB

is

issued

by

a

program

that

is

not

in

supervisor

state

with

protection

key

0

-

7.

For

more

information

about

using

SHOWCB

and

TESTCB

see

“Manipulating

the

Contents

of

Control

Blocks”

on

page

138.

Writing

Buffers

Whose

Writing

is

Deferred:

WRTBFR

If

any

PUTs

to

a

data

set

using

a

shared

resource

pool

are

deferred,

you

can

use

the

WRTBFR

(write

buffer)

macro

to

write:

v

All

modified

unwritten

index

and

data

buffers

for

a

given

data

set

(which

causes

all

Hiperspace

buffers

for

the

data

set

to

be

invalidated)

v

All

modified

unwritten

index

and

data

buffers

in

the

resource

pool

v

The

least

recently

used

modified

buffers

in

each

buffer

pool

of

the

resource

pool

v

All

buffers

modified

by

requests

with

the

same

transaction

ID

v

A

buffer,

identified

by

an

RBA

value,

that

has

been

modified

and

has

a

use

count

of

zero

You

can

specify

the

DFR

option

in

an

ACB

without

using

WRTBFR

to

write

buffers.

A

buffer

is

written

when

VSAM

needs

one

to

satisfy

a

GET

request,

or

all

modified

buffers

are

written

when

the

last

of

the

data

sets

that

uses

them

is

closed.

Besides

using

WRTBFR

to

write

buffers

whose

writing

is

deferred,

you

can

use

it

to

write

buffers

that

are

marked

for

output

with

the

MRKBFR

macro,

which

is

described

in

“Marking

a

Buffer

for

Output:

MRKBFR”

on

page

213.

Using

WRTBFR

can

improve

performance,

if

you

schedule

WRTBFR

to

overlap

other

processing.

Sharing

Resources

Among

VSAM

Data

Sets

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

211

VSAM

notifies

the

processing

program

when

there

are

no

more

unmodified

buffers

into

which

to

read

the

contents

of

a

control

interval.

(VSAM

would

be

forced

to

write

buffers

when

another

GET

request

required

an

I/O

operation.)

VSAM

sets

register

15

to

0

and

puts

12

(X'0C')

in

the

feedback

field

of

the

RPL

that

defines

the

PUT

request

that

detects

the

condition.

VSAM

also

notifies

the

processing

program

when

there

are

no

buffers

available

to

which

to

assign

a

placeholder

for

a

request.

This

is

a

logical

error

(register

15

contains

8

unless

an

exit

is

taken

to

a

LERAD

routine);

the

feedback

field

in

the

RPL

contains

152

(X'98').

You

may

retry

the

request;

it

gets

a

buffer

if

one

is

freed.

When

sharing

the

data

set

with

a

user

in

another

region,

your

program

might

want

to

write

the

contents

of

a

specified

buffer

without

writing

all

other

modified

buffers.

Your

program

issues

the

WRTBFR

macro

to

search

your

buffer

pool

for

a

buffer

containing

the

specified

RBA.

If

found,

the

buffer

is

examined

to

verify

that

it

is

modified

and

has

a

use

count

of

zero.

If

so,

VSAM

writes

the

contents

of

the

buffer

into

the

data

set.

Recommendation:

Before

you

use

WRTBFR

TYPE=CHK|TRN|DRBA,

be

sure

to

release

all

buffers.

See

“Processing

Multiple

Strings”

on

page

146

for

information

about

releasing

buffers.

If

one

of

the

buffers

is

not

released,

VSAM

defers

processing

until

the

buffer

is

released.

Handling

Exits

to

Physical

Error

Analysis

Routines

With

deferred

writes

of

buffers,

a

processing

program

continues

after

its

PUT

request

has

been

completed,

even

though

the

buffer

has

not

been

written.

The

processing

program

is

not

synchronized

with

a

physical

error

that

occurs

when

the

buffer

is

finally

written.

A

processing

program

that

uses

MRKBFR

MARK=OUT

is

also

not

synchronized

with

a

physical

error.

An

EXCEPTION

or

a

SYNAD

routine

must

be

supplied

to

analyze

the

error.

The

ddname

field

of

the

physical

error

message

identifies

the

data

set

that

was

using

the

buffer,

but,

because

the

buffer

might

have

been

released,

its

contents

might

be

unavailable.

You

can

provide

a

JRNAD

exit

routine

to

record

the

contents

of

buffers

for

I/O

errors.

It

can

be

coordinated

with

a

physical

error

analysis

routine

to

handle

I/O

errors

for

buffers

whose

writing

has

been

deferred.

If

a

JRNAD

exit

routine

is

used

to

cancel

I/O

errors

during

a

transaction,

the

physical

error

analysis

routine

will

get

only

the

last

error

return

code.

See

“SYNAD

Exit

Routine

to

Analyze

Physical

Errors”

on

page

250

and

“JRNAD

Exit

Routine

to

Journalize

Transactions”

on

page

241

for

information

about

the

SYNAD

and

JRNAD

routines.

Using

the

JRNAD

Exit

with

Shared

Resources

VSAM

takes

the

JRNAD

exit

for

the

following

reasons

when

the

exit

is

associated

with

a

data

set

whose

ACB

has

MACRF=LSR

or

GSR:

v

A

data

or

index

control

interval

buffer

has

been

modified

and

is

about

to

be

written.

v

A

physical

error

occurred.

VSAM

takes

the

JRNAD

exit

first—your

routine

can

direct

VSAM

to

bypass

the

error

and

continue

processing

or

to

terminate

the

request

that

occasioned

the

error

and

proceed

with

error

processing.

v

A

control

interval

or

a

control

area

is

about

to

be

split

for

a

key-sequenced

data

set

or

variable-length

RRDS.

Your

routine

can

cancel

the

request

for

the

split

and

leave

VSAM.

An

example

of

using

the

JRNAD

exit

for

this

purpose

is

given

in

“JRNAD

Exit

Routine

to

Journalize

Transactions”

on

page

241.

Sharing

Resources

Among

VSAM

Data

Sets

212

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

See

“JRNAD

Exit

Routine

to

Journalize

Transactions”

on

page

241

for

information

describing

the

contents

of

the

registers

when

VSAM

exits

to

the

JRNAD

routine,

and

the

fields

in

the

parameter

list

pointed

to

by

register

1.

Accessing

a

Control

Interval

with

Shared

Resources

Control

interval

access

is

not

permitted

with

shared

resources.

Locating

an

RBA

in

a

Buffer

Pool:

SCHBFR

When

a

resource

pool

is

built,

the

buffers

in

each

buffer

pool

are

numbered

from

1

through

the

number

of

buffers

in

each

buffer

pool.

At

a

given

time,

several

buffers

in

a

buffer

pool

may

hold

the

contents

of

control

intervals

for

a

particular

data

set.

These

buffers

may

or

may

not

contain

RBAs

of

interest

to

your

processing

program.

The

SCHBFR

macro

lets

you

find

out.

Specify

in

the

ARG

parameter

of

the

RPL

that

defines

SCHBFR

the

address

of

an

8-byte

field

that

contains

the

first

and

last

control

interval

RBAs

of

the

range

you

are

interested

in.

Note:

For

compressed

format

data

sets,

the

RBA

of

the

compressed

record

is

unpredictable.

The

RBA

of

another

record

or

the

address

of

the

next

record

in

the

buffer

cannot

be

determined

using

the

length

of

the

current

record

or

the

length

of

the

record

provided

to

VSAM.

The

buffer

pool

to

be

searched

is

the

one

used

by

the

data

component

defined

by

the

ACB

to

which

your

RPL

is

related.

If

the

ACB

names

a

path,

VSAM

searches

the

buffer

pool

used

by

the

data

component

of

the

alternate

index.

(If

the

path

is

defined

over

a

base

cluster

alone,

VSAM

searches

the

buffer

pool

used

by

the

data

component

of

the

base

cluster.)

VSAM

begins

its

search

at

the

buffer

you

specify

and

continues

until

it

finds

a

buffer

that

contains

an

RBA

in

the

range

or

until

the

highest

numbered

buffer

is

searched.

For

the

first

buffer

that

satisfies

the

search,

VSAM

returns

its

address

(OPTCD=LOC)

or

its

contents

(OPTCD=MVE)

in

the

work

area

whose

address

is

specified

in

the

AREA

parameter

of

the

RPL

and

returns

its

number

in

register

0.

If

the

search

fails,

Register

0

is

returned

with

the

user

specified

buffer

number

and

a

one-byte

SCHBFR

code

of

X'0D'.

To

find

the

next

buffer

that

contains

an

RBA

in

the

range,

issue

SCHBFR

again

and

specify

the

number

of

the

next

buffer

after

the

first

one

that

satisfied

the

search.

You

continue

until

VSAM

indicates

it

found

no

buffer

that

contains

an

RBA

in

the

range

or

until

you

reach

the

end

of

the

pool.

Finding

a

buffer

that

contains

a

desired

RBA

does

not

get

you

exclusive

control

of

the

buffer.

You

may

get

exclusive

control

only

by

issuing

GET

for

update.

SCHBFR

does

not

return

the

location

or

the

contents

of

a

buffer

that

is

already

under

the

exclusive

control

of

another

request.

Marking

a

Buffer

for

Output:

MRKBFR

You

locate

a

buffer

that

contains

the

RBA

you

are

interested

in

by

issuing

a

SCHBFR

macro,

a

read-only

GET,

or

a

GET

for

update.

When

you

issue

GET

for

update,

you

get

exclusive

control

of

the

buffer.

Whether

you

have

exclusive

control

or

not,

you

can

mark

the

buffer

for

output

by

issuing

the

MRKBFR

macro

with

MARK=OUT,

then

change

the

buffer’s

contents.

Without

exclusive

control,

you

should

not

change

the

control

information

in

the

CIDF

or

RDFs

(do

not

change

the

record

lengths).

Sharing

Resources

Among

VSAM

Data

Sets

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

213

MRKBFR

MARK=OUT,

indicates

that

the

buffer’s

contents

are

modified.

You

must

modify

the

contents

of

the

buffer

itself,

not

a

copy.

Therefore,

when

you

issue

SCHBFR

or

GET

to

locate

the

buffer,

you

must

specify

RPL

OPTCD=LOC.

(If

you

use

OPTCD=MVE,

you

get

a

copy

of

the

buffer

but

do

not

learn

its

location.)

The

buffer

is

written

when

a

WRTBFR

is

issued

or

when

VSAM

is

forced

to

write

a

buffer

to

satisfy

a

GET

request.

If

you

are

sharing

a

buffer

or

have

exclusive

control

of

it,

you

can

release

it

from

shared

status

or

exclusive

control

with

MRKBFR

MARK=RLS.

If

the

buffer

was

marked

for

output,

MRKBFR

with

MARK=RLS

does

not

nullify

it;

the

buffer

is

eventually

written.

Sequential

positioning

is

lost.

MRKBFR

with

MARK=RLS

is

similar

to

the

ENDREQ

macro.

Restrictions

and

Guidelines

for

Shared

Resources

Restrictions

for

using

the

LSR

and

GSR

options

are:

v

Empty

data

sets

cannot

be

processed

(that

is,

loaded).

v

Multiple

LSR

pools

in

an

address

space

are

obtained

by

using

the

SHRPOOL

parameter

of

the

BLDVRP

macro

to

identify

each

LSR

pool.

v

Control

interval

access

cannot

be

used

(ACB

MACRF=CNV

and

ACB

MACRF=ICI).

v

Control

blocks

in

common

(CBIC)

cannot

be

used.

v

User

buffering

is

not

allowed

(ACB

MACRF=UBF).

v

Writes

for

data

sets

with

SHAREOPTIONS

4

cannot

be

deferred

(ACB

MACRF=DFR).

v

Request

parameter

lists

for

MRKBFR,

SCHBFR,

and

WRTBFR

cannot

be

chained

(the

NXTRPL

parameter

of

the

RPL

macro

is

ignored).

v

For

sequential

access,

positioning

at

the

beginning

of

a

data

set

must

be

explicit:

with

a

POINT

macro

or

a

direct

GET

macro

with

RPL

OPTCD=NSP.

v

Temporary

CLOSE

and

ENDREQ

do

not

cause

buffers

to

be

written

if

MACRF=DFR

was

specified

in

the

associated

ACB.

v

Address

spaces

that

use

Hiperspace

buffering

(LSR

only)

should

be

made

nonswappable.

Otherwise,

the

expanded

storage

(and,

therefore,

the

Hiperspace

buffers)

will

be

discarded

when

the

address

space

is

swapped

out.

v

With

GSR,

an

ACB

and

all

related

RPLs,

EXLSTs,

data

areas,

and

ECBs

must

be

stored

in

the

common

area

of

virtual

storage

with

protection

key

0

-

7;

all

VSAM

requests

related

to

the

global

resource

pool

may

be

issued

only

by

a

program

in

supervisor

state

with

protection

key

0

-

7

(the

same

as

the

resource

pool).

v

Checkpoints

cannot

be

taken

for

data

sets

whose

resources

are

shared

in

a

global

resource

pool.

When

a

program

in

an

address

space

that

opened

a

data

set

whose

ACB

has

MACRF=GSR

issues

the

CHKPT

macro,

8

is

returned

in

register

15.

If

a

program

in

another

address

space

issues

the

CHKPT

macro,

the

checkpoint

is

taken,

but

only

for

data

sets

that

are

not

using

the

global

resource

pool.

Checkpoint/restart

can

be

used

with

data

sets

whose

resources

are

shared

in

a

local

resource

pool,

but

the

restart

program

does

not

reposition

for

processing

at

the

point

where

the

checkpoint

occurred—processing

is

restarted

at

a

data

set’s

highest

used

RBA.

See

z/OS

DFSMS

Checkpoint/Restart

for

information

about

restarting

the

processing

of

VSAM

data.

Sharing

Resources

Among

VSAM

Data

Sets

214

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

If

a

physical

I/O

error

is

found

while

writing

a

control

interval

to

the

direct

access

device,

the

buffer

remains

in

the

resource

pool.

The

write-required

flag

(BUFCMW)

and

associated

mod

bits

(BUFCMDBT)

are

turned

off,

and

the

BUFC

is

flagged

in

error

(BUFCER2=ON).

The

buffer

is

not

replaced

in

the

pool,

and

buffer

writing

is

not

attempted.

To

release

this

buffer

for

reuse,

a

WRTBFR

macro

with

TYPE=DS

can

be

issued

or

the

data

set

can

be

closed

(CLOSE

issues

the

WRTBFR

macro).

v

When

you

use

the

BLDVRP

macro

to

build

a

shared

resource

pool,

some

of

the

VSAM

control

blocks

are

placed

in

a

system

subpool

and

others

in

subpool

0.

When

a

task

ends,

the

system

frees

subpool

0

unless

it

is

shared

with

another

task.

The

system

does

not

free

the

system

subpool

until

the

job

step

ends.

Then,

if

another

task

attempts

to

use

the

resource

pool,

an

abend

might

occur

when

VSAM

attempts

to

access

the

freed

control

blocks.

This

problem

does

not

occur

if

the

two

tasks

share

subpool

0.

Code

in

the

ATTACH

macro

the

SZERO=YES

parameter,

or

the

SHSPL

or

SHSPV

parameters.

SZERO=YES

is

the

default.

v

GSR

is

not

permitted

for

compressed

data

sets.

Sharing

Resources

Among

VSAM

Data

Sets

Chapter

13.

Sharing

Resources

Among

VSAM

Data

Sets

215

Sharing

Resources

Among

VSAM

Data

Sets

216

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

14.

Using

VSAM

Record-Level

Sharing

This

chapter

describes

how

to

set

up

the

resources

that

you

need

for

using

VSAM

record-level

sharing

(RLS)

and

DFSMS

Transactional

VSAM

(DFSMStvs).

This

chapter

covers

the

following

topics.

Topic

Location

Controlling

Access

to

VSAM

Data

Sets

217

Accessing

Data

Sets

Using

DFSMStvs

and

VSAM

Record-Level

Sharing

217

Specifying

Read

Integrity

228

Specifying

a

Timeout

Value

for

Lock

Requests

228

Controlling

Access

to

VSAM

Data

Sets

You

can

specify

the

following

options

to

control

DFSMStvs

access

to

VSAM

data

sets:

v

VSAM

record-level

sharing

(VSAM

RLS)

v

Read

integrity

options

v

Timeout

value

for

lock

requests

If

a

VSAM

data

set

is

recoverable,

DFSMStvs

can

open

the

data

for

input

within

a

transaction.

A

recoverable

VSAM

data

set

is

defined

with

the

LOG(UNDO)

or

LOG(ALL)

attribute.

For

more

information

about

using

recoverable

VSAM

data

sets,

see

z/OS

DFSMStvs

Planning

and

Operating

Guide.

Accessing

Data

Sets

Using

DFSMStvs

and

VSAM

Record-Level

Sharing

This

section

describes

the

use

of

VSAM

data

sets

for

DFSMStvs.

VSAM

record-level

sharing

(RLS)

is

an

access

option

for

VSAM

data

sets

that

allows

Customer

Information

Control

System

((CICS)

and

non-CICS

applications

to

concurrently

access

data.

This

option

provides

multisystem

sharing

of

VSAM

data

sets

across

a

z/OS

Parallel

Sysplex®.

VSAM

RLS

exploits

the

data

sharing

technology

of

the

coupling

facility

(CF)

including

a

CF-based

lock

manager

and

a

CF

cache

manager.

VSAM

RLS

uses

the

CF-based

lock

manager

and

the

CF

cache

manager

in

its

implementation

of

record-level

sharing.

RLS

is

a

mode

of

access

to

VSAM

data

sets.

RLS

is

an

access

option

interpreted

at

open

time.

Select

the

option

by

specifying

a

new

JCL

parameter

(RLS)

or

by

specifying

MACRF=RLS

in

the

ACB.

The

RLS

MACRF

option

is

mutually

exclusive

with

the

MACRF

NSR

(nonshared

resources),

LSR

(local

shared

resources),

and

GSR

(global

shared

resources)

options.

This

topic

uses

the

term

non-RLS

access

to

distinguish

between

RLS

access

and

NSR,

LSR,

and

GRS

access.

Access

method

services

do

not

use

RLS

when

performing

an

IDCAMS

EXPORT,

IMPORT,

PRINT,

or

REPRO

command.

If

the

RLS

keyword

is

specified

in

the

DD

statement

of

a

data

set

to

be

opened

by

access

method

services,

the

keyword

is

©

Copyright

IBM

Corp.

1987,

2004

217

ignored

and

the

data

set

is

opened

and

accessed

in

non-RLS

mode.

See

“Using

Non-RLS

Access

to

VSAM

Data

Sets”

on

page

223

for

more

information

about

non-RLS

access.

RLS

access

is

supported

for

KSDS,

ESDS,

RRDS,

and

VRRDS

data

sets,

and

for

VSAM

alternate

indexes.

The

VSAM

RLS

functions

are

provided

by

the

SMSVSAM

server.

This

server

resides

in

a

system

address

space.

The

address

space

is

created

and

the

server

is

started

at

MVS

IPL

time.

VSAM

internally

performs

cross-address

space

accesses

and

linkages

between

requestor

address

spaces

and

the

SMSVSAM

server

address

space.

The

SMSVSAM

server

owns

two

data

spaces.

One

data

space

is

called

the

SMSVSAM

data

space.

It

contains

some

VSAM

RLS

control

blocks

and

a

system-wide

buffer

pool.

VSAM

RLS

uses

the

other

data

space,

called

MMFSTUFF,

to

collect

activity

monitoring

information

that

is

used

to

produce

SMF

records.

VSAM

provides

the

cross-address

space

access

and

linkage

between

the

requestor

address

spaces

and

the

SMSVSAM

address

and

data

spaces.

See

Figure

30.

Record-Level

Sharing

CF

Caching

VSAM

record-level

sharing

allows

multiple

levels

of

CF

caching

for

DFSMS

cache

structures

that

are

defined

in

the

active

storage

management

subsystem

(SMS)

configuration.

VSAM

RLS

has

multiple

levels

of

CF

caching.

The

value

of

the

SMS

DATACLAS

RLS

CF

Cache

Value

keyword

determines

the

level

of

CF

caching.

The

default

value,

ALL,

indicates

that

RLS

caches

both

the

data

and

index

parts

of

the

VSAM

data

set

in

the

coupling

facility.

If

you

specify

NONE,

then

RLS

caches

only

the

index

part

of

the

VSAM

data

set.

If

you

specify

UPDATESONLY,

then

RLS

caches

data

in

the

coupling

facility

only

during

write

operations.

All

active

systems

in

a

sysplex

must

have

the

greater

than

4K

CF

caching

feature

before

the

function

is

enabled.

CICS AOR
address space

CICS AOR
address space

Batch job
address space

VSAM RLS
(SMSVSAM)

address space

Data space

RLS buffer
pool

RLS internal
control blocks

Data space

RLS activity
OPEN
ACB

MACRF=RLS

OPEN
ACB

MACRF=RLS

OPEN
ACB

MACRF=RLS

GET/PUT GET/PUT GET/PUT

Monitoring
information

Figure

30.

VSAM

RLS

address

and

data

spaces

and

requestor

address

spaces

Using

VSAM

Record-Level

Sharing

218

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

To

set

up

RLS

CF

caching,

use

the

following

values:

v

ALL

or

UPDATESONLY

or

NONE

for

the

SMS

DATACLAS

RLS

CF

Cache

Value

keyword

To

allow

greater

than

4K

caching

of

DFSMS

VSAM

data

sets

open

for

RLS

processing,

you

need

to

make

the

following

changes:

–

You

can

change

the

value

of

the

SMS

DATACLAS

RLS

CF

Cache

Value

keyword

if

you

do

not

want

caching

of

all

VSAM

RLS

data:

ALL

Indicates

that

RLS

is

to

cache

VSAM

index

and

data

components.

ALL

is

the

default.

NONE

Indicates

that

RLS

is

to

cache

only

the

VSAM

index

data.

The

data

components

are

not

to

be

placed

in

the

cache

structure.

UPDATESONLY

Indicates

that

RLS

is

to

place

only

WRITE

requests

in

the

cache

structure.
–

VSAM

honors

the

RLS

CF

Cache

Value

keyword

only

when

you

specify

RLS_MaxCfFeatureLevel(A)

and

all

systems

in

the

sysplex

can

run

the

greater

than

4K

caching

code.

To

determine

the

code

level

on

each

system

in

the

sysplex

and

whether

the

RLS

CF

Cache

Value

keyword

is

honored,

use

the

D

SMS,SMSVSAM,

D

SMS,SMSVSAM,ALL,

and

D

SMS,CFCACHE()

operator

commands.

When

DFSMS

cache

structures

connect

to

the

system,

VSAM

RLS

issues

an

IGW500I

message

to

indicate

that

greater

than

4K

caching

is

active.

The

cache

structures

connect

to

the

system

through

the

first

instance

of

a

data

set

opened

on

each

system.
v

You

can

specify

the

following

values

for

the

RLS_MaxCfFeatureLevel

keyword:

–

A—This

value

allows

greater

than

4K

caching

if

all

active

VSAM

RLS

instances

in

the

sysplex

have

the

correct

level

of

code.

–

Z—This

is

the

default

value

if

you

do

not

specify

RLS_MaxCfFeatureLevel

in

the

active

SMS

configuration.

Greater

than

4K

caching

is

not

allowed.
v

RLS_MaxCfFeatureLevel

keyword

in

the

SETSMS

command

v

RLS_MaxCfFeatureLevel

keyword

in

the

SET

SMSxx

command

v

RLS_MaxCfCacheFeatureLevel

in

the

D

SMS,OPTIONS

command

Using

VSAM

RLS

with

CICS

The

CICS

file-control

component

is

a

transactional

file

system

built

on

top

of

VSAM.

CICS

file

control

provides

transactional

function

such

as

commit,

rollback,

and

forward

recovery

logging

functions

for

recoverable

data

sets.

Prior

to

VSAM

RLS,

CICS

file

control

performs

its

own

record-level

locking.

The

VSAM

data

sets

are

accessed

through

a

single

CICS.

Users

of

multiple

CICS

regions

have

a

file

owning

region

(FOR)

where

the

local

file

definitions

reside.

The

access

to

the

data

set

from

the

FOR

is

through

the

local

file

definition.

Local

data

sets

are

accessed

by

the

CICS

application-owning

region

(AOR)

submitting

requests

directly

to

VSAM.

The

remote

definition

contains

information

on

the

region

and

local

filename.

Sharing

of

data

sets

among

regions

or

systems

is

achieved

by

having

a

remote

file

definition

in

any

other

region

that

wants

to

access

the

data

set.

If

you

are

not

using

VSAM

RLS,

sharing

is

achieved

by

having

remote

definitions

for

the

local

file

in

any

region

that

wants

to

share

it.

Figure

31

shows

the

AOR,

FOR,

and

VSAM

request

flow

prior

to

VSAM

RLS.

Using

VSAM

Record-Level

Sharing

Chapter

14.

Using

VSAM

Record-Level

Sharing

219

The

CICS

AOR’s

function

ships

VSAM

requests

to

access

a

specific

data

set

to

the

CICS

FOR

that

owns

the

file

that

is

associated

with

that

data

set.

This

distributed

access

form

of

data

sharing

has

existed

in

CICS

for

some

time.

With

VSAM

RLS,

multiple

CICS

AORs

can

directly

share

access

to

a

VSAM

data

set

without

CICS

function

shipping.

With

VSAM

RLS,

CICS

continues

to

provide

the

transactional

functions.

The

transactional

functions

are

not

provided

by

VSAM

RLS

itself.

VSAM

RLS

provides

CF-based

record-level

locking

and

CF

data

caching.

Figure

32

shows

a

CICS

configuration

with

VSAM

RLS.

VSAM

RLS

is

a

multisystem

server.

The

CICS

AORs

access

the

shared

data

sets

by

submitting

requests

directly

to

the

VSAM

RLS

server.

The

server

uses

the

CF

to

serialize

access

at

the

record

level.

MVS n

VSAM

CICS
AOR

VSAM

MVS 1

CICS
AOR

CICS
AOR

VSAM

CICS
FOR

CICS
AOR

Figure

31.

CICS

VSAM

non-RLS

access

MVS nMVS 1

CICS
AOR

CICS
AOR

CICS
AOR

CICS
AOR

VSAM RLS
instance 1

SMSVSAM
address space

Coupling facility (CF)

VSAM RLS
instance

SMSVSAM
address space

n

Figure

32.

CICS

VSAM

RLS

Using

VSAM

Record-Level

Sharing

220

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Related

reading:

For

more

information

on

using

CICS

to

recover

data

sets,

see

CICS

Recovery

and

Restart

Guide.

For

an

overview

of

CICS,

see

CICS

System

Definition

Guide.

Recoverable

and

Nonrecoverable

Data

Sets

CICS

file

control

supports

recoverable

or

nonrecoverable

data

sets.

A

data

set

definition

includes

a

LOG

attribute

that

denotes

whether

the

data

set

is

recoverable.

The

attribute

options

are

specified

as

follows:

v

LOG(NONE)—nonrecoverable

Specifies

the

data

set

as

nonrecoverable.

CICS

does

not

perform

any

logging

of

changes

for

a

data

set

that

has

this

attribute.

Neither

rollback

nor

forward

recovery

is

provided.

v

LOG(UNDO)—recoverable

Specifies

the

data

set

as

commit

or

rollback

recoverable.

CICS

logs

the

before

(UNDO)

images

of

changes

to

the

data

set

and

backs

out

the

changes

if

the

application

requests

rollback

or

if

the

transaction

terminates

abnormally.

v

LOG(ALL)—recoverable

Specifies

the

data

set

as

both

commit

or

rollback

recoverable

and

forward

recoverable.

In

addition

to

the

logging

and

recovery

functions

provided

for

LOG(UNDO),

CICS

logs

the

after

image

of

changes

(REDO

record)

to

the

data

set.

The

redo

log

records

are

used

by

forward

recovery

programs

or

products

such

as

CICS

VSAM

Recovery

(CICSVR)

to

reconstruct

the

data

set

in

the

event

of

hardware

or

software

damage

to

the

data

set.

Attention:

Specifying

LOG(NONE)

is

different

from

not

specifying

LOG

at

all.

If

you

do

not

specify

LOG,

RLS

cannot

access

the

data

set.

You

can

specify

VSAM

recoverable

data

set

control

attributes

in

IDCAMS

(access

method

services)

DEFINE

and

ALTER

commands.

In

the

data

class,

you

can

specify

LOG

along

with

the

BWO

and

LOGSTREAMID

parameters.

If

you

want

to

be

able

to

back

up

a

data

set

while

it

is

open,

you

should

define

them

using

the

IDCAMS

BWO(TYPECICS)

parameter.

Only

a

CICS

application

or

DFSMStvs

can

open

a

recoverable

data

set

for

output

because

VSAM

RLS

does

not

provide

the

logging

and

other

transactional

functions

required

for

writing

to

a

recoverable

data

set.

When

a

data

set

is

opened

in

a

non-RLS

access

mode

(NSR,

LSR,

or

GSR),

the

recoverable

attributes

of

the

data

set

do

not

apply

and

are

ignored.

The

recoverable

data

set

rules

have

no

impact

on

existing

programs

that

do

not

use

RLS

access.

CICS

Transactional

Recovery

for

VSAM

Recoverable

Data

Sets

The

transactional

services

of

CICS

provide

an

ideal

environment

for

data

sharing.

Exclusive

locks

held

by

VSAM

RLS

on

the

modified

records

cause

read-with-integrity

and

write

requests

to

these

records

by

other

transactions

to

wait.

After

the

modifying

transaction

commits

or

rolls

back,

the

locks

are

released

and

other

transactions

can

access

the

records.

The

CICS

rollback

(backout)

function

removes

changes

made

to

the

recoverable

data

sets

by

a

transaction.

When

a

transaction

terminates

abnormally,

CICS

implicitly

performs

a

rollback.

The

commit

and

rollback

functions

protect

an

individual

transaction

from

changes

that

other

transactions

make

to

a

recoverable

data

set

or

other

recoverable

Using

VSAM

Record-Level

Sharing

Chapter

14.

Using

VSAM

Record-Level

Sharing

221

resource.

This

lets

the

transaction

logic

focus

on

the

function

it

is

providing

and

not

have

to

be

concerned

with

data

recovery

or

cleanup

in

the

event

of

problems

or

failures.

Using

VSAM

RLS

Outside

of

CICS

When

VSAM

RLS

is

used

outside

of

CICS

or

DFSMStvs,

the

applications

do

not

have

the

transactional

recovery

environment.

In

most

cases,

this

makes

read/write

data

sharing

not

feasible.

A

non-CICS

application

outside

of

DFSMStvs

is

permitted

to

open

a

recoverable

data

set

in

RLS

mode

only

for

input.

VSAM

RLS

provides

the

necessary

record-level

locking

to

provide

read-with-integrity

(if

requested)

for

the

non-CICS

application.

This

functionality

lets

multiple

CICS

applications

have

the

data

set

open

for

read

and

write

RLS

access.

CICS

provides

the

necessary

transactional

recovery

for

the

writes

to

the

recoverable

data

set.

Concurrently,

non-CICS

applications

outside

DFSMStvs

can

have

the

data

set

open

for

read

RLS

access.

Read

Sharing

of

Recoverable

Data

Sets

A

non-CICS

application

outside

DFSMStvs

is

permitted

to

open

a

recoverable

data

set

in

RLS

mode

only

for

input.

VSAM

RLS

provides

the

necessary

record-level

locking

to

provide

read-with-integrity

(if

requested)

for

the

non-CICS

application.

This

support

lets

multiple

CICS

applications

have

the

data

set

open

for

read/write

RLS

access.

CICS

provides

the

necessary

transactional

recovery

for

the

writes

to

the

recoverable

data

set.

Concurrently,

non-CICS

applications

outside

DFSMStvs

can

have

the

data

set

open

for

read

RLS

access.

VSAM

provides

the

necessary

locking.

Because

the

non-CICS

application

is

not

permitted

to

write

to

the

data

set,

transactional

recovery

is

not

required.

Read-Sharing

Integrity

across

KSDS

CI

and

CA

Splits

VSAM

with

non-RLS

access

does

not

ensure

read

integrity

across

splits

for

non-RLS

access

to

a

data

set

with

cross-region

share

options

2,

3,

and

4.

If

read

integrity

is

required,

the

application

must

ensure

it.

When

KSDS

CI

and

CA

splits

move

records

from

one

CI

to

another

CI,

there

is

no

way

the

writer

can

invalidate

the

data

and

index

buffers

for

the

reader.

This

can

result

in

the

reader

not

seeing

some

records

that

were

moved.

VSAM

RLS

can

ensure

read

integrity

across

splits.

It

uses

the

cross-invalidate

function

of

the

CF

to

invalidate

copies

of

data

and

index

CI

in

buffer

pools

other

than

the

writer’s

buffer

pool.

This

ensures

that

all

RLS

readers,

DFSMStvs,

CICS,

and

non-CICS

outside

DFSMStvs,

are

able

to

see

any

records

moved

by

a

concurrent

CI

or

CA

split.

On

each

GET

request,

VSAM

RLS

tests

validity

of

the

buffers

and

when

invalid,

the

buffers

are

refreshed

from

the

CF

or

DASD.

Read

and

Write

Sharing

of

Nonrecoverable

Data

Sets

Nonrecoverable

data

sets

are

not

part

of

transactional

recovery.

Commit

and

rollback

logging

do

not

apply

to

these

data

sets.

Because

transactional

recovery

is

not

required,

VSAM

RLS

permits

read

and

write

sharing

of

nonrecoverable

data

sets

concurrently

by

DFSMStvs,

CICS,

and

non-CICS

applications.

Any

application

can

open

the

data

set

for

output

in

RLS

mode.

VSAM

RLS

provides

record

locking

and

buffer

coherency

across

the

CICS

and

non-CICS

read/write

sharers

of

nonrecoverable

data

sets.

However,

the

record

lock

on

a

new

or

changed

record

is

released

as

soon

as

the

buffer

that

contains

the

change

has

been

written

to

the

CF

cache

and

DASD.

This

differs

from

the

case

in

Using

VSAM

Record-Level

Sharing

222

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

which

a

DFSMStvs

or

CICS

transaction

modifies

VSAM

RLS

recoverable

data

sets

and

the

corresponding

locks

on

the

added

and

changed

records

remain

held

until

the

end

of

the

transaction.

For

sequential

and

skip-sequential

processing,

VSAM

RLS

does

not

write

a

modified

control

interval

(CI)

until

the

processing

moves

to

another

CI

or

an

ENDREQ

is

issued

by

the

application.

If

an

application

or

the

VSAM

RLS

server

ends

abnormally,

these

buffered

changes

are

lost.

To

help

provide

data

integrity,

the

locks

for

those

sequential

records

are

not

released

until

the

records

are

written.

While

VSAM

RLS

permits

read

and

write

sharing

of

nonrecoverable

data

sets

across

DFSMStvs

and

CICS

and

non-CICS

applications,

most

applications

are

not

designed

to

tolerate

this

sharing.

The

absence

of

transactional

recovery

requires

very

careful

design

of

the

data

and

the

application.

Using

Non-RLS

Access

to

VSAM

Data

Sets

RLS

access

does

not

change

the

format

of

the

data

in

the

VSAM

data

sets.

The

data

sets

are

compatible

for

non-RLS

access.

If

the

data

set

has

been

defined

with

a

cross-region

share

option

of

2,

a

non-RLS

open

for

input

is

permitted

while

the

data

set

is

open

for

RLS

processing;

but

a

non-RLS

open

for

output

fails.

If

the

data

set

is

already

open

for

non-RLS

output,

an

open

for

RLS

fails.

Therefore,

at

any

time,

a

data

set

can

be

open

for

non-RLS

write

access

or

open

for

RLS

access.

CICS

and

VSAM

RLS

provide

a

quiesce

function

to

assist

in

the

process

of

switching

a

data

set

from

CICS

RLS

usage

to

non-RLS

usage.

Comparing

RLS

Access

and

Non-RLS

Access

This

section

describes

the

differences

between

RLS

access

and

non-RLS

access.

Share

Options

For

non-RLS

access,

VSAM

uses

the

share

options

settings

to

determine

the

type

of

sharing

permitted.

If

you

set

the

cross-region

share

option

to

2,

a

non-RLS

open

for

input

is

permitted

while

the

data

set

is

already

open

for

RLS

access.

VSAM

provides

full

read

and

write

integrity

for

the

RLS

users,

but

does

not

provide

read

integrity

for

the

non-RLS

user.

A

non-RLS

open

for

output

is

not

permitted

when

already

opened

for

RLS.

VSAM

RLS

provides

full

read

and

write

sharing

for

multiple

users;

it

does

not

use

share

options

settings

to

determine

levels

of

sharing.

When

an

RLS

open

is

requested

and

the

data

set

is

already

open

for

non-RLS

input,

VSAM

does

check

the

cross-region

setting.

If

it

is

2,

then

the

RLS

open

is

permitted.

The

open

fails

for

any

other

share

option

or

if

the

data

set

has

been

opened

for

non-RLS

output.

Locking

Non-RLS

provides

local

locking

(within

the

scope

of

a

single

buffer

pool)

of

the

VSAM

control

interval.

Locking

contention

can

result

in

an

“exclusive

control

conflict”

error

response

to

a

VSAM

record

management

request.

VSAM

RLS

uses

a

DFSMS

lock

manager

to

provide

a

system-managed

duplexing

rebuild

process.

The

locking

granularity

is

at

the

VSAM

record

level.

When

contention

occurs

on

a

VSAM

record,

the

request

that

encountered

the

contention

waits

for

the

contention

to

be

removed.

The

DFSMS

lock

manager

provides

deadlock

detection.

When

a

lock

request

is

in

deadlock,

VSAM

rejects

the

request.

This

results

in

the

VSAM

record

management

request

completing

with

a

deadlock

error

response.

Using

VSAM

Record-Level

Sharing

Chapter

14.

Using

VSAM

Record-Level

Sharing

223

When

you

request

a

user-managed

rebuild

for

a

lock

structure,

the

validity

check

function

determines

if

there

is

enough

space

for

the

rebuild

process

to

complete.

If

there

is

not

enough

space,

the

system

rejects

the

request

and

displays

an

informational

message.

When

you

request

an

alter

operation

for

a

lock

structure,

the

validity

check

function

determines

if

there

is

enough

space

for

the

alter

process

to

complete.

If

there

is

not

enough

space,

the

system

displays

a

warning

message

that

includes

the

size

recommendation.

VSAM

RLS

supports

a

timeout

value

that

you

can

specify

through

the

RPL,

in

the

PARMLIB,

or

in

the

JCL.

CICS

uses

this

parameter

to

ensure

that

a

transaction

does

not

wait

indefinitely

for

a

lock

to

become

available.

VSAM

RLS

uses

a

timeout

function

of

the

DFSMS

lock

manager.

When

an

ESDS

is

used

with

VSAM

RLS,

to

serialize

the

processing

of

ESDS

records,

an

exclusive,

sysplex-wide

data-set

level

“add

to

end”

lock

is

held

each

time

a

record

is

added

to

the

end

of

the

data

set.

Reading

and

updating

of

existing

records

do

not

acquire

the

lock.

Non-RLS

VSAM

does

not

need

such

serialization

overhead

because

it

does

not

serialize

ESDS

record

additions

across

the

sysplex.

Recommendation:

Carefully

design

your

use

of

ESDS

with

RLS;

otherwise,

you

might

see

performance

differences

between

accessing

ESDSs

with

and

without

RLS.

Retaining

locks:

VSAM

RLS

uses

share

and

exclusive

record

locks

to

control

access

to

the

shared

data.

An

exclusive

lock

is

used

to

ensure

that

a

single

user

is

updating

a

specific

record.

The

exclusive

lock

causes

any

read-with-integrity

request

for

the

record

by

another

user

(CICS

transaction

or

non-CICS

application)

to

wait

until

the

update

is

finished

and

the

lock

released.

Failure

conditions

can

delay

completion

of

an

update

to

a

recoverable

data

set.

This

occurs

when

a

CICS

transaction

enters

in-doubt

status.

This

means

CICS

can

neither

rollback

nor

commit

the

transaction.

Therefore,

the

recoverable

records

modified

by

the

transaction

must

remain

locked.

Failure

of

a

CICS

AOR

also

causes

the

current

transaction’s

updates

to

recoverable

data

sets

not

to

complete.

They

cannot

complete

until

the

AOR

is

restarted.

When

a

transaction

enters

in-doubt,

sysplex

failure,

MVS

failure,

failure

of

an

instance

of

the

SMSVSAM

Address

Space,

or

a

CICS

AOR

terminates,

any

exclusive

locks

on

records

of

recoverable

data

sets

held

by

the

transaction

must

remain

held.

However,

other

users

waiting

for

these

locks

should

not

continue

to

wait.

The

outage

is

likely

to

be

longer

than

the

user

would

want

to

wait.

When

these

conditions

occur,

VSAM

RLS

converts

these

exclusive

record

locks

into

retained

locks.

Both

exclusive

and

retained

locks

are

not

available

to

other

users.

When

another

user

encounters

lock

contention

with

an

exclusive

lock,

the

user’s

lock

request

waits.

When

another

user

encounters

lock

contention

with

a

retained

lock,

the

lock

request

is

immediately

rejected

with

“retained

lock”

error

response.

This

results

in

the

VSAM

record

management

request

that

produced

the

lock

request

failing

with

“retained

lock”

error

response.

If

you

close

a

data

set

in

the

middle

of

a

transaction

or

unit

of

recovery

and

it

is

the

last

close

for

this

data

set

on

this

system,

then

RLS

converts

the

locks

from

active

to

retained.

Using

VSAM

Record-Level

Sharing

224

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Supporting

non-RLS

access

while

retained

locks

exist:

Retained

locks

are

created

when

a

failure

occurs.

The

locks

need

to

remain

until

completion

of

the

corresponding

recovery.

The

retained

locks

only

have

meaning

for

RLS

access.

Lock

requests

issued

by

RLS

access

requests

can

encounter

the

retained

locks.

Non-RLS

access

does

not

perform

record

locking

and

therefore

would

not

encounter

the

retained

locks.

To

ensure

integrity

of

a

recoverable

data

set,

VSAM

does

not

permit

non-RLS

update

access

to

the

data

set

while

retained

locks

exist

for

that

data

set.

There

can

be

situations

where

an

installation

must

execute

some

non-CICS

applications

that

require

non-RLS

update

access

to

the

data

set.

VSAM

RLS

provides

an

IDCAMS

command

(SHCDS

PERMITNONRLSUPDATE)

that

can

be

used

to

set

the

status

of

a

data

set

to

enable

non-RLS

update

access

to

a

recoverable

data

set

while

retained

locks

exist.

This

command

does

not

release

the

retained

locks.

If

this

function

is

used,

VSAM

remembers

its

usage

and

informs

the

CICSs

that

hold

the

retained

locks

when

they

later

open

the

data

set

with

RLS.

If

you

use

the

SHCDS

PERMITNONRLSUPDATE

command,

neither

CICS

nor

DFSMStvs

has

any

idea

whether

or

not

it

is

safe

to

proceed

with

pending

backouts.

Because

of

this,

you

must

supply

exits

that

DFSMStvs

and

CICS

call,

and

each

exit

must

tell

the

resource

manager

whether

or

not

to

go

ahead

with

the

backout.

For

more

information,

see

the

description

of

the

batch

override

exit

in

“IGW8PNRU

Routine

for

Batch

Override”

on

page

238.

VSAM

Options

Not

Used

by

RLS

RLS

does

not

support

the

following

options

and

capabilities:

v

Linear

data

sets

v

Addressed

access

to

a

KSDS

v

Control

interval

(CNV

or

ICI)

to

any

VSAM

data

set

type

v

User

buffering

(UBF)

v

Clusters

that

have

been

defined

with

the

IMBED

option

v

Key

Range

data

sets

v

Temporary

data

sets

v

GETIX

and

PUTIX

requests

v

MVS

Checkpoint/Restart

facility

v

ACBSDS

(system

data

set)

specification

v

Hiperbatch

v

Catalogs,

VVDS,

the

JRNAD

exit,

and

any

JCL

AMP=

parameters

in

JCL

v

Data

that

is

stored

in

z/OS

UNIX

System

Services

v

Striped

VSAM

data

sets

In

addition,

VSAM

RLS

has

the

following

restrictions:

v

You

cannot

specify

RLS

access

when

accessing

a

VSAM

data

set

using

the

ISAM

compatibility

interface.

v

You

cannot

open

individual

components

of

a

VSAM

cluster

for

RLS

access.

v

You

cannot

specify

a

direct

open

of

an

alternate

index

for

RLS

access,

but

you

can

specify

RLS

open

of

an

alternate

index

path.

v

RLS

open

does

not

implicitly

position

to

the

beginning

of

the

data

set.

For

sequential

or

skip-sequential

processing,

specify

a

POINT

or

GET

DIR,

NSP

request

to

establish

a

position

in

the

data

set.

Using

VSAM

Record-Level

Sharing

Chapter

14.

Using

VSAM

Record-Level

Sharing

225

v

RLS

does

not

support

a

request

that

is

issued

while

the

caller

is

executing

in

any

of

the

following

modes:

cross-memory

mode,

SRB

mode,

or

under

an

FRR.

See

“Requesting

VSAM

RLS

Run-Mode”

for

a

complete

list

of

mode

requirements.

v

RLS

does

not

support

UNIX

files.

Requesting

VSAM

RLS

Run-Mode

When

a

program

issues

a

VSAM

RLS

request

(OPEN,

CLOSE,

or

Record

Management

request),

the

program

must

be

running

in

the

following

run

mode,

with

the

listed

constraints:

v

Task

mode

(not

SRB

mode)

v

Address

space

control=primary

v

Home

address

space=primary

address

space=secondary

address

space

v

No

functional

recovery

routine

(FRR)

can

be

in

effect,

but

an

ESTAE

might

be.

The

VSAM

RLS

record

management

request

task

must

be

the

same

task

that

opened

the

ACB,

or

the

task

that

opened

the

ACB

must

be

in

the

task

hierarchy.

That

is,

the

record

management

task

was

attached

by

the

task

that

opened

the

ACB,

or

by

a

task

that

was

attached

by

the

task

that

opened

the

ACB.

Using

VSAM

RLS

Read

Integrity

Options

VSAM

RLS

provides

three

levels

of

read

integrity

as

follows:

1.

NRI—no

read

integrity

This

tells

VSAM

RLS

not

to

obtain

a

record

lock

on

the

record

accessed

by

a

GET

or

POINT

request.

This

avoids

the

overhead

of

record

locking.

This

is

sometimes

referred

to

as

dirty

read

because

the

reader

might

see

an

uncommitted

change

made

by

another

transaction.

Even

with

this

option

specified,

VSAM

RLS

still

performs

buffer

validity

checking

and

buffer

refresh

when

the

buffer

is

invalid.

Thus,

a

sequential

reader

of

a

KSDS

does

not

miss

records

that

are

moved

to

new

control

intervals

by

control

interval

(CI)

and

control

area

(CA)

splits.

There

are

situations

where

VSAM

RLS

temporarily

obtains

a

shared

lock

on

the

record

even

though

NRI

is

specified.

This

situation

happens

when

the

read

encounters

an

inconsistency

within

the

VSAM

data

set

while

attempting

to

access

the

record.

An

example

of

this

is

path

access

through

an

alternate

index

to

a

record

for

which

a

concurrent

alternate

index

upgrade

is

being

performed.

The

path

access

sees

an

inconsistency

between

the

alternate

index

and

base

cluster.

This

would

normally

result

in

an

error

response

return

code

8

and

reason

code

144.

Before

giving

this

response

to

the

NRI

request,

VSAM

RLS

obtains

a

shared

lock

on

the

base

cluster

record

that

was

pointed

to

by

the

alternate

index.

This

ensures

that

if

the

record

was

being

modified,

the

change

and

corresponding

alternate

index

upgrade

completes.

The

record

lock

is

released.

VSAM

retries

the

access.

The

retry

should

find

the

record

correctly.

This

internal

record

locking

may

encounter

locking

errors

such

as

deadlock

or

timeout.

Your

applications

must

be

prepared

to

accept

locking

error

return

codes

that

may

be

returned

on

GET

or

POINT

NRI

requests.

Normally

such

errors

will

not

occur.

2.

CR—consistent

read

This

tells

VSAM

RLS

to

obtain

a

SHARE

lock

on

the

record

accessed

by

a

GET

or

POINT

request.

It

ensures

the

reader

does

not

see

an

uncommitted

change

Using

VSAM

Record-Level

Sharing

226

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

made

by

another

transaction.

Instead,

the

GET/POINT

waits

for

the

change

to

be

committed

or

backed

out

and

the

EXCLUSIVE

lock

on

the

record

to

be

released.

3.

CRE—consistent

read

explicit

This

is

the

same

as

CR,

except

VSAM

RLS

keeps

the

SHARE

lock

on

the

record

until

end-of-transaction.

This

option

is

only

available

to

CICS

or

DFSMStvs

transactions.

VSAM

does

not

understand

end-of-transaction

for

non-CICS

or

non-DFSMStvs

usage.

This

capability

is

often

referred

to

as

REPEATABLE

READ.

The

record

locks

obtained

by

the

VSAM

RLS

GET

requests

with

CRE

option

inhibit

update

or

erase

of

the

records

by

other

concurrently

executing

transactions.

However,

the

CRE

requests

do

not

inhibit

the

insert

of

other

records

by

other

transactions.

The

following

cases

need

to

be

considered

when

using

this

function.

a.

If

a

GET

DIR

(direct)

or

SKP

(skip

sequential)

request

with

CRE

option

receives

a

“record

not

found”

response,

VSAM

RLS

does

not

retain

a

lock

on

the

nonexistent

record.

The

record

could

be

inserted

by

another

transaction.

b.

A

sequence

of

GET

SEQ

(sequential)

requests

with

CRE

option

results

in

a

lock

being

held

on

each

record

that

was

returned.

However,

no

additional

locks

are

held

that

would

inhibit

the

insert

of

new

records

in

between

the

records

locked

by

the

GET

CRE

sequential

processing.

If

the

application

were

to

re-execute

the

previously

executed

sequence

of

GET

SEQ,CRE

requests,

it

would

see

any

newly

inserted

records.

Within

the

transactional

recovery

community,

these

records

are

referred

to

as

“phantom”

records.

The

VSAM

RLS

CRE

function

does

not

inhibit

phantom

records.

Using

VSAM

RLS

with

ESDS

Using

VSAM

RLS

with

ESDSs

provides

greater

scalability

and

availability

over

non-RLS

VSAM.

However,

in

comparison

with

non-RLS

VSAM,

using

VSAM

RLS

with

ESDSs

might

result

in

performance

degradation

in

certain

operating

environments.

To

serialize

the

adding

of

ESDS

records

across

the

sysplex,

VSAM

RLS

obtains

an

“add-to-end”

lock

exclusively

for

every

record

added

to

the

end

of

the

data

set.

If

applications

frequently

add

records

to

the

same

ESDS,

the

requests

are

serially

processed

and

therefore,

performance

degradation

might

be

experienced.

In

comparison,

non-RLS

VSAM

has

a

different

set

of

functions

and

does

not

require

serializing

ESDS

record

additions

across

the

sysplex.

If

an

ESDS

is

shared

among

threads,

carefully

design

your

use

of

ESDS

with

RLS

to

lessen

any

possible

impact

to

performance,

as

compared

to

the

use

of

ESDSs

with

non-RLS

VSAM.

Note:

For

VSAM

RLS,

the

system

obtains

a

global

data-set-level

lock

only

for

adding

an

ESDS

record

to

the

data

set,

not

for

reading

or

updating

existing

ESDS

records.

Therefore,

GET

requests

and

PUT

updates

on

other

records

for

the

data

sets

do

not

obtain

the

“add-to-end”

lock.

Those

updates

can

be

processed

while

another

thread

holds

the

“add-to-end”

lock.

How

long

the

RLS

“add-to-end”

lock

is

held

depends

on

whether

the

data

set

is

recoverable

and

on

the

type

of

PUT

request

that

adds

the

record.

If

the

data

set

is

recoverable,

RLS

does

not

implicitly

release

the

lock.

The

lock

is

explicitly

released

by

ENDREQ,

IDAEADD,

or

IDALKREL.

For

nonrecoverable

data

sets,

the

PUT

Using

VSAM

Record-Level

Sharing

Chapter

14.

Using

VSAM

Record-Level

Sharing

227

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

SEQ

command

releases

the

lock

after

writing

a

few

buffers,

whereas

the

PUT

DIR

command

releases

the

lock

at

the

end

of

the

request.

Specifying

Read

Integrity

You

can

use

one

of

the

following

subparameters

of

the

RLS

parameter

to

specify

a

read

integrity

option

for

a

VSAM

data

set.

NRI

Specifies

no

read

integrity

(NRI).

The

application

can

read

all

records.

CR

Specifies

consistent

read

(CR).

This

subparameter

requests

that

VSAM

obtain

a

SHARE

lock

on

each

record

that

the

application

reads.

CRE

Specifies

consistent

read

explicit

(CRE).

This

subparameter

requests

serialization

of

the

record

access

with

update

or

erase

of

the

record

by

another

unit

of

recovery.

CRE

gives

DFSMStvs

access

to

VSAM

data

sets

open

for

input

or

output.

CR

or

NRI

gives

DFSMStvs

access

to

VSAM

recoverable

data

sets

only

for

output.

Related

reading:

v

For

information

about

how

to

use

these

read

integrity

options

for

DFSMStvs

access,

see

z/OS

DFSMStvs

Planning

and

Operating

Guide.

v

For

complete

descriptions

of

these

subparameters,

see

the

description

of

the

RLS

parameter

in

z/OS

MVS

JCL

Reference.

Specifying

a

Timeout

Value

for

Lock

Requests

You

can

use

the

RLSTMOUT

parameter

of

the

JCL

EXEC

statement

to

specify

a

timeout

value

for

lock

requests.

A

VSAM

RLS

or

DFSMStvs

request

waits

the

specified

number

of

seconds

for

a

required

lock

before

the

request

times

out

and

is

assumed

to

be

in

deadlock.

For

information

about

the

RLSTMOUT

parameter,

see

the

description

of

the

EXEC

statement

in

z/OS

MVS

JCL

Reference.

Related

reading:

v

For

information

about

avoiding

deadlocks

and

additional

information

about

specifying

a

timeout

value,

see

z/OS

DFSMStvs

Planning

and

Operating

Guide.

v

z/OS

MVS

Initialization

and

Tuning

Guide.

Using

VSAM

Record-Level

Sharing

228

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|

Chapter

15.

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

This

chapter

covers

the

following

topics.

Topic

Location

EXAMINE

Command

229

How

to

Run

EXAMINE

230

Samples

of

Output

from

EXAMINE

Runs

232

This

chapter

describes

how

the

service

aid,

EXAMINE,

is

used

to

analyze

a

key-sequenced

data

set

(KSDS)

cluster

for

structural

errors.

EXAMINE

Command

EXAMINE

is

an

access

method

services

command

that

lets

users

analyze

and

collect

information

on

the

structural

consistency

of

key-sequenced

data

set

clusters.

This

service

aid

consists

of

two

tests:

INDEXTEST

and

DATATEST.

INDEXTEST

examines

the

index

component

of

the

key-sequenced

data

set

cluster

by

cross-checking

vertical

and

horizontal

pointers

contained

within

the

index

control

intervals,

and

by

performing

analysis

of

the

index

information.

It

is

the

default

test

of

EXAMINE.

DATATEST

evaluates

the

data

component

of

the

key-sequenced

data

set

cluster

by

sequentially

reading

all

data

control

intervals,

including

free

space

control

intervals.

Tests

are

then

carried

out

to

ensure

record

and

control

interval

integrity,

free

space

conditions,

spanned

record

update

capacity,

and

the

integrity

of

internal

VSAM

pointers

contained

within

the

control

interval.

For

a

description

of

the

EXAMINE

command

syntax,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Types

of

Data

Sets

EXAMINE

can

test

the

following

types

of

data

sets:

v

Key-sequenced

data

set

v

Catalog

EXAMINE

Users

EXAMINE

end

users

fall

into

two

categories:

1.

Application

Programmer/Data

Set

Owner.

These

users

want

to

know

of

any

structural

inconsistencies

in

their

data

sets,

and

they

are

directed

to

corresponding

recovery

methods

that

IBM

supports

by

the

appropriate

summary

messages.

The

users’

primary

focus

is

the

condition

of

their

data

sets;

therefore,

they

should

use

the

ERRORLIMIT(0)

parameter

of

EXAMINE

to

suppress

printing

of

detailed

error

messages.

2.

System

Programmer/Support

Personnel.

System

programmers

or

support

personnel

need

the

information

from

detailed

error

messages

to

document

or

fix

a

problem

with

a

certain

data

set.

©

Copyright

IBM

Corp.

1987,

2004

229

Users

must

have

master

level

access

to

a

catalog

or

control

level

access

to

a

data

set

to

examine

it.

Master

level

access

to

the

master

catalog

is

also

sufficient

to

examine

a

user

catalog.

How

to

Run

EXAMINE

During

an

EXAMINE

run,

the

following

considerations

for

sharing

data

sets

apply:

v

No

users

should

be

open

to

the

data

set

while

EXAMINE

runs.

v

EXAMINE

issues

the

message

“IDC01723I

ERRORS

MAY

BE

DUE

TO

CONCURRENT

ACCESS”

if

it

detects

any

errors;

the

data

set

might

have

been

open

for

output

during

testing.

This

message

does

not

necessarily

indicate

that

the

reported

errors

are

because

of

concurrent

access.

v

When

you

run

EXAMINE

against

a

catalog,

concurrent

access

might

have

occurred

without

the

message

being

issued.

Because

system

access

to

the

catalog

can

be

difficult

to

stop,

you

should

not

run

jobs

that

would

cause

an

update

to

the

catalog.

For

further

considerations

for

data

set

sharing,

see

Chapter

12,

“Sharing

VSAM

Data

Sets,”

on

page

189.

Deciding

to

Run

INDEXTEST,

DATATEST,

or

Both

Tests

INDEXTEST

reads

the

entire

index

component

of

the

KSDS

cluster.

DATATEST

reads

the

sequence

set

from

the

index

component

and

the

entire

data

component

of

the

KSDS

cluster.

So,

it

should

take

considerably

more

time

and

more

system

resources

than

INDEXTEST.

If

you

are

using

EXAMINE

to

document

an

error

in

the

data

component,

run

both

tests.

If

you

are

using

EXAMINE

to

document

an

error

in

the

index

component,

it

is

usually

not

necessary

to

run

DATATEST.

If

you

are

using

EXAMINE

to

confirm

a

data

set’s

integrity,

your

decision

to

run

one

or

both

tests

depends

on

the

time

and

resources

available.

Skipping

DATATEST

on

Major

INDEXTEST

Errors

If

you

decide

to

run

both

tests

(INDEXTEST

and

DATATEST),

INDEXTEST

runs

first.

If

INDEXTEST

finds

major

structural

errors,

DATATEST

does

not

run,

even

though

you

requested

it.

This

gives

you

a

chance

to

review

the

output

from

INDEXTEST

and

to

decide

whether

you

need

to

run

DATATEST.

If

you

want

to

run

DATATEST

unconditionally,

you

must

specify

the

NOINDEXTEST

parameter

in

the

EXAMINE

command

to

bypass

INDEXTEST.

Examining

a

User

Catalog

You

must

have

master-level

access

for

either

the

user

catalog

being

examined

or

for

the

master

catalog.

If

you

have

master-level

access

for

the

master

catalog,

the

self-describing

records

in

the

user

catalog

will

not

be

read

during

open.

If

you

have

master-level

access

only

for

the

user

catalog

being

examined,

the

catalog

self-describing

records

will

be

read

during

open.

If

the

master

catalog

is

protected

by

RACF

or

an

equivalent

product

and

you

do

not

have

alter

authority

for

the

catalog,

a

message

can

be

issued

indicating

an

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

230

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

authorization

failure

when

the

check

indicated

above

is

made.

This

is

normal,

and,

if

you

have

master

level

access

to

the

catalog

being

examined,

the

examination

can

continue.

Recommendation:

When

you

analyze

a

catalog,

use

the

VERIFY

command

before

you

use

the

EXAMINE

command.

Understanding

Message

Hierarchy

Messages

describing

errors

or

inconsistencies

are

generated

during

EXAMINE

processing

as

that

condition

is

detected.

The

detection

of

an

error

condition

can

result

in

the

generation

of

many

messages.

There

are

five

distinct

types

of

EXAMINE

error

messages:

1.

Status

and

Statistical

Messages.

This

type

of

message

tells

you

the

status

of

the

EXAMINE

operation,

such

as

the

beginning

and

completion

of

each

test.

It

provides

general

statistical

data,

such

as

the

number

of

data

records,

the

percentage

of

free

space

in

data

control

intervals

(CIs),

and

the

number

of

deleted

CIs.

The

four

status

messages

are

IDC01700I,

IDC01701I,

IDC01709I,

and

IDC01724I.

The

five

statistical

messages

are

IDC01708I,

IDC01710I,

IDC01711I,

IDC01712I,

and

IDC01722I.

2.

Supportive

(Informational)

Messages.

Supportive

messages

(all

remaining

IDC0-type

messages)

issued

by

EXAMINE

clarify

individual

data

set

structural

errors

and

provide

additional

information

pertinent

to

an

error.

3.

Individual

Data

Set

Structural

Error

Messages.

The

identification

of

an

error

is

always

reported

by

an

individual

data

set

structural

error

(IDC1-type)

message

that

can

be

immediately

followed

by

one

or

more

supportive

messages.

4.

Summary

Error

Messages.

One

or

more

summary

error

(IDC2-type)

messages

are

generated

at

the

completion

of

either

INDEXTEST

or

DATATEST

to

categorize

all

individual

data

set

structural

error

(IDC1-type)

messages

displayed

during

the

examination.

The

summary

error

message

represents

the

final

analysis

of

the

errors

found,

and

the

user

should

follow

the

course

of

recovery

action

as

prescribed

by

the

documentation.

5.

Function-Not-Performed

Messages.

Function-not-performed

messages

(all

of

the

IDC3-type

messages)

indicate

that

the

function

you

requested

cannot

be

successfully

performed

by

EXAMINE.

In

each

case,

the

test

operation

terminates

before

the

function

completes.

Function-not-performed

messages

are

issued

for

a

variety

of

reasons,

some

of

that

follows:

v

A

nonvalid

request

(such

as

an

attempt

to

examine

an

entry-sequenced

data

set

(ESDS))

v

A

physical

I/O

error

in

a

data

set

v

A

system

condition

(such

as

insufficient

storage)

v

A

system

error

(such

as

an

OBTAIN

DSCB

failed)

v

An

error

found

during

INDEXTEST

(see

“Skipping

DATATEST

on

Major

INDEXTEST

Errors”

on

page

230).

Controlling

Message

Printout

Use

the

ERRORLIMIT

parameter

in

the

EXAMINE

command

to

suppress

supportive

and

individual

data

set

structural

error

messages

during

an

EXAMINE

run.

This

parameter

indicates

the

number

of

these

error

messages

to

print.

When

EXAMINE

reaches

this

number

of

errors,

it

stops

issuing

error

messages

but

continues

to

scan

the

data

set.

ERRORLIMIT

(0)

means

that

none

of

these

messages

will

be

printed.

When

you

do

not

specify

the

ERRORLIMIT

parameter

(the

default

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

Chapter

15.

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

231

condition),

all

supportive

and

individual

data

set

structural

error

messages

are

printed.

Note

that

the

status

and

statistical

messages,

summary

messages,

and

function-not-performed

messages

are

not

under

the

control

of

ERRORLIMIT,

and

print

regardless

of

the

ERRORLIMIT

settings.

The

ERRORLIMIT

parameter

is

used

separately

by

INDEXTEST

and

DATATEST.

For

more

information

about

using

this

parameter

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Samples

of

Output

from

EXAMINE

Runs

This

section

shows

examples

of

output

from

EXAMINE

runs.

INDEXTEST

and

DATATEST

Tests

of

an

Error-Free

Data

Set

In

this

run,

INDEXTEST

and

DATATEST

are

both

run

successfully

against

an

error-free

data

set.

The

first

four

messages

tell

us

the

status

of

the

two

EXAMINE

tests,

that

performed

with

no

errors

detected.

The

next

five

messages

then

summarize

component

statistics

as

revealed

by

the

DATATEST.

IDCAMS

SYSTEM

SERVICES

EXAMINE

NAME(EXAMINE.KD05)

-

INDEXTEST

-

DATATEST

IDC01700I

INDEXTEST

BEGINS

IDC01724I

INDEXTEST

COMPLETES

NO

ERRORS

DETECTED

IDC01701I

DATATEST

BEGINS

IDC01709I

DATATEST

COMPLETES

NO

ERRORS

DETECTED

IDC01708I

45

CONTROL

INTERVALS

ENCOUNTERED

IDC01710I

DATA

COMPONENT

CONTAINS

1000

RECORDS

IDC01711I

DATA

COMPONENT

CONTAINS

0

DELETED

CONTROL

INTERVALS

IDC01712I

MAXIMUM

LENGTH

DATA

RECORD

CONTAINS

255

BYTES

IDC01722I

65

PERCENT

FREE

SPACE

IDC0001I

FUNCTION

COMPLETED,

HIGHEST

CONDITION

CODE

WAS

0

INDEXTEST

and

DATATEST

Tests

of

a

Data

Set

with

a

Structural

Error

The

user

intended

to

run

both

tests,

INDEXTEST

and

DATATEST,

but

INDEXTEST

found

an

error

in

the

sequence

set.

From

the

messages,

we

learn

the

following:

v

A

structural

problem

was

found

in

the

index

component

of

the

KSDS

cluster.

v

The

current

index

level

is

1

(that

is

the

sequence

set).

v

The

index

control

interval

(beginning

at

the

relative

byte

address

of

decimal

23552)

where

it

found

the

error

is

displayed.

v

The

error

is

located

at

offset

hexadecimal

10

into

the

control

interval.

Because

of

this

severe

INDEXTEST

error,

DATATEST

did

not

run

in

this

particular

case.

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

232

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

INDEXTEST

and

DATATEST

Tests

of

a

Data

Set

with

a

Duplicate

Key

Error

The

user

intended

to

run

both

tests,

INDEXTEST

and

DATATEST.

INDEXTEST

began

and

completed

successfully.

DATATEST

looked

at

the

data

component

of

the

KSDS

cluster

and

found

a

“duplicate

key”

error.

EXAMINE

then

displayed

the

prior

key

(11),

the

data

control

interval

at

relative

byte

address

decimal

512,

and

the

offset

address

hexadecimal

9F

into

the

control

interval

where

the

duplicate

key

was

found.

IDCAMS

SYSTEM

SERVICES

EXAMINE

NAME(EXAMINE.KD99)

INDEXTEST

DATATEST

IDC01700I

INDEXTEST

BEGINS

IDC11701I

STRUCTURAL

PROBLEM

FOUND

IN

INDEX

IDC01707I

CURRENT

INDEX

LEVEL

IS

1

IDC01720I

INDEX

CONTROL

INTERVAL

DISPLAY

AT

RBA

23552

FOLLOWS

000000

01F90301

00000000

00005E00

00000000

02000021

010701BC

2D2C2B2A

29282726

X.9........;.....................X

000020

25000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

000040

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

000060

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

000080

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

0000A0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

0000C0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

0000E0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

000100

00000000

0000F226

01240007

F7F12502

23F82601

22F72601

21F42601

20F32601

X......2.....71...8...7...4...3..X

000120

1FF6F025

021E001B

F525011D

F626011C

F526011B

F226011A

F5F12502

19F82601

X.60.....5...6...5...2...51...8..X

000140

18001CF4

F7250217

F4260116

F3260115

F4F02502

14260013

F6260112

001BF3F5

X...47...4...3...40......6.....35X

000160

250211F2

260110F3

F125020F

F826010E

F726010D

F426010C

001CF2F3

25020BF2

X...2...31...8...7...4.....23...2X

000180

F025020A

260009F6

260108F5

260107F2

26010600

40F0F0F0

F0F0F0F0

F0F0F0F0

X0......6...5...2....

00000000000X

0001A0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F1F1

002705F8

X0000000000000000000000000011...8X

0001C0

260104F7

260103F4

260102F3

260101F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

X...7...4...3...00000000000000000X

0001E0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F027

000001F9

01F90000

X0000000000000000000000.....9.9..X

IDC01714I

ERROR

LOCATED

AT

OFFSET

00000010

IDC21701I

MAJOR

ERRORS

FOUND

BY

INDEXTEST

IDC31705I

DATATEST

NOT

PERFORMED

DUE

TO

SEVERE

INDEXTEST

ERRORS

IDC3003I

FUNCTION

TERMINATED.

CONDITION

CODE

IS

12

IDC0002I

IDCAMS

PROCESSING

COMPLETE.

MAXIMUM

CONDITION

CODE

WAS

12

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

Chapter

15.

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

233

IDCAMS

SYSTEM

SERVICES

EXAMINE

NAME(EXAMINE.KD99)

INDEXTEST

DATATEST

IDC01700I

INDEXTEST

BEGINS

IDC01724I

INDEXTEST

COMPLETE

NO

ERRORS

DETECTED

IDCC17OLI

DATATEST

COMPLETE

IDC11741I

DUPLICATE

CONSECUTIVE

KEYS

FOUND

IDC01717I

DATA

KEYS

FOLLOW

000000

FOFOFOFO

FOFOFOFO

FOFOFOFO

FOFOFOFO

FOFOFOFO

FOFOFOFO

FOFOFOFO

FOFOFOFO

X00000000000000000000000000000000X

000020

FOFOFOFO

FOFOF1F1

X00000011

X

DIC01713I

DATA

CONTROL

INTERVAL

DISPLAY

AT

RBA

512

FOLLOWS

000000

00000000

0000D0C1

AB33F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

X.......A..0000000000000000000000X

000020

F0F0F0F0

F0F0F0F0

F0F0F0F0

F0F0F0F0

F1F1C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

X000000000000000011CCCCCCCCCCCCCCX

000040

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

XCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCX

000060

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

XCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCX

000080

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3C3C3C3

C3000000

0000006E

E065DEF0

XCCCCCCCCCCCCCCCCCCCCC......>...0X

0000A0

F0F0F0F0

F0F0F0F0

F0F0F0F0

0F0F0F0F

FOFOFOFO

FOFOFOFO

FOFOFOFO

FOFOFOF0

X00000000000000000000000000000000X

0000C0

F0F0F0F0

FOF1F1C4

C4C4C4C4

C4C4C4C4

C4C4C4C4

C4C4C4C4

C4C4C4C4

C4C4C4C4

X0000011DDDDDDDDDDDDDDDDDDDDDDDDDX

0000E0

C4C4C4C4

C4C4C4C4

C4C4C4C4

C4C4C4C4

C4C4C4C4

00000000

000055E2

0706F0F0

XDDDDDDDDDDDDDDDDDDDD.......S..00X

000100

F0F0F0F0

FOFOFOFO

F0F0F0F0

OFOFOFOF

F0F0F0F0

FOFOFOFO

FOFOFOFO

FOFOFOFO

X00000000000000000000000000000000X

000120

FOFOFOFO

F3F1C1C1

C1C1C100

00000000

00000000

00000000

00000000

00000000

X000031AAAAA.....................X

000140

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

000160

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

000180

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

0001A0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

0001C0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

X................................X

0001E0

00000000

00000000

00000000

00000000

00000000

00370000

5F000095

012B00C8

X........................-......HX

IDC01714I

ERROR

LOCATED

AT

OFFSET

00000C9F

IDC21703I

MAJOR

ERRORS

FOUND

BY

DATATEST

IDC0001I

FUNCTION

COMPLETED.

HIGHEST

CONDITION

CODE

WAS

8

IDC0002I

IDCAMS

PROCESSING

COMPLETE.

MAXIMUM

CONDITION

CODE

WAS

8

Checking

VSAM

Key-Sequenced

Data

Set

Clusters

for

Structural

Errors

234

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

This

section

covers

general

guidelines

for

coding

VSAM

user-written

exit

routines

and

specific

information

about

coding

the

following

routines.

Topic

Location

Guidelines

for

Coding

Exit

Routines

235

EODAD

Exit

Routine

to

Process

End

of

Data

239

EXCEPTIONEXIT

Exit

Routine

240

JRNAD

Exit

Routine

to

Journalize

Transactions

241

LERAD

Exit

Routine

to

Analyze

Logical

Errors

247

RLSWAIT

Exit

Routine

248

SYNAD

Exit

Routine

to

Analyze

Physical

Errors

250

UPAD

Exit

Routine

for

User

Processing

252

User-Security-Verification

Routine

255

Guidelines

for

Coding

Exit

Routines

You

can

supply

VSAM

exit

routines

to

do

the

following

tasks:

v

Analyze

logical

errors

v

Analyze

physical

errors

v

Perform

end-of-data

processing

v

Record

transactions

made

against

a

data

set

v

Perform

special

user

processing

v

Perform

wait

user

processing

v

Perform

user-security

verification.

VSAM

user-written

exit

routines

are

identified

by

macro

parameters

in

access

methods

services

commands.

You

can

use

the

EXLST

VSAM

macro

to

create

an

exit

list.

EXLST

parameters

EODAD,

JRNAD,

LERAD,

SYNAD

and

UPAD

are

used

to

specify

the

addresses

of

your

user-written

routines.

Only

the

exits

marked

active

are

executed.

You

can

use

access

methods

services

commands

to

specify

the

addresses

of

user-written

routines

to

perform

exception

processing

and

user-security

verification

processing.

Related

reading:

v

For

information

about

the

EXLST

macro,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

v

For

information

about

exits

from

access

methods

services

commands,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Table

13

on

page

236

shows

the

exit

locations

available

from

VSAM.

©

Copyright

IBM

Corp.

1987,

2004

235

Table

13.

VSAM

user-written

exit

routines

Exit

routine

When

available

Where

specified

Batch

override

After

you

issue

an

IDCAMS

SHCDS

PERMITNONRLSUPDATE

command

while

backout

work

was

owed

IGW8PNRU

exit

in

LINKLIB

or

LPALIB

End-of-data-set

When

no

more

sequential

records

or

blocks

are

available

EODAD

parameter

of

the

EXLST

macro

Exception

exit

After

an

uncorrectable

input/output

error

EXCEPTIONEXIT

parameter

in

access

methods

services

commands

Journalize

transactions

against

a

data

set

After

an

input/output

completion

or

error,

change

to

buffer

contents,

shared

or

nonshared

request,

program

issues

GET,

PUT,

ERASE,

shift

in

data

in

a

control

interval

JRNAD

parameter

of

the

EXLST

macro

Analyze

logical

errors

After

an

uncorrectable

logical

error

LERAD

parameter

of

the

EXLST

macro

Wait

For

non-cross-memory

mode

callers

using

RLS

RLSWAIT

parameter

of

the

EXLST

macro

Error

analysis

After

an

uncorrectable

input/output

error

SYNAD

parameter

of

the

EXLST

macro

User

processing

WAIT

for

I/O

completion

or

for

a

serially

reusable

request

UPAD

parameter

of

the

EXLST

macro

User

security

verification

When

opening

a

VSAM

data

set

AUTHORIZATION

parameter

in

access

methods

services

commands

Programming

Guidelines

Usually,

you

should

observe

these

guidelines

in

coding

a

routine:

v

Code

your

routine

reentrant.

v

Save

and

restore

registers

(see

individual

routines

for

other

requirements).

v

Be

aware

of

registers

used

by

the

VSAM

request

macros.

v

Be

aware

of

the

addressing

mode

(24-bit

or

31-bit)

in

which

your

exit

routine

will

receive

control.

v

Determine

if

VSAM

or

your

program

should

load

the

exit

routine.

A

user

exit

that

is

loaded

by

VSAM

is

invoked

in

the

addressing

mode

specified

when

the

module

was

link

edited.

A

user

exit

that

is

not

loaded

by

VSAM

receives

control

in

the

same

addressing

mode

as

the

issuer

of

the

VSAM

record-management,

OPEN,

or

CLOSE

request

that

causes

the

exit

to

be

taken.

It

is

the

user’s

responsibility

to

ensure

that

the

exit

is

written

for

the

correct

addressing

mode.

Your

exit

routine

can

be

loaded

within

your

program

or

by

using

JOBLIB

or

STEPLIB

with

the

DD

statement

to

point

to

the

library

location

of

your

exit

routine.

Related

reading:

When

you

code

VSAM

user

exit

routines,

you

should

have

available

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

and

z/OS

DFSMS

Access

Method

Services

for

Catalogs

and

be

familiar

with

their

contents.

Coding

VSAM

User-Written

Exit

Routines

236

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Multiple

Request

Parameter

Lists

or

Data

Sets

If

the

exit

routine

is

used

by

a

program

that

is

doing

asynchronous

processing

with

multiple

request

parameter

lists

(RPL)

or

if

the

exit

routine

is

used

by

more

than

one

data

set,

you

must

code

the

exit

routine

so

that

it

can

handle

an

entry

made

before

the

previous

entry’s

processing

is

completed.

Saving

and

restoring

registers

in

the

exit

routine,

or

by

other

routines

called

by

the

exit

routine,

is

best

accomplished

by

coding

the

exit

routine

reentrant.

Another

way

of

doing

this

is

to

develop

a

technique

for

associating

a

unique

save

area

with

each

RPL.

If

the

LERAD,

EODAD,

or

SYNAD

exit

routine

reuses

the

RPL

passed

to

it,

you

should

be

aware

of

these

factors:

v

The

exit

routine

is

called

again

if

the

request

issuing

the

reused

RPL

results

in

the

same

exception

condition

that

caused

the

exit

routine

to

be

entered

originally.

v

The

original

feedback

code

is

replaced

with

the

feedback

code

that

indicates

the

status

of

the

latest

request

issued

against

the

RPL.

If

the

exit

routine

returns

to

VSAM,

VSAM

(when

it

returns

to

the

user’s

program)

sets

register

15

to

also

indicate

the

status

of

the

latest

request.

v

JRNAD,

UPAD,

and

exception

exits

are

extensions

of

VSAM

and,

therefore,

must

return

to

VSAM

in

the

same

processing

mode

in

which

they

were

entered

(that

is,

cross-memory,

SRB,

or

task

mode).

Return

to

a

Main

Program

Six

exit

routines

can

be

entered

when

your

main

program

issues

a

VSAM

request

macro

(GET,

PUT,

POINT,

and

ERASE)

and

the

macro

has

not

completed:

LERAD,

SYNAD,

EODAD,

UPAD,

RLSWAIT

or

the

EXCEPTIONEXIT

routine.

Entering

the

LERAD,

SYNAD,

EODAD,

or

EXCEPTIONEXIT

indicates

that

the

macro

failed

to

complete

successfully.

When

your

exit

routine

completes

its

processing,

it

can

return

to

your

main

program

in

one

of

two

ways:

v

The

exit

routine

can

return

to

VSAM

(by

the

return

address

in

register

14).

VSAM

then

returns

to

your

program

at

the

instruction

following

the

VSAM

request

macro

that

failed

to

complete

successfully.

This

is

the

easier

way

to

return

to

your

program.

If

your

error

recovery

and

correction

process

needs

to

reissue

the

failing

VSAM

macro

against

the

RPL

to

retry

the

failing

request

or

to

correct

it:

–

Your

exit

routine

can

correct

the

RPL

(using

MODCB),

then

set

a

switch

to

indicate

to

your

main

program

that

the

RPL

is

now

ready

to

retry.

When

your

exit

routine

completes

processing,

it

can

return

to

VSAM

(via

register

14),

which

returns

to

your

main

program.

Your

main

program

can

then

test

the

switch

and

reissue

the

VSAM

macro

and

RPL.

–

Your

exit

routine

can

issue

a

GENCB

macro

to

build

an

RPL,

and

then

copy

the

RPL

(for

the

failing

VSAM

macro)

into

the

newly

built

RPL.

At

this

point,

your

exit

routine

can

issue

VSAM

macros

against

the

newly

built

RPL.

When

your

exit

routine

completes

processing,

it

can

return

to

VSAM

(using

register

14),

which

returns

to

your

main

program.
v

The

exit

routine

can

determine

the

appropriate

return

point

in

your

program,

then

branch

directly

to

that

point.

Note

that

when

VSAM

enters

your

exit

routine,

none

of

the

registers

contains

the

address

of

the

instruction

following

the

failing

macro.

You

are

required

to

use

this

method

to

return

to

your

program

if,

during

the

error

recovery

and

correction

process,

your

exit

routine

issued

a

GET,

PUT,

POINT,

or

ERASE

macro

that

refers

to

the

RPL

referred

to

by

the

failing

VSAM

macro.

(That

is,

the

RPL

has

been

reissued

by

the

exit

routine.)

In

this

case,

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

237

VSAM

has

lost

track

of

its

reentry

point

to

your

main

program.

If

the

exit

routine

returns

to

VSAM,

VSAM

issues

an

error

return

code.

IGW8PNRU

Routine

for

Batch

Override

To

prevent

damage

to

a

data

set,

DFSMStvs

defers

the

decision

whether

to

back

out

a

specific

record

to

an

installation

exit,

the

batch

override

exit.

Transaction

VSAM

calls

this

optional

exit

when

it

backs

out

a

unit

of

recovery

(UR)

that

involves

a

data

set

that

might

have

been

impacted

by

the

IDCAMS

SHCDS

PERMITNONRLSUPDATE

command.

The

exit

is

called

once

for

each

affected

undo

log

record

for

the

data

set.

The

purpose

of

this

exit

is

to

return

to

DFSMStvs

with

an

indication

of

whether

or

not

the

backout

should

be

applied.

The

input

is

an

undo

log

record

(mapped

by

IGWUNLR)

and

a

data

set

name.

The

output

is

a

Boolean

response

of

whether

or

not

to

do

the

backout,

returned

in

register

15:

v

0

(zero)

means

do

not

back

out

this

record.

v

4

means

back

out

this

record.

The

exit

is

given

control

in

the

following

environment:

v

INTERRUPTS

enabled

v

STATE

and

KEY

problem

program

state,

key

8

v

ASC

Mode

P=H=S,

RLS

address

space

v

AMODE,

RMODE:

No

restrictions

v

LOCKS:

None

held

v

The

exit

is

reentrant

Register

Contents

Table

14

gives

the

contents

of

the

registers

when

VSAM

exits

to

the

IGW8PNRU

routine.

Table

14.

Contents

of

registers

at

entry

to

IGW8PNRU

exit

routine

Register

Contents

0

Not

applicable.

1

Address

of

IGWUNLR

(in

key

8

storage).

Address

of

an

area

to

be

used

as

an

autodata

area

(in

key

8

storage).

3

Length

of

the

autodata

area.

4-13

Unpredictable.

Register

13,

by

convention,

contains

the

address

of

your

processing

program’s

72-byte

save

area,

which

must

not

be

used

as

a

save

area

by

the

IGW8PNRU

routine

if

it

returns

control

to

VSAM.

14

Return

address

to

VSAM.

15

Entry

address

to

the

IGW8PNRU

routine.

Programming

Considerations

The

following

programming

considerations

apply

to

the

batch

override

exit:

v

The

name

of

this

exit

must

be

IGW8PNRU.

v

The

exit

must

be

loadable

from

any

system

that

might

do

peer

recovery

for

another

system.

Coding

VSAM

User-Written

Exit

Routines

238

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

The

IGW8PNRU

module

is

loaded

by

DFSMStvs

and,

therefore,

must

reside

in

LINKLIB

or

LPALIB.

If

the

load

fails,

DFSMStvs

issues

a

message.

v

If

it

does

not

find

the

batch

override

exit,

DFSMStvs

shunts

any

UR

with

a

pending

backout

for

a

data

set

that

was

accessed

through

PERMITNONRLSUPDATE.

v

If

your

installation

needs

to

fix

a

code

error

or

enhance

the

function

of

the

exit,

you

need

to

restart

DFSMStvs

to

enable

the

new

exit.

v

The

exit

can

issue

SVC

instructions.

DFSMStvs

establishes

an

ESTAE

recovery

environment

before

calling

the

exit

to

protect

the

RLS

address

space

from

failures

in

the

exit.

If

the

exit

fails

or

an

attempt

to

invoke

it

fails,

the

UR

is

shunted.

A

dump

is

taken,

and

the

exit

is

disabled

until

the

next

DFSMStvs

restart,

but

the

server

is

not

recycled.

If

the

exit

abnormally

ended,

it

might

result

in

a

dump

with

a

title

like

this:

DUMP

TITLE=COMPID=?????,CSECT=????????+FFFF,DATE=????????,MAINT

ID=????????,ABND=0C4,RC=00000000,RSN=00000004

If

this

happens,

investigate

why

the

exit

abended.

Recommendation:

It

is

possible

for

this

exit

to

perform

other

processing,

but

IBM

strongly

recommends

that

the

exit

not

attempt

to

update

any

recoverable

resources.

When

your

IGW8PNRU

routine

completes

processing,

return

to

your

main

program

as

described

in

“Return

to

a

Main

Program”

on

page

237.

EODAD

Exit

Routine

to

Process

End

of

Data

VSAM

exits

to

an

EODAD

routine

when

an

attempt

is

made

to

sequentially

retrieve

or

point

to

a

record

beyond

the

last

record

in

the

data

set

(one

with

the

highest

key

for

keyed

access

and

the

one

with

the

highest

RBA

for

addressed

access).

VSAM

does

not

take

the

exit

for

direct

requests

that

specify

a

record

beyond

the

end.

If

the

EODAD

exit

is

not

used,

the

condition

is

considered

a

logical

error

(FDBK

code

X'04')

and

can

be

handled

by

the

LERAD

routine,

if

one

is

supplied.

See

“LERAD

Exit

Routine

to

Analyze

Logical

Errors”

on

page

247.

Register

Contents

Table

15

gives

the

contents

of

the

registers

when

VSAM

exits

to

the

EODAD

routine.

Table

15.

Contents

of

registers

at

entry

to

EODAD

exit

routine

Register

Contents

0

Unpredictable.

1

Address

of

the

RPL

that

defines

the

request

that

occasioned

VSAM’s

reaching

the

end

of

the

data

set.

The

register

must

contain

this

address

if

you

return

to

VSAM.

2-13

Unpredictable.

Register

13,

by

convention,

contains

the

address

of

your

processing

program’s

72-byte

save

area,

which

must

not

be

used

as

a

save

area

by

the

EODAD

routine

if

it

returns

control

to

VSAM.

14

Return

address

to

VSAM.

15

Entry

address

to

the

EODAD

routine.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

239

Programming

Considerations

The

typical

actions

of

an

EODAD

routine

are

to:

v

Examine

RPL

for

information

you

need,

for

example,

type

of

data

set

v

Issue

completion

messages

v

Close

the

data

set

v

Terminate

processing

without

returning

to

VSAM.

If

the

routine

returns

to

VSAM

and

another

GET

request

is

issued

for

access

to

the

data

set,

VSAM

exits

to

the

LERAD

routine.

If

a

processing

program

retrieves

records

sequentially

with

a

request

defined

by

a

chain

of

RPLs,

the

EODAD

routine

must

determine

whether

the

end

of

the

data

set

was

reached

for

the

first

RPL

in

the

chain.

If

not,

then

one

or

more

records

have

been

retrieved

but

not

yet

processed

by

the

processing

program.

The

type

of

data

set

whose

end

was

reached

can

be

determined

by

examining

the

RPL

for

the

address

of

the

access

method

control

block

that

connects

the

program

to

the

data

set

and

testing

its

attribute

characteristics.

If

the

exit

routine

issues

GENCB,

MODCB,

SHOWCB,

or

TESTCB

and

returns

to

VSAM,

it

must

provide

a

save

area

and

restore

registers

13

and

14,

which

are

used

by

these

macros.

When

your

EODAD

routine

completes

processing,

return

to

your

main

program

as

described

in

“Return

to

a

Main

Program”

on

page

237.

EXCEPTIONEXIT

Exit

Routine

You

can

provide

an

exception

exit

routine

to

monitor

I/O

errors

associated

with

a

data

set.

You

specify

the

name

of

your

routine

via

the

access

method

services

DEFINE

command

using

the

EXCEPTIONEXIT

parameter

to

specify

the

name

of

your

user-written

exit

routine.

Register

Contents

Table

16

gives

the

contents

of

the

registers

when

VSAM

exits

to

the

EXCEPTIONEXIT

routine.

Table

16.

Contents

of

registers

at

entry

to

EXCEPTIONEXIT

routine

Register

Contents

0

Unpredictable.

1

Address

of

the

RPL

that

contains

a

feedback

return

code

and

the

address

of

a

message

area,

if

any.

2-13

Unpredictable.

Register

13,

by

convention,

contains

the

address

of

your

processing

program’s

72-byte

save

area,

which

must

not

be

used

by

the

routine

if

it

returns

control

to

VSAM.

14

Return

address

to

VSAM.

15

Entry

address

to

the

exception

exit

routine.

Programming

Considerations

The

exception

exit

is

taken

for

the

same

errors

as

a

SYNAD

exit.

If

you

have

both

an

active

SYNAD

routine

and

an

EXCEPTIONEXIT

routine,

the

exception

exit

routine

is

processed

first.

Coding

VSAM

User-Written

Exit

Routines

240

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

exception

exit

is

associated

with

the

attributes

of

the

data

set

(specified

by

the

DEFINE)

and

is

loaded

on

every

call.

Your

exit

must

reside

in

the

LINKLIB

and

the

exit

cannot

be

called

when

VSAM

is

in

cross-memory

mode.

When

your

exception

exit

routine

completes

processing,

return

to

your

main

program

as

described

in

“Return

to

a

Main

Program”

on

page

237.

Related

reading:

For

information

about

how

exception

exits

are

established,

changed,

or

nullified,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

JRNAD

Exit

Routine

to

Journalize

Transactions

A

JRNAD

exit

routine

can

be

provided

to

record

transactions

against

a

data

set,

to

keep

track

of

changes

in

the

RBAs

of

records,

and

to

monitor

control

interval

splits.

It

is

only

available

for

VSAM

shared

resource

buffering.

When

using

the

JRNAD

exit

routine

with

compressed

data

sets,

all

RBAs

and

data

length

values

returned

represent

compressed

data.

For

shared

resources,

you

can

use

a

JRNAD

exit

routine

to

deny

a

request

for

a

control

interval

split.

VSAM

takes

the

JRNAD

exit

each

time

one

of

the

following

occurs:

v

The

processing

program

issues

a

GET,

PUT,

or

ERASE

v

Data

is

shifted

right

or

left

in

a

control

interval

or

is

moved

to

another

control

interval

to

accommodate

a

records

being

deleted,

inserted,

shortened,

or

lengthened

v

An

I/O

error

occurs

v

An

I/O

completion

occurs

v

A

shared

or

nonshared

request

is

received

v

The

buffer

contents

are

to

be

changed.

Restriction:

The

JRNAD

exit

is

not

supported

by

RLS.

Register

Contents

Table

17

gives

the

contents

of

the

registers

when

VSAM

exits

to

the

JRNAD

routine.

Table

17.

Contents

of

registers

at

entry

to

JRNAD

exit

routine

Register

Contents

0

Byte

0—the

subpool

ID

token

created

by

a

BLDVRP

request.

Bytes

2

-

3—the

relative

buffer

number,

that

is,

the

buffer

array

index

within

a

buffer

pool.

1

Address

of

a

parameter

list

built

by

VSAM.

2-3

Unpredictable.

4

Address

of

buffer

control

block

(BUFC).

5-13

Unpredictable.

14

Return

address

to

VSAM.

15

Entry

address

to

the

JRNAD

routine.

Programming

Considerations

If

the

JRNAD

is

taken

for

I/O

errors,

a

journal

exit

can

zero

out,

or

otherwise

alter,

the

physical-error

return

code,

so

that

a

series

of

operations

can

continue

to

completion,

even

though

one

or

more

of

the

operations

failed.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

241

The

contents

of

the

parameter

list

built

by

VSAM,

pointed

to

by

register

1,

can

be

examined

by

the

JRNAD

exit

routine,

which

is

described

in

Table

18

on

page

245.

If

the

exit

routine

issues

GENCB,

MODCB,

SHOWCB,

or

TESTCB,

it

must

restore

register

14,

which

is

used

by

these

macros,

before

it

returns

to

VSAM.

If

the

exit

routine

uses

register

1,

it

must

restore

it

with

the

parameter

list

address

before

returning

to

VSAM.

(The

routine

must

return

for

completion

of

the

request

that

caused

VSAM

to

exit.)

The

JRNAD

exit

must

be

indicated

as

active

before

the

data

set

for

which

the

exit

is

to

be

used

is

opened,

and

the

exit

must

not

be

made

inactive

during

processing.

If

you

define

more

than

one

access

method

control

block

for

a

data

set

and

want

to

have

a

JRNAD

routine,

the

first

ACB

you

open

for

the

data

set

must

specify

the

exit

list

that

identifies

the

routine.

When

the

data

set

being

processed

is

extended

addressable,

the

JRNAD

exits

dealing

with

RBAs

are

not

taken

or

are

restricted

due

to

the

increase

in

the

size

of

the

field

required

to

provide

addressability

to

RBAs

which

may

be

greater

than

4

GB.

The

restrictions

are

for

the

entire

data

set

without

regard

to

the

specific

RBA

value.

Journalizing

Transactions

For

journalizing

transactions

(when

VSAM

exits

because

of

a

GET,

PUT,

or

ERASE),

you

can

use

the

SHOWCB

macro

to

display

information

in

the

request

parameter

list

about

the

record

that

was

retrieved,

stored,

or

deleted

(FIELDS=(AREA,KEYLEN,RBA,RECLEN),

for

example).

You

can

also

use

the

TESTCB

macro

to

find

out

whether

a

GET

or

a

PUT

was

for

update

(OPTCD=UPD).

If

your

JRNAD

routine

only

journals

transactions,

it

should

ignore

reason

X'0C'

and

return

to

VSAM;

conversely,

it

should

ignore

reasons

X'00',

X'04',

and

X'08'

if

it

records

only

RBA

changes.

RBA

Changes

For

recording

RBA

changes,

you

must

calculate

how

many

records

there

are

in

the

data

being

shifted

or

moved,

so

you

can

keep

track

of

the

new

RBA

for

each.

If

all

the

records

are

the

same

length,

you

calculate

the

number

by

dividing

the

record

length

into

the

number

of

bytes

of

data

being

shifted.

If

record

length

varies,

you

can

calculate

the

number

by

using

a

table

that

not

only

identifies

the

records

(by

associating

a

record’s

key

with

its

RBA),

but

also

gives

their

length.

You

should

provide

a

routine

to

keep

track

of

RBA

changes

caused

by

control

interval

and

control

area

splits.

RBA

changes

that

occur

through

keyed

access

to

a

key-sequenced

data

set

must

also

be

recorded

if

you

intend

to

process

the

data

set

later

by

direct-addressed

access.

Control

Interval

Splits

Some

control

interval

splits

involve

data

being

moved

to

two

new

control

intervals,

and

control

area

splits

normally

involve

many

control

intervals’

contents

being

moved.

In

these

cases,

VSAM

exits

to

the

JRNAD

routine

for

each

separate

movement

of

data

to

a

new

control

interval.

You

might

also

want

to

use

the

JRNAD

exit

to

maintain

shared

or

exclusive

control

over

certain

data

or

index

control

intervals;

and

in

some

cases,

in

your

exit

routine

you

can

reject

the

request

for

certain

processing

of

the

control

intervals.

For

Coding

VSAM

User-Written

Exit

Routines

242

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

example,

if

you

used

this

exit

to

maintain

information

about

a

data

set

in

a

shared

environment,

you

might

reject

a

request

for

a

control

interval

or

control

area

split

because

the

split

might

adversely

affect

other

users

of

the

data

set.

Figure

33

is

a

skeleton

program

USERPROG

with

a

user

exit

routine

USEREXIT.

It

demonstrates

the

use

of

the

JRNAD

exit

routine

to

cancel

a

request

for

a

control

interval

or

control

area

split.

USERPROG

CSECT

SAVE(R14,R12)

Standard

entry

code

.

.

.

BLDVRP

BUFFERS=(512(3)),

Build

resource

pool

X

KEYLEN=4,

X

STRNO=4,

X

TYPE=LSR,

X

SHRPOOL=1,

X

RMODE31=ALL

OPEN

(DIRACB)

Logically

connect

KSDS1

.

.

.

PUT

RPL=DIRRPL

This

PUT

causes

the

exit

routine

USEREXIT

to

be

taken

with

an

exit

code

X’50’

if

there

is

a

CI

or

CA

split

LTR

R15,R15

Check

return

code

from

PUT

BZ

NOCANCEL

Retcode

=

0

if

USEREXIT

did

not

cancel

CI/CA

split

=

8

if

cancel

was

issued,

if

we

know

a

CI

or

CA

split

occurred

.

.

Process

the

cancel

situation

.

NOCANCEL

.

Process

the

noncancel

situation

.

.

CLOSE

(DIRACB)

Disconnect

KSDS1

DLVRP

TYPE=LSR,SHRPOOL=1

Delete

the

resource

pool

.

.

.

RETURN

Return

to

caller.

.

.

.

DIRACB

ACB

AM=VSAM,

X

DDNAME=KSDS1,

X

BUFND=3,

X

BUFNI=2,

X

MACRF=(KEY,DDN,SEQ,DIR,OUT,LSR),

X

SHRPOOL=1,

X

EXLST=EXITLST

Figure

33.

Example

of

a

JRNAD

exit

(Part

1

of

2)

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

243

Parameter

List

The

parameter

list

built

by

VSAM

contains

reason

codes

to

indicate

why

the

exit

was

taken,

and

also

locations

where

you

can

specify

return

codes

for

VSAM

to

take

or

not

take

an

action

on

returning

from

your

routine.

The

information

provided

in

the

parameter

list

varies

depending

on

the

reason

the

exit

was

taken.

Table

18

shows

the

contents

of

the

parameter

list.

The

parameter

list

will

reside

in

the

same

area

as

the

VSAM

control

blocks,

either

above

or

below

the

16

MB

line.

For

example,

if

the

VSAM

data

set

was

opened

and

the

ACB

stated

RMODE31=CB,

the

exit

parameter

list

will

reside

above

the

16

MB

line.

To

access

a

parameter

list

that

resides

above

the

16

MB

line,

you

will

need

to

use

31-bit

addressing.

*

DIRRPL

RPL

AM=VSAM,

X

ACB=DIRACB,

X

AREA=DATAREC,

X

AREALEN=128,

X

ARG=KEYNO,

X

KEYLEN=4,

X

OPTCD=(KEY,DIR,FWD,SYN,NUP,WAITX),

X

RECLEN=128

*

DATAREC

DC

CL128’DATA

RECORD

TO

BE

PUT

TO

KSDS1’

KEYNO

DC

F’0’

Search

key

argument

for

RPL

EXITLST

EXLST

AM=VSAM,JRNAD=(JRNADDR,A,L)

JRNADDR

DC

CL8’USEREXIT’

Name

of

user

exit

routine

END

End

of

USERPROG

USEREXIT

CSECT

On

entry

to

this

exit

routine,

R1

points

to

the

JRNAD

parameter

list

and

R14

points

back

to

VSAM.

.

.

Nonstandard

entry

code

--

need

not

save

.

the

registers

at

caller’s

save

area

and,

.

since

user

exit

routines

are

reentrant

for

.

most

applications,

save

R1

and

R14

at

some

.

registers

only

if

R1

and

R14

are

to

be

.

destroyed

.

CLI

20(R1),X’50’

USEREXIT

called

because

of

CI/CA

split?

BNE

EXIT

No.

Return

to

VSAM

MVI

21(R1),X’8C’

Tell

VSAM

that

user

wants

to

cancel

split

.

.

.

EXIT

.

Nonstandard

exit

code

--

restore

R1

and

.

R14

from

save

registers

BR

R14

Return

to

VSAM

which

returns

to

USERPROG

if

cancel

is

specified

END

End

of

USEREXIT

Figure

33.

Example

of

a

JRNAD

exit

(Part

2

of

2)

Coding

VSAM

User-Written

Exit

Routines

244

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

18.

Contents

of

parameter

list

built

by

VSAM

for

the

JRNAD

exit

Offset

Bytes

Description

0(X'0')

4

Address

of

the

RPL

that

defines

the

request

that

caused

VSAM

to

exit

to

the

routine.

4(X'4')

4

Address

of

a

5-byte

field

that

identifies

the

data

set

being

processed.

This

field

has

the

format:

4

bytes

Address

of

the

access

method

control

block

specified

by

the

RPL

that

defines

the

request

occasioned

by

the

JRNAD

exit.

1

byte

Indication

of

whether

the

data

set

is

the

data

(X'01')

or

the

index

(X'02')

component.

8(X'8')

4

Variable,

depends

on

the

reason

indicator

at

offset

20:

Offset

20

Contents

at

offset

8

X'0C'

The

RBA

of

the

first

byte

of

data

that

is

being

shifted

or

moved.

X'20'

The

RBA

of

the

beginning

of

the

control

area

about

to

be

split.

X'24'

The

address

of

the

I/O

buffer

into

which

data

was

going

to

be

read.

X'28'

The

address

of

the

I/O

buffer

from

which

data

was

going

to

be

written.

X'2C'

The

address

of

the

I/O

buffer

that

contains

the

control

interval

contents

that

are

about

to

be

written.

X'30'

Address

of

the

buffer

control

block

(BUFC)

that

points

to

the

buffer

into

which

data

is

about

to

be

read

under

exclusive

control.

X'34'

Address

of

BUFC

that

points

to

the

buffer

into

which

data

is

about

to

be

read

under

shared

control.

X'38'

Address

of

BUFC

that

points

to

the

buffer

which

is

to

be

acquired

in

exclusive

control.

The

buffer

is

already

in

the

buffer

pool.

X'3C'

Address

of

the

BUFC

that

points

to

the

buffer

which

is

to

be

built

in

the

buffer

pool

in

exclusive

control.

X'40'

Address

of

BUFC

which

points

to

the

buffer

whose

exclusive

control

has

just

been

released.

X'44'

Address

of

BUFC

which

points

to

the

buffer

whose

contents

have

been

made

invalid.

X'48'

Address

of

the

BUFC

which

points

to

the

buffer

into

which

the

READ

operation

has

just

been

completed.

X'4C'

Address

of

the

BUFC

which

points

to

the

buffer

from

which

the

WRITE

operation

has

just

been

completed.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

245

Table

18.

Contents

of

parameter

list

built

by

VSAM

for

the

JRNAD

exit

(continued)

Offset

Bytes

Description

12(X'C')

4

Variable,

depends

on

the

reason

indicator

at

offset

20:

Offset

20

Contents

at

offset

12

X'0C'

The

number

of

bytes

of

data

that

is

being

shifted

or

moved

(this

number

does

not

include

free

space,

if

any,

or

control

information,

except

for

a

control

area

split,

when

the

entire

contents

of

a

control

interval

are

moved

to

a

new

control

interval.)

X'20'

Unpredictable.

X'24'

Unpredictable.

X'28'

Bits

0-31

correspond

with

transaction

IDs

0-31.

Bits

set

to

1

indicate

that

the

buffer

that

was

being

written

when

the

error

occurred

was

modified

by

the

corresponding

transactions.

You

can

set

additional

bits

to

1

to

tell

VSAM

to

keep

the

contents

of

the

buffer

until

the

corresponding

transactions

have

modified

the

buffer.

X'2C'

The

size

of

the

control

interval

whose

contents

are

about

to

be

written.

X'30'

Zero.

X'34'

Zero.

X'38'

Zero.

X'3C'

Size

of

the

buffer

which

is

to

be

built

in

the

buffer

pool

in

exclusive

control.

X'48'

Size

of

the

buffer

into

which

the

READ

operation

has

just

been

completed.

X'4C'

Size

of

the

buffer

from

which

the

WRITE

operation

has

just

been

completed.

16(X'10')

4

Variable,

depends

on

the

reason

indicator

at

offset

20:

Offset

20

Contents

at

offset

16

X'0C'

The

RBA

of

the

first

byte

to

which

data

is

being

shifted

or

moved.

X'20'

The

RBA

of

the

last

byte

in

the

control

area

about

to

be

split.

X'24'

The

fourth

byte

contains

the

physical

error

code

from

the

RPL

FDBK

field.

You

use

this

fullword

to

communicate

with

VSAM.

Setting

it

to

0

indicates

that

VSAM

is

to

ignore

the

error,

bypass

error

processing,

and

let

the

processing

program

continue.

Leaving

it

nonzero

indicates

that

VSAM

is

to

continue

as

usual:

terminate

the

request

that

occasioned

the

error

and

proceed

with

error

processing,

including

exiting

to

a

physical

error

analysis

routine.

X'28'

Same

as

for

X'24'.

X'2C'

The

RBA

of

the

control

interval

whose

contents

are

about

to

be

written.

X'48'

Unpredictable.

X'4C'

Unpredictable.

Coding

VSAM

User-Written

Exit

Routines

246

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

18.

Contents

of

parameter

list

built

by

VSAM

for

the

JRNAD

exit

(continued)

Offset

Bytes

Description

20(X'14')

1

Indication

of

the

reason

VSAM

exited

to

the

JRNAD

routine:

X'00'

GET

request.

X'04'

PUT

request.

X'08'

ERASE

request.

X'0C'

RBA

change.

X'10'

Read

spanned

record

segment.

X'14'

Write

spanned

record

segment.

X'18'

Reserved.

X'1C'

Reserved.

The

following

codes

are

for

shared

resources

only:

X'20'

Control

area

split.

X'24'

Input

error.

X'28'

Output

error.

X'2C'

Buffer

write.

X'30'

A

data

or

index

control

interval

is

about

to

be

read

in

exclusive

control.

X'34'

A

data

or

index

control

interval

is

about

to

be

read

in

shared

status.

X'38'

Acquire

exclusive

control

of

a

control

interval

already

in

the

buffer

pool.

X'3C'

Build

a

new

control

interval

for

the

data

set

and

hold

it

in

exclusive

control.

X'40'

Exclusive

control

of

the

indicated

control

interval

already

has

been

released.

X'44'

Contents

of

the

indicated

control

interval

have

been

made

invalid.

X'48'

Read

completed.

X'4C'

Write

completed.

X'50'

Control

interval

or

control

area

split.

X'54'–X'FF'

Reserved.

21(X'15')

1

JRNAD

exit

code

set

by

the

JRNAD

exit

routine.

Indication

of

action

to

be

taken

by

VSAM

after

resuming

control

from

JRNAD

(for

shared

resources

only):

X'80'

Do

not

write

control

interval.

X'84'

Treat

I/O

error

as

no

error.

X'88'

Do

not

read

control

interval.

X'8C'

Cancel

the

request

for

control

interval

or

control

area

split.

LERAD

Exit

Routine

to

Analyze

Logical

Errors

A

LERAD

exit

routine

should

examine

the

feedback

field

in

the

request

parameter

list

to

determine

what

logical

error

occurred.

What

the

routine

does

after

determining

the

error

depends

on

your

knowledge

of

the

kinds

of

things

in

the

processing

program

that

can

cause

the

error.

VSAM

does

not

call

the

LERAD

exit

if

the

RPL

feedback

code

is

64.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

247

Register

Contents

Table

19

gives

the

contents

of

the

registers

when

VSAM

exits

to

the

LERAD

exit

routine.

Table

19.

Contents

of

registers

at

entry

to

LERAD

exit

routine

Register

Contents

0

Unpredictable.

1

Address

of

the

RPL

that

contains

the

feedback

field

the

routine

should

examine.

The

register

must

contain

this

address

if

you

return

to

VSAM.

2-13

Unpredictable.

Register

13,

by

convention,

contains

the

address

of

your

processing

program’s

72-byte

save

area,

which

must

not

be

used

as

a

save

area

by

the

LERAD

routine

if

the

routine

returns

control

to

VSAM.

14

Return

address

to

VSAM.

15

Entry

address

to

the

LERAD

routine.

The

register

does

not

contain

the

logical-error

indicator.

Programming

Considerations

The

typical

actions

of

a

LERAD

routine

are:

1.

Examine

the

feedback

field

in

the

RPL

to

determine

what

error

occurred

2.

Determine

what

action

to

take

based

on

error

3.

Close

the

data

set

4.

Issue

completion

messages

5.

Terminate

processing

and

exit

VSAM

or

return

to

VSAM.

If

the

LERAD

exit

routine

issues

GENCB,

MODCB,

SHOWCB,

or

TESTCB

and

returns

to

VSAM,

it

must

restore

registers

1,

13,

and

14,

which

are

used

by

these

macros.

It

must

also

provide

two

save

areas;

one,

whose

address

should

be

loaded

into

register

13

before

the

GENCB,

MODCB,

SHOWCB,

or

TESTCB

is

issued,

and

the

second,

to

separately

store

registers

1,

13,

and

14.

If

the

error

cannot

be

corrected,

close

the

data

set

and

either

terminate

processing

or

return

to

VSAM.

If

a

logical

error

occurs

and

no

LERAD

exit

routine

is

provided

(or

the

LERAD

exit

is

inactive),

VSAM

returns

codes

in

register

15

and

in

the

feedback

field

of

the

RPL

to

identify

the

error.

When

your

LERAD

exit

routine

completes

processing,

return

to

your

main

program

as

described

in

“Return

to

a

Main

Program”

on

page

237.

RLSWAIT

Exit

Routine

The

RLSWAIT

exit

is

entered

at

the

start

of

the

record

management

request

and

the

request

is

processed

asynchronously

under

a

separate

VSAM

execution

unit.

If

a

UPAD

is

specified,

RLS

ignores

it.

The

exit

can

do

its

own

wait

processing

associated

with

the

record

management

request

that

is

being

asynchronously

executed.

When

the

record

management

request

is

complete,

VSAM

will

post

the

ECB

that

the

user

specified

in

the

RPL.

For

RLS,

the

RLSWAIT

exit

is

entered

only

for

a

request

wait,

never

for

a

resource-

or

I/O-

wait

or

post

as

with

non-RLS

VSAM

UPAD.

Coding

VSAM

User-Written

Exit

Routines

248

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

RLSWAIT

exit

is

optional.

It

is

used

by

applications

that

cannot

tolerate

VSAM

suspending

the

execution

unit

that

issued

the

original

record

management

request.

The

RLSWAIT

exit

is

required

for

record

management

request

issued

in

cross

memory

mode.

RLSWAIT

should

be

specified

on

each

ACB

which

requires

the

exit.

If

the

exit

is

not

specified

on

the

ACB

via

the

EXLST,

there

is

no

RLSWAIT

exit

processing

for

record

management

requests

associated

with

that

ACB.

This

differs

from

non-RLS

VSAM

where

the

UPAD

exit

is

associated

with

the

control

block

structure

so

that

all

ACBs

connected

to

that

structure

inherit

the

exit

of

the

first

connector.

To

activate

RLSWAIT

exit

processing

for

a

particular

record

management

request,

the

RPL

must

specify

OPTCD=(SYN,WAITX).

RLSWAIT

is

ignored

if

the

request

is

asynchronous.

Register

Contents

Table

20

gives

the

contents

of

the

registers

when

RLSWAIT

is

entered

in

31–bit

mode.

Table

20.

Contents

of

registers

for

RLSWAIT

exit

routine

Register

Contents

1

Address

of

the

user

RPL.

If

a

chain

of

RPLs

was

passed

on

the

original

record

management

request,

this

is

the

first

RPL

in

the

chain.

12

Reserved

and

must

be

the

same

on

exit

as

on

entry.

13

Reserved

and

must

be

the

same

on

exit

as

on

entry.

14

Return

address.

The

exit

must

return

to

VSAM

using

this

register.

15

Address

of

the

RLSWAIT

exit.

The

RLSWAIT

exit

must

conform

to

the

following

restrictions:

v

The

exit

must

return

to

VSAM

using

register

14

and

it

must

return

with

the

same

entry

environment.

That

is,

under

the

same

execution

unit

as

on

entry

and

with

the

same

cross-memory

environment

as

on

entry.

v

The

exit

must

not

issue

any

request

using

the

RPL

passed

in

register

1.

v

The

exit

must

be

reentrant

if

multiple

record

management

request

that

use

the

exit

can

be

concurrently

outstanding.

Request

Environment

VSAM

RLS

record

management

requests

must

be

issued

in

PRIMARY

ASC

mode

and

cannot

be

issued

in

home,

secondary,

or

AR

ASC

mode.

The

user

RPL,

EXLST,

ACB,

must

be

addressable

from

primary.

Open

must

have

been

issued

from

the

same

primary

address

space.

VSAM

RLS

record

management

request

task

must

be

the

same

as

the

task

that

opened

the

ACB,

or

the

task

that

opened

the

ACB

must

be

in

the

task

hierarchy

(i.e.,

the

record

management

task

was

attached

by

that

task

that

opened

the

ACB,

or

by

a

task

that

was

attached

by

the

task

that

opened

that

ACB).

VSAM

RLS

record

management

requests

must

not

be

issued

in

SRB

mode,

and

must

not

have

functional

recovery

routine

(FRR)

in

effect.

If

the

record

management

request

is

issued

in

cross

memory

mode,

then

the

caller

must

be

in

supervisor

state

and

must

specify

that

an

RLSWAIT

exit

is

associated

with

the

request

(RPLWAITX

=

ON).

The

request

must

be

synchronous.

The

RLSWAIT

exit

is

optional

for

non-cross

memory

mode

callers.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

249

The

RLSWAIT

exit,

if

specified,

is

entered

at

the

beginning

of

the

request

and

VSAM

processes

the

request

asynchronously

under

a

separate

execution

unit.

VSAM

RLS

does

not

enter

the

RLSWAIT

exit

for

post

processing.

VSAM

assumes

that

the

ECB

supplied

with

the

request

is

addressable

form

both

home

and

primary,

and

that

the

key

of

the

ECB

is

the

same

as

the

key

of

the

record

management

caller.

SYNAD

Exit

Routine

to

Analyze

Physical

Errors

VSAM

exits

to

a

SYNAD

routine

if

a

physical

error

occurs

when

you

request

access

to

data.

It

also

exits

to

a

SYNAD

routine

when

you

close

a

data

set

if

a

physical

error

occurs

while

VSAM

is

writing

the

contents

of

a

buffer

out

to

direct-access

storage.

Register

Contents

Table

21

gives

the

contents

of

the

registers

when

VSAM

exits

to

the

SYNAD

routine.

Table

21.

Contents

of

registers

at

entry

to

SYNAD

exit

routine

Register

Contents

0

Unpredictable.

1

Address

of

the

RPL

that

contains

a

feedback

return

code

and

the

address

of

a

message

area,

if

any.

If

you

issued

a

request

macro,

the

RPL

is

the

one

pointed

to

by

the

macro.

If

you

issued

an

OPEN,

CLOSE,

or

cause

an

end-of-volume

to

be

done,

the

RPL

was

built

by

VSAM

to

process

an

internal

request.

Register

1

must

contain

this

address

if

the

SYNAD

routine

returns

to

VSAM.

2-13

Unpredictable.

Register

13,

by

convention,

contains

the

address

of

your

processing

program’s

72-byte

save

area,

which

must

not

be

used

by

the

SYNAD

routine

if

it

returns

control

to

VSAM.

14

Return

address

to

VSAM.

15

Entry

address

to

the

SYNAD

routine.

Programming

Considerations

A

SYNAD

routine

should

typically:

v

Examine

the

feedback

field

in

the

request

parameter

list

to

identify

the

type

of

physical

error

that

occurred.

v

Get

the

address

of

the

message

area,

if

any,

from

the

request

parameter

list,

to

examine

the

message

for

detailed

information

about

the

error

v

Recover

data

if

possible

v

Print

error

messages

if

uncorrectable

error

v

Close

the

data

set

v

Terminate

processing.

The

main

problem

with

a

physical

error

is

the

possible

loss

of

data.

You

should

try

to

recover

your

data

before

continuing

to

process.

Input

operation

(ACB

MACRF=IN)

errors

are

generally

less

serious

than

output

or

update

operation

(MACRF=OUT)

errors,

because

your

request

was

not

attempting

to

alter

the

contents

of

the

data

set.

Coding

VSAM

User-Written

Exit

Routines

250

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

the

routine

cannot

correct

an

error,

it

might

print

the

physical-error

message,

close

the

data

set,

and

terminate

the

program.

If

the

error

occurred

while

VSAM

was

closing

the

data

set,

and

if

another

error

occurs

after

the

exit

routine

issues

a

CLOSE

macro,

VSAM

doesn’t

exit

to

the

routine

a

second

time.

If

the

SYNAD

routine

returns

to

VSAM,

whether

the

error

was

corrected

or

not,

VSAM

drops

the

request

and

returns

to

your

processing

program

at

the

instruction

following

the

last

executed

instruction.

Register

15

is

reset

to

indicate

that

there

was

an

error,

and

the

feedback

field

in

the

RPL

identifies

it.

Physical

errors

affect

positioning.

If

a

GET

was

issued

that

would

have

positioned

VSAM

for

a

subsequent

sequential

GET

and

an

error

occurs,

VSAM

is

positioned

at

the

control

interval

next

in

key

(RPL

OPTCD=KEY)

or

in

entry

(OPTCD=ADR)

sequence

after

the

control

interval

involved

in

the

error.

The

processing

program

can

therefore

ignore

the

error

and

proceed

with

sequential

processing.

With

direct

processing,

the

likelihood

of

re-encountering

the

control

interval

involved

in

the

error

depends

on

your

application.

If

the

exit

routine

issues

GENCB,

MODCB,

SHOWCB,

or

TESTCB

and

returns

to

VSAM,

it

must

provide

a

save

area

and

restore

registers

13

and

14,

which

these

macros

use.

See

“Example

of

a

SYNAD

User-Written

Exit

Routine”

for

the

format

of

a

physical-error

message

that

can

be

written

by

the

SYNAD

routine.

When

your

SYNAD

exit

routine

completes

processing,

return

to

your

main

program

as

described

in

“Return

to

a

Main

Program”

on

page

237.

If

a

physical

error

occurs

and

no

SYNAD

routine

is

provided

(or

the

SYNAD

exit

is

inactive),

VSAM

returns

codes

in

register

15

and

in

the

feedback

field

of

the

RPL

to

identify

the

error.

Related

reading:

v

For

a

description

of

the

SYNAD

return

codes,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Example

of

a

SYNAD

User-Written

Exit

Routine

The

example

in

Figure

34

on

page

252

demonstrates

a

user-written

exit

routine.

It

is

a

SYNAD

exit

routine

that

examines

the

FDBK

field

of

the

RPL

checking

for

the

type

of

physical

error

that

caused

the

exit.

After

the

checking,

special

processing

can

be

performed

as

necessary.

The

routine

returns

to

VSAM

after

printing

an

appropriate

error

message

on

SYSPRINT.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

251

UPAD

Exit

Routine

for

User

Processing

VSAM

calls

the

UPAD

routine

only

when

the

request’s

RPL

specifies

OPTCD=(SYN,

WAITX)

and

the

ACB

specifies

MACRF=LSR

or

MACRF=GSR,

or

MACRF=ICI.

VSAM

CLOSE

can

also

cause

a

UPAD

exit

to

be

taken

to

post

a

record-management

request

deferred

for

VSAM

internal

resource.

VSAM

takes

the

UPAD

exit

to

wait

for

I/O

completion

or

for

a

serially

reusable

resource

and

the

UPAD

can

also

be

taken

to

do

the

corresponding

post

processing

subject

to

conditions

listed

in

Table

22

on

page

253.

ACB1

ACB

EXLST=EXITS

EXITS

EXLST

SYNAD=PHYERR

RPL1

RPL

ACB=ACB1,

MSGAREA=PERRMSG,

MSGLEN=128

PHYERR

USING

*,15

This

routine

is

nonreentrant.

*

Register

15

is

entry

address.

.

.

Save

caller’s

register

(1,

13,

14).

LA

13,SAVE

Point

to

routine’s

save

area.

.

.

If

register

1=address

of

RPL1,

.

then

error

did

not

occur

for

a

CLOSE.

SHOWCB

RPL=RPL1,

FIELDS=FDBK,

AREA=ERRCODE,

LENGTH=4

*

Show

type

of

physical

error.

.

.

Examine

error,

perform

special

.

processing.

PUT

PRTDCB,ERRMSG

Print

physical

error

message.

.

.

Restore

caller’s

registers

.

(1,

13,

14).

BR

14

Return

to

VSAM.

.

.

.

ERRCODE

DC

F’0’

RPL

reason

code

from

SHOWCB.

PERRMSG

DS

0XL128

Physical

error

message.

DS

XL12

Pad

for

unprintable

part.

ERRMSG

DS

XL116

Printable

format

part

of

message.

.

.

.

PRTDCB

DCB

.....

QSAM

DCB.

SAVE

DS

18F

SYNAD

routine’s

save

area.

SAVREG

DS

3F

Save

registers

1,

13,

14.

Figure

34.

Example

of

a

SYNAD

exit

routine

Coding

VSAM

User-Written

Exit

Routines

252

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

you

are

executing

in

cross-memory

mode,

you

must

have

a

UPAD

routine

and

RPL

must

specify

WAITX.

z/OS

DFSMS:

Using

Data

Sets

describes

cross-memory

mode.

The

UPAD

routine

is

optional

for

non-cross-memory

mode.

Table

22

describes

the

conditions

in

which

VSAM

calls

the

UPAD

routine

for

synchronous

requests

with

shared

resources.

UPAD

routine

exits

are

taken

only

for

synchronous

requests

with

shared

resources

or

improved

control

interval

processing

(ICI).

Table

22.

Conditions

when

exits

to

UPAD

routines

are

taken

XMM

Sup.

state

UPAD

needed

I/O

wait

I/O

post

Resource

wait

Resource

post

Yes

Yes

Yes

UPAD

taken

UPAD

taken

UPAD

taken

UPAD

taken

No

Yes

No

UPAD

taken

if

requested

UPAD

not

taken

even

if

requested

UPAD

taken

if

requested

UPAD

taken

if

either

resource

owner

or

the

deferred

request

runs

in

XM

mode

No

No

No

UPAD

taken

if

requested

UPAD

not

taken

even

if

requested

UPAD

taken

if

requested

UPAD

taken

if

either

resource

owner

or

the

deferred

request

runs

in

XM

mode

Note®:

v

You

must

be

in

supervisor

state

when

you

are

in

cross-memory

mode

or

SRB

mode.

v

RPL

WAITX

is

required

if

UPAD

is

required.

A

UPAD

routine

can

be

taken

only

if

RPL

specifies

WAITX.

v

VSAM

gives

control

to

the

UPAD

exit

in

the

same

primary

address

space

of

the

VSAM

record

management

request.

However,

VSAM

can

give

control

to

UPAD

with

home

and

secondary

ASIDs

different

from

those

of

the

VSAM

record

management

request

because

the

exit

was

set

up

during

OPEN.

v

When

a

UPAD

exit

is

taken

to

do

post

processing,

make

sure

the

ECB

is

marked

posted

before

returning

to

VSAM.

VSAM

does

not

check

the

UPAD

return

code

and

does

not

do

post

after

UPAD

has

been

taken.

For

non-cross-memory

task

mode

only,

if

the

UPAD

exit

taken

for

wait

returns

with

ECB

not

posted,

VSAM

issues

a

WAIT

SVC.

v

The

UPAD

exit

must

return

to

VSAM

in

the

same

address

space,

mode,

state,

and

addressing

mode,

and

under

the

same

TCB

or

SRB

from

which

the

UPAD

exit

was

called.

Registers

1,

13,

and

14

must

be

restored

before

the

UPAD

exit

returns

to

VSAM.

v

ICI

does

not

require

UPAD

for

any

mode.

Resource

wait

and

post

processings

do

not

apply

to

ICI.

RLS

ignores

the

UPAD

exit.

Register

Contents

Table

23

shows

the

register

contents

passed

by

VSAM

when

the

UPAD

exit

routine

is

entered.

Table

23.

Contents

of

registers

at

entry

to

UPAD

exit

routine

Register

Contents

0

Unpredictable.

1

Address

of

a

parameter

list

built

by

VSAM.

2-12

Unpredictable.

13

Reserved.

14

Return

address

to

VSAM.

15

Entry

address

of

the

UPAD

routine.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

253

Programming

Considerations

The

UPAD

exit

routine

must

be

active

before

the

data

set

is

opened.

The

exit

must

not

be

made

inactive

during

processing.

If

the

UPAD

exit

is

desired

and

multiple

ACBs

are

used

for

processing

the

data

set,

the

first

ACB

that

is

opened

must

specify

the

exit

list

that

identifies

the

UPAD

exit

routine.

You

can

use

the

UPAD

exit

to

examine

the

contents

of

the

parameter

list

built

by

VSAM,

pointed

to

by

register

1.

Table

24

describes

this

parameter

list.

Table

24.

Parameter

list

passed

to

UPAD

routine

Offset

Bytes

Description

0(X'0')

4

Address

of

user’s

RPL;

address

of

system-generated

RPL

if

UPAD

is

taken

for

CLOSE

processing

or

for

an

alternate

index

through

a

path.

4(X'4')

4

Address

of

a

5-byte

data

set

identifier.

The

first

four

bytes

of

the

identifier

are

the

ACB

address.

The

last

byte

identifies

the

component;

data

(X'01'),

or

index

(X'02').

8(X'8')

4

Address

of

the

request’s

ECB.

12(X'0C')

4

Reserved.

12(X'10')

1

UPAD

flags:

Bit

0

=

ON:

Wait

for

resource

Bit

0

=

OFF:

Wait

for

I/O

(Bit

0

is

only

applicable

to

UPAD

taken

for

wait

processing.)

Lower

7

bits

are

reserved.

16(X'11')

4

Reserved.

20(X'14')

1

Reason

code:

X'00'

VSAM

to

do

wait

processing

X'04'

UPAD

to

do

post

processing

X'08'–X'FC'

Reserved

If

the

UPAD

exit

routine

modifies

register

14

(for

example,

by

issuing

a

TESTCB),

the

routine

must

restore

register

14

before

returning

to

VSAM.

If

register

1

is

used,

the

UPAD

exit

routine

must

restore

it

with

the

parameter

list

address

before

returning

to

VSAM.

The

UPAD

routine

must

return

to

VSAM

under

the

same

TCB

from

which

it

was

called

for

completion

of

the

request

that

caused

VSAM

to

exit.

The

UPAD

exit

routine

cannot

use

register

13

as

a

save

area

pointer

without

first

obtaining

its

own

save

area.

The

UPAD

exit

routine,

when

taken

before

a

WAIT

during

LSR

or

GSR

processing,

might

issue

other

VSAM

requests

to

obtain

better

processing

overlap

(similar

to

asynchronous

processing).

However,

the

UPAD

routine

must

not

issue

any

synchronous

VSAM

requests

that

do

not

specify

WAITX,

because

a

started

request

might

issue

a

WAIT

for

a

resource

owned

by

a

starting

request.

If

the

UPAD

routine

starts

requests

that

specify

WAITX,

the

UPAD

routine

must

be

reentrant.

After

multiple

requests

have

been

started,

they

should

be

synchronized

by

waiting

for

one

ECB

out

of

a

group

of

ECBs

to

be

posted

complete

rather

than

Coding

VSAM

User-Written

Exit

Routines

254

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

waiting

for

a

specific

ECB

or

for

many

ECBs

to

be

posted

complete.

(Posting

of

some

ECBs

in

the

list

might

be

dependent

on

the

resumption

of

some

of

the

other

requests

that

entered

the

UPAD

routine.)

If

you

are

executing

in

cross-memory

mode,

you

must

have

a

UPAD

routine

and

RPL

must

specify

WAITX.

When

waiting

or

posting

of

an

event

is

required,

the

UPAD

routine

is

given

control

to

do

wait

or

post

processing

(reason

code

0

or

4

in

the

UPAD

parameter

list).

User-Security-Verification

Routine

If

you

use

VSAM

password

protection,

you

can

also

have

your

own

routine

to

check

a

requester’s

authority.

Your

routine

is

invoked

from

OPEN,

rather

than

via

an

exit

list.

VSAM

transfers

control

to

your

routine,

which

must

reside

in

SYS1.LINKLIB,

when

a

requester

gives

a

correct

password

other

than

the

master

password.

Recommendation:

Do

not

use

VSAM

password

protection.

Instead,

use

RACF

or

an

equivalent

product.

Through

the

access

method

services

DEFINE

command

with

the

AUTHORIZATION

parameter

you

can

identify

your

user-security-verification

routine

(USVR)

and

associate

as

many

as

256

bytes

of

your

own

security

information

with

each

data

set

to

be

protected.

The

user-security-authorization

record

(USAR)

is

made

available

to

the

USVR

when

the

routine

gets

control.

You

can

restrict

access

to

the

data

set

as

you

choose.

For

example,

you

can

require

that

the

owner

of

a

data

set

give

ID

when

defining

the

data

set

and

then

permit

only

the

owner

to

gain

access

to

the

data

set.

If

the

USVR

is

being

used

by

more

than

one

task

at

a

time,

you

must

code

the

USVR

reentrant

or

develop

another

method

for

handling

simultaneous

entries.

When

your

USVR

completes

processing,

it

must

return

(in

register

15)

to

VSAM

with

a

return

code

of

0

for

authority

granted

or

not

0

for

authority

withheld

in

register

15.

Table

25

gives

the

contents

of

the

registers

when

VSAM

gives

control

to

the

USVR.

Coding

VSAM

User-Written

Exit

Routines

Chapter

16.

Coding

VSAM

User-Written

Exit

Routines

255

Table

25.

Communication

with

user-security-verification

routine

Register

Contents

0

Unpredictable.

1

Address

of

a

parameter

list

with

the

following

format:

44

bytes

Name

of

the

data

set

for

which

authority

to

process

is

to

be

verified

(the

name

you

specified

when

you

defined

it

with

access

method

services)

8

bytes

Prompting

code

(or

0’s).

8

bytes

Owner

identification

(or

0’s).

8

bytes

The

password

that

the

requester

gave

(it

has

been

verified

by

VSAM).

2

bytes

Length

of

the

user-security-authorization

routine

(in

binary).

–

The

user-security-authorization.

2-13

Unpredictable.

14

Return

address

to

VSAM.

15

Entry

address

to

the

USVR.

When

the

routine

returns

to

VSAM,

it

indicates

by

the

following

codes

in

register

15

if

the

requester

has

been

authorized

to

gain

access

to

the

data

set:

0

Authority

granted.

not

0

Authority

withheld.

Coding

VSAM

User-Written

Exit

Routines

256

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

17.

Using

31-Bit

Addressing

Mode

with

VSAM

This

chapter

covers

rules,

guidelines,

and

keyword

parameters

that

you

need

to

know

about

to

implement

31-bit

addressing

with

VSAM.

Topic

Location

VSAM

Options

257

VSAM

Options

Using

VSAM,

you

can

obtain

control

blocks,

buffers,

and

multiple

local

shared

resource

(LSR)

pools

above

or

below

16

MB.

However,

if

your

program

uses

a

24-bit

address,

it

can

generate

a

program

check

if

you

attempt

to

reference

control

blocks,

buffers,

or

LSR

pools

located

above

16

MB.

With

a

24-bit

address,

you

do

not

have

addressability

to

the

data

buffers.

If

you

specify

that

control

blocks,

buffers,

or

pools

can

be

above

the

line

and

attempt

to

use

locate

mode

to

access

records

while

in

24-bit

mode,

your

program

will

program

check

(ABEND

0C4).

Rule:

You

cannot

specify

the

location

of

buffers

or

control

blocks

for

RLS

processing.

RLS

ignores

the

ACB

RMODE31=

keyword.

When

you

use

31-bit

addresses,

observe

the

following

rules:

v

All

VSAM

control

blocks

that

contain

addresses

must

contain

valid

31-bit

addresses.

If

you

are

using

24-bit

or

31-bit

addresses,

do

not

use

the

high-order

byte

of

a

31-bit

address

field

as

a

user-defined

flag

field.

v

I/O

buffers

and

control

blocks

can

be

obtained

either

above

or

below

16

MB

in

storage.

–

I/O

buffers

and

control

blocks

can

be

requested

below

16

MB

by

taking

the

ACB,

GENCB,

MODCB,

or

BLDVRP

macro

defaults.

–

I/O

buffers

can

be

requested

above

16

MB

and

control

blocks

below

16

MB

by

specifying

the

RMODE31=BUFF

parameter

on

the

ACB,

GENCB,

MODCB,

or

BLDVRP

macros.

–

Control

blocks

can

be

requested

above

16

MB

and

buffers

below

16

MB

by

specifying

the

RMODE31=CB

parameter

on

the

ACB,

GENCB,

MODCB,

or

BLDVRP

macros.

–

Control

blocks

and

buffers

can

be

requested

above

16

MB

by

specifying

the

RMODE31=ALL

parameter

on

the

ACB,

GENCB,

MODCB,

or

BLDVRP

macros.

–

Buffers

are

obtained

in

24-bit

addressable

storage

by

specifying

the

RMODE31=NONE

or

CB

subparameter

on

the

AMP

parameter.

–

Control

blocks

are

obtained

in

24-bit

addressable

storage

by

specifying

the

RMODE31=NONE

or

BUFF

subparameter

on

the

AMP

parameter.
v

The

parameter

list

passed

to

your

UPAD

and

JRNAD

exit

routine

resides

in

the

same

area

specified

with

the

VSAM

control

blocks.

If

RMODE31=CB

or

RMODE31=ALL

is

specified,

the

parameter

list

resides

above

16

MB.

v

You

must

recompile

the

portion

of

your

program

that

contains

the

ACB,

BLDVRP,

and

DLVRP

macro

specifications.

©

Copyright

IBM

Corp.

1987,

2004

257

v

You

specify

31-bit

parameters

by

specifying

the

AMP=(RMODE31=)

parameter

in

the

JCL.

Table

26

summarizes

the

31-bit

address

keyword

parameters

and

their

use

in

the

applicable

VSAM

macros.

Table

26.

31-Bit

Address

Keyword

Parameters

MACRO

RMODE31=

MODE=

LOC=

ACB

Virtual

storage

location

of

VSAM

control

blocks

and

I/O

buffers

INVALID

INVALID

BLDVRP

Virtual

storage

location

of

VSAM

LSR

pool,

VSAM

control

blocks

and

I/O

buffers

Format

of

the

BLDVRP

parameter

list

(24-bit

or

31-bit

format)

INVALID

CLOSE

INVALID

Format

of

the

CLOSE

parameter

list

(24-bit

or

31-bit

format)

INVALID

DLVRP

INVALID

Format

of

the

DLVRP

parameter

list

(24-bit

or

31-bit

format)

INVALID

GENCB

RMODE31

values

to

be

placed

in

the

ACB

that

is

being

created.

When

the

generated

ACB

is

opened,

the

RMODE31

values

will

then

determine

the

virtual

storage

location

of

VSAM

control

blocks

and

I/O

buffers.

INVALID

Location

for

the

virtual

storage

obtained

by

VSAM

for

the

ACB,

RPL,

or

EXIT

LIST.

MODCB

RMODE31

values

to

be

placed

in

a

specified

ACB

INVALID

INVALID

OPEN

INVALID

Format

of

the

OPEN

parameter

list

(24-bit

or

31-bit

format)

INVALID

Related

reading:

v

See

“Obtaining

Buffers

Above

16

MB”

on

page

164

for

information

about

creating

and

accessing

buffers

that

reside

above

16

MB.

v

See

Chapter

13,

“Sharing

Resources

Among

VSAM

Data

Sets,”

on

page

205

for

information

about

building

multiple

LSR

pools

in

an

address

space.

v

See

z/OS

MVS

JCL

Reference

for

information

about

specifying

31-bit

parameters

using

the

AMP=(RMODE31=)

parameter.

Using

31-Bit

Addressing

Mode

with

VSAM

258

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

18.

Using

Job

Control

Language

for

VSAM

This

chapter

covers

the

following

topics.

Topic

Location

Using

JCL

Statements

and

Keywords

259

Creating

VSAM

Data

Sets

with

JCL

260

Retrieving

an

Existing

VSAM

Data

Set

266

Using

JCL

Statements

and

Keywords

All

VSAM

data

sets,

except

for

variable-length

RRDSs,

can

be

defined,

created,

and

retrieved

using

Job

Control

Language

(JCL).

When

a

JCL

DD

statement

is

used

to

identify

a

VSAM

data

set,

the

DD

statement

must

contain

data

set

name

and

disposition

(DISP)

keywords.

You

can

add

other

keywords

to

the

DD

statement

when

appropriate.

“Creating

VSAM

Data

Sets

with

JCL”

on

page

260

and

“Retrieving

an

Existing

VSAM

Data

Set”

on

page

266

describe

the

required

JCL

keywords.

See

z/OS

MVS

JCL

Reference

for

descriptions

of

all

the

DD

statements.

Data

Set

Name

The

data

set

name

(DSNAME)

parameter

specifies

the

name

of

the

data

set

being

processed.

For

a

new

data

set,

the

specified

name

is

assigned

to

the

data

set.

For

an

existing

data

set,

the

system

uses

the

name

to

locate

the

data

set.

Optionally,

the

DSNAME

parameter

can

be

used

to

specify

one

of

the

components

of

a

VSAM

data

set.

Each

VSAM

data

set

is

defined

as

a

cluster

of

one

or

more

components.

Key-sequenced

data

sets

contain

a

data

component

and

an

index

component.

Entry-sequenced

and

linear

data

sets

and

fixed-length

RRDSs

contain

only

a

data

component.

Process

a

variable-length

RRDS

as

a

cluster.

Each

alternate

index

contains

a

data

component

and

an

index

component.

For

further

information

on

specifying

a

cluster

name

see

“Naming

a

Cluster”

on

page

102.

Disposition

The

disposition

(DISP)

parameter

describes

the

status

of

a

data

set

to

the

system

and

tells

the

system

what

to

do

with

the

data

set

after

the

step

or

job

terminates.

All

new

system-managed

and

VSAM

data

sets

are

treated

as

if

DISP=(NEW,CATLG)

were

specified.

They

are

cataloged

at

step

initiation

time.

To

protect

non-system-managed

data

sets

in

a

shared

environment,

specify

DISP=OLD

for

any

data

set

that

can

be

accessed

improperly

in

a

shared

environment.

Specifying

DISP=OLD

permits

only

one

job

step

to

access

the

data

set.

If

the

data

set’s

share

options

permit

the

type

of

sharing

your

program

anticipates,

you

can

specify

DISP=SHR

in

the

DD

statements

of

separate

jobs

to

enable

two

or

more

job

steps

to

share

a

data

set.

With

separate

DD

statements,

several

subtasks

can

share

a

data

set

under

the

same

rules

as

for

cross-region

sharing.

When

separate

DD

statements

are

used

and

one

or

more

subtasks

will

perform

output

processing,

the

DD

statements

must

specify

DISP=SHR.

For

more

details

on

sharing

data

sets

see

Chapter

12,

“Sharing

VSAM

Data

Sets,”

on

page

189.

©

Copyright

IBM

Corp.

1987,

2004

259

Creating

VSAM

Data

Sets

with

JCL

You

can

use

the

JCL

DD

statement

with

the

RECORG

parameter

to

create

a

permanent

or

temporary

VSAM

data

set.

SMS

must

be

active,

but

the

data

set

does

not

have

to

be

system

managed.

The

system

catalogs

a

permanent

VSAM

data

set

when

the

data

set

is

allocated.

With

SMS,

you

can

optionally

specify

a

data

class

that

contains

RECORG.

If

your

storage

administrator,

through

the

ACS

routines,

creates

a

default

data

class

that

contains

RECORG,

you

have

the

option

of

taking

this

default

as

well.

The

following

list

contains

the

keywords,

including

RECORG,

used

to

allocate

a

VSAM

data

set.

See

z/OS

MVS

JCL

Reference

for

a

detailed

description

of

these

keywords.

AVGREC—Specifies

the

scale

value

of

an

average

record

request

on

the

SPACE

keyword.

The

system

applies

the

scale

value

to

the

primary

and

secondary

quantities

specified

in

the

SPACE

keyword.

The

AVGREC

keyword

is

ignored

if

the

SPACE

keyword

specifies

anything

but

an

average

record

request.

Possible

values

for

the

AVGREC

keyword

follow:

U—Use

a

scale

of

1

K—Use

a

scale

of

1024

M—Use

a

scale

of

1

048

576

DATACLAS—Is

a

list

of

the

data

set

allocation

parameters

and

their

default

values.

The

storage

administrator

can

specify

KEYLEN,

KEYOFF,

LRECL,

LGSTREAM,

and

RECORG

in

the

DATACLAS

definition,

but

you

can

override

them.

EXPDT—Specifies

the

date

up

to

which

a

data

set

cannot

be

deleted

without

specifying

the

PURGE

keyword

on

the

access

method

services

DELETE

command.

On

and

after

the

expiration

date,

the

data

set

can

be

deleted

or

written

over

by

another

data

set.

KEYLEN—Specifies

key

length.

LGSTREAM—Specifies

the

log

stream

used.

LOG

and

BWO

parameters

can

be

derived

from

the

data

class.

KEYOFF—Specifies

offset

to

key.

LIKE—Specifies

that

the

properties

of

an

existing

cataloged

data

set

should

be

used

to

allocate

a

new

data

set.

For

a

list

of

the

properties

that

can

be

copied,

see

z/OS

MVS

JCL

Reference.

LRECL—Specifies

logical

record

length.

Implies

a

system

determined

control

interval

size.

Using

Job

Control

Language

for

VSAM

260

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

MGMTCLAS—Specifies

the

name,

1

to

8

characters,

of

the

management

class

for

a

new

system-managed

data

set.

Your

storage

administrator

defines

the

names

of

the

management

classes

you

can

specify

on

the

MGMTCLAS

parameter.

After

the

data

set

is

allocated,

attributes

in

the

management

class

control

the

following:

v

The

migration

of

the

data

set,

which

includes

migration

criteria

from

primary

storage

to

migration

storage

and

from

one

migration

level

to

another

in

a

hierarchical

migration

scheme.

v

The

backup

of

the

data

set,

which

includes

frequency

of

backup,

number

of

versions,

and

retention

criteria

for

backup

versions.

RECORG—Specifies

the

type

of

data

set

desired:

KS,

ES,

RR,

LS.

KS

=

key-sequenced

data

set

ES

=

entry-sequenced

data

set

RR

=

fixed-length

relative-record

data

set

LS

=

linear

data

set

REFDD—Specifies

that

the

properties

on

the

JCL

statement

and

from

the

data

class

of

a

previous

DD

statement

should

be

used

to

allocate

a

new

data

set.

RETPD—Specifies

the

number

of

days

a

data

set

cannot

be

deleted

by

specifying

the

PURGE

keyword

on

the

access

method

services

DELETE

command.

After

the

retention

period,

the

data

set

can

be

deleted

or

written

over

by

another

data

set.

SECMODEL—Permits

specification

of

the

name

of

a

“model”

profile

that

RACF

should

use

in

creating

a

discrete

profile

for

the

data

set.

For

a

list

of

the

information

that

is

copied

from

the

model

profile

see

z/OS

MVS

JCL

Reference.

STORCLAS—Specifies

the

name,

1

to

8

characters,

of

the

storage

class

for

a

new,

system-managed

data

set.

Your

storage

administrator

defines

the

names

of

the

storage

classes

you

can

specify

on

the

STORCLAS

parameter.

A

storage

class

is

assigned

when

you

specify

STORCLAS

or

an

ACS

routine

selects

a

storage

class

for

the

new

data

set.

Use

the

storage

class

to

specify

the

storage

service

level

to

be

used

by

SMS

for

storage

of

the

data

set.

The

storage

class

replaces

the

storage

attributes

specified

on

the

UNIT

and

VOLUME

parameter

for

non-system-managed

data

sets.

If

a

guaranteed

space

storage

class

is

assigned

to

the

data

set

(cluster)

and

volume

serial

numbers

are

specified,

space

is

allocated

on

all

specified

volumes

if

the

following

conditions

are

met:

v

All

volumes

specified

belong

to

the

same

storage

group.

v

The

storage

group

to

which

these

volumes

belong

is

in

the

list

of

storage

groups

selected

by

the

ACS

routines

for

this

allocation.

Using

Job

Control

Language

for

VSAM

Chapter

18.

Using

Job

Control

Language

for

VSAM

261

Temporary

VSAM

Data

Sets

A

temporary

data

set

is

allocated

and

deleted

within

a

job.

Also,

temporary

VSAM

data

sets

must

reside

in

storage

managed

by

the

Storage

Management

Subsystem.

SMS

manages

a

data

set

if

you

specify

a

storage

class

(using

the

DD

STORCLAS

parameter)

or

if

an

installation-written

automatic

class

selection

(ACS)

routine

selects

a

storage

class

for

the

data

set.

Data

Set

Names

When

defining

a

temporary

data

set,

you

can

omit

the

DSNAME.

If

omitted,

the

system

will

generate

a

qualified

name

for

the

data

set.

If

you

specify

a

DSNAME,

it

must

begin

with

&

or

&&.

The

DSNAME

can

be

simple

or

qualified.

&ABC

&XYZ

Allocation

You

can

allocate

VSAM

temporary

data

sets

by

specifying

RECORG=KS|ES|LS|RR

as

follows:

v

By

the

RECORG

keyword

on

the

DD

statement

or

the

dynamic

allocation

parameter

v

By

the

data

class

(if

the

selected

data

class

has

the

RECORG

attribute)

v

By

the

default

data

class

established

by

your

storage

administrator

(if

the

default

data

class

exists

and

has

the

RECORG

attribute)

Using

temporary

data

sets

avoids

the

following

problems:

v

The

data

set

can

be

defined

in

a

catalog

for

which

you

are

not

authorized.

v

The

data

set

can

be

assigned

to

an

RACF

user

or

group

ID

for

which

you

are

not

authorized.

The

data

set

can

also

be

assigned

to

an

ID

that

is

not

defined

to

RACF,

in

which

case

the

allocation

will

fail

either

if

the

RACF

option

that

required

protection

of

all

data

sets

is

in

effect,

or

if

the

data

set

requires

a

discrete

RACF

profile.

v

The

allocation

can

fail

because

there

is

already

a

data

set

cataloged

with

that

name.

This

failure

would

be

likely

if

there

are

many

jobs

using

the

same

data

set

names

for

what

were

regarded

as

temporary

data

sets.

Restrictions

for

Temporary

VSAM

Data

Sets

The

following

restrictions

apply

to

the

use

of

temporary

VSAM

data

sets:

v

Multivolume

temporary

VSAM

data

sets

is

not

permitted.

v

You

cannot

reference

a

temporary

data

set

once

a

job

is

completed.

v

The

use

of

VOL=SER

and

UNIT

will

not

let

you

refer

to

a

temporary

data

set

outside

the

job

that

created

it.

v

The

EXPDT

and

RETPD

keywords

are

ignored.

For

additional

information

on

temporary

data

sets

see

z/OS

MVS

JCL

Reference

and

z/OS

MVS

Programming:

Assembler

Services

Guide.

See

“Example

4:

Allocate

a

Temporary

VSAM

Data

Set”

on

page

265

for

an

example

of

creating

a

temporary

VSAM

data

set.

Using

Job

Control

Language

for

VSAM

262

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Examples

Using

JCL

to

Allocate

VSAM

Data

Sets

The

following

examples

contain

allocation

information.

Example

1:

Allocate

a

Key-Sequenced

Data

Set

The

following

example

shows

allocating

a

key-sequenced

data

set:

//DDNAME

DD

DSNAME=KSDATA,DISP=(NEW,KEEP),

//

SPACE=(80,(20,2)),AVGREC=U,RECORG=KS,

//

KEYLEN=15,KEYOFF=0,LRECL=250

Explanation

of

Keywords:

v

DSNAME

specifies

the

data

set

name.

v

DISP

specifies

that

a

new

data

set

is

to

be

allocated

in

this

step

and

that

the

data

set

is

to

be

kept

on

the

volume

if

this

step

terminates

normally.

If

the

data

set

is

not

system

managed,

KEEP

is

the

only

normal

termination

disposition

subparameter

permitted

for

a

VSAM

data

set.

Non-system-managed

VSAM

data

sets

should

not

be

passed,

cataloged,

uncataloged,

or

deleted.

v

SPACE

specifies

an

average

record

length

of

80,

a

primary

space

quantity

of

20

and

a

secondary

space

quantity

of

2.

v

AVGREC

specifies

that

the

primary

and

secondary

space

quantity

specified

on

the

SPACE

keyword

represents

the

number

of

records

in

units

(multiplier

of

1).

If

DATACLAS

were

specified

in

this

example,

AVGREC

would

override

the

data

class

space

allocation.

v

RECORG

specifies

a

VSAM

key-sequenced

data

set.

v

KEYLEN

specifies

that

the

length

of

the

keys

used

in

the

data

set

is

15

bytes.

If

DATACLAS

were

specified

in

this

example,

KEYLEN

would

override

the

data

class

key

length

allocation.

v

KEYOFF

specifies

an

offset

of

zero

of

the

first

byte

of

the

key

in

each

record.

If

DATACLAS

were

specified

in

this

example,

KEYOFF

would

override

the

data

class

key

offset

allocation.

v

LRECL

specifies

a

record

length

of

250

bytes.

If

DATACLAS

were

specified

in

this

example,

LRECL

would

override

the

data

class

record

length

allocation.

v

The

system

determines

an

appropriate

size

for

the

control

interval.

Using

Job

Control

Language

for

VSAM

Chapter

18.

Using

Job

Control

Language

for

VSAM

263

Example

2:

Allocate

a

System-Managed

Key-Sequenced

Data

Set

Using

Keywords

The

following

example

shows

allocating

a

system-managed

key-sequenced

data

set:

//DDNAME

DD

DSNAME=KSDATA,DISP=(NEW,KEEP),

//

DATACLAS=STANDARD,STORCLAS=FAST,

//

MGMTCLAS=STANDARD

Explanation

of

Keywords:

v

DSNAME

specifies

the

data

set

name.

v

DISP

specifies

that

a

new

data

set

is

to

be

allocated

in

this

step

and

that

the

data

set

is

to

be

kept

on

the

volume

if

this

step

terminates

normally.

Because

a

system-managed

data

set

is

being

allocated,

all

dispositions

are

valid

for

VSAM

data

sets;

however,

UNCATLG

is

ignored.

v

DATACLAS

specifies

a

data

class

for

the

new

data

set.

If

SMS

is

not

active,

the

system

syntax

ignores

DATACLAS.

SMS

also

ignores

the

DATACLAS

keyword

if

you

specify

it

for

an

existing

data

set,

or

a

data

set

that

SMS

does

not

support.

This

keyword

is

optional.

If

you

do

not

specify

DATACLAS

for

the

new

data

set

and

your

storage

administrator

has

provided

an

ACS

routine,

the

ACS

routine

can

select

a

data

class

for

the

data

set.

v

STORCLAS

specifies

a

storage

class

for

the

new

data

set.

If

SMS

is

not

active,

the

system

syntax

ignores

STORCLAS.

SMS

also

ignores

the

STORCLAS

keyword

if

you

specify

it

for

an

existing

data

set.

This

keyword

is

optional.

If

you

do

not

specify

STORCLAS

for

the

new

data

set

and

your

storage

administrator

has

provided

an

ACS

routine,

the

ACS

routine

can

select

a

storage

class

for

the

data

set.

v

MGMTCLAS

specifies

a

management

class

for

the

new

data

set.

If

SMS

is

not

active,

the

system

syntax

ignores

MGMTCLAS.

SMS

also

ignores

the

MGMTCLAS

keyword

if

you

specify

it

for

an

existing

data

set.

This

keyword

is

optional.

If

you

do

not

specify

MGMTCLAS

for

the

new

data

set

and

your

storage

administrator

has

provided

an

ACS

routine,

the

ACS

routine

can

select

a

management

class

for

the

data

set.

Example

3:

Allocate

a

VSAM

Data

Set

Using

Keyword

Defaults

The

following

example

shows

the

minimum

number

of

keywords

needed

to

allocate

a

permanent

VSAM

data

set

through

JCL:

//DDNAME

DD

DSNAME=DSVSAM,DISP=(NEW,CATLG)

Explanation

of

Keywords:

v

DSNAME

specifies

the

data

set

name.

v

DISP

specifies

that

a

new

data

set

is

to

be

allocated

in

this

step

and

that

the

system

is

to

place

an

entry

pointing

to

the

data

set

in

the

system

or

user

catalog.

v

DATACLAS,

STORCLAS,

and

MGMTCLAS

are

not

required

if

your

storage

administrator

has

provided

ACS

routines

that

will

select

the

SMS

classes

for

you,

and

DATACLAS

defines

RECORG.

Using

Job

Control

Language

for

VSAM

264

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Example

4:

Allocate

a

Temporary

VSAM

Data

Set

The

following

example

shows

allocating

a

temporary

VSAM

data

set:

//VSAM1

DD

DSN=&CLUSTER,DISP=(NEW,PASS),

//

RECORG=ES,SPACE=(1,(10)),AVGREC=M,

//

LRECL=256,STORCLAS=TEMP

Explanation

of

Keywords:

v

DSN

specifies

the

data

set

name.

If

you

specify

a

data

set

name

for

a

temporary

data

set,

it

must

begin

with

&

or

&&.

This

keyword

is

optional,

however.

If

you

do

not

specify

a

DSN,

the

system

will

generate

a

qualified

data

set

name

for

the

temporary

data

set.

v

DISP

specifies

that

a

new

data

set

is

to

be

allocated

in

this

step

and

that

the

data

set

is

to

be

passed

for

use

by

a

subsequent

step

in

the

same

job.

If

KEEP

or

CATLG

are

specified

for

a

temporary

data

set,

the

system

changes

the

disposition

to

PASS

and

deletes

the

data

set

at

job

termination.

v

RECORG

specifies

a

VSAM

entry-sequenced

data

set.

v

SPACE

specifies

an

average

record

length

of

1

and

a

primary

quantity

of

10.

v

AVGREC

specifies

that

the

primary

quantity

(10)

specified

on

the

SPACE

keyword

represents

the

number

of

records

in

megabytes

(multiplier

of

1048576).

v

LRECL

specifies

a

record

length

of

256

bytes.

v

STORCLAS

specifies

a

storage

class

for

the

temporary

data

set.

This

keyword

is

optional.

If

you

do

not

specify

STORCLAS

for

the

new

data

set

and

your

storage

administrator

has

provided

an

ACS

routine,

the

ACS

routine

can

select

a

storage

class.

Example

5:

Allocate

a

Temporary

VSAM

Data

Set

Taking

All

Defaults

The

following

example

shows

the

minimum

number

of

keywords

required

to

allocate

a

temporary

VSAM

data

set:

//VSAM2

DD

DISP=(NEW,PASS)

If

no

DSNAME

is

specified,

the

system

will

generate

one.

If

no

STORCLAS

name

is

specified,

and

your

storage

administrator

has

provided

an

ACS

routine,

the

ACS

routine

can

select

a

storage

class.

The

key

length

for

a

key-sequenced

data

set

must

be

defined

in

your

default

DATACLAS.

If

you

do

not,

this

example

will

fail.

Using

Job

Control

Language

for

VSAM

Chapter

18.

Using

Job

Control

Language

for

VSAM

265

Retrieving

an

Existing

VSAM

Data

Set

To

retrieve

an

existing

VSAM

data

set,

code

a

DD

statement

in

the

form:

//ddname

DD

DSNAME=dsname,DISP=OLD

or

//ddname

DD

DSNAME=dsname,DISP=SHR

If

SMS

is

active,

you

can

pass

VSAM

data

sets

within

a

job.

The

system

replaces

PASS

with

KEEP

for

permanent

VSAM

data

sets.

When

you

refer

to

the

data

set

later

in

the

job,

the

system

obtains

data

set

information

from

the

catalog.

Without

SMS

you

cannot

pass

VSAM

data

sets

within

a

job.

Migration

Consideration

If

you

have

existing

JCL

that

allocates

a

VSAM

data

set

with

DISP=(OLD,DELETE),

the

system

ignores

DELETE

and

keeps

the

data

set

if

SMS

is

inactive.

If

SMS

is

active,

DELETE

is

valid

and

the

system

deletes

the

data

set.

Keywords

Used

to

Process

VSAM

Data

Sets

Use

the

following

keywords

to

process

VSAM

data

sets

once

they

have

been

retrieved.

Use

these

parameters

to

process

existing

VSAM

data

sets,

not

to

allocate

new

VSAM

data

sets.

For

information

about

the

JCL

parameters

used

to

allocate

a

new

VSAM

data

set

see

“Creating

VSAM

Data

Sets

with

JCL”

on

page

260.

AMP

is

only

used

with

VSAM

data

sets.

The

AMP

parameter

takes

effect

when

the

data

set

defined

by

the

DD

statement

is

opened.

Note:

This

is

not

supported

by

RLS.

DDNAME

lets

you

postpone

defining

a

data

set

until

later

in

the

job

step.

DISP

=(SHR|OLD[,PASS])

describes

the

status

of

a

data

set,

and

tells

the

system

what

to

do

with

the

data

set

after

the

step

or

job

ends.

DSNAME

specifies

the

name

of

a

data

set.

DUMMY

specifies

that

no

disposition

processing

is

to

be

performed

on

the

data

set.

It

also

specifies

that

no

device

or

external

storage

space

is

to

be

allocated

to

the

data

set.

DYNAM

increases

by

one

the

control

value

for

dynamically

allocated

resources

held

for

reuse.

FREE

specifies

when

the

system

is

to

deallocate

resources

for

the

data

set.

PROTECT

tells

RACF

to

protect

the

data

set.

Using

Job

Control

Language

for

VSAM

266

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

UNIT

=(device

number|type|group,p|unitcount)

places

the

data

set

on

a

specific

device

or

a

group

of

devices.

VOLUME

=(PRIVATE|SER)

identifies

the

volume

on

which

a

data

set

will

reside.

With

SMS,

you

do

not

need

the

AMP,

UNIT,

and

VOLUMES

parameters

to

retrieve

an

existing

VSAM

data

set.

With

SMS,

you

can

use

the

DISP

subparameters

MOD,

NEW,

CATLG,

KEEP,

PASS,

and

DELETE

for

VSAM

data

sets.

Certain

JCL

keywords

should

either

not

be

used,

or

used

only

with

caution

when

processing

VSAM

data

sets.

See

the

VSAM

data

set

section

in

z/OS

MVS

JCL

User’s

Guide

for

a

list

of

these

keywords.

Additional

descriptions

of

these

keywords

also

appear

in

z/OS

MVS

JCL

Reference.

Using

Job

Control

Language

for

VSAM

Chapter

18.

Using

Job

Control

Language

for

VSAM

267

268

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Access

to

a

Key-Sequenced

Data

Set

Index

269

Format

of

an

Index

Record

273

Key

Compression

276

VSAM

lets

you

access

indexes

of

key-sequenced

data

sets

to

help

you

diagnose

index

problems.

This

can

be

useful

if

your

index

is

damaged

or

if

pointers

are

lost

and

you

want

to

know

exactly

what

the

index

contains.

You

should

not

attempt

to

duplicate

or

substitute

the

index

processing

done

by

VSAM

during

normal

access

to

data

records.

Access

to

a

Key-Sequenced

Data

Set

Index

You

can

gain

access

to

the

index

of

a

key-sequenced

data

set

in

one

of

two

ways:

v

By

opening

the

cluster

and

using

the

GETIX

and

PUTIX

macros

v

By

opening

the

index

component

alone

and

using

the

macros

for

normal

data

processing

(GET,

PUT,

and

so

forth)

Access

to

an

Index

with

GETIX

and

PUTIX

To

process

the

index

of

a

key-sequenced

data

set

with

GETIX

and

PUTIX,

you

must

open

the

cluster

with

ACB

MACRF=(CNV,...)

specified.

CNV

provides

for

control

interval

access,

which

you

use

to

gain

access

to

the

index

component.

Access

using

GETIX

and

PUTIX

is

direct,

by

control

interval:

VSAM

requires

RPL

OPTCD=(CNV,DIR).

The

search

argument

for

GETIX

is

the

RBA

of

a

control

interval.

The

increment

from

the

RBA

of

one

control

interval

to

the

next

is

control

interval

size

for

the

index.

GETIX

can

be

issued

either

for

update

or

not

for

update.

VSAM

recognizes

OPTCD=NUP

or

UPD

but

interprets

OPTCD=NSP

as

NUP.

The

contents

of

a

control

interval

cannot

be

inserted

through

PUTIX.

VSAM

requires

OPTCD=UPD.

The

contents

must

previously

have

been

retrieved

for

update

through

GETIX.

RPL

OPTCD=MVE

or

LOC

can

be

specified

for

GETIX,

but

only

OPTCD=MVE

is

valid

for

PUTIX.

If

you

retrieve

with

OPTCD=LOC,

you

must

change

OPTCD

to

MVE

to

store.

With

OPTCD=MVE,

AREALEN

must

be

at

least

index

control

interval

size.

Beyond

these

restrictions,

access

to

an

index

through

GETIX

and

PUTIX

follows

the

rules

found

in

Chapter

11,

“Processing

Control

Intervals,”

on

page

177.

Access

to

the

Index

Component

Alone

You

can

gain

addressed

or

control

interval

access

to

the

index

component

of

a

key-sequenced

cluster

by

opening

the

index

component

alone

and

using

the

©

Copyright

IBM

Corp.

1987,

2004

269

request

macros

for

normal

data

processing.

To

open

the

index

component

alone,

specify:

DSNAME=indexcomponentname

in

the

DD

statement

identified

in

the

ACB

(or

GENCB)

macro.

You

can

gain

access

to

index

records

with

addressed

access

and

to

index

control

intervals

with

control

interval

access.

The

use

of

these

two

types

of

access

for

processing

an

index

is

identical

in

every

respect

with

their

use

for

processing

a

data

component.

Processing

the

index

component

alone

is

identical

to

processing

an

entry-sequenced

data

set.

An

index

itself

has

no

index

and

thus

cannot

be

processed

by

keyed

access.

Prime

Index

A

key-sequenced

data

set

always

has

an

index

that

relates

key

values

to

the

relative

locations

of

the

logical

records

in

a

data

set.

This

index

is

called

the

prime

index.

The

prime

index,

or

simply

index,

has

two

uses:

v

Locate

the

collating

position

when

inserting

records

v

Locate

records

for

retrieval

When

a

data

set

is

initially

loaded,

records

must

be

presented

to

VSAM

in

key

sequence.

The

index

for

a

key-sequenced

data

set

is

built

automatically

by

VSAM

as

the

data

set

is

loaded

with

records.

The

index

is

stored

in

control

intervals.

An

index

control

interval

contains

pointers

to

index

control

intervals

in

the

next

lower

level,

or

one

entry

for

each

data

control

interval

in

a

control

area.

When

a

data

control

interval

is

completely

loaded

with

logical

records,

free

space,

and

control

information,

VSAM

makes

an

entry

in

the

index.

The

entry

consists

of

the

highest

possible

key

in

the

data

control

interval

and

a

pointer

to

the

beginning

of

that

control

interval.

The

highest

possible

key

in

a

data

control

interval

is

one

less

than

the

value

of

the

first

key

in

the

next

sequential

data

control

interval.

Figure

35

shows

that

a

single

index

entry,

such

as

19,

contains

all

the

information

necessary

to

locate

a

logical

record

in

a

data

control

interval.

Figure

36

on

page

271

shows

that

a

single

index

control

interval

contains

all

the

information

necessary

to

locate

a

record

in

a

single

data

control

area.

19
Free
CI Ptr
List

Con-
trol
info

Free space

25

11

Index
CI

18 20 25
C
I
D
F

Con-
trol
info

15

Data CI1 Data CI2 Data CI3

Figure

35.

Relation

of

Index

Entry

to

Data

Control

Interval

Processing

Indexes

of

Key-Sequenced

Data

Sets

270

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

index

contains

the

following

entries:

1.

A

free

control

interval

pointer

list,

which

indicates

available

free

space

control

intervals.

Because

this

control

area

has

a

control

interval

that

is

reserved

as

free

space,

VSAM

places

a

free

space

pointer

in

the

index

control

interval

to

locate

the

free

space

data

control

interval.

2.

19,

the

highest

possible

key

in

data

control

interval

1.

This

entry

points

to

the

beginning

of

data

control

interval

1.

3.

25,

the

highest

possible

key

in

data

control

interval

2.

This

entry

points

to

the

beginning

of

data

control

interval

2.

Index

Levels

A

VSAM

index

can

consist

of

more

than

one

index

level.

Each

level

contains

a

set

of

records

with

entries

giving

the

location

of

the

records

in

the

next

lower

level.

Figure

37

on

page

272

shows

the

levels

of

a

prime

index

and

shows

the

relationship

between

sequence

set

index

records

and

control

areas.

The

sequence

set

shows

both

the

horizontal

pointers

used

for

sequential

processing

and

the

vertical

pointers

to

the

data

set.

Although

the

values

of

the

keys

are

actually

compressed

in

the

index,

the

figure

shows

the

full

key

values.

19

b c a

Free
CI Ptr

list

Con-
trol
info

Free space

25

11

Index
CI

18 20 25
C
I
D
F

Con-
trol
info

15

Data CI1

Data control area

Data CI2 Data CI3

Figure

36.

Relation

of

Index

Entry

to

Data

Control

Interval

Processing

Indexes

of

Key-Sequenced

Data

Sets

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

271

Sequence

Set.

The

index

records

at

the

lowest

level

are

the

sequence

set.

There

is

one

index

sequence

set

level

record

for

each

control

area

in

the

data

set.

This

sequence

set

record

gives

the

location

of

data

control

intervals.

An

entry

in

a

sequence

set

record

consists

of

the

highest

possible

key

in

a

control

interval

of

the

data

component,

paired

with

a

pointer

to

that

control

interval.

Index

Set.

If

there

is

more

than

one

sequence

set

level

record,

VSAM

automatically

builds

another

index

level.

Each

entry

in

the

second

level

index

record

points

to

one

sequence

set

record.

The

records

in

all

levels

of

the

index

above

the

sequence

set

are

called

the

index

set.

An

entry

in

an

index

set

record

consists

of

the

highest

possible

key

in

an

index

record

in

the

next

lower

level,

and

a

pointer

to

the

beginning

of

that

index

record.

The

highest

level

of

the

index

always

contains

only

a

single

record.

When

you

access

records

sequentially,

VSAM

refers

only

to

the

sequence

set.

It

uses

a

horizontal

pointer

to

get

from

one

sequence

set

record

to

the

next

record

in

collating

sequence.

When

you

access

records

directly

(not

sequentially),

VSAM

follows

vertical

pointers

from

the

highest

level

of

the

index

down

to

the

sequence

set

to

find

vertical

pointers

to

data.

2799

Index set

Sequence set

Control
area 2Control area 1

1333

1021

1001 1334

1052

HDR - Header information

1402

1022 2345

4200

2383

1051

1002 1350

1060 1424

1025 2342

6705

2799

1333

FS FS

FS FS

FS FS

Con-
trol
info

Con-
trol
info

Con-
trol
info

Con-
trol
info

Con-
trol
info

Con-
trol
info

1009 1400

1080 1428

1033 2363

1401 2344

4200

2383

H
D
R

H
D
R

H
D
R

H
D
R

H
D
R

Figure

37.

Levels

of

a

Prime

Index

Processing

Indexes

of

Key-Sequenced

Data

Sets

272

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Format

of

an

Index

Record

Index

records

are

stored

in

control

intervals

the

same

as

data

records,

except

that

only

one

index

record

is

stored

in

a

control

interval,

and

there

is

no

free

space

between

the

record

and

the

control

information.

So,

there

is

only

one

RDF

that

contains

the

flag

X'00'

and

the

length

of

the

record

(a

number

equal

to

the

length

of

the

control

interval

minus

7).

The

CIDF

also

contains

the

length

of

the

record

(the

displacement

from

the

beginning

of

the

control

interval

to

the

control

information);

its

second

number

is

0

(no

free

space).

The

contents

of

the

RDF

and

CIDF

are

the

same

for

every

used

control

interval

in

an

index.

The

control

interval

after

the

last-used

control

interval

has

a

CIDF

filled

with

0s,

and

is

used

to

represent

the

software

end-of-file

(SEOF).

Index

control

intervals

are

not

grouped

into

control

areas

as

are

data

control

intervals.

When

a

new

index

record

is

required,

it

is

stored

in

a

new

control

interval

at

the

end

of

the

index

data

set.

As

a

result,

the

records

of

one

index

level

are

not

segregated

from

the

records

of

another

level,

except

when

the

sequence

set

is

separate

from

the

index

set.

The

level

of

each

index

record

is

identified

by

a

field

in

the

index

header

(see

“Header

Portion”).

When

an

index

record

is

replicated

on

a

track,

each

copy

of

the

record

is

identical

to

the

other

copies.

Replication

has

no

effect

on

the

contents

of

records.

Figure

38

shows

the

parts

of

an

index

record.

An

index

record

contains

the

following

parts:

v

A

24-byte

header

containing

control

information

about

the

record.

v

For

a

sequence-set

index

record

governing

a

control

area

that

has

free

control

intervals,

there

are

entries

pointing

to

those

free

control

intervals.

v

Unused

space,

if

any.

v

A

set

of

index

entries

used

to

locate,

for

an

index-set

record,

control

intervals

in

the

next

lower

level

of

the

index,

or,

for

a

sequence-set

record,

used

control

intervals

in

the

control

area

governed

by

the

index

record.

Header

Portion

The

first

24

bytes

of

an

index

record

is

the

header,

which

gives

control

information

about

the

index

record.

Table

27

shows

its

format.

All

lengths

and

displacements

are

in

bytes.

The

discussions

in

the

following

two

sections

amplify

the

meaning

and

use

of

some

of

the

fields

in

the

header.

Table

27.

Format

of

the

Header

of

an

Index

Record

Field

Offset

Length

Description

IXHLL

0(0)

2

Index

record

length.

The

length

of

the

index

record

is

equal

to

the

length

of

the

control

interval

minus

7.

Figure

38.

General

Format

of

an

Index

Record

Processing

Indexes

of

Key-Sequenced

Data

Sets

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

273

Table

27.

Format

of

the

Header

of

an

Index

Record

(continued)

Field

Offset

Length

Description

IXHFLPLN

2(2)

1

Index

entry

control

information

length.

This

is

the

length

of

the

last

three

of

the

four

fields

in

an

index

entry.

(The

length

of

the

first

field

is

variable.)

The

length

of

the

control

information

is

3,

4,

or

5

bytes.

IXHPTLS

3(3)

1

Vertical-pointer-length

indicator.

The

fourth

field

in

an

index

entry

is

a

vertical

pointer

to

a

control

interval.

In

an

index-set

record,

the

pointer

is

a

binary

number

that

designates

a

control

interval

in

the

index.

The

number

is

calculated

by

dividing

the

RBA

of

the

control

interval

by

the

length

of

the

control

interval.

To

permit

for

a

possibly

large

index,

the

pointer

is

always

3

bytes.

In

a

sequence-set

record,

the

pointer

is

a

binary

number,

beginning

at

0,

and

calculated

the

same

as

for

index-set

record,

that

designates

a

control

interval

in

the

data

control

area

governed

by

the

sequence-set

record.

A

free-control-interval

entry

is

nothing

more

than

a

vertical

pointer.

There

are

as

many

index

entries

and

free-control-interval

entries

in

a

sequence-set

record

as

there

are

control

intervals

in

a

control

area.

Depending

on

the

number

of

control

intervals

in

a

control

area,

the

pointer

is

1,

2,

or

3

bytes.

An

IXHPTLS

value

of

X'01'

indicates

a

1-byte

pointer;

X'03'

indicates

a

2-byte

pointer;

X'07'

indicates

a

3-byte

pointer.

IXHBRBA

4(4)

4

Base

RBA.

In

an

index-set

record,

this

is

the

beginning

RBA

of

the

index.

Its

value

is

0.

The

RBA

of

a

control

interval

in

the

index

is

calculated

by

multiplying

index

control

interval

length

times

the

vertical

pointer

and

adding

the

result

to

the

base

RBA.

In

a

sequence-set

record,

this

is

the

RBA

of

the

control

area

governed

by

the

record.

The

RBA

of

a

control

interval

in

the

control

area

is

calculated

by

multiplying

data

control

interval

length

times

the

vertical

pointer

and

adding

the

result

to

the

base

RBA.

Thus,

the

first

control

interval

in

a

control

area

has

the

same

RBA

as

the

control

area

(length

times

0,

plus

base

RBA,

equals

base

RBA).

Exception:

For

an

extended-addressable

KSDS,

this

field

is

a

relative

control

interval

number

instead

of

a

RBA.

IXHHP

8(8)

4

Horizontal-pointer

RBA.

This

is

the

RBA

of

the

next

index

record

in

the

same

level

as

this

record.

The

next

index

record

contains

keys

next

in

ascending

sequence

after

the

keys

in

this

record.

Exception:

For

an

extended-addressable

KSDS,

this

field

is

a

relative

control

interval

number

instead

of

a

RBA.

12(C)

4

Reserved.

IXHLV

16(10)

1

Level

number.

The

sequence

set

is

the

first

level

of

an

index,

and

each

of

its

records

has

an

IXHLV

of

1.

Records

in

the

next

higher

level

have

a

2,

and

so

on.

17(11)

1

Reserved.

IXHFSO

18(12)

2

Displacement

to

the

unused

space

in

the

record.

In

an

index-set

record,

this

is

the

length

of

the

header

(24).

There

are

no

free

control

interval

entries.

In

a

sequence-set

record,

the

displacement

is

equal

to

24,

plus

the

length

of

free

control

interval

entries,

if

any.

Processing

Indexes

of

Key-Sequenced

Data

Sets

274

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

27.

Format

of

the

Header

of

an

Index

Record

(continued)

Field

Offset

Length

Description

IXHLEO

20(14)

2

Displacement

to

the

control

information

in

the

last

index

entry.

The

last

(leftmost)

index

entry

contains

the

highest

key

in

the

index

record.

In

a

search,

if

the

search-argument

key

is

greater

than

the

highest

key

in

the

preceding

index

record

but

less

than

or

equal

to

the

highest

key

in

this

index

record,

then

this

index

record

governs

either

the

index

records

in

the

next

lower

level

that

have

the

range

of

the

search-argument

key

or

the

control

area

in

which

a

data

record

having

the

search-argument

key

is

stored.

IXHSEO

22(16)

2

Displacement

to

the

control

information

in

the

last

(leftmost)

index

entry

in

the

first

(rightmost)

section.

Index

entries

are

divided

into

sections

to

simplify

a

quick

search.

Individual

entries

are

not

examined

until

the

right

section

is

located.

Free

Control

Interval

Entry

Portion

If

the

control

area

governed

by

a

sequence-set

record

has

free

control

intervals,

the

sequence-set

record

has

entries

pointing

to

those

free

control

intervals.

Each

entry

is

1,

2,

or

3

bytes

long

(indicated

by

IXHPTLS

in

the

header:

the

same

length

as

the

pointers

in

the

index

entries).

The

entries

come

immediately

after

the

header.

They

are

used

from

right

to

left.

The

rightmost

entry

is

immediately

before

the

unused

space

(whose

displacement

is

given

in

IXHFSO

in

the

header).

When

a

free

control

interval

gets

used,

its

free

entry

is

converted

to

zero,

the

space

becomes

part

of

the

unused

space,

and

a

new

index

entry

is

created

in

the

position

determined

by

ascending

key

sequence.

Thus,

the

free

control

interval

entry

portion

contracts

to

the

left,

and

the

index

entry

portion

expands

to

the

left.

When

all

the

free

control

intervals

in

a

control

area

have

been

used,

the

sequence-set

record

governing

the

control

area

no

longer

has

free

control

interval

entries,

and

the

number

of

index

entries

equals

the

number

of

control

intervals

in

the

control

area.

Note

that

if

the

index

control

interval

size

was

specified

with

too

small

a

value,

it

is

possible

for

the

unused

space

to

be

used

up

for

index

entries

before

all

the

free

control

intervals

have

been

used,

resulting

in

control

intervals

within

a

data

control

area

that

cannot

be

used.

Index

Entry

Portion

The

index

entry

portion

of

an

index

record

takes

up

all

of

the

record

that

is

left

over

after

the

header,

the

free

control

interval

entries,

if

any,

and

the

unused

space.

Figure

39

shows

the

format

of

the

index

entry

portion

of

an

index

record.

To

improve

search

speed,

index

entries

are

grouped

into

sections,

of

which

there

are

approximately

as

many

as

the

square

root

of

the

number

of

entries.

For

example,

if

there

are

100

index

entries

in

an

index

record,

they

are

grouped

into

10

sections

of

10

entries

each.

(The

number

of

sections

does

not

change,

even

though

the

number

of

index

entries

increases

as

free

control

intervals

get

used.)

Processing

Indexes

of

Key-Sequenced

Data

Sets

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

275

The

sections,

and

the

entries

within

a

section,

are

arranged

from

right

to

left.

IXHLEO

in

the

header

gives

the

displacement

from

the

beginning

of

the

index

record

to

the

control

information

in

the

leftmost

index

entry.

IXHSEO

gives

the

displacement

to

the

control

information

in

the

leftmost

index

entry

in

the

rightmost

section.

You

calculate

the

displacement

of

the

control

information

of

the

rightmost

index

entry

in

the

index

record

(the

entry

with

the

lowest

key)

by

subtracting

IXHFLPLN

from

IXHLL

in

the

header

(the

length

of

the

control

information

in

an

index

entry

from

the

length

of

the

record).

Each

section

is

preceded

by

a

2-byte

field

that

gives

the

displacement

from

the

control

information

in

the

leftmost

index

entry

in

the

section

to

the

control

information

in

the

leftmost

index

entry

in

the

next

section

(to

the

left).

The

last

(leftmost)

section’s

2-byte

field

contains

0s.

Figure

40

gives

the

format

of

an

index

entry.

Key

Compression

Index

entries

are

variable

in

length

within

an

index

record

because

VSAM

compresses

keys.

That

is,

it

eliminates

redundant

or

unnecessary

characters

from

the

front

and

back

of

a

key

to

save

space.

The

number

of

characters

that

can

be

eliminated

from

a

key

depends

on

the

relationship

between

that

key

and

the

preceding

and

following

keys.

For

front

compression,

VSAM

compares

a

key

in

the

index

with

the

preceding

key

in

the

index

and

eliminates

from

the

key

those

leading

characters

that

are

the

same

as

the

leading

characters

in

the

preceding

key.

For

example,

if

key

12356

follows

key

12345,

the

characters

123

are

eliminated

from

12356

because

they

are

equal

to

the

first

three

characters

in

the

preceding

key.

The

lowest

key

in

an

index

record

has

no

front

compression;

there

is

no

preceding

key

in

the

index

record.

There

is

an

exception

for

the

highest

key

in

a

section.

For

front

compression,

it

is

compared

with

the

highest

key

in

the

preceding

section,

rather

than

with

the

preceding

key.

The

highest

key

in

the

rightmost

section

of

an

index

record

has

no

front

compression;

there

is

no

preceding

section

in

the

index

record.

Index
Entries

Last
Section

3rd
Section

Displacement from beginning of this section to
the beginning of the next section.

2nd
Section

1st
Section

0
Index

Entries
Index

Entries
Index

Entries

Figure

39.

Format

of

the

Index

Entry

Portion

of

an

Index

Record

Control information

Compressed key

F-Number of characters eliminated from the front
L-Number of characters left in key after compression
P-Vertical pointer

F L P

Figure

40.

Format

of

an

Index

Record

Processing

Indexes

of

Key-Sequenced

Data

Sets

276

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

What

is

called

“rear

compression”

of

keys

is

actually

the

process

of

eliminating

the

insignificant

values

from

the

end

of

a

key

in

the

index.

The

values

eliminated

can

be

represented

by

X'FF'.

VSAM

compares

a

key

in

the

index

with

the

following

key

in

the

data

and

eliminates

from

the

key

those

characters

to

the

right

of

the

first

character

that

are

unequal

to

the

corresponding

character

in

the

following

key.

For

example,

if

the

key

12345

(in

the

index)

precedes

key

12356

(in

the

data),

the

character

5

is

eliminated

from

12345

because

the

fourth

character

in

the

two

keys

is

the

first

unequal

pair.

The

first

of

the

control

information

fields

gives

the

number

of

characters

eliminated

from

the

front

of

the

key,

and

the

second

field

gives

the

number

of

characters

that

remain.

When

the

sum

of

these

two

numbers

is

subtracted

from

the

full

key

length

(available

from

the

catalog

when

the

index

is

opened),

the

result

is

the

number

of

characters

eliminated

from

the

rear.

The

third

field

indicates

the

control

interval

that

contains

a

record

with

the

key.

The

example

in

Figure

41

on

page

279

gives

a

list

of

full

keys

and

shows

the

contents

of

the

index

entries

corresponding

to

the

keys

that

get

into

the

index

(the

highest

key

in

each

data

control

interval).

A

sequence-set

record

is

assumed,

with

vertical

pointers

1

byte

long.

The

index

entries

shown

in

the

figure

from

top

to

bottom

are

arranged

from

right

to

left

in

the

assumed

index

record.

Key

12345

has

no

front

compression

because

it

is

the

first

key

in

the

index

record.

Key

12356

has

no

rear

compression

because,

in

the

comparison

between

12356

and

12357,

there

are

no

characters

following

6,

which

is

the

first

character

that

is

unequal

to

the

corresponding

character

in

the

following

key.

You

can

always

figure

out

what

characters

have

been

eliminated

from

the

front

of

a

key.

You

cannot

figure

out

the

ones

eliminated

from

the

rear.

Rear

compression,

in

effect,

establishes

the

key

in

the

entry

as

a

boundary

value

instead

of

an

exact

high

key.

That

is,

an

entry

does

not

give

the

exact

value

of

the

highest

key

in

a

control

interval,

but

gives

only

enough

of

the

key

to

distinguish

it

from

the

lowest

key

in

the

next

control

interval.

For

example,

in

Figure

41

on

page

279

the

last

three

index

keys

are

12401,

124,

and

134

after

rear

compression.

Data

records

with

key

field

between:

v

12402

and

124FF

are

associated

with

index

key

124.

v

12500

and

134FF

are

associated

with

index

key

134.

If

the

last

data

record

in

a

control

interval

is

deleted,

and

if

the

control

interval

does

not

contain

the

high

key

for

the

control

area,

then

the

space

is

reclaimed

as

free

space.

Space

reclamation

can

be

suppressed

by

setting

the

RPLNOCIR

bit,

which

has

an

equated

value

of

X'20',

at

offset

43

into

the

RPL.

The

last

index

entry

in

an

index

level

indicates

the

highest

possible

key

value.

The

convention

for

expressing

this

value

is

to

give

none

of

its

characters

and

indicate

that

no

characters

have

been

eliminated

from

the

front.

The

last

index

entry

in

the

last

record

in

the

sequence

set

looks

like

this:

Processing

Indexes

of

Key-Sequenced

Data

Sets

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

277

In

a

search,

the

two

0s

signify

the

highest

possible

key

value

in

this

way:

v

The

fact

that

0

characters

have

been

eliminated

from

the

front

implies

that

the

first

character

in

the

key

is

greater

than

the

first

character

in

the

preceding

key.

v

A

length

of

0

indicates

that

no

character

comparison

is

required

to

determine

if

the

search

is

successful.

That

is,

when

a

search

finds

the

last

index

entry,

a

hit

has

been

made.

Processing

Indexes

of

Key-Sequenced

Data

Sets

278

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Index

Update

Following

a

Control

Interval

Split

When

a

data

set

is

first

loaded,

the

key

sequence

of

data

records

and

their

physical

order

are

the

same.

However,

when

data

records

are

inserted,

control

interval

splits

can

occur,

causing

the

data

control

intervals

to

have

a

physical

order

that

differs

from

the

key

sequence.

Figure

42

on

page

280

shows

how

the

control

interval

is

split

and

the

index

is

updated

when

a

record

with

a

key

of

12

is

inserted

in

the

control

area

shown

in

Figure

36

on

page

271.

K

Full Key of
Data Record

Index Entry Eliminated
From Front

None

Note: 'Full keys' are the full keys of the data records that reside in data CIs where highest
possible keys are compressed in the corresponding index entries.

Legend:
K-Characters left in key after compression
F-Number of characters eliminated from the front
L-Number of characters left in key after compression
P-Vertical pointer

5

123 none

1235 9

12 none

124 21

1 56

Eliminated
From Rear

K

K

K

12345

12350

12353

12354

12356

12357

12358

12359

12370

12373

12380

12385

12390

12401

12405

12410

12417

12421

12600

13200

13456

3

6

1

4

0

2 41

5

4

3

F

F

F

F

F

F

0

3

2

1

4

3

L

L

L

L

L

L

4

2

3

2

0

0

P

P

P

P

P

P

0

1

3

5

2

4

Figure

41.

Example

of

Key

Compression

Processing

Indexes

of

Key-Sequenced

Data

Sets

Chapter

19.

Processing

Indexes

of

Key-Sequenced

Data

Sets

279

1.

A

control

interval

split

occurs

in

data

control

interval

1,

where

a

record

with

the

key

of

12

must

be

inserted.

2.

Half

the

records

in

data

control

interval

1

are

moved

by

VSAM

to

the

free

space

control

interval

(data

control

interval

3).

3.

An

index

entry

is

inserted

in

key

sequence

to

point

to

data

control

interval

3,

that

now

contains

data

records

moved

from

data

control

interval

1.

4.

A

new

index

entry

is

created

for

data

control

interval

1,

because

after

the

control

interval

split,

the

highest

possible

key

is

14.

Because

data

control

interval

3

now

contains

data,

the

pointer

to

this

control

interval

is

removed

from

the

free

list

and

associated

with

the

new

key

entry

in

the

index.

Note

that

key

values

in

the

index

are

in

proper

ascending

sequence,

but

the

data

control

intervals

are

no

longer

in

physical

sequence.

Index

Entries

for

a

Spanned

Record

In

a

key-sequenced

data

set,

there

is

an

index

entry

for

each

control

interval

that

contains

a

segment

of

a

spanned

record.

All

the

index

entries

for

a

spanned

record

are

grouped

together

in

the

same

section.

They

are

ordered

from

right

to

left

according

to

the

sequence

of

segments

(first,

second,

third,

and

so

on).

Only

the

last

(leftmost)

index

entry

for

a

spanned

record

contains

the

key

of

the

record.

The

key

is

compressed

according

to

the

rules

described

above.

All

the

other

index

entries

for

the

record

look

like

this:

Index
CI

14

d

a b

c

11 1520

19

Data CI1 Data CI3Data CI2

12 18
Con-
trol
Info

Con-
trol
Info

Con-
trol
Info

25

FS FS25

Figure

42.

Control

Interval

Split

and

Index

Update

Where Y is a binary number equal to the length of the key
(Y indicates that the entire key has been eliminated from the front).
L indicates that 0 characters remain.
X identifies the control interval that contains the segment.

F

Y

L

0

P

X

Processing

Indexes

of

Key-Sequenced

Data

Sets

280

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Part

3.

Non-VSAM

Data

Sets

and

UNIX

Files

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

.

.

.

.

.

.

.

.

.

. 287

Format

Selection

.

.

.

.

.

.

.

.

.

.

.

. 287

Fixed-Length

Record

Formats

.

.

.

.

.

.

.

. 288

Standard

Format

.

.

.

.

.

.

.

.

.

.

. 289

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Variable-Length

Record

Formats

.

.

.

.

.

.

. 290

Format-V

Records

.

.

.

.

.

.

.

.

.

.

. 290

Block

Descriptor

Word

(BDW)

.

.

.

.

.

. 291

Record

Descriptor

Word

(RDW)

.

.

.

.

. 291

Spanned

Format-VS

Records

(Sequential

Access

Method)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Restrictions

in

Processing

Spanned

Records

with

QSAM

.

.

.

.

.

.

.

.

.

.

.

. 293

Segment

Descriptor

Word

.

.

.

.

.

.

. 293

Records

Longer

than

32

760

Bytes

.

.

.

. 294

Null

Segments

.

.

.

.

.

.

.

.

.

.

. 294

Spanned

Format-V

Records

(Basic

Direct

Access

Method)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

Undefined-Length

Record

Format

.

.

.

.

.

. 296

ISO/ANSI

Tapes

.

.

.

.

.

.

.

.

.

.

.

. 297

Character

Data

Conversion

.

.

.

.

.

.

.

. 297

Format-F

Records

.

.

.

.

.

.

.

.

.

.

. 298

Format-D

Records

.

.

.

.

.

.

.

.

.

.

. 300

ISO/ANSI

Format-DS

and

Format-DBS

Records

302

Converting

the

Segment

Descriptor

Word

303

Processing

Records

Longer

than

32

760

Bytes

304

Processing

DS/DBS

Tapes

with

QSAM

.

.

. 305

Processing

DS/DBS

Tapes

with

BSAM

.

.

. 305

Format-U

Records

.

.

.

.

.

.

.

.

.

.

. 305

Record

Format—Device

Type

Considerations

.

.

. 305

Using

Optional

Control

Characters

.

.

.

.

. 306

Using

Direct

Access

Storage

Devices

(DASD)

307

Using

Magnetic

Tape

.

.

.

.

.

.

.

.

.

. 307

Using

a

Printer

.

.

.

.

.

.

.

.

.

.

.

. 308

Table

Reference

Character

.

.

.

.

.

.

. 308

Record

Formats

.

.

.

.

.

.

.

.

.

. 309

Using

a

Card

Reader

and

Punch

.

.

.

.

.

. 309

Using

a

Paper

Tape

Reader

.

.

.

.

.

.

.

. 310

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

. 311

Processing

Sequential

and

Partitioned

Data

Sets

312

Using

OPEN

to

Prepare

a

Data

Set

for

Processing

317

Filling

in

the

DCB

.

.

.

.

.

.

.

.

.

.

. 318

Specifying

the

Forms

of

Macros,

Buffering

Requirements,

and

Addresses

.

.

.

.

.

.

. 320

Coding

Processing

Methods

.

.

.

.

.

.

. 320

Selecting

Data

Set

Options

.

.

.

.

.

.

.

.

. 321

Block

Size

(BLKSIZE)

.

.

.

.

.

.

.

.

.

. 321

Large

Block

Interface

(LBI)

.

.

.

.

.

.

. 322

System-Determined

Block

Size

.

.

.

.

.

. 323

Data

Set

Organization

(DSORG)

.

.

.

.

.

. 327

Key

Length

(KEYLEN)

.

.

.

.

.

.

.

.

. 328

Record

Length

(LRECL)

.

.

.

.

.

.

.

.

. 328

Record

Format

(RECFM)

.

.

.

.

.

.

.

. 328

Write

Validity

Check

Option

(OPTCD=W)

.

.

. 329

DD

Statement

Parameters

.

.

.

.

.

.

.

. 329

Changing

and

Testing

the

DCB

and

DCBE

.

.

. 330

Using

the

DCBD

Macro

.

.

.

.

.

.

.

.

. 331

Changing

an

Address

in

the

DCB

.

.

.

.

. 331

Using

the

IHADCBE

Macro

.

.

.

.

.

.

. 332

Using

CLOSE

to

End

the

Processing

of

a

Data

Set

332

Issuing

the

CHECK

Macro

.

.

.

.

.

.

.

. 332

Closing

a

Data

Set

Temporarily

.

.

.

.

.

. 332

Using

CLOSE

TYPE=T

with

Sequential

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Releasing

Space

.

.

.

.

.

.

.

.

.

.

. 334

Managing

Buffer

Pools

When

Closing

Data

Sets

335

Opening

and

Closing

Data

Sets:

Considerations

335

Parameter

Lists

with

31-Bit

Addresses

.

.

.

. 335

Open

and

Close

of

Multiple

Data

Sets

at

the

Same

Time

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Factors

to

Consider

When

Allocating

Direct

Access

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 336

Guidelines

for

Opening

and

Closing

Data

Sets

336

Open/Close/EOV

Errors

.

.

.

.

.

.

.

. 336

Installation

Exits

.

.

.

.

.

.

.

.

.

.

. 337

Positioning

Volumes

.

.

.

.

.

.

.

.

.

.

. 338

Releasing

Data

Sets

and

Volumes

.

.

.

.

.

. 338

Processing

End-of-Volume

.

.

.

.

.

.

.

. 338

Positioning

During

End-of-Volume

.

.

.

.

. 339

Using

the

OPEN

Macro

to

Position

Tape

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Using

the

DISP

Parameter

to

Position

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

. 340

Forcing

End-of-Volume

.

.

.

.

.

.

.

.

. 340

Managing

SAM

Buffer

Space

.

.

.

.

.

.

.

. 341

Constructing

a

Buffer

Pool

.

.

.

.

.

.

.

.

. 342

Building

a

Buffer

Pool

.

.

.

.

.

.

.

.

. 343

Building

a

Buffer

Pool

and

a

Record

Area

.

.

. 343

Getting

a

Buffer

Pool

.

.

.

.

.

.

.

.

.

. 344

Constructing

a

Buffer

Pool

Automatically

.

.

. 344

Freeing

a

Buffer

Pool

.

.

.

.

.

.

.

.

.

. 344

Constructing

a

Buffer

Pool:

Examples

.

.

.

. 345

Controlling

Buffers

.

.

.

.

.

.

.

.

.

.

. 346

Queued

Access

Method

.

.

.

.

.

.

.

.

. 346

Basic

Access

Method

.

.

.

.

.

.

.

.

.

. 347

QSAM

in

an

Application

.

.

.

.

.

.

.

. 347

Exchange

Buffering

.

.

.

.

.

.

.

.

.

. 349

Choosing

Buffering

Techniques

and

GET/PUT

Processing

Modes

.

.

.

.

.

.

.

.

.

.

.

. 350

Using

Buffering

Macros

with

Queued

Access

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

RELSE—Release

an

Input

Buffer

.

.

.

.

.

. 350

TRUNC—Truncate

an

Output

Buffer

.

.

.

. 350

Using

Buffering

Macros

with

Basic

Access

Method

351

GETBUF—Get

a

Buffer

from

a

Pool

.

.

.

.

. 351

FREEBUF—Return

a

Buffer

to

a

Pool

.

.

.

. 351

Chapter

22.

Accessing

Records

.

.

.

.

.

. 353

Accessing

Data

with

READ

and

WRITE

.

.

.

. 353

©

Copyright

IBM

Corp.

1987,

2004

281

Using

the

Data

Event

Control

Block

(DECB)

.

. 353

Grouping

Related

Control

Blocks

in

a

Paging

Environment

.

.

.

.

.

.

.

.

.

.

.

. 353

Using

Overlapped

I/O

with

BSAM

.

.

.

.

. 353

Reading

a

Block

.

.

.

.

.

.

.

.

.

.

. 355

Writing

a

Block

.

.

.

.

.

.

.

.

.

.

.

. 356

Ensuring

I/O

Initiation

with

the

TRUNC

Macro

356

Testing

Completion

of

a

Read

or

Write

Operation

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Waiting

for

Completion

of

a

Read

or

Write

Operation

.

.

.

.

.

.

.

.

.

.

.

.

. 357

Handling

Exceptional

Conditions

on

Tape

.

.

. 358

Accessing

Data

with

GET

and

PUT

.

.

.

.

.

. 359

GET—Retrieve

a

Record

.

.

.

.

.

.

.

.

. 359

PUT—Write

a

Record

.

.

.

.

.

.

.

.

.

. 359

PUTX—Write

an

Updated

Record

.

.

.

.

. 360

PDAB—Parallel

Input

Processing

(QSAM

Only)

360

Using

Parallel

Data

Access

Blocks

(PDAB)

361

Testing

for

Parallel

Processing

.

.

.

.

.

. 362

Analyzing

I/O

Errors

.

.

.

.

.

.

.

.

.

. 363

SYNADAF—Perform

SYNAD

Analysis

Function

363

SYNADRLS—Release

SYNADAF

Message

and

Save

Areas

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Device

Support

Facilities

(ICKDSF):

Diagnosing

I/O

Problems

.

.

.

.

.

.

.

.

.

.

.

. 364

Limitations

with

Using

SRB

or

Cross-Memory

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Chapter

23.

Sharing

Non-VSAM

Data

Sets

.

.

. 365

Enhanced

Data

Integrity

for

Shared

Sequential

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

Setting

Up

the

Enhanced

Data

Integrity

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Synchronizing

the

Enhanced

Data

Integrity

Function

on

Multiple

Systems

.

.

.

.

.

.

. 370

Using

the

START

IFGEDI

Command

.

.

.

. 370

Bypassing

the

Enhanced

Data

Integrity

Function

for

Applications

.

.

.

.

.

.

.

.

.

.

. 371

Diagnosing

Data

Integrity

Warnings

and

Violations

.

.

.

.

.

.

.

.

.

.

.

.

. 371

Data

Integrity

Messages

.

.

.

.

.

.

.

. 372

Data

Integrity

Violations

.

.

.

.

.

.

.

. 373

PDSEs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Direct

Data

Sets

(BDAM)

.

.

.

.

.

.

.

.

. 374

Factors

to

Consider

When

Opening

and

Closing

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Control

of

Checkpoint

Data

Sets

on

Shared

DASD

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

System

Use

of

Search

Direct

for

Input

Operations

377

Chapter

24.

Spooling

and

Scheduling

Data

Sets

379

Job

Entry

Subsystem

.

.

.

.

.

.

.

.

.

.

. 379

SYSIN

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 380

SYSOUT

Data

Set

.

.

.

.

.

.

.

.

.

.

.

. 380

Chapter

25.

Processing

Sequential

Data

Sets

383

Creating

a

Sequential

Data

Set

.

.

.

.

.

.

.

. 383

Retrieving

a

Sequential

Data

Set

.

.

.

.

.

.

. 384

Concatenating

Data

Sets

Sequentially

.

.

.

.

. 385

Concatenating

Like

Data

Sets

.

.

.

.

.

.

. 386

Rules

for

a

Sequential

Like

Data

Set

.

.

.

. 386

OPEN/EOV

Exit

Processing

.

.

.

.

.

. 387

Persistence

of

DCB

and

DCBE

Fields

.

.

. 387

SMS-Managed

Data

Sets

with

Like

Concatenation

.

.

.

.

.

.

.

.

.

.

. 388

BSAM

Block

Size

with

Like

Concatenation

388

Concatenating

Unlike

Data

Sets

.

.

.

.

.

. 390

Modifying

Sequential

Data

Sets

.

.

.

.

.

.

. 392

Updating

in

Place

.

.

.

.

.

.

.

.

.

.

. 392

Using

Overlapped

Operations

.

.

.

.

.

.

. 392

Extending

a

Data

Set

.

.

.

.

.

.

.

.

.

. 393

Multivolume

DASD

Data

Set

.

.

.

.

.

. 393

Extended-Format

Sequential

Data

Sets

.

.

. 393

Achieving

Device

Independence

.

.

.

.

.

.

. 393

Device-Dependent

Macros

.

.

.

.

.

.

.

. 394

DCB

and

DCBE

Subparameters

.

.

.

.

.

. 395

Improving

Performance

for

Sequential

Data

Sets

395

Limitations

on

Using

Chained

Scheduling

with

Non-DASD

Data

Sets

.

.

.

.

.

.

.

.

.

. 396

DASD

and

Tape

Performance

.

.

.

.

.

.

. 397

Determining

the

Length

of

a

Block

when

Reading

with

BSAM,

BPAM,

or

BDAM

.

.

.

.

.

.

.

. 398

Writing

a

Short

Format-FB

Block

with

BSAM

or

BPAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Using

Hiperbatch

.

.

.

.

.

.

.

.

.

.

.

. 400

Processing

Extended-Format

Sequential

Data

Sets

400

Characteristics

of

Extended-Format

Data

Sets

400

Allocating

Extended-Format

Data

Sets

.

.

.

. 401

Allocating

Compressed-Format

Data

Sets

.

.

. 402

Types

of

Compression

.

.

.

.

.

.

.

. 402

Characteristics

of

Compressed

Format

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

Opening

and

Closing

Extended-Format

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Reading,

Writing,

and

Updating

Extended-Format

Data

Sets

Using

BSAM

and

QSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Concatenating

Extended-Format

Data

Sets

with

Other

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 404

Extending

Striped

Sequential

Data

Sets

.

.

.

. 404

Migrating

to

Extended-Format

Data

Sets

.

.

. 404

Changing

Existing

BSAM

and

QSAM

Applications

.

.

.

.

.

.

.

.

.

.

.

. 404

Calculating

DASD

Space

Used

.

.

.

.

. 405

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

Structure

of

a

PDS

.

.

.

.

.

.

.

.

.

.

.

. 407

PDS

Directory

.

.

.

.

.

.

.

.

.

.

.

.

. 408

Allocating

Space

for

a

PDS

.

.

.

.

.

.

.

.

. 411

Calculating

Space

.

.

.

.

.

.

.

.

.

.

. 411

Allocating

Space

with

SPACE

and

AVGREC

.

. 412

Creating

a

PDS

.

.

.

.

.

.

.

.

.

.

.

.

. 412

Creating

a

PDS

Member

with

BSAM

or

QSAM

413

Converting

PDSs

.

.

.

.

.

.

.

.

.

.

. 413

Copying

a

PDS

or

Member

to

Another

Data

Set

413

Adding

Members

.

.

.

.

.

.

.

.

.

.

. 414

Processing

a

Member

of

a

PDS

.

.

.

.

.

.

. 416

BLDL—Construct

a

Directory

Entry

List

.

.

. 416

DESERV

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

FUNC=GET

.

.

.

.

.

.

.

.

.

.

.

. 417

FUNC=GET_ALL

.

.

.

.

.

.

.

.

.

. 419

282

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

||

FIND—Position

to

the

Starting

Address

of

a

Member

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

STOW—Update

the

Directory

.

.

.

.

.

.

. 421

Retrieving

a

Member

of

a

PDS

.

.

.

.

.

.

. 422

Modifying

a

PDS

.

.

.

.

.

.

.

.

.

.

.

. 426

Updating

in

Place

.

.

.

.

.

.

.

.

.

.

. 426

With

BSAM

and

BPAM

.

.

.

.

.

.

.

. 427

With

Overlapped

Operations

.

.

.

.

.

. 427

With

QSAM

.

.

.

.

.

.

.

.

.

.

.

. 428

Rewriting

a

Member

.

.

.

.

.

.

.

.

.

. 429

Concatenating

PDSs

.

.

.

.

.

.

.

.

.

.

. 429

Sequential

Concatenation

.

.

.

.

.

.

.

. 429

Partitioned

Concatenation

.

.

.

.

.

.

.

. 429

Reading

a

PDS

Directory

Sequentially

.

.

.

.

. 430

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

.

.

.

.

.

.

.

.

.

.

. 431

Advantages

of

PDSEs

.

.

.

.

.

.

.

.

.

. 431

PDSE

and

PDS

Similarities

.

.

.

.

.

.

.

. 433

PDSE

and

PDS

Differences

.

.

.

.

.

.

.

. 433

Structure

of

a

PDSE

.

.

.

.

.

.

.

.

.

.

. 433

PDSE

Logical

Block

Size

.

.

.

.

.

.

.

.

. 434

Reuse

of

Space

.

.

.

.

.

.

.

.

.

.

.

. 434

Directory

Structure

.

.

.

.

.

.

.

.

.

. 435

Relative

Track

Addresses

(TTR)

.

.

.

.

.

. 435

Processing

PDSE

Records

.

.

.

.

.

.

.

.

. 436

Using

BLKSIZE

with

PDSEs

.

.

.

.

.

.

. 437

Using

KEYLEN

with

PDSEs

.

.

.

.

.

.

. 437

Reblocking

PDSE

Records

.

.

.

.

.

.

.

. 437

Processing

Short

Blocks

.

.

.

.

.

.

.

.

. 438

Processing

SAM

Null

Segments

.

.

.

.

.

. 439

Allocating

Space

for

a

PDSE

.

.

.

.

.

.

.

. 439

PDSE

Space

Considerations

.

.

.

.

.

.

. 439

Use

of

Noncontiguous

Space

.

.

.

.

.

. 440

Integrated

Directory

.

.

.

.

.

.

.

.

. 440

Full

Block

Allocation

.

.

.

.

.

.

.

.

. 440

PDSE

Unused

Space

.

.

.

.

.

.

.

.

. 440

Frequency

of

Data

Set

Compression

.

.

.

. 441

Extent

Growth

.

.

.

.

.

.

.

.

.

.

. 441

Logical

Block

Size

.

.

.

.

.

.

.

.

.

. 441

Physical

Block

Size

(Page

Size)

.

.

.

.

. 441

Free

Space

.

.

.

.

.

.

.

.

.

.

.

. 441

Fragmentation

.

.

.

.

.

.

.

.

.

.

. 442

Summary

of

PDSE

Storage

Requirements

.

.

. 442

Defining

a

PDSE

.

.

.

.

.

.

.

.

.

.

.

. 442

Creating

a

PDSE

Member

.

.

.

.

.

.

.

.

. 443

Creating

a

PDSE

Member

with

BSAM

or

QSAM

443

Adding

or

Replacing

PDSE

Members

Serially

444

Adding

or

Replacing

Multiple

PDSE

Members

Concurrently

.

.

.

.

.

.

.

.

.

.

.

. 445

Copying

a

PDSE

or

Member

to

Another

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

Processing

a

Member

of

a

PDSE

.

.

.

.

.

.

. 446

Establishing

Connections

to

Members

.

.

.

. 446

Using

the

BLDL

Macro

to

Construct

a

Directory

Entry

List

.

.

.

.

.

.

.

.

.

.

.

.

. 447

Using

the

BSP

Macro

to

Backspace

a

Physical

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

Using

the

Directory

Entry

Services

.

.

.

.

. 448

FUNC=GET

.

.

.

.

.

.

.

.

.

.

.

. 449

FUNC=GET_ALL

.

.

.

.

.

.

.

.

.

. 451

FUNC=GET_NAMES

.

.

.

.

.

.

.

.

. 452

FUNC=RELEASE

.

.

.

.

.

.

.

.

.

. 453

FUNC=UPDATE

.

.

.

.

.

.

.

.

.

. 454

Using

the

FIND

Macro

to

Position

to

the

Beginning

of

a

Member

.

.

.

.

.

.

.

.

. 455

Using

ISITMGD

to

Determine

Whether

the

Data

Set

Is

System

Managed

.

.

.

.

.

.

.

.

. 456

Using

the

NOTE

Macro

to

Provide

Relative

Position

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

Using

the

POINT

Macro

to

Position

to

a

Block

457

Switching

between

Members

.

.

.

.

.

.

. 458

Using

the

STOW

Macro

to

Update

the

Directory

459

Retrieving

a

Member

of

a

PDSE

.

.

.

.

.

.

. 460

Sharing

PDSEs

.

.

.

.

.

.

.

.

.

.

.

.

. 462

Sharing

within

a

Computer

System

.

.

.

.

. 462

Sharing

Violations

.

.

.

.

.

.

.

.

.

.

. 462

Multiple

System

Sharing

of

PDSEs

.

.

.

.

. 463

Buffered

Data

Invalidation—VARY

OFFLINE

464

DFP

Share

Attributes

Callable

Service

(IGWLSHR)

.

.

.

.

.

.

.

.

.

.

.

. 464

Normal

or

Extended

PDSE

Sharing

.

.

.

.

. 465

Sharing

PDSEs

in

a

Single-System

Environment

.

.

.

.

.

.

.

.

.

.

. 465

Specifying

Normal

PDSE

Sharing

in

a

Multiple-System

Environment

.

.

.

.

.

. 465

Specifying

Extended

PDSE

Sharing

in

a

Multiple-System

Environment

.

.

.

.

.

. 465

Modifying

a

Member

of

a

PDSE

.

.

.

.

.

.

. 466

Updating

in

Place

.

.

.

.

.

.

.

.

.

.

. 466

With

BSAM

and

BPAM

.

.

.

.

.

.

.

. 466

With

Overlapped

Operations

.

.

.

.

.

. 466

With

QSAM

.

.

.

.

.

.

.

.

.

.

.

. 466

Extending

a

PDSE

Member

.

.

.

.

.

.

.

. 466

Deleting

a

PDSE

Member

.

.

.

.

.

.

.

. 467

Renaming

a

PDSE

Member

.

.

.

.

.

.

.

. 467

Reading

a

PDSE

Directory

.

.

.

.

.

.

.

.

. 467

Concatenating

PDSEs

.

.

.

.

.

.

.

.

.

.

. 468

Sequential

Concatenation

.

.

.

.

.

.

.

. 468

Partitioned

Concatenation

.

.

.

.

.

.

.

. 468

Converting

PDSs

to

PDSEs

and

Back

.

.

.

.

. 469

PDSE

to

PDS

Conversion

.

.

.

.

.

.

.

. 470

Restrictions

on

Converting

PDSEs

.

.

.

.

. 470

Improving

Performance

.

.

.

.

.

.

.

.

.

. 470

Recovering

Space

in

Fragmented

PDSEs

.

.

.

. 470

PDSE

Address

Spaces

.

.

.

.

.

.

.

.

.

. 470

Chapter

28.

Processing

z/OS

UNIX

Files

.

.

. 473

Accessing

the

z/OS

UNIX

File

System

.

.

.

.

. 473

Characteristics

of

UNIX

Directories

and

Files

474

Access

Methods

Used

.

.

.

.

.

.

.

.

. 474

Using

HFS

Data

Sets

.

.

.

.

.

.

.

.

.

.

. 475

Creating

HFS

Data

Sets

.

.

.

.

.

.

.

.

. 475

Creating

Additional

Directories

.

.

.

.

.

. 476

Creating

z/OS

UNIX

Files

.

.

.

.

.

.

.

.

. 477

Creating

a

UNIX

File

with

BSAM

or

QSAM

.

. 477

Record

Processing

Considerations

.

.

.

. 478

Processing

Restrictions

.

.

.

.

.

.

.

. 478

Creating

a

UNIX

File

Using

JCL

.

.

.

.

.

. 479

JCL

Parameters

for

UNIX

Files

.

.

.

.

.

. 480

Creating

a

Macro

Library

in

a

UNIX

Directory

481

Managing

UNIX

Files

and

Directories

.

.

.

.

. 482

Part

3.

Non-VSAM

Data

Sets

and

UNIX

Files

283

|

|

Specifying

Security

Settings

for

UNIX

Files

and

Directories

.

.

.

.

.

.

.

.

.

.

.

.

. 482

Permissions

for

UNIX

Files

and

Directories

483

RACF

Authorization

for

UNIX

Files

.

.

.

. 483

Editing

UNIX

Files

.

.

.

.

.

.

.

.

.

. 483

Using

ISHELL

to

Manage

UNIX

Files

and

Directories

.

.

.

.

.

.

.

.

.

.

.

.

. 484

Copying

UNIX

Files

or

Directories

.

.

.

.

. 485

Copying

a

PDS

to

a

UNIX

Directory

or

a

UNIX

Directory

to

a

PDS

.

.

.

.

.

.

. 485

Using

the

OPUT

Command

to

Copy

Members

from

a

PDS

or

PDSE

to

a

UNIX

File

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

Using

the

OPUTX

Command

to

Copy

Members

from

a

PDS

or

PDSE

to

a

UNIX

Directory

or

File

.

.

.

.

.

.

.

.

.

. 486

Using

the

OCOPY

Command

to

Copy

a

PDS,

PDSE,

or

UNIX

Member

to

Another

Member

. 486

Using

the

OGET

Command

to

Copy

a

UNIX

File

to

a

z/OS

Data

Set

.

.

.

.

.

.

.

. 486

Using

the

OGETX

Command

to

Copy

a

UNIX

Directory

to

a

PDS

or

PDSE

.

.

.

. 486

Services

and

Utilities

for

UNIX

Files

.

.

.

.

.

. 486

Services

and

Utilities

Cannot

be

Used

with

UNIX

Files

.

.

.

.

.

.

.

.

.

.

.

.

. 487

z/OS

UNIX

Signals

.

.

.

.

.

.

.

.

.

. 487

z/OS

UNIX

Fork

Service

.

.

.

.

.

.

.

. 487

SMF

Records

.

.

.

.

.

.

.

.

.

.

.

. 488

Reading

UNIX

Files

Using

BPAM

.

.

.

.

.

. 488

Using

Macros

for

UNIX

Files

.

.

.

.

.

.

. 488

BLDL—Constructing

a

Directory

Entry

List

.

. 488

CHECK—Checking

for

I/O

Completion

.

.

. 489

CLOSE—to

Close

the

DCB

.

.

.

.

.

.

.

. 489

FIND—Positioning

to

the

Starting

Address

of

a

File

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

READ—Reading

a

UNIX

File

.

.

.

.

.

.

. 490

STOW

DISC—Closing

a

UNIX

File

.

.

.

.

. 490

Concatenating

UNIX

Files

and

Directories

.

.

.

. 490

Sequential

Concatenation

.

.

.

.

.

.

.

. 490

Partitioned

Concatenation

.

.

.

.

.

.

.

. 491

Chapter

29.

Processing

Generation

Data

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

Data

Set

Organization

of

Generation

Data

Sets

.

. 494

Absolute

Generation

and

Version

Numbers

.

.

. 494

Relative

Generation

Number

.

.

.

.

.

.

.

. 495

Programming

Considerations

for

Multiple-Step

Jobs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

Cataloging

Generation

Data

Groups

.

.

.

.

. 496

Submitting

Multiple

Jobs

to

Update

a

Generation

Data

Group

.

.

.

.

.

.

.

.

. 496

Naming

Generation

Data

Groups

for

ISO/ANSI

Version

3

or

Version

4

Labels

.

.

.

.

.

.

.

. 497

Creating

a

New

Generation

.

.

.

.

.

.

.

.

. 498

Allocating

a

Generation

Data

Set

.

.

.

.

.

. 498

Referring

to

a

Cataloged

Data

Set

.

.

.

. 498

Creating

a

Model

DSCB

.

.

.

.

.

.

.

. 499

Using

DATACLAS

and

LIKE

Keywords

.

. 500

Passing

a

Generation

Data

Set

.

.

.

.

.

.

. 501

Rolling

In

a

Generation

Data

Set

.

.

.

.

.

. 501

Controlling

Expiration

of

a

Rolled-Off

Generation

Data

Set

.

.

.

.

.

.

.

.

.

. 502

Creating

an

ISAM

Data

Set

as

Part

of

a

Generation

Data

Group

.

.

.

.

.

.

.

.

. 502

Retrieving

a

Generation

Data

Set

.

.

.

.

.

.

. 502

Reclaiming

Generation

Data

Sets

.

.

.

.

.

.

. 503

Turning

on

GDS

Reclaim

Processing

.

.

.

.

. 503

Turning

off

GDS

Reclaim

Processing

.

.

.

.

. 503

Building

a

Generation

Data

Group

Index

.

.

.

. 504

Chapter

30.

Using

I/O

Device

Control

Macros

505

Using

the

CNTRL

Macro

to

Control

an

I/O

Device

505

Using

the

PRTOV

Macro

to

Test

for

Printer

Overflow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 506

Using

the

SETPRT

Macro

to

Set

Up

the

Printer

.

. 506

Using

the

BSP

Macro

to

Backspace

a

Magnetic

Tape

or

Direct

Access

Volume

.

.

.

.

.

.

.

. 507

Using

the

NOTE

Macro

to

Return

the

Relative

Address

of

a

Block

.

.

.

.

.

.

.

.

.

.

. 507

Using

the

POINT

Macro

to

Position

to

a

Block

.

. 508

Using

the

SYNCDEV

Macro

to

Synchronize

Data

509

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

General

Guidance

.

.

.

.

.

.

.

.

.

.

.

. 511

Programming

Considerations

.

.

.

.

.

.

. 512

Status

Information

Following

an

Input/Output

Operation

.

.

.

.

.

.

.

.

.

.

.

.

. 512

Data

Event

Control

Block

.

.

.

.

.

.

. 513

Event

Control

Block

.

.

.

.

.

.

.

.

. 515

EODAD

End-of-Data-Set

Exit

Routine

.

.

.

.

. 519

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 519

Programming

Considerations

.

.

.

.

.

.

. 519

SYNAD

Synchronous

Error

Routine

Exit

.

.

.

. 520

Register

Contents

.

.

.

.

.

.

.

.

.

.

. 523

Programming

Considerations

.

.

.

.

.

.

. 525

Queued

Access

Methods

.

.

.

.

.

.

. 525

Basic

Access

Methods

.

.

.

.

.

.

.

. 526

Returning

from

the

SYNAD

routine

.

.

.

. 526

ISAM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

DCB

Exit

List

.

.

.

.

.

.

.

.

.

.

.

.

. 527

Register

Contents

for

Exits

from

EXLST

.

.

. 529

Serialization

.

.

.

.

.

.

.

.

.

.

.

.

. 529

Allocation

Retrieval

List

.

.

.

.

.

.

.

.

.

. 530

Programming

Conventions

.

.

.

.

.

.

.

. 530

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

. 530

DCB

ABEND

Exit

.

.

.

.

.

.

.

.

.

.

.

. 531

Recovery

Requirements

.

.

.

.

.

.

.

.

. 533

DCB

Abend

Installation

Exit

.

.

.

.

.

.

. 535

DCB

OPEN

Exit

.

.

.

.

.

.

.

.

.

.

.

. 535

Calls

to

DCB

OPEN

Exit

for

Sequential

Concatenation

.

.

.

.

.

.

.

.

.

.

.

. 535

Installation

DCB

OPEN

Exit

.

.

.

.

.

.

. 536

Defer

Nonstandard

Input

Trailer

Label

Exit

List

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 536

Block

Count

Unequal

Exit

.

.

.

.

.

.

.

.

. 536

EOV

Exit

for

Sequential

Data

Sets

.

.

.

.

.

. 537

FCB

Image

Exit

.

.

.

.

.

.

.

.

.

.

.

.

. 538

JFCB

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 539

JFCBE

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

. 540

Open/Close/EOV

Standard

User

Label

Exit

.

.

. 541

284

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

||

Open/EOV

Nonspecific

Tape

Volume

Mount

Exit

545

Open/EOV

Volume

Security

and

Verification

Exit

548

QSAM

Parallel

Input

Exit

.

.

.

.

.

.

.

.

. 550

User

Totaling

for

BSAM

and

QSAM

.

.

.

.

.

. 550

Part

3.

Non-VSAM

Data

Sets

and

UNIX

Files

285

286

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Format

Selection

287

Fixed-Length

Record

Formats

288

Variable-Length

Record

Formats

290

Undefined-Length

Record

Format

296

ISO/ANSI

Tapes

297

Record

Format—Device

Type

Considerations

305

This

chapter

discusses

record

formats

of

non-VSAM

data

sets

and

device

type

considerations.

Records

are

stored

in

one

of

four

formats:

v

Fixed

length

(RECFM=F)

v

Variable

length

(RECFM=V)

v

ASCII

variable

length

(RECFM=D)

v

Undefined

length

(RECFM=U)

For

information

about

disk

format,

see

“Direct

Access

Storage

Device

(DASD)

Volumes”

on

page

8.

Format

Selection

Before

selecting

a

record

format,

you

should

consider:

v

The

data

type

(for

example,

EBCDIC)

your

program

can

receive

and

the

type

of

output

it

can

produce

v

The

I/O

devices

that

contain

the

data

set

v

The

access

method

you

use

to

read

and

write

the

records

v

Whether

the

records

can

be

blocked

Blocking

is

the

process

of

grouping

records

into

blocks

before

they

are

written

on

a

volume.

A

block

consists

of

one

or

more

logical

records.

Each

block

is

written

between

consecutive

interblock

gaps.

Blocking

conserves

storage

space

on

a

volume

by

reducing

the

number

of

interblock

gaps

in

the

data

set,

and

increases

processing

efficiency

by

reducing

the

number

of

I/O

operations

required

to

process

the

data

set.

If

you

do

not

specify

a

block

size,

the

system

generally

determines

a

block

size

that

is

optimum

for

the

device

to

which

your

data

set

is

allocated.

See

“System-Determined

Block

Size”

on

page

323.

You

select

your

record

format

in

the

data

control

block

(DCB)

using

the

options

in

the

DCB

macro,

the

DD

statement,

dynamic

allocation,

automatic

class

selection

routines

or

the

data

set

label.

Before

executing

your

program,

you

must

supply

the

operating

system

with

the

record

format

(RECFM)

and

device-dependent

information

in

data

class,

a

DCB

macro,

a

DD

statement,

or

a

data

set

label.

A

©

Copyright

IBM

Corp.

1987,

2004

287

complete

description

of

the

DD

statement

keywords

and

a

glossary

of

DCB

subparameters

is

contained

in

z/OS

MVS

JCL

Reference.

All

record

formats

except

U

can

be

blocked.

Variable-length

records

can

be

spanned

(RECFM=DS

or

VS).

Spanned

records

can

span

more

than

one

block.

Fixed-length

records

(RECFM=F

or

FB)

can

be

specified

as

standard

(RECFM=FS

or

FBS).

Standard

format

means

there

are

no

short

blocks

or

unfilled

tracks

within

the

data

set,

except

for

the

last

block

or

track.

Fixed-Length

Record

Formats

The

size

of

fixed-length

(format-F

or

-FB)

records,

shown

in

Figure

43,

is

constant

for

all

records

in

the

data

set.

The

records

can

be

blocked

or

unblocked.

If

the

data

set

contains

unblocked

format-F

records,

one

record

constitutes

one

block.

If

the

data

set

contains

blocked

format-F

records,

the

number

of

records

within

a

block

typically

is

constant

for

every

block

in

the

data

set.

The

data

set

can

contain

truncated

(short)

blocks.

The

system

automatically

checks

the

length

(except

for

card

readers)

on

blocked

or

unblocked

format-F

records.

Allowances

are

made

for

truncated

blocks.

Format-F

records

can

be

used

in

any

type

of

data

set.

The

optional

control

character

(a),

used

for

stacker

selection

or

carriage

control,

can

be

included

in

each

record

to

be

printed

or

punched.

The

optional

table

reference

character

(b)

is

a

code

to

select

the

font

to

print

the

record

on

a

page

printer.

See

“Using

Optional

Control

Characters”

on

page

306

and

“Table

Reference

Character”

on

page

308.

Record A

Record A Record B Record C Record D

Blocked
records

Unblocked
records

Record D

Block

Block Block Block

Record

Block

Record B

Optional table reference
character: 1 byte

Optional control
character: 1 byte

Record ERecord C

Databa

Record F

Figure

43.

Fixed-Length

Records

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

288

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Standard

Format

During

creation

of

a

sequential

data

set

(to

be

processed

by

BSAM

or

QSAM)

with

fixed-length

records,

the

RECFM

subparameter

of

the

DCB

macro

can

specify

a

standard

format

(RECFM=FS

or

FBS).

A

sequential

data

set

with

standard

format

records

(format-FS

or

-FBS)

sometimes

can

be

read

more

efficiently

than

a

data

set

with

format-F

or

-FB

records.

This

efficiency

is

possible

because

the

system

is

able

to

determine

the

address

of

each

record

to

be

read,

because

each

track

contains

the

same

number

of

blocks.

A

standard-format

data

set

must

conform

to

the

following

specifications:

v

All

records

in

the

data

set

are

format-F

records.

v

No

block

except

the

last

block

is

truncated.

(With

BSAM,

you

must

ensure

that

this

specification

is

met.)

If

the

last

block

is

truncated,

the

system

writes

it

where

a

full

size

block

would

have

been

written.

v

Every

track

except

the

last

contains

the

same

number

of

blocks.

v

Every

track

except

the

last

is

filled

as

determined

by

the

track

capacity

formula

established

for

the

device.

v

The

data

set

organization

is

physically

sequential.

You

cannot

use

format-FS

for

a

PDS

or

PDSE.

Restrictions

If

the

last

block

is

truncated,

you

should

never

extend

a

standard-format

data

set

by

coding:

v

EXTEND

or

OUTINX

on

the

OPEN

macro

v

OUTPUT,

OUTIN,

or

INOUT

on

the

OPEN

macro

with

DISP=MOD

on

the

allocation

v

CLOSE

LEAVE,

TYPE=T,

followed

by

a

WRITE

v

POINT

to

after

the

last

block,

followed

by

a

WRITE

v

CNTRL

on

tape

to

after

the

last

block,

followed

by

a

WRITE

If

the

data

set

becomes

extended,

it

contains

a

truncated

block

that

is

not

the

last

block.

Reading

an

extended

data

set

with

this

condition

results

in

a

premature

end-of-data

condition

when

the

truncated

block

is

read,

giving

the

appearance

that

the

blocks

following

this

truncated

block

do

not

exist.

Standard-format

data

sets

that

end

in

a

short

block

on

magnetic

tape

should

not

be

read

backward

because

the

data

set

would

begin

with

a

truncated

block.

A

format-F

data

set

will

not

meet

the

requirements

of

a

standard-format

data

set

if

you

do

the

following:

v

Extend

a

fixed-length,

blocked

standard

data

set

when

the

last

block

was

truncated.

v

Use

the

POINT

macro

to

prevent

BSAM

from

filling

a

track

other

than

the

last

one.

Do

not

skip

a

track

when

writing

to

a

data

set.

Standard

format

should

not

be

used

to

read

records

from

a

data

set

that

was

created

using

a

record

format

other

than

standard,

because

other

record

formats

might

not

create

the

precise

format

required

by

standard.

If

the

characteristics

of

your

data

set

are

altered

from

the

specifications

described

above

at

any

time,

the

data

set

should

no

longer

be

processed

with

the

standard

format

specification.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

289

Variable-Length

Record

Formats

In

a

variable-length

record

data

set,

each

record

or

record

segment

can

have

a

different

length.

Variable-length

records

can

be

used

with

all

types

of

data

sets.

The

variable-length

record

formats

are

format-V

and

format-D.

They

can

also

be

spanned

format

(-VS

or

-DS),

blocked

format

(-VB

or

-DB),

or

both

format

(-VBS

and

-DBS).

Format-D,

-DS,

and

-DBS

records

are

used

for

ISO/ANSI

tape

data

sets.

Format-V

Records

Figure

44

shows

blocked

and

unblocked

variable-length

(format-V)

records

without

spanning.

A

block

in

a

data

set

containing

unblocked

records

is

in

the

same

format

as

a

block

in

a

data

set

containing

blocked

records.

The

only

difference

is

that

with

blocked

records

each

block

can

contain

multiple

records.

BDW

BDW BDW

RDW Data

BDWRecord A

Record A Record C

RecordRecord

BlockBlock

Record DRecord B

Record B

Record ERecord C Record F Blocked records

Unblocked records

Non-extended BDW (block descriptor word) Extended BDW

LL LL

Block Block

l l

l l

l l

00

00

000 1LL LLLL

a b

Optional table reference
character
Optional control character
Reserved: 2 bytes
Record length: 2 bytes

Reserved: 2 bytes
Block length: 15 bits
Bit 0 is 0

Block length: 31 bits
Bit 0 is 1

Figure

44.

Nonspanned,

Format-V

Records

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

290

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

system

uses

the

record

or

segment

length

information

in

blocking

and

unblocking.

The

first

four

bytes

of

each

record,

record

segment,

or

block

make

up

a

descriptor

word

containing

control

information.

You

must

allow

for

these

additional

4

bytes

in

both

your

input

and

output

buffers.

Block

Descriptor

Word

(BDW)

A

variable-length

block

consists

of

a

block

descriptor

word

(BDW)

followed

by

one

or

more

logical

records

or

record

segments.

The

block

descriptor

word

is

a

4-byte

field

that

describes

the

block.

It

specifies

the

4

byte

block

length

for

the

BDW

plus

the

total

length

of

all

records

or

segments

within

the

block.

There

are

two

types

of

BDW.

If

bit

0

is

zero,

it

is

a

nonextended

BDW.

Bits

1-15

contain

the

block

length.

Bits

16-31

are

zeroes.

The

block

length

can

be

from

8

to

32

760

bytes.

All

access

methods

and

device

types

support

nonextended

BDWs.

If

bit

0

of

the

BDW

is

one,

the

BDW

is

an

extended

BDW

and

BDW

bits

1-31

contain

the

block

length.

Extended

BDWs

are

currently

supported

only

on

tape.

When

writing,

BSAM

applications

provide

the

BDW;

for

QSAM,

the

access

method

creates

the

BDW.

BSAM

accepts

an

extended

BDW

if

large

block

interface

(LBI)

processing

has

been

selected

(DCBESLBI

in

the

DCBE

control

block

is

set

on)

and

the

output

device

is

a

magnetic

tape.

If

an

extended

BDW

is

encountered

and

you

are

not

using

LBI,

or

the

output

device

is

not

magnetic

tape,

an

ABEND

002

is

issued.

IBM

recommends

that

the

BSAM

user

not

provide

an

extended

BDW

unless

the

block

length

is

greater

than

32

760

because

an

extended

BDW

would

prevent

SAM

reading

the

data

on

lower-level

DFSMS

systems.

Other

programs

that

read

the

data

set

may

also

not

support

an

extended

BDW.

QSAM

creates

extended

BDWs

only

for

blocks

whose

length

is

greater

than

32

760,

otherwise

the

nonextended

format

is

used.

When

you

read

with

either

BSAM

or

QSAM,

the

access

method

interrogates

the

BDW

to

determine

its

format.

See

“Large

Block

Interface

(LBI)”

on

page

322.

Record

Descriptor

Word

(RDW)

A

variable-length

logical

record

consists

of

a

record

descriptor

word

(RDW)

followed

by

the

data.

The

record

descriptor

word

is

a

4

byte

field

describing

the

record.

The

first

2

bytes

contain

the

length

(LL)

of

the

logical

record

(including

the

4

byte

RDW).

The

length

can

be

from

4

to

32

760.

All

bits

of

the

third

and

fourth

bytes

must

be

0,

because

other

values

are

used

for

spanned

records.

For

output,

you

must

provide

the

RDW,

except

in

data

mode

for

spanned

records

(described

under

“Controlling

Buffers”

on

page

346).

For

output

in

data

mode,

you

must

provide

the

total

data

length

in

the

physical

record

length

field

(DCBPRECL)

of

the

DCB.

For

input,

the

operating

system

provides

the

RDW,

except

in

data

mode.

In

data

mode,

the

system

passes

the

record

length

to

your

program

in

the

logical

record

length

field

(DCBLRECL)

of

the

DCB.

The

optional

control

character

(a)

can

be

specified

as

the

fifth

byte

of

each

record.

The

first

byte

of

data

is

a

table

reference

character

(b)

if

OPTCD=J

has

been

specified.

The

RDW,

the

optional

control

character,

and

the

optional

table

reference

character

are

not

punched

or

printed.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

291

Spanned

Format-VS

Records

(Sequential

Access

Method)

Figure

45

shows

how

the

spanning

feature

of

the

queued

and

basic

sequential

access

methods

lets

you

create

and

process

variable-length

logical

records

that

are

larger

than

one

physical

block.

It

also

lets

you

pack

blocks

with

variable-length

records

by

splitting

the

records

into

segments

so

that

they

can

be

written

into

more

than

one

block.

The

format

of

the

BDW

is

as

described

in

Figure

44

on

page

290.

When

spanning

is

specified

for

blocked

records,

QSAM

attempts

to

fill

all

blocks.

For

unblocked

records,

a

record

larger

than

the

block

size

is

split

and

written

in

two

or

more

blocks.

If

your

program

is

not

using

the

large

block

interface,

each

block

contains

only

one

record

or

record

segment.

Thus,

the

block

size

can

be

set

to

the

best

block

size

for

a

given

device

or

processing

situation.

It

is

not

restricted

by

the

maximum

record

length

of

a

data

set.

A

record

can,

therefore,

span

several

blocks,

and

can

even

span

volumes.

Logical record
(in user's work area)

BDWBDW BDW

Data Data DataSDW

RDW

SDW SDW

Data portion
of last

segment

Data portion
of intermediate

segment

Rest of data
portion of

first segment

LL

Block

Intermediate
segment of

logical record B

Intermediate
segment
of logical
record

Last segment
of logical
record A

Last segment
of logical
record B

Last
segment
of logical
record

First segment
of logical
record B

First
segment
of logical

record

First segment
of logical
record C

l l l l

l l

l l

l l

l l

l l l la

a

b

b

Segment
control code

Segment
control code

Optional table
reference character
Optional control character
Reserved: 1 byte
Segment control code: 1 byte
Segment length: 2 bytes

Optional table reference character
Optional control character
Reserved: 2 bytes
Record length: 2 bytes

Data portion of logical record B

Figure

45.

Spanned

Format-VS

Records

(Sequential

Access

Method)

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

292

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Spanned

record

blocks

can

have

extended

BDWs.

See

“Block

Descriptor

Word

(BDW)”

on

page

291.

When

you

use

unit

record

devices

with

spanned

records,

the

system

assumes

that

it

is

processing

unblocked

records

and

that

the

block

size

must

be

equivalent

to

the

length

of

one

print

line

or

one

card.

The

system

writes

records

that

span

blocks

one

segment

at

a

time.

Spanned

variable-length

records

cannot

be

specified

for

a

SYSIN

data

set.

Restrictions

in

Processing

Spanned

Records

with

QSAM

When

spanned

records

span

volumes,

reading

errors

could

occur

when

using

QSAM,

if

a

volume

that

begins

with

a

middle

or

last

segment

is

mounted

first

or

if

an

FEOV

macro

is

issued

followed

by

another

GET.

QSAM

cannot

begin

reading

from

the

middle

of

the

record.

The

errors

include

duplicate

records,

program

checks

in

the

user’s

program,

and

nonvalid

input

from

the

spanned

record

data

set.

A

logical

record

spanning

three

or

more

volumes

cannot

be

processed

in

update

mode

(as

described

in

“Controlling

Buffers”

on

page

346)

by

QSAM.

For

blocked

records,

a

block

can

contain

a

combination

of

records

and

record

segments,

but

not

multiple

segments

of

the

same

record

unless

the

program

is

using

LBI.

When

records

are

added

to

or

deleted

from

a

data

set,

or

when

the

data

set

is

processed

again

with

different

block

size

or

record

size

parameters,

the

record

segmenting

changes.

When

QSAM

opens

a

spanned

record

data

set

in

UPDAT

mode,

it

uses

the

logical

record

interface

(LRI)

to

assemble

all

segments

of

the

spanned

record

into

a

single,

logical

input

record,

and

to

disassemble

a

single

logical

record

into

multiple

segments

for

output

data

blocks.

A

record

area

must

be

provided

by

using

the

BUILDRCD

macro

or

by

specifying

BFTEK=A

in

the

DCB.

When

you

specify

BFTEK=A,

the

open

routine

provides

a

record

area

equal

to

the

LRECL

specification,

which

should

be

the

maximum

length

in

bytes.

(An

LRECL=0

is

not

valid.)

Segment

Descriptor

Word

Each

record

segment

consists

of

a

segment

descriptor

word

(SDW)

followed

by

the

data.

The

segment

descriptor

word,

similar

to

the

record

descriptor

word,

is

a

4

byte

field

that

describes

the

segment.

The

first

2

bytes

contain

the

length

(LL)

of

the

segment,

including

the

4

byte

SDW.

The

length

can

be

from

5

to

32

756

bytes

or,

when

you

are

using

WRITE

with

tape,

from

18

to

32

756

bytes.

The

third

byte

of

the

SDW

contains

the

segment

control

code

that

specifies

the

relative

position

of

the

segment

in

the

logical

record.

The

segment

control

code

is

in

the

rightmost

2

bits

of

the

byte.

The

segment

control

codes

are

shown

in

Table

28.

Table

28.

Segment

Control

Codes

Binary

Code

Relative

Position

of

Segment

00

Complete

logical

record

01

First

segment

of

a

multisegment

record

10

Last

segment

of

a

multisegment

record

11

Segment

of

a

multisegment

record

other

than

the

first

or

last

segment

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

293

The

remaining

bits

of

the

third

byte

and

all

of

the

fourth

byte

are

reserved

for

possible

future

system

use

and

must

be

0.

The

SDW

for

the

first

segment

replaces

the

RDW

for

the

record

after

the

record

is

segmented.

You

or

the

operating

system

can

build

the

SDW,

depending

on

which

access

method

is

used.

v

In

the

basic

sequential

access

method,

you

must

create

and

interpret

the

spanned

records

yourself.

v

In

the

queued

sequential

access

method

move

mode,

complete

logical

records,

including

the

RDW,

are

processed

in

your

work

area.

GET

consolidates

segments

into

logical

records

and

creates

the

RDW.

PUT

forms

segments

as

required

and

creates

the

SDW

for

each

segment.

Data

mode

is

similar

to

move

mode,

but

allows

reference

only

to

the

data

portion

of

the

logical

record

(that

is,

to

one

segment)

in

your

work

area.

The

logical

record

length

is

passed

to

you

through

the

DCBLRECL

field

of

the

data

control

block.

In

locate

mode,

both

GET

and

PUT

process

one

segment

at

a

time.

However,

in

locate

mode,

if

you

provide

your

own

record

area

using

the

BUILDRCD

macro,

or

if

you

ask

the

system

to

provide

a

record

area

by

specifying

BFTEK=A,

then

GET,

PUT,

and

PUTX

process

one

logical

record

at

a

time.

Records

Longer

than

32

760

Bytes

A

spanned

record

(RECFM=VS

or

RECFM=VBS)

can

contain

logical

records

of

any

length,

because

it

can

contain

any

number

of

segments.

While

each

segment

must

be

less

than

32

760,

the

segments

concatenated

together

into

the

logical

record

can

be

longer

than

32

760

bytes.

A

variable-length

ISO/ANSI

tape

record

(RECFM=D)

can

be

longer

than

32

760

bytes.

Here

are

some

techniques

for

processing

records

longer

than

32

760

bytes.

1.

If

you

use

QSAM

with

BFTEK=A,

but

do

not

use

the

BUILDRCD

macro

to

create

the

assembly

area,

you

can

create

a

record

of

up

to

32

760

bytes

long.

2.

If

you

use

QSAM

locate

mode

and

specify

LRECL=X

in

your

DCB

macro,

you

can

process

logical

records

that

exceed

32

760

bytes.

Instead

of

assembling

the

record

segments

into

one

logical

record,

QSAM

will

give

you

one

segment

at

a

time.

Then,

you

must

concatenate

the

segments

together

into

one

logical

record.

3.

If

you

use

BSAM

and

specify

LRECL=X

in

your

DCB

macro,

you

can

process

logical

records

that

exceed

32

760

bytes.

You

need

to

concatenate

the

segments

together

into

one

logical

record.

You

cannot

use

BFTEK=A

or

the

BUILDRCD

macro

when

the

logical

records

exceed

32

760

bytes.

(BFTEK=A

is

ignored

when

LRECL=X

is

specified.)

Null

Segments

A

1

in

bit

position

0

of

the

SDW

indicates

a

null

segment.

A

null

segment

means

that

there

are

no

more

segments

in

the

block.

Bits

1-7

of

the

SDW

and

the

remainder

of

the

block

must

be

binary

zeros.

A

null

segment

is

not

an

end-of-logical-record

delimiter.

(You

do

not

have

to

be

concerned

about

null

segments

unless

you

have

created

a

data

set

using

null

segments.)

Null

segments

are

not

recreated

in

PDSEs.

For

more

information,

see

“Processing

PDSE

Records”

on

page

436

Spanned

Format-V

Records

(Basic

Direct

Access

Method)

The

spanning

feature

of

BDAM

lets

you

create

and

process

variable-length

unblocked

logical

records

that

span

tracks.

The

feature

also

lets

you

pack

tracks

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

294

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

with

variable-length

records

by

splitting

the

records

into

segments.

Figure

46

shows

how

these

segments

can

then

be

written

onto

more

than

one

track.

When

you

specify

spanned,

unblocked

record

format

for

the

basic

direct

access

method,

and

when

a

complete

logical

record

cannot

fit

on

the

track,

the

system

tries

to

fill

the

track

with

a

record

segment.

Thus,

the

maximum

record

length

of

a

data

set

is

not

restricted

by

track

capacity.

Segmenting

records

permits

a

record

to

span

several

tracks,

with

each

segment

of

the

record

on

a

different

track.

However,

because

the

system

does

not

permit

a

record

to

span

volumes,

all

segments

of

a

logical

record

in

a

direct

data

set

are

on

the

same

volume.

Recommendation:

Do

not

use

the

basic

direct

access

method

(BDAM).

Logical record
(in user's work area)

Data Data DataSDW

BDW

BDW

SDW SDW

Data portion
of last

segment

Data portion
of intermediate

segment

Data portion of logical record B

Data portion
of first

segment

LL

LL

Block

Track 2Track 1 Track 3

Intermediate
segment of

logical record

Intermediate
segment
of logical
record

LL* LL* LL*

LL* = maximum block size for track

00 00 00

Last
segment
of logical
record

First segment
of logical
record

Last segment
of logical
record

First
segment
of logical

record

l l l l l l

l l l l l l

00

Segment
control
code

Segment
control
code

Reserved: 1 byte
Segment control code: 1 byte
Segment length: 2 bytes

Reserved: 2 bytes
Block length: 2 bytes

LL

Block
length:
2 bytes

Reserved:
2 bytes

Figure

46.

Spanned

Format-V

Records

for

Direct

Data

Sets

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

295

Undefined-Length

Record

Format

Format-U

permits

processing

of

records

that

do

not

conform

to

the

F-

or

V-

format.

Figure

47

shows

how

each

block

is

treated

as

a

record;

therefore,

any

unblocking

that

is

required

must

be

performed

by

your

program.

The

optional

control

character

can

be

used

in

the

first

byte

of

each

record.

Because

the

system

does

not

do

length

checking

on

format-U

records,

you

can

design

your

program

to

read

less

than

a

complete

block

into

virtual

storage.

However,

for

extended

format

data

sets,

since

the

system

writes

maximum

length

records,

you

must

provide

an

area

at

least

as

large

as

the

block

size

of

the

data

set.

With

BSAM

the

system

attempts

to

read

as

much

data

as

indicated

by

the

current

value

of

the

BLKSIZE

in

the

DCB

or

DCBE.

When

you

are

reading

an

extended

format

data

set,

make

sure

that

the

DCB

or

DCBE

BLKSIZE

field

value

is

no

more

than

the

length

of

the

area

you

are

reading

into.

If

you

supply

a

short

area

because

you

know

the

next

block

is

short,

BSAM

can

overlay

storage

to

the

length

limit

set

by

the

current

BLKSIZE

value.

For

format-U

records,

you

must

specify

the

record

length

when

issuing

the

WRITE,

PUT,

or

PUTX

macro.

No

length

checking

is

performed

by

the

system,

so

no

error

indication

will

be

given

if

the

specified

length

does

not

match

the

buffer

size

or

physical

record

size.

In

update

mode,

you

must

issue

a

GET

or

READ

macro

before

you

issue

a

PUTX

or

WRITE

macro

to

a

data

set

on

a

direct

access

storage

device.

If

you

change

the

record

length

when

issuing

the

PUTX

or

WRITE

macro,

the

record

will

be

padded

with

zeros

or

truncated

to

match

the

length

of

the

record

received

when

the

GET

or

READ

macro

was

issued.

No

error

indication

will

be

given.

Figure

47.

Undefined-Length

Records

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

296

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

ISO/ANSI

Tapes

ISO/ANSI

tape

records

are

written

in

format-F,

format-D,

format-S,

or

format-U.

Character

Data

Conversion

Data

management

lets

you

convert

from

one

character

representation

to

another

when

using

ISO/ANSI

tapes.

Conversion

occurs

according

to

one

of

the

following

techniques:

v

Coded

Character

Set

Identifier

(CCSID)

Conversion.

CCSID

conversion

provides

data

management

conversion

to

convert

records

between

one

CCSID

which

defines

the

character

representation

of

the

data

in

the

records

on

tape

to

another

CCSID

which

defines

the

character

representation

of

the

data

in

the

records

used

by

the

application

program.

You

can

request

that

BSAM

or

QSAM

perform

this

type

of

conversion

for

ISO/ANSI

V4

tapes

by

supplying

a

CCSID

in

the

CCSID

parameter

of

a

JOB

statement,

EXEC

statement,

or

DD

statement

as

well

as

through

dynamic

allocation

or

TSO

ALLOCATE.

CCSIDs

are

ignored

if

specified

for

other

than

ISO/ANSI

V4

tapes.

The

CCSID

which

describes

the

data

residing

on

the

tape

is

taken

from

(in

order

of

precedence):

1.

The

CCSID

supplied

on

the

DD

statement,

or

dynamic

allocation,

or

TSO

ALLOCATE.

2.

The

CCSID

field

stored

in

the

tape

label.

3.

The

default

(to

CCSID

of

367

representing

7-bit

ASCII)

if

a

CCSID

has

been

supplied

for

the

application

program.

The

CCSID

that

describes

the

data

to

use

by

the

application

program

is

taken

from

(in

order

of

precedence):

1.

The

CCSID

supplied

on

the

EXEC

statement.

2.

The

CCSID

supplied

on

the

JOB

statement.

3.

The

default

(to

CCSID

of

500

representing

International

EBCDIC)

if

a

CCSID

has

been

supplied

for

the

tape

data.

Data

records

can

contain

any

character

data

as

defined

by

the

CCSID

in

which

it

was

created.

You

can

prevent

access

method

conversion

by

supplying

a

special

CCSID

of

65535.

In

this

case,

data

management

transfers

the

data

between

the

tape

and

the

application

program

without

conversion.

See

Appendix

F,

“Converting

Character

Sets,”

on

page

617

for

a

list

of

supported

CCSID

combinations

and

“CCSID

Decision

Tables”

on

page

629

for

a

description

of

CCSID

processing

rules.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

297

Restrictions:

The

following

restrictions

apply

when

CCSID

conversion

is

used:

–

Only

SBCS

to

SBCS

or

DBCS

to

DBCS

is

supported.

For

more

information

about

double

byte

character

sets

(DBCS),

see

Appendix

B,

″Using

the

Double

Byte

Character

Set″.

–

When

converting

from

one

CCSID

to

another,

changes

in

length

for

data

records

are

not

supported

and

will

result

in

an

error.

–

All

data

management

calls

(OPEN,

READ/WRITE,

GET/PUT,

CLOSE)

must

be

made

in

the

original

key

of

the

task

(TCBPKF).

Key

switching

is

not

supported

and

results

in

an

error.

–

All

data

management

calls

must

be

made

in

the

task

in

which

the

DCB

was

opened.

Subtasking

is

not

supported

and

will

result

in

an

error.

–

Supervisor

state

callers

are

not

supported

for

any

data

management

calls

and

results

in

an

error.
v

Default

character

conversion.

Data

management

provides

conversion

from

ASCII

to

EBCDIC

on

input,

and

EBCDIC

to

ASCII

for

output

in

any

of

the

following

cases

(see

“Tables

for

Default

Conversion

Codes”

on

page

634):

–

ISO/ANSI

V1

and

V3

tapes

–

ISO/ANSI

V4

tapes

without

CCSID

–

Unlabeled

tapes

with

OPTCD=Q

Related

reading:

For

information

about

conversion

routines

that

the

system

supplies

for

this

type

of

conversion,

which

converts

to

and

from

ASCII

7-bit

code,

see

z/OS

DFSMS:

Using

Magnetic

Tapes.

When

you

convert

from

ASCII

to

EBCDIC,

if

a

source

character

contains

a

bit

in

the

high-order

position,

the

7-bit

conversion

does

not

produce

an

equivalent

character.

Instead,

it

produces

a

substitute

character

to

note

the

loss

in

conversion.

This

means,

for

example,

that

the

system

cannot

record

random

binary

data

(such

as

a

dump)

in

ASCII

7-bit

code.

The

system

cannot

use

CCSID

conversion

to

read

or

write

to

an

existing

data

set

that

was

created

using

default

character

conversion,

unless

DISP=OLD.

When

you

use

CCSIDs,

the

closest

equivalent

to

default

character

conversion

is

between

a

CCSID

of

367,

which

represents

7-bit

ASCII,

and

a

CCSID

of

500,

which

represents

International

EBCDIC.

Format-F

Records

For

ISO/ANSI

tapes,

format-F

records

are

the

same

as

described

in

“Fixed-Length

Record

Formats”

on

page

288,

except

for

control

characters,

block

prefixes,

and

circumflex

characters.

Control

Characters.

Control

characters,

when

present,

must

be

ISO/ANSI

control

characters.

For

more

information

about

control

characters

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Block

Prefixes.

Record

blocks

can

contain

block

prefixes.

The

block

prefix

can

vary

from

0

to

99

bytes,

but

the

length

must

be

constant

for

the

data

set

being

processed.

For

blocked

records,

the

block

prefix

precedes

the

first

logical

record.

For

unblocked

records,

the

block

prefix

precedes

each

logical

record.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

298

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Using

QSAM

and

BSAM

to

read

records

with

block

prefixes

requires

that

you

specify

the

BUFOFF

parameter

in

the

DCB.

When

using

QSAM,

you

do

not

have

access

to

the

block

prefix

on

input.

When

using

BSAM,

you

must

account

for

the

block

prefix

on

both

input

and

output.

When

using

either

QSAM

or

BSAM,

you

must

account

for

the

length

of

the

block

prefix

in

the

BLKSIZE

and

BUFL

parameters

of

the

DCB.

When

you

use

BSAM

on

output

records,

the

operating

system

does

not

recognize

a

block

prefix.

Therefore,

if

you

want

a

block

prefix,

it

must

be

part

of

your

record.

Note

that

you

cannot

include

block

prefixes

in

QSAM

output

records.

The

block

prefix

can

only

contain

EBCDIC

characters

that

correspond

to

the

128,

seven-bit

ASCII

characters.

Thus,

you

must

avoid

using

data

types

such

as

binary,

packed

decimal,

and

floating

point

that

cannot

always

be

converted

into

ASCII.

This

is

also

true

when

CCSIDs

are

used

when

writing

to

ISO/ANSI

V4

tapes.

Related

reading:

For

information

about

conversion

routines

supplied

by

the

system

for

this

type

of

conversion,

which

converts

to

ASCII

7-bit

code,

see

z/OS

DFSMS:

Using

Magnetic

Tapes.

Figure

48

shows

the

format

of

fixed-length

records

for

ISO/ANSI

tapes

and

where

control

characters

and

block

prefixes

are

positioned

if

they

exist.

Optional
block
prefix

Optional
block

pPrefix

Optional
block
prefix

Optional
block
prefix

Optional
block
prefix

Optional
block
prefix

Blocked
Records

Unblocked
Records

Record A Record DRecord B Record ERecord C

Record C Record DRecord BRecord A

Record F

Block Block

Record

Block Block Block

Optional control
character: 1 byte

a Data

Figure

48.

Fixed-Length

Records

for

ISO/ANSI

Tapes

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

299

Circumflex

Characters.

The

GET

routine

tests

each

record

(except

the

first)

for

all

circumflex

characters

(X'5E').

If

a

record

completely

filled

with

circumflex

characters

is

detected,

QSAM

ignores

that

record

and

the

rest

of

the

block.

A

fixed-length

record

must

not

consist

of

only

circumflex

characters.

This

restriction

is

necessary

because

circumflex

characters

are

used

to

pad

out

a

block

of

records

when

fewer

than

the

maximum

number

of

records

are

included

in

a

block,

and

the

block

is

not

truncated.

Format-D

Records

Format-D,

format-DS,

and

format-DBS

records

are

used

for

ISO/ANSI

tape

data

sets.

ISO/ANSI

records

are

the

same

as

format-V

records,

with

three

exceptions:

v

Block

prefix

v

Block

size

v

Control

characters.

Block

Prefix.

A

record

block

can

contain

a

block

prefix.

To

specify

a

block

prefix,

code

BUFOFF

in

the

DCB

macro.

The

block

prefix

can

vary

in

length

from

0

to

99

bytes,

but

its

length

must

remain

constant

for

all

records

in

the

data

set

being

processed.

For

blocked

records,

the

block

prefix

precedes

the

RDW

for

the

first

or

only

logical

record

in

each

block.

For

unblocked

records,

the

block

prefix

precedes

the

RDW

for

each

logical

record.

To

specify

that

the

block

prefix

is

to

be

treated

as

a

BDW

by

data

management

for

format-D

or

format-DS

records

on

output,

code

BUFOFF=L

as

a

DCB

parameter.

Your

block

prefix

must

be

4

bytes

long,

and

it

must

contain

the

length

of

the

block,

including

the

block

prefix.

The

maximum

length

of

a

format-D

or

format-DS,

BUFOFF=L

block

is

9999

because

the

length

(stated

in

binary

numbers

by

the

user)

is

converted

to

a

4

byte

ASCII

character

decimal

field

on

the

ISO/ANSI

tape

when

the

block

is

written.

It

is

converted

back

to

a

2

byte

length

field

in

binary

followed

by

two

bytes

of

zeros

when

the

block

is

read.

If

you

use

QSAM

to

write

records,

data

management

fills

in

the

block

prefix

for

you.

If

you

use

BSAM

to

write

records,

you

must

fill

in

the

block

prefix

yourself.

If

you

are

using

chained

scheduling

to

read

blocked

DB

or

DBS

records,

you

cannot

code

BUFOFF=absolute

expression

in

the

DCB.

Instead,

BUFOFF=L

is

required,

because

the

access

method

needs

binary

RDWs

and

valid

block

lengths

to

unblock

the

records.

When

you

use

QSAM,

you

cannot

read

the

block

prefix

into

your

record

area

on

input.

When

using

BSAM,

you

must

account

for

the

block

prefix

on

both

input

and

output.

When

using

either

QSAM

or

BSAM,

you

must

account

for

the

length

of

the

block

prefix

in

the

BLKSIZE

and

BUFL

parameters.

When

using

QSAM

to

access

DB

or

DBS

records,

and

BUFOFF=0

is

specified,

the

value

of

BUFL,

if

specified,

must

be

increased

by

4.

If

BUFL

is

not

specified,

then

BLKSIZE

must

be

increased

by

4.

This

permits

a

4

byte

QSAM

internal

processing

area

to

be

included

when

the

system

acquires

the

buffers.

These

4

bytes

do

not

become

part

of

the

user’s

block.

When

you

use

BSAM

on

output

records,

the

operating

system

does

not

recognize

the

block

prefix.

Therefore,

if

you

want

a

block

prefix,

it

must

be

part

of

your

record.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

300

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

block

prefix

can

contain

only

EBCDIC

characters

that

correspond

to

the

128,

seven-bit

ASCII

characters.

Thus,

you

must

avoid

using

data

types

(such

as

binary,

packed

decimal,

and

floating

point),

that

cannot

always

be

converted

into

ASCII.

For

DB

and

DBS

records,

the

only

time

the

block

prefix

can

contain

binary

data

is

when

you

have

coded

BUFOFF=L,

which

tells

data

management

that

the

prefix

is

a

BDW.

Unlike

the

block

prefix,

the

RDW

must

always

be

binary.

This

is

true

whether

conversion

or

no

conversion

is

specified

with

CCSID

for

Version

4

tapes.

Block

Size.

Version

3

tapes

have

a

maximum

block

size

of

2048.

This

limit

can

be

overridden

by

a

label

validation

installation

exit.

For

Version

4

tapes,

the

maximum

size

is

32

760.

If

you

specify

a

maximum

data

set

block

size

of

18

or

greater

when

creating

variable-length

blocks,

then

individual

blocks

can

be

shorter

than

18

bytes.

In

those

cases

data

management

pads

each

one

to

18

bytes

when

the

blocks

are

written

onto

an

ISO/ANSI

tape.

The

padding

character

used

is

the

ASCII

circumflex

character,

which

is

X’5E’.

Control

Characters.

Control

characters,

if

present,

must

be

ISO/ANSI

control

characters.

For

more

information

about

control

characters

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Figure

49

shows

the

format

of

nonspanned

variable-length

records

for

ISO/ANSI

tapes,

where

the

record

descriptor

word

(RDW)

is

located,

and

where

block

prefixes

and

control

characters

must

be

placed

when

they

are

used.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

301

ISO/ANSI

Format-DS

and

Format-DBS

Records

For

ISO/ANSI

tapes,

variable-length

spanned

records

must

be

specified

in

the

DCB

RECFM

parameter

as

DCB

RECFM=DS

or

DBS.

Format-DS

and

format-DBS

records

are

similar

to

format-VS

or

format-VBS

records.

The

exceptions

are

described

in

“Converting

the

Segment

Descriptor

Word”

on

page

303

and

“Processing

Records

Longer

than

32

760

Bytes”

on

page

304.

Figure

50

on

page

303

shows

what

spanned

variable-length

records

for

ISO/ANSI

tapes

look

like.

Optional
block
prefix

Optional
block
prefix

Optional
block
prefix

Optional
block
prefix

Optional
block
prefix

RDW Data

Block Block

Record A

Record C Record ERecord D

Record DRecord B Record ERecord C Record FBlocked
records

Unblocked
records

Block Block

l l

l l

a

Optional control character
Reserved: 2 bytes
Record length: 2 bytes

Figure

49.

Nonspanned

Format-D

Records

for

ISO/ANSI

Tapes

As

Seen

by

the

Program

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

302

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Figure

50

shows

the

segment

descriptor

word

(SDW),

where

the

record

descriptor

word

(RDW)

is

located,

and

where

block

prefixes

must

be

placed

when

they

are

used.

If

you

are

not

using

IBM

access

methods

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

a

description

of

ISO/ANSI

record

control

words

and

segment

control

words.

Converting

the

Segment

Descriptor

Word

There

is

an

additional

byte

preceding

each

SDW

for

DS/DBS

records.

This

additional

byte

is

required

for

conversion

of

the

SDW

from

IBM

to

ISO/ANSI

format,

because

the

ISO/ANSI

SDW

(called

a

segment

control

word)

is

five

bytes

long.

Otherwise,

the

SDW

for

DS/DBS

records

is

the

same

as

the

SDW

for

VS/VBS

records.

The

SDW

LL

count

excludes

the

additional

byte.

Logical record
(in LRI record area)

XLRI format
logical record

(in XLRI record area)

Optional
block
prefix

Optional
block
prefix

Optional
block
prefix

DataData

Complete logical record data

Complete logical record data

Data

RDW (binary)

RDW (binary)

SDWSDWSDW

Last
segment of

logical
record B

Last
segment of

logical
record B

Intermediate
segment of

logical
record B

Intermediate
segment of

logical
record B

First segment
of logical
record B

First segment
of logical
record B

BlockBlock

Blocked
records

Block

Intermediate
segment
of logical
record B

Last
segment
of logical
record A

Last
segment
of logical
record B

Last
segment
of logical
record B

First
segment
of logical
record B

First
segment
of logical
record C

Intermediate
segment
of logical
record B

First
segment
of logical
record B

l l

l l l

l l l

l l

l ll ll l

00

0

CCC 000

Reserved: 1 byte
Segment position indicator: 1 byte
Segment length: 2 bytes
Field expansion byte

Reserved: 2 bytes (must be zero)
Record length: 2 bytes

Record length: 3 bytes or 16776192
Reserved: 2 bytes (must be zero)

l l+1 l l+1 l l+1

Figure

50.

Spanned

Variable-Length

(Format-DS)

Records

for

ISO/ANSI

Tapes

As

Seen

by

the

Program

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

303

QSAM

or

BSAM

convert

between

ISO/ANSI

segment

control

word

(SCW)

format

and

IBM

segment

descriptor

word

(SDW)

format.

On

output,

the

binary

SDW

LL

value

(provided

by

you

when

using

BSAM

and

by

the

access

method

when

using

QSAM),

is

increased

by

1

for

the

extra

byte

and

converted

to

four

ASCII

numeric

characters.

Because

the

binary

SDW

LL

value

will

result

in

four

numeric

characters,

the

binary

value

must

not

be

greater

than

9998.

The

fifth

character

is

used

to

designate

which

segment

type

(complete

logical

record,

first

segment,

last

segment,

or

intermediate

segment)

is

being

processed.

On

input,

the

four

numeric

characters

designating

the

segment

length

are

converted

to

two

binary

SDW

LL

bytes

and

decreased

by

one

for

the

unused

byte.

The

ISO/ANSI

segment

control

character

maps

to

the

DS/DBS

SDW

control

flags.

This

conversion

leaves

an

unused

byte

at

the

beginning

of

each

SDW.

It

is

set

to

X'00'.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

more

details

on

this

process.

On

the

tape,

the

SDW

bytes

are

ASCII

numeric

characters

even

if

the

other

bytes

in

the

record

are

not

ASCII.

Processing

Records

Longer

than

32

760

Bytes

A

spanned

record

(RECFM=VS

or

RECFM=VBS)

can

contain

logical

records

of

any

length,

because

it

can

contain

any

number

of

segments.

While

each

segment

must

be

less

than

32

760,

the

segments

concatenated

together

into

the

logical

record

can

be

longer

than

32

760

bytes.

A

variable-length

ISO/ANSI

tape

record

(RECFM=D)

can

be

longer

than

32

760

bytes.

Some

techniques

for

processing

records

longer

than

32

760

bytes

follow.

Processing

techniques

for

Format-D,

Format-DS

or

Format-DBS

Records

(ISO/ANSI

tapes):

v

If

you

use

QSAM

or

BSAM

and

specify

LRECL=X,

you

can

process

records

longer

than

32

760

bytes

for

ISO/ANSI

tapes.

Note

that

the

maximum

block

length

for

ISO/ANSI

tapes

is

2048.

v

If

you

use

QSAM

with

XLRI

and

specify

LRECL=nnnnnK

or

0K,

you

can

process

records

longer

than

32

760

bytes

for

variable-length,

spanned

ISO/ANSI

tapes.

DS/DBS

records

with

a

record

length

of

over

32

760

bytes

can

be

processed

using

XLRI.

(XLRI

is

supported

only

in

QSAM

locate

mode

for

ISO/ANSI

tapes.)

Using

the

LRECL=X

for

ISO/ANSI

causes

an

013-DC

ABEND.

To

use

XLRI,

specify

LRECL=0K

or

LRECL=nK

in

the

DCB

macro.

Specifying

DCBLRECL

with

the

K

suffix

sets

the

DCBBFTK

bit

that

indicates

that

LRECL

is

coded

in

K

units

and

that

the

DCB

is

to

be

processed

in

XLRI

mode.

LRECL=0K

in

the

DCB

macro

specifies

that

the

LRECL

value

will

come

from

the

file

label

or

JCL.

When

LRECL

is

from

the

label,

the

file

must

be

opened

as

an

input

file.

The

label

(HDR2)

value

for

LRECL

will

be

converted

to

kilobytes

and

rounded

up

when

XLRI

is

in

effect.

When

the

ISO/ANSI

label

value

for

LRECL

is

00

000

to

show

that

the

maximum

record

length

can

be

greater

than

99

999,

you

must

use

LRECL=nK

in

the

JCL

or

in

the

DCB

to

specify

the

maximum

record

length.

You

can

express

the

LRECL

value

in

JCL

in

absolute

form

or

with

the

K

notation.

When

the

DCB

specifies

XLRI,

the

system

converts

absolute

values

to

kilobytes

by

rounding

up

to

an

integral

multiple

of

1024.

Absolute

values

are

permissible

only

from

5

to

32

760.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

304

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

To

show

the

record

area

size

in

the

DD

statement,

code

LRECL=nK,

or

specify

a

data

class

that

has

the

LRECL

attribute

you

need.

The

value

nK

can

range

from

1K

to

16

383K

(expressed

in

1024

byte

multiples).

However,

depending

on

the

buffer

space

available,

the

value

you

can

specify

in

most

systems

will

be

much

smaller

than

16

383K

bytes.

This

value

is

used

to

determine

the

size

of

the

record

area

required

to

contain

the

largest

logical

record

of

the

spanned

format

file.

When

you

use

XLRI,

the

exact

LRECL

size

is

communicated

in

the

three

low-order

bytes

of

the

RDW

in

the

record

area.

This

special

RDW

format

exists

only

in

the

record

area

to

communicate

the

length

of

the

logical

record

(including

the

4

byte

RDW)

to

be

written

or

read.

(See

the

XLRI

format

of

the

RDW

in

Figure

50

on

page

303.)

DCB

LRECL

shows

the

1024

multiple

size

of

the

record

area

(rounded

up

to

the

next

nearest

kilobyte).

The

normal

DS/DBS

SDW

format

is

used

at

all

other

times

before

conversion.

Processing

DS/DBS

Tapes

with

QSAM

When

using

QSAM,

the

same

application

used

to

process

VS/VBS

tape

files

can

be

used

to

process

DS/DBS

tape

files.

However,

you

must

ensure

that

ISO/ANSI

requirements

such

as

block

size

limitation,

tape

device,

and

restriction

to

EBCDIC

characters

that

correspond

to

the

128,

seven-bit

ASCII

characters

are

met.

The

SCW/SDW

conversion

and

buffer

positioning

is

handled

by

the

GET/PUT

routines.

ISO/ANSI

Version

4

tapes

also

permits

special

characters

!*″%&’()+,-./:;<=>?_

and

numeric

characters

0

-

9.

Processing

DS/DBS

Tapes

with

BSAM

When

using

BSAM

to

process

a

DS/DBS

tape

file,

you

must

allow

for

an

additional

byte

at

the

beginning

of

each

SDW.

The

SDW

LL

must

exclude

the

additional

byte.

On

input,

you

must

ignore

the

unused

byte

preceding

each

SDW.

On

output,

you

must

allocate

the

additional

byte

for

each

SDW.

Format-U

Records

Data

can

only

be

in

format-U

for

ISO/ANSI

Version

1

tapes

(ISO

1001-1969

and

ANSI

X3.27-1969).

These

records

can

be

used

for

input

only.

They

are

the

same

as

the

format-U

records

described

in

“Undefined-Length

Record

Format”

on

page

296

except

the

control

characters

must

be

ISO/ANSI

control

characters,

and

block

prefixes

can

be

used.

Format-U

records

are

not

supported

for

Version

3

or

Version

4

ISO/ANSI

tapes.

An

attempt

to

process

a

format-U

record

from

a

Version

3

or

Version

4

tape

results

in

entering

the

label

validation

installation

exit.

Record

Format—Device

Type

Considerations

This

section

discusses

which

record

formats

are

acceptable

for

specific

devices.

DASD—Format-F,

format-U,

format-V

Magnetic

tape—Format-D,

format-F,

format-U,

format-V

Printer—Format-F,

format-U,

format-V

Card

reader

and

punch—Format-F,

format-U

SYSIN

and

SYSOUT—Format-F,

format-U,

format-V

For

more

information

see

Chapter

24,

“Spooling

and

Scheduling

Data

Sets,”

on

page

379.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

305

The

device-dependent

(DEVD)

parameter

of

the

DCB

macro

specifies

the

type

of

device

where

the

data

set’s

volume

resides:

DA

Direct

access

storage

devices

TA

Magnetic

tape

PR

Printer

RD

Card

reader

PC

Card

punch

Note:

Because

the

DEVD

option

affects

only

for

the

DCB

macro

expansion,

you

are

guaranteed

the

maximum

device

flexibility

by

letting

it

default

to

DEVD=DA

and

not

coding

any

device-dependent

parameter.

Using

Optional

Control

Characters

You

can

specify

in

the

DD

statement,

the

DCB

macro,

or

the

data

set

label

that

an

optional

control

character

is

part

of

each

record

in

the

data

set.

The

1

byte

character

is

used

to

show

a

carriage

control

function

when

the

data

set

is

printed

or

a

stacker

bin

when

the

data

set

is

punched.

Although

the

character

is

a

part

of

the

record

in

storage,

it

is

never

printed

or

punched.

Note

that

buffer

areas

must

be

large

enough

to

accommodate

the

character.

If

the

immediate

destination

of

the

data

set

is

a

device,

such

as

a

disk

or

tape,

which

does

not

recognize

the

control

character,

the

system

assumes

that

the

control

character

is

the

first

byte

of

the

data

portion

of

the

record.

If

the

destination

of

the

data

set

is

a

printer

or

punch

and

you

have

not

indicated

the

presence

of

a

control

character,

the

system

regards

the

control

character

as

the

first

byte

of

data.

If

the

destination

of

the

data

set

is

SYSOUT,

the

effect

of

the

control

characters

is

determined

at

the

ultimate

destination

of

the

data

set.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

a

list

of

the

control

characters.

The

presence

of

a

control

character

is

indicated

by

M

or

A

in

the

RECFM

field

of

the

data

control

block.

M

denotes

machine

code;

A

denotes

American

National

Standards

Institute

(ANSI)

code.

If

either

M

or

A

is

specified,

the

character

must

be

present

in

every

record;

the

printer

space

(PRTSP)

or

stacker

select

(STACK)

field

of

the

DCB

is

ignored.

The

optional

control

character

must

be

in

the

first

byte

of

format-F

and

format-U

records,

and

in

the

fifth

byte

of

format-V

records

and

format-D

records

where

BUFOFF=L.

If

the

immediate

destination

of

the

data

set

is

a

sequential

DASD

data

set

or

an

IBM

standard

or

ISO/ANSI

standard

labelled

tape,

OPEN

records

the

presence

and

type

of

control

characters

in

the

data

set

label.

This

is

so

that

a

program

that

copies

the

data

set

to

a

print,

punch,

or

SYSOUT

data

set

can

propagate

RECFM

and

therefore

control

the

type

of

control

character.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

306

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Using

Direct

Access

Storage

Devices

(DASD)

Direct

access

storage

devices

accept

records

of

format-F,

format-V,

or

format-U.

To

read

or

write

the

records

with

keys,

you

must

specify

the

key

length

(KEYLEN).

In

addition,

the

operating

system

has

a

standard

track

format

for

all

direct

access

volumes.

See

“Track

Format”

on

page

8

for

a

complete

description

of

track

format.

Each

track

contains

data

information

and

certain

control

information,

such

as

the

following

information:

v

The

address

of

the

track

v

The

address

of

each

record

v

The

length

of

each

record

v

Gaps

between

areas

Except

for

a

PDSE

or

compressed

format

data

set,

the

size

of

a

block

cannot

exceed

what

the

system

can

write

on

a

track.

For

PDSEs

and

compressed

format

data

sets,

the

access

method

simulates

blocks,

and

you

can

select

a

value

for

BLKSIZE

without

regard

to

the

track

length.

A

compressed

format

data

set

is

a

type

of

extended

format

data

set

that

is

stored

in

a

data

format

that

can

contain

records

that

the

access

method

compressed.

Using

Magnetic

Tape

Format-F,

format-V,

format-D,

and

format-U

records

are

acceptable

for

magnetic

tape.

Format-V

records

are

not

acceptable

on

7-track

tape

if

the

data

conversion

feature

is

not

available.

ASCII

records

are

not

acceptable

on

7-track

tape.

When

you

create

a

tape

data

set

with

variable-length

record

format-V

or

format-D,

the

control

program

pads

any

data

block

shorter

than

18

bytes.

For

format-V

records,

it

pads

to

the

right

with

binary

zeros

so

that

the

data

block

length

equals

18

bytes.

For

format-D

(ASCII)

records,

the

padding

consists

of

ASCII

circumflex

characters,

which

are

equivalent

to

X'5E's.

Note

that

there

is

no

minimum

requirement

for

block

size.

However,

in

nonreturn-to-zero-inverted

mode,

if

a

data

check

occurs

on

a

magnetic

tape

device,

any

record

shorter

than

12

bytes

in

a

read

operation

will

be

treated

as

a

noise

record

and

lost.

No

check

for

noise

will

be

made

unless

a

data

check

occurs.

Table

29

shows

how

the

tape

density

(DEN)

specifies

the

recording

density

in

bits

per

inch

per

track.

Table

29.

Tape

Density

(DEN)

Values

DEN

7-Track

Tape

9-Track

Tape

1

556

(NRZI)

N/A

2

800

(NRZI)

800

(NRZI)1

3

N/A

1600

(PE)2

4

N/A

6250

(GCR)3

Note:

1.

NRZI

is

for

nonreturn-to-zero-inverted

mode.

2.

PE

is

for

phase

encoded

mode.

3.

GCR

is

for

group

coded

recording

mode.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

307

When

DEN

is

not

specified,

the

highest

density

capable

by

the

unit

will

be

used.

The

DEN

parameter

has

no

effect

on

an

18-track

or

36-track

tape

cartridge.

The

track

recording

technique

(TRTCH)

for

7-track

tape

can

be

specified

as

follows.

C

Data

conversion

is

to

be

used.

Data

conversion

makes

it

possible

to

write

8

binary

bits

of

data

on

7

tracks.

Otherwise,

only

6

bits

of

an

8-bit

byte

are

recorded.

The

length

field

of

format-V

records

contains

binary

data

and

is

not

recorded

correctly

without

data

conversion.

E

Even

parity

is

to

be

used.

If

E

is

omitted,

odd

parity

is

assumed.

T

BCDIC

to

EBCDIC

conversion

is

required.

The

track

recording

technique

(TRTCH)

for

magnetic

tape

drives

with

Improved

Data

Recording

Capability

can

be

specified

as:

COMP

Data

is

written

in

compacted

format.

NOCOMP

Data

is

written

in

standard

format.

The

system

programmer

sets

the

3480

default

for

COMP

or

NOCOMP

in

the

DEVSUPxx

member

of

SYS1.PARMLIB.

Using

a

Printer

Records

of

a

data

set

that

you

write

directly

or

indirectly

to

a

printer

with

BSAM

or

QSAM

can

contain

control

characters.

See

“Using

Optional

Control

Characters”

on

page

306.

Independently

of

whether

the

records

contain

control

characters,

they

can

contain

table

reference

characters.

Table

Reference

Character

The

table

reference

character

is

a

numeric

character

that

corresponds

to

the

order

in

which

you

specified

the

character

arrangement

table

names

with

the

CHARS

keyword.

The

system

uses

the

table

reference

character

for

selection

of

a

character

arrangement

table

during

printing.

A

numeric

table

reference

character

(such

as

0)

selects

the

font

to

which

the

character

corresponds.

The

characters’

number

values

represent

the

order

in

which

you

specified

the

font

names

with

the

CHARS

parameter.

In

addition

to

using

table

reference

characters

that

correspond

to

font

names

specified

in

the

CHARS

parameter,

you

can

code

table

reference

characters

that

correspond

to

font

names

specified

in

the

PAGEDEF

control

structure.

With

CHARS,

valid

table

reference

characters

vary

and

range

between

0

and

3.

With

PAGEDEF,

they

range

between

0

and

126.

The

system

treats

table

reference

characters

with

values

greater

than

the

limit

as

0

(zero).

Indicate

the

presence

of

table

reference

characters

by

coding

OPTCD=J

in

the

DCB

macro,

in

the

DD

statement,

or

in

the

dynamic

allocation

call.

The

system

processes

table

reference

characters

on

printers

such

as

the

IBM

3800

and

IBM

3900

that

support

the

CHARS

and

PAGEDEF

parameters

on

the

DD

statement.

If

the

device

is

a

printer

that

does

not

support

CHARS

or

PAGEDEF,

the

system

discards

the

table

reference

character.

This

is

true

both

for

printers

that

are

allocated

directly

to

the

job

step

and

for

SYSOUT

data

sets.

This

makes

it

unnecessary

for

your

program

to

know

whether

the

printer

supports

table

reference

characters.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

308

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

the

immediate

destination

of

the

data

set

for

which

OPTCD=J

was

specified

is

DASD,

the

system

treats

the

table

reference

characters

as

part

of

the

data.

The

system

also

records

the

OPTCD

value

in

the

data

set

label.

If

the

immediate

destination

is

tape,

the

system

does

not

record

the

OPTCD

value

in

the

data

set

label.

Record

Formats

The

printer

can

accept

format-F,

format-V,

and

format-U

records.

The

system

does

not

print

the

first

4

bytes

(record

descriptor

word

or

segment

descriptor

word)

of

format-V

records

or

record

segments.

For

format-V

records,

at

least

1

byte

of

data

must

follow

the

record

or

segment

descriptor

word

or

the

carriage

control

character.

The

system

does

not

print

the

carriage

control

character,

if

you

specify

it

in

the

RECFM

parameter.

The

system

does

not

position

the

printer

to

channel

1

for

the

first

record

unless

you

use

a

carriage

control

character

to

specify

this

position.

Because

each

line

of

print

corresponds

to

one

record,

the

record

length

should

not

exceed

the

length

of

one

line

on

the

printer.

For

variable-length

spanned

records,

each

line

corresponds

to

one

record

segment;

block

size

should

not

exceed

the

length

of

one

line

on

the

printer.

If

you

do

not

specify

carriage

control

characters,

you

can

specify

printer

spacing

(PRTSP)

as

0,

1,

2,

or

3.

If

you

do

not

specify

PRTSP,

the

system

assumes

1.

For

all

QSAM

RECFM=FB

printer

data

sets,

the

system

adjusts

the

block

size

in

the

DCB

to

equal

the

logical

record

length.

The

system

treats

this

data

set

as

RECFM=F.

If

the

system

builds

the

buffers

for

this

data

set,

the

BUFL

parameter

determines

the

buffer

length.

If

you

do

not

specify

the

BUFL

parameter,

the

system

uses

the

adjusted

block

size

for

the

buffer

length.

To

reuse

the

DCB

with

a

block

size

larger

than

the

logical

record

length,

you

must

reset

DCBBLKSI

in

the

DCB

and

ensure

that

the

buffers

are

large

enough

to

contain

the

largest

block

size.

To

ensure

the

buffer

size,

specify

the

BUFL

parameter

before

the

first

open

of

the

data

set.

Or

you

can

issue

the

FREEPOOL

macro

after

each

CLOSE

macro,

so

that

the

system

builds

a

new

buffer

pool

of

the

correct

size

each

time

it

opens

the

data

set.

Using

a

Card

Reader

and

Punch

Format-F

and

format-U

records

are

acceptable

to

both

the

reader

and

the

punch.

Format-V

records

are

acceptable

to

the

punch

only.The

device

control

character,

if

specified

in

the

RECFM

parameter,

is

used

to

select

the

stacker;

it

is

not

punched.

For

control

character

information,

see

“Using

Optional

Control

Characters”

on

page

306.

The

first

4

bytes

(record

descriptor

word

or

segment

descriptor

word)

of

format-V

records

or

record

segments

are

not

punched.

For

format-V

records,

at

least

1

byte

of

data

must

follow

the

record

or

segment

descriptor

word

or

the

carriage

control

character.

A

record

size

of

80

bytes

is

called

EBCDIC

mode

(E)

and

a

record

size

of

160

bytes

is

called

column

binary

mode

(C).

Each

punched

card

corresponds

to

one

physical

record.

Therefore,

you

should

restrict

the

maximum

record

size

to

EBCDIC

mode

(80

bytes)

or

column

binary

mode

(160

bytes).

When

column

binary

mode

is

used

for

the

card

punch,

BLKSIZE

must

be

160

unless

you

are

using

PUT.

Then

you

can

specify

BLKSIZE

as

160

or

a

multiple

of

160,

and

the

system

handles

this

as

described

under

“PUT—Write

a

Record”

on

page

359.

Specify

the

read/punch

mode

of

operation

(MODE)

parameter

as

either

card

image

column

binary

mode

(C)

or

EBCDIC

mode

(E).

If

this

information

is

omitted,

E

is

assumed.

The

stacker

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

Chapter

20.

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

309

selection

parameter

(STACK)

can

be

specified

as

either

1

or

2

to

show

which

bin

is

to

receive

the

card.

If

STACK

is

not

specified,

1

is

assumed.

For

all

QSAM

RECFM=FB

card

punch

data

sets,

the

block

size

in

the

DCB

is

adjusted

by

the

system

to

equal

the

logical

record

length.

This

data

set

is

treated

as

RECFM=F.

If

the

system

builds

the

buffers

for

this

data

set,

the

buffer

length

is

determined

by

the

BUFL

parameter.

If

the

BUFL

parameter

was

not

specified,

the

adjusted

block

size

is

used

for

the

buffer

length.

If

the

DCB

is

to

be

reused

with

a

block

size

larger

than

the

logical

record

length,

you

must

reset

DCBBLKSI

in

the

DCB

and

ensure

that

the

buffers

are

large

enough

to

contain

the

largest

block

size

expected.

You

can

ensure

the

buffer

size

by

specifying

the

BUFL

parameter

before

the

first

time

the

data

set

is

opened,

or

by

issuing

the

FREEPOOL

macro

after

each

CLOSE

macro

so

the

system

will

build

a

new

buffer

pool

of

the

correct

size

each

time

the

data

set

is

opened.

Punch

error

correction

on

the

IBM

2540

Card

Read

Punch

is

not

performed.

The

IBM

3525

Card

Punch

accepts

only

format-F

records

for

print

and

associated

data

sets.

Other

record

formats

are

permitted

for

the

read

data

set,

punch

data

set,

and

interpret

punch

data

set.

Using

a

Paper

Tape

Reader

The

system

no

longer

supports

paper

tape

readers

(IBM

2671).

Selecting

Record

Formats

for

Non-VSAM

Data

Sets

310

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

This

chapter

covers

the

following

topics.

Topic

Location

Processing

Sequential

and

Partitioned

Data

Sets

312

Using

OPEN

to

Prepare

a

Data

Set

for

Processing

317

Selecting

Data

Set

Options

321

Changing

and

Testing

the

DCB

and

DCBE

330

Using

CLOSE

to

End

the

Processing

of

a

Data

Set

332

Opening

and

Closing

Data

Sets:

Considerations

335

Positioning

Volumes

338

Managing

SAM

Buffer

Space

341

Constructing

a

Buffer

Pool

342

Controlling

Buffers

346

Choosing

Buffering

Techniques

and

GET/PUT

Processing

Modes

350

Using

Buffering

Macros

with

Queued

Access

Method

350

Using

Buffering

Macros

with

Basic

Access

Method

351

For

each

data

set

that

you

want

to

process,

there

must

be

a

corresponding

data

control

block

(DCB)

and

data

definition

(DD)

statement

or

its

dynamic

allocation

equivalent.

The

characteristics

of

the

data

set

and

device-dependent

information

can

be

supplied

by

either

source.

As

specified

in

z/OS

MVS

JCL

User’s

Guide

and

z/OS

MVS

JCL

Reference,

the

DD

statement

must

also

supply

data

set

identification.

Your

program,

SMS,

and

exit

routines

can

supply

device

characteristics,

space

allocation

requests,

and

related

information.

You

establish

the

logical

connection

between

a

DCB

and

a

DD

statement

by

specifying

the

name

of

the

DD

statement

in

the

DDNAME

field

of

the

DCB

macro,

or

by

completing

the

field

yourself

before

opening

the

data

set.

You

can

process

a

non-VSAM

data

set

to

read,

update,

or

add

data

by

following

this

procedure:

1.

Create

a

data

control

block

(DCB)

to

identify

the

data

set

to

be

opened.

A

DCB

is

required

for

each

data

set

and

is

created

in

a

processing

program

by

a

DCB

macro.

When

the

program

is

run,

the

data

set

name

and

other

important

information

(such

as

data

set

disposition)

are

specified

in

a

JCL

statement

called

the

data

definition

(DD)

statement,

or

in

a

call

to

dynamic

allocation.

2.

Optionally

supply

a

data

control

block

extension

(DCBE).

You

can

supply

options

and

test

data

set

characteristics

that

the

system

stores

in

the

DCBE.

3.

Connect

your

program

to

the

data

set

you

want

to

process,

using

the

OPEN

macro.

The

OPEN

macro

also

positions

volumes,

writes

data

set

labels

and

allocates

virtual

storage.

You

can

consider

various

buffering

macros

and

options.

©

Copyright

IBM

Corp.

1987,

2004

311

4.

Request

access

to

the

data

set.

For

example,

if

you

are

using

BSAM

to

process

a

sequential

data

set,

you

can

use

the

READ,

WRITE,

NOTE,

or

POINT

macro.

5.

Disconnect

your

program

from

the

data

set,

using

the

CLOSE

macro.

The

CLOSE

macro

also

positions

volumes,

creates

data

set

labels,

completes

writing

queued

output

buffers,

and

frees

virtual

and

auxiliary

storage.

Primary

sources

of

information

to

be

placed

in

the

data

control

block

are

a

DCB

macro,

data

definition

(DD)

statement,

a

dynamic

allocation

SVC

99

parameter

list,

a

data

class,

and

a

data

set

label.

A

data

class

can

be

used

to

specify

all

of

your

data

set’s

attributes

except

data

set

name

and

disposition.

Also,

you

can

provide

or

change

some

of

the

information

during

execution

by

storing

the

applicable

data

in

the

appropriate

field

of

the

DCB

or

DCBE.

Processing

Sequential

and

Partitioned

Data

Sets

Data

management

is

designed

to

provide

a

balance

between

ease

of

use,

migration

to

new

releases,

coexistence

with

various

levels

of

software

and

hardware,

device

independence,

exploitation

of

hardware

features,

and

performance.

Sometimes

these

considerations

can

conflict.

If

your

program

exploits

a

particular

model’s

features

to

maximize

performance,

it

might

not

take

full

advantage

of

newer

technology.

It

is

the

intent

of

IBM

that

your

programs

that

use

documented

programming

interfaces

and

work

on

the

current

level

of

the

system

will

run

at

least

equally

well

on

future

levels

of

the

system.

However,

IBM

cannot

guarantee

that.

Characteristics

such

as

certain

reason

codes

that

are

documented

only

in

z/OS

DFSMSdfp

Diagnosis

Reference

are

not

part

of

the

intended

programming

interface.

Examples

of

potential

problems

are:

v

Your

program

has

a

timing

dependency

such

as

a

READ

or

WRITE

macro

completes

before

another

event.

In

some

cases

READ

or

WRITE

is

synchronous

with

your

program.

v

Your

program

tests

a

field

or

control

block

that

is

not

part

of

the

intended

programming

interface.

An

example

is

status

indicators

not

documented

in

Figure

112

on

page

518.

v

Your

program

relies

on

the

system

to

enforce

a

restriction

such

as

the

maximum

value

of

something.

For

example,

the

maximum

block

size

on

DASD

used

to

be

less

than

32

760

bytes,

the

maximum

NCP

value

for

BSAM

used

to

be

99

and

the

maximum

block

size

on

tape

used

to

be

32

760.

v

New

releases

might

introduce

new

return

and

reason

codes

for

system

functions.

For

these

reasons,

the

operating

system

has

many

options.

It

is

not

the

intent

of

IBM

to

require

extensive

education

to

use

assembly

language

programming.

The

purpose

of

this

section

is

to

show

how

to

read

and

write

sequential

data

sets

simply

in

High

Level

Assembler

while

maximizing

ease

of

use,

migration

potential,

the

likelihood

of

coexistence,

and

device

independence,

while

getting

reasonable

performance.

You

can

use

the

examples

in

this

section

to

read

or

write

sequential

data

sets

and

partitioned

members.

These

include

ordinary

disk

data

sets,

extended

format

data

sets,

compressed

format

data

sets,

PDS

members,

PDSE

members,

UNIX

files,

UNIX

FIFOs,

spooled

data

sets

(SYSIN

and

SYSOUT),

real

or

VM

simulated

unit

record

devices,

TSO/E

terminals,

magnetic

tapes,

dummy

data

sets,

and

most

combinations

of

them

in

a

concatenation.

Data

Control

Block

(DCB)

312

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Recommendations:

v

Use

QSAM

because

it

is

simpler.

Use

BSAM

if

you

need

to

read

or

write

nonsequentially

or

you

need

more

control

of

I/O

completion.

With

BSAM

you

can

issue

the

NOTE,

POINT,

CNTRL,

and

BSP

macros.

These

macros

work

differently

on

various

device

classes.

See

“Record

Format—Device

Type

Considerations”

on

page

305

and

“Achieving

Device

Independence”

on

page

393.

Use

BPAM

if

you

need

to

access

more

than

one

member

of

a

PDS

or

PDSE.

v

Specify

LRECL

and

RECFM

in

the

DCB

macro

if

your

program’s

logic

depends

on

the

record

length

and

record

format.

If

you

omit

either

of

them,

your

program

is

able

to

handle

more

types

of

data

but

you

have

to

write

more

code.

See

Chapter

20,

“Selecting

Record

Formats

for

Non-VSAM

Data

Sets,”

on

page

287.

v

Use

format-F

or

format-V

records,

and

specify

blocking

(RECFM=FB

or

VB).

This

allows

longer

blocks.

Format-U

generally

is

less

efficient.

Format-D

works

only

on

certain

types

of

tape.

v

Omit

the

block

size

in

the

DCB

macro.

Code

BLKSIZE=0

in

the

DCBE

macro

to

use

the

large

block

interface.

When

your

program

is

reading,

this

allows

it

to

adapt

to

the

appropriate

block

size

for

the

data

set.

If

the

data

set

has

no

label

(such

as

for

an

unlabeled

tape),

the

user

can

specify

the

block

size

in

the

DD

statement

or

dynamic

allocation.

For

some

data

set

types

(such

as

PDSEs

and

UNIX

files)

there

is

no

real

block

size;

the

system

simulates

any

valid

block

size

and

there

is

a

default.

When

your

program

is

writing

and

you

omit

DCB

BLKSIZE

and

code

DCBE

BLKSIZE=0,

this

enables

the

user

to

select

the

block

size

in

the

DD

statement

or

dynamic

allocation.

The

user

should

only

do

this

if

there

is

a

reason

to

do

so,

such

as

a

reading

program

cannot

accept

large

blocks.

If

the

user

does

not

specify

a

block

size,

OPEN

selects

one

that

is

valid

for

the

LRECL

and

RECFM

and

is

optimal

for

the

device.

Coding

BLKSIZE=0

in

the

DCBE

macro

lets

OPEN

select

a

block

size

that

exceeds

32

760

bytes

if

large

block

interface

(LBI)

processing

is

being

used,

thereby

possibly

shortening

run

time

significantly.

If

OPEN

might

select

a

block

size

that

is

larger

than

the

reading

programs

can

handle,

the

user

can

code

the

BLKSZLIM

keyword

in

the

DD

statement

or

the

dynamic

allocation

equivalent

or

rely

on

the

block

size

limit

in

the

data

class

or

in

the

DEVSUPxx

PARMLIB

member.

If

you

want

to

provide

your

own

default

for

BLKSIZE

and

not

let

OPEN

do

it,

you

can

provide

a

DCB

OPEN

exit

routine.

See

“DCB

OPEN

Exit”

on

page

535.

The

installation

OPEN

exit

might

override

your

program’s

selection

of

DCB

parameters.

v

Omit

BUFL

(buffer

length)

because

it

relies

on

the

value

of

the

sum

of

BLKSIZE

and

KEYLEN

and

because

it

cannot

exceed

32

760.

v

Omit

BUFNO

(number

of

buffers)

for

QSAM,

BSAM,

and

BPAM

and

NCP

if

you

use

BSAM

or

BPAM.

Let

OPEN

select

QSAM

BUFNO.

This

is

particularly

important

with

striped

data

sets.

The

user

can

experiment

with

different

values

for

QSAM

BUFNO

to

see

if

it

can

improve

run

time.

With

BSAM

and

BPAM,

code

MULTSDN

and

MULTACC

in

the

DCBE

macro.

See

“Improving

Performance

for

Sequential

Data

Sets”

on

page

395.

With

QSAM,

BSAM,

and

BPAM

this

generally

has

no

effect

on

the

EXCP

count

that

is

reported

in

SMF

type

14,

15,

21,

and

30

records.

On

DASD,

this

counts

blocks

that

are

transferred

and

not

the

number

of

channel

programs.

This

causes

the

counts

to

be

repeatable

and

not

to

depend

on

random

factors

in

the

system.

v

Omit

BUFOFF

because

it

works

only

with

tapes

with

ISO/ANSI

standard

labels

or

no

labels.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

313

v

If

you

choose

BSAM

or

BPAM

in

31-bit

addressing

mode,

do

not

use

the

BUILD

or

GETPOOL

macro

and

do

not

request

OPEN

to

build

a

buffer

pool.

If

you

code

a

nonzero

BUFNO

value,

you

are

requesting

OPEN

to

build

a

buffer

pool.

Such

a

buffer

pool

resides

below

the

line.

Use

your

own

code

to

allocate

data

areas

above

the

line.

v

Code

A

or

M

for

RECFM

or

code

OPTCD=J

only

if

your

program

logic

requires

reading

or

writing

control

characters.

These

are

not

the

EBCDIC

or

ASCII

control

characters

such

as

carriage

return,

line

feed,

or

new

page.

v

Omit

KEYLEN,

DEVD,

DEN,

TRTCH,

MODE,

STACK,

and

FUNC

because

they

are

device

dependent.

KEYLEN

also

makes

the

program

run

slower

unless

you

code

KEYLEN=0.

The

user

can

code

most

of

them

in

the

DD

statement

if

needed.

v

Omit

BFALN,

BFTEK,

BUFCB,

EROPT,

and

OPTCD

because

they

probably

are

not

useful,

except

OPTCD=J.

OPTCD=J

specifies

that

the

records

contain

table

reference

characters.

See

“Table

Reference

Character”

on

page

308.

v

LOCATE

mode

(MACRF=(GL,PL))

might

be

more

efficient

than

move

mode.

This

depends

on

your

program’s

logic.

The

move

mode

requires

QSAM

to

move

the

data

an

extra

time.

v

If

your

program

runs

with

31-bit

addressing

mode

(AMODE),

code

RMODE31=BUFF

in

the

DCBE

so

that

the

QSAM

buffers

are

above

the

16

MB

line.

A

nonreentrant,

RMODE

24

program

(residing

below

the

16

MB

line)

is

simpler

than

a

reentrant

or

RMODE

31

program

because

the

DCB

must

reside

below

the

line

in

storage

that

is

separate

for

each

open

data

set.

v

Code

a

SYNAD

(I/O

error)

routine

to

prevent

the

001

ABEND

that

the

system

issues

when

a

data

set

has

an

I/O

error.

In

the

SYNAD

routine,

issue

the

SYNADAF

macro,

write

the

message,

and

terminate

the

program.

This

writes

a

message

and

avoids

a

dump

because

the

dump

is

not

likely

to

be

useful.

v

Use

extended-format

data

sets

even

if

you

are

not

using

striping.

They

tend

to

be

more

efficient,

and

OPEN

provides

a

more

efficient

default

for

BUFNO.

Avoid

writing

many

blocks

that

are

shorter

than

the

maximum

for

the

data

set

because

short

blocks

waste

disk

space.

Data

Control

Block

(DCB)

314

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Figure

51

shows

the

simplest

way

to

read

a

sequential

data

set.

OPEN

(INDCB,INPUT)

Open

to

read

LTR

R15,R15

Branch

if

DD

name

seems

not

BNZ

...

to

be

defined

*

Loop

to

read

all

the

records

LOOP

GET

INDCB

Get

address

of

a

record

in

R1

...

Process

a

record

B

LOOP

Branch

to

read

next

record

*

I/O

error

routine

for

INDCB

IOERROR

SYNADAF

ACSMETH=QSAM

Get

message

area

MVI

6(R1),X'80'

Set

WTO

MCS

flags

MVC

8(16,R1),=CL16’I/O

Error’

Put

phrase

on

binary

fields

MVC

128(4,R1),=X'00000020'

Set

ROUTCDE=11

(WTP)

WTO

MF=(E,4(R1))

Write

message

to

user

SYNADRLS

Release

SYNADAF

area,

fall

through

*

The

GET

macro

branches

here

after

all

records

have

been

read

EOD

CLOSE

(INDCB)

Close

the

data

set

FREEPOOL

INDCB

Free

the

QSAM

buffer

pool

...

Rest

of

program

INDCB

DCB

DDNAME=INPUT,MACRF=GL,RECFM=VB,

Must

be

format-V

*

DCBE=INDCBE

INDCBE

DCBE

EODAD=EOD,SYNAD=IOERROR,BLKSIZE=0

Request

LBI

Figure

51.

Reading

a

Sequential

Data

Set

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

315

Figure

52

is

the

same

as

Figure

51

on

page

315

but

converted

to

be

reentrant

and

reside

above

the

16

MB

line:

COPYPROG

CSECT

COPYPROG

RMODE

ANY

COPYPROG

AMODE

31

GETMAIN

R,LV=Arealen,LOC=(BELOW,64)

LR

R11,R1

USING

MYAREA,R11

USING

IHADCB,InDCB

USING

DCBE,INDCBE

MVC

IHADCB(AreaLen),MYDCB

Copy

DCB

and

DCBE

LA

R0,DCBE

Point

DCB

copy

to

ST

R0,DCBDCBE

DCBE

copy

OPEN

(IHADCB,),MF=(E,INOPEN)

Open

to

read

LTR

R15,R15

Branch

if

DDname

seems

not

BNZ

...

to

be

defined

*

Loop

to

read

all

the

records

LOOP

GET

INDCB

Get

address

of

a

record

in

R1

...

Process

a

record

B

LOOP

Branch

to

read

next

record

*

I/O

error

routine

for

INDCB

IOERROR

SYNADAF

ACSMETH=QSAM

Get

message

area

MVI

6(R1),X'80'

Set

WTO

MCS

flags

MVC

8(16,R1),=CL16’I/O

Error’

Put

phrase

on

binary

fields

MVC

128(4,R1),=X'00000020'

Set

ROUTCDE=11

(WTP)

WTO

MF=(E,4(R1))

Write

message

to

user

SYNADRLS

Release

SYNADAF

area,

fall

through

*

The

GET

macro

branches

here

after

all

records

have

been

read

EOD

CLOSE

MF=(E,INOPEN)

Close

the

data

set

*

FREEPOOL

not

needed

due

to

RMODE31=BUFF

...

Rest

of

program

MYDCB

DCB

DDNAME=INPUT,MACRF=GL,RECFM=VB,

*

DCBE=MYDCBE

MYDCBE

DCBE

EODAD=EOD,SYNAD=IOERROR,BLKSIZE=0,RMODE31=BUFF

OPEN

(,INPUT),MF=L,MODE=24

AreaLen

EQU

*-MYDCB

DCBD

DSORG=QS,DEVD=DA

IHADCBE

Could

be

above

16

MB

line

MYAREA

DSECT

INDCB

DS

XL(DCBLNGQS)

INDCBE

DS

XL(DCBEEND-DCBE)

INOPEN

OPEN

(,),MF=L

Figure

52.

Reentrant—Above

the

16

MB

Line

Data

Control

Block

(DCB)

316

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Using

OPEN

to

Prepare

a

Data

Set

for

Processing

Use

the

OPEN

macro

to

complete

a

DCB

for

a

data

set,

and

to

supply

the

specifications

needed

for

I/O

operations.

Therefore,

the

appropriate

data

can

be

provided

when

your

job

is

run

rather

than

when

you

write

your

program

(see

Figure

53

on

page

318).

When

the

OPEN

macro

is

run,

the

OPEN

routine:

v

Completes

the

DCB

v

Stores

appropriate

access

method

routine

addresses

in

the

DCB

v

Initializes

data

sets

by

reading

or

writing

labels

and

control

information

v

Builds

the

necessary

system

control

blocks

The

operating

system

stores

information

from

a

DD

statement

or

dynamic

allocation

in

the

job

file

control

block

(JFCB).

The

open

function

uses

the

JFCB.

The

DCB

is

filled

in

with

information

from

the

DCB

macro,

the

JFCB,

or

an

existing

data

set

label.

If

more

than

one

source

specifies

information

for

a

particular

field,

only

one

source

is

used.

A

DD

statement

takes

priority

over

a

data

set

label,

and

a

DCB

macro

over

both.

You

can

change

most

DCB

fields

either

before

the

data

set

is

opened

or

when

the

operating

system

returns

control

to

your

program

(at

the

DCB

OPEN

user

exit).

Some

fields

can

be

changed

during

processing.

Do

not

try

to

change

a

DCB

field,

such

as

data

set

organization,

from

one

that

permitted

the

data

set

to

be

allocated

to

a

system-managed

volume,

to

one

that

makes

the

data

set

ineligible

to

be

system-managed.

For

example,

do

not

specify

a

data

set

organization

in

the

DD

statement

as

physical

sequential

and,

after

the

data

set

has

been

allocated

to

a

system-managed

volume,

try

to

open

the

data

set

with

a

DCB

that

specifies

the

data

set

as

physical

sequential

unmovable.

The

types

of

data

sets

that

cannot

be

system-managed

are

listed

in

Chapter

2,

“Using

the

Storage

Management

Subsystem,”

on

page

27.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

317

Filling

in

the

DCB

Figure

53

shows

the

process

and

the

sequence

of

filling

in

the

DCB

from

various

sources.

The

following

items

correspond

to

the

boxed

numbers

in

Figure

53.

1.

The

primary

source

is

your

program;

that

is,

the

DCB

and

DCBE

macro

or

compiler.

Usually,

you

should

use

only

those

DCB

and

DCBE

parameters

that

are

needed

to

ensure

correct

processing.

The

other

parameters

can

be

filled

in

when

your

program

is

to

be

run.

2.

A

JCL

DD

statement

or

a

call

to

dynamic

allocation

(SVC

99)

creates

a

job

file

control

block

(JFCB).

The

DD

or

SVC

99

can

supply

a

data

class

(DATACLAS)

name.

The

installation

data

class

ACS

routine

can

supply

or

override

the

data

class

name.

The

resulting

data

class

provides

defaults

for

certain

parameters

that

were

omitted

from

the

DD

or

SVC

99.

Parameters

from

a

data

class

do

not

override

a

DD

or

SVC

99.

If

the

DD

statement

or

call

to

dynamic

allocation

has

a

BLKSIZE

value

that

exceeds

32

760,

that

value

is

in

a

system

control

block

that

is

a

logical

extension

to

the

JFCB,

and

the

JFCB

BLKSIZE

field

has

a

zero

value.

3.

When

a

DASD

data

set

is

opened

(or

a

magnetic

tape

with

standard

labels

is

opened

for

INPUT,

RDBACK,

or

INOUT

or

is

being

extended),

any

field

in

the

JFCB

not

completed

by

a

DD

statement

or

data

class

is

filled

in

from

the

data

set

label

(if

one

exists).

When

you

open

a

new

DASD

data

set,

the

system

might

previously

have

calculated

an

optimal

block

size

and

stored

it

in

the

data

set

label.

It

does

that

if

RECFM,

LRECL,

and

DSORG

are

available.

When

opening

a

magnetic

tape

for

output,

the

OPEN

function

usually

assumes

the

tape

labels

do

not

exist

or

to

apply

to

the

current

data

set.

The

exceptions

are

if

you

specify

DISP=MOD

on

the

DD

statement

or

the

dynamic

allocation

equivalent,

or

the

OPEN

macro

has

the

EXTEND

or

OUTINX

option

and

a

volume

serial

number

is

present.

A

volume

serial

number

is

present

if

any

of

the

following

is

true:

DCB and
DCBE
Macro

DD
Statement
or SVC 99

ACS
Routines

Data
Control
Block

Job File
Control
Block

Old
Data Set
Label

DCB
Exit
Routine

New
Data Set
Label

Installation
DCB OPEN
exit routine

1

2

3

5

8

6

7
4

DA6D4074

Figure

53.

Sources

and

Sequence

of

Operations

for

Completing

the

DCB

Data

Control

Block

(DCB)

318

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|
|
|
|

v

The

data

set

is

cataloged

v

The

VOLUME

parameter

of

the

DD

statement

or

dynamic

allocation

has

a

volume

serial

number

v

The

DD

statement

has

VOL=REF

that

refers

to

a

DD

statement

with

a

volume

serial

number

that

is

resolved

before

the

open

for

the

DD

statement

with

VOL=REF

OPEN

does

not

perform

a

merge

from

a

data

set

label

to

JFCB

for

a

“like”

sequential

concatenation

when

making

the

transition

between

data

sets.

If

you

want

a

merge,

turn

on

the

unlike

attribute

bit

(DCBOFPPC)

in

the

DCB.

The

unlike

attribute

forces

the

system

through

OPEN

for

each

data

set

in

the

concatenation,

where

a

label

to

JFCB

merge

takes

place.

See

“Concatenating

Unlike

Data

Sets”

on

page

390.

4.

From

the

JFCB,

OPEN

fills

in

any

field

not

completed

in

the

DCB

or

DCBE.

This

completes

what

is

called

the

forward

merge.

5.

Certain

fields

in

the

DCB

or

DCBE

can

then

be

completed

or

changed

by

your

own

DCB

user

exit

routine

or

JFCBE

exit

routine.

The

DCB

and

DCBE

macro

fields

are

described

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

These

exits

are

described

in

“DCB

OPEN

Exit”

on

page

535

and

“JFCBE

Exit”

on

page

540.

6.

After

OPEN

calls

the

user’s

optional

DCB

OPEN

exit

or

JFCBE

exit,

it

calls

the

installation’s

optional

OPEN

exit

routine.

Either

type

of

exit

or

both

can

make

certain

changes

to

the

DCB

and

DCBE.

The

block

size

field

(BLKSIZE)

is

in

two

bytes

in

the

DCB

if

you

are

not

using

large

block

interface

(LBI).

Its

maximum

value

is

32

760.

The

block

size

field

is

in

four

bytes

in

the

DCBE

if

you

are

using

LBI.

After

possibly

calling

these

exits,

OPEN

tests

if

the

block

size

field

is

zero

or

an

exit

changed

LRECL

or

RECFM

after

the

system

calculated

a

block

size

when

the

DASD

data

set

space

was

allocated.

In

either

case,

OPEN

calculates

an

optimal

block

size

according

to

the

device

type

if

the

RECFM

is

not

U.

7.

All

DCB

fields

are

then

unconditionally

merged

into

corresponding

JFCB

fields

if

your

data

set

is

opened

for

output.

This

is

the

beginning

of

what

is

called

the

reverse

merge.

Merging

the

DCB

fields

is

caused

by

specifying

OUTPUT,

OUTIN,

EXTEND,

or

OUTINX

in

the

OPEN

macro.

The

DSORG

field

is

merged

only

when

it

contains

zeros

in

the

JFCB.

If

your

data

set

is

opened

for

input

(INPUT,

INOUT,

RDBACK,

or

UPDAT

is

specified

in

the

OPEN

macro),

the

DCB

fields

are

not

merged

unless

the

corresponding

JFCB

fields

contain

zeros.

8.

The

open

routines

use

the

updated

JFCB

and

associated

control

blocks

to

write

the

DASD

data

set

labels

if

the

data

set

was

open

for

OUTPUT,

OUTIN,

OUTINX,

or

EXTEND.

For

standard

labeled

tapes,

the

open

routines

write

labels

only

for

the

OUTPUT

or

OUTIN

options

when

you

are

not

extending

the

data

set.

You

are

extending

if

the

OPEN

option

is

OUTPUT

or

OUTIN

with

DISP=MOD

or

the

OPEN

option

is

OUTINX,

EXTEND

or

INOUT.

When

extending

a

standard

labeled

tape

data

set,

the

EOV

and

CLOSE

functions

use

the

updated

JFCB

and

associated

control

blocks

to

write

trailer

labels.

If

the

data

set

is

not

closed

when

your

program

ends,

the

operating

system

closes

it

automatically.

When

the

data

set

is

closed,

the

DCB

is

restored

to

the

condition

it

had

before

the

data

set

was

opened

(except

that

the

buffer

pool

is

not

freed)

unless

you

coded

RMODE31=BUFF

and

OPEN

accepted

it.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

319

|

|
|

|
|
|

Specifying

the

Forms

of

Macros,

Buffering

Requirements,

and

Addresses

The

operating

system

requires

several

types

of

processing

information

to

ensure

proper

control

of

your

I/O

operations.

You

must

specify

the

forms

of

macros

in

the

program,

buffering

requirements,

and

the

addresses

of

your

special

processing

routines

during

either

the

assembly

or

the

execution

of

your

program.

The

DCB

parameters

specifying

buffer

requirements

are

discussed

in

“Managing

SAM

Buffer

Space”

on

page

341.

Because

macros

are

expanded

during

the

assembly

of

your

program,

you

must

supply

the

macro

forms

to

be

used

in

processing

each

data

set

in

the

associated

DCB

macro.

You

can

supply

buffering

requirements

and

related

information

in

the

DCB

and

DCBE

macro,

the

DD

statement,

or

by

storing

the

applicable

data

in

the

appropriate

field

of

the

DCB

or

DCBE

before

the

end

of

your

DCB

exit

routine.

If

the

addresses

of

special

processing

routines

(EODAD,

SYNAD,

or

user

exits)

are

omitted

from

the

DCB

and

DCBE

macro,

you

must

complete

them

in

the

DCB

or

DCBE

before

they

are

required.

Coding

Processing

Methods

You

can

process

a

data

set

as

input,

output,

or

update

by

coding

the

processing

method

in

the

OPEN

macro.

If

the

processing

method

parameter

is

omitted

from

the

OPEN

macro,

INPUT

is

assumed.

BISAM

and

QISAM

scan

mode

ignore

all

the

OPEN

processing

options.

Use

OUTPUT

or

EXTEND

when

using

QISAM

load

mode

with

an

indexed

sequential

data

set.

INPUT—BDAM,

BPAM,

BSAM,

QSAM

OUTPUT—BDAM,

BPAM,

BSAM,

QSAM,

QISAM

(load

mode)

EXTEND—BDAM,

BPAM

(PDSE

only),

BSAM,

QSAM,

QISAM

(load

mode)

UPDAT—BDAM,

BPAM,

BSAM,

QSAM

RDBACK—BSAM,

QSAM

INOUT—BSAM

OUTIN—BSAM

OUTINX—BSAM

If

the

data

set

resides

on

a

direct

access

volume,

you

can

code

UPDAT

in

the

processing

method

parameter

to

show

that

records

can

be

updated.

RDBACK

is

supported

only

for

magnetic

tape.

By

coding

RDBACK,

you

can

specify

that

a

magnetic

tape

volume

containing

format-F

or

format-U

records

is

to

be

read

backward.

(Variable-length

records

cannot

be

read

backward.)

Restriction:

When

a

tape

that

is

recorded

in

Improved

Data

Recording

Capability

(IDRC)

mode,

is

read

backward,

it

will

have

a

severe

performance

degradation.

You

can

override

the

INOUT,

OUTIN,

UPDAT,

or

OUTINX

at

execution

time

by

using

the

IN

or

OUT

options

of

the

LABEL

parameter

of

the

DD

statement,

as

discussed

in

z/OS

MVS

JCL

Reference.

The

IN

option

indicates

that

a

BSAM

data

set

opened

for

INOUT

or

a

direct

data

set

opened

for

UPDAT

is

to

be

read

only.

The

OUT

option

indicates

that

a

BSAM

data

set

opened

for

OUTIN

or

OUTINX

is

to

be

written

in

only.

Data

Control

Block

(DCB)

320

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Restriction:

Unless

allowed

by

the

label

validation

installation

exit,

OPEN

for

OUTPUT

or

OUTIN

with

DISP=MOD,

INOUT,

EXTEND,

or

OUTINX

requests

cannot

be

processed

for

ISO/ANSI

Version

3

tapes

or

for

non-IBM-formatted

Version

4

tapes,

because

this

kind

of

processing

updates

only

the

closing

label

of

the

file,

causing

a

label

symmetry

conflict.

An

unmatching

label

should

not

frame

the

other

end

of

the

file.

This

restriction

does

not

apply

to

IBM-formatted

ISO/ANSI

Version

4

tapes.

Related

reading:

For

information

about

the

label

validation

installation

exit,

see

z/OS

DFSMS

Installation

Exits.

Processing

SYSIN,

SYSOUT,

and

subsystem

data

sets.

INOUT

is

treated

as

INPUT.

OUTIN,

EXTEND,

or

OUTINX

is

treated

as

OUTPUT.

UPDAT

and

RDBACK

cannot

be

used.

SYSIN

and

SYSOUT

data

sets

must

be

opened

for

INPUT

and

OUTPUT,

respectively.

Processing

PDSEs.

For

PDSEs,

INOUT

is

treated

as

INPUT.

OUTIN,

EXTEND,

and

OUTINX

are

treated

as

OUTPUT.

Processing

compressed-format

data

sets.

Compressed-format

data

sets

must

not

be

opened

for

UPDAT.

In

Figure

54

the

data

sets

associated

with

three

DCBs

are

to

be

opened

simultaneously.

Because

no

processing

method

parameter

is

specified

for

TEXTDCB,

the

system

assumes

INPUT.

Both

CONVDCB

and

PRINTDCB

are

opened

for

output.

No

volume

positioning

options

are

specified;

thus,

the

disposition

indicated

by

the

DD

statement

DISP

parameter

is

used.

Selecting

Data

Set

Options

After

you

have

specified

the

data

set

characteristics

in

the

DCB

and

DCBE

macro,

you

can

change

them

only

by

changing

the

DCB

or

DCBE

during

execution.

See

“Changing

and

Testing

the

DCB

and

DCBE”

on

page

330.

The

fields

of

the

DCB

discussed

in

the

following

sections

are

common

to

most

data

organizations

and

access

methods.

The

DCBE

is

for

BSAM,

BPAM,

QSAM,

and

BDAM.

For

more

information

about

the

DCB

and

DCBE

fields

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Block

Size

(BLKSIZE)

Format-F

and

format-V

records:

BLKSIZE

specifies

the

maximum

length,

in

bytes,

of

a

data

block.

If

the

records

are

format-F,

the

block

size

must

be

an

integral

multiple

of

the

record

length,

except

for

SYSOUT

data

sets.

(See

Chapter

24,

“Spooling

and

Scheduling

Data

Sets,”

on

page

379.)

If

the

records

are

format-V,

you

must

specify

the

maximum

block

size.

If

format-V

records

are

unblocked,

the

block

size

must

be

4

bytes

greater

than

the

record

length

(LRECL).

If

you

do

not

use

the

large

block

interface

(LBI),

the

maximum

block

size

is

32

760

except

for

ISO/ANSI

Version

3

records,

where

the

maximum

block

size

is

2048.

You

can

override

the

2048

byte

limit

by

a

label

validation

installation

exit

(see

z/OS

DFSMS

OPEN

(TEXTDCB,,CONVDCB,(OUTPUT),PRINTDCB,

X

(OUTPUT))

Figure

54.

Opening

Three

Data

Sets

at

the

Same

Time

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

321

Installation

Exits).

If

you

use

LBI,

the

maximum

block

size

is

32

760

except

on

magnetic

tape,

where

the

maximum

is

larger.

Extended-format

data

sets:

In

an

extended-format

data

set,

the

system

adds

a

32-byte

suffix

to

each

block,

which

your

program

does

not

see.

This

suffix

does

not

appear

in

your

buffers.

Do

not

include

the

length

of

this

suffix

in

the

BLKSIZE

or

BUFL

values.

Compressed-format

data

sets:

When

you

read

blocked

format-F

or

format-V

records

with

BSAM

or

BPAM

from

a

compressed

data

set

with

DBB

compression,

PDSE,

or

UNIX

files,

the

records

might

be

distributed

between

blocks

differently

from

when

they

were

written.

In

a

compressed

format

data

set,

the

BLKSIZE

value

has

no

relationship

with

the

actual

size

of

blocks

on

disk.

The

BLKSIZE

value

specifies

the

maximum

length

of

uncompressed

blocks.

System-determined

block

size:

The

system

can

derive

the

best

block

size

for

DASD,

tape,

and

spooled

data

sets.

The

system

does

not

derive

a

block

size

for

BDAM,

old,

or

unmovable

data

sets,

or

when

the

RECFM

is

U.

See

“System-Determined

Block

Size”

on

page

323

for

more

information

on

system-determined

block

sizes

for

DASD

and

tape

data

sets.

Minimum

block

size:

If

you

specify

a

block

size

other

than

zero,

there

is

no

minimum

requirement

for

block

size

except

that

format-V

blocks

have

a

minimum

block

size

of

8.

However,

if

a

data

check

occurs

on

a

magnetic

tape

device,

any

block

shorter

than

12

bytes

in

a

read

operation,

or

18

bytes

in

a

write

operation,

is

treated

as

a

noise

record

and

lost.

No

check

for

noise

is

made

unless

a

data

check

occurs.

Large

Block

Interface

(LBI)

The

large

block

interface

(LBI)

lets

your

program

handle

much

larger

blocks

with

BSAM

or

QSAM.

On

the

current

level

of

the

system

you

can

use

LBI

with

BSAM,

BPAM,

and

QSAM

for

any

kind

of

data

set

except

unit

record

or

a

TSO/E

terminal.

Currently

blocks

of

more

than

32

760

bytes

are

supported

only

on

tape

and

dummy

data

sets.

You

request

LBI

by

coding

a

BLKSIZE

value,

even

0,

in

the

DCBE

macro

or

by

turning

on

the

DCBEULBI

bit

before

completion

of

the

DCB

OPEN

exit.

Coding

BLKSIZE

causes

the

bit

to

be

on.

It

is

best

if

this

bit

is

on

before

you

issue

the

OPEN

macro.

That

lets

OPEN

merge

a

large

block

size

into

the

DCBE.

Your

DCB

OPEN

exit

can

test

bit

DCBESLBI

to

learn

if

the

access

method

supports

LBI.

If

your

program

did

not

request

unlike

attributes

processing

(by

turning

on

bit

DCBOFPPC)

before

issuing

OPEN,

then

DCBESLBI

being

on

means

that

all

the

data

sets

in

the

concatenation

support

LBI.

If

your

program

requested

unlike

attributes

processing

before

OPEN,

then

DCBESLBI

being

on

each

time

that

the

system

calls

your

DCB

OPEN

exit

or

JFCBE

exit

means

only

that

the

next

data

set

supports

LBI.

After

the

exit,

OPEN

leaves

DCBESLBI

on

only

if

DCBEULBI

also

is

on.

Your

exit

routine

can

change

DCBEULBI.

Never

change

DCBESLBI.

Another

way

to

learn

if

the

data

set

type

supports

LBI

is

to

issue

a

DEVTYPE

macro

with

INFO=AMCAP.

See

z/OS

DFSMSdfp

Advanced

Services.

After

the

DCB

OPEN

exit,

the

following

items

apply

when

DCBESLBI

is

on:

v

OPEN

is

honoring

your

request

for

LBI.

v

Do

not

use

the

BLKSIZE

field

in

the

DCB.

The

system

uses

it.

Use

the

BLKSIZE

field

in

the

DCBE.

For

more

information

about

DCBE

field

descriptions

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Data

Control

Block

(DCB)

322

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

You

can

use

extended

BDWs

with

format-V

records.

Format-V

blocks

longer

than

32

760

bytes

require

an

extended

BDW.

See

“Block

Descriptor

Word

(BDW)”

on

page

291.

v

When

reading

with

BSAM

or

BPAM,

your

program

determines

the

length

of

the

block

differently.

See

“Determining

the

Length

of

a

Block

when

Reading

with

BSAM,

BPAM,

or

BDAM”

on

page

398.

v

When

writing

with

BSAM

or

BPAM,

your

program

sets

the

length

of

each

block

differently.

See

“Writing

a

Short

Format-FB

Block

with

BSAM

or

BPAM”

on

page

399.

v

When

reading

undefined-length

records

with

QSAM,

your

program

learns

the

length

of

the

block

differently.

See

the

GET

macro

description

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

To

write

format-U

or

format-D

blocks

without

BUFOFF=L,

you

must

code

the

’S’

parameter

for

the

length

field

on

the

WRITE

macro.

For

more

information,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

v

When

writing

undefined-length

records

with

QSAM,

you

store

the

record

length

in

the

DCBE

before

issuing

each

PUT.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

v

After

an

I/O

error,

register

0

and

the

status

area

in

the

SYNAD

routine

are

slightly

different,

and

the

beginning

of

the

area

returned

by

the

SYNADAF

macro

is

different.

See

Figure

112

on

page

518

and

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

v

If

the

block

size

exceeds

32

760,

you

cannot

use

the

BUILD,

GETPOOL,

or

BUILDRCD

macro

or

the

BUFL

parameter.

v

Your

program

cannot

request

exchange

buffering

(BFTEK=E),

OPTCD=H

(VSE

embedded

checkpoints)

or

open

with

the

UPDAT

option.

v

With

LBI,

fixed-length

unblocked

records

greater

than

32

760

bytes

are

not

supported

by

QSAM.

System-Determined

Block

Size

If

you

do

not

specify

a

block

size

for

the

creation

of

a

data

set,

the

system

attempts

to

determine

the

block

size.

Using

a

system-determined

block

size

has

the

following

benefits:

v

The

program

can

write

to

DASD,

tape,

or

SYSOUT

without

you

or

the

program

calculating

the

optimal

block

size.

DASD

track

capacity

calculations

are

complicated.

Optimal

block

sizes

differ

for

various

models

of

DASD

and

tape.

v

If

the

data

set

later

is

moved

to

a

different

DASD

type,

such

as

by

DFSMShsm,

the

system

recalculates

an

appropriate

block

size

and

reblocks

the

data.

The

system

determines

the

block

size

for

a

data

set

as

follows:

1.

OPEN

calculates

a

block

size.

Note:

A

block

size

may

be

determined

during

initial

allocation

of

a

DASD

data

set.

OPEN

will

either

use

that

block

size

or

calculate

a

new

block

size

if

any

of

the

data

set

characteristics

(LRECL,RECFM)

were

changed

from

the

values

specified

during

initial

allocation.

2.

OPEN

compares

the

calculated

block

size

to

a

block

size

limit,

which

affects

only

data

sets

on

tape

because

the

minimum

value

of

the

limit

is

32

760.

3.

OPEN

attempts

to

decrease

the

calculated

block

size

to

be

less

than

or

equal

to

the

limit.

The

block

size

limit

is

the

first

nonzero

value

from

the

following

items:

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

323

|
|
|
|

1.

BLKSZLIM

value

in

the

DD

statement

or

dynamic

allocation.

2.

Block

size

limit

in

the

data

class.

The

SMS

data

class

ACS

routine

can

assign

a

data

class

to

the

data

set.

You

can

request

a

data

class

name

with

the

DATACLAS

keyword

in

the

DD

statement

or

the

dynamic-allocation

equivalent.

The

data

set

does

not

have

to

be

SMS

managed.

3.

TAPEBLKSZLIM

value

in

the

DEVSUPxx

member

of

SYS1.PARMLIB.

A

system

programmer

sets

this

value,

which

is

in

the

data

facilities

area

(DFA)

(see

z/OS

DFSMSdfp

Advanced

Services).

4.

The

minimum

block-size

limit,

32

760.

Your

program

can

obtain

the

BLKSZLIM

value

that

is

in

effect

by

issuing

the

RDJFCB

macro

with

the

X'13'

code

(see

z/OS

DFSMSdfp

Advanced

Services).

Because

larger

blocks

generally

cause

data

transfer

to

be

faster,

why

would

you

want

to

limit

it?

Some

possible

reasons

follow:

v

A

user

will

take

the

tape

to

an

operating

system

or

older

z/OS

system

or

application

program

that

does

not

support

the

large

size

that

you

want.

The

other

operating

system

might

be

a

backup

system

that

is

used

only

for

disaster

recovery.

An

OS/390®

system

before

Version

2

Release

10

does

not

support

the

large

block

interface

that

is

needed

for

blocks

longer

than

32

760.

v

You

want

to

copy

the

tape

to

a

different

type

of

tape

or

to

DASD

without

reblocking

it,

and

the

maximum

block

size

for

the

destination

is

less

than

you

want.

An

example

is

the

IBM

3480

Magnetic

Tape

Subsystem,

whose

maximum

block

size

is

65

535.

The

optimal

block

size

for

an

IBM

3590

is

224

KB

or

256

KB,

depending

on

the

level

of

the

hardware.

To

copy

from

an

optimized

3590

to

a

3480

or

3490,

you

must

reblock

the

data.

v

A

program

that

reads

or

writes

the

data

set

and

runs

in

24-bit

addressing

mode

might

not

have

enough

buffer

space

for

very

large

blocks.

Table

30

describes

block

size

support.

Table

30.

Optimum

and

Maximum

Block

Size

Supported

Device

Type

Optimum

Maximum

DASD

Half

track

(usually)

32

760

Reel

tape

32

760

32

760

3480,

3490

65

535

65

535

3590

262

144

(256

KB)

except

on

some

older

models

on

which

it

is

229

376

(224

KB)

262

144

(256

KB)

DUMMY

16

5

000

000

DASD

Data

Sets:

When

you

create

(allocate

space

for)

a

new

DASD

data

set,

the

system

derives

the

optimum

block

size

and

saves

it

in

the

data

set

label

if

all

of

the

following

are

true:

v

Block

size

is

not

available

or

specified

from

any

source.

BLKSIZE=0

can

be

specified.

v

You

specify

LRECL

or

it

is

in

the

data

class.

The

data

set

does

not

have

to

be

SMS

managed.

v

You

specify

RECFM

or

it

is

in

the

data

class.

It

must

be

fixed

or

variable.

v

You

specify

DSORG

as

PS

or

PO

or

you

omit

DSORG

and

it

is

PS

or

PO

in

the

data

class.

Data

Control

Block

(DCB)

324

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Your

DCB

OPEN

exit

can

examine

the

calculated

block

size

in

the

DCB

or

DCBE

if

no

source

other

than

the

system

supplied

the

block

size.

When

a

program

opens

a

DASD

data

set

for

writing

the

first

time

since

it

was

created,

OPEN

derives

the

optimum

block

size

again

after

calling

the

optional

DCB

OPEN

exit

if

all

the

following

are

true:

v

Either

of

the

following

conditions

is

true:

–

The

block

size

in

the

DCB

(or

DCBE

with

LBI)

is

zero.

–

The

system

determined

the

block

size

when

the

data

set

was

created,

and

RECFM

or

LRECL

in

the

DCB

is

different

from

the

data

set

label.
v

LRECL

is

in

the

DCB.

v

RECFM

is

in

the

DCB

and

it

is

fixed

or

variable.

v

The

access

method

is

BSAM,

BPAM,

or

QSAM.

For

sequential

or

PDSs,

the

system-determined

block

size

returned

is

optimal

in

terms

of

DASD

space

utilization.

For

PDSE’s,

the

system-determined

block

size

is

optimal

in

terms

of

I/O

buffer

size

because

PDSE

physical

block

size

on

the

DASD

is

a

fixed

size

determined

by

PDSE.

For

a

compressed

format

data

set,

the

system

does

not

consider

track

length.

The

access

method

simulates

blocks

whose

length

is

independent

of

the

real

physical

block

size.

The

system-determined

block

size

is

optimal

in

terms

of

I/O

buffer

size.

The

system

chooses

a

value

for

the

BLKSIZE

parameter

as

it

would

for

an

IBM

standard

labeled

tape

as

in

Table

31

on

page

327

and

always

limits

it

to

32

760.

This

value

is

stored

in

the

DCB

or

DCBE

and

DS1BLKL

in

the

DSCB.

However,

regardless

of

the

block

size

found

in

the

DCB

and

DSCB,

the

actual

size

of

the

physical

blocks

written

to

DASD

is

calculated

by

the

system

to

be

optimal

for

the

device.

The

system

does

not

determine

the

block

size

for

the

following

types

of

data

sets:

v

Unmovable

data

sets

v

Data

sets

with

a

record

format

of

U

v

Existing

data

sets

with

DISP=OLD

(data

sets

being

opened

with

the

INPUT,

OUTPUT,

or

UPDAT

options

on

the

OPEN

macro)

v

Direct

data

sets

v

When

extending

data

sets

Unmovable

data

sets

cannot

be

system

managed.

There

are

exceptions,

however,

in

cases

where

the

checkpoint/restart

function

has

set

the

unmovable

attribute

for

data

sets

that

are

already

system

managed.

This

setting

prevents

data

sets

opened

previously

by

a

checkpointed

application

from

being

moved

until

you

no

longer

want

to

perform

a

restart

on

that

application.

Tape

Data

Sets:

The

system

can

determine

the

optimum

block

size

for

tape

data

sets.

The

system

sets

the

block

size

at

OPEN

on

return

from

the

DCB

OPEN

exit

and

installation

DCB

OPEN

exit

if:

v

The

block

size

in

DCBBLKSI

is

zero

(or

DCBEBLKSI

if

using

LBI).

v

The

record

length

is

not

zero.

v

The

record

format

is

fixed

or

variable.

v

The

tape

data

set

is

open

for

OUTPUT

or

OUTIN.

v

The

access

method

is

BSAM

or

QSAM.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

325

|
|

|

Rule:

For

programming

languages,

the

program

must

specify

the

file

is

blocked

to

get

tape

system-determined

block

size.

For

example,

with

COBOL,

the

program

should

specify

BLOCK

CONTAINS

0

RECORDS.

Data

Control

Block

(DCB)

326

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

system-determined

block

size

depends

on

the

record

format

of

the

tape

data

set.

Table

31

shows

the

block

sizes

that

are

set

for

tape

data

sets.

Table

31.

Rules

for

Setting

Block

Sizes

for

Tape

Data

Sets

or

Compressed

Format

Data

Sets

RECFM

Block

Size

Set

F

or

FS

LRECL

FB

or

FBS

(Label

type=AL

Version

3)

Highest

possible

multiple

of

LRECL

that

is

≤

2048

if

LRECL

≤

2048

Highest

possible

multiple

of

LRECL

that

is

≤

32

760

if

LRECL

>

2048

FB

or

FBS

(Label

type=AL

Version

4

or

not

AL)

Not

tape

or

not

LBI:

highest

possible

multiple

of

LRECL

that

is

≤

32

760

LBI

on

tape:

Highest

possible

multiple

of

LRECL

that

is

≤

the

device’s

optimal

block

size

V

(not

AL)

LRECL

+

4

(LRECL

must

be

less

than

or

equal

to

32

756)

VS

(not

AL)

LRECL

+

4

if

LRECL

≤

32

756

32

760

if

LRECL

>

32

756

VB

or

VBS

(not

AL)

Not

tape

or

not

LBI:

32

760

LBI

on

tape:

Device’s

optimal

block

size

D

(Label

type=AL)

LRECL

+

4

(LRECL

must

be

≤

32

756)

DBS

or

DS

(Label

type=AL

Version

3)

2048

(the

maximum

block

size

allowed

unless

an

installation

exit

allows

it)

D

or

DS

(Label

type

NL

or

NSL

or

label

type=AL

Version

4)

LRECL

+

4

(LRECL

must

be

≤

32

756)

DB

or

DBS

(Label

type

NL,

or

NSL,

or

AL

Version

4)

32

760

DB

not

spanned

(Label

type=AL

Version

3)

2048

if

LRECL

≤

2044

DCBBLKSI

=

32

760

if

LRECL

>

2044

(you

have

the

option,

for

AL

Version

3,

to

accept

this

block

size

in

the

label

validation

installation

exit)

Label

Types:

AL

=

ISO/ANSI

labels

NL

=

no

labels

NSL

=

nonstandard

labels

SL

=

IBM

standard

labels

Not

AL

=

NL,

NSL,

or

SL

labels

RECFM

Allowances:

v

RECFM=D

is

not

allowed

for

SL

tapes

v

RECFM=V

is

not

allowed

for

AL

tapes

Data

Set

Organization

(DSORG)

DSORG

specifies

the

organization

of

the

data

set

as

physical

sequential

(PS),

indexed

sequential

(IS),

partitioned

(PO),

or

direct

(DA).

If

the

data

set

is

processed

using

absolute

rather

than

relative

addresses,

you

must

mark

it

as

unmovable

by

adding

a

U

to

the

DSORG

parameter

(for

example,

by

coding

DSORG=PSU).

You

must

specify

the

data

set

organization

in

the

DCB

macro.

In

addition:

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

327

v

When

creating

or

processing

an

indexed

sequential

organization

data

set

or

creating

a

direct

data

set,

you

must

also

specify

DSORG

in

the

DD

statement.

v

When

creating

a

direct

data

set,

the

DSORG

in

the

DCB

macro

must

specify

PS

or

PSU

and

the

DD

statement

must

specify

DA

or

DAU.

v

PS

is

for

sequential

and

extended

format

DSNTYPE.

v

PO

is

the

data

set

organization

for

both

PDSEs

and

PDSs.

DSNTYPE

is

used

to

distinguish

between

PDSEs

and

PDSs.

Unmovable

and

IS

data

sets

cannot

be

system

managed.

Key

Length

(KEYLEN)

KEYLEN

specifies

the

length

(0

to

255)

in

bytes

of

an

optional

key

that

precedes

each

block

on

direct

access

storage

devices.

The

value

of

KEYLEN

is

not

included

in

BLKSIZE

or

LRECL,

but

must

be

included

in

BUFL

if

buffer

length

is

specified.

Thus,

BUFL=KEYLEN+BLKSIZE.

See

“Using

KEYLEN

with

PDSEs”

on

page

437

for

information

about

using

the

KEYLEN

parameter

with

PDSEs.

Rule:

Do

not

specify

nonzero

key

length

when

opening

a

PDSE

or

extended

format

data

set

for

output.

IBM

recommends

not

coding

KEYLEN

or

coding

KEYLEN=0.

A

nonzero

value

generally

will

make

your

program

run

slower.

Record

Length

(LRECL)

LRECL

specifies

the

length,

in

bytes,

of

each

record

in

the

data

set.

If

the

records

are

of

variable

length

or

undefined

length,

the

maximum

record

length

must

be

specified.

For

input,

the

field

has

no

effect

for

undefined-length

(format-U)

records.

The

value

of

LRECL

and

when

you

specify

it

depends

on

the

format

of

the

records:

v

For

fixed-length

unblocked

records,

LRECL

must

equal

BLKSIZE.

v

For

PDSEs

or

compressed-format

data

sets

with

fixed-length

blocked

records,

LRECL

must

be

specified

when

the

data

set

is

opened

for

output.

v

For

the

extended

logical

record

interface

(XLRI)

for

ISO/ANSI

variable

spanned

records,

LRECL

must

be

specified

as

LRECL=0K

or

LRECL=nK.

Record

Format

(RECFM)

RECFM

specifies

the

characteristics

of

the

records

in

the

data

set

as

fixed-length

(F),

variable-length

(V),

ASCII

variable-length

(D),

or

undefined-length

(U).

Blocked

records

are

specified

as

FB,

VB,

or

DB.

Spanned

records

are

specified

as

VS,

VBS,

DS,

or

DBS.

You

can

also

specify

the

records

as

fixed-length

standard

by

using

FS

or

FBS.

You

can

request

track

overflow

for

records

other

than

standard

format

by

adding

a

T

to

the

RECFM

parameter

(for

example,

by

coding

FBT).

Track

overflow

is

ignored

for

PDSEs.

The

type

of

print

control

can

be

specified

to

be

in

ANSI

format-A,

or

in

machine

code

format-M.

See

“Using

Optional

Control

Characters”

on

page

306

and

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

information

about

control

characters.

Data

Control

Block

(DCB)

328

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Write

Validity

Check

Option

(OPTCD=W)

You

can

specify

the

write

validity

check

option

in

the

DCB

parameter

of

the

DD

statement,

the

dynamic

allocation

text

units,

or

the

DCB

macro.

After

a

block

is

transferred

from

main

to

auxiliary

storage,

the

system

reads

the

stored

block

(without

data

transfer)

and,

by

testing

for

a

data

check

from

the

I/O

device,

verifies

that

the

block

was

written

correctly.

Be

aware

that

the

write

validity

check

process

requires

an

additional

revolution

of

the

device

for

each

block.

If

the

system

detects

any

errors,

it

starts

its

standard

error

recovery

procedure.

For

buffered

tape

devices,

the

write

validity

check

option

delays

the

device

end

interrupt

until

the

data

is

physically

on

tape.

When

you

use

the

write

validity

check

option,

you

get

none

of

the

performance

benefits

of

buffering

and

the

average

data

transfer

rate

is

much

less.

Rule:

OPTCD=W

is

ignored

for

PDSEs

and

for

extended

format

data

sets.

DD

Statement

Parameters

Each

of

the

data

set

description

fields

of

the

DCB,

except

for

direct

data

sets,

can

be

specified

when

your

job

is

to

be

run.

Also,

data

set

identification

and

disposition,

and

device

characteristics,

can

be

specified

at

that

time.

To

allocate

a

data

set,

you

must

specify

the

data

set

name

and

disposition

in

the

DD

statement.

In

the

DD

statement,

you

can

specify

a

data

class,

storage

class,

and

management

class,

and

other

JCL

keywords.You

can

specify

the

classes

using

the

JCL

keywords

DATACLAS,

STORCLAS,

and

MGMTCLAS.

If

you

do

not

specify

a

data

class,

storage

class,

or

management

class,

the

ACS

routines

assign

classes

based

on

the

defaults

defined

by

your

storage

administrator.

Storage

class

and

management

class

can

be

assigned

only

to

data

sets

that

are

to

be

system

managed.

ACS

Routines.

Your

storage

administrator

uses

the

ACS

routines

to

determine

which

data

sets

are

to

be

system

managed.

The

valid

classes

that

can

either

be

specified

in

your

DD

statement

or

assigned

by

the

ACS

routines

are

defined

in

the

SMS

configuration

by

your

storage

administrator.

The

ACS

routines

analyze

your

JCL,

and

if

you

specify

a

class

that

you

are

not

authorized

to

use

or

a

class

that

does

not

exist,

your

allocation

fails.

For

more

information

about

specifying

data

class,

storage

class,

and

management

class

in

your

DD

statement

see

z/OS

MVS

JCL

User’s

Guide.

Data

Class.

Data

class

can

be

specified

for

both

system-managed

and

non-system-managed

data

sets.

It

can

be

specified

for

both

DASD

and

tape

data

sets.

You

can

use

data

class

together

with

the

JCL

keyword

LIKE

for

tape

data

sets.

This

simplifies

migration

to

and

from

system-managed

storage.

When

you

allocate

a

data

set,

the

ACS

routines

assign

a

data

class

to

the

data

set,

either

the

data

class

you

specify

in

your

DD

statement,

or

the

data

class

defined

as

the

default

by

your

storage

administrator.

The

data

set

is

allocated

using

the

information

contained

in

the

assigned

data

class.

See

your

storage

administrator

for

information

on

the

data

classes

available

to

your

installation

and

z/OS

DFSMSdfp

Storage

Administration

Reference

for

more

information

about

allocating

system-managed

data

sets

and

using

SMS

classes.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

329

You

can

override

any

of

the

information

contained

in

a

data

class

by

specifying

the

values

you

want

in

your

DD

statement

or

dynamic

allocation.

A

data

class

can

contain

any

of

the

following

information.

Data

Set

Characteristics

JCL

Keywords

Used

To

Override

Data

set

organization

DSORG

Data

set

type

DSNTYPE

Key

length

KEYLEN

Key

offset

KEYOFF

Record

format

RECFM

Record

length

LRECL

Block

size

BLKSIZE

Block

size

limit

BLKSZLIM

Record

organization

RECORG

Retention

period

RETPD

Space

allocation

SPACE,

AVGREC

Related

reading:

For

more

information

on

the

JCL

keywords

that

override

data

class

information,

see

z/OS

MVS

JCL

User’s

Guide

and

z/OS

MVS

JCL

Reference.

In

a

DD

statement

or

dynamic-allocation

call,

you

cannot

specify

directly

through

the

DSNTYPE

value

that

the

data

set

is

to

be

an

extended-format

data

set.

The

easiest

data

set

allocation

is

one

that

uses

the

data

class,

storage

class,

and

management

class

defaults

defined

by

your

storage

administrator.

The

following

example

shows

how

to

allocate

a

system-managed

data

set:

//ddname

DD

DSNAME=NEW.PLI,DISP=(NEW,KEEP)

You

cannot

specify

the

keyword

DSNTYPE

with

the

keyword

RECORG

in

the

JCL

DD

statement.

They

are

mutually

exclusive.

Changing

and

Testing

the

DCB

and

DCBE

With

certain

restrictions

you

can

complete

or

change

the

DCB

or

DCBE

during

execution

of

your

program.

You

can

also

determine

data

set

characteristics

from

information

supplied

by

the

data

set

labels.

You

can

make

changes

or

additions

before

you

open

a

data

set,

after

you

close

it,

during

the

DCB

OPEN

exit

routine,

or

while

the

data

set

is

open.

See

“DCB

OPEN

Exit”

on

page

535

and

“Filling

in

the

DCB”

on

page

318

for

information

about

using

the

DCB

OPEN

exit

routines.

Also

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

information

about

changing

DCB

fields.

(Naturally,

you

must

supply

the

information

before

it

is

needed.)

You

should

not

attempt

to

change

the

data

set

characteristics

of

a

system-managed

data

set

to

characteristics

that

make

it

ineligible

to

be

system

managed.

For

example,

do

not

specify

a

data

set

organization

in

the

DD

statement

as

PS

and,

after

the

data

set

has

been

allocated

to

a

system-managed

volume,

change

the

DCB

to

specify

DSORG=PSU.

That

causes

abnormal

end

of

your

program.

Data

Control

Block

(DCB)

330

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Using

the

DCBD

Macro

Use

the

data

control

block

DSECT

(DCBD)

macro

to

identify

the

DCB

field

names

symbolically.

If

you

load

a

base

register

with

a

DCB

address,

you

can

refer

to

any

field

symbolically.

You

can

code

the

DCBD

macro

once

to

describe

all

DCBs.

The

DCBD

macro

generates

a

dummy

control

section

(DSECT)

named

IHADCB.

Each

field

name

symbol

consists

of

DCB

followed

by

the

first

5

letters

of

the

keyword

subparameter

for

the

DCB

macro.

For

example,

the

symbolic

name

of

the

block

size

parameter

field

is

DCBBLKSI.

(For

other

DCB

field

names

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.)

The

attributes

of

each

DCB

field

are

defined

in

the

dummy

control

section.

Use

the

DCB

macro’s

assembler

listing

to

determine

the

length

attribute

and

the

alignment

of

each

DCB

field.

Changing

an

Address

in

the

DCB

Figure

55

shows

how

to

change

a

field

in

the

DCB.

The

data

set

defined

by

the

data

control

block

TEXTDCB

is

opened

for

both

input

and

output.

When

the

application

program

no

longer

needs

it

for

input,

the

EODAD

routine

closes

the

data

set

temporarily

to

reposition

the

volume

for

output.

The

EODAD

routine

then

uses

the

dummy

control

section

IHADCB

to

change

the

error

exit

address

(SYNAD)

from

INERROR

to

OUTERROR.

The

EODAD

routine

loads

the

address

TEXTDCB

into

register

10,

the

base

register

for

IHADCB.

Then

it

moves

the

address

OUTERROR

into

the

DCBSYNAD

field

of

the

DCB.

Even

though

DCBSYNAD

is

a

fullword

field

and

contains

important

information

in

the

high-order

byte,change

only

the

3

low-order

bytes

in

the

field.

All

unused

address

fields

in

the

DCB,

except

DCBEXLST,

are

set

to

1

when

the

DCB

macro

is

expanded.

Many

system

routines

interpret

a

value

of

1

in

an

address

field

as

meaning

no

address

was

specified,

so

use

it

to

dynamically

reset

any

field

you

do

not

need.

...

OPEN

(TEXTDCB,INOUT),MODE=31

...

EOFEXIT

CLOSE

(TEXTDCB,REREAD),MODE=31,TYPE=T

LA

10,TEXTDCB

USING

IHADCB,10

MVC

DCBSYNAD+1(3),=AL3(OUTERROR)

B

OUTPUT

INERROR

STM

14,12,SYNADSA+12

...

OUTERROR

STM

14,12,SYNADSA+12

...

TEXTDCB

DCB

DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE,

C

EODAD=EOFEXIT,SYNAD=INERROR

DCBD

DSORG=PS

...

Figure

55.

Changing

a

Field

in

the

DCB

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

331

Using

the

IHADCBE

Macro

Use

the

IHADCBE

mapping

macro

to

identify

DCB

extension

field

names

symbolically.

If

you

load

a

base

register

with

a

DCBE

address,

you

can

refer

to

any

field

symbolically.

You

can

code

the

IHADCBE

macro

once

to

describe

all

DCBEs.

The

IHADCBE

macro

generates

a

dummy

control

section

(DSECT)

named

DCBE.

For

the

symbols

generated

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

All

address

fields

in

the

DCBE

are

4

bytes.

All

undefined

addresses

are

set

to

0.

Using

CLOSE

to

End

the

Processing

of

a

Data

Set

The

CLOSE

macro

is

used

to

end

processing

of

a

data

set

and

release

it

from

a

DCB.

The

volume

positioning

(tapes

only)

that

is

to

result

from

closing

the

data

set

can

also

be

specified.

See

“Positioning

Volumes”

on

page

338

for

the

definition

of

volume

positioning.

Volume

positioning

options

are

the

same

as

those

that

can

be

specified

for

end-of-volume

conditions

in

the

OPEN

macro

or

the

DD

statement.

An

additional

volume

positioning

option,

REWIND,

is

available

and

can

be

specified

by

the

CLOSE

macro

for

magnetic

tape

volumes.

REWIND

positions

the

tape

at

the

load

point

regardless

of

the

direction

of

processing.

Issuing

the

CHECK

Macro

Before

issuing

the

CLOSE

macro,

a

CHECK

macro

must

be

issued

for

all

DECBs

that

have

outstanding

I/O

from

WRITE

macros.

When

CLOSE

TYPE=T

is

specified,

a

CHECK

macro

must

be

issued

for

all

DECBs

that

have

outstanding

I/O

from

either

WRITE

or

READ

macros

except

when

issued

from

EODAD.

In

Figure

56

the

data

sets

associated

with

three

DCBs

are

to

be

closed

simultaneously.

Because

no

volume

positioning

parameters

(LEAVE,

REWIND)

are

specified,

the

positioning

indicated

by

the

DD

statement

DISP

parameter

is

used.

Closing

a

Data

Set

Temporarily

You

can

code

CLOSE

TYPE=T

to

temporarily

close

sequential

data

sets

on

magnetic

tape

and

direct

access

volumes

processed

with

BSAM.

When

you

use

TYPE=T,

the

DCB

used

to

process

the

data

set

maintains

its

open

status.

You

do

not

have

to

issue

another

OPEN

macro

to

continue

processing

the

same

data

set.

CLOSE

TYPE=T

cannot

be

used

in

a

SYNAD

routine.

The

TYPE=T

parameter

causes

the

system

control

program

to

process

labels,

modify

some

of

the

fields

in

the

system

control

blocks

for

that

data

set,

and

reposition

the

volume

(or

current

volume

for

multivolume

data

sets)

in

much

the

same

way

that

the

normal

CLOSE

macro

does.

When

you

code

TYPE=T,

you

can

specify

that

the

volume

is

either

to

be

positioned

at

the

end

of

data

(the

LEAVE

option)

or

to

be

repositioned

at

the

beginning

of

data

(the

REREAD

option).

Magnetic

tape

volumes

are

repositioned

either

immediately

before

the

first

data

record

or

immediately

after

the

last

data

record.

The

presence

of

tape

labels

has

no

effect

on

repositioning.

CLOSE

(TEXTDCB,,CONVDCB,,PRINTDCB)

Figure

56.

Closing

Three

Data

Sets

at

the

Same

Time

Data

Control

Block

(DCB)

332

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

When

a

DCB

is

shared

among

multiple

tasks,

only

the

task

that

opened

the

data

set

can

close

it

unless

TYPE=T

is

specified.

Figure

57,

which

assumes

a

sample

data

set

containing

1000

blocks,

shows

the

relationship

between

each

positioning

option

and

the

point

where

you

resume

processing

the

data

set

after

issuing

the

temporary

close.

Using

CLOSE

TYPE=T

with

Sequential

Data

Sets

For

data

sets

processed

with

BSAM,

you

can

use

CLOSE

TYPE=T

with

the

following

restrictions:

v

The

DCB

for

the

data

set

you

are

processing

on

a

direct

access

device

must

specify

either

DSORG=PS

or

DSORG=PSU

for

input

processing,

and

either

DSORG=PS,

DSORG=PSU,

DSORG=PO,

or

DSORG=POU

for

output

processing.

(You

cannot

specify

the

REREAD

option

if

DSORG=PO

or

DSORG=POU

is

specified.

The

REREAD

restriction

prohibits

the

use

of

temporary

close

following

or

during

the

building

of

a

BDAM

data

set

that

is

allocated

by

specifying

BSAM

MACRF=WL.)

v

The

DCB

must

not

be

open

input

to

a

member

of

a

PDS.

v

If

you

open

the

data

set

for

input

and

issue

CLOSE

TYPE=T

with

the

LEAVE

option,

the

volume

will

be

repositioned

only

if

the

data

set

specifies

DSORG=PS

or

DSORG=PO.

Block
1

If you CLOSE CODE TYPE = T and specify

LEAVE

REREAD

LEAVE (with tape data set open
for read backward)

REREAD (with tape data set open
for read backward)

After temporary close, you will
resume processing

Immediately after block 1000

Immediately after 1000block

Immediately before 1block

Immediately before 1block

Begin
processing
data set

Begin processing
tape data set
(open for read
backward)

Block
2

Block
3

Block
999

Block
1000

Figure

57.

Record

Processed

when

LEAVE

or

REREAD

is

Specified

for

CLOSE

TYPE=T

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

333

Releasing

Space

The

close

function

attempts

to

release

unused

tracks

or

cylinders

for

a

data

set

if

all

of

the

following

are

true:

v

The

SMS

management

class

specifies

YI

or

CI

for

the

partial

release

attribute,

or

you

specified

RLSE

for

the

SPACE

parameter

in

the

DD

statement

or

RELEASE

in

the

TSO

ALLOCATE

command.

v

You

did

not

specify

TYPE=T

on

the

CLOSE

macro.

v

The

DCB

was

opened

with

the

OUTPUT,

OUTIN,

OUTINX,

INOUT

or

EXTEND

option

and

the

last

operation

before

CLOSE

was

WRITE

(and

CHECK),

STOW

or

PUT.

v

No

other

DCB

for

this

data

set

in

the

address

space

was

open.

v

No

other

address

space

in

any

system

is

allocated

to

the

data

set.

v

The

data

set

is

sequential

or

partitioned.

v

Certain

functions

of

dynamic

allocation

are

not

currently

executing

in

the

address

space.

For

a

multivolume

data

set

that

is

not

in

extended

format,

CLOSE

releases

space

only

on

the

current

volume.

Space

also

can

be

released

when

DFSMShsm

is

performing

space

management

or

when

an

authorized

program

issues

the

PARTREL

macro.

Space

is

released

on

a

track

boundary

if

the

extent

containing

the

last

record

was

allocated

in

units

of

tracks

or

in

units

of

average

record

or

block

lengths

with

ROUND

not

specified.

Space

is

released

on

a

cylinder

boundary

if

the

extent

containing

the

last

record

was

allocated

in

units

of

cylinders

or

in

units

of

average

block

lengths

with

ROUND

specified.

However,

a

cylinder

boundary

extent

could

be

released

on

a

track

boundary

if:

v

The

DD

statement

used

to

access

the

data

set

contains

a

space

parameter

specifying

units

of

tracks

or

units

of

average

block

lengths

with

ROUND

not

specified,

or

v

No

space

parameter

is

supplied

in

the

DD

statement

and

no

secondary

space

value

has

been

saved

in

the

data

set

label

for

the

data

set.

Changing

a

cylinder

boundary

extent

to

a

track

boundary

extent

generally

causes

loss

of

the

possible

performance

benefit

of

a

cylinder

boundary.

On

the

latest

disk

drives

there

is

no

performance

benefit

of

cylinder

boundaries.

Data

Control

Block

(DCB)

334

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Managing

Buffer

Pools

When

Closing

Data

Sets

After

closing

the

data

set,

you

should

issue

a

FREEPOOL

macro

to

release

the

virtual

storage

used

for

the

buffer

pool

unless

you

specified

RMODE31=BUFF

on

the

DCBE

macro

with

QSAM

or

it

is

BSAM

and

BUFNO

was

not

supplied

from

any

source.

If

you

plan

to

process

other

data

sets,

use

FREEPOOL

to

regain

the

buffer

pool

storage

space.

If

you

expect

to

reopen

a

data

set

using

the

same

DCB,

use

FREEPOOL

unless

the

buffer

pool

created

the

first

time

the

data

set

was

opened

will

meet

your

needs

when

you

reopen

the

data

set.

FREEPOOL

is

discussed

in

more

detail

in

“Constructing

a

Buffer

Pool”

on

page

342.

After

the

data

set

has

been

closed,

the

DCB

can

be

used

for

another

data

set.

If

you

do

not

close

the

data

set

before

a

task

completes,

the

operating

system

tries

to

close

it

automatically.

If

the

DCB

is

not

available

to

the

system

at

that

time,

the

operating

system

abnormally

ends

the

task,

and

data

results

can

be

unpredictable.

The

operating

system,

however,

cannot

automatically

close

any

DCBs

in

dynamic

storage

(outside

your

program)

or

after

the

normal

end

of

a

program

that

was

brought

into

virtual

storage

by

the

loader.

Therefore,

reentrant

or

loaded

programs

must

include

CLOSE

macros

for

all

open

data

sets.

Opening

and

Closing

Data

Sets:

Considerations

This

sections

discusses

the

OPEN

and

CLOSE

considerations.

Parameter

Lists

with

31-Bit

Addresses

You

can

code

OPEN

and

CLOSE

with

MODE=31

to

specify

a

long

form

parameter

list

that

can

contain

31-bit

addresses.

The

default,

MODE=24,

specifies

a

short

form

parameter

list

with

24-bit

addresses.

If

TYPE=J

is

specified,

you

must

use

the

short

form

parameter

list.

The

short

form

parameter

list

must

reside

below

16

MB,

but

the

calling

program

can

be

above

16

MB.

The

long

form

parameter

list

can

reside

above

or

below

16

MB.

VSAM

and

VTAM®

access

control

blocks

(ACBs)

can

reside

above

16

MB.

Although

you

can

code

MODE=31

on

the

OPEN

or

CLOSE

call

for

a

DCB,

the

DCB

must

reside

below

16

MB.

Therefore,

the

leading

byte

of

the

4-byte

DCB

address

must

contain

zeros.

If

the

byte

contains

something

other

than

zeros,

an

error

message

is

issued.

If

an

OPEN

was

attempted,

the

data

set

is

not

opened.

If

a

CLOSE

was

attempted,

the

data

set

is

not

closed.

For

both

types

of

parameter

lists,

the

real

address

can

be

above

the

2

GB

bar.

Therefore,

you

can

code

LOC=(xx,64)

on

the

GETMAIN

or

STORAGE

macro.

You

need

to

keep

the

mode

that

is

specified

in

the

MF=L

and

MF=E

versions

of

the

OPEN

macro

consistent.

The

same

is

true

for

the

CLOSE

macro.

If

MODE=31

is

specified

in

the

MF=L

version

of

the

OPEN

or

CLOSE

macro,

MODE=31

must

also

be

coded

in

the

corresponding

MF=E

version

of

the

macro.

Unpredictable

results

occur

if

the

mode

that

is

specified

is

not

consistent.

Open

and

Close

of

Multiple

Data

Sets

at

the

Same

Time

An

OPEN

or

CLOSE

macro

can

be

used

to

begin

or

end

processing

of

more

than

one

data

set.

Simultaneous

opening

or

closing

is

faster

than

issuing

separate

macros.

However,

additional

storage

space

is

required

for

each

data

set

specified.

The

examples

in

Figure

54

on

page

321

and

Figure

56

on

page

332

show

how

to

code

simultaneous

open

and

close

operations.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

335

|
|
|

Factors

to

Consider

When

Allocating

Direct

Access

Data

Sets

When

the

system

allocates

a

new

SMS

data

set

with

DSORG=PS

or

no

DSORG,

the

access

methods

treat

the

data

set

as

being

null,

that

is,

having

no

data.

A

program

can

safely

read

the

data

set

before

data

has

been

written

in

it.

This

means

the

first

GET

or

first

CHECK

for

a

READ

causes

the

EODAD

routine

to

be

called.

For

data

sets

other

than

system

managed

with

DSORG=PS

or

null,

the

program

will

receive

unpredictable

results

such

as

reading

residual

data

from

a

prior

user,

getting

an

I/O

error,

or

getting

an

ABEND.

Reading

residual

data

can

cause

your

program

to

appear

to

run

correctly,

but

you

can

get

unexpected

output

from

the

residual

data.

You

can

use

one

of

the

following

methods

to

make

the

data

set

appear

null:

1.

At

allocation

time,

specify

a

primary

allocation

value

of

zero;

such

as

SPACE=(TRK,(0,10))

or

SPACE=(CYL,(0,50)).

This

technique

does

not

work

with

a

VIO

data

set

because

creation

includes

the

secondary

space

amount.

2.

After

allocation

time,

put

an

end-of-file

mark

at

the

beginning

of

the

data

set,

by

running

a

program

that

opens

the

data

set

for

output

and

closes

it

without

writing

anything.

After

you

delete

your

data

set

containing

confidential

data,

you

can

be

certain

another

user

cannot

read

your

residual

data

if

you

use

the

erase

feature

described

in

“Erasing

DASD

Data”

on

page

60.

Guidelines

for

Opening

and

Closing

Data

Sets

When

you

open

and

close

data

sets,

consider

the

following

guidelines:

v

Two

or

more

tasks

or

two

or

more

DCBs

can

share

data

sets

on

DASD.

See

Chapter

23,

“Sharing

Non-VSAM

Data

Sets,”

on

page

365

and

“Sharing

PDSEs”

on

page

462

for

more

information.

v

The

system

can

override

volume

disposition

specified

in

the

OPEN

or

CLOSE

macro

if

necessary.

However,

you

need

not

be

concerned;

the

system

automatically

requests

the

mounting

and

demounting

of

volumes,

depending

on

the

availability

of

devices

at

a

particular

time.

For

more

information

about

volume

disposition

see

z/OS

MVS

JCL

User’s

Guide.

v

Use

only

one

DD

statement

per

job

step

for

a

data

set

that

might

extend

to

a

new

volume.

Attention:

If

you

specify

multiple

DD

statements

in

the

same

job

step

for

an

SMS-managed

data

set

on

DASD,

and

also

specify

DISP=MOD

or

issue

the

OPEN

macro

with

options

EXTEND

or

OUTINX,

a

data

integrity

exposure

occurs

when

the

data

set

is

extended

on

additional

volumes.

This

new

volume

information

is

not

available

to

the

other

DD

statements

in

the

job

step

for

the

same

data

set.

Therefore,

the

data

on

the

new

volumes

is

overlaid

if

the

data

set

is

opened

for

output

processing

using

one

of

the

other

DD

statements

in

the

same

job

step

and

the

data

set

is

extended.

Open/Close/EOV

Errors

There

are

two

classes

of

errors

that

can

occur

during

open,

close,

and

end-of-volume

processing:

determinate

and

indeterminate

errors.

Determinate

errors

are

errors

associated

with

an

ABEND

issued

by

OPEN,

CLOSE,

or

EOV.

For

example,

a

condition

associated

with

the

213

completion

code

with

a

return

code

of

04

might

be

detected

during

open

processing,

indicating

that

the

data

set

label

could

not

be

found

for

a

data

set

being

opened.

In

general,

the

OPEN,

CLOSE

and

Data

Control

Block

(DCB)

336

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

other

system

functions

attempt

to

react

to

errors

with

return

codes

and

determinate

abends;

however,

in

some

cases,

the

result

is

indeterminate

errors,

such

as

program

checks.

In

such

cases,

you

should

examine

the

last

action

taken

by

your

program.

Pay

particular

attention

to

bad

addresses

supplied

by

your

program

or

overlaid

storage.

If

a

determinate

error

occurs

during

the

processing

resulting

from

a

concurrent

OPEN

or

CLOSE

macro,

the

system

attempts

to

forcibly

close

the

DCBs

associated

with

a

given

OPEN

or

CLOSE

macro.

You

can

also

immediately

end

the

task

abnormally

by

coding

a

DCB

ABEND

user

exit

routine

that

shows

the

immediate

termination

option.

For

more

information

on

the

DCB

ABEND

exit

see

“DCB

ABEND

Exit”

on

page

531.

You

can

also

request

the

DELAY

option.

In

that

case,

when

all

open

or

close

processing

is

completed,

abnormal

end

processing

is

started.

Abnormal

end

involves

forcing

all

DCBs

associated

with

a

given

OPEN

or

CLOSE

macro

to

close

status,

thereby

freeing

all

storage

devices

and

other

system

resources

related

to

the

DCBs.

If

an

indeterminate

error

(such

as

a

program

check)

occurs

during

open,

close,

or

EOV

processing,

no

attempt

is

made

by

the

system

control

program

to

complete

concurrent

open

or

close

processing.

The

DCBs

associated

with

the

OPEN

or

CLOSE

macro

are

forced

to

close

status

if

possible,

and

the

resources

related

to

each

DCB

are

freed.

To

determine

the

status

of

any

DCB

after

an

error,

check

the

OPEN

(or

CLOSE)

return

code

in

register

15

or

test

DCBOFOPN.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

During

task

termination,

the

system

issues

a

CLOSE

macro

for

each

data

set

that

is

still

open.

If

the

task

terminates

abnormally

due

to

a

determinate

system

ABEND

for

an

output

QSAM

data

set

on

tape,

the

close

routines

that

would

normally

finish

processing

buffers

are

bypassed.

Any

outstanding

I/O

requests

are

purged.

Thus,

your

last

data

records

might

be

lost

for

a

QSAM

output

data

set

on

tape.

However,

if

the

data

set

resides

on

DASD,

the

close

routines

perform

the

buffer

flushing,

which

writes

the

last

records

to

the

data

set.

If

you

cancel

the

task,

the

buffer

is

lost.

You

should

close

an

indexed

sequential

data

set

before

task

termination

because,

if

an

I/O

error

is

detected,

the

ISAM

close

routines

cannot

return

the

application

program

registers

to

the

SYNAD

routine,

causing

unpredictable

results.

Installation

Exits

Four

installation

exit

routines

are

provided

for

abnormal

end

with

ISO/ANSI

Version

3

or

Version

4

tapes.

v

The

label

validation

exit

is

entered

during

OPEN/EOV

if

a

nonvalid

label

condition

is

detected

and

label

validation

has

not

been

suppressed.

Nonvalid

conditions

include

incorrect

alphanumeric

fields,

nonstandard

values

(for

example,

RECFM=U,

block

size

greater

than

2048,

or

a

zero

generation

number),

nonvalid

label

sequence,

nonsymmetrical

labels,

nonvalid

expiration

date

sequence,

and

duplicate

data

set

names.

However,

Version

4

tapes

allow

block

size

greater

than

2048,

nonvalid

expiration

date

sequence,

and

duplicate

data

set

names.

v

The

validation

suppression

exit

is

entered

during

OPEN/EOV

if

volume

security

checking

has

been

suppressed,

if

the

volume

label

accessibility

field

contains

an

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

337

ASCII

space

character,

or

if

RACF

accepts

a

volume

and

the

accessibility

field

does

not

contain

an

uppercase

A

through

Z

.

v

The

volume

access

exit

is

entered

during

OPEN/EOV

if

a

volume

is

not

RACF

protected

and

the

accessibility

field

in

the

volume

label

contains

an

ASCII

uppercase

A

through

Z

.

v

The

file

access

exit

is

entered

after

locating

a

requested

data

set

if

the

accessibility

field

in

the

HDR1

label

contains

an

ASCII

uppercase

A

through

Z.

ISO/ANSI

Version

4

tapes

also

permits

special

characters

!*″%&’()+,-./:;<=>?_

and

numeric

0-9.

Related

reading:

For

additional

information

about

ISO/ANSI

Version

3

or

Version

4

installation

exits

see

z/OS

DFSMS

Installation

Exits.

Positioning

Volumes

Volume

positioning

is

releasing

the

DASD

or

tape

volume

or

rotating

the

tape

volume

so

that

the

read-write

head

is

at

a

particular

point

on

the

tape.

The

following

sections

discuss

the

steps

in

volume

positioning:

releasing

the

volume,

processing

end-of-volume,

positioning

the

volume.

Releasing

Data

Sets

and

Volumes

You

are

offered

the

option

of

being

able

to

release

data

sets,

and

the

volumes

the

data

sets

reside

on

when

your

task

is

no

longer

using

them.

If

you

are

not

sharing

data

sets,

these

data

sets

would

otherwise

remain

unavailable

for

use

by

other

tasks

until

the

job

step

that

opened

them

ends.

There

are

two

ways

to

code

the

CLOSE

macro

that

can

result

in

releasing

a

data

set

and

the

volume

on

which

it

resides

at

the

time

the

data

set

is

closed:

1.

For

non-VSAM

data

sets,

you

can

code

the

following

with

the

FREE=CLOSE

parameter:

CLOSE

(DCB1,DISP)

or

CLOSE

(DCB1,REWIND)

See

z/OS

MVS

JCL

Reference

for

information

about

using

and

coding

the

FREE=CLOSE

parameter

of

the

DD

statement.

2.

If

you

do

not

code

FREE=CLOSE

on

the

DD

statement,

you

can

code:

CLOSE

(DCB1,FREE)

In

either

case,

tape

data

sets

and

volumes

are

freed

for

use

by

another

job

step.

Data

sets

on

direct

access

storage

devices

are

freed

and

the

volumes

on

which

they

reside

are

freed

if

no

other

data

sets

on

the

volume

are

open.

For

additional

information

on

volume

disposition

and

coding

restrictions

on

the

CLOSE

macro,

see

z/OS

MVS

JCL

User’s

Guide.

If

you

issue

a

CLOSE

macro

with

the

TYPE=T

parameter,

the

system

does

not

release

the

data

set

or

volume.

They

can

be

released

using

a

subsequent

CLOSE

without

TYPE=T

or

by

the

unallocation

of

the

data

set.

Processing

End-of-Volume

The

access

methods

pass

control

to

the

data

management

end-of-volume

(EOV)

routine

when

another

volume

or

concatenated

data

set

is

present

and

any

of

the

following

conditions

is

detected:

v

Tape

mark

(input

tape

volume).

Data

Control

Block

(DCB)

338

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

File

mark

or

end

of

last

extent

(input

direct

access

volume).

v

End-of-data

indicator

(input

device

other

than

magnetic

tape

or

direct

access

volume).

An

example

of

this

would

be

the

last

card

read

on

a

card

reader.

v

End

of

reel

or

cartridge

(output

tape

volume).

v

End

of

last

allocated

extent

(output

direct

access

volume).

v

Application

program

issued

an

FEOV

macro.

If

the

LABEL

parameter

of

the

associated

DD

statement

shows

standard

labels,

the

EOV

routine

checks

or

creates

standard

trailer

labels.

If

you

specify

SUL

or

AUL,

the

system

passes

control

to

the

appropriate

user

label

routine

if

you

specify

it

in

your

exit

list.

If

your

DD

statement

specifies

multiple

volume

data

sets,

the

EOV

routine

automatically

switches

the

volumes.

When

an

EOV

e

condition

exists

on

an

output

data

set,

the

system

allocates

additional

space,

as

indicated

in

your

DD

statement.

If

no

more

volumes

are

specified

or

if

more

than

specified

are

required,

the

storage

is

obtained

from

any

available

volume

on

a

device

of

the

same

type.

If

no

such

volume

is

available,

the

system

issues

an

ABEND.

If

you

perform

multiple

opens

and

closes

without

writing

any

user

data

in

the

area

of

the

end-of-tape

reflective

marker,

then

header

and

trailer

labels

can

be

written

past

the

marker.

Access

methods

detect

the

marker.

Because

the

creation

of

empty

data

sets

does

not

involve

access

methods,

the

end-of-tape

marker

is

not

detected,

which

can

cause

the

tape

to

run

off

the

end

of

the

reel.

Exception:

The

system

calls

your

optional

DCB

OPEN

exit

routine

instead

of

your

optional

EOV

exit

routine

if

all

of

the

following

are

true:

v

You

are

reading

a

concatenation.

v

You

read

the

end

of

a

data

set

other

than

the

last

or

issued

an

FEOV

macro

on

its

last

volume.

v

You

turned

on

the

DCB

“unlike”

attributes

bit.

See

“Concatenating

Unlike

Data

Sets”

on

page

390.

Recommendation:

If

EOV

processing

extends

a

data

set

on

the

same

volume

or

a

new

volume

for

DASD

output,

EXTEND

issues

an

enqueue

on

SYSVTOC.

(SYSVTOC

is

the

enqueue

major

name

for

the

GRS

resource.)

If

the

system

issues

the

EOV

request

for

a

data

set

on

a

volume

where

the

application

already

holds

the

SYSVTOC

enqueue,

this

request

abnormally

terminates.

To

prevent

this

problem

from

occurring,

perform

either

step:

v

Allocate

an

output

data

set

that

is

large

enough

not

to

require

a

secondary

extent

on

the

volume.

v

Place

the

output

data

set

on

a

different

volume

than

the

one

that

holds

the

SYSVTOC

enqueue.

Positioning

During

End-of-Volume

When

a

tape

end-of-volume

condition

is

detected

and

the

system

does

not

need

the

drive

for

another

tape,

the

system

positions

the

volume

according

to

the

disposition

specified

in

the

DD

statement

unless

the

volume

disposition

is

specified

in

the

OPEN

macro.

Volume

positioning

instructions

for

a

sequential

data

set

on

magnetic

tape

can

be

specified

as

LEAVE

or

REREAD.

Using

the

OPEN

Macro

to

Position

Tape

Volumes

If

the

tape

was

last

read

forward,

LEAVE

and

REREAD

have

the

following

effects.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

339

LEAVE—

Positions

a

labeled

tape

to

the

point

following

the

tape

mark

that

follows

the

data

set

trailer

label

group.

Positions

an

unlabeled

volume

to

the

point

following

the

tape

mark

that

follows

the

last

block

of

the

data

set.

REREAD—Positions

a

labeled

tape

to

the

point

preceding

the

data

set

header

label

group.

Positions

an

unlabeled

tape

to

the

point

preceding

the

first

block

of

the

data

set.

If

the

tape

was

last

read

backward,

LEAVE

and

REREAD

have

the

following

effects.

LEAVE—Positions

a

labeled

tape

to

the

point

preceding

the

data

set

header

label

group,

and

positions

an

unlabeled

tape

to

the

point

preceding

the

first

block

of

the

data

set.

REREAD—Positions

a

labeled

tape

to

the

point

following

the

tape

mark

that

follows

the

data

set

trailer

label

group.

Positions

an

unlabeled

tape

to

the

point

following

the

tape

mark

that

follows

the

last

block

of

the

data

set.

Using

the

DISP

Parameter

to

Position

Volumes

If

however

you

want

to

position

the

current

volume

according

to

the

option

specified

in

the

DISP

parameter

of

the

DD

statement,

you

code

DISP

in

the

OPEN

macro.

DISP

specifies

that

a

tape

volume

is

to

be

disposed

of

in

the

manner

implied

by

the

DD

statement

associated

with

the

data

set.

Direct

access

volume

positioning

and

disposition

are

not

affected

by

this

parameter

of

the

OPEN

macro.

There

are

several

dispositions

that

can

be

specified

in

the

DISP

parameter

of

the

DD

statement;

DISP

can

be

PASS,

DELETE,

KEEP,

CATLG,

or

UNCATLG.

The

resultant

action

when

an

end-of-volume

condition

arises

depends

on

(1)

how

many

tape

units

are

allocated

to

the

data

set,

and

(2)

how

many

volumes

are

specified

for

the

data

set

in

the

DD

statement.

The

UNIT

and

VOLUME

parameters

of

the

DD

statement

associated

with

the

data

set

determine

the

number

of

tape

units

allocated

and

the

number

of

volumes

specified.

If

the

number

of

volumes

is

greater

than

the

number

of

units

allocated,

the

current

volume

will

be

rewound

and

unloaded.

If

the

number

of

volumes

is

less

than

or

equal

to

the

number

of

units,

the

current

volume

is

merely

rewound.

For

magnetic

tape

volumes

that

are

not

being

unloaded,

positioning

varies

according

to

the

direction

of

the

last

input

operation

and

the

existence

of

tape

labels.

When

a

JCL

disposition

of

PASS

or

RETAIN

is

specified,

the

result

is

the

same

as

the

OPEN

or

CLOSE

LEAVE

option.

The

CLOSE

disposition

option

takes

precedence

over

the

OPEN

option

and

the

OPEN

and

CLOSE

disposition

options

take

precedence

over

the

JCL.

Forcing

End-of-Volume

The

FEOV

macro

directs

the

operating

system

to

start

the

end-of-volume

processing

before

the

physical

end

of

the

current

volume

is

reached.

If

another

volume

has

been

specified

for

the

data

set

or

a

data

set

is

concatenated

after

the

current

data

set,

volume

switching

takes

place

automatically.

The

REWIND

and

LEAVE

volume

positioning

options

are

available.

If

an

FEOV

macro

is

issued

for

a

spanned

multivolume

data

set

that

is

being

read

using

QSAM,

errors

can

occur

when

the

next

GET

macro

is

issued.

Make

sure

that

Data

Control

Block

(DCB)

340

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

each

volume

begins

with

the

first

(or

only)

segment

of

a

logical

record.

Input

routines

cannot

begin

reading

in

the

middle

of

a

logical

record.

The

FEOV

macro

can

only

be

used

when

you

are

using

BSAM

or

QSAM.

FEOV

is

ignored

if

issued

for

a

SYSOUT

data

set.

If

you

issue

FEOV

for

a

spooled

input

data

set,

control

passes

to

your

end-of-data

(EODAD)

routine

or

your

program

is

positioned

to

read

the

next

data

set

in

the

concatenation.

Managing

SAM

Buffer

Space

The

operating

system

provides

several

methods

of

buffer

acquisition

and

control.

Each

buffer

(virtual

storage

area

used

for

intermediate

storage

of

I/O

data)

usually

corresponds

in

length

to

the

size

of

a

block

in

the

data

set

being

processed.

You

can

assign

more

than

one

buffer

to

a

data

set

by

associating

the

buffer

with

a

buffer

pool.

A

buffer

pool

must

be

constructed

in

a

virtual

storage

area

allocated

for

a

given

number

of

buffers

of

a

given

length.

The

number

of

buffers

you

assign

to

a

data

set

should

be

a

trade-off

against

the

frequency

with

which

you

refer

to

each

buffer.

A

buffer

that

is

not

referred

to

for

a

fairly

long

period

could

be

paged

out.

If

much

of

this

were

allowed,

throughput

could

decrease.

Using

QSAM,

buffer

segments

and

buffers

within

the

buffer

pool

are

controlled

automatically

by

the

system.

However,

you

can

notify

the

system

that

you

are

finished

processing

the

data

in

a

buffer

by

issuing

a

release

(RELSE)

macro

for

input,

or

a

truncate

(TRUNC)

macro

for

output.

This

simple

buffering

technique

can

be

used

to

process

a

sequential

or

an

indexed

sequential

data

set.

IBM

recommends

not

using

the

RELSE

or

QSAM

TRUNC

macros

because

they

can

cause

your

program

to

become

dependent

on

the

size

of

each

block.

When

using

QSAM

to

process

tape

blocks

larger

than

32

760

bytes,

you

must

let

the

system

build

the

buffer

pool

automatically

during

OPEN.

The

macros

GETPOOL,

BUILD,

and

BUILDRCD

do

not

support

the

large

block

size

or

buffer

size.

If,

during

QSAM

OPEN,

or

a

BSAM

OPEN

with

a

nonzero

BUFNO

the

system

finds

that

the

DCB

has

a

buffer

pool,

and

that

the

buffer

length

is

smaller

than

the

data

set

block

size,

an

ABEND

013

is

issued.

For

QSAM,

IBM

recommends

that

you

let

the

system

build

the

buffer

pool

automatically

during

OPEN

and

omit

the

BUFL

parameter.

This

simplifies

your

program.

It

permits

concatenation

of

data

sets

in

any

order

of

block

size.

If

you

code

RMODE31=BUFF

on

the

DCBE

macro,

the

system

attempts

to

get

buffers

above

the

line.

When

you

use

BSAM

or

BPAM,

OPEN

builds

a

buffer

pool

only

if

you

code

a

nonzero

value

for

BUFNO.

OPEN

issues

ABEND

013-4C

if

BUFL

is

nonzero

and

is

less

than

BLKSIZE

in

the

DCB

or

DCBE,

depending

on

whether

you

are

using

LBI.

If

the

system

builds

the

buffer

pool

for

a

BSAM

user,

the

buffer

pool

resides

below

the

16

MB

line.

If

you

use

the

basic

access

methods,

you

can

use

buffers

as

work

areas

rather

than

as

intermediate

storage

areas.

You

can

control

the

buffers

in

a

buffer

pool

directly

by

using

the

GETBUF

and

FREEBUF

macros.

For

BSAM,

IBM

recommends

that

you

allocate

data

areas

or

buffers

through

GETMAIN,

STORAGE,

or

CPOOL

macros

and

not

through

BUILD,

GETPOOL,

or

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

341

by

the

system

during

OPEN.

Allocated

areas

can

be

above

the

line.

Areas

that

you

allocate

can

be

better

integrated

with

your

other

areas.

Constructing

a

Buffer

Pool

Buffer

pool

construction

can

be

accomplished

using

any

of

the

following

techniques:

v

Statically

in

an

area

that

you

provide,

using

the

BUILD

macro

v

Explicitly

in

subpool

0,

using

the

GETPOOL

macro

v

Automatically,

by

the

system,

when

the

data

set

is

opened

Recommendation:

For

QSAM,

use

the

automatic

technique

so

that

the

system

can

rebuild

the

pool

automatically

when

using

concatenated

data

sets.

For

the

basic

access

methods,

these

techniques

cannot

build

buffers

above

the

16

MB

line

or

build

buffers

longer

than

32

760

bytes.

If

QSAM

is

used,

the

buffers

are

automatically

returned

to

the

pool

when

the

data

set

is

closed.

If

you

did

not

use

the

BUILD

macro

and

the

buffer

pool

is

not

above

the

16

MB

line

due

to

RMODE31=BUFF

on

the

DCBE

macro,

you

should

use

the

FREEPOOL

macro

to

return

the

virtual

storage

area

to

the

system.

If

you

code

RMODE31=BUFF

on

a

DCBE

macro,

then

FREEPOOL

has

no

effect

and

is

optional.

The

system

automatically

frees

the

buffer

pool.

The

following

applies

to

DASD,

most

tape

devices,

spooled,

subsystem,

and

dummy

data

sets,

TSO/E

terminals,

and

UNIX

files.

For

both

data

areas

and

buffers

that

have

virtual

addresses

greater

than

16

MB

or

less

than

16

MB,

the

real

address

can

exceed

2

GB.

In

other

words,

the

real

addresses

of

buffers

can

have

64

bits.

IBM

recommends

that

when

you

obtain

storage

for

buffers

or

data

areas

with

GETMAIN

or

STORAGE

that

you

specify

that

the

real

addresses

can

be

above

the

2

GB

bar.

Therefore,

you

can

code

LOC=(xx,64).

To

get

storage

with

real

addresses

below

the

2

GB

bar,

you

can

code

LOC=(xx,ANY)

or

LOC=(xx,31).

This

coding

has

no

effect

on

your

application

program

unless

it

deals

with

real

storage

addresses,

which

is

uncommon.

For

reel

tape

devices,

the

real

addresses

must

be

24-bit.

In

some

rare

applications,

fullword

or

doubleword

alignment

of

a

block

within

a

buffer

is

significant.

You

can

specify

in

the

DCB

that

buffers

are

to

start

on

either

a

doubleword

boundary

or

on

a

fullword

boundary

that

is

not

also

a

doubleword

boundary

(by

coding

BFALN=D

or

F).

If

doubleword

alignment

is

specified

for

format-V

records,

the

fifth

byte

of

the

first

record

in

the

block

is

so

aligned.

For

that

reason,

fullword

alignment

must

be

requested

to

align

the

first

byte

of

the

variable-length

record

on

a

doubleword

boundary.

The

alignment

of

the

records

following

the

first

in

the

block

depends

on

the

length

of

the

previous

records.

Buffer

alignment

provides

alignment

for

only

the

buffer.

If

records

from

ASCII

magnetic

tape

are

read

and

the

records

use

the

block

prefix,

the

boundary

alignment

of

logical

records

within

the

buffer

depends

on

the

length

of

the

block

prefix.

If

the

length

is

4,

logical

records

are

on

fullword

boundaries.

If

the

length

is

8,

logical

records

are

on

doubleword

boundaries.

If

you

use

the

BUILD

macro

to

construct

the

buffer

pool,

alignment

depends

on

the

alignment

of

the

first

byte

of

the

reserved

storage

area.

When

you

code

RMODE31=BUFF

for

QSAM,

the

theoretical

upper

limit

for

the

size

of

the

buffer

pool

is

2

GB.

This

imposes

a

limit

on

the

buffer

size,

and

thus

on

block

size,

of

2

GB

divided

by

the

number

of

buffers.

If

the

system

is

to

build

the

Data

Control

Block

(DCB)

342

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|
|
|
|
|
|
|
|

buffer

pool,

and

the

computed

buffer

pool

size

exceeds

2

GB,

an

ABEND

013

is

issued.

In

practice,

you

can

expect

maximum

buffer

pool

size

to

be

less

than

2

GB

because

of

maximum

device

block

sizes.

Building

a

Buffer

Pool

When

you

know

both

the

number

and

the

size

of

the

buffers

required

for

a

given

data

set

before

program

assembly,

you

can

reserve

an

area

of

the

appropriate

size

to

be

used

as

a

buffer

pool.

Any

type

of

area

can

be

used–for

example,

a

predefined

storage

area

or

an

area

of

coding

no

longer

needed.

A

BUILD

macro,

issued

during

execution

of

your

program,

uses

the

reserved

storage

area

to

build

a

buffer

pool.

The

address

of

the

buffer

pool

must

be

the

same

as

that

specified

for

the

buffer

pool

control

block

(BUFCB)

in

your

DCB.

The

BUFCB

parameter

cannot

refer

to

an

area

that

resides

above

the

16

MB

line.

The

buffer

pool

control

block

is

an

8

byte

field

preceding

the

buffers

in

the

buffer

pool.

The

number

(BUFNO)

and

length

(BUFL)

of

the

buffers

must

also

be

specified.

The

length

of

BUFL

must

be

at

least

the

block

size.

When

the

data

set

using

the

buffer

pool

is

closed,

you

can

reuse

the

area

as

required.

You

can

also

reissue

the

BUILD

macro

to

reconstruct

the

area

into

a

new

buffer

pool

to

be

used

by

another

data

set.

You

can

assign

the

buffer

pool

to

two

or

more

data

sets

that

require

buffers

of

the

same

length.

To

do

this,

you

must

construct

an

area

large

enough

to

accommodate

the

total

number

of

buffers

required

at

any

one

time

during

execution.

That

is,

if

each

of

two

data

sets

requires

5

buffers

(BUFNO=5),

the

BUILD

macro

should

specify

10

buffers.

The

area

must

also

be

large

enough

to

contain

the

8

byte

buffer

pool

control

block.

You

can

issue

the

BUILD

macro

in

31-bit

mode,

but

the

buffer

area

cannot

reside

above

the

line

and

be

associated

with

a

DCB.

In

any

case,

real

addresses

can

point

above

the

2

GB

bar.

Building

a

Buffer

Pool

and

a

Record

Area

The

BUILDRCD

macro,

like

the

BUILD

macro,

causes

a

buffer

pool

to

be

constructed

in

an

area

of

virtual

storage

you

provide.

Also,

BUILDRCD

makes

it

possible

for

you

to

access

variable-length,

spanned

records

as

complete

logical

records,

rather

than

as

segments.

You

must

be

processing

with

QSAM

in

the

locate

mode

and

you

must

be

processing

either

VS/VBS

or

DS/DBS

records,

if

you

want

to

access

the

variable-length,

spanned

records

as

logical

records.

If

you

issue

the

BUILDRCD

macro

before

the

data

set

is

opened,

or

during

your

DCB

exit

routine,

you

automatically

get

logical

records

rather

than

segments

of

spanned

records.

Only

one

logical

record

storage

area

is

built,

no

matter

how

many

buffers

are

specified;

therefore,

you

cannot

share

the

buffer

pool

with

other

data

sets

that

might

be

open

at

the

same

time.

You

can

issue

the

BUILDRCD

macro

in

31-bit

mode,

but

the

buffer

area

cannot

reside

above

the

line

and

be

associated

with

a

DCB.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

343

Getting

a

Buffer

Pool

If

a

specified

area

is

not

reserved

for

use

as

a

buffer

pool,

or

if

you

want

to

delay

specifying

the

number

and

length

of

the

buffers

until

execution

of

your

program,

you

can

use

the

GETPOOL

macro.

This

macro

allows

you

to

vary

the

size

and

number

of

buffers

according

to

the

needs

of

the

data

set

being

processed.

The

storage

resides

below

the

line

in

subpool

zero.

The

GETPOOL

macro

causes

the

system

to

allocate

a

virtual

storage

area

to

a

buffer

pool.

The

system

builds

a

buffer

pool

control

block

and

stores

its

address

in

the

data

set’s

DCB.

If

you

choose

to

issue

the

GETPOOL

macro,

issue

it

either

before

opening

the

data

set

or

during

your

DCB’s

OPEN

exit

routine.

When

using

GETPOOL

with

QSAM,

specify

a

buffer

length

(BUFL)

at

least

as

large

as

the

block

size

or

omit

the

BUFL

parameter.

Constructing

a

Buffer

Pool

Automatically

If

you

have

requested

a

buffer

pool

and

have

not

used

a

BUILD

or

GETPOOL

macro

for

the

DCB

by

the

end

of

your

DCB

exit

routine,

the

system

automatically

allocates

virtual

storage

space

for

a

buffer

pool.

The

buffer

pool

control

block

is

also

assigned

and

the

pool

is

associated

with

a

specific

DCB.

For

BSAM,

a

buffer

pool

is

requested

by

specifying

BUFNO.

For

QSAM,

BUFNO

can

be

specified

or

permitted

to

default

in

the

following

ways:

n—Extended

format

but

not

compressed

format

and

not

LBI

(n

=

2

×

blocks

per

track

×

number

of

stripes)

1—Compressed

format

data

set,

PDSE,

SYSIN,

SYSOUT,

SUBSYS,

UNIX

files

2—Block

size

>

=32

760

3—2540

Card

Reader

or

Punch

5—All

others

If

you

are

using

the

basic

access

method

to

process

an

indexed

sequential

or

direct

data

set,

you

must

specify

dynamic

buffer

control.

Otherwise,

the

system

does

not

construct

the

buffer

pool

automatically.

If

all

of

your

GET,

PUT,

PUTX,

RELSE,

and

TRUNC

macros

for

a

particular

DCB

are

issued

in

31-bit

mode,

then

you

should

consider

supplying

a

DCBE

macro

with

RMODE31=BUFF.

Because

a

buffer

pool

obtained

automatically

is

not

freed

automatically

when

you

issue

a

CLOSE

macro

unless

the

system

recognized

your

specification

of

RMODE31=BUFF

on

the

DCBE

macro,

you

should

also

issue

a

FREEPOOL

or

FREEMAIN

macro

(see

“Freeing

a

Buffer

Pool”).

Freeing

a

Buffer

Pool

Any

buffer

pool

assigned

to

a

DCB

either

automatically

by

the

OPEN

macro

(except

when

dynamic

buffer

control

is

used

or

the

system

is

honoring

RMODE31=BUFF

on

the

DCBE

macro),

or

explicitly

by

the

GETPOOL

macro

should

be

released

before

your

program

is

completed.

The

FREEPOOL

macro

should

be

issued

to

release

the

virtual

storage

area

when

the

buffers

are

no

longer

Data

Control

Block

(DCB)

344

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

needed.

When

you

are

using

the

queued

access

technique,

you

must

close

the

data

set

first.

If

you

are

not

using

the

queued

access

method,

it

is

still

advisable

to

close

the

data

set

first.

If

the

OPEN

macro

was

issued

while

running

in

problem

state,

protect

key

of

zero,

a

buffer

pool

that

was

obtained

by

OPEN

should

be

released

by

issuing

the

FREEMAIN

macro

instead

of

the

FREEPOOL

macro.

This

is

necessary

because

the

buffer

pool

acquired

under

these

conditions

will

be

in

storage

assigned

to

subpool

252

(in

user

key

storage).

Constructing

a

Buffer

Pool:

Examples

Figure

58

and

Figure

59

on

page

346

show

several

possible

methods

of

constructing

a

buffer

pool.

They

do

not

consider

the

method

of

processing

or

controlling

the

buffers

in

the

pool.

In

Figure

58,

a

static

storage

area

named

INPOOL

is

allocated

during

program

assembly.

The

BUILD

macro,

issued

during

execution,

arranges

the

buffer

pool

into

10

buffers,

each

52

bytes

long.

Five

buffers

are

assigned

to

INDCB

and

five

to

OUTDCB,

as

specified

in

the

DCB

macro

for

each.

The

two

data

sets

share

the

buffer

pool

because

both

specify

INPOOL

as

the

buffer

pool

control

block.

Notice

that

an

additional

8

bytes

have

been

allocated

for

the

buffer

pool

to

contain

the

buffer

pool

control

block.

In

Figure

59

on

page

346,

two

buffer

pools

are

constructed

explicitly

by

the

GETPOOL

macros.

...

Processing

BUILD

INPOOL,10,52

Structure

a

buffer

pool

OPEN

(INDCB,,OUTDCB,(OUTPUT))

...

Processing

ENDJOB

CLOSE

(INDCB,,OUTDCB)

...

Processing

RETURN

Return

to

system

control

INDCB

DCB

BUFNO=5,BUFCB=INPOOL,EODAD=ENDJOB,---

OUTDCB

DCB

BUFNO=5,BUFCB=INPOOL,---

CNOP

0,8

Force

boundary

alignment

INPOOL

DS

CL528

Buffer

pool

...

Figure

58.

Constructing

a

Buffer

Pool

from

a

Static

Storage

Area

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

345

Ten

input

buffers

are

provided,

each

52

bytes

long,

to

contain

one

fixed-length

record.

Five

output

buffers

are

provided,

each

112

bytes

long,

to

contain

2

blocked

records

plus

an

8

byte

count

field

(required

by

ISAM).

Notice

that

both

data

sets

are

closed

before

the

buffer

pools

are

released

by

the

FREEPOOL

macros.

The

same

procedure

should

be

used

if

the

buffer

pools

were

constructed

automatically

by

the

OPEN

macro.

Controlling

Buffers

You

can

use

several

techniques

to

control

which

buffers

are

used

by

your

program.

The

advantages

of

each

depend

to

a

great

extent

on

the

type

of

job

you

are

doing.

The

queued

access

methods

permits

simple

buffering.

The

basic

access

methods

permits

either

direct

or

dynamic

buffer

control.

Although

only

simple

buffering

can

be

used

to

process

an

indexed

sequential

data

set,

buffer

segments

and

buffers

within

a

buffer

pool

are

controlled

automatically

by

the

operating

system.

Queued

Access

Method

The

queued

access

methods

provide

three

processing

modes

(move,

data,

and

locate

mode)

that

determine

the

extent

of

data

movement

in

virtual

storage.

Move,

data,

and

locate

mode

processing

can

be

specified

for

either

the

GET

or

PUT

macro.

(Substitute

mode

is

no

longer

supported;

the

system

defaults

to

move

mode.)

The

movement

of

a

record

is

determined

by

the

following

modes.

Move

Mode.

The

system

moves

the

record

from

a

system

input

buffer

to

your

work

area,

or

from

your

work

area

to

an

output

buffer.

Data

Mode

(QSAM

Format-V

Spanned

Records

Only).

Data

mode

works

the

same

as

the

move

mode,

except

only

the

data

portion

of

the

record

is

moved.

Locate

Mode.

The

system

does

not

move

the

record.

Instead,

the

access

method

macro

places

the

address

of

the

next

input

or

output

buffer

in

register

1.

For

QSAM

format-V

spanned

records,

if

you

have

specified

logical

records

by

specifying

BFTEK=A

or

by

issuing

the

BUILDRCD

macro,

the

address

returned

in

register

1

points

to

a

record

area

where

the

spanned

record

is

assembled

or

segmented.

PUT-Locate

Mode.

The

PUT-locate

routine

uses

the

value

in

the

DCBLRECL

field

to

determine

if

another

record

will

fit

into

your

buffer.

Therefore,

when

you

write

a

...

GETPOOL

INDCB,10,52

Construct

a

10-buffer

pool

GETPOOL

OUTDCB,5,112

Construct

a

5-buffer

pool

OPEN

(INDCB,,OUTDCB,(OUTPUT))

...

ENDJOB

CLOSE

(INDCB,,OUTDCB)

FREEPOOL

INDCB

Release

buffer

pools

after

all

*

I/O

is

complete

FREEPOOL

OUTDCB

...

RETURN

Return

to

system

control

INDCB

DCB

DSORG=PS,BFALN=F,LRECL=52,RECFM=F,EODAD=ENDJOB,---

OUTDCB

DCB

DSORG=IS,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104,

C

...

RKP=0,RECFM=FB,---

Figure

59.

Constructing

a

Buffer

Pool

Using

GETPOOL

and

FREEPOOL

Data

Control

Block

(DCB)

346

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

short

record,

you

can

get

the

largest

number

of

records

per

block

by

modifying

the

DCBLRECL

field

before

you

issue

a

PUT-locate

to

get

a

buffer

segment

for

the

short

record.

Perform

the

following

steps:

1.

Record

the

length

of

the

next

(short)

record

into

DCBLRECL.

2.

Issue

PUT-locate.

3.

Move

the

short

record

into

the

buffer

segment.

GET-Locate

Mode.

Two

processing

modes

of

the

PUTX

macro

can

be

used

with

a

GET-locate

macro.

The

update

mode

returns

an

updated

record

to

the

data

set

from

which

it

was

read.

The

output

mode

transfers

an

updated

record

to

an

output

data

set.

There

is

no

actual

movement

of

data

in

virtual

storage.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

information

about

the

processing

mode

specified

by

the

parameter

of

the

PUTX

macro.

Basic

Access

Method

If

you

use

a

basic

access

method

and

want

the

system

to

assist

in

buffer

control,

you

can

control

buffers

directly

by

using

the

GETBUF

macro

to

retrieve

a

buffer

constructed.

A

buffer

can

then

be

returned

to

the

pool

by

the

FREEBUF

macro.

Because

GETBUF

does

not

support

a

buffer

pool

that

is

above

the

16

MB

line,

IBM

suggests

that

you

write

your

own

routine

to

allocate

buffers

above

the

line.

QSAM

in

an

Application

The

term

simple

buffering

refers

to

the

relationship

of

segments

within

the

buffer.

All

segments

in

a

simple

buffer

are

together

in

storage

and

are

always

associated

with

the

same

data

set.

Each

record

must

be

physically

moved

from

an

input

buffer

segment

to

an

output

buffer

segment.

The

record

can

be

processed

within

either

segment

or

in

a

work

area.

If

you

use

simple

buffering,

records

of

any

format

can

be

processed.

New

records

can

be

inserted

and

old

records

deleted

as

required

to

create

a

new

data

set.

The

following

examples

of

using

QSAM

use

buffers

that

could

have

been

constructed

in

any

way

previously

described.

GET-locate,

PUT-move,

PUTX-output.

Processed

in

an

input

buffer

and

moved

to

an

output

buffer.

GET-move,

PUT-locate.

Moved

from

an

input

buffer

to

an

output

buffer

where

it

can

be

processed.

GET-move,

PUT-move.

Moved

from

an

input

buffer

to

a

work

area

where

it

can

be

processed

and

moved

to

an

output

buffer.

GET-locate,

PUT-locate.

Processed

in

an

input

buffer,

copied

to

an

output

buffer,

and

possibly

processed

some

more.

GET-locate,

PUTX-update.

Processed

in

an

input

buffer

and

returned

to

the

same

data

set.

GET-locate,

PUT-move/PUTX-output.

The

GET

macro

(step

A,

Figure

60)

locates

the

next

input

record

to

be

processed.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

347

GET

returns

a

record

address

in

register

1.

This

address

remains

valid

until

the

next

GET

or

CLOSE

for

the

DCB.

Your

program

passes

the

address

to

the

PUT

macro

in

register

0.

PUT

copies

the

record

synchronously.

The

PUTX-output

macro

can

be

used

in

place

of

the

PUT-move

macro.

GET-move,

PUT-locate.

The

PUT

macro

locates

the

address

of

the

next

available

output

buffer.

PUT

returns

its

address

in

register

1

and

your

program

passes

it

to

the

GET

macro

in

register

0.

On

the

GET

macro

you

specify

the

address

of

the

output

buffer

into

which

the

system

moves

the

next

input

record.

A

filled

output

buffer

is

not

written

until

the

next

PUT

macro

is

issued.

PUT

returns

a

buffer

address

before

GET

moves

a

record.

This

means

that

when

GET

branches

to

the

end-of-data

routine

because

all

data

has

been

read,

the

output

buffer

still

needs

a

record.

Your

program

should

replace

the

unpredictable

output

buffer

content

with

another

record,

which

you

might

set

to

blanks

or

zeros.

The

next

PUT

or

CLOSE

macro

writes

the

record.

GET-move,

PUT-move.

The

GET

macro

(step

A,

Figure

61)

specifies

the

address

of

the

work

area

into

which

the

system

moves

the

next

record

from

the

input

buffer.

The

PUT

macro

(step

B,

Figure

61)

specifies

the

address

of

the

work

area

from

which

the

system

moves

the

record

into

the

next

output

buffer.

INPUT OUTPUTA

B INPUT OUTPUT

GET

PUT

INPUT OUTPUT

INPUT

System

OUTPUT

Figure

60.

Simple

Buffering

with

MACRF=GL

and

MACRF=PM

INPUT OUTPUTA

B INPUT OUTPUT

GET

PUT

INPUT OUTPUT

INPUT WORK

WORK

System

System

OUTPUT

Figure

61.

Simple

Buffering

with

MACRF=GM

and

MACRF=PM

Data

Control

Block

(DCB)

348

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

GET-locate,

PUT-locate.

The

GET

macro

(step

A,

Figure

62)

locates

the

address

of

the

next

available

input

buffer.

GET

returns

the

address

in

register

1.

The

PUT

macro

(step

B,

Figure

62)

locates

the

address

of

the

next

available

output

buffer.

PUT

returns

its

address

in

register

1.

You

must

then

move

the

record

from

the

input

buffer

to

the

output

buffer

(step

C,

Figure

62).

Your

program

can

process

each

record

either

before

or

after

the

move

operation.

A

filled

output

buffer

is

not

written

until

the

next

PUT,

TRUNC

or

CLOSE

macro

is

issued.

Be

careful

not

to

issue

an

extra

PUT

before

issuing

CLOSE

or

FEOV.

Otherwise,

when

the

CLOSE

or

FEOV

macro

tries

to

write

your

last

record,

the

extra

PUT

will

write

a

meaningless

record

or

produce

a

sequence

error.

UPDAT

mode.

When

a

data

set

is

opened

with

UPDAT

specified

(Figure

63),

only

GET-locate

and

PUTX-update

are

supported.

The

GET

macro

locates

the

next

input

record

to

be

processed

and

returns

its

address

in

register

1.

You

can

update

the

record

and

issue

a

PUTX

macro

that

will

cause

the

block

to

be

written

back

in

its

original

location

in

the

data

set

after

all

the

logical

records

in

that

block

have

been

processed.

If

you

modify

the

contents

of

a

buffer

but

do

not

issue

a

PUTX

macro

for

that

record,

the

system

can

still

write

the

modified

record

block

to

the

data

set.

This

happens

with

blocked

records

when

you

issue

a

PUTX

macro

for

one

or

more

other

records

in

the

buffer.

Exchange

Buffering

Exchange

buffering

is

no

longer

supported.

Its

request

is

ignored

by

the

system

and

move

mode

is

used

instead.

INPUT OUTPUTA

B

C

INPUT

INPUT

OUTPUT

OUTPUT

GET

PUT

INPUT OUTPUT

INPUT

INPUT

Program

OUTPUT

OUTPUT

Figure

62.

Simple

Buffering

with

MACRF=GL

and

MACRF=PL

INPUT/OUTPUT

(No movement of data takes place)

GET

PUTX

INPUT/OUTPUT

Figure

63.

Simple

Buffering

with

MACRF=GL

and

MACRF=PM-UPDAT

Mode

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

349

Choosing

Buffering

Techniques

and

GET/PUT

Processing

Modes

As

you

can

see

from

the

previous

examples,

the

most

efficient

code

is

achieved

by

using

automatic

buffer

pool

construction,

and

GET-locate

and

PUTX-output

with

simple

buffering.

Table

32

summarizes

the

combinations

of

buffering

techniques

and

processing

modes

you

might

use:

Table

32.

Buffering

Technique

and

GET/PUT

Processing

Modes

Simple

Input

Buffering

Actions

GET-move

PUT-locate

GET-move

PUT-move

GET-locate

PUT-locate

GET-locate

PUT-move

GET-locate

(logical

record),

PUT-locate

Program

must

move

record

X

X

System

moves

record

X

X

X

System

moves

record

segment

X

Work

area

required

X

PUTX-output

can

be

used

X

Using

Buffering

Macros

with

Queued

Access

Method

This

section

describes

how

to

use

the

RELSE

and

TRUNC

macros.

RELSE—Release

an

Input

Buffer

When

using

QSAM

to

read

blocked

records,

you

can

direct

the

system

to

ignore

the

remaining

records

in

the

input

buffer

being

processed.

The

next

GET

macro

retrieves

a

record

from

another

buffer.

If

format-V

spanned

records

are

being

used,

the

next

logical

record

obtained

can

begin

on

any

segment

in

any

subsequent

block.

When

you

are

using

locate

mode,

the

record

address

returned

from

the

most

recent

GET

macro

remains

valid

until

you

issue

the

next

GET.

Issuing

a

RELSE

macro

does

change

the

effect

of

a

previous

PUTX

macro.

TRUNC—Truncate

an

Output

Buffer

When

using

QSAM

to

write

blocked

records,

you

can

issue

the

TRUNC

macro

to

direct

the

system

to

write

a

short

block.

The

first

record

in

the

next

buffer

is

the

next

record

processed

by

a

PUT-output

or

a

PUTX-output

mode.

If

the

locate

mode

is

being

used,

the

system

assumes

a

record

has

been

placed

in

the

buffer

segment

pointed

to

by

the

last

PUT

macro.

The

last

block

of

a

data

set

is

truncated

by

the

CLOSE

routine.

A

data

set

that

contains

format-F

records

with

truncated

blocks

generally

cannot

be

read

as

efficiently

as

a

standard

format-F

data

set.

A

TRUNC

macro

issued

against

a

PDSE

does

not

create

a

short

block

because

the

block

boundaries

are

not

saved

on

output.

On

input,

the

system

uses

the

block

size

Data

Control

Block

(DCB)

350

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

specified

in

the

DCB

or

DCBE

for

reading

the

PDSE.

Logical

records

are

packed

into

the

user

buffer

without

respect

to

the

block

size

specified

when

the

PDSE

member

was

created.

To

help

the

storage

administrator

find

programs

that

issue

a

QSAM

TRUNC

macro

for

PDSEs,

the

SMF

type

15

record

(see

z/OS

MVS

System

Management

Facilities

(SMF))

contains

an

indicator

that

the

program

did

it.

Recommendation:

Avoid

using

the

QSAM

TRUNC

macro.

Many

data

set

copying

and

backup

programs

reblock

the

records.

This

means

they

do

not

preserve

the

block

boundaries

that

your

program

can

have

set.

Using

Buffering

Macros

with

Basic

Access

Method

This

section

describes

how

to

use

the

GETBUF

and

FREEBUF

macros.

GETBUF—Get

a

Buffer

from

a

Pool

The

GETBUF

macro

can

be

used

with

the

basic

access

method

to

request

a

buffer

from

a

buffer

pool

constructed

by

the

BUILD,

GETPOOL,

or

OPEN

macro.

That

buffer

pool

resides

below

the

16

MB

line

even

if

you

issue

BUILD,

GETPOOL,

or

OPEN

in

31-bit

mode.

The

address

of

the

buffer

is

returned

by

the

system

in

a

register

you

specify

when

you

issue

the

macro.

If

no

buffer

is

available,

the

register

contains

a

0

instead

of

an

address.

FREEBUF—Return

a

Buffer

to

a

Pool

The

FREEBUF

macro

is

used

with

the

basic

access

method

to

return

a

buffer

to

the

buffer

pool

from

which

it

was

obtained

by

a

GETBUF

macro.

Although

the

buffers

need

not

be

returned

in

the

order

in

which

they

were

obtained,

they

must

be

returned

if

you

want

to

make

them

available

for

later

GETBUF

macros.

Data

Control

Block

(DCB)

Chapter

21.

Specifying

and

Initializing

Data

Control

Blocks

351

352

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

22.

Accessing

Records

This

chapter

covers

the

following

topics.

Topic

Location

Accessing

Data

with

READ

and

WRITE

353

Accessing

Data

with

GET

and

PUT

359

Analyzing

I/O

Errors

363

Accessing

Data

with

READ

and

WRITE

The

basic

sequential

access

method

(BSAM)

and

basic

partitioned

access

method

(BPAM)

provide

the

READ,

WRITE

and

TRUNC

macros

for

transmitting

data

between

virtual

and

auxiliary

storage.

These

macros

can

be

issued

in

24-

or

31-bit

addressing

mode.

Macros

are

provided

to

help

you

manage

buffers,

or

to

do

overlapped

I/O.

The

READ

and

WRITE

macros

process

blocks,

not

records.

Thus,

you

must

block

and

unblock

records.

Buffers,

allocated

by

either

you

or

the

operating

system,

are

filled

or

emptied

individually

each

time

a

READ

or

WRITE

macro

is

issued.

The

READ

and

WRITE

macros

only

start

I/O

operations.

To

ensure

the

operation

is

completed

successfully,

you

must

issue

a

CHECK,

WAIT,

or

EVENTS

macro

to

test

the

data

event

control

block

(DECB).

The

only

exception

is

that,

when

the

SYNAD

or

EODAD

routine

is

entered,

do

not

issue

a

CHECK,

WAIT,

or

EVENTS

macro

for

outstanding

READ

or

WRITE

requests.

Using

the

Data

Event

Control

Block

(DECB)

A

data

event

control

block

is

a

20-

to

32-byte

area

reserved

by

each

READ

or

WRITE

macro.

It

contains

the

ECB,

control

information,

and

pointers

to

control

blocks.

It

must

reside

below

the

16

MB

line.

The

DECB

is

described

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

and

“Data

Event

Control

Block”

on

page

513.

The

ECB

is

described

in

“Event

Control

Block”

on

page

515.

The

DECB

is

examined

by

the

CHECK

routine

when

the

I/O

operation

is

completed

to

determine

if

an

uncorrectable

error

or

exceptional

condition

exists.

If

it

does,

CHECK

passes

control

to

your

SYNAD

routine.

If

you

have

no

SYNAD

routine,

the

task

is

abnormally

ended.

Grouping

Related

Control

Blocks

in

a

Paging

Environment

Code

related

control

blocks

(the

DCB

and

DECB)

and

data

areas

(buffers

and

key

areas)

so

they

reside

in

the

same

area

of

your

program.

This

reduces

the

number

of

paging

operations

required

to

read

from

and

write

to

your

data

set.

Rule:

DCB

and

DECBs

must

reside

below

16

MB,

but

their

central

storage

addresses

can

be

above

the

2

GB

bar.

Using

Overlapped

I/O

with

BSAM

When

using

BSAM

with

overlapped

I/O

(multiple

I/O

requests

outstanding

at

one

time),

you

must

use

more

than

one

DECB.

Specify

a

different

DECB

for

each

I/O

©

Copyright

IBM

Corp.

1987,

2004

353

request.

For

example,

if

you

specify

NCP=3

in

your

DCB

for

the

data

set

and

you

are

reading

records

from

the

data

set,

you

can

code

the

following

macros

in

your

program:

...

READ

DECB1,...

READ

DECB2,...

READ

DECB3,...

CHECK

DECB1

CHECK

DECB2

CHECK

DECB3

...

This

is

a

more

efficient

technique:

READ

DECB1,...

READ

DECB2,...

READ

DECB3,...

CHECK

DECB1

Beginning

of

loop

READ

DECB1,...

CHECK

DECB2

READ

DECB2,...

CHECK

DECB3

READ

DECB3,...

(Repeat

the

previous

six

macros

until

a

CHECK

macro

causes

entry

to

EODAD

routine.)

This

is

a

generalized

technique

that

supports

any

value

for

NCP:

1.

Supply

a

DCBE

with

a

nonzero

MULTSDN

and

a

nonzero

MULTACC.

For

optimization

you

can

select

the

MULTACC

value

to

be

half

of

the

MULTSDN

value.

2.

Issue

an

OPEN

macro.

OPEN

calculates

an

NCP

value.

If

using

LBI

to

process

a

tape

data

set

and

the

block

size

is

greater

than

32

768,

the

minimum

calculated

NCP

value

is

2

and

the

maximum

value

is

16.

3.

Allocate

storage

for

a

number

of

data

areas

equal

to

the

NCP

value

and

for

an

equal

number

of

DECBs.

They

do

not

have

to

be

contiguous.

The

DECBs

must

be

below

the

16

MB

line,

but

the

data

areas

can

be

above

the

16

MB

line.

Central

storage

addresses

can

be

above

2

GB.

After

each

DECB

you

can

add

a

word

pointing

to

the

next

DECB

and

point

the

last

one

to

the

first

DECB.

This

simplifies

finding

DECBs.

4.

For

each

DECB

area,

copy

a

single

DECB

to

it,

and

issue

a

READ

or

WRITE

macro

to

it,

supplying

an

appropriate

data

area

address.

The

source

of

the

DECB

copy

can

be

above

or

below

the

16

MB

line

but

the

destination

must

be

below

the

16

MB

line.

5.

Repeat

the

following

steps

for

each

DECB

until

a

CHECK

macro

for

a

READ

causes

entry

to

the

end-of-data

exit

(EODAD)

routine

or

until

you

have

nothing

more

to

write:

a.

Issue

the

CHECK

macro

(for

oldest

outstanding

READ

or

WRITE)

b.

Process

data

in

block

if

you

are

reading,

or

create

a

block

in

data

area

if

you

are

writing.

c.

Issue

the

READ

or

WRITE

macro

to

the

DECB.

d.

Load

a

pointer

to

the

next

DECB

(to

get

oldest

outstanding

READ

or

WRITE).
6.

If

you

are

writing,

then

issue

a

CHECK

macro

for

each

remaining

outstanding

DECB

in

the

order

of

the

WRITEs.

If

you

are

reading,

do

not

issue

another

CHECK.

7.

Issue

a

CLOSE

macro

and

free

storage.

Accessing

Records

354

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Figure

83

on

page

425

shows

this

technique,

except

for

the

FIND

macro

and

DSORG=PO

in

the

DCB

macro.

To

process

a

sequential

data

set,

code

DSORG=PS.

You

can

easily

adapt

this

technique

to

use

WRITE

or

READ.

Reading

a

Block

The

READ

macro

retrieves

a

data

block

from

an

input

data

set

and

places

it

in

a

designated

area

of

virtual

storage.

To

permit

overlap

of

the

input

operation

with

processing,

the

system

returns

control

to

your

program

before

the

read

operation

is

completed.

You

must

test

the

DECB

created

for

the

read

operation

for

successful

completion

before

the

block

is

processed

or

the

DECB

is

reused.

If

an

indexed

sequential

data

set

is

being

read,

the

block

is

brought

into

virtual

storage

and

the

address

of

the

record

is

returned

to

you

in

the

DECB.

When

you

use

the

READ

macro

for

BSAM

to

read

a

direct

data

set

with

spanned

records

and

keys,

and

you

specify

BFTEK=R

in

your

DCB,

the

data

management

routines

displace

record

segments

after

the

first

in

a

record

by

key

length.

This

is

called

offset

reading.

With

offset

reading

you

can

expect

the

block

descriptor

word

and

the

segment

descriptor

word

at

the

same

locations

in

your

buffer

or

buffers,

even

if

you

read

the

first

segment

of

a

record

(preceded

in

the

buffer

by

its

key),

or

a

subsequent

segment

(which

does

not

have

a

key).

You

can

specify

variations

of

the

READ

macro

according

to

the

organization

of

the

data

set

being

processed

and

the

type

of

processing

to

be

done

by

the

system

as

follows.

Sequential

and

Partitioned

SF

Read

the

data

set

sequentially.

SB

Read

the

data

set

backward

(magnetic

tape,

format-F,

and

format-U

only).

When

RECFM=FBS,

data

sets

with

the

last

block

truncated

cannot

be

read

backward.

Indexed

Sequential

K

Read

the

data

set.

KU

Read

for

update.

The

system

maintains

the

device

address

of

the

record;

thus,

when

a

WRITE

macro

returns

the

record,

no

index

search

is

required.

Direct

D

Use

the

direct

access

method.

I

Locate

the

block

using

a

block

identification.

K

Locate

the

block

using

a

key.

F

Provide

device

position

feedback.

X

Maintain

exclusive

control

of

the

block.

R

Provide

next

address

feedback.

U

Next

address

can

be

a

capacity

record

or

logical

record,

whichever

occurred

first.

Accessing

Records

Chapter

22.

Accessing

Records

355

Writing

a

Block

The

WRITE

macro

places

a

data

block

in

an

output

data

set

from

a

designated

area

of

virtual

storage.

The

WRITE

macro

can

also

be

used

to

return

an

updated

data

block

to

a

data

set.

To

permit

overlap

of

output

operations

with

processing,

the

system

returns

control

to

your

program

before

the

write

operation

is

completed.

You

must

test

the

DECB

that

is

created

for

the

write

operation

for

successful

completion

before

you

reuse

the

DECB.

For

ASCII

tape

data

sets,

do

not

issue

more

than

one

WRITE

on

the

same

block,

because

the

WRITE

macro

causes

the

data

in

the

record

area

to

be

converted

from

EBCDIC

to

ASCII.

Or,

if

CCSIDs

are

specified

for

ISO/ANSI

V4

tapes,

from

the

CCSID

specified

for

the

application

program

to

the

CCSID

of

the

data

records

on

tape.

As

with

the

READ

macro,

you

can

specify

variations

of

the

WRITE

macro

according

to

the

organization

of

the

data

set

and

type

of

processing

to

be

done

by

the

system

as

follows.

Sequential

SF

Write

the

data

set

sequentially.

Indexed

Sequential

K

Write

a

block

containing

an

updated

record,

or

replace

a

record

with

a

fixed,

unblocked

record

having

the

same

key.

The

record

to

be

replaced

need

not

have

been

read

into

virtual

storage.

KN

Write

a

new

record

or

change

the

length

of

a

variable-length

record.

Direct

SD

Write

a

dummy

fixed-length

record.

(BDAM

load

mode)

SZ

Write

a

capacity

record

(R0).

The

system

supplies

the

data,

writes

the

capacity

record,

and

advances

to

the

next

track.

(BDAM

load

mode)

SFR

Write

the

data

set

sequentially

with

next-address

feedback.

(BDAM

load

mode,

variable

spanned)

D

Use

the

direct

access

method.

I

Search

argument

identifies

a

block.

K

Search

argument

is

a

key.

A

Add

a

new

block.

F

Provide

record

location

data

(feedback).

X

Release

exclusive

control.

Ensuring

I/O

Initiation

with

the

TRUNC

Macro

The

TRUNC

macro

is

not

required

for

BSAM

or

BPAM.

It

is

necessary

only

if

you

have

supplied

a

DCBE

with

a

nonzero

MULTACC

value

and

you

are

about

to

issue

WAIT

or

EVENTS

for

a

DECB

instead

of

issuing

a

CHECK

macro.

See

“Waiting

for

Completion

of

a

Read

or

Write

Operation”

on

page

357

and

“DASD

and

Tape

Performance”

on

page

397.

Testing

Completion

of

a

Read

or

Write

Operation

When

processing

a

data

set,

you

can

test

for

completion

of

a

READ

or

WRITE

request

by

issuing

a

CHECK

macro.

The

system

tests

for

errors

and

exceptional

Accessing

Records

356

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

conditions

in

the

data

event

control

block

(DECB).

Successive

CHECK

macros

issued

for

the

same

data

set

must

be

issued

in

the

same

order

as

the

associated

READ

and

WRITE

macros.

The

check

routine

passes

control

to

the

appropriate

exit

routines

specified

in

the

DCB

or

DCBE

for

error

analysis

(SYNAD)

or,

for

sequential

or

PDSs,

end-of-data

(EODAD).

It

also

automatically

starts

the

end-of-volume

procedures

(volume

switching

or

extending

output

data

sets).

If

you

specify

OPTCD=Q

in

the

DCB,

CHECK

causes

input

data

to

be

converted

from

ASCII

to

EBCDIC

or,

if

CCSIDs

are

specified

for

ISO/ANSI

V4

tapes,

from

the

CCSID

of

the

data

records

on

tape

to

the

CCSID

specified

for

the

application

program.

If

the

system

calls

your

SYNAD

or

EODAD

routine,

then

all

other

I/O

requests

for

that

DCB

have

been

terminated,

although

they

have

not

necessarily

been

posted.

There

is

no

need

to

test

them

for

completion

or

issue

CHECK

for

them.

Waiting

for

Completion

of

a

Read

or

Write

Operation

When

processing

a

data

set,

you

can

test

for

completion

of

any

READ

or

WRITE

request

by

issuing

a

WAIT

or

EVENTS

macro.

You

can

choose

to

do

this

so

you

can

wait

for

multiple

unrelated

events.

You

can

process

whichever

events

have

completed.

The

I/O

operation

is

overlapped

with

processing,

but

the

DECB

is

not

checked

for

errors

or

exceptional

conditions,

nor

are

end-of-volume

procedures

initiated.

Your

program

must

perform

these

operations.

If

you

use

overlapped

BSAM

or

BPAM

READ

or

WRITE

macros,

your

program

can

run

faster

if

you

use

the

MULTACC

parameter

on

the

DCBE

macro.

If

you

do

that

and

use

WAIT

or

EVENTS

for

the

DCB,

then

you

must

also

use

the

TRUNC

macro.

See

TRUNC

information

in

“Ensuring

I/O

Initiation

with

the

TRUNC

Macro”

on

page

356

and

“DASD

and

Tape

Performance”

on

page

397.

For

BDAM

and

BISAM,

a

WAIT

macro

must

be

issued

for

each

READ

or

WRITE

macro

if

MACRF=C

is

not

coded

in

the

associated

DCB.

When

MACRF=C

is

coded,

a

CHECK

macro

must

be

issued

for

each

READ

or

WRITE

macro.

Because

the

CHECK

macro

incorporates

the

function

of

the

WAIT

macro,

a

WAIT

is

normally

unnecessary.

The

EVENTS

macro

or

the

ECBLIST

form

of

the

WAIT

macro

can

be

useful,

though,

in

selecting

which

of

several

outstanding

events

should

be

checked

first.

Each

operation

must

then

be

checked

or

tested

separately.

Example:

1.

You

have

opened

an

input

DCB

for

BSAM

with

NCP=2,

and

an

output

DCB

for

BISAM

with

NCP=1

and

without

specifying

MACRF=C.

2.

You

have

issued

two

BSAM

READ

macros

and

one

BISAM

WRITE

macro.

3.

You

now

issue

the

WAIT

macro

with

ECBLIST

pointing

to

the

BISAM

DECB

and

the

first

BSAM

DECB.

(Because

BSAM

requests

are

serialized,

the

first

request

must

run

before

the

second.)

4.

When

you

regain

control,

inspect

the

DECBs

to

see

which

has

completed

(second

bit

on).

a.

If

it

was

BISAM,

issue

another

WRITE

macro.

b.

If

it

was

BSAM,

issue

a

CHECK

macro,

then

another

READ

macro.

Accessing

Records

Chapter

22.

Accessing

Records

357

Handling

Exceptional

Conditions

on

Tape

In

this

section

an

exceptional

condition

is

any

READ

or

WRITE

macro

that

did

not

have

normal

completion.

Most

programs

do

not

care

about

how

much

data

in

the

data

set

is

on

each

volume

and

if

there

is

a

failure,

they

do

not

care

what

the

failure

was.

A

person

is

more

likely

to

want

to

know

the

cause

of

the

failure.

In

some

cases

you

might

want

to

take

special

actions

before

some

of

the

system’s

normal

processing

of

an

exceptional

condition.

One

such

exceptional

condition

is

reading

a

tape

mark

and

another

such

exceptional

condition

is

writing

at

the

end

of

the

tape.

With

BSAM,

your

program

can

detect

when

it

has

reached

the

end

of

a

magnetic

tape

and

do

some

processing

before

BSAM’s

normal

processing

to

go

to

another

volume.

To

do

that,

do

the

following:

1.

Instead

of

issuing

the

CHECK

macro,

issue

the

WAIT

or

EVENTS

macro.

Use

the

ECB,

which

is

the

first

word

in

the

DECB.

The

first

byte

is

called

the

post

code.

As

a

minor

performance

enhancement,

you

can

skip

all

three

macros

if

the

second

bit

of

the

post

code

already

is

1.

2.

Inspect

the

post

code.

Do

one

of

the

following:

a.

Post

code

is

X'7F':

The

READ

or

WRITE

is

successful.

If

you

are

reading

and

either

the

tape

label

type

is

AL

or

OPTCD=Q

is

in

effect,

then

you

must

issue

the

CHECK

macro

to

convert

between

ASCII

and

EBCDIC.

Otherwise,

the

CHECK

is

optional

and

you

can

continue

normal

processing

as

if

your

program

had

issued

the

CHECK

macro.

b.

Post

code

is

not

X'7F':

You

cannot

issue

another

READ

or

WRITE

successfully

unless

you

take

one

of

the

following

actions.

All

later

READs

or

WRITEs

that

you

issued

for

the

DCB

have

post

codes

that

you

cannot

predict,

but

they

are

guaranteed

not

to

have

started.

If

your

only

reason

to

issue

WAIT

or

EVENTS

is

to

wait

for

multiple

events,

then

issue

CHECK

to

handle

the

exceptional

condition.

If

part

or

all

of

your

purpose

was

to

handle

a

certain

exceptional

condition,

such

as

a

full

volume,

take

one

of

the

following

actions:

v

If

the

post

code

is

X'41'

and

the

status

indicators

show

unit

exception

and

an

error

status,

you

read

a

tape

mark

or

wrote

at

the

end

of

the

volume.

Coincidentally,

however,

you

got

an

input

or

output

error

that

prevented

reading

or

writing

to

the

block.

You

can

still

take

one

of

the

preceding

actions.

Issuance

of

CHECK

causes

entry

to

your

SYNAD

routine

or

issuance

of

an

ABEND.

You

can

issue

CLOSE

to

bypass

the

SYNAD

routine,

but

CLOSE

might

detect

another

input

or

output

error

and

issue

an

ABEND.

v

If

the

post

code

and

the

status

indicators

are

different

from

the

preceding

ones,

the

system

probably

did

not

read

or

write

to

the

data

block.

Issue

CHECK

or

CLOSE.

CHECK

causes

entry

to

your

SYNAD

routine

or

the

issuance

of

an

ABEND.

The

system

discards

all

other

WRITEs

with

an

unpredictable

post

code

or

no

post

code.

Accessing

Records

358

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Accessing

Data

with

GET

and

PUT

The

queued

access

method

provides

GET

and

PUT

macros

for

transmitting

data

within

virtual

storage.

The

GET

and

PUT

macros

can

be

issued

in

24-

or

31-bit

addressing

mode.

The

QSAM

GET

and

PUT

macros

automatically

block

and

unblock

the

records

that

are

stored

and

retrieved.

The

queued

access

method

anticipates

required

buffering

and

overlaps

I/O

operations

with

instruction

stream

processing.

Because

the

operating

system

controls

buffer

processing,

you

can

use

as

many

I/O

buffers

as

needed

without

reissuing

GET

or

PUT

macros

to

fill

or

empty

buffers.

Usually,

more

than

one

input

block

is

in

storage

at

a

time,

so

I/O

operations

do

not

delay

record

processing.

Because

the

operating

system

overlaps

I/O

with

processing,

you

need

not

test

for

completion,

errors,

or

exceptional

conditions.

After

a

GET

or

PUT

macro

is

issued,

control

is

not

returned

to

your

program

until

an

input

area

is

filled

or

an

output

area

is

available.

Exits

to

error

analysis

(SYNAD)

and

end-of-volume

or

end-of-data

(EODAD)

routines

are

automatically

taken

when

necessary.

GET—Retrieve

a

Record

The

GET

macro

obtains

a

record

from

an

input

data

set.

It

operates

in

a

logical-sequential

and

device-independent

manner.

The

GET

macro

schedules

the

filling

of

input

buffers,

unblocks

records,

and

directs

input

error

recovery

procedures.

For

spanned-record

data

sets,

it

also

merges

record

segments

into

logical

records.

After

all

records

have

been

processed

and

the

GET

macro

detects

an

end-of-data

indication,

the

system

automatically

checks

labels

on

sequential

data

sets

and

passes

control

to

your

end-of-data

exit

(EODAD)

routine.

If

an

end-of-volume

condition

is

detected

for

a

sequential

data

set,

the

system

automatically

switches

volumes

if

the

data

set

extends

across

several

volumes,

or

if

concatenated

data

sets

are

being

processed.

If

you

specify

OPTCD=Q

in

the

DCB

or

DD

statement,

or

if

the

LABEL

parameter

on

the

DD

statement

specifies

ISO/ANSI

labels,

the

GET

macro

converts

input

data

from

ASCII

to

EBCDIC.

If

CCSIDs

are

specified

for

ISO/ANSI

V4

tapes,

it

converts

input

data

from

the

CCSID

of

the

data

records

on

tape

to

the

CCSID

specified

for

the

application

program.

This

parameter

is

supported

only

for

a

magnetic

tape

that

does

not

have

IBM

standard

labels.

PUT—Write

a

Record

The

PUT

macro

writes

a

record

into

an

output

data

set.

Like

the

GET

macro,

it

operates

in

a

logical-sequential

and

device-independent

manner.

As

required,

the

PUT

macro

blocks

records,

schedules

the

emptying

of

output

buffers,

and

handles

output

error

correction

procedures.

For

sequential

data

sets,

it

also

starts

automatic

volume

switching

and

label

creation,

and

also

segments

records

for

spanning.

If

you

specify

OPTCD=Q

in

the

DCB

or

DD

statement,

or

if

the

LABEL

parameter

on

the

DD

statement

specifies

ISO/ANSI

labels,

the

PUT

macro

causes

output

to

be

converted

from

EBCDIC

to

ASCII.

If

CCSIDs

are

specified

for

ISO/ANSI

V4

tapes,

it

causes

output

to

be

converted

from

the

CCSID

specified

for

the

application

program

to

the

CCSID

of

the

data

records

on

tape.

This

parameter

is

supported

only

for

a

magnetic

tape

that

does

not

have

IBM

standard

labels.

If

the

tape

has

ISO/ANSI

labels

(LABEL=(,AL)),

the

system

assumes

OPTCD=Q.

Accessing

Records

Chapter

22.

Accessing

Records

359

If

the

PUT

macro

is

directed

to

a

card

punch

or

printer,

the

system

automatically

adjusts

the

number

of

records

or

record

segments

per

block

of

format-F

or

format-V

blocks

to

1.

Thus,

you

can

specify

a

record

length

(LRECL)

and

block

size

(BLKSIZE)

to

provide

an

optimum

block

size

if

the

records

are

temporarily

placed

on

magnetic

tape

or

a

direct

access

volume.

For

spanned

variable-length

records,

the

block

size

must

be

equivalent

to

the

length

of

one

card

or

one

print

line.

Record

size

might

be

greater

than

block

size

in

this

case.

PUTX—Write

an

Updated

Record

Use

the

PUTX

macro

to

update

a

data

set

or

to

write

a

new

output

data

set

using

records

from

an

input

data

set

as

a

base.

PUTX

updates,

replaces,

or

inserts

records

from

existing

data

sets,

but

does

not

create

records.

When

you

use

the

PUTX

macro

to

update,

each

record

is

returned

to

the

data

set

referred

to

by

a

previous

locate

mode

GET

macro.

The

buffer

containing

the

updated

record

is

flagged

and

written

back

to

the

same

location

on

the

direct

access

storage

device

where

it

was

read.

The

block

is

not

written

until

a

GET

macro

is

issued

for

the

next

buffer,

except

when

a

spanned

record

is

to

be

updated.

In

that

case,

the

block

is

written

with

the

next

GET

macro.

When

you

use

the

PUTX

macro

to

write

a

new

output

data

set,

you

can

add

new

records

by

using

the

PUT

macro.

As

required,

the

PUTX

macro

blocks

records,

schedules

the

writing

of

output

buffers,

and

handles

output

error

correction

procedures.

PDAB—Parallel

Input

Processing

(QSAM

Only)

QSAM

parallel

input

processing

can

be

used

to

process

two

or

more

input

data

sets

concurrently,

such

as

sorting

or

merging

several

data

sets

at

the

same

time.

QSAM

parallel

input

processing

eliminates

the

need

for

issuing

a

separate

GET

macro

to

each

DCB

processed.

The

GET

routine

for

parallel

input

processing

selects

a

DCB

with

a

ready

record,

then

transfers

control

to

the

normal

GET

routine.

If

there

is

no

DCB

with

a

ready

record,

the

GET

routine

issues

a

multiple

WAIT

macro.

Parallel

input

processing

provides

a

logical

input

record

from

a

queue

of

data

sets

with

equal

priority.

The

function

supports

QSAM

with

input

processing,

simple

buffering,

locate

or

move

mode,

and

fixed-,

variable-,

or

undefined-length

records.

Spanned

records,

track-overflow

records,

dummy

data

sets,

and

SYSIN

data

sets

are

not

supported.

Parallel

input

processing

can

be

interrupted

at

any

time

to

retrieve

records

from

a

specific

data

set,

or

to

issue

control

instructions

to

a

specific

data

set.

When

the

retrieval

process

has

been

completed,

parallel

input

processing

can

be

resumed.

Data

sets

can

be

added

to

or

deleted

from

the

data

set

queue

at

any

time.

You

should

note,

however,

that,

as

each

data

set

reaches

an

end-of-data

condition,

the

data

set

must

be

removed

from

the

queue

with

the

CLOSE

macro

before

a

subsequent

GET

macro

is

issued

for

the

queue.

Otherwise,

the

task

could

be

ended

abnormally.

Accessing

Records

360

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Using

Parallel

Data

Access

Blocks

(PDAB)

You

specify

a

request

for

parallel

input

processing

by

including

the

address

of

a

parallel

data

access

block

(PDAB)

in

the

DCB

exit

list.

For

more

information

on

the

DCB

exit

list,

see

“DCB

Exit

List”

on

page

527.

Use

the

PDAB

macro

to

create

and

format

a

work

area

that

identifies

the

maximum

number

of

DCBs

that

can

be

processed

at

any

one

time.

If

you

exceed

the

maximum

number

of

entries

specified

in

the

PDAB

macro

when

adding

a

DCB

to

the

queue

with

the

OPEN

macro,

the

data

set

will

not

be

available

for

parallel

input

processing.

However,

it

will

be

available

for

sequential

processing.

When

issuing

a

parallel

GET

macro,

register

1

must

always

point

to

a

PDAB.

You

can

load

the

register

or

let

the

GET

macro

do

it

for

you.

When

control

is

returned

to

you,

register

1

contains

the

address

of

a

logical

record

from

one

of

the

data

sets

in

the

queue.

Registers

2

-

13

contain

their

original

contents

at

the

time

the

GET

macro

was

issued.

Registers

14,

15,

and

0

are

changed.

Through

the

PDAB,

you

can

find

the

data

set

from

which

the

record

was

retrieved.

A

fullword

address

in

the

PDAB

(PDADCBEP)

points

to

the

address

of

the

DCB.

It

should

be

noted

that

this

pointer

could

be

nonvalid

from

the

time

a

CLOSE

macro

is

issued

to

the

issuing

of

the

next

parallel

GET

macro.

In

Figure

64

on

page

362,

not

more

than

three

data

sets

(MAXDCB=3

in

the

PDAB

macro)

are

open

for

parallel

processing

at

a

time.

Accessing

Records

Chapter

22.

Accessing

Records

361

The

number

of

bytes

required

for

PDAB

is

equal

to

24

+

8n,

where

n

is

the

value

of

the

keyword,

MAXDCB.

If

data

definition

statements

and

data

sets

are

supplied,

DATASET1,

DATASET2,

and

DATASET3

are

opened

for

parallel

input

processing

as

specified

in

the

input

processing

OPEN

macro.

Other

attributes

of

each

data

set

are

QSAM

(MACRF=G),

simple

buffering

by

default,

locate

or

move

mode

(MACRF=L

or

M),

fixed-length

records

(RECFM=F),

and

exit

list

entry

for

a

PDAB

(X'92').

Note

that

both

locate

and

move

modes

can

be

used

in

the

same

data

set

queue.

The

mapping

macros,

DCBD

and

PDABD,

are

used

to

refer

to

the

DCBs

and

the

PDAB

respectively.

Testing

for

Parallel

Processing

Following

the

OPEN

macro,

tests

are

made

to

determine

whether

the

DCBs

were

opened

for

parallel

processing.

If

not,

the

sequential

processing

routine

is

given

control.

In

Figure

64

when

one

or

more

data

sets

are

opened

for

parallel

processing,

the

GET

routine

retrieves

a

record,

saves

the

pointer

in

register

10,

processes

the

record,

and

writes

it

to

DATASET4.

This

process

continues

until

an

end-of-data

condition

is

detected

on

one

of

the

input

data

sets.

The

end-of-data

routine

locates

the

completed

input

data

set

and

removes

it

from

the

queue

with

the

CLOSE

...

OPEN

(DATASET1,(INPUT),DATASET2,(INPUT),DATASET3,

X

(INPUT),DATASET4,(OUTPUT))

TM

DATASET1+DCBQSWS-IHADCB,DCBPOPEN

Opened

for

*

parallel

processing

BZ

SEQRTN

Branch

on

no

to

*

sequential

routine

TM

DATASET2+DCBQSWS-IHADCB,DCBPOPEN

BZ

SEQRTN

TM

DATASET3+DCBQSWS-IHADCB,DCBPOPEN

BZ

SEQRTN

GETRTN

GET

DCBQUEUE,TYPE=P

LR

10,1

Save

record

pointer

...

...

Record

updated

in

place

...

PUT

DATASET4,(10)

B

GETRTN

EODRTN

L

2,DCBQUEUE+PDADCBEP-IHAPDAB

L

2,0(0,2)

CLOSE

((2))

CLC

ZEROS(2),DCBQUEUE+PDANODCB-IHAPDAB

Any

DCBs

left?

BL

GETRTN

Branch

if

yes

...

DATASET1

DCB

DDNAME=DDNAME1,DSORG=PS,MACRF=GL,RECFM=FB,

X

LRECL=80,EODAD=EODRTN,EXLST=SET3XLST

DATASET2

DCB

DDNAME=DDNAME2,DSORG=PS,MACRF=GL,RECFM=FB,

X

LRECL=80,EODAD=EODRTN,EXLST=SET3XLST

DATASET3

DCB

DDNAME=DDNAME3,DSORG=PS,MACRF=GL,RECFM=FB,

X

LRECL=80,EODAD=EODRTN,EXLST=SET3XLST

DATASET4

DCB

DDNAME=DDNAME4,DSORG=PS,MACRF=PM,RECFM=FB,

X

LRECL=80

DCBQUEUE

PDAB

MAXDCB=3

SET3XLST

DC

0F’0’,X'92',AL3(DCBQUEUE)

ZEROS

DC

X'0000'

DCBD

DSORG=QS

PDABD

...

Figure

64.

Parallel

Processing

of

Three

Data

Sets

Accessing

Records

362

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

macro.

A

test

is

then

made

to

determine

whether

any

data

sets

remain

on

the

queue.

Processing

continues

in

this

manner

until

the

queue

is

empty.

Analyzing

I/O

Errors

The

basic

and

queued

access

methods

both

provide

special

macros

for

analyzing

I/O

errors.

These

macros

can

be

used

in

SYNAD

routines

or

in

error

analysis

routines.

If

your

program

does

not

have

a

SYNAD

routine,

the

access

method

issues

ABEND

001.

SYNADAF—Perform

SYNAD

Analysis

Function

The

SYNADAF

macro

analyzes

the

status,

sense,

and

exceptional

condition

code

data

that

is

available

to

your

error

analysis

routine.

It

produces

an

error

message

that

your

routine

can

write

into

any

appropriate

data

set.

The

message

is

in

the

form

of

unblocked

variable-length

records,

but

you

can

write

them

as

fixed-length

records

by

omitting

the

block

length

and

record

length

fields

that

precede

the

message

texts.

The

SYNADAF

message

can

come

in

two

parts,

with

each

message

being

an

unblocked

variable-length

record.

If

the

data

set

being

analyzed

is

not

a

PDSE,

extended

format

data

set,

or

UNIX

file;

only

the

first

message

is

filled

in.

If

the

data

set

is

a

PDSE,

extended

format

data

set

or

UNIX

file,

both

messages

are

filled

in.

An

'S'

in

the

last

byte

of

the

first

message

means

a

second

message

exists.

This

second

message

is

located

8

bytes

past

the

end

of

the

first

message.

The

text

of

the

first

message

is

120

characters

long,

and

begins

with

a

field

of

36,

42,

or

20

blanks.

You

can

use

the

blank

field

to

add

your

own

remarks

to

the

message.

The

text

of

the

second

message

is

128

characters

long

and

ends

with

a

field

of

76

blanks

that

are

reserved

for

later

use.

This

second

message

begins

in

the

fifth

byte

in

the

message

buffer.

Example:

A

typical

message

for

a

tape

data

set

with

the

blank

field

omitted

follows:

,TESTJOBb,STEP2bbb,283,TA,MASTERbb,READb,DATA

CHECKbbbbb,0000015,BSAMb

In

the

preceding

example,

'b'

means

a

blank.

That

message

shows

that

a

data

check

occurred

during

reading

of

the

15th

block

of

a

data

set

being

processed

with

BSAM.

The

data

set

was

identified

by

a

DD

statement

named

MASTER,

and

was

on

a

magnetic

tape

volume

on

unit

283.

The

name

of

the

job

was

TESTJOB;

the

name

of

the

job

step

was

STEP2.

Example:

Two

typical

messages

for

a

PDSE

with

the

blank

fields

omitted

follow:

,PDSEJOBb,STEP2bbb,0283,D,PDSEDDbb,READb,DATA

CHECKbbbbb,

00000000100002,BSAMS

,003,000005,0000000002,00000000,00000000,00

...

(76

blanks)

That

message

shows

that

a

data

check

occurred

during

reading

of

a

block

referred

to

by

a

BBCCHHR

of

X'00000000100002'

of

a

PDSE

being

processed

by

BSAM.

The

data

set

was

identified

by

a

DD

statement

named

PDSEDD,

and

was

on

a

DASD

on

unit

283.

The

name

of

the

job

was

PDSEJOB.

The

name

of

the

job

step

was

STEP2.

The

'S'

following

the

access

method

'BSAM'

means

that

a

second

message

has

been

filled

in.

The

second

message

identifies

the

record

in

which

the

error

occurred.

The

concatenation

number

of

the

data

set

is

3

(the

third

data

set

in

a

Accessing

Records

Chapter

22.

Accessing

Records

363

concatenation),

the

TTR

of

the

member

is

X'000005',

and

the

relative

record

number

is

2.

The

SMS

return

and

reason

codes

are

zero,

meaning

that

no

error

occurred

in

SMS.

If

the

error

analysis

routine

is

entered

because

of

an

input

error,

the

first

6

or

16

bytes

of

the

first

message

(at

offset

8)

contain

binary

information.

If

no

data

was

transmitted,

or

if

the

access

method

is

QISAM,

these

first

bytes

are

blanks.

If

the

error

did

not

prevent

data

transmission,

these

first

bytes

contain

the

address

of

the

input

buffer

and

the

number

of

bytes

read.

You

can

use

this

information

to

process

records

from

the

block.

For

example,

you

can

print

each

record

after

printing

the

error

message.

Before

printing

the

message,

however,

you

should

replace

the

binary

information

with

EBCDIC

characters.

The

SYNADAF

macro

provides

its

own

save

area

and

makes

this

area

available

to

your

error

analysis

routine.

When

used

at

the

entry

point

of

a

SYNAD

routine,

it

fulfills

the

routine’s

responsibility

for

providing

a

save

area.

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

more

information

on

the

SYNADAF

macro.

SYNADRLS—Release

SYNADAF

Message

and

Save

Areas

The

SYNADRLS

macro

releases

the

message

and

save

areas

provided

by

the

SYNADAF

macro.

You

must

issue

this

macro

before

returning

from

the

error

analysis

routine.

Device

Support

Facilities

(ICKDSF):

Diagnosing

I/O

Problems

Use

Device

Support

Facilities

(ICKDSF)

Release

9

or

later

to

determine

if

there

are

problems

with

the

disk

drive

or

a

problem

reading

or

writing

data

stored

on

the

volume.

Device

Support

Facilities

also

performs

service

checking

of

a

volume.

The

INSPECT

command

for

the

Device

Support

Facilities

program

can

assign

alternate

tracks.

See

Device

Support

Facilities

User’s

Guide

and

Reference.

Limitations

with

Using

SRB

or

Cross-Memory

Mode

You

cannot

use

the

service

request

block

(SRB)

or

cross-memory

mode

with

non-VSAM

access

methods.

Accessing

Records

364

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

23.

Sharing

Non-VSAM

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

PDSEs

374

Direct

Data

Sets

(BDAM)

374

Factors

to

Consider

When

Opening

and

Closing

Data

Sets

375

Control

of

Checkpoint

Data

Sets

on

Shared

DASD

Volumes

375

System

Use

of

Search

Direct

for

Input

Operations

377

Enhanced

Data

Integrity

for

Shared

Sequential

Data

Sets

368

You

can

share

non-VSAM

data

sets

among:

v

Different

jobs

in

a

single

operating

system

v

Multiple

DCBs

in

a

task

or

different

subtasks

v

One

DCB

in

a

task

or

different

subtasks

v

Different

instances

of

the

operating

system.

To

share

between

different

systems

safely,

you

need

global

resource

serialization

(GRS)

or

an

equivalent

product.

Failure

to

use

GRS

or

an

equivalent

can

result

in

both

data

set

and

VTOC

corruption.

See

z/OS

MVS

Planning:

Global

Resource

Serialization

for

more

information.

There

are

two

conditions

under

which

a

data

set

on

a

direct

access

device

can

be

shared

by

two

or

more

tasks:

v

Two

or

more

DCBs

are

opened

and

used

concurrently

by

the

tasks

to

refer

to

the

same,

shared

data

set

(multiple

DCBs).

v

Only

one

DCB

is

opened

and

used

concurrently

by

multiple

tasks

in

a

single

job

step

(a

single,

shared

DCB).

Except

for

PDSEs,

the

system

does

not

protect

data

integrity

when

multiple

DCBs

are

open

for

output

and

the

DCBs

access

a

data

set

within

the

same

job

step.

The

system

ensures

that

only

one

program

in

the

sysplex

can

open

a

PDS

with

the

OUTPUT

option,

even

if

you

specify

DISP=SHR.

If

a

second

program

issues

OPEN

with

the

OUTPUT

option,

for

the

PDS

with

DISP=SHR,

while

a

DCB

is

still

open

with

the

OUTPUT

option,

the

second

program

gets

a

213-30

ABEND.

This

does

not

apply

to

two

programs

in

one

address

space

with

DISP=OLD

or

MOD,

which

would

cause

overlaid

data.

This

213-30

enforcement

mechanism

does

not

apply

when

you

issue

OPEN

with

the

UPDAT

option.

Therefore

programs

that

issue

OPEN

with

UPDAT

and

DISP=SHR

can

corrupt

the

PDS

directory.

Use

DISP=OLD

to

avoid

the

possibility

of

an

abend

during

the

processing

of

a

PDS

for

output

or

of

corrupting

the

directory

when

it

is

open

for

update.

If

a

program

writes

in

a

PDS

while

protected

with

DISP=NEW,

DISP=OLD,

or

DISP=MOD,

a

program

reading

from

outside

of

the

GRSplex

might

see

unpredictable

results

such

as

members

that

are

temporarily

missing

or

overlaid.

The

DCBE

must

not

be

shared

by

multiple

DCBs

that

are

open.

After

the

DCB

is

successfully

closed,

you

may

open

a

different

DCB

pointing

to

the

same

DCBE.

©

Copyright

IBM

Corp.

1987,

2004

365

The

operating

system

provides

job

control

language

(JCL)

statements

and

macros

that

help

you

ensure

the

integrity

of

the

data

sets

you

want

to

share

among

the

tasks

that

process

them.

Figure

65

and

Figure

66

on

page

367

show

which

JCL

and

macros

you

should

use,

depending

on

the

access

method

your

task

is

using

and

the

mode

of

access

(input,

output,

or

update).

Figure

65

describes

the

processing

procedures

you

should

use

if

more

than

one

DCB

has

been

opened

to

the

shared

data

set.

The

DCBs

can

be

used

by

tasks

in

the

same

or

different

job

steps.

The

purpose

of

the

RLSE

value

for

the

space

keyword

in

the

DD

statement

is

to

cause

CLOSE

to

free

unused

space

when

the

data

set

becomes

closed.

The

system

does

not

perform

this

function

if

the

DD

has

DISP=SHR

or

more

than

one

DCB

is

open

to

the

data

set.

DISP=SHR.

Each

job

step

sharing

an

existing

data

set

must

code

SHR

as

the

subparameter

of

the

DISP

parameter

on

the

DD

statement

for

the

shared

data

set

to

let

the

steps

run

concurrently.

For

more

information

about

ensuring

data

set

integrity

see

z/OS

MVS

JCL

User’s

Guide.

Related

reading:

For

more

information

about

sharing

PDSEs

see

“Sharing

PDSEs”

on

page

462.

If

the

tasks

are

in

the

same

job

step,

DISP=SHR

is

not

required.

For

more

information

about

detecting

sharing

violations

with

sequential

data

sets,

see

“Enhanced

Data

Integrity

for

Shared

Sequential

Data

Sets”

on

page

368.

No

facility.

There

are

no

facilities

in

the

operating

system

for

sharing

a

data

set

under

these

conditions.

ENQ

on

data

set.

Besides

coding

DISP=SHR

on

the

DD

statement

for

the

data

set

that

is

to

be

shared,

each

task

must

issue

ENQ

and

DEQ

macros

naming

the

data

set

or

block

as

the

resource

for

which

exclusive

control

is

required.

The

ENQ

must

be

issued

before

the

GET

(READ);

the

DEQ

macro

should

be

issued

after

the

PUTX

or

CHECK

macro

that

ends

the

operation.

Related

reading:

For

more

information

about

using

the

ENQ

and

DEQ

macros

see

z/OS

MVS

Programming:

Assembler

Services

Reference

ABE-HSP.

Figure

65.

JCL,

Macros,

and

Procedures

Required

to

Share

a

Data

Set

Using

Multiple

DCBs

Sharing

Non-VSAM

Data

Sets

366

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Guarantee

discrete

blocks.

When

you

are

using

the

access

methods

that

provide

blocking

and

unblocking

of

records

(QSAM,

QISAM,

and

BISAM),

it

is

necessary

that

every

task

updating

the

data

set

ensure

that

it

is

not

updating

a

block

that

contains

a

record

being

updated

by

any

other

task.

There

are

no

facilities

in

the

operating

system

for

ensuring

that

discrete

blocks

are

being

processed

by

different

tasks.

ENQ

on

block.

If

you

are

updating

a

shared

data

set

(specified

by

coding

DISP=SHR

on

the

DD

statement)

using

BSAM

or

BPAM,

your

task

and

all

other

tasks

must

serialize

processing

of

each

block

of

records

by

issuing

an

ENQ

macro

before

the

READ

macro

and

a

DEQ

macro

after

the

CHECK

macro

that

follows

the

WRITE

macro

you

issued

to

update

the

record.

If

you

are

using

BDAM,

it

provides

for

enqueuing

on

a

block

using

the

READ

exclusive

option

that

is

requested

by

coding

MACRF=X

in

the

DCB

and

an

X

in

the

type

operand

of

the

READ

and

WRITE

macros.

For

an

example

of

the

use

of

the

BDAM

macros

see

“Exclusive

Control

for

Updating”

on

page

566.

Figure

66

describes

the

macros

you

can

use

to

serialize

processing

of

a

shared

data

set

when

a

single

DCB

is

being

shared

by

several

tasks

in

a

job

step.

ENQ.

When

a

data

set

is

being

shared

by

two

or

more

tasks

in

the

same

job

step

(all

that

use

the

same

DCB),

each

task

processing

the

data

set

must

issue

an

ENQ

macro

on

a

predefined

resource

name

before

issuing

the

macro

or

macros

that

begin

the

I/O

operation.

Each

task

must

also

release

exclusive

control

by

issuing

the

DEQ

macro

at

the

next

sequential

instruction

following

the

I/O

operation.

If,

however,

you

are

processing

an

indexed

sequential

data

set

sequentially

using

the

SETL

and

ESETL

macros,

you

must

issue

the

ENQ

macro

before

the

SETL

macro

and

the

DEQ

macro

after

the

ESETL

macro.

Note

also

that

if

two

tasks

are

writing

different

members

of

a

PDS,

each

task

should

issue

the

ENQ

macro

before

the

FIND

macro

and

issue

the

DEQ

macro

after

the

STOW

macro

that

completes

processing

of

the

member.

See

z/OS

MVS

Programming:

Assembler

Services

Reference

ABE-HSP

for

more

information

about

the

ENQ

and

DEQ

macros.

For

an

example

of

the

use

of

ENQ

and

DEQ

macros

with

BISAM

see

Figure

129

on

page

591.

No

action

required.

See

“Sharing

DCBs”

on

page

570.

ENQ

on

block.

When

updating

a

shared

direct

data

set,

every

task

must

use

the

BDAM

exclusive

control

option

that

is

requested

by

coding

MACRF=X

in

the

DCB

Figure

66.

Macros

and

Procedures

Required

to

Share

a

Data

Set

Using

a

Single

DCB

Sharing

Non-VSAM

Data

Sets

Chapter

23.

Sharing

Non-VSAM

Data

Sets

367

macro

and

an

X

in

the

type

operand

of

the

READ

and

WRITE

macros.

See

“Exclusive

Control

for

Updating”

on

page

566

for

an

example

of

the

use

of

BDAM

macros.

Note

that

all

tasks

sharing

a

data

set

must

share

subpool

0.

See

the

ATTACH

macro

description

in

z/OS

MVS

Programming:

Assembler

Services

Reference

ABE-HSP.

Key

sequence.

Tasks

sharing

a

QISAM

load

mode

DCB

must

ensure

that

the

records

to

be

written

are

presented

in

ascending

key

sequence;

otherwise,

a

sequence

check

will

result

in

(1)

control

being

passed

to

the

SYNAD

routine

identified

by

the

DCB,

or

(2)

if

there

is

no

SYNAD

routine,

termination

of

the

task.

The

DISP=SHR

specification

on

the

DD

statement

is

not

required.

Data

sets

can

also

be

shared

both

ways

at

the

same

time.

More

than

one

DCB

can

be

opened

for

a

shared

data

set,

while

more

than

one

task

can

be

sharing

one

of

the

DCBs.

Under

this

condition,

the

serialization

techniques

specified

for

indexed

sequential

and

direct

data

sets

in

Figure

65

on

page

366

satisfy

the

requirement.

For

sequential

and

PDSs,

the

techniques

specified

in

Figure

65

and

Figure

66

must

be

used.

Open

and

Close

of

Data

Sets

Shared

by

More

than

One

Task.

When

more

than

one

task

is

sharing

a

data

set,

the

following

restrictions

must

be

recognized.

Failure

to

comply

with

these

restrictions

endangers

the

integrity

of

the

shared

data

set.

v

All

tasks

sharing

a

DCB

must

be

in

the

job

step

that

opened

the

DCB.

See

Chapter

23,

“Sharing

Non-VSAM

Data

Sets,”

on

page

365.

v

Any

task

that

shares

a

DCB

and

starts

any

input

or

output

operations

using

that

DCB

must

ensure

that

all

those

operations

are

complete

before

terminating

the

task.

A

CLOSE

macro

issued

for

the

DCB

ends

all

input

and

output

operations.

v

A

DCB

can

be

closed

only

by

the

task

that

opened

it.

Shared

Direct

Access

Storage

Devices.

At

some

installations,

DASDs

are

shared

by

two

or

more

independent

computing

systems.

Tasks

run

on

these

systems

can

share

data

sets

stored

on

the

device.

Accessing

a

shared

data

set

or

the

same

storage

area

on

shared

DASD

by

multiple

independent

systems

requires

careful

planning.

Without

proper

intersystem

communication,

data

integrity

could

be

endangered.

To

ensure

data

integrity

in

a

shared

DASD

environment,

your

system

must

have

global

resource

serialization

(GRS)

active

or

a

functionally

equivalent

global

serialization

method.

Related

reading:

For

information

on

data

integrity

for

shared

DASD,

see

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

For

details

on

GRS,

see

z/OS

MVS

Planning:

Global

Resource

Serialization.

Enhanced

Data

Integrity

for

Shared

Sequential

Data

Sets

You

can

concurrently

access

a

shared

sequential

data

set

for

output

or

update

processing.

In

some

cases,

you

can

lose

or

destroy

data

when

you

update

the

data

set,

because

one

user

could,

at

the

same

time,

overwrite

another

user’s

updates.

The

enhanced

data

integrity

function

prevents

this

type

of

data

loss.

This

data

integrity

function

either

ends

the

program

that

is

opening

a

sequential

data

set

that

Sharing

Non-VSAM

Data

Sets

368

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

is

already

opened

for

writing,

or

it

writes

only

a

warning

message

but

allows

the

data

set

to

open.

Only

sequential

data

sets

can

use

the

enhanced

data

integrity

function.

Related

reading:

For

an

overview

of

the

enhanced

data

integrity

function,

see

z/OS

DFSMSdfp

Using

DFSMSdfp

in

the

z/OS

V1R6

Environment.

Setting

Up

the

Enhanced

Data

Integrity

Function

Before

you

begin:

z/OS

DFSMS

V1R5

is

provided

with

the

data

integrity

function

inactive.

Usually,

a

system

programmer

would

set

up

the

data

integrity

function.

When

you

activate

the

data

integrity

function,

multiple

users

no

longer

have

concurrent

output

or

update

access

to

a

sequential

data

set

on

DASD.

Determine

whether

your

system

requires

the

data

integrity

function.

Can

the

applications

allow

concurrent

access

to

sequential

data

sets

for

output

or

update,

and

still

maintain

data

integrity?

Perform

the

following

steps

to

set

up

data

integrity

processing

for

your

system.

1.

Create

a

new

SYS1.PARMLIB

member,

IFGPSEDI.

The

IFGPSEDI

member

contains

the

MODE

variable

and

an

optional

list

of

data

set

names

to

be

excluded

from

data

integrity

processing.

IFGPSEDI

can

be

in

any

data

set

in

the

SYS1.PARMLIB

concatenation.

2.

Set

IFGPSEDI

to

one

of

the

following

MODE

values.

MODE

must

start

in

the

first

column

of

the

first

record.

MODE(WARN)

The

program

issues

a

warning

message

when

an

application

attempts

to

open

for

output

a

shared

data

set

that

is

already

open,

but

it

allows

the

current

open

to

continue.

This

situation

is

called

a

data

integrity

violation.

MODE(ENFORCE)

The

program

abends

when

a

data

integrity

violation

occurs.

MODE(DISABLE)

Data

integrity

processing

is

disabled.

3.

Use

DSN(data_set_name)

to

specify

which

data

sets,

if

any,

to

include

in

the

exclude

list

in

the

IFGPSEDI

member.

The

data

set

name

can

be

a

partially

qualified

or

fully-qualified

name.

The

data

set

name

also

can

contain

an

asterisk

or

percent

sign.

When

you

specify

MODE(WARN)

or

MODE(ENFORCE),

data

integrity

processing

bypasses

data

sets

that

are

in

the

exclude

list

in

IFGPSEDI.

The

exclude

list

excludes

all

data

sets

with

that

same

name

in

the

system.

(If

the

data

set

is

not

system

managed,

multiple

data

sets

with

the

same

name

could

exist

on

different

volumes,

so

they

would

be

excluded.)

4.

Once

you

have

created

the

IFGPSEDI

member,

activate

data

integrity

processing

by

IPLing

the

system

or

starting

the

IFGEDI

task.

The

IFGEDI

task

builds

a

data

integrity

table

from

the

data

in

IFGPSEDI.

Sharing

Non-VSAM

Data

Sets

Chapter

23.

Sharing

Non-VSAM

Data

Sets

369

|
|

Result:

After

you

activate

data

integrity

processing,

message

IEC983I

displays.

The

system

issues

this

message

during

IPL

or

after

you

start

the

IFGEDI

task.

This

message

indicates

whether

data

integrity

processing

is

active

and

the

mode

(WARN,

ENFORCE,

or

DISABLE).

If

the

SYS1.PARMLIB

member,

IFGPSEDI

does

not

exist

or

it

specifies

MODE(DISABLE),

data

integrity

processing

is

not

active

and

conventional

processing

for

shared

sequential

data

sets

continues.

Recommendation:

The

best

way

to

identify

applications

that

require

data

integrity

processing

is

to

activate

it

in

warning

mode.

Then

review

the

warning

messages

for

the

names

of

data

sets

that

are

identified.

After

you

update

the

exclude

list

in

the

IFGPSEDI

member

with

the

data

sets

to

be

protected,

consider

activating

data

integrity

processing

in

enforce

mode.

Related

reading:

For

more

information

on

setting

IFGPSEDI,

see

z/OS

MVS

Initialization

and

Tuning

Reference.

Synchronizing

the

Enhanced

Data

Integrity

Function

on

Multiple

Systems

The

data

integrity

function

protects

data

sets

that

are

shared

within

a

sysplex

if

all

the

systems

in

the

sysplex

have

the

data

integrity

function

active

and

have

the

same

IFGPSEDI

member

data.

Each

system

in

a

sysplex

has

its

own

data

integrity

table.

Perform

these

steps

to

set

up

data

integrity

processing

on

multiple

systems:

1.

Ensure

that

the

data

set

names

in

the

IFGPSEDI

member

are

identical

for

each

system

in

the

sysplex

or

that

SYS1.PARMLIB

is

shared

among

all

the

systems

in

the

sysplex.

2.

Issue

the

S

IFGEDI

command

on

each

system

or

re-IPL

each

system

to

rebuild

its

data

integrity

table.

Until

all

systems

in

the

sysplex

have

rebuilt

their

data

integrity

table,

data

integrity

processing

might

not

be

in

sync.

For

example,

if

a

data

set

name

is

deleted

from

IFGPSEDI

on

one

system

and

the

data

integrity

table

rebuilt

on

that

system,

the

other

systems

can

still

access

that

data

set

until

their

data

integrity

tables

are

rebuilt.

Result:

You

know

you

have

set

up

data

integrity

processing

on

multiple

systems

when

message

IEC983I

displays

on

each

system.

Enhanced

data

integrity

is

not

effective

for

data

sets

that

are

shared

across

multiple

sysplexes.

Using

the

START

IFGEDI

Command

The

system

operator

can

use

the

START

IFGEDI

command

change

the

data

integrity

mode

without

updating

the

IFGPSEDI

PARMLIB

member.

For

example,

if

the

data

integrity

function

is

causing

problems

while

in

enforce

mode,

the

operator

can

temporarily

switch

the

mode

to

warning

or

disabled

so

that

the

applications

can

continue

to

run.

v

To

change

to

warning

mode,

issue:

S

IFGEDI,,,WARN

Sharing

Non-VSAM

Data

Sets

370

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|

|
|
|
|
|

|

v

To

disable

the

data

integrity

function,

issue:

S

IFGEDI,,,DISABLE

Bypassing

the

Enhanced

Data

Integrity

Function

for

Applications

Before

you

begin:

Some

system

applications

can

maintain

their

own

data

integrity

and

do

not

need

to

use

the

data

integrity

function.

To

bypass

data

integrity

processing

so

that

those

applications

can

run

correctly,

perform

one

of

the

following

actions:

v

Modify

the

application

to

ensure

that

multiple

users

cannot

open

or

update

a

sequential

data

set

at

the

same

time.

v

Specify

the

list

of

sequential

data

sets

to

exclude

from

data

integrity

processing

in

the

IFGPSEDI

member.

Attention:

If

you

exclude

data

sets

from

data

integrity

processing,

you

must

ensure

that

all

applications

bypass

data

integrity

processing

to

avoid

accidental

destruction

of

data

when

multiple

applications

attempt

to

open

the

data

sets

for

output.

If

data

integrity

problems

occur,

examine

the

SMF

14

and

15

records

to

see

which

data

sets

bypassed

data

integrity

processing.

v

Set

the

DCBEEXPS

flag

in

the

DCBE

macro

to

allow

concurrent

users

to

open

the

data

sets

for

output

or

update

processing.

Set

bit

7,

DCBEFLG2,

to

X’01’

by

using

the

instruction

OI

DCBEFLG2,DCBEEXPS

in

the

DCBE

macro.

To

set

and

honor

the

DCBEEXPS

flag,

application

programs

must

meet

any

one

of

the

following

criteria:

–

The

application

is

authorized

program

facility

(APF)

authorized.

–

The

application

is

running

in

PSW

supervisor

state.

–

The

application

is

running

in

system

key

(0–7)

when

it

opens

the

data

set.

If

none

of

the

above

are

true,

the

DCBEEXPS

flag

is

ignored.

v

If

the

application

is

authorized,

specify

the

NODSI

flag

in

the

program

properties

table

(PPT).

The

NODSI

flag

bypasses

data

integrity

processing.

v

If

the

application

is

authorized,

dynamically

allocate

the

data

set

with

no

data

integrity

(NODSI)

specified

to

bypass

data

integrity

processing.

In

the

DYNALLOC

macro,

specify

NODSI

to

set

the

S99NORES

flag.

Recommendation:

Changes

to

IFGPSEDI

take

effect

when

you

restart

the

IFGEDI

task.

If

any

of

the

data

sets

in

the

exclude

list

are

open

when

you

restart

IFGEDI,

this

change

takes

effect

after

the

data

sets

are

closed

and

reopened.

Related

reading:

For

more

information

on

using

dynamic

allocation,

see

the

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

Diagnosing

Data

Integrity

Warnings

and

Violations

IEC984I

and

IEC985I

display

if

you

specify

MODE(WARN)

in

IFGPSEDI.

Monitor

messages

IEC984I

and

IEC985I

for

possible

failures.

If

you

decide

to

globally

bypass

data

integrity

processing

for

the

data

sets

that

are

listed

in

the

message,

include

those

data

set

name

in

the

IFGPSEDI

SYS1.PARMLIB

member.

If

the

data

set

is

being

processed

by

an

application

that

supports

concurrent

opens

for

output,

consider

modifying

the

application

to

bypass

data

integrity

processing.

If

the

application

does

not

support

concurrent

opens,

consider

preventing

concurrent

opens

for

output.

Sharing

Non-VSAM

Data

Sets

Chapter

23.

Sharing

Non-VSAM

Data

Sets

371

|

If

the

exclude

list

is

empty

(no

data

set

names

specified)

and

IFGPSEDI

specifies

MODE(WARN)

or

MODE(ENFORCE),

data

integrity

processing

occurs

for

all

sequential

data

sets.

You

can

set

applications

to

bypass

data

integrity

processing

for

the

data

set

that

is

being

opened

in

the

following

ways:

v

Specify

the

DCBEEXPS

exclude

flag

in

the

DCBE

macro.

v

Specify

the

SCTNDSI

exclude

flag

in

the

step

control

block.

v

Dynamically

allocate

the

data

set

with

S99NORES

specified.

This

action

sets

the

DSABNODI

exclude

flag

for

the

data

set

v

Request

the

NODSI

flag

in

the

program

properties

table

for

the

application

program.

Related

reading:

For

more

information

on

the

warning

messages

and

abends

for

data

integrity

processing,

and

the

flags

for

SMF

record

types

14

and

15,

see

the

z/OS

DFSMSdfp

Diagnosis

Reference

and

z/OS

MVS

System

Management

Facilities

(SMF).

Data

Integrity

Messages

Although

the

data

integrity

function

is

designed

to

prevent

multiple

applications

from

opening

or

updating

the

same

sequential

data

set

concurrently,

data

integrity

processing

might

miss

occasional

violations

while

in

warning

mode,

or

if

the

data

set

is

excluded

from

protection.

For

example,

if

two

applications

repeatedly

open

and

close

the

same

data

set

for

input

or

output

while

in

warning

mode,

data

integrity

processing

might

miss

the

violation,

depending

on

the

open/close

sequence.

This

situation

is

not

a

problem

when

the

application

is

running

in

ENFORCE

mode.

Table

33

describes

the

different

conditions

for

when

data

integrity

is

disabled

and

also

for

data

integrity

warnings.

Table

33.

Messages

for

Data

Integrity

Processing

Mode

Condition

Message

SMF

Record

Result

MODE(DISABLE)

Enhanced

data

integrity

is

not

active

(even

if

no

data

set

names

are

in

the

enhanced

data

integrity

table).

Sequential

data

sets

can

be

opened

for

output

concurrently.

IFGPSEDI

not

in

SYS1.PARMLIB

Enhanced

data

integrity

is

not

active.

Sequential

data

sets

can

be

opened

for

output

concurrently.

MODE(WARN)

If

the

data

set

is

being

opened

for

input

when

it

is

already

opened

for

output,

and

the

data

set

name

is

not

in

the

enhanced

data

integrity

table,

and

the

application

does

not

bypass

enhanced

data

integrity.

IEC984I

SMF

type

14

SMF14INO

flag

The

data

set

is

opened.

Sharing

Non-VSAM

Data

Sets

372

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

33.

Messages

for

Data

Integrity

Processing

(continued)

Mode

Condition

Message

SMF

Record

Result

MODE(WARN)

If

the

data

set

is

being

opened

for

output

when

it

is

already

opened

for

output,

and

the

data

set

name

is

not

in

the

enhanced

data

integrity

table,

and

the

application

does

not

bypass

enhanced

data

integrity.

IEC984I

SMF

type

15

SMF14OPO

flag

The

data

set

is

opened.

MODE(WARN)

If

the

data

set

is

being

opened

for

input

when

it

is

already

opened

for

output,

and

the

data

set

name

is

in

the

table

or

the

application

bypasses

enhanced

data

integrity.

IEC985I

SMF

type

14

SMF14EXT

flag

(if

in

EDI

table)

or

SMF14EPS

flag

(if

bypass

requested)

The

data

set

is

opened.

MODE(WARN)

If

the

data

set

is

being

opened

for

output

when

it

is

already

opened

for

output,

and

the

data

set

name

is

in

the

table

or

application

bypasses

enhanced

data

integrity.

IEC985I

SMF

type

15

SMF14EXT

flag

(if

in

EDI

table)

or

SMF14EPS

flag

(if

bypass

requested)

The

data

set

is

opened.

Data

Integrity

Violations

Table

34

describes

the

different

conditions

for

data

integrity

violations.

Note:

if

the

data

set

is

excluded

from

enhanced

data

integrity

processing

for

any

reason,

the

SMF14

and

SMF15

records

will

reflect

that

fact

even

for

the

first

open

of

the

data

set.

Also,

in

ENFORCE

mode

the

SMF14OPO

and

SFM14INO

flags

are

only

set

if

there

is

inconsistency

in

the

concurrent

opens

(the

data

set

was

not

excluded

during

the

first

open

but

was

excluded

during

later

ones).

Table

34.

Different

Conditions

for

Data

Integrity

Violations

Mode

Condition

Message

or

SMF

Record

Result

MODE(ENFORCE)

If

the

data

set

is

being

opened

for

output

when

it

is

already

opened

for

output,

and

the

data

set

name

is

not

in

the

enhanced

data

integrity

table

and

the

application

does

not

bypass

enhanced

data

integrity.

ABEND

213-FD

The

second

open

of

the

data

set

for

output

fails.

MODE(ENFORCE)

If

the

data

set

is

being

opened

for

input

when

it

is

already

opened

for

output,

and

the

data

set

name

is

not

in

the

table

and

the

application

does

not

bypass

enhanced

data

integrity.

SMF

type

14

SMF14INO

flag

The

second

open

of

the

data

set

for

input

is

allowed.

MODE(ENFORCE)

If

the

data

set

is

being

opened

for

input

when

it

is

already

opened

for

output,

and

the

data

set

name

is

in

the

table

or

the

application

bypasses

enhanced

data

integrity.

SMF

type

14

SMF14EXT

flag

(if

in

EDI

table),

SMF14EPS

flag

(if

bypass

requested),

SMF14INO

flag

The

second

open

of

the

data

set

for

input

is

allowed.

Sharing

Non-VSAM

Data

Sets

Chapter

23.

Sharing

Non-VSAM

Data

Sets

373

|
|
|
|
|

Table

34.

Different

Conditions

for

Data

Integrity

Violations

(continued)

Mode

Condition

Message

or

SMF

Record

Result

MODE(ENFORCE)

If

the

data

set

is

being

opened

for

output

when

it

is

already

opened

for

output,

and

the

data

set

name

is

in

the

enhanced

data

integrity

table

or

the

application

bypasses

enhanced

data

integrity.

SMF

type

15

SMF14EXT

(if

in

EDI

table),

SMF14EPS

flag

(if

bypass

requested),

SMF14OPO

flag

The

second

open

of

the

data

set

for

output

is

allowed.

PDSEs

See

“Sharing

PDSEs”

on

page

462

for

information

about

sharing

PDSEs.

Direct

Data

Sets

(BDAM)

See

“Sharing

DCBs”

on

page

570

for

more

information

on

sharing

direct

data

sets

using

BDAM.

Sharing

Non-VSAM

Data

Sets

374

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Factors

to

Consider

When

Opening

and

Closing

Data

Sets

Consider

the

following

factors

when

opening

and

closing

data

sets:

v

Two

or

more

DCBs

can

be

open

concurrently

for

output

to

the

same

PDSE

or

indexed

sequential

data

set.

Two

or

more

DCBs

should

never

be

concurrently

open

for

output

to

the

same

data

set,

except

in

the

following

situations:

–

using

the

basic

indexed

sequential

access

method

(BISAM).

–

using

PDSEs.

–

using

specially

written

BSAM,

BDAM,

or

EXCP

programs

with

sequential

data

sets.
v

For

all

data

sets

except

for

PDSEs,

if,

concurrently,

one

DCB

is

open

for

input

or

update,

and

one

for

output

to

the

same

data

set

on

direct

access

storage

devices,

the

input

or

update

DCB

might

be

unable

to

read

what

the

output

DCB

wrote

if

the

output

DCB

extended

the

data

set.

For

PDSEs,

the

system

dynamically

determines

that

the

data

set

has

been

extended.

v

When

an

extended

format

data

set

is

opened

for

reading,

OPEN

determines

the

number

of

blocks

in

the

data

set

as

of

the

previous

CLOSE

for

writing.

Any

data

added

after

the

open

for

reading

will

not

be

found

unless

you

supply

a

DCBE

with

PASTEOD=YES

for

the

reading

DCB.

It

should

be

set

before

reading.

For

QSAM

you

must

set

PASTEOD=YES

before

completion

of

the

DCB

OPEN

exit

routine

to

ensure

that

the

system

recognizes

it.

v

If

you

want

to

use

the

same

DD

statement

for

two

or

more

DCBs,

you

cannot

specify

parameters

for

fields

in

the

first

DCB,

then

obtain

the

default

parameters

for

the

same

fields

in

any

other

DCB

using

the

same

DD

statement.

This

is

true

for

both

input

and

output,

and

is

especially

important

when

you

are

using

more

than

one

access

method.

Any

action

on

one

DCB

that

alters

the

JFCB

affects

the

other

DCBs

and

thus

can

cause

unpredictable

results.

Therefore,

unless

the

parameters

of

all

DCBs

using

one

DD

statement

are

the

same,

you

should

use

separate

DD

statements.

v

Associated

data

sets

for

the

IBM

3525

Card

Punch

can

be

opened

in

any

order,

but

all

data

sets

must

be

opened

before

any

processing

can

begin.

Associated

data

sets

can

be

closed

in

any

order,

but,

after

a

data

set

has

been

closed,

I/O

operations

cannot

be

performed

on

any

of

the

associated

data

sets.

v

The

OPEN

macro

gets

user

control

blocks

and

user

storage

in

the

protection

key

in

which

the

OPEN

macro

is

issued.

Therefore,

any

task

that

processes

the

DCB

(such

as

Open,

Close,

or

EOV)

must

be

in

the

same

protection

key.

Control

of

Checkpoint

Data

Sets

on

Shared

DASD

Volumes

A

checkpoint

data

set

can

be

a

sequential

data

set

or

a

PDS,

but

it

cannot

be

a

VSAM

or

sequential

extended-format

data

set,

a

PDSE,

or

a

UNIX

file.

When

an

application

program

has

a

checkpoint,

the

system

records

information

about

the

status

of

that

program

in

a

checkpoint

data

set.

Checkpoint

data

sets

contain

system

data.

To

ensure

integrity

of

this

data,

checkpoint

data

sets

are,

by

default,

permitted

only

on

nonshared

DASD

and

tape

volumes.

If

a

user

could

read

a

checkpoint

data

set

(even

one

the

user

owns)

then

the

user

might

be

able

to

see

information

the

user

is

not

authorized

to

read.

If

a

user

could

modify

a

checkpoint

data

set

(including

one

the

user

owns)

the

user

might

be

able

to

use

it

to

bypass

all

security

and

integrity

checks

in

the

system.

Sharing

Non-VSAM

Data

Sets

Chapter

23.

Sharing

Non-VSAM

Data

Sets

375

|
|

On

systems

that

assure

data

set

integrity

across

multiple

systems,

you

may

be

authorized

to

create

checkpoints

on

shared

DASD

through

the

RACF

facility

class

“IHJ.CHKPT.volser”,

where

“volser”

is

the

volume

serial

of

the

volume

to

contain

the

checkpoint

data

set.

Data

set

integrity

across

multiple

systems

is

provided

when

enqueues

on

the

major

name

“SYSDSN”,

minor

name

“data

set

name”

are

treated

as

global

resources

(propagated

across

all

systems

in

the

complex)

using

multisystem

global

resource

serialization

(GRS)

or

an

equivalent

function.

If

a

checkpoint

data

set

is

on

shared

DASD,

DFSMS

issues

the

SAF

RACROUTE

macro

requesting

authorization

against

a

facility

class

profile

of

IHJ.CHKPT.volser

during

checkpoint

(“volser”

is

the

volume

serial

number

where

the

checkpoint

data

set

resides).

If

the

system

programmer

cannot

insure

data

set

integrity

on

any

shared

DASD

volumes,

the

system

programmer

need

not

take

any

further

action

(for

instance,

do

not

define

any

profile

to

RACF

which

would

cover

IHJ.CHKPT.volser).

You

cannot

take

checkpoints

on

shared

DASD

volumes.

If

data

set

integrity

is

assured

on

all

shared

DASD

volumes

and

the

system

programmer

wants

to

perform

a

checkpoint

on

any

of

these

volumes,

build

a

facility

class

generic

profile

with

a

name

of

IHJ.CHKPT.*

with

UACC

of

READ.

If

data

set

integrity

cannot

be

assured

on

some

of

the

volumes,

build

discrete

profiles

for

each

of

these

volumes

with

profile

names

of

IHJ.CHKPT.volser

with

UACC

of

NONE.

These

“volume-specific”

profiles

are

in

addition

to

the

generic

profiles

described

above

to

permit

checkpoints

on

shared

DASD

volumes

for

which

data

set

integrity

is

assured.

If

the

system

programmer

wants

to

let

some,

but

not

all,

users

to

create

checkpoints

on

the

volumes,

build

the

generic

profiles

with

UACC

of

NONE

and

permit

READ

access

only

to

those

specific

users

or

groups

of

users.

Information

in

a

checkpoint

data

set

includes

the

location

on

the

disk

or

tape

where

the

application

is

currently

reading

or

writing

each

open

data

set.

If

a

data

set

that

is

open

at

the

time

of

the

checkpoint

is

moved

to

another

location

before

the

restart,

you

cannot

restart

the

application

from

the

checkpoint

because

the

location-dependent

information

recorded

by

checkpoint/restart

is

no

longer

valid.

There

are

several

system

functions

(for

example,

DFSMShsm

or

DFSMSdss)

that

might

automatically

move

a

data

set

without

the

owner

specifically

requesting

it.

To

ensure

that

all

checkpointed

data

sets

remain

available

for

restart,

the

checkpoint

function

sets

the

unmovable

attribute

for

each

SMS-managed

sequential

data

set

that

is

open

during

the

checkpoint.

An

exception

is

the

data

set

containing

the

actual

recorded

checkpoint

information

(the

checkpoint

data

set),

which

does

not

require

the

unmovable

attribute.

You

can

move

checkpointed

data

sets

when

you

no

longer

need

them

to

perform

a

restart.

DFSMShsm

and

DFSMSdss

FORCECP(days)

enable

you

to

use

operations

such

as

migrate,

copy,

or

defrag

to

move

an

SMS-managed

sequential

data

set

based

on

a

number

of

days

since

the

last

access.

DFSMShsm

recall,

and

DFSMSdss

restore

and

copy,

are

operations

that

turn

off

the

unmovable

attribute

for

the

target

data

set.

Sharing

Non-VSAM

Data

Sets

376

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

See

z/OS

Security

Server

RACF

Command

Language

Reference

for

information

about

RACF

commands

and

z/OS

Security

Server

RACF

Security

Administrator’s

Guide

for

information

about

using

and

planning

for

RACF

options.

If

you

do

not

have

RACF

or

an

equivalent

product,

the

system

programmer

can

write

an

MVS

router

exit

that

is

invoked

by

SAF

and

can

be

used

to

achieve

the

above

functions.

See

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide

for

information

about

writing

this

exit.

System

Use

of

Search

Direct

for

Input

Operations

To

hasten

the

input

operations

required

for

a

data

set

on

DASD,

the

operating

system

uses

a

technique

called

search

direct

in

its

channel

programs.

Search

direct

reads

in

the

requested

record

and

the

count

field

of

the

next

record.

This

lets

the

operation

get

the

next

record

directly,

along

with

the

count

field

of

the

record

that

follows

it.

Search

direct

(OPTCD=Z)

is

an

obsolete

DCB

macro

and

DD

statement

option.

Now

the

system

generally

uses

this

technique

for

sequential

reading.

When

sharing

data

sets,

you

must

consider

the

restrictions

of

search

direct.

Search

direct

can

cause

unpredictable

results

when

multiple

DCBs

are

open

and

the

data

sets

are

being

shared,

and

one

of

the

applications

is

adding

records.

You

might

get

the

wrong

record.

Also,

you

might

receive

unpredictable

results

if

your

application

has

a

dependency

that

is

incompatible

with

the

use

of

search

direct.

Sharing

Non-VSAM

Data

Sets

Chapter

23.

Sharing

Non-VSAM

Data

Sets

377

378

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

24.

Spooling

and

Scheduling

Data

Sets

This

chapter

contains

information

about

the

following

topics.

Topic

Location

Job

Entry

Subsystem

379

SYSIN

Data

Set

380

SYSOUT

Data

Set

380

Spooling

includes

two

basic

functions:

v

Input

streams

are

read

from

the

input

device

and

stored

on

an

intermediate

storage

device

in

a

format

convenient

for

later

processing

by

the

system

and

by

the

user’s

program.

v

Output

streams

are

similarly

stored

on

an

intermediate

device

until

a

convenient

time

for

printing,

punching,

processing

by

a

TSO/E

user

or

sending

over

a

network

to

another

system.

With

spooling,

unit

record

devices

are

used

at

full

speed

if

enough

buffers

are

available.

They

are

used

only

for

the

time

needed

to

read,

print,

or

punch

the

data.

Without

spooling,

the

device

is

occupied

for

the

entire

time

it

takes

the

job

to

process.

Also,

because

data

is

stored

instead

of

being

transmitted

directly,

output

can

be

queued

in

any

order

and

scheduled

by

class

and

by

priority

within

each

class.

Scheduling

provides

the

highest

degree

of

system

availability

through

the

orderly

use

of

system

resources

that

are

the

objects

of

contention.

Job

Entry

Subsystem

The

job

entry

subsystem

(JES)

spools

and

schedules

input

and

output

data

streams.

It

controls

all

blocking

and

deblocking

of

your

data

to

make

the

best

use

of

system

operation.

The

BSAM

NCP

value

has

an

effect

on

the

access

method,

but

a

value

greater

than

1

does

not

improve

performance.

NCP

is

supported

for

compatibility

with

other

data

sets.

The

block

size

(BLKSIZE)

and

number

of

buffers

(BUFNO)

specified

in

your

program

have

no

relationship

with

what

is

actually

used

by

the

job

entry

subsystem.

Therefore,

you

can

select

the

blocking

factor

that

best

fits

your

application

program

with

no

effect

on

the

spooling

efficiency

of

the

system.

For

QSAM

applications,

move

mode

is

as

efficient

as

locate

mode.

SYSIN

and

SYSOUT

data

sets

cannot

be

system

managed.

SYSIN

and

SYSOUT

must

be

either

BSAM

or

QSAM

data

sets

and

you

open

and

close

them

in

the

same

manner

as

any

other

data

set

processed

on

a

unit

record

device.

Because

SYSIN

and

SYSOUT

data

sets

are

spooled

on

intermediate

devices,

you

should

avoid

using

device-dependent

macros

(such

as

FEOV,

CNTRL,

PRTOV,

or

BSP)

in

processing

these

data

sets.

See

“Achieving

Device

Independence”

on

page

393.

You

can

use

PRTOV,

but

it

will

have

no

effect.

For

more

information

about

SYSIN

and

SYSOUT

parameters

see

z/OS

MVS

JCL

User’s

Guide

and

z/OS

MVS

JCL

Reference.

Your

SYNAD

routine

is

entered

if

an

error

occurs

during

data

transmission

to

or

from

an

intermediate

storage

device.

Again,

because

the

specific

device

is

indeterminate,

your

SYNAD

routine

code

should

be

device

independent.

If

you

©

Copyright

IBM

Corp.

1987,

2004

379

specify

the

DCB

open

exit

routine

in

an

exit

list,

it

will

be

entered

in

the

usual

manner.

See

“DCB

Exit

List”

on

page

527

for

the

DCB

exit

list

format

and

“DCB

OPEN

Exit”

on

page

535.

SYSIN

Data

Set

You

enter

data

into

the

system

input

stream

by

preceding

it

with

a

DD

*

or

a

DD

DATA

JCL

statement.

This

is

called

a

SYSIN

data

set.

The

DD

name

is

not

necessarily

SYSIN.

A

SYSIN

data

set

cannot

be

opened

by

more

than

one

DCB

at

the

same

time;

that

would

result

in

an

S013

ABEND.

If

no

record

format

is

specified

for

the

SYSIN

data

set,

a

record

format

of

fixed

is

supplied.

Spanned

records

(RECFM=VS

or

VBS)

cannot

be

specified

for

SYSIN.

The

minimum

record

length

for

SYSIN

is

80

bytes.

For

undefined

records,

the

entire

80-byte

image

is

treated

as

a

record.

Therefore,

a

read

of

less

than

80

bytes

results

in

the

transfer

of

the

entire

80-byte

image

to

the

record

area

specified

in

the

READ

macro.

For

fixed

and

variable-length

records,

an

ABEND

results

if

the

LRECL

is

less

than

80

bytes.

The

logical

record

length

value

of

SYSIN

(JFCLRECL

field

in

the

JFCB)

is

filled

in

with

the

logical

record

length

value

of

the

input

data

set.

This

logical

record

length

value

is

increased

by

4

if

the

record

format

is

variable

(RECFM=V

or

VB).

The

logical

record

length

can

be

a

size

other

than

the

size

of

the

input

device,

if

the

SYSIN

input

stream

is

supplied

by

an

internal

reader.

JES

supplies

a

value

in

the

JFCLRECL

field

of

the

JFCB

if

that

field

is

found

to

be

zero.

The

block

size

value

(the

JFCBLKSI

field

in

the

JFCB)

is

filled

in

with

the

block

size

value

of

the

input

data

set.

This

block

size

value

is

increased

by

4

if

the

record

format

is

variable

(RECFM=V

or

VB).

JES

supplies

a

value

in

the

JFCBLKSI

field

of

the

JFCB

if

that

field

is

found

to

be

0.

SYSOUT

Data

Set

Your

output

data

can

be

printed

or

punched

from

an

output

stream

that

is

called

the

SYSOUT

data

set.

Code

the

SYSOUT

parameter

in

your

DD

statement

and

designate

the

appropriate

output

class.

For

example,

SYSOUT=A

requests

output

class

A.

Your

installation

establishes

the

class-device

relationship;

a

list

of

devices

assigned

to

each

output

class

will

enable

you

to

select

the

appropriate

one.

JES

permits

multiple

opens

to

the

same

SYSOUT

data

set,

and

the

records

are

interspersed.

However,

you

need

to

ensure

that

your

application

serializes

the

data

set.

For

more

information

about

serialization

see

Chapter

23,

“Sharing

Non-VSAM

Data

Sets,”

on

page

365.

From

open

to

close

of

a

particular

data

control

block

you

should

not

change

the

DCB

indicators

of

the

presence

or

type

of

control

characters.

When

directed

to

disk

or

tape,

all

the

DCB’s

for

a

particular

data

set

should

have

the

same

type

of

control

characters.

For

a

SYSOUT

data

set,

the

DCBs

can

have

either

type

of

control

character

or

none.

The

result

depends

on

the

ultimate

destination

of

the

data

set.

For

local

printers

and

punches,

each

record

is

processed

according

to

its

control

character.

Spooling

and

Scheduling

Data

Sets

380

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

When

you

use

QSAM

with

fixed-length

blocked

records

or

BSAM,

the

DCB

block

size

parameter

does

not

have

to

be

a

multiple

of

logical

record

length

(LRECL)

if

the

block

size

is

specified

in

the

SYSOUT

DD

statement.

Under

these

conditions,

if

block

size

is

greater

than,

but

not

a

multiple

of,

LRECL,

the

block

size

is

reduced

to

the

nearest

lower

multiple

of

LRECL

when

the

data

set

is

opened.

You

can

specify

blocking

for

SYSOUT

data

sets,

even

though

your

LRECL

is

not

known

to

the

system

until

execution.

Therefore,

the

SYSOUT

DD

statement

of

the

go

step

of

a

compile-load-go

procedure

can

specify

a

block

size

without

the

block

size

being

a

multiple

of

LRECL.

You

should

omit

the

DEVD

parameter

in

the

DCB

macro,

or

you

should

code

DEVD=DA.

You

can

use

the

SETPRT

macro

to

affect

the

attributes

and

scheduling

of

a

SYSOUT

data

set.

Your

program

is

responsible

for

printing

format,

pagination,

header

control,

and

stacker

select.

You

can

supply

control

characters

for

SYSOUT

data

sets

in

the

normal

manner

by

specifying

ANSI

or

machine

characters

in

the

DCB.

Standard

controls

are

provided

by

default

if

they

are

not

explicitly

specified.

The

length

of

output

records

must

not

exceed

the

allowable

maximum

length

for

the

ultimate

device.

Cards

can

be

punched

in

EBCDIC

mode

only.

You

can

supply

table

reference

characters

(TRC’s)

for

SYSOUT

data

sets

by

specifying

OPTCD=J

in

the

DCB.

When

the

data

set

is

printed,

if

the

printer

does

not

support

TRC’s

then

the

system

discards

them.

See

″Processing

SYSIN,

SYSOUT,

and

System

Data

Sets″

under

“Coding

Processing

Methods”

on

page

320.

Spooling

and

Scheduling

Data

Sets

Chapter

24.

Spooling

and

Scheduling

Data

Sets

381

382

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

25.

Processing

Sequential

Data

Sets

This

chapter

covers

the

following

topics.

Topic

Location

Creating

a

Sequential

Data

Set

383

Retrieving

a

Sequential

Data

Set

384

Concatenating

Data

Sets

Sequentially

385

Modifying

Sequential

Data

Sets

392

Achieving

Device

Independence

393

Improving

Performance

for

Sequential

Data

Sets

395

Determining

the

Length

of

a

Block

when

Reading

with

BSAM,

BPAM,

or

BDAM

398

Writing

a

Short

Format-FB

Block

with

BSAM

or

BPAM

399

Processing

Extended-Format

Sequential

Data

Sets

400

You

must

use

sequential

data

sets

for

all

magnetic

tape

devices,

punched

cards,

and

printed

output.

A

data

set

residing

on

DASD,

regardless

of

organization,

can

be

processed

sequentially.

You

can

also

process

sequentially

data

sets

created

using

BISAM

or

QISAM.

Because

the

entire

data

set

(prime,

index,

and

overflow

areas)

will

be

processed,

you

should

determine

what

type

of

records

are

involved.

Creating

a

Sequential

Data

Set

Use

either

the

QSAM

or

the

BSAM

to

store

and

retrieve

the

records

of

a

sequential

data

set.

To

create

a

sequential

data

set

on

magnetic

tape

or

DASD,

take

the

following

actions:

1.

Code

DSORG=PS

or

PSU

in

the

DCB

macro.

2.

Do

one

of

the

following:

v

Code

a

DD

statement

to

describe

the

data

set.

See

z/OS

MVS

JCL

Reference.

If

SMS

is

implemented

on

your

system,

you

can

specify

a

data

class

in

the

DD

statement

or

have

the

ACS

routines

assign

a

data

class.

v

Create

the

data

set

using

the

TSO

or

access

method

services

ALLOCATE

command.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

If

SMS

is

implemented

on

your

system,

you

can

specify

the

DATACLAS

parameter

or

have

the

ACS

routine

assign

a

data

class.

v

Call

dynamic

allocation

(SVC

99)

from

your

program.

See

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

If

SMS

is

implemented

on

your

system,

you

can

specify

the

data

class

text

unit

or

have

the

ACS

routines

assign

a

data

class.
3.

Optionally,

use

a

data

class

to

simplify

and

standardize

data

attributes.

You

can

take

advantage

of

a

data

class

for

data

sets

that

are

system

managed

or

not

system

managed.

4.

Process

the

data

set

with

an

OPEN

macro

(the

data

set

is

opened

for

OUTPUT,

OUTIN,

OUTINX,

or

EXTEND),

a

series

of

PUT

or

WRITE

and

CHECK

macros,

and

the

CLOSE

macro.

©

Copyright

IBM

Corp.

1987,

2004

383

The

example

in

Figure

67

shows

that

the

GET-move

and

PUT-move

require

two

movements

of

the

data

records.

If

the

record

length

(LRECL)

does

not

change

during

processing,

but

only

one

move

is

necessary,

you

can

process

the

record

in

the

input

buffer

segment.

A

GET-locate

provides

a

pointer

to

the

current

segment.

Related

reading:

See

“QSAM

in

an

Application”

on

page

347

for

more

information.

Retrieving

a

Sequential

Data

Set

To

retrieve

a

sequential

data

set

from

magnetic

tape,

DASD,

or

other

types

of

devices,

take

the

following

actions:

1.

Code

DSORG=PS

or

PSU

in

the

DCB

macro.

2.

Tell

the

system

where

your

data

set

is

located

(by

coding

a

DD

statement,

or

by

calling

dynamic

allocation

(TSO

ALLOCATE

command

or

SVC

99)).

3.

Process

the

data

set

with

an

OPEN

macro

(data

set

is

opened

for

input,

INOUT,

RDBACK,

or

UPDAT),

a

series

of

GET

or

READ

macros,

and

the

CLOSE

macro.

The

example

in

Figure

68

on

page

385

is

similar

to

that

in

Figure

67.

However,

because

there

is

no

change

in

the

record

length,

the

records

can

be

processed

in

the

input

buffer.

Only

one

move

of

each

data

record

is

required.

Related

reading:

See

“QSAM

in

an

Application”

on

page

347

for

more

information.

OPEN

(INDATA,,OUTDATA,(OUTPUT))

NEXTREC

GET

INDATA,WORKAREA

Move

mode

AP

NUMBER,=P’1’

UNPK

COUNT,NUMBER

Record

count

adds

6

OI

COUNT+5,X’F0’

Set

zone

bits

PUT

OUTDATA,COUNT

bytes

to

each

record

B

NEXTREC

ENDJOB

CLOSE

(INDATA,,OUTDATA)

...

COUNT

DS

CL6

WORKAREA

DS

CL50

NUMBER

DC

PL4’0’

SAVE14

DS

F

INDATA

DCB

DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EODAD=ENDJOB,

X

LRECL=50,RECFM=FB

OUTDATA

DCB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),

X

LRECL=56,RECFM=FB

...

Figure

67.

Creating

a

Sequential

Data

Set—Move

Mode,

Simple

Buffering

Processing

a

Sequential

Data

Set

384

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Concatenating

Data

Sets

Sequentially

The

system

can

retrieve

two

or

more

data

sets

and

process

them

successively

as

a

single

sequential

data

set.

This

is

called

sequential

concatenation.

The

number

of

data

sets

that

you

can

concatenate

with

sequential

concatenation

is

variable.

It

is

governed

by

the

maximum

size

of

the

TIOT

option.

The

system

programmer

controls

the

TIOT

size

with

the

option

ALLOCxx

member

of

SYS1.PARMLIB.

The

smallest

TIOT

value

allows

819

single-unit

DD

statements

or

64

DD

statements

having

the

maximum

number

of

units.

See

z/OS

MVS

Initialization

and

Tuning

Reference.

When

data

sets

are

sequentially

concatenated,

your

program

is

open

to

only

one

of

the

data

sets

at

a

time.

Concatenated

data

sets

cannot

be

read

backward.

A

sequential

concatenation

can

include

sequential

data

sets,

PDS

members,

PDSE

members,

and

UNIX

files.

With

sequential

concatenation,

the

system

treats

a

PDS,

PDSE,

or

UNIX

member

as

if

it

were

a

sequential

data

set.

The

system

treats

a

striped

extended-format

data

set

as

if

it

were

a

single-volume

data

set.

Rule:

You

cannot

concatenate

VSAM

data

sets.

End-of-Data-Set

(EODAD)

Processing.

When

the

change

from

one

data

set

to

another

is

made,

label

exits

are

taken

as

required;

automatic

volume

switching

is

also

performed

for

multiple

volume

data

sets.

When

your

program

reads

past

the

end

of

a

data

set,

control

passes

to

your

end-of-data-set

(EODAD)

routine

only

if

the

last

data

set

in

the

concatenation

has

been

processed.

Consecutive

Data

Sets

on

a

Tape

Volume.

To

save

time

when

processing

two

consecutive

sequential

data

sets

on

a

single

tape

volume,

specify

LEAVE

in

your

OPEN

macro,

or

DISP=(OLD,PASS)

in

the

DD

statement,

even

if

you

otherwise

would

code

DISP=(OLD,KEEP).

Reading

Directories.

You

can

use

BSAM

to

read

PDS

and

PDSE

directories.

You

can

use

BPAM

to

read

UNIX

directories

and

files.

For

more

information,

see

Chapter

28,

“Processing

z/OS

UNIX

Files,”

on

page

473.

Restriction:

You

cannot

use

BSAM

or

QSAM

to

read

a

UNIX

directory.

....

OPEN

(INDATA,,OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT))

NEXTREC

GET

INDATA

Locate

mode

LR

2,1

Save

pointer

AP

NUMBER,=P’1’

UNPK

0(6,2),NUMBER

Process

in

input

area

PUT

OUTDATA

Locate

mode

MVC

0(50,1),0(2)

Move

record

to

output

buffer

B

NEXTREC

ENDJOB

CLOSE

(INDATA,,OUTDATA,,ERRORDCB)

...

NUMBER

DC

PL4’0’

INDATA

DCB

DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EODAD=ENDJOB

OUTDATA

DCB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PL)

ERRORDCB

DCB

DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V,

C

BLKSIZE=128,LRECL=124

SAVE2

DS

F

...

Figure

68.

Retrieving

a

Sequential

Data

Set—Locate

Mode,

Simple

Buffering

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

385

Concatenating

Like

Data

Sets

Concatenation

can

be

thought

of

as

processing

a

sequence

of

like

or

unlike

data

sets.

The

system

treats

each

transition

between

consecutive

data

sets

as

being

like

or

unlike.

The

like

transitions

in

the

sequence

are

those

that

the

program

can

process

correctly

without

notifying

the

system

to

treat

the

data

set

as

unlike.

For

example,

you

must

concatenate

data

sets

with

different

record

formats

as

unlike

unless

the

data

meets

the

requirements

of

a

different

record

format.

For

example,

if

all

the

format-V

records

are

the

same

length,

you

can

specify

format-F

when

reading.

If

you

specify

format-U,

you

can

read

any

format.

If

either

of

the

data

sets

in

a

transition

is

system

managed,

you

can

treat

the

transition

as

like.

However,

you

must

ensure

that

both

data

sets

meet

all

like

concatenation

rules,

or

unpredictable

results

can

occur

(for

example,

OPEN

ABENDs).

Your

program

indicates

whether

the

system

is

to

treat

the

data

sets

as

like

or

unlike

by

setting

the

bit

DCBOFPPC.

The

DCB

macro

assembles

this

bit

as

0,

which

indicates

like

data

sets.

See

“Concatenating

Unlike

Data

Sets”

on

page

390.

Rules

for

a

Sequential

Like

Data

Set

To

be

a

like

data

set,

a

sequential

data

set

must

meet

all

the

following

conditions:

v

All

the

data

sets

in

a

concatenation

should

have

compatible

record

formats.

They

are

all

processed

with

the

record

format

of

the

first

data

set

in

the

concatenation

(see

“Persistence

of

DCB

and

DCBE

Fields”

on

page

387).

For

example

a

data

set

with

unblocked

records

can

be

treated

as

having

short

blocked

records.

A

data

set

with

fixed-blocked-standard

records

(format-FBS)

can

be

treated

as

having

just

fixed-blocked

records

(format-FB),

but

the

reverse

cannot

work.

Having

compatible

record

formats

does

not

ensure

that

like

processing

is

successful.

For

example,

if

the

record

format

of

the

first

data

set

in

the

concatenation

is

fixed

(format-F)

and

a

concatenated

data

set

has

fixed-blocked

records

(format-FB),

then

unpredictable

results,

such

an

I/O

errors

or

open

ABENDs,

can

occur,

but

the

reverse

should

work.

The

results

of

concatenating

data

sets

of

different

characteristics

can

also

depend

on

the

actual

data

record

size

and

on

whether

the

data

sets

are

system

managed.

For

example,

you

can

process

two

concatenated

data

sets

successfully

if

the

first

data

set

is

format-F

with

a

BLKSIZE

and

LRECL

of

80,

the

second

data

set

is

format-FB

with

a

BLKSIZE

of

800

and

an

LRECL

of

80,

the

second

data

set

is

not

system

managed,

and

the

actual

data

size

of

all

the

blocks

in

the

second

data

set

is

80

bytes.

However,

if

the

actual

data

size

of

a

block

is

greater

than

80

bytes,

an

I/O

error

occurs

when

the

system

reads

that

record

from

the

second

data

set.

Alternatively,

if

SMS

manages

the

second

data

set,

the

system

processes

data

from

the

first

data

set.

An

open

failure

(ABEND

013-60)

occurs

when

EOV

switches

to

the

concatenated

data

set,

however,

even

though

the

actual

data

size

of

all

the

records

can

be

compatible.

If

incompatible

record

formats

are

detected

in

the

concatenation

and

BSAM

is

being

used,

the

system

issues

a

warning

message,

see

“BSAM

Block

Size

with

Like

Concatenation”

on

page

388.

v

LRECL

is

same

as

the

LRECL

of

the

preceding

data

set.

With

format-V

or

-VB

records,

the

new

data

set

can

have

a

smaller

LRECL

than

is

in

the

DCB.

v

All

the

data

set

block

sizes

should

be

compatible.

For

format-F

or

-FB

records,

each

block

size

should

be

an

integral

multiple

of

the

same

LRECL

value.

v

If

you

code

the

BLKSIZE

parameter

in

the

DCB

or

DCBE

macro,

or

on

the

first

DD

statement,

the

block

size

of

each

data

set

must

be

less

than

or

equal

to

that

block

size.

Processing

a

Sequential

Data

Set

386

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Note:

If

you

specify

DCB

parameters

such

as

BLKSIZE,

LRECL,

or

BUFNO

when

allocating

a

data

set

after

the

first

one,

they

have

no

effect

when

your

program

uses

like

concatenation,

except

as

described

in

“BSAM

Block

Size

with

Like

Concatenation”

on

page

388.

You

can

specify

a

large

BLKSIZE

for

the

first

data

set

to

accommodate

a

later

data

set

with

blocks

of

that

size.

v

DASD

data

sets

that

are

accessed

by

QSAM

or

BSAM

can

be

concatenated

in

any

order

of

block

size.

If

you

are

using

QSAM,

you

must

use

system-created

buffers

for

the

data

set.

The

size

of

each

system-created

buffer

equals

the

block

sizes

rounded

up

to

a

multiple

of

8.

For

QSAM

the

system-created

buffers

are

used

to

process

all

data

sets

in

the

concatenation

unless

the

next

data

set’s

BLKSIZE

is

larger

than

the

buffers.

In

that

case,

the

buffers

are

freed

by

end-of-volume

processing

and

new

system-created

buffers

are

obtained.

This

also

means

the

buffer

address

returned

by

GET

is

only

guaranteed

valid

until

the

next

GET

or

FEOV

macro

is

issued,

because

the

buffer

pool

can

have

been

freed

and

a

new

system-created

buffer

pool

obtained

during

end-of-volume

concatenation

processing.

For

system-managed

data

set

processing,

see

“SMS-Managed

Data

Sets

with

Like

Concatenation”

on

page

388.

For

BSAM

processing

see

“BSAM

Block

Size

with

Like

Concatenation”

on

page

388.

v

For

QSAM,

if

a

data

set

after

the

first

one

is

on

magnetic

tape

and

has

a

block

size

larger

than

all

prior

specifications,

the

volume

must

have

IBM

or

ISO/ANSI

standard

tape

labels

or

the

BLKSIZE

must

be

specified

on

the

DD

statement.

v

For

BSAM,

if

a

data

set

after

the

first

one

is

on

magnetic

tape

and

has

a

block

size

larger

than

all

prior

specifications,

the

BLKSIZE

must

be

specified

on

the

DD

statement.

v

The

device

is

a

DASD,

tape,

or

SYSIN

device,

as

is

the

device

of

the

preceding

data

set.

For

example,

you

can

concatenate

a

tape

data

set

to

a

DASD

data

set,

or

you

can

concatenate

a

DASD

data

set

to

a

tape

data

set.

However,

you

cannot

concatenate

a

tape

data

set

to

a

card

reader.

Tip:

Regard

an

extended-format

sequential

data

set

as

having

the

same

characteristics

as

a

sequential

data

set.

v

If

mixed

tape

and

DASD,

the

POINT

or

CNTRL

macros

are

not

used.

Related

reading:

For

more

information,

see

“Concatenating

UNIX

Files

and

Directories”

on

page

490

and

“Concatenating

Extended-Format

Data

Sets

with

Other

Data

Sets”

on

page

404.

OPEN/EOV

Exit

Processing

If

the

program

has

a

DCB

OPEN

exit,

it

is

called

only

at

the

beginning

of

the

first

data

set.

With

like

concatenation,

if

the

program

has

an

end-of-volume

exit,

it

is

called

at

the

beginning

of

each

volume

of

each

data

set

except

the

first

volume

of

the

first

data

set.

If

the

type

of

data

set

does

not

have

volumes,

the

system

treats

it

as

having

one

volume.

Persistence

of

DCB

and

DCBE

Fields

Between

the

completion

of

OPEN

and

the

completion

of

CLOSE

with

like

concatenation,

the

system

can

change

certain

DCB

or

DCBE

fields

that

represent

data

attributes.

Your

program

and

the

system

do

not

change

the

following

attribute

fields:

v

RECFM

v

LRECL

for

format-F

for

BSAM

and

for

QSAM

XLRI

v

BLKSIZE

for

BSAM

(your

program

can

change

this)

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

387

v

KEYLEN

v

NCP

or

BUFNO

With

like

concatenation

the

system

can

change

the

following

when

switching

to

another

data

set:

v

BLKSIZE

and

BUFL

for

QSAM

v

Field

DCBDEVT

in

the

DCB

(device

type)

v

TRTCH

(tape

recording

technique)

v

DEN

(tape

density)

With

or

without

concatenation

the

system

sets

LRECL

in

the

DCB

for

each

QSAM

GET

macro

when

reading

format-V,

format-D,

or

format-U

records,

except

with

XLRI.

GET

issues

an

ABEND

if

it

encounters

a

record

that

is

longer

than

LRECL

was

at

the

completion

of

OPEN.

If

your

program

indicates

like

concatenation

(by

taking

no

special

action

about

DCBOFPPC)

and

one

of

the

like

concatenation

rules

is

broken,

the

results

are

unpredictable.

A

typical

result

is

an

I/O

error,

resulting

in

an

ABEND,

or

entry

to

the

SYNAD

routine.

The

program

might

even

appear

to

run

correctly.

SMS-Managed

Data

Sets

with

Like

Concatenation

If

SMS-managed

data

sets

are

being

concatenated,

then

the

system

does

additional

processing

for

the

transition

between

data

sets.

This

includes

additional

checking

of

data

set

attributes.

This

might

result

in

OPEN

issuing

an

ABEND

after

successful

completion

of

the

OPEN

that

the

user

program

issued.

A

violation

of

the

like

concatenation

requirements

could

result

in

an

ABEND

during

the

open

of

the

next

concatenated

data

set.

If

the

open

routine

for

QSAM

obtains

the

buffer

pool

automatically,

the

data

set

transition

process

might

free

the

buffer

pool

and

obtain

a

new

one

for

the

next

concatenated

data

set.

The

buffer

address

that

GET

returns

is

valid

only

until

the

next

GET

or

FEOV

macro

runs.

The

transition

process

frees

the

buffer

pool

and

obtains

a

new,

system-created

buffer

pool

during

end-of-volume

concatenation

processing.

The

procedure

does

not

free

the

buffer

pool

for

the

last

concatenated

data

set

unless

you

coded

RMODE31=BUFF.

You

should

also

free

the

system-created

buffer

pool

before

you

attempt

to

reopen

the

DCB,

unless

you

coded

RMODE31=BUFF.

BSAM

Block

Size

with

Like

Concatenation

After

BSAM

OPEN

has

merged

the

data

set

characteristics

from

the

label

to

the

JFCB

and

the

DCB

or

DCBE,

and

before

it

calls

your

DCB

OPEN

exit

routine,

OPEN

tries

to

search

later

DD

statements

to

see

if

BSAM

should

use

a

larger

maximum

block

size.

OPEN

searches

only

if

you

have

enabled

a

larger

block

size.

A

larger

block

size

is

enabled

if

all

three

of

the

following

conditions

are

true:

v

BLKSIZE

is

not

coded

in

the

DCB

or

DCBE

before

OPEN

or

in

the

first

JFCB.

Each

data

set

is

represented

by

a

JFCB.

v

RECFM

(record

format)

in

the

DCB

specifies

format-U

or

blocked

records.

Any

data

set

can

be

fixed-standard

blocked.

v

You

did

not

set

on

DCBOFPPC

(X'08'

in

DCBOFLGS,

which

is

at

+48

in

the

DCB).

This

is

the

unlike

attributes

bit.

If

you

have

enabled

a

larger

block

size,

OPEN

searches

later

concatenated

data

sets

for

the

largest

acceptable

block

size

and

stores

it

in

the

DCB

or

DCBE.

A

block

size

is

acceptable

if

it

comes

from

a

source

that

does

not

also

have

a

RECFM

or

LRECL

inconsistent

with

the

RECFM

or

LRECL

already

in

the

DCB.

Processing

a

Sequential

Data

Set

388

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Compatible

Characteristics:

For

format-F

records,

if

a

data

set

has

an

LRECL

value

that

differs

from

the

value

in

the

DCB,

the

block

size

for

that

data

set

is

not

considered

during

OPEN.

For

format-V

records,

if

a

data

set

has

an

LRECL

value

that

is

larger

than

the

value

in

the

DCB,

the

block

size

for

that

data

set

is

not

considered

during

OPEN.

A

RECFM

value

of

U

in

the

DCB

is

consistent

with

any

other

RECFM

value.

BSAM

considers

the

following

RECFM

values

compatible

with

the

specified

record

format

for

the

first

data

set:

v

F

or

FB—Compatible

record

formats

are

F,

FB,

FS,

and

FBS.

v

V

or

VB—Compatible

record

formats

are

V

and

VB.

v

U—All

other

record

formats

are

compatible.

If

OPEN

finds

an

inconsistent

RECFM,

it

will

issue

a

warning

message.

OPEN

does

not

examine

DSORG

when

testing

consistency.

It

does

not

issue

ABEND

since

you

might

not

read

as

far

as

that

data

set

or

you

might

later

turn

on

the

DCB

unlike

attributes

bit.

Even

though

RECFMs

of

concatenated

data

sets

can

be

considered

compatible

by

BSAM

(and

you

do

not

receive

the

expected

warning

message)

that

does

not

guarantee

they

can

be

successfully

processed.

It

still

can

be

necessary

to

treat

them

as

unlike.

BSAM

OPEN

Processing

Before

First

Data

Set:

OPEN

tests

the

JFCB

for

each

data

set

after

the

one

being

opened.

The

JFCB

contains

information

coded

when

the

data

set

was

allocated

and

information

that

OPEN

can

have

stored

there

before

it

was

dynamically

reconcatenated.

All

of

the

above

processing

previously

described

occurs

for

any

data

set

that

is

acceptable

to

BSAM.

The

OPEN

that

you

issue

does

not

read

tape

labels

for

data

sets

after

the

first.

Therefore,

if

there

is

a

tape

data

set

after

the

first

that

has

a

block

size

larger

than

all

of

the

prior

specifications,

the

BLKSIZE

value

must

be

specified

on

the

DD

statement.

The

system

later

reads

those

tape

labels

but

it

is

too

late

for

the

system

to

discover

a

larger

block

size

at

that

time.

For

each

data

set

whose

JFCB

contains

a

block

size

of

0

and

is

on

permanently

resident

DASD,

OPEN

obtains

the

data

set

characteristics

from

the

data

set

label

(DSCB).

If

they

are

acceptable

and

the

block

size

is

larger,

OPEN

copies

the

block

size

to

the

DCB

or

DCBE.

For

each

JFCB

or

DSCB

that

this

function

of

OPEN

examines,

OPEN

turns

off

the

DCB’s

standard

bit,

if

the

block

size

differs

from

the

DCB

or

DCBE

block

size

and

the

DCB

has

fixed

standard.

If

DCBBUFL,

either

from

the

DCB

macro

or

the

first

DD

statement,

is

nonzero,

then

that

value

will

be

an

upper

limit

for

BLKSIZE

from

another

data

set.

No

block

size

from

a

later

DD

statement

or

DSCB

is

used

during

OPEN

if

it

is

larger

than

that

DCBBUFL

value.

OPEN

ignores

that

larger

block

size

on

the

assumption

that

you

will

turn

on

the

unlike

attributes

bit

later,

will

not

read

to

that

data

set,

or

the

data

set

does

not

actually

have

blocks

that

large.

When

OPEN

finds

an

inconsistent

record

format,

it

issues

the

following

message:

IEC034I

INCONSISTENT

RECORD

FORMATS

rrr

AND

iii,ddname+cccc,dsname

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

389

In

the

message,

the

variables

represent

the

following

values.

rrr

Specifies

record

format

established

at

OPEN.

iii

Specifies

record

format

found

to

be

inconsistent.

It

is

in

a

JFCB

that

has

a

nonzero

BLKSIZE

or

in

a

DSCB.

cccc

Specifies

the

number

of

the

DD

statement

after

the

first

one,

where

+1

means

the

second

data

set

in

the

concatenation.

Example

of

BSAM

Like

Concatenation:

Figure

69

shows

an

example

of

JCL

for

a

like

concatenation

that

is

read

using

BSAM.

The

application

could

use

QSAM

instead

of

BSAM.

QSAM

does

not

require

BLKSIZE

to

be

coded

because

this

tape

data

set

on

3590

has

tape

labels.

This

example

requires

the

application

to

use

the

large

block

interface

because

the

BLKSIZE

value

is

so

large.

OPEN

finds

that

the

block

size

value

for

the

second

DD

is

larger

than

for

the

first

DD,

which

normally

is

80.

If

the

second

DD

is

for

a

disk

data

set,

its

maximum

block

size

is

32

760.

BSAM

OPEN

for

the

first

DD

uses

the

BLKSIZE

from

the

third

DD

because

it

is

the

largest.

Concatenating

Unlike

Data

Sets

To

concatenate

unlike

sequential

data

sets,

you

must

modify

the

DCBOFLGS

field

of

the

DCB

before

the

end

of

the

current

data

set

is

reached.

This

informs

the

system

that

you

are

concatenating

unlike

data

sets.

DCBOFPPC

is

bit

4

of

the

DCBOFLGS

field.

Set

bit

4,

DCBOFPPC,

to

1

by

using

the

instruction

OI

DCBOFLGS,X'08'.

If

DCBOFPPC

is

1,

end-of-volume

processing

for

each

data

set

issues

a

close

for

the

data

set

just

read,

and

an

open

for

the

next

concatenated

data

set.

This

closing

and

opening

procedure

updates

the

fields

in

the

DCB

and,

performs

the

other

functions

of

CLOSE

and

OPEN.

If

the

buffer

pool

was

obtained

automatically

by

the

open

routine,

the

procedure

also

frees

the

buffer

pool

and

obtains

a

new

one

for

the

next

concatenated

data

set.

The

procedure

does

not

free

the

buffer

pool

for

the

last

concatenated

data

set

unless

your

program

supplied

a

DCBE

with

RMODE31=BUFF.

Unless

you

have

some

way

of

determining

the

characteristics

of

the

next

data

set

before

it

is

opened,

you

should

not

reset

the

DCBOFLGS

field

to

indicate

like

attributes

during

processing.

When

you

concatenate

data

sets

with

unlike

attributes

(that

is,

turn

on

the

DCBOFPPC

bit

of

the

DCBOFLGS

field),

the

EOV

exit

is

not

taken

for

the

first

volume

of

any

data

set.

If

the

program

has

a

DCB

OPEN

exit

it

is

called

at

the

beginning

of

every

data

set

in

the

concatenation.

If

your

program

turns

DCBOFPPC

on

before

issuing

OPEN,

each

time

the

system

calls

your

DCB

OPEN

exit

routine

or

JFCBE

exit,

DCBESLBI

in

your

DCBE

is

on

//INPUT

DD

*

...

(instream

data

set)

//

DD

DSN=D42.MAIN.DATA,DISP=SHR

//

DD

DSN=D42.SUPPL.DATA,UNIT=(3590,2),DISP=OLD,BLKSIZE=150000

Figure

69.

Like

Concatenation

Read

through

BSAM

Processing

a

Sequential

Data

Set

390

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

only

if

the

current

data

set

being

started

supports

large

block

interface

(LBI).

If

you

want

to

know

in

advance

if

all

the

data

sets

support

LBI,

your

program

can

take

one

of

the

following

actions:

v

Leave

DCBOFPPC

off

until

after

OPEN.

You

do

not

need

it

on

until

your

program

attempts

to

read

a

record.

v

Issue

the

DEVTYPE

macro

with

INFO=AMCAP.

See

z/OS

DFSMSdfp

Advanced

Services.

When

a

new

data

set

is

reached

and

DCBOFPPC

is

on,

you

must

reissue

the

GET

or

READ

macro

that

detected

the

end

of

the

data

set

because

with

QSAM,

the

new

data

set

can

have

a

longer

record

length,

or

with

BSAM

the

new

data

set

can

have

a

larger

block

size.

You

might

need

to

allocate

larger

buffers.

Figure

70

shows

a

possible

routine

for

determining

when

a

GET

or

READ

must

be

reissued.

You

might

need

to

take

special

precautions

if

the

program

issues

multiple

READ

macros

without

intervening

CHECK

or

WAIT

macros

for

those

READS.

Do

not

issue

WAIT

or

CHECK

macros

to

READ

requests

that

were

issued

after

the

READ

that

detected

end-of-data.

These

restrictions

do

not

apply

to

data

set

to

data

set

transition

of

like

data

sets,

because

no

OPEN

or

CLOSE

operation

is

necessary

between

data

sets.

You

can

code

OPTCD=B

in

the

DD

statement,

or

you

can

code

it

for

dynamic

allocation.

You

cannot

code

OPTCD=B

in

the

DCB

macro.

This

parameter

has

an

effect

only

during

the

reading

of

IBM,

ISO,

or

ANSI

standard

labelled

tapes.

In

those

cases,

it

causes

the

system

to

treat

the

portion

of

the

data

set

on

each

tape

volume

as

a

complete

data

set.

In

this

way,

you

can

read

tapes

in

which

the

trailer

labels

incorrectly

are

end-of-data

instead

of

end-of-volume.

PROBPROG

Open

Process

DCBEXIT

Set Bit 4
of OFLGS

to 1

Return to
Open*

Set Reread
Switch Off

On

Off

Read and
CHECK
or GET

Set Reread
Switch On

*Return is to control program
address in register 14

Set Reread
Switch Off

Reread
Switch

Figure

70.

Reissuing

a

READ

or

GET

for

Unlike

Concatenated

Data

Sets

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

391

If

you

specify

OPTCD=B

in

the

DD

statement

for

a

multivolume

tape

data

set,

the

system

generates

the

equivalent

of

individual

concatenated

DD

statements

for

each

volume

serial

number

and

allocates

one

tape

drive

for

each

volume.

Restriction:

If

you

have

a

variable-blocked

spanned

(VBS)

data

set

that

spans

volumes

in

such

a

way

that

one

segment

(for

example,

the

first

segment)

is

at

the

end

of

the

first

volume

and

the

next

segment

(for

example,

the

middle

segment)

is

at

the

beginning

of

the

next

volume,

and

you

attempt

to

treat

these

volumes

as

separate

data

sets,

the

integrity

of

the

data

cannot

be

guaranteed.

QSAM

will

abend.

QSAM’s

job

is

to

ensure

that

it

can

put

all

of

the

segments

together.

This

restriction

will

also

be

based

on

the

data

and

whether

the

segments

are

split

up

between

volumes.

Modifying

Sequential

Data

Sets

You

can

modify

a

sequential

data

set

in

three

ways:

v

By

changing

the

data

in

existing

records

(update-in-place).

v

By

adding

new

records

to

the

end

of

a

data

set

(extends

the

data

set).

v

Or,

by

opening

for

OUTPUT

or

OUTIN

without

DISP=MOD

(replaces

the

data

set’s

contents).

The

effect

is

the

same

as

when

creating

the

data

set.

Related

reading:

See

“Creating

a

Sequential

Data

Set”

on

page

383.

Updating

in

Place

When

you

update

a

data

set

in

place,

you

read,

process,

and

write

records

back

to

their

original

positions

without

destroying

the

remaining

records

on

the

track.

The

following

rules

apply:

v

You

must

specify

the

UPDAT

option

in

the

OPEN

macro

to

update

the

data

set.

To

perform

the

update,

you

can

use

only

the

READ,

WRITE,

CHECK,

NOTE,

and

POINT

macros

or

you

use

only

GET

and

PUTX

macros.

To

use

PUTX,

code

MACRF=(GL,PL)

on

the

DCB

macro.

v

You

cannot

delete

any

record

or

change

its

length.

v

You

cannot

add

new

records.

v

The

data

set

must

be

on

a

DASD.

v

You

must

rewrite

blocks

in

the

same

order

in

which

you

read

them.

A

record

must

be

retrieved

by

a

READ

or

GET

macro

before

it

can

be

updated

by

a

WRITE

or

PUTX

macro.

A

WRITE

or

PUTX

macro

does

not

need

to

be

issued

after

each

READ

or

GET

macro.

The

READ

and

WRITE

macros

must

be

execute

forms

that

refer

to

the

same

data

event

control

block

(DECB).

The

DECB

must

be

provided

by

the

list

forms

of

the

READ

or

WRITE

macros.

Restriction:

You

cannot

use

the

UPDAT

option

to

open

a

compressed-format

data

set,

so

an

update-in-place

is

not

allowed

on

it.

Related

reading:

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

information

about

the

execute

and

list

forms

of

the

READ

and

WRITE

macros.

Using

Overlapped

Operations

To

overlap

I/O

and

processor

activity,

you

can

start

several

BSAM

read

or

write

operations

before

checking

the

first

operation

for

completion.

You

cannot

overlap

Processing

a

Sequential

Data

Set

392

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

read

with

write

operations,

however,

because

operations

of

one

type

must

be

checked

for

completion

before

operations

of

the

other

type

are

started

or

resumed.

Note

that

each

pending

read

or

write

operation

requires

a

separate

DECB.

If

a

single

DECB

were

used

for

successive

read

operations,

only

the

last

record

read

could

be

updated.

Related

reading:

See

Figure

84

on

page

428

for

an

example

of

an

overlap

achieved

by

having

a

read

or

write

request

outstanding

while

each

record

is

being

processed.

Extending

a

Data

Set

If

you

want

to

add

records

at

the

end

of

your

data

set,

you

must

open

the

data

set

for

output

with

DISP=MOD

specified

in

the

DD

statement,

or

specify

the

EXTEND

or

OUTINX

option

of

the

OPEN

macro.

You

can

then

issue

PUT

or

WRITE

macros

to

the

data

set.

Multivolume

DASD

Data

Set

If

all

of

the

following

are

true,

CLOSE

sets

on

a

last-volume

indicator

in

the

data

set

label

for

the

volume

containing

the

last

user

data

block:

v

DCB

opened

for

OUTPUT,

EXTEND,

OUTIN,

OUTINX,

or

INOUT

v

Most

recent

operation

was

PUT,

a

CHECK

for

a

WRITE,

or

(except

for

OPEN

INOUT)

an

OPEN.

v

DCB

closed

successfully

The

system

ensures

that

the

data

set

labels

on

prior

volumes

do

not

have

the

last-volume

indicator

on.

The

volume

with

the

last-volume

bit

on

is

not

necessarily

the

last

volume

that

contains

space

for

the

data

set

or

is

indicated

in

the

catalog.

A

later

volume

might

also

have

the

last

volume

bit

on.

When

you

later

extend

the

data

set

with

DISP=MOD

or

OPEN

with

EXTEND

or

OUTINX,

OPEN

must

determine

the

volume

containing

the

last

user

data.

With

a

system-managed

data

set,

OPEN

tests

each

volume

from

the

first

to

the

last

until

it

finds

the

last-used

volume.

With

a

non-system-managed

data

set,

the

system

follows

a

different

procedure.

First

OPEN

tests

the

data

set

label

on

the

last

volume

identified

in

the

JFCB

or

JFCB

extension.

If

the

last-volume

indicator

is

on,

OPEN

assumes

it

to

be

the

last-used

volume.

If

the

indicator

is

not

on,

OPEN

searches

the

volumes

from

the

first

to

the

second

to

last.

It

stops

when

it

finds

a

data

set

label

with

the

last-volume

indicator

on.

This

algorithm

is

for

compatibility

with

older

MVS

levels

that

supported

mountable

DASD

volumes.

If

this

algorithm

is

unacceptable,

you

can

either

delete

the

data

set

from

all

volumes

or

delete

the

data

set

from

the

volume

that

has

the

last-volume

indicator

on.

Extended-Format

Sequential

Data

Sets

For

information

on

extending

extended-format

sequential

data

sets,

see

“Extending

Striped

Sequential

Data

Sets”

on

page

404.

Achieving

Device

Independence

Device

independence

is

the

characteristic

of

programs

that

work

on

any

type

of

device,

DASD

or

tape,

for

example.

Achieving

device

independence

is

possible

only

for

a

sequential

data

set

because

input

or

output

can

be

on

DASD,

a

magnetic

tape

drive,

a

card

reader

or

card

punch,

a

printer,

a

spooled

data

set,

a

TSO/E

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

393

terminal,

or

a

dummy

data

set.

Other

data

set

organizations

(partitioned,

indexed

sequential,

direct,

and

VSAM)

are

device-dependent

because

they

require

the

use

of

DASD.

A

dummy

data

set

is

a

DD

statement

on

which

the

first

parameter

is

DUMMY

or

you

coded

the

DDNAME=

parameter

but

there

is

no

DD

statement

by

that

name.

You

can

use

BSAM

or

QSAM

with

a

dummy

data

set.

A

WRITE

or

PUT

macro

has

no

effect.

A

GET

macro

or

the

CHECK

macro

for

the

first

READ

macro

causes

your

EODAD

routine

to

be

called.

Device

independence

can

be

useful

for

the

following

tasks:

v

Accepting

data

from

several

recording

devices,

such

as

a

disk

volume,

magnetic

tape,

or

unit-record

equipment.

This

situation

could

arise

when

several

types

of

data

acquisition

devices

are

feeding

a

centralized

installation.

v

Bypassing

restrictions

imposed

by

the

unavailability

of

I/O

devices

(for

example,

when

devices

on

order

have

not

been

installed).

v

Assembling,

testing,

and

debugging

on

one

system

or

device

type

and

processing

on

a

different

one.

For

example,

an

IBM

3380

Direct

Access

Storage

drive

can

be

used

as

a

substitute

for

a

magnetic

tape

unit.

v

Testing

TSO

commands

such

as

REXX

execs

in

the

TSO/E

background.

To

make

your

program

device

independent,

take

the

following

actions:

v

Omit

all

device-dependent

macros

and

parameters

from

your

program.

For

maximum

efficiency

it

is

best

to

omit

the

BLKSIZE

parameter

with

a

BSAM,

BPAM

or

QSAM

DCB.

See

“System-Determined

Block

Size”

on

page

323.

v

Supply

the

parameters

on

your

data

definition

(DD)

statement,

data

class,

or

during

the

OPEN

exit

routine.

That

is,

do

not

specify

any

required

device-dependent

parameters

until

the

program

is

ready

for

execution.

Your

program

can

learn

many

of

the

device

characteristics

by

issuing

the

DEVTYPE

macro.

Device-Dependent

Macros

The

following

is

a

list

of

device-dependent

macros

and

macro

parameters.

Consider

only

the

logical

layout

of

your

data

record

without

regard

for

the

type

of

device

used.

Even

if

your

data

is

on

a

direct

access

volume,

treat

it

as

if

it

were

on

a

magnetic

tape.

For

example,

when

updating,

you

must

create

a

new

data

set

rather

than

attempt

to

update

the

existing

data

set.

OPEN—Specify

INPUT,

OUTPUT,

INOUT,

OUTIN,

OUTINX,

or

EXTEND.

The

parameters

RDBACK

and

UPDAT

are

device-dependent

and

can

cause

an

abnormal

end

if

directed

to

the

wrong

device

type

or

to

a

compressed

format

data

set

on

DASD.

READ—Specify

forward

reading

(SF)

only.

WRITE—Specify

forward

writing

(SF)

only;

use

only

to

create

new

records

or

modify

existing

records.

NOTE/POINT—These

macros

are

valid

for

both

magnetic

tape

and

direct

access

volumes.

To

maintain

independence

of

the

device

type

and

of

the

type

of

data

set

(sequential,

extended-format,

PDSE,

and

so

forth),

do

not

test

or

modify

the

word

returned

by

NOTE

or

calculate

a

word

to

pass

to

POINT.

Processing

a

Sequential

Data

Set

394

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

BSP—This

macro

is

valid

for

magnetic

tape

or

direct

access

volumes.

However,

its

use

would

be

an

attempt

to

perform

device-dependent

action.

SETPRT—Valid

only

for

directly

allocated

printers

and

for

SYSOUT

data

sets.

CNTRL/PRTOV—These

macros

are

device

dependent.

CLOSE—Although

CLOSE

is

a

device-independent

macro,

the

system

performs

processing

at

task

termination

that

differs

between

device

types.

If

the

task

terminates

abnormally

due

to

a

determinate

system

ABEND

for

an

output

QSAM

data

set

on

tape,

the

close

routines

that

would

normally

finish

processing

buffers

are

bypassed.

Any

outstanding

I/O

requests

are

purged.

Thus,

your

last

data

records

might

be

lost

for

a

QSAM

output

data

set

on

tape.

However,

if

the

data

set

resides

on

DASD,

the

close

routines

perform

the

buffer

flushing

which

writes

the

last

records

to

the

data

set.

If

you

cancel

the

task,

the

buffer

is

lost.

DCB

and

DCBE

Subparameters

Coding

MODE,

CODE,

TRTCH,

KEYLEN,

or

PRTSP

in

the

DCB

macro

makes

the

program

device-dependent.

However,

they

can

be

specified

in

the

DD

statement.

DEVD

—Specify

DA

if

any

DASD

might

be

used.

Magnetic

tape

and

unit-record

equipment

DCBs

will

fit

in

the

area

provided

during

assembly.

Specify

unit-record

devices

only

if

you

expect

never

to

change

to

tape

or

DASD.

KEYLEN—Can

be

specified

on

the

DD

statement

or

in

the

data

class

if

necessary.

RECFM,

LRECL,

BLKSIZE—These

parameters

can

be

specified

in

the

DD

statement,

data

class,

or

data

set

label.

However,

you

must

consider

maximum

record

size

for

specific

devices.

Also,

you

must

consider

if

you

want

to

process

XLRI

records.

DSORG—Specify

sequential

organization

(PS

or

PSU)

to

get

the

full

DCB

expansion.

OPTCD—This

parameter

is

device

dependent;

specify

it

in

the

DD

statement.

SYNAD—Any

device-dependent

error

checking

is

automatic.

Generalize

your

routine

so

that

no

device-dependent

information

is

required.

Improving

Performance

for

Sequential

Data

Sets

To

make

the

I/O

operations

required

for

a

data

set

faster,

the

operating

system

provides

a

technique

called

chained

scheduling.

Chained

scheduling

is

not

a

DASD

option;

it

is

built

into

the

access

method

for

DASD.

When

chained

scheduling

is

used,

the

system

dynamically

chains

several

I/O

operations

together.

A

series

of

separate

read

or

write

operations,

functioning

with

chained

scheduling,

is

issued

to

the

computing

system

as

one

continuous

operation.

The

I/O

performance

is

improved

by

reducing

both

the

processor

time

and

the

channel

start/stop

time

required

to

transfer

data

to

or

from

virtual

storage.

Some

factors

that

affect

performance

follow:

v

Address

space

type

(real

or

virtual)

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

395

v

Block

size.

Larger

blocks

are

more

efficient.

You

can

get

significant

performance

improvement

by

using

LBI,

large

block

interface.

It

allows

tape

blocks

longer

than

32

760

bytes.

v

BUFNO

for

QSAM

v

The

number

of

overlapped

requests

for

BSAM

(NCP=number

of

channel

programs)

and

whether

the

DCB

points

to

a

DCBE

that

has

MULTACC

coded

v

Other

activity

on

the

processor

and

channel

v

Device

class

(for

example,

DASD,

tape)

and

type

(for

example,

IBM

3390,

3490)

v

Data

set

type

(for

example,

PDSE,

UNIX,

extended-format)

v

Number

of

stripes

if

extended-format.

An

extended-format

sequential

data

set

can

have

59

stripes.

However,

allocating

more

than

four

or

five

stripes

generally

does

not

improve

performance.

IBM

recommends

setting

the

number

of

stripes

equal

to

the

number

of

buffers.

If

your

data

set

has

too

many

stripes,

you

will

waste

virtual

and

real

storage.

The

system

defaults

to

chained

scheduling

for

non

DASD,

except

for

printers

and

format-U

records,

and

for

those

cases

in

which

it

is

not

permitted.

Chained

scheduling

is

most

valuable

for

programs

that

require

extensive

input

and

output

operations.

Because

a

data

set

using

chained

scheduling

can

monopolize

available

time

on

a

channel

in

a

V=R

region,

separate

channels

should

be

assigned,

if

possible,

when

more

than

one

data

set

is

to

be

processed.

Limitations

on

Using

Chained

Scheduling

with

Non-DASD

Data

Sets

The

following

are

limitations

on

using

chained

scheduling:

v

Each

data

set

for

which

chained

scheduling

is

used

must

be

assigned

at

least

two

(and

preferably

more)

buffers

with

QSAM,

or

must

have

a

value

of

at

least

two

(and

preferably

more)

for

the

NCP

parameter

with

BSAM.

v

A

request

for

exchange

buffering

is

not

honored,

but

defaults

to

move

mode

and,

therefore,

has

no

effect

on

either

a

request

for

chained

scheduling

or

a

default

to

chained

scheduling.

Exchange

buffering

is

an

obsolete

DCB

option.

v

A

request

for

chained

scheduling

is

ignored

and

normal

scheduling

used

if

any

of

the

following

are

met

when

the

data

set

is

opened:

–

CNTRL

macro

is

to

be

used.

–

Embedded

VSE

checkpoint

records

on

tape

input

are

bypassed

(OPTCD=H).

–

Data

set

is

not

magnetic

tape

or

unit

record.

–

NCP=1

with

BSAM

or

BUFNO=1

with

QSAM.

–

It

is

a

print

data

set,

or

any

associated

data

set

for

the

3525

Card

Punch.
v

The

number

of

channel

program

segments

that

the

system

can

chain

together

is

limited

to

the

value

specified

in

the

NCP

parameter

of

BSAM

DCBs,

and

to

the

value

specified

in

the

BUFNO

parameter

of

QSAM

DCBs.

v

When

the

data

set

is

a

printer,

chained

scheduling

is

not

supported

when

channel

9

or

channel

12

is

in

the

carriage

control

tape

or

FCB.

v

When

chained

scheduling

is

used,

the

automatic

skip

feature

of

the

PRTOV

macro

for

the

printer

will

not

function.

Format

control

must

be

achieved

by

ANSI

or

machine

control

characters.

v

When

you

are

using

QSAM

under

chained

scheduling

to

read

variable-length,

blocked,

ASCII

tape

records

(format-DB),

you

must

code

BUFOFF=L

in

the

DCB

for

that

data

set.

Processing

a

Sequential

Data

Set

396

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

If

you

are

using

BSAM

with

the

chained

scheduling

option

to

read

format-DB

records,

and

have

coded

a

value

for

the

BUFOFF

parameter

other

than

BUFOFF=L,

the

input

buffers

are

converted

from

ASCII

to

EBCDIC

for

Version

3

(or

to

the

specified

character

set

(CCSID)

for

Version

4)

as

usual,

but

the

record

length

returned

to

the

DCBLRECL

field

equals

the

maximum

block

size

for

the

data

set,

not

the

actual

length

of

the

block

read

in.

Each

record

descriptor

word

(RDW),

if

present,

is

not

converted

from

ASCII

to

binary.

Related

reading:

See

“Using

Optional

Control

Characters”

on

page

306

and

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

more

information

about

control

characters.

DASD

and

Tape

Performance

For

DASD,

the

DCB

OPTCD=C

option

has

no

effect.

It

requests

chained

scheduling

but

the

access

method

automatically

uses

equivalent

techniques.

In

QSAM,

the

value

of

BUFNO

determines

how

many

buffers

will

be

chained

together

before

I/O

is

initiated.

The

default

value

of

BUFNO

is

described

in

“Constructing

a

Buffer

Pool

Automatically”

on

page

344.

When

enough

buffers

are

available

for

reading

ahead

or

writing

behind,

QSAM

attempts

to

read

or

write

those

buffers

in

successive

revolutions

of

the

disk.

In

BSAM

and

BPAM,

the

first

READ

or

WRITE

instruction

initiates

I/O

unless

the

system

is

honoring

your

MULTACC

specification

in

the

DCBE

macro.

The

system

puts

subsequent

I/O

requests

(without

an

associated

CHECK

or

WAIT

instruction)

in

a

queue.

When

the

first

I/O

request

completes

normally,

the

system

checks

the

queue

for

pending

I/O

requests

and

builds

a

channel

program

for

as

many

of

these

requests

as

possible.

The

number

of

I/O

requests

that

the

system

can

chain

together

is

the

maximum

number

of

requests

that

the

system

can

process

in

one

I/O

event.

This

limit

is

less

than

or

equal

to

the

NCP

value.

For

better

performance

with

BSAM

and

BPAM,

use

the

technique

described

in

“Using

Overlapped

I/O

with

BSAM”

on

page

353

and

Figure

83

on

page

425.

Recommendation:

Use

the

MULTACC

and

MULTSDN

parameters

in

the

DCBE

macro

for

maximum

performance

with

BSAM

and

BPAM.

For

sequential

data

sets

and

PDSs,

specifying

a

nonzero

MULTACC

value

on

a

DCBE

macro

can

result

in

more

efficient

channel

programs.

You

can

also

code

a

nonzero

MULTSDN

value.

If

MULTSDN

is

nonzero

and

DCBNCP

is

zero,

OPEN

determines

a

value

for

NCP

and

stores

that

value

in

DCBNCP

before

giving

control

to

the

DCB

open

exit.

If

MULTACC

is

nonzero

and

your

program

uses

the

WAIT

or

EVENTS

macro

on

a

DECB

or

depends

on

a

POST

exit

for

a

DECB,

then

you

must

precede

that

macro

or

dependence

by

a

CHECK

or

TRUNC

macro.

Note:

1.

For

compressed

format

data

sets,

MULTACC

is

ignored

since

all

buffering

is

handled

internally

by

the

system.

2.

For

tape

data

sets

using

large

block

interface

(LBI)

that

have

a

block

size

greater

than

32

768,

the

system-determined

NCP

value

is

between

2

and

16.

If

the

calculated

value

is

<2,

it

is

set

to

2,

and

if

it

is

>16,

it

is

set

to

16.

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

397

Determining

the

Length

of

a

Block

when

Reading

with

BSAM,

BPAM,

or

BDAM

When

you

read

a

sequential

data

set,

you

can

determine

the

length

of

the

block

in

one

of

the

following

ways,

depending

on

the

access

method

and

record

format

of

the

data

set.

For

unblocked

and

undefined

record

formats,

each

block

contains

one

logical

record.

1.

Fixed-length,

unblocked

records:

The

length

of

all

records

is

the

value

in

the

DCBBLKSI

field

of

the

DCB

without

LBI

or

the

DCBEBLKSI

field

of

the

DCBE

with

LBI.

You

can

use

this

method

with

BSAM

or

BPAM.

2.

Variable-length

records

and

Format-D

records

with

BUFOFF=L:

The

block

descriptor

word

in

the

block

contains

the

length

of

the

block.

You

can

use

this

method

with

BSAM

or

BPAM.

“Block

Descriptor

Word

(BDW)”

on

page

291

describes

the

BDW

format.

3.

Format-D

records

without

BUFOFF=L:

The

block

length

is

in

DCBLRECL

after

you

issue

the

CHECK

macro.

It

remains

valid

until

you

again

issue

a

CHECK

macro.

4.

Undefined-length

records

when

using

LBI

or

for

fixed-length

blocked:

The

method

described

in

the

following

paragraphs

can

be

used

to

calculate

the

block

length.

You

can

use

this

method

with

BSAM,

BPAM,

or

BDAM.

(It

should

not

be

used

when

using

chained

scheduling

with

format-U

records.

In

that

case,

the

length

of

a

record

cannot

be

determined.

a.

After

issuing

the

CHECK

macro

for

the

DECB

for

the

READ

request,

but

before

issuing

any

subsequent

data

management

macros

that

specify

the

DCB

for

the

READ

request,

obtain

the

status

area

address

in

the

word

that

is

16

bytes

from

the

start

of

the

DECB.

b.

If

you

are

not

using

LBI,

take

the

following

steps:

1)

Obtain

the

residual

count

that

has

been

stored

in

the

status

area.

The

residual

count

is

in

the

halfword,

14

bytes

from

the

start

of

the

status

area.

2)

Subtract

this

residual

count

from

the

number

of

data

bytes

requested

to

be

read

by

the

READ

macro.

If

'S'

was

coded

as

the

length

parameter

of

the

READ

macro,

the

number

of

bytes

requested

is

the

value

of

DCBBLKSI

at

the

time

the

READ

was

issued.

If

the

length

was

coded

in

the

READ

macro,

this

value

is

the

number

of

data

bytes

and

it

is

contained

in

the

halfword

6

bytes

from

the

beginning

of

the

DECB.

The

result

of

the

subtraction

is

the

length

of

the

block

read.

If

you

are

using

LBI

for

BSAM

or

BPAM,

subtract

12

from

the

address

of

the

status

area.

This

gives

the

address

of

the

4

bytes

that

contain

the

length

of

the

block

read.
5.

Undefined-length

records

when

not

using

LBI:

The

actual

length

of

the

record

that

was

read

is

returned

in

the

DCBLRECL

field

of

the

DCB.

Because

of

this

use

of

DCBLRECL,

you

should

omit

LRECL.

Use

this

method

only

with

BSAM,

or

BPAM

or

after

issuing

a

QSAM

GET

macro.

Figure

71

on

page

399

shows

an

example

of

determining

the

length

of

a

record

when

using

BSAM

to

read

undefined-length

records.

Processing

a

Sequential

Data

Set

398

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

When

you

write

a

short

block

to

an

extended-format

data

set,

the

system

pads

it

to

full

length

but

retains

the

value

of

what

your

program

said

is

the

length.

When

you

read

such

a

block,

be

aware

that

the

system

reads

as

many

bytes

as

the

block

can

have

and

is

not

limited

by

the

length

specified

for

the

write.

If

you

know

that

a

particular

block

is

short

and

you

plan

to

read

it

to

a

short

data

area,

then

you

must

decrease

DCBBLKSI

or

DCBEBLKSI

with

LBI

to

the

length

of

the

short

area

before

the

READ.

Writing

a

Short

Format-FB

Block

with

BSAM

or

BPAM

If

you

have

fixed-blocked

record

format,

you

can

change

the

length

of

a

block

when

you

are

writing

blocks

for

a

sequential

data

set.

You

can

change

the

DCB

block

size

field

(DCBBLKSI,

without

LBI)

or

DCBE

block

size

field

(DCBEBLKSI,

with

LBI)

to

specify

a

block

size

that

is

shorter

than

what

was

originally

specified

for

the

data

set.

You

should

not,

however,

change

that

field

to

specify

a

block

size

that

is

greater

than

what

was

originally

specified.

You

change

block

size

in

the

DCB

or

DCBE

before

issuing

the

WRITE

macro.

It

must

be

a

multiple

of

the

LRECL

parameter

in

the

DCB.

After

this

is

done,

any

subsequent

WRITE

macros

issued

write

records

with

the

new

block

length

until

you

change

the

block

size

again.

This

technique

works

for

all

data

sets

supported

by

BSAM

or

BPAM.

With

extended-format

sequential

data

sets,

the

system

actually

writes

all

blocks

in

the

data

set

as

the

same

size,

but

on

a

READ

returns

the

length

specified

on

the

WRITE

for

the

block.

...

OPEN

(DCB,(INPUT))

LA

DCBR,DCB

USING

IHADCB,DCBR

...

READ

DECB1,SF,DCB,AREA1,’S’

READ

DECB2,SF,DCB,AREA2,50

...

CHECK

DECB1

LH

WORK1,DCBBLKSI

Block

size

at

time

of

READ

L

WORK2,DECB1+16

Status

area

address

SH

WORK1,14(WORK2)

WORK1

has

block

length

...

CHECK

DECB2

LH

WORK1,DECB2+6

Length

requested

L

WORK2,DECB2+16

Status

area

address

SH

WORK1,14(WORK2)

WORK1

has

block

length

...

MVC

DCBBLKSI,LENGTH3

Length

to

be

read

READ

DECB3,SF,DCB,AREA3

...

CHECK

DECB3

LH

WORK1,LENGTH3

Block

size

at

time

of

READ

L

WORK2,DECB+16

Status

area

address

SH

WORK1,14(WORK2)

WORK1

has

block

length

...

DCB

DCB

...RECFM=U,NCP=2,...

DCBD

...

Figure

71.

One

Method

of

Determining

the

Length

of

a

Record

when

Using

BSAM

to

Read

Undefined-Length

or

Blocked

Records

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

399

Recommendation:

You

can

create

short

blocks

for

PDSEs

but

their

block

boundaries

are

not

saved

when

the

data

set

is

written

to

DASD.

Therefore,

if

your

program

is

dependent

on

short

blocks,

do

not

use

a

PDSE.

Related

reading:

See

“Processing

PDSE

Records”

on

page

436

for

information

about

using

short

blocks

with

PDSEs.

Using

Hiperbatch

Hiperbatch

is

an

extension

of

QSAM

designed

to

improve

performance

in

specific

situations.

Hiperbatch

uses

the

data

lookaside

facility

(DLF)

services

to

provide

an

alternate

fast

path

method

of

making

data

available

to

many

batch

jobs.

Through

Hiperbatch,

applications

can

take

advantage

of

the

performance

benefits

of

the

operating

system

without

changing

existing

application

programs

or

the

JCL

used

to

run

them.

Either

Hiperbatch

or

extended-format

data

sets

can

improve

performance,

but

they

cannot

be

used

for

the

same

data

set.

Related

reading:

See

MVS

Hiperbatch

Guide

for

information

about

using

Hiperbatch.

See

z/OS

MVS

System

Commands

for

information

about

the

DLF

commands.

Hiperbatch

Striping

Uses

Hiperspace

Requires

certain

hardware

Improved

performance

requires

multiple

reading

programs

at

the

same

time

Performance

is

best

with

only

one

program

at

a

time

Relatively

few

data

sets

in

the

system

can

use

it

at

once

Larger

number

of

data

sets

can

be

used

at

once

QSAM

only

QSAM

and

BSAM

Processing

Extended-Format

Sequential

Data

Sets

Extended-format

sequential

data

sets,

for

most

purposes,

have

the

same

characteristics

as

sequential

data

sets.

However,

records

are

not

necessarily

stored

in

the

same

format

or

order

as

they

appear.

You

can

refer

to

an

extended-format

data

set

as

a

striped

data

set

if

its

data

is

interleaved

across

multiple

volumes.

This

is

called

sequential

data

striping.

Large

data

sets

with

high

I/O

activity

are

the

best

candidates

for

striped

data

sets.

Data

sets

defined

as

extended-format

sequential

must

be

accessed

using

BSAM

or

QSAM,

and

not

EXCP

or

BDAM.

Characteristics

of

Extended-Format

Data

Sets

The

following

characteristics

describe

extended-format

sequential

data

sets:

v

Extended-format

sequential

data

sets

have

a

maximum

of

123

extents

on

each

volume.

(Sequential

data

sets

have

a

maximum

of

16

extents

on

each

volume.)

v

Each

extended-format

sequential

data

set

can

have

a

maximum

of

59

volumes.

Therefore,

an

extended-format

sequential

data

set

can

have

a

maximum

of

7257

extents

(123

times

59).

v

An

extended-format

data

set

can

occupy

any

number

of

tracks.

On

a

volume

that

has

more

than

65,535

tracks,

a

sequential

data

set

cannot

occupy

more

than

65,535

tracks.

Processing

a

Sequential

Data

Set

400

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

An

extended-format,

striped

sequential

data

set

can

contain

up

to

4

GB

blocks.

The

maximum

size

of

each

block

is

32

760

bytes.

v

Extended-format

sequential

data

sets

can

detect

control

unit

padding.

On

input,

the

system

provides

an

I/O

error

instead

of

returning

bad

data

when

it

detects

an

error

due

to

control

unit

padding.

This

type

of

data

padding

can

occur

in

the

following

situations:

–

when

the

processor

loses

electrical

power

while

writing

a

block.

–

when

an

operator

issues

the

CANCEL

command.

–

during

a

timeout.

–

during

an

ABEND

when

PURGE=QUIESCE

was

not

specified

on

the

active

ESTAE

macro.
v

The

system

can

detect

an

empty

extended-format

sequential

data

set.

If

an

extended-format

sequential

data

set

is

opened

for

input

and

that

data

set

has

never

been

written

to,

the

first

read

detects

end-of-data

and

the

EODAD

routine

is

entered.

You

can

override

this

with

the

PASTEOD

parameter

on

the

DCBE

macro.

v

No

space

for

user

labels

is

allocated

for

extended-format

data

sets.

If

you

specify

SUL

in

the

LABEL

value

when

creating

an

extended-format

sequential

data

set,

the

data

set

is

treated

by

the

system

as

standard

label

(SL).

v

All

physical

blocks

in

an

extended-format

sequential

data

set

are

the

same

size

but

when

a

program

reads

a

block,

the

access

method

returns

the

length

written

by

the

writing

program.

The

maximum

block

size

for

the

data

set

is

in

the

BLKSIZE

field

in

the

DCB

or

DCBE,

depending

on

whether

you

are

using

LBI.

The

system

determines

the

block

size

of

the

data

set

to

be

BLKSIZE

in

the

DCB

or

DCBE

at

OPEN

for

QSAM,

or

the

maximum

of

BLKSIZE

at

OPEN

and

BLKSIZE

at

first

WRITE

for

BSAM.

For

RECFM=U,

the

system

can

take

the

length

from

the

DECB

instead

of

the

DCB

or

DCBE

at

first

WRITE.

The

system

pads

short

blocks

that

the

user

passes;

the

system

writes

full

blocks.

However,

an

attempt

to

write

a

block

with

a

larger

value

than

the

maximum

for

the

data

set

fails

with

ABEND

002-68.

v

Each

block

in

an

extended-format

data

set

has

a

32-byte

suffix,

which

is

added

by

the

system.

Your

program

does

not

see

this

suffix,

but

you

might

need

to

consider

it

when

you

calculate

disk

space

requirements.

Allocating

Extended-Format

Data

Sets

Guidelines

for

allocating

extended-format

data

sets:

v

Usually,

sequential

data

striping

does

not

require

any

changes

to

existing

JCL.

To

allocate

an

extended-format

sequential

data

set,

specify

EXTENDED

for

the

DSNTYPE

value

in

the

data

class.

v

Usually,

no

changes

to

applications

are

needed

to

access

extended-format

sequential

data

sets.

v

You

can

allocate

extended-format

sequential

data

sets

only

on

certain

devices

and

on

system-managed

volumes.

Restrictions:

The

following

types

of

data

sets

cannot

be

allocated

as

extended-format

sequential

data

sets:

v

PDS,

PDSE,

and

direct

data

sets,

except

VSAM

v

Non-system-managed

data

sets

v

VIO

data

sets.

The

following

types

of

data

sets

should

not

be

allocated

as

extended-format

sequential

data

sets:

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

401

v

System

data

sets

v

GTF

trace

v

Data

Facility

Sort

(DFSORT™)

work

data

sets

v

Data

sets

used

with

Hiperbatch

v

Data

sets

accessed

with

EXCP

v

Data

sets

used

with

checkpoint/restart

Related

reading:

See

“Determining

the

Length

of

a

Block

when

Reading

with

BSAM,

BPAM,

or

BDAM”

on

page

398

for

more

information.

Allocating

Compressed-Format

Data

Sets

An

extended-format

data

set

can

be

allocated

in

the

compressed

format

by

specifying

COMPACTION

=

YES

in

the

data

class.

These

data

sets

are

called

compressed

format

data

sets.

A

compressed

format

data

set

permits

block

level

compression.

Types

of

Compression

Two

compression

techniques

are

available

for

compressed

format

data

sets.

They

are

DBB-based

compression

and

tailored

compression.

These

techniques

determine

the

method

used

to

derive

a

compression

dictionary

for

the

data

sets:

v

DBB-based

compression

(also

referred

to

as

GENERIC).

With

DBB-based

compression

(the

original

form

of

compression

used

with

both

sequential

and

VSAM

KSDS

compressed

format

data

sets),

the

system

selects

a

set

of

dictionary

building

blocks

(DBBs),

found

in

SYS1.DBBLIB,

which

best

reflects

the

initial

data

written

to

the

data

set.

The

system

can

later

reconstruct

the

dictionary

by

using

the

information

in

the

dictionary

token

stored

in

the

catalog.

v

Tailored

compression.

With

tailored

compression,

the

system

attempts

to

derive

a

compression

dictionary

tailored

specifically

to

the

initial

data

written

to

the

data

set.

Once

derived,

the

compression

dictionary

is

stored

in

system

blocks

which

are

imbedded

within

the

data

set

itself.

An

OPEN

for

input

reconstructs

the

dictionary

by

reading

in

the

system

blocks

containing

the

dictionary.

This

form

of

compression

is

not

supported

for

VSAM

KSDSs.

The

form

of

compression

the

system

is

to

use

for

newly

created

compressed

format

data

sets

can

be

specified

at

either

or

both

the

data

set

level

and

at

the

installation

level.

At

the

data

set

level,

the

storage

administrator

can

specify

TAILORED

or

GENERIC

on

the

COMPACTION

option

in

the

data

class.

When

the

data

class

does

not

specify

at

the

data

set

level,

it

is

based

on

the

COMPRESS(TAILORED|GENERIC)

parameter

found

in

the

IGDSMSxx

member

of

SYS1.PARMLIB.

If

the

data

class

specifies

the

compression

form,

this

takes

precedence

over

that

which

is

specified

in

SYS1.PARMLIB.

COMPRESS(GENERIC)

refers

to

generic

DBB-based

compression.

This

is

the

default.

COMPRESS(TAILORED)

refers

to

tailored

compression.

When

this

member

is

activated

using

SET

SMS=xx

or

IPL,

new

compressed

format

data

sets

are

created

in

the

form

specified.

The

COMPRESS

parameter

in

PARMLIB

is

ignored

for

VSAM

KSDSs.

For

a

complete

description

of

this

parameter

see

z/OS

DFSMSdfp

Storage

Administration

Reference.

Characteristics

of

Compressed

Format

Data

Sets

Most

characteristics

which

apply

to

extended-format

data

sets

continue

to

apply

to

compressed

format

data

sets.

However,

due

to

the

differences

in

data

format,

the

following

characteristics

describe

compressed

format

data

sets:

v

A

compressed

format

data

set

might

or

might

not

contain

compressed

records.

Processing

a

Sequential

Data

Set

402

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

The

data

format

for

a

compressed

format

data

set

consists

of

physical

blocks

whose

length

has

no

correlation

to

the

logical

block

size

of

the

data

set

in

the

DCB,

DCBE,

and

the

data

set

label.

The

actual

physical

block

size

is

calculated

by

the

system

and

is

never

returned

to

the

user.

However,

the

system

maintains

the

user’s

block

boundaries

when

the

data

set

is

created

so

that

the

system

can

return

the

original

user

blocks

to

the

user

when

the

data

set

is

read.

v

A

compressed

format

data

set

cannot

be

opened

for

update.

v

When

issued

for

a

compressed

format

data

set,

the

BSAM

CHECK

macro

does

not

ensure

that

data

is

written

to

DASD.

However,

it

does

ensure

that

the

data

in

the

buffer

has

been

moved

to

an

internal

system

buffer,

and

that

the

user

buffer

is

available

to

be

reused.

v

The

block

locator

token

returned

by

NOTE

and

used

as

input

to

POINT

continues

to

be

the

relative

block

number

(RBN)

within

each

logical

volume

of

the

data

set.

A

multistriped

data

set

is

seen

by

the

user

as

a

single

logical

volume.

Therefore,

for

a

multistriped

data

set

the

RBN

is

relative

to

the

beginning

of

the

data

set

and

incorporates

all

stripes.

To

provide

compatibility,

this

RBN

refers

to

the

logical

user

blocks

within

the

data

set

as

opposed

to

the

physical

blocks

of

the

data

set.

v

However,

due

to

the

NOTE/POINT

limitation

of

the

3

byte

token,

issuing

a

READ

or

WRITE

macro

for

a

logical

block

whose

RBN

value

exceeds

3

bytes

results

in

an

ABEND

if

the

DCB

specifies

NOTE/POINT

(MACRF=P).

v

When

the

data

set

is

created,

the

system

attempts

to

derive

a

compression

token

when

enough

data

is

written

to

the

data

set

(between

8K

and

64K

for

DBB

compression

and

much

more

for

tailored

compression).

If

the

system

is

successful

in

deriving

a

compression

token,

the

access

method

attempts

to

compress

any

additional

records

written

to

the

data

set.

However,

if

an

efficient

compression

token

could

not

be

derived,

the

data

set

is

marked

as

noncompressible

and

there

is

no

attempt

to

compress

any

records

written

to

the

data

set.

However,

if

created

with

tailored

compression,

it

is

still

possible

to

have

system

blocks

imbedded

within

the

data

set

although

a

tailored

dictionary

could

not

be

derived.

If

the

compressed

format

data

set

is

closed

before

the

system

is

able

to

derive

a

compression

token,

the

data

set

is

marked

as

noncompressible.

Additional

OPENs

for

output

do

not

attempt

to

generate

a

compression

token

once

the

data

set

has

been

marked

as

noncompressible.

v

A

compressed

format

data

set

can

be

created

using

the

LIKE

keyword

and

not

just

through

a

DATACLAS.

Opening

and

Closing

Extended-Format

Data

Sets

If

a

DCBE

exists

and

the

data

set

is

an

extended-format

sequential

data

set,

OPEN

stores

the

number

of

stripes

of

the

data

set

in

the

DCBE

(DCBENSTR)

before

the

OPEN

exit

is

called.

If

a

DCBE

exists

and

the

data

set

is

not

an

extended-format

data

set,

OPEN

stores

0

in

DCBENSTR.

For

a

partial

release

request

on

an

extended-format

sequential

data

set,

CLOSE

performs

a

partial

release

on

each

stripe.

After

the

partial

release,

the

size

of

some

stripes

can

differ

slightly

from

others.

This

difference

is,

at

most,

only

one

track

or

cylinder.

Reading,

Writing,

and

Updating

Extended-Format

Data

Sets

Using

BSAM

and

QSAM

Extended-format

data

sets

are

processed

like

other

sequential

data

sets,

except

the

data

class

and

storage

class

must

indicate

sequential

data

striping.

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

403

Concatenating

Extended-Format

Data

Sets

with

Other

Data

Sets

You

can

concatenate

extended-format

data

sets

with

non-extended-format

data

sets.

There

are

no

incompatibilities

or

added

restrictions

associated

with

concatenating

extended-format

data

sets

with

non-extended-format

data

sets.

For

a

QSAM

concatenation

containing

extended-format

sequential

data

sets,

the

system

can

recalculate

the

default

BUFNO

when

switching

between

data

sets.

Extending

Striped

Sequential

Data

Sets

You

can

extend

an

extended-format

sequential

data

set

that

is

allocated

with

a

single

stripe

to

additional

volumes.

This

data

set

can

be

a

multivolume

data

set.

An

extended-format

sequential

data

set

that

is

allocated

with

more

than

one

stripe

cannot

be

extended

to

more

volumes.

An

extended-format

sequential

data

set

with

multiple

stripes

has

one

stripe

per

volume.

A

stripe

cannot

extend

to

another

volume.

When

the

space

is

filled

on

one

of

the

volumes

for

the

current

set

of

stripes,

the

system

cannot

extend

the

data

set

any

further.

An

extended-format

sequential

data

set

can

have

a

maximum

of

59

stripes

and,

thus,

a

maximum

size

of

59

volumes.

The

number

of

volumes

that

are

available

limits

the

number

of

stripes

for

a

data

set.

Although

you

cannot

extend

a

striped,

extended-format

sequential

data

set

to

new

volumes,

you

can

extend

the

data

set

on

the

original

volumes.

This

function

allows

you

to

have

a

much

larger

extended-format

sequential

data

set.

When

the

system

extends

the

data

set,

the

system

obtains

space

on

all

volumes

for

the

data

set.

The

system

spreads

the

primary

and

secondary

allocation

amounts

among

the

stripes.

Related

reading:

For

information

on

specifying

the

sustained

data

rate

in

the

storage

class,

which

determines

the

number

of

stripes

in

an

extended-format

sequential

data

set,

see

the

z/OS

DFSMSdfp

Storage

Administration

Reference.

For

more

information

on

the

SPACE

parameter,

see

the

z/OS

MVS

JCL

Reference.

Migrating

to

Extended-Format

Data

Sets

The

following

sections

discuss

changes

you

might

need

to

make

to

take

advantage

of

sequential

data

striping:

v

Changing

existing

BSAM

and

QSAM

applications

v

Calculating

DASD

space

used

v

Changing

to

extended-format

data

sets

on

devices

with

more

than

64K

tracks

Changing

Existing

BSAM

and

QSAM

Applications

For

existing

BSAM,

and

QSAM

applications,

in

most

cases,

programs

do

not

have

to

be

changed

or

recompiled

to

take

advantage

of

sequential

data

striping.

However,

you

can

choose

to

update

programs

to

more

fully

exploit

new

functions.

To

improve

performance,

you

will

want

to

have

more

buffers.

You

also

can

have

the

buffers

be

above

the

16

MB

line.

If

you

use

BSAM,

you

can

set

a

larger

NCP

value

or

have

the

system

calculate

an

NCP

value

by

means

of

the

DCBE

macro

MULTSDN

parameter.

You

can

also

request

accumulation

by

means

of

the

DCBE

macro

MULTACC

parameter.

DCBENSTR

in

the

DCBE

macro

tells

the

number

of

stripes

for

the

current

data

set.

If

you

use

QSAM,

you

can

request

more

buffers

using

the

BUFNO

parameter.

Your

program

can

calculate

BUFNO

according

to

the

number

of

stripes.

Your

program

can

test

DCBENSTR

in

the

DCBE

during

the

DCB

open

exit

routine.

Processing

a

Sequential

Data

Set

404

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Existing

programs

need

to

be

changed

and

reassembled

if

you

want

any

of

the

following:

v

To

switch

from

24-bit

addressing

mode

to

31-bit

mode

SAM.

v

To

ask

the

system

to

determine

an

appropriate

NCP

value.

Use

the

MULTSDN

parameter

of

the

DCBE

macro.

v

To

get

maximum

benefit

from

BSAM

performance

chaining.

You

must

change

the

program

by

adding

the

DCBE

parameter

to

the

DCB

macro

and

including

the

DCBE

macro

with

the

MULTACC

parameter.

If

the

program

uses

WAIT

or

EVENTS

or

a

POST

exit

(instead

of,

or

in

addition

to,

the

CHECK

macro),

your

program

must

issue

the

TRUNC

macro

whenever

the

WAIT

or

EVENTS

macro

is

about

to

be

issued

or

the

POST

exit

is

depended

upon

to

get

control.

Related

reading:

For

more

information,

see

“DASD

and

Tape

Performance”

on

page

397

and

the

DCBE

and

IHADCBE

macros

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Calculating

DASD

Space

Used

This

section

describes

how

the

system

calculates

DASD

space

for

new

and

existing

extended-format

data

sets.

Space

for

a

new

data

set:

If

you

specify

the

BLKSIZE

parameter

or

the

average

block

size

when

allocating

space

for

a

new

extended-format

data

set,

consider

the

32-byte

suffix

that

the

system

adds

to

each

block.

Programs

do

not

see

this

suffix.

The

length

of

the

suffix

is

not

included

in

the

BLKSIZE

value

in

the

DCB,

DCBE,

JFCB,

or

DSCB.

Space

for

an

existing

data

set:

Some

programs

read

the

data

set

control

block

(DSCB)

to

calculate

the

number

of

tracks

used

or

the

amount

of

unused

space.

For

extended-format

data

sets,

the

fields

DS1LSTAR

and

DS1TRBAL

have

different

meanings

than

for

sequential

data

sets.

You

can

change

your

program

to

test

DS1STRIP,

or

you

can

change

it

to

test

DCBESIZE

in

the

DCBE.

DSCB

fields

are

described

in

z/OS

DFSMSdfp

Advanced

Services.

For

the

DCBE

fields,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Extended-format

data

sets

can

use

more

than

65

535

tracks

on

each

volume.

They

use

DS1TRBAL

with

DS1LSTAR

to

represent

one

less

than

the

number

of

tracks

containing

data.

Thus,

for

extended-format

data

sets,

DS1TRBAL

does

not

reflect

the

amount

of

space

remaining

on

the

last

track

written.

Programs

that

rely

on

DS1TRBAL

to

determine

the

amount

of

free

space

must

first

check

if

the

data

set

is

an

extended-format

data

set.

Processing

a

Sequential

Data

Set

Chapter

25.

Processing

Sequential

Data

Sets

405

406

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

This

chapter

covers

the

following

topics.

Topic

Location

Structure

of

a

PDS

407

PDS

Directory

408

Allocating

Space

for

a

PDS

411

Creating

a

PDS

412

Processing

a

Member

of

a

PDS

416

Retrieving

a

Member

of

a

PDS

422

Modifying

a

PDS

426

Concatenating

PDSs

429

Reading

a

PDS

Directory

Sequentially

430

Processing

PDSEs

is

described

in

Chapter

27,

“Processing

a

Partitioned

Data

Set

Extended

(PDSE),”

on

page

431.

Structure

of

a

PDS

A

PDS

is

stored

only

on

a

direct

access

storage

device.

It

is

divided

into

sequentially

organized

members,

each

described

by

one

or

more

directory

entries.

Each

member

has

a

unique

name,

1

to

8

characters

long,

stored

in

a

directory

that

is

part

of

the

data

set.

The

records

of

a

given

member

are

written

or

retrieved

sequentially.

The

main

advantage

of

using

a

PDS

is

that,

without

searching

the

entire

data

set,

you

can

retrieve

any

individual

member

after

the

data

set

is

opened.

For

example,

in

a

program

library

that

is

always

a

PDS,

each

member

is

a

separate

program

or

subroutine.

The

individual

members

can

be

added

or

deleted

as

required.

When

a

member

is

deleted,

the

member

name

is

removed

from

the

directory,

but

the

space

used

by

the

member

cannot

be

reused

until

the

data

set

is

reorganized;

that

is,

compressed

using

the

IEBCOPY

utility.

The

directory,

a

series

of

256-byte

records

at

the

beginning

of

the

data

set,

contains

an

entry

for

each

member.

Each

directory

entry

contains

the

member

name

and

the

starting

location

of

the

member

within

the

data

set

(see

Figure

72

on

page

408).

You

can

also

specify

as

many

as

62

bytes

of

information

in

the

entry.

The

directory

entries

are

arranged

by

name

in

alphanumeric

collating

sequence.

Related

reading:

See

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

for

the

macros

used

with

PDSs.

©

Copyright

IBM

Corp.

1987,

2004

407

The

starting

location

of

each

member

is

recorded

by

the

system

as

a

relative

track

address

(from

the

beginning

of

the

data

set)

rather

than

as

an

absolute

track

address.

Thus,

an

entire

data

set

that

has

been

compressed

can

be

moved

without

changing

the

relative

track

addresses

in

the

directory.

The

data

set

can

be

considered

as

one

continuous

set

of

tracks

regardless

of

where

the

space

was

actually

allocated.

If

there

is

not

sufficient

space

available

in

the

directory

for

an

additional

entry,

or

not

enough

space

available

within

the

data

set

for

an

additional

member,

or

no

room

on

the

volume

for

additional

extents,

no

new

members

can

be

stored.

A

directory

cannot

be

extended

and

a

PDS

cannot

cross

a

volume

boundary.

PDS

Directory

The

directory

of

a

PDS

occupies

the

beginning

of

the

area

allocated

to

the

data

set

on

a

direct

access

volume.

It

is

searched

and

maintained

by

the

BLDL,

FIND,

and

STOW

macros.

The

directory

consists

of

member

entries

arranged

in

ascending

order

according

to

the

binary

value

of

the

member

name

or

alias.

PDS

member

entries

vary

in

length

and

are

blocked

into

256-byte

blocks.

Each

block

contains

as

many

complete

entries

as

will

fit

in

a

maximum

of

254

bytes.

Any

remaining

bytes

are

left

unused

and

are

ignored.

Each

directory

block

contains

a

2-byte

count

field

that

specifies

the

number

of

active

bytes

in

a

block

(including

the

count

field).

In

Figure

73,

each

block

is

preceded

by

a

hardware-defined

key

field

containing

the

name

of

the

last

member

entry

in

the

block,

that

is,

the

member

name

with

the

highest

binary

value.

Figure

73

shows

the

format

of

the

block

returned

when

using

BSAM

to

read

the

directory.

Each

member

entry

contains

a

member

name

or

an

alias.

As

shown

in

Figure

74

on

page

409,

each

entry

also

contains

the

relative

track

address

of

the

member

and

a

Directory
records

Space from

deleted
member

Entry for

member A

Entry for

member B

Entry for

member C

Entry for

member K

Member A

Member A

Member B Member K

Member K

Member K

Available
area

Member C

Figure

72.

A

Partitioned

Data

Set

(PDS)

Count

Name of
last

entry in
block

Number of
bytes used

(maximum 256)

Member
entry A

Member
entry B

Member
entry N Unused

8 2 254Bytes

Key Data

Figure

73.

A

PDS

Directory

Block

Processing

a

Partitioned

Data

Set

(PDS)

408

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

count

field.

It

can

also

contain

a

user

data

field.

The

last

entry

in

the

last

used

directory

block

has

a

name

field

of

maximum

binary

value

(all

1s,

a

TTR

field

of

zeros,

and

a

zero-length

user

data

field).

Figure

74

shows

the

following

fields:

Member

Name—Specifies

the

member

name

or

alias.

It

contains

as

many

as

8

alphanumeric

characters,

left

justified,

and

padded

with

blanks

if

necessary.

TTR—Is

a

pointer

to

the

first

block

of

the

member.

TT

is

the

number

of

the

track,

starting

from

0

for

the

beginning

of

the

data

set,

and

R

is

the

number

of

the

block,

starting

from

1

for

the

beginning

of

that

track.

C—Specifies

the

number

of

halfwords

contained

in

the

user

data

field.

It

can

also

contain

additional

information

about

the

user

data

field,

as

shown

below:

0—When

set

to

1,

indicates

that

the

NAME

field

contains

an

alias.

1-2—Specifies

the

number

of

pointers

to

locations

within

the

member.

The

operating

system

supports

a

maximum

of

three

pointers

in

the

user

data

field.

Additional

pointers

can

be

contained

in

a

record

called

a

note

list

discussed

in

the

following

note.

The

pointers

can

be

updated

automatically

if

the

data

set

is

moved

or

copied

by

a

utility

program

such

as

IEHMOVE.

The

data

set

must

be

marked

unmovable

under

any

of

the

following

conditions:

v

More

than

three

pointers

are

used

in

the

user

data

field.

Figure

74.

A

PDS

Directory

Entry

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

409

v

The

pointers

in

the

user

data

field

or

note

list

do

not

conform

to

the

standard

format.

A

note

list

for

a

PDS

containing

variable

length

records

does

not

conform

to

standard

format.

Variable-length

records

contain

BDWs

and

RDWs

that

are

treated

as

TTRXs

by

IEHMOVE.

v

The

pointers

are

not

placed

first

in

the

user

data

field.

v

Any

direct

access

address

(absolute

or

relative)

is

embedded

in

any

data

blocks

or

in

another

data

set

that

refers

to

the

data

set

being

processed.

3-7—Contains

a

binary

value

indicating

the

number

of

halfwords

of

user

data.

This

number

must

include

the

space

used

by

pointers

in

the

user

data

field.

You

can

use

the

user

data

field

to

provide

variable

data

as

input

to

the

STOW

macro.

If

pointers

to

locations

within

the

member

are

provided,

they

must

be

4

bytes

long

and

placed

first

in

the

user

data

field.

The

user

data

field

format

is

as

follows:

TT—Is

the

relative

track

address

of

the

note

list

or

the

area

to

which

you

are

pointing.

R—Is

the

relative

block

number

on

that

track.

N—Is

a

binary

value

that

shows

the

number

of

additional

pointers

contained

in

a

note

list

pointed

to

by

the

TTR.

If

the

pointer

is

not

to

a

note

list,

N=0.

A

note

list

consists

of

additional

pointers

to

blocks

within

the

same

member

of

a

PDS.

You

can

divide

a

member

into

subgroups

and

store

a

pointer

to

the

beginning

of

each

subgroup

in

the

note

list.

The

member

can

be

a

load

module

containing

many

control

sections

(CSECTs),

each

CSECT

being

a

subgroup

pointed

to

by

an

entry

in

the

note

list.

Use

the

NOTE

macro

to

point

to

the

beginning

of

the

subgroup

after

writing

the

first

record

of

the

subgroup.

Remember

that

the

pointer

to

the

first

record

of

the

member

is

stored

in

the

directory

entry

by

the

system.

If

a

note

list

exists,

as

shown

above,

the

list

can

be

updated

automatically

when

the

data

set

is

moved

or

copied

by

a

utility

program

such

as

IEHMOVE.

Each

4-byte

entry

in

the

note

list

has

the

following

format:

TT—Is

the

relative

track

address

of

the

area

to

which

you

are

pointing.

R—Is

the

relative

block

number

on

that

track.

X—Is

available

for

any

use.

To

place

the

note

list

in

the

PDS,

you

must

use

the

WRITE

macro.

After

checking

the

write

operation,

use

the

NOTE

macro

to

determine

the

address

of

the

list

and

place

that

address

in

the

user

data

field

of

the

directory

entry.

Processing

a

Partitioned

Data

Set

(PDS)

410

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

linkage

editor

builds

a

note

list

for

the

load

modules

in

overlay

format.

The

addresses

in

the

note

list

point

to

the

overlay

segments

that

are

read

into

the

system

separately.

Restriction:

Note

lists

are

not

supported

for

PDSEs.

If

a

PDS

is

to

be

converted

to

a

PDSE,

the

PDS

should

not

use

note

lists.

Allocating

Space

for

a

PDS

To

allocate

a

PDS,

specify

PDS

in

the

DSNTYPE

parameter

and

the

number

of

directory

blocks

in

the

SPACE

parameter,

in

either

the

JCL

or

the

data

class.

You

must

specify

the

number

of

the

directory

blocks,

or

the

allocation

fails.

If

you

do

not

specify

a

block

size

and

the

record

format

is

fixed

or

variable,

OPEN

determines

an

optimum

block

size

for

you.

Therefore,

you

do

not

need

to

perform

calculations

based

on

track

length.

When

you

allocate

space

for

your

data

set,

specify

the

average

record

length

in

kilobytes

or

megabytes

by

using

the

SPACE

and

AVGREC

parameters,

and

have

the

system

use

the

block

size

it

calculated

for

your

data

set.

If

your

data

set

is

large,

or

if

you

expect

to

update

it

extensively,

it

might

be

best

to

allocate

a

large

data

set.

A

PDS

cannot

occupy

more

than

65

535

tracks

and

cannot

extend

beyond

one

volume.

If

your

data

set

is

small

or

is

seldom

changed,

let

the

system

calculate

the

space

requirements

to

avoid

wasted

space

or

wasted

time

used

for

recreating

the

data

set.

VSAM,

extended

format,

HFS,

and

PDSE

data

sets

can

occupy

more

than

65

535

tracks.

Calculating

Space

If

you

want

to

estimate

the

space

requirements

yourself,

you

need

to

answer

the

following

questions

to

estimate

your

space

requirements

accurately

and

use

the

space

efficiently.

v

What

is

the

average

size

of

the

members

to

be

stored

on

your

direct

access

volume?

v

How

many

members

will

fit

on

the

volume?

v

Will

you

need

directory

entries

for

the

member

names

only,

or

will

aliases

be

used?

If

so,

how

many?

v

Will

members

be

added

or

replaced

frequently?

You

can

calculate

the

block

size

yourself

and

specify

it

in

the

BLKSIZE

parameter

of

the

DCB

or

DCBE.

For

example,

if

the

average

record

length

is

close

to

or

less

than

the

track

length,

or

if

the

track

length

exceeds

32

760

bytes

the

most

efficient

use

of

the

direct

access

storage

space

can

be

made

with

a

block

size

of

one-third

or

one-half

the

track

length.

For

a

3380

DASD,

you

might

then

ask

for

either

75

tracks,

or

5

cylinders,

thus

permitting

for

3

480

,000

bytes

of

data.

Assuming

the

allocation

size

of

3

480

000

bytes

and

an

average

length

of

70

000

bytes

for

each

member,

you

need

space

for

at

least

50

directory

entries.

If

each

member

also

has

an

average

of

three

aliases,

space

for

an

additional

150

directory

entries

is

required.

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

411

Each

member

in

a

data

set

and

each

alias

need

one

directory

entry

apiece.

If

you

expect

to

have

10

members

(10

directory

entries)

and

an

average

of

3

aliases

for

each

member

(30

directory

entries),

allocate

space

for

at

least

40

directory

entries.

Space

for

the

directory

is

expressed

in

256-byte

blocks.

Each

block

contains

from

3

to

21

entries,

depending

on

the

length

of

the

user

data

field.

If

you

expect

200

directory

entries,

request

at

least

10

blocks.

Any

unused

space

on

the

last

track

of

the

directory

is

wasted

unless

there

is

enough

space

left

to

contain

a

block

of

the

first

member.

Any

of

the

following

space

specifications

would

allocate

approximately

the

same

amount

of

space

for

a

3380

DASD.

Ten

blocks

have

been

allocated

for

the

directory.

The

first

two

examples

would

not

allocate

a

separate

track

for

the

directory.

The

third

example

would

result

in

allocation

of

75

tracks

for

data,

plus

1

track

for

directory

space.

SPACE=(CYL,(5,,10))

SPACE=(TRK,(75,,10))

SPACE=(23200,(150,,10))

Allocating

Space

with

SPACE

and

AVGREC

You

can

also

allocate

space

by

using

both

the

SPACE

and

AVGREC

JCL

keywords

together.

In

the

following

examples,

the

average

length

is

70

000

bytes

for

each

member,

each

record

in

the

member

is

80

bytes

long,

and

the

block

size

is

23

200.

Using

the

AVGREC

keyword

changes

the

first

value

specified

in

SPACE

from

the

average

block

length

to

average

record

length.

These

examples

are

device

independent

because

they

request

space

in

bytes,

rather

than

tracks

or

cylinders.

They

would

allocate

approximately

the

same

amount

of

space

as

the

previous

examples

(about

75

tracks

if

the

device

were

a

3380

disk).

SPACE=(80,(44,,10)),AVGREC=K

SPACE=(80,(43500,,10)),AVGREC=U

Although

a

secondary

allocation

increment

has

been

omitted

in

these

examples,

it

could

have

been

supplied

to

provide

for

extension

of

the

member

area.

The

directory

size,

however,

cannot

be

extended.

The

directory

must

be

in

the

first

extent.

Recommendation:

The

SPACE

parameter

can

be

derived

from

either

the

data

class,

the

LIKE

keyword,

or

the

DD

statement.

Specify

the

SPACE

parameter

in

the

DD

statement

if

you

do

not

want

to

use

the

space

allocation

amount

defined

in

the

data

class.

Related

reading:

For

more

information

on

using

the

SPACE

and

AVGREC

parameters,

see

Chapter

3,

“Allocating

Space

on

Direct

Access

Volumes,”

on

page

35

in

this

manual,

and

also

see

z/OS

MVS

JCL

Reference

and

z/OS

MVS

JCL

User’s

Guide.

Creating

a

PDS

You

can

create

a

PDS

or

members

of

a

PDS

with

BSAM,

QSAM,

or

BPAM.

Processing

a

Partitioned

Data

Set

(PDS)

412

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Creating

a

PDS

Member

with

BSAM

or

QSAM

If

you

have

no

need

for

your

program

to

add

entries

to

the

directory

(the

STOW

macro

is

not

used),

you

can

write

a

member

of

a

PDS,

such

as

the

one

in

Figure

75.

The

following

steps

create

the

data

set

and

its

directory,

write

the

records

of

the

member,

and

make

a

12-byte

entry

in

the

directory:

1.

Code

DSORG=PS

or

DSORG=PSU

in

the

DCB

macro.

2.

In

the

DD

statement

specify

that

the

data

is

to

be

stored

as

a

member

of

a

new

PDS,

that

is,

DSNAME=name(membername)

and

DISP=NEW.

3.

Optionally

specify

a

data

class

in

the

DD

statement

or

let

the

ACS

routines

assign

a

data

class.

4.

Use

the

SPACE

parameter

to

request

space

for

the

member

and

the

directory

in

the

DD

statement,

or

obtain

the

space

from

the

data

class.

5.

Process

the

member

with

an

OPEN

macro,

a

series

of

PUT

or

WRITE

macros,

and

the

CLOSE

macro.

A

STOW

macro

is

issued

automatically

when

the

data

set

is

closed.

If

the

preceding

conditions

are

true

but

you

code

DSORG=PO

(to

use

BPAM)

and

your

last

operation

on

the

DCB

before

CLOSE

is

a

STOW

macro,

CLOSE

does

not

issue

the

STOW

macro.

Converting

PDSs

You

can

use

IEBCOPY

or

DFSMSdss

COPY

to

convert

the

following

data

sets:

v

a

PDS

to

a

PDSE

v

a

PDSE

to

a

PDS

Related

reading:

See

“Converting

PDSs

to

PDSEs

and

Back”

on

page

469

for

examples

of

using

IEBCOPY

and

DFSMSdss

to

convert

PDSs

to

PDSEs.

Copying

a

PDS

or

Member

to

Another

Data

Set

In

a

TSO/E

session,

you

can

use

the

OCOPY

command

to

copy

any

of

these

data

sets:

v

A

PDS

or

PDSE

member

to

a

UNIX

file

v

A

UNIX

file

to

a

PDS

or

PDSE

member

v

A

PDS

or

PDSE

member

to

another

member

v

A

PDS

or

PDSE

member

to

a

sequential

data

set

v

A

sequential

data

set

to

a

PDS

or

PDSE

member

//PDSDD

DD

---,DSNAME=MASTFILE(MEMBERK),SPACE=(TRK,(100,5,7)),

//

DISP=(NEW,CATLG),DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)---

...

OPEN

(OUTDCB,(OUTPUT))

...

PUT

OUTDCB,OUTAREA

Write

record

to

member

...

CLOSE

(OUTDCB)

Automatic

STOW

...

OUTAREA

DS

CL80

Area

to

write

from

OUTDCB

DCB

---,DSORG=PS,DDNAME=PDSDD,MACRF=PM

Figure

75.

Creating

One

Member

of

a

PDS

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

413

Related

reading:

For

more

information,

see

z/OS

UNIX

System

Services

Command

Reference.

Adding

Members

To

add

additional

members

to

the

PDS,

follow

the

procedure

described

in

Figure

75

on

page

413.

However,

a

separate

DD

statement

(with

the

space

request

omitted)

is

required

for

each

member.

The

disposition

should

be

specified

as

modify

(DISP=MOD).

The

data

set

must

be

closed

and

reopened

each

time

a

new

member

is

specified

on

the

DD

statement.

You

can

use

the

basic

partitioned

access

method

(BPAM)

to

process

more

than

one

member

without

closing

and

reopening

the

data

set.

Use

the

STOW,

BLDL,

and

FIND

macros

to

provide

more

information

with

each

directory

entry,

as

follows:

v

Request

space

in

the

DD

statement

for

the

entire

data

set

and

the

directory.

v

Define

DSORG=PO

or

DSORG=POU

in

the

DCB

macro.

v

Use

WRITE

and

CHECK

to

write

and

check

the

member

records.

v

Use

NOTE

to

note

the

location

of

any

note

list

written

within

the

member,

if

there

is

a

note

list,

or

to

note

the

location

of

any

subgroups.

A

note

list

is

used

to

point

to

the

beginning

of

each

subgroup

in

a

member.

v

When

all

the

member

records

have

been

written,

issue

a

STOW

macro

to

enter

the

member

name,

its

location

pointer,

and

any

additional

data

in

the

directory.

The

STOW

macro

writes

an

end-of-file

mark

after

the

member.

v

Continue

to

use

the

WRITE,

CHECK,

NOTE,

and

STOW

macros

until

all

the

members

of

the

data

set

and

the

directory

entries

have

been

written.

Processing

a

Partitioned

Data

Set

(PDS)

414

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Figure

76

shows

an

example

of

using

STOW

to

create

members

of

a

PDS.

Recommendation:

Do

not

use

the

example

in

Figure

76

for

PDSEs.

If

your

installation

plans

to

convert

PDSs

to

PDSEs,

follow

the

procedure

described

in

Figure

91

on

page

445.

//PDSDD

DD

---,DSN=MASTFILE,DISP=MOD,SPACE=(TRK,(100,5,7))

...

OPEN

(OUTDCB,(OUTPUT))

LA

STOWREG,STOWLIST

Load

address

of

STOW

list

...

**

WRITE

MEMBER

RECORDS

AND

NOTE

LIST

MEMBER

WRITE

DECBX,SF,OUTDCB,OUTAREA

WRITE

first

record

of

member

CHECK

DECBX

LA

NOTEREG,NOTELIST

Load

address

of

NOTE

list

*

WRITE

DECBY,SF,OUTDCB,OUTAREA

WRITE

and

CHECK

next

record

CHECK

DECBY

*

NOTE

OUTDCB

To

divide

the

member

into

subgroups,

ST

R1,0(NOTEREG)

NOTE

the

TTRN

of

the

first

record

in

*

the

subgroup,

storing

it

in

the

NOTE

list.

LA

NOTEREG,4(NOTEREG)

Increment

to

next

NOTE

list

entry

...

WRITE

DECBZ,SF,OUTDCB,NOTELIST

WRITE

NOTE

list

record

at

the

*

end

of

the

member

CHECK

DECBZ

NOTE

OUTDCB

NOTE

TTRN

of

NOTE

list

record

ST

R1,12(STOWREG)

Store

TTRN

in

STOW

list

STOW

OUTDCB,(STOWREG),A

Enter

the

information

in

directory

*

for

this

member

after

all

records

*

and

NOTE

lists

are

written.

LA

STOWREG,16(STOWREG)

Increment

to

the

next

STOW

list

entry

...

Repeat

from

label

“MEMBER”

for

each

additional

member,

changing

the

member

name

in

the

“STOWLIST”

for

each

member

...

CLOSE

(OUTDCB)

(NO

automatic

STOW)

...

OUTAREA

DS

CL80

Area

to

write

from

OUTDCB

DCB

---,DSORG=PO,DDNAME=PDSDD,MACRF=W

R1

EQU

1

Register

one,

return

register

from

NOTE

NOTEREG

EQU

4

Register

to

address

NOTE

list

NOTELIST

DS

0F

NOTE

list

DS

F

NOTE

list

entry

(4

byte

TTRN)

DS

19F

one

entry

per

subgroup

STOWREG

EQU

5

Register

to

address

STOW

list

STOWLIST

DS

0F

List

of

member

names

for

STOW

DC

CL8’MEMBERA’

Name

of

member

DS

CL3

TTR

of

first

record

(created

by

STOW)

DC

X’23’

C

byte,

1

user

TTRN,

4

bytes

of

user

data

DS

CL4

TTRN

of

NOTE

list

...

one

list

entry

per

member

(16

bytes

each)

Figure

76.

Creating

Members

of

a

PDS

Using

STOW

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

415

Processing

a

Member

of

a

PDS

Because

a

member

of

a

PDS

is

sequentially

organized,

it

is

processed

in

the

same

manner

as

a

sequential

data

set.

To

locate

a

member

or

to

process

the

directory,

several

macros

are

provided

by

the

operating

system.

The

BLDL

macro

can

be

used

to

read

one

or

more

directory

entries

into

virtual

storage.

The

FIND

macro

locates

a

member

of

the

data

set

and

positions

the

DCB

for

subsequent

processing.

The

STOW

macro

adds,

deletes,

replaces,

or

changes

a

member

name

in

the

directory.

To

use

these

macros,

you

must

specify

DSORG=PO

or

POU

in

the

DCB

macro.

Before

issuing

the

FIND,

BLDL,

or

STOW

macro,

you

must

check

all

preceding

I/O

operations

for

completion.

BLDL—Construct

a

Directory

Entry

List

The

BLDL

macro

reads

one

or

more

directory

entries

into

virtual

storage.

Place

member

names

in

a

BLDL

list

before

issuing

the

BLDL

macro.

For

each

member

name

in

the

list,

the

system

supplies

the

relative

track

address

(TTR)

and

any

additional

information

contained

in

the

directory

entry.

If

there

is

more

than

one

member

name

in

the

list,

the

member

names

must

be

in

collating

sequence,

regardless

of

whether

the

members

are

from

the

same

or

different

PDSs

or

PDSEs

in

the

concatenation.

BLDL

also

searches

a

concatenated

series

of

directories

when

(1)

a

DCB

is

supplied

that

is

opened

for

a

concatenated

PDS

or

(2)

a

DCB

is

not

supplied,

in

which

case

the

search

order

begins

with

the

TASKLIB,

then

proceeds

to

the

JOBLIB

or

STEPLIB

(themselves

perhaps

concatenated)

followed

by

LINKLIB.

You

can

improve

retrieval

time

by

directing

a

subsequent

FIND

macro

to

the

BLDL

list

rather

than

to

the

directory

to

locate

the

member

to

be

processed.

By

specifying

the

BYPASSLLA

option,

you

can

direct

BLDL

to

search

PDS

and

PDSE

directories

on

DASD

only.

If

BYPASSLLA

is

coded,

the

BLDL

code

will

not

call

LLA

to

search

for

member

names.

The

BLDL

list

must

begin

with

a

4-byte

list

descriptor

that

specifies

the

number

of

entries

in

the

list

and

the

length

of

each

entry

(12

to

76

bytes).

(See

Figure

77

on

page

417.)

If

you

specify

the

BYPASSLLA

option,

an

8-byte

BLDL

prefix

must

precede

the

4-byte

list

descriptor.

Processing

a

Partitioned

Data

Set

(PDS)

416

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

first

8

bytes

of

each

entry

contain

the

member

name

or

alias.

The

next

6

bytes

contain

the

TTR,

K,

Z,

and

C

fields.

If

there

is

no

user

data

entry,

only

the

TTR

and

C

fields

are

required.

If

additional

information

is

to

be

supplied

from

the

directory,

as

many

as

62

bytes

can

be

reserved.

DESERV

The

DESERV

macro

returns

system

managed

directory

entries

(SMDE)

for

specific

members

or

all

members

of

opened

PDS

or

PDSEs.

You

can

specify

either

DESERV

GET

or

DESERV

GET_ALL.

FUNC=GET

DESERV

GET

returns

SMDEs

for

specific

members

of

opened

PDS

or

PDSEs,

or

a

concatenation

of

PDSs

and

PDSEs.

The

data

set

can

be

opened

for

either

input,

output,

or

update.

The

SMDE

contains

the

PDS

or

PDSE

directory.

The

SMDE

is

mapped

by

the

macro

IGWSMDE

and

contains

a

superset

of

the

information

that

is

mapped

by

IHAPDS.

The

SMDE

returned

can

be

selected

by

name

or

by

BLDL

directory

entry.

Input

by

Name

List:

If

you

want

to

select

SMDEs

by

name,

you

supply

a

list

of

names

to

be

sorted

in

ascending

order,

without

duplicates.

Each

name

is

comprised

of

a

two-byte

length

field

followed

by

the

characters

of

the

name.

When

searching

for

names

with

less

than

eight

characters,

the

names

are

padded

on

the

right

with

blanks

to

make

up

eight

characters.

Names

greater

than

eight

characters

will

have

trailing

blanks

and

nulls

stripped

(to

a

minimum

length

of

eight)

before

the

search.

In

addition

to

retrieving

the

SMDE,

member

level

connections

can

be

established

for

each

member

name

found.

The

members

are

connected

with

the

HOLD

type

connection.

A

connection

type

of

HOLD

ensures

that

the

member

cannot

be

Figure

77.

BLDL

List

Format

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

417

removed

from

the

system

until

the

connection

is

released.

To

specify

the

connection,

use

the

CONN_INTENT=HOLD

parameter.

All

connections

made

through

a

single

call

to

GET

are

associated

with

a

single

unique

connect

identifier.

The

connect

identifier

may

be

used

to

release

all

the

connections

in

a

single

invocation

of

the

RELEASE

function.

Figure

78

shows

an

example

of

DESERV

GET:

Input

by

BLDL

Directory

Entry

(PDSDE):

If

the

search

argument

specified

is

a

PDSDE,

the

GET

function

is

significantly

restricted.

The

PDSDE

(as

mapped

by

the

IHAPDS

macro)

identifies

only

one

name

to

be

searched

for.

Since

the

PDSDE

also

identifies

the

concatenation

number

of

the

library

in

which

this

member

is

to

reside

(PDS2CNCT),

only

that

library

can

be

searched.

Since

the

PDSDE

identifies

a

specific

version

of

the

member

name

(this

identification

is

made

through

MLT

(PDS2TTRP)),

the

name

can

only

be

considered

found

if

the

same

version

can

be

found

in

the

target

library.

However,

a

library

search

can

only

be

performed

if

the

target

library

is

a

PDSE.

If

the

target

library

is

a

PDS,

the

input

PDSDE

will

simply

be

converted

to

an

equivalent

directory

entry

in

SMDE

format

and

returned.

No

directory

search

can

be

performed.

If

the

caller

has

specified

BYPASS_LLA=NO,

the

library

search

will

search

LLA

for

LLA

managed

libraries.

If

the

caller

has

specified

BYPASS_LLA=YES,

only

the

DASD

directories

of

the

library

will

be

searched.

Figure

79

on

page

419

shows

an

example

of

DESERV

GET

by

PDSDE

control

block:

Name 1

Name 1

Area

Area

SMDE_1

SMDE_3

SMDE_2

NAME_LIST (DESL)

NAME_LIST (DESL)

Input block structure:

Output block structure:

Name 2

Name 2

Name 3

Name 3

UNUSED

Buffer Header
(DESB)

...................

Figure

78.

DESERV

GET

by

NAME_LIST

Control

Block

Structure

Processing

a

Partitioned

Data

Set

(PDS)

418

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

FUNC=GET_ALL

The

GET_ALL

function

returns

SMDEs

for

all

the

member

names

in

a

PDS,

a

PDSE,

or

a

concatenation

of

PDSs

and

PDSEs.

Member-level

connections

can

be

established

for

each

member

found

in

a

PDSE.

A

caller

uses

the

CONCAT

parameter

to

indicate

which

data

set

in

the

concatenation

is

to

be

processed,

or

if

all

of

the

data

sets

in

the

concatenation

are

to

be

processed.

If

the

caller

requests

that

DESERV

GET_ALL

return

all

the

SMDE

directory

entries

for

an

entire

concatenation,

the

SMDEs

are

returned

in

sequence

as

sorted

by

the

SMDE_NAME

field

without

returning

duplicate

names.

As

with

the

GET

function,

all

connections

can

be

associated

with

a

single

connect

identifier

established

at

the

time

of

the

call.

This

connect

identifier

can

then

be

used

to

release

all

the

connections

in

a

single

invocation

of

the

RELEASE

function.

Figure

80

on

page

420

shows

an

overview

of

control

blocks

related

to

the

GET_ALL

function.

Figure

79.

DESERV

GET

by

PDSDE

Control

Block

Structure

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

419

FIND—Position

to

the

Starting

Address

of

a

Member

To

position

to

the

beginning

of

a

specific

member,

you

must

issue

a

FIND

macro.

The

next

input

or

output

operation

begins

processing

at

the

point

set

by

the

FIND.

The

FIND

macro

lets

you

search

a

concatenated

series

of

PDSE

and

PDS

directories

when

you

supply

a

DCB

opened

for

the

concatenated

data

sets.

There

are

two

ways

you

can

direct

the

system

to

the

right

member

when

you

use

the

FIND

macro.

Specify

the

address

of

an

area

containing

the

name

of

the

member,

or

specify

the

address

of

the

TTR

field

of

the

entry

in

a

BLDL

list

you

have

created,

by

using

the

BLDL

macro.

In

the

first

case,

the

system

searches

the

directory

of

the

data

set

for

the

relative

track

address.

In

the

second

case,

no

search

is

required,

because

the

relative

track

address

is

in

the

BLDL

list

entry.

The

system

searches

a

concatenated

series

of

directories

when

a

DCB

is

supplied

that

is

opened

for

a

concatenated

PDS.

If

you

want

to

process

only

one

member,

you

can

process

it

as

a

sequential

data

set

(DSORG=PS)

using

either

BSAM

or

QSAM.

You

specify

the

name

of

the

member

you

want

to

process

and

the

name

of

the

PDS

in

the

DSNAME

parameter

of

the

DD

statement.

When

you

open

the

data

set,

the

system

places

the

starting

address

in

the

DCB

so

that

a

subsequent

GET

or

READ

macro

begins

processing

at

that

point.

You

cannot

use

the

FIND,

BLDL,

or

STOW

macro

when

you

are

processing

one

member

as

a

sequential

data

set.

Because

the

DCBRELAD

address

in

the

DCB

is

updated

when

the

FIND

macro

is

used,

you

should

not

issue

the

FIND

macro

after

WRITE

and

STOW

processing

without

first

closing

the

data

set

and

reopening

it

for

INPUT

processing.

Figure

80.

DESERV

GET_ALL

Control

Block

Structure

Processing

a

Partitioned

Data

Set

(PDS)

420

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

STOW—Update

the

Directory

When

you

add

more

than

one

member

to

a

PDS,

you

must

issue

a

STOW

macro

after

writing

each

member

so

that

an

entry

for

each

one

will

be

added

to

the

directory.

To

use

the

STOW

macro,

DSORG=PO

or

POU

must

be

specified

in

the

DCB

macro.

You

can

also

use

the

STOW

macro

to

delete,

replace,

or

change

a

member

name

in

the

directory

and

store

additional

information

with

the

directory

entry.

Because

an

alias

can

also

be

stored

in

the

directory

the

same

way,

you

should

be

consistent

in

altering

all

names

associated

with

a

given

member.

For

example,

if

you

replace

a

member,

you

must

delete

related

alias

entries

or

change

them

so

that

they

point

to

the

new

member.

An

alias

cannot

be

stored

in

the

directory

unless

the

member

is

present.

Although

you

can

use

any

type

of

DCB

with

STOW,

it

is

intended

to

be

used

with

a

BPAM

DCB.

If

you

use

a

BPAM

DCB,

you

can

issue

several

writes

to

create

a

member

followed

by

a

STOW

to

write

the

directory

entry

for

the

member.

Following

this

STOW,

your

application

can

write

and

stow

another

member.

If

you

add

only

one

member

to

a

PDS,

and

specify

the

member

name

in

the

DSNAME

parameter

of

the

DD

statement,

it

is

not

necessary

for

you

to

use

BPAM

and

a

STOW

macro

in

your

program.

If

you

want

to

do

so,

you

can

use

BPAM

and

STOW,

or

BSAM

or

QSAM.

If

you

use

a

sequential

access

method,

or

if

you

use

BPAM

and

issue

a

CLOSE

macro

without

issuing

a

STOW

macro,

the

system

will

issue

a

STOW

macro

using

the

member

name

you

have

specified

on

the

DD

statement.

Note

that

no

checks

are

made

in

STOW

to

ensure

that

a

stow

with

a

BSAM

or

QSAM

DCB

came

from

CLOSE.

When

the

system

issues

the

STOW,

the

directory

entry

that

is

added

is

the

minimum

length

(12

bytes).

This

automatic

STOW

macro

will

not

be

issued

if

the

CLOSE

macro

is

a

TYPE=T

or

if

the

TCB

indicates

the

task

is

being

abnormally

ended

when

the

DCB

is

being

closed.

The

DISP

parameter

on

the

DD

statement

determines

what

directory

action

parameter

will

be

chosen

by

the

system

for

the

STOW

macro.

If

DISP=NEW

or

MOD

was

specified,

a

STOW

macro

with

the

add

option

will

be

issued.

If

the

member

name

on

the

DD

statement

is

not

present

in

the

data

set

directory,

it

will

be

added.

If

the

member

name

is

already

present

in

the

directory,

the

task

will

be

abnormally

ended.

If

DISP=OLD

was

specified,

a

STOW

macro

with

the

replace

option

will

be

issued.

The

member

name

will

be

inserted

into

the

directory,

either

as

an

addition,

if

the

name

is

not

already

present,

or

as

a

replacement,

if

the

name

is

present.

Thus,

with

an

existing

data

set,

you

should

use

DISP=OLD

to

force

a

member

into

the

data

set;

and

DISP=MOD

to

add

members

with

protection

against

the

accidental

destruction

of

an

existing

member.

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

421

Retrieving

a

Member

of

a

PDS

To

retrieve

a

specific

member

from

a

PDS,

you

can

use

either

BSAM

or

QSAM,

as

follows

(see

Figure

81):

1.

Code

DSORG=PS

or

DSORG=PSU

in

the

DCB

macro.

2.

In

the

DD

statement

specify

that

the

data

is

a

member

of

an

existing

PDS

by

coding

DSNAME=name(membername)

and

DISP=OLD,

DISP=SHR

or

DISP=MOD.

3.

Process

the

member

with

an

OPEN

macro,

a

series

of

GET

or

READ

macros,

and

the

CLOSE

macro.

When

your

program

is

run,

OPEN

searches

the

directory

automatically

and

positions

the

DCB

to

the

member.

To

process

several

members

without

closing

and

reopening,

or

to

take

advantage

of

additional

data

in

the

directory,

use

the

procedure

described

in

Figure

82

on

page

424

or

Figure

83

on

page

425.

The

system

supplies

a

value

for

NCP

during

OPEN.

For

performance

reasons,

the

example

shown

in

Figure

83

automatically

takes

advantage

of

the

NCP

value

calculated

in

OPEN

or

set

by

the

user

on

the

DD

statement.

If

the

FIND

macro

is

omitted

and

DSORG

on

the

DCB

changed

to

PS,

the

example

shown

in

Figure

83

works

to

read

a

sequential

data

set

with

BSAM.

The

logic

to

do

that

is

summarized

in

“Using

Overlapped

I/O

with

BSAM”

on

page

353.

To

retrieve

a

member

of

a

PDS

using

the

NOTE

and

POINT

macros,

take

the

following

steps.

Figure

82

on

page

424

is

an

example

that

uses

note

lists,

which

should

not

be

used

with

PDSEs.

1.

Code

DSORG=PO

or

POU

in

the

DCB

macro.

2.

In

the

DD

statement

specify

the

data

set

name

of

the

PDS

by

coding

DSNAME=name.

3.

Issue

the

BLDL

macro

to

get

the

list

of

member

entries

you

need

from

the

directory.

4.

Repeat

the

following

steps

for

each

member

to

be

retrieved:

a.

Use

the

FIND

macro

to

prepare

for

reading

the

member

records.

If

you

use

the

POINT

macro

it

will

not

work

in

a

partitioned

concatenation.

b.

The

records

can

be

read

from

the

beginning

of

the

member,

or

a

note

list

can

be

read

first,

to

obtain

additional

locations

that

point

to

subcategories

within

the

member.

If

you

want

to

read

out

of

sequential

order,

use

the

POINT

macro

to

point

to

blocks

within

the

member.

//PDSDD

DD

---,DSN=MASTFILE(MEMBERK),DISP=SHR

...

OPEN

(INDCB)

Open

for

input,

automatic

FIND

...

GET

INDCB,INAREA

Read

member

record

...

CLOSE

(INDCB)

...

INAREA

DS

CL80

Area

to

read

into

INDCB

DCB

---,DSORG=PS,DDNAME=PDSDD,MACRF=GM

Figure

81.

Retrieving

One

Member

of

a

PDS

Processing

a

Partitioned

Data

Set

(PDS)

422

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

c.

Read

(and

check)

the

records

until

all

those

required

have

been

processed.

d.

Your

end-of-data-set

(EODAD)

routine

receives

control

at

the

end

of

each

member.

At

that

time,

you

can

process

the

next

member

or

close

the

data

set.

Figure

82

on

page

424

shows

the

technique

for

processing

several

members

without

closing

and

reopening.

This

demonstrates

synchronous

reading.

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

423

The

example

in

Figure

83

on

page

425

does

not

use

large

block

interface

(LBI).

With

BPAM

there

is

no

advantage

in

the

current

release

to

using

LBI

because

the

block

size

cannot

exceed

32

760

bytes.

You

can

convert

the

example

to

BSAM

by

omitting

the

FIND

macro

and

changing

DSORG

in

the

DCB

to

PS.

With

BSAM

LBI

you

can

read

tape

blocks

that

are

longer

than

32

760

bytes.

//PDSDD

DD

---,DSN=D42.MASTFILE,DISP=SHR

...

OPEN

(INDCB)

Open

for

input,

no

automatic

FIND

...

BLDL

INDCB,BLDLLIST

Retrieve

the

relative

disk

locations

*

of

several

names

in

virtual

storage

LA

BLDLREG,BLDLLIST+4

Point

to

the

first

entry

Begin

a

member

possibly

in

another

concatenated

data

set

MEMBER

FIND

INDCB,8(,BLDLREG),C

Position

to

member

...

Read

the

NOTE

list

LA

NOTEREG,NOTELIST

Load

address

of

NOTE

list

MVC

TTRN(4),14(BLDLREG)

Move

NOTE

list

TTRN

*

to

fullword

boundary

POINT

INDCB,TTRN

Point

to

the

NOTE

list

record

READ

DECBX,SF,INDCB,(NOTEREG)

Read

the

NOTE

list

CHECK

DECBX

...

Read

data

from

a

subgroup

SUBGROUP

POINT

INDCB,(NOTEREG)

Point

to

subgroup

READ

DECBY,SF,INDCB,INAREA

Read

record

in

subgroup

CHECK

DECBY

LA

NOTEREG,4(NOTEREG)

Increment

to

next

subgroup

TTRN

...

Repeat

from

label

“SUBGROUP”

for

each

additional

subgroup

AH

BLDLREG,BLDLLIST+2

Repeat

from

label

“MEMBER”

for

each

additional

member

...

CLOSE

(INDCB)

...

INAREA

DS

CL80

INDCB

DCB

---,DSORG=PO,DDNAME=PDSDD,MACRF=R

TTRN

DS

F

TTRN

of

the

NOTE

list

to

point

at

NOTEREG

EQU

4

Register

to

address

NOTE

list

entries

NOTELIST

DS

0F

NOTE

list

DS

F

NOTE

list

entry

(4

byte

TTRN)

DS

19F

one

entry

per

subgroup

BLDLREG

EQU

5

Register

to

address

BLDL

list

entries

BLDLLIST

DS

0F

List

of

member

names

for

BLDL

DC

H’10’

Number

of

entries

(10

for

example)

DC

H’18’

Number

of

bytes

per

entry

DC

CL8’MEMBERA’

Name

of

member

DS

CL3

TTR

of

first

record

(created

by

BLDL)

DS

X

K

byte,

concatenation

number

DS

X

Z

byte,

location

code

DS

X

C

byte,

flag

and

user

data

length

DS

CL4

TTRN

of

NOTE

list

...

one

list

entry

per

member

(18

bytes

each)

Figure

82.

Retrieving

Several

Members

and

Subgroups

of

a

PDS

without

Overlapping

I/O

Time

and

CPU

Time

Processing

a

Partitioned

Data

Set

(PDS)

424

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

technique

shown

in

Figure

83

is

more

efficient

than

the

technique

shown

in

Figure

82

on

page

424

because

the

access

method

is

transferring

data

while

the

program

is

processing

data

that

was

previously

read.

OPEN

LIBDCB

Open

DCB,

setting

RECFM,

LRECL,

BLKSIZE

USING

IHADCB,LIBDCB

USING

DCBE,MYDCBE

DCB

addressability

(needs

HLASM)

TM

DCBOFLGS,DCBOFPPC

Branch

if

open

BZ

failed

FIND

LIBDCB,MEMNAME,D

Position

to

member

to

read

SR

R3,R3

GET

NCP

calculated

by

OPEN

or

IC

R3,DCBNCP

coded

on

DD

statement

(1)

LH

R1,DCBBLKSI

Get

maximum

size

of

a

block

ROUND

LA

R1,DATAOFF+7(,R1)

Add

length

of

DECB

(READ

MF=L)

and

pointer

SRL

R1,3

and

round

up

to

a

SLL

R1,3

doubleword

length

LR

R4,R1

Save

length

of

DECB

+

pointer

+

block

size

MR

R0,R3

Calculate

length

of

area

to

get

*

Get

area

for

DECB’s,

a

pointer

to

the

next

DECB

for

each

DECB

and

a

data

area

*

for

each

DECB.

Each

DECB

is

followed

by

a

pointer

to

the

next

one

and

the

*

associated

data

area.

The

DECB’s

are

chained

in

a

circle.

DECB’s

must

be

*

below

line;

data

areas

can

be

above

line

if

running

in

31-bit

mode,

however,

*

they

will

be

retrieved

below

the

line

in

this

example.

ST

R1,AREALEN

Save

length

of

area

GETMAIN

R,LV=(R1),LOC=(BELOW,64)

*

DECB

virtual

addr

below

the

line,

but

real

above

ST

R1,AREAAD

LR

R5,R1

*

Loop

to

build

DECB’s

and

issue

first

READ’s.

BLDLOOP

MVC

0(NEXTDECBOFF,R5),MODELDECB

Create

basic

DECB

LA

R1,0(R4,R5)

Point

to

next

DECB

ST

R1,NEXTDECBOFF(,R5)

Set

chain

pointer

to

next

DECB

READ

(R5),SF,,DATAOFF(R5)

Store

data

address

in

DECB,

issue

READ

AR

R5,R4

Point

to

next

DECB

BCT

R3,BLDLOOP

Branch

if

another

READ

to

issue

SR

R5,R4

Point

back

to

last

DECB

L

R1,AREAAD

Point

to

first

DECB

ST

R1,NEXTDECBOFF(,R5)

Point

last

DECB

to

first

DECB

LR

R5,R1

Point

to

first

(oldest)

DECB

*

Loop

to

read

until

end-of-file

is

reached.

MAINLOOP

CHECK

(R5)

Wait

for

READ,

branch

to

EODATA

if

done

L

R1,16(,R5)

Point

to

status

area

LH

R0,DCBBLKSI

Get

length

of

read

attempted

(2)

SH

R0,14(,R1)

Subtract

residual

count

to

read

length

RECORD1

LA

R1,DATAOFF(,R5)

Point

to

first

record

in

block

.

.

(Process

records

in

block)

.

READ

(R5),SF,MF=E

Issue

new

read

L

R5,NEXTDECBOFF(,R5)

Point

to

next

DECB

B

MAINLOOP

Branch

to

next

block

*

End-of-data.

*

CHECK

branched

here

because

DECB

was

for

a

READ

after

the

last

block.

Figure

83.

Reading

a

Member

of

a

PDS

or

PDSE

using

Asynchronous

BPAM

(Part

1

of

2)

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

425

Tip:

You

can

convert

Figure

83

on

page

425

to

use

LBI

by

making

the

following

changes:

v

Add

BLKSIZE=0

in

the

DCBE

macro.

Coding

a

nonzero

value

also

requests

LBI,

but

it

overrides

the

block

size.

v

After

line

(1),

test

whether

the

access

method

supports

LBI.

This

is

in

case

the

type

of

data

set

or

the

level

of

operating

system

does

not

support

LBI.

Insert

these

lines

to

get

the

maximum

block

size:

TM

DCBEFLG1,DCBESLBI

Branch

if

access

method

does

BZ

ROUND

not

support

LBI

L

R1,DCBEBLKSI

Get

maximum

size

of

a

block

v

After

line

(2)

get

the

size

of

the

block:

TM

DCBEFLG1,DCBESLBI

Branch

if

BZ

RECORD1

not

using

LBI

SH

R1,=X'12'

Point

to

size

L

R0,0(,R1)

Get

size

of

block

Modifying

a

PDS

A

member

of

a

PDS

can

be

updated

in

place,

or

it

can

be

deleted

and

rewritten

as

a

new

member.

Updating

in

Place

A

member

of

a

PDS

can

be

updated

in

place.

Only

one

user

can

update

at

a

time.

When

you

update-in-place,

you

read

records,

process

them,

and

write

them

back

to

their

original

positions

without

destroying

the

remaining

records.

The

following

rules

apply:

v

You

must

specify

the

UPDAT

option

in

the

OPEN

macro

to

update

the

data

set.

To

perform

the

update,

you

can

use

only

the

READ,

WRITE,

GET,

PUTX,

CHECK,

NOTE,

POINT,

FIND,

BLDL,

and

STOW

macros.

v

You

cannot

update

concatenated

data

sets.

v

You

cannot

delete

any

record

or

change

its

length;

you

cannot

add

new

records.

v

You

do

not

need

to

issue

a

STOW

macro

unless

you

want

to

change

the

user

data

in

the

directory

entry.

v

You

cannot

use

LBI.

EODATA

CLOSE

LIBDCB

L

R0,AREALEN

L

R1,AREAAD

FREEMAIN

R,LV=(0),A=(1)

.

.

.

AREAAD

DC

A(0)

Address

of

gotten

storage

AREALEN

DC

F’0’

Length

of

gotten

storage

LIBDCB

DCB

DSORG=PO,DCBE=MYDCBE,MACRF=R,DDNAME=DATA

MYDCBE

DCBE

MULTSDN=2,EODAD=EODATA,MULTACC=1

Request

OPEN

to

supply

NCP

READ

MODELDECB,SF,LIBDCB,MF=L

NEXTDECBOFF

EQU

*-MODELDECB

Offset

to

addr

of

next

DECB

DATAOFF

EQU

NEXTDECBOFF+4

Offset

to

data

MEMNAME

DC

CL8’MASTER’

Name

of

member

to

read

DCBD

DSORG=PS,DEVD=DA

IHADCBE

,

Figure

83.

Reading

a

Member

of

a

PDS

or

PDSE

using

Asynchronous

BPAM

(Part

2

of

2)

Processing

a

Partitioned

Data

Set

(PDS)

426

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

With

BSAM

and

BPAM

A

record

must

be

retrieved

by

a

READ

macro

before

it

can

be

updated

by

a

WRITE

macro.

Both

macros

must

be

execute

forms

that

refer

to

the

same

DECB;

the

DECB

must

be

provided

by

a

list

form.

(The

execute

and

list

forms

of

the

READ

and

WRITE

macros

are

described

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.)

With

Overlapped

Operations

To

overlap

I/O

and

processor

activity,

you

can

start

several

read

or

write

operations

before

checking

the

first

for

completion.

You

cannot

overlap

read

and

write

operations.

However,

as

operations

of

one

type

must

be

checked

for

completion

before

operations

of

the

other

type

are

started

or

resumed.

Note

that

each

outstanding

read

or

write

operation

requires

a

separate

DECB.

If

a

single

DECB

were

used

for

successive

read

operations,

only

the

last

record

read

could

be

updated.

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

427

In

Figure

84,

overlap

is

achieved

by

having

a

read

or

write

request

outstanding

while

each

record

is

being

processed.

Note

the

use

of

the

execute

and

list

forms

of

the

READ

and

WRITE

macros,

identified

by

the

parameters

MF=E

and

MF=L.

With

QSAM

Update

a

member

of

a

PDS

using

the

locate

mode

of

QSAM

(DCB

specifies

MACRF=(GL,PL))

and

using

the

GET

and

PUTX

macros.

The

DD

statement

must

specify

the

data

set

and

member

name

in

the

DSNAME

parameter.

This

method

permits

only

the

updating

of

the

member

specified

in

the

DD

statement.

//PDSDD

DD

DSNAME=MASTFILE(MEMBERK),DISP=OLD,---

...

UPDATDCB

DCB

DSORG=PS,DDNAME=PDSDD,MACRF=(R,W),NCP=2,EODAD=FINISH

READ

DECBA,SF,UPDATDCB,AREAA,MF=L

Define

DECBA

READ

DECBB,SF,UPDATDCB,AREAB,MF=L

Define

DECBB

AREAA

DS

Define

buffers

AREAB

DS

...

OPEN

(UPDATDCB,UPDAT)

Open

for

update

LA

2,DECBA

Load

DECB

addresses

LA

3,DECBB

READRECD

READ

(2),SF,MF=E

Read

a

record

NEXTRECD

READ

(3),SF,MF=E

Read

the

next

record

CHECK

(2)

Check

previous

read

operation

(If

update

is

required,

branch

to

R2UPDATE)

LR

4,3

If

no

update

is

required,

LR

3,2

switch

DECB

addresses

in

LR

2,4

registers

2

and

3

B

NEXTRECD

and

loop

In

the

following

statements,

'R2'

and

'R3'

refer

to

the

records

that

were

read

using

the

DECBs

whose

addresses

are

in

registers

2

and

3,

respectively.

Either

register

can

point

to

either

DECBA

or

DECBB.

R2UPDATE

CALL

UPDATE,((2))

Call

routine

to

update

R2

*

Must

issue

CHECK

for

the

other

outstanding

READ

before

switching

to

WRITE.

*

Unfortunately

this

CHECK

can

send

us

to

EODAD.

CHECK

(3)

Check

read

for

next

record

WRITE

(2),SF,MF=E

(R3)

Write

updated

R2

(If

R3

requires

an

update,

branch

to

R3UPDATE)

CHECK

(2)

If

R3

requires

no

update,

B

READRECD

check

write

for

R2

and

loop

R3UPDATE

CALL

UPDATE,((3))

Call

routine

to

update

R3

WRITE

(3),SF,MF=E

Write

updated

R3

CHECK

(2)

Check

write

for

R2

CHECK

(3)

Check

write

for

R3

B

READRECD

Loop

FINISH

EQU

*

End-of-Data

exit

routine

(If

R2

was

not

updated,

branch

to

CLOSEIT)

WRITE

(2),SF,MF=E

Write

last

record

read

CHECK

(2)

CLOSEIT

CLOSE

(UPDATDCB)

Figure

84.

Updating

a

Member

of

a

PDS

Processing

a

Partitioned

Data

Set

(PDS)

428

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Rewriting

a

Member

There

is

no

actual

update

option

that

can

be

used

to

add

or

extend

records

in

a

PDS.

If

you

want

to

extend

or

add

a

record

within

a

member,

you

must

rewrite

the

complete

member

in

another

area

of

the

data

set.

Because

space

is

allocated

when

the

data

set

is

created,

there

is

no

need

to

request

additional

space.

Note,

however,

that

a

PDS

must

be

contained

on

one

volume.

If

sufficient

space

has

not

been

allocated,

the

data

set

must

be

reorganized

by

the

IEBCOPY

utility

program

or

ISPF.

When

you

rewrite

the

member,

you

must

provide

two

DCBs,

one

for

input

and

one

for

output.

Both

DCB

macros

can

refer

to

the

same

data

set,

that

is,

only

one

DD

statement

is

required.

Concatenating

PDSs

Two

or

more

PDSs

can

be

automatically

retrieved

by

the

system

and

processed

successively

as

a

single

data

set.

This

technique

is

known

as

concatenation.

Two

types

of

concatenation

are:

sequential

and

partitioned.

Sequential

Concatenation

To

process

sequentially

concatenated

data

sets,

use

a

DCB

that

has

DSORG=PS.

Each

DD

statement

can

include

the

following

types

of

data

sets:

v

Sequential

data

sets,

which

can

be

on

disk,

tape,

instream

(SYSIN),

TSO

terminal,

card

reader,

and

subsystem

v

UNIX

files

v

PDS

members

v

PDSE

members

You

can

use

sequential

concatenation

(DSORG=PS

in

DCB)

to

sequentially

read

directories

of

PDSs

and

PDSEs.

See

“Reading

a

PDS

Directory

Sequentially”

on

page

430.

Restriction:

You

cannot

use

this

technique

to

read

a

z/OS

UNIX

directory.

Partitioned

Concatenation

Concatenated

PDSs

are

processed

with

a

DSORG=PO

in

the

DCB.

When

PDSs

are

concatenated,

the

system

treats

the

group

as

a

single

data

set.

A

partitioned

concatenation

can

contain

a

mixture

of

PDSs,

PDSEs,

and

UNIX

directories.

Partitioned

concatenation

is

supported

only

when

the

DCB

is

open

for

input.

There

is

a

limit

to

how

many

DD

statements

are

allowed

in

a

partitioned

concatenation.

Add

together

the

number

of

PDS

extents,

the

number

of

PDSEs,

and

the

number

of

UNIX

directories

in

the

concatenation.

The

sum

cannot

exceed

255.

For

example,

you

can

concatenate

15

PDSs

of

16

extents

each

with

8

PDSEs

and

7

UNIX

directories

((15

x

16)

+

8

+

7

=

255

extents).

Concatenated

PDSs

are

always

treated

as

having

like

attributes,

except

for

block

size.

They

use

the

attributes

of

the

first

data

set

only,

except

for

the

block

size.

BPAM

OPEN

uses

the

largest

block

size

among

the

concatenated

data

sets.

All

attributes

of

the

first

data

set

are

used,

even

if

they

conflict

with

the

block

size

parameter

specified.

For

concatenated

format-F

data

sets

(blocked

or

unblocked),

the

LRECL

for

each

data

set

must

be

equal.

Processing

a

Partitioned

Data

Set

(PDS)

Chapter

26.

Processing

a

Partitioned

Data

Set

(PDS)

429

You

process

a

concatenation

of

PDSs

the

same

way

you

process

a

single

PDS,

except

that

you

must

use

the

FIND

macro

to

begin

processing

a

member.

You

cannot

use

the

POINT

(or

NOTE)

macro

until

after

issuing

the

FIND

macro

the

appropriate

member.

If

two

members

of

different

data

sets

in

the

concatenation

have

the

same

name,

the

FIND

macro

determines

the

address

of

the

first

one

in

the

concatenation.

You

would

not

be

able

to

process

the

second

one

in

the

concatenation.

The

BLDL

macro

provides

the

concatenation

number

of

the

data

set

to

which

the

member

belongs

in

the

K

field

of

the

BLDL

list.

(See

“BLDL—Construct

a

Directory

Entry

List”

on

page

416.)

Reading

a

PDS

Directory

Sequentially

You

can

read

a

PDS

directory

sequentially

just

by

opening

the

data

set

to

its

beginning

(without

using

positioning

macros)

and

reading

it.

v

The

DD

statement

must

identify

the

DSNAME

without

a

member

name.

v

You

can

use

either

BSAM

or

QSAM

with

MACRF=R

or

G.

v

Specify

BLKSIZE=256

and

RECFM=F

or

RECFM=U.

v

QSAM

always

requires

LRECL=256

v

You

should

test

for

the

last

directory

entry

(8

bytes

of

X'FF').

Records

and

blocks

after

that

point

are

unpredictable.

After

reading

the

last

allocated

directory

block,

control

passes

to

your

EODAD

routine

or

reading

continues

with

a

concatenated

data

set.

You

can

issue

an

FEOV

macro

to

cease

reading

the

current

data

set

and

continue

with

the

next

one.

If

you

issue

FEOV

while

reading

the

last

or

only

data

set,

control

passes

to

your

EODAD

routine.

v

If

you

also

want

to

read

the

keys

(the

name

of

the

last

member

in

that

block),

use

BSAM

and

specify

KEYLEN=8.

This

technique

works

when

PDSs

and

PDSEs

are

concatenated.

However,

you

cannot

use

this

technique

to

sequentially

read

a

UNIX

directory.

The

system

considers

this

to

be

a

like

sequential

concatenation.

See

“Reading

a

PDSE

Directory”

on

page

467.

Processing

a

Partitioned

Data

Set

(PDS)

430

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

This

chapter

covers

the

following

topics.

Topic

Location

Advantages

of

PDSEs

431

Structure

of

a

PDSE

433

Processing

PDSE

Records

436

Allocating

Space

for

a

PDSE

439

Defining

a

PDSE

442

Creating

a

PDSE

Member

443

Processing

a

Member

of

a

PDSE

446

Retrieving

a

Member

of

a

PDSE

460

Sharing

PDSEs

462

Modifying

a

Member

of

a

PDSE

466

Reading

a

PDSE

Directory

467

Concatenating

PDSEs

468

Converting

PDSs

to

PDSEs

and

Back

469

PDSE

Address

Spaces

470

Advantages

of

PDSEs

This

section

compares

PDSEs

to

PDSs.

A

PDSE

is

a

data

set

divided

into

sequentially

organized

members,

each

described

by

one

or

more

directory

entries.

PDSEs

are

stored

only

on

direct

access

storage

devices.

In

appearance,

a

PDSE

is

similar

to

a

PDS.

For

accessing

a

PDS

directory

or

member,

most

PDSE

interfaces

are

indistinguishable

from

PDS

interfaces.

However,

PDSEs

have

a

different

internal

format,

which

gives

them

increased

usability.

Each

member

name

can

be

eight

bytes

long.

The

primary

name

for

a

program

object

can

be

eight

bytes

long.

Alias

names

for

program

objects

can

be

up

to

1024

bytes

long.

The

records

of

a

given

member

of

a

PDSE

are

written

or

retrieved

sequentially.

You

can

use

a

PDSE

in

place

of

a

PDS

to

store

data,

or

to

store

programs

in

the

form

of

program

objects.

A

program

object

is

similar

to

a

load

module

in

a

PDS.

A

load

module

cannot

reside

in

a

PDSE

and

be

used

as

a

load

module.

One

PDSE

cannot

contain

a

mixture

of

program

objects

and

data

members.

PDSEs

and

PDSs

are

processed

using

the

same

access

methods

(BSAM,

QSAM,

BPAM)

and

macros

but

you

cannot

use

EXCP

because

of

the

data

set’s

internal

structures.

PDSEs

have

several

features

that

improve

both

your

productivity

and

system

performance.

The

main

advantage

of

using

a

PDSE

over

a

PDS

is

that

PDSEs

automatically

reuse

space

within

the

data

set

without

anyone

having

to

©

Copyright

IBM

Corp.

1987,

2004

431

|

periodically

run

a

utility

to

reorganize

it.

See

“Rewriting

a

Member”

on

page

429.

The

size

of

a

PDS

directory

is

fixed

regardless

of

the

number

of

members

in

it,

while

the

size

of

a

PDSE

directory

is

flexible

and

expands

to

fit

the

members

stored

in

it.

Also,

the

system

reclaims

space

automatically

whenever

a

member

is

deleted

or

replaced,

and

returns

it

to

the

pool

of

space

available

for

allocation

to

other

members

of

the

same

PDSE.

The

space

can

be

reused

without

having

to

do

an

IEBCOPY

compress.

Figure

85

shows

these

advantages.

Related

reading:

For

information

about

macros

used

with

PDSEs,

see

“Processing

a

Member

of

a

PDSE”

on

page

446

and

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

For

information

about

using

RACF

to

protect

PDSEs,

see

Chapter

5,

“Protecting

Data

Sets,”

on

page

53.

For

information

about

load

modules

and

program

objects

see

z/OS

DFSMS

Program

Management.

In

Figure

85,

when

member

B

is

deleted,

the

space

it

occupied

becomes

available

for

reuse

by

new

members

D

and

E.

Other

advantages

of

PDSEs

follow:

v

PDSE

members

can

be

shared.

This

makes

it

easier

to

maintain

the

integrity

of

the

PDSE

when

modifying

separate

members

of

the

PDSE

at

the

same

time.

v

Reduced

directory

search

time.

The

PDSE

directory,

which

is

indexed,

is

searched

using

that

index.

The

PDS

directory,

which

is

organized

alphabetically,

is

searched

sequentially.

The

system

might

cache

in

storage

directories

of

frequently

used

PDSEs.

v

Creation

of

multiple

members

at

the

same

time.

For

example,

you

can

open

two

DCBs

to

the

same

PDSE

and

write

two

members

at

the

same

time.

v

PDSEs

contain

up

to

123

extents.

An

extent

is

a

continuous

area

of

space

on

a

DASD

storage

volume,

occupied

by

or

reserved

for

a

specific

data

set.

v

When

written

to

DASD,

logical

records

are

extracted

from

the

user’s

blocks

and

reblocked.

When

read,

records

in

a

PDSE

are

reblocked

into

the

block

size

specified

in

the

DCB.

The

block

size

used

for

the

reblocking

can

differ

from

the

original

block

size.

Figure

85.

A

Partitioned

Data

Set

Extended

(PDSE)

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

432

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

PDSE

and

PDS

Similarities

The

significant

similarities

between

PDSEs

and

PDSs

are

as

follows:

v

The

same

access

methods

and

macros

are

used,

with

minor

incompatibilities

in

some

cases.

v

Records

are

stored

in

members;

members

are

described

in

the

directory.

PDSE

and

PDS

Differences

Table

35

shows

the

significant

differences

between

PDSEs

and

PDSs:

Table

35.

PDSE

and

PDS

Differences

PDSE

Characteristics

PDS

Characteristics

Data

set

has

a

123-extent

limit.

Data

set

has

a

16-extent

limit.

Directory

is

expandable

and

indexed

by

member

name;

faster

to

search

directory.

Fixed

size

directory

is

searched

sequentially.

PDSEs

are

device

independent:

records

are

reblockable

and

the

TTR

is

simulated

as

a

system

key.

For

PDSs,

TTR

addressing

and

block

sizes

are

device

dependent.

Uses

dynamic

space

allocation

and

automatically

reclaims

space.

Using

IEBCOPY

or

DFSMSdss

COPY

to

copy

all

members

of

a

PDSE

creates

a

larger

index

than

copying

members

one

at

a

time.

Recommendation:

Allocate

a

PDSE

with

secondary

space

to

permit

the

dynamic

variation

in

the

size

of

the

PDSE

index.

Must

use

IEBCOPY

compress

to

reclaim

space.

You

can

create

multiple

members

at

the

same

time.

You

can

create

one

member

at

a

time.

PDSEs

contain

either

program

objects

or

data

members

but

not

both.

z/OS

MVS

Program

Management:

User’s

Guide

and

Reference

describes

the

advantage

of

program

objects

over

load

modules.

Whereas

PDSs

contain

data

members

or

load

modules

but

there

is

no

attempt

to

keep

data

members

and

load

modules

from

being

created

in

the

same

PDS.

Replacing

a

member

without

replacing

all

of

its

aliases

causes

the

alias

entries

to

be

deleted.

Replacing

a

member

without

replacing

all

of

its

aliases

causes

the

alias

entries

to

be

abandoned.

They

are

″orphans″

and

eventually

might

point

to

the

wrong

member.

Alias

names

for

program

objects,

in

a

PDSE,

can

be

up

to

1024

bytes

long.

To

access

these

names,

you

must

use

the

DESERV

interfaces.

Primary

names

for

program

objects

are

restricted

to

8

bytes.

All

names

for

PDS

members

must

be

8

bytes

long.

Structure

of

a

PDSE

When

accessed

sequentially,

through

BSAM

or

QSAM,

the

PDSE

directory

appears

to

be

constructed

of

256-byte

blocks

containing

sequentially

ordered

entries.

The

PDSE

directory

looks

like

a

PDS

directory

even

though

its

internal

structure

and

block

size

are

different.

PDSE

directory

entries

vary

in

length.

Each

directory

entry

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

433

contains

the

member

name

or

an

alias,

the

starting

location

of

the

member

within

the

data

set

and

optionally

user

data.

The

directory

entries

are

arranged

by

name

in

alphanumeric

collating

sequence.

You

can

use

BSAM

or

QSAM

to

read

the

directory

sequentially.

The

directory

is

searched

and

maintained

by

the

BLDL,

DESERV,

FIND,

and

STOW

macros.

If

you

use

BSAM

or

QSAM

to

read

the

directory

of

a

PDSE

which

contains

program

objects

with

names

longer

than

8

bytes,

directory

entries

for

these

names

will

not

be

returned.

If

you

need

to

be

able

to

view

these

names,

you

must

use

the

DESERV

FUNC=GET_ALL

interface

instead

of

BSAM

or

QSAM.

Similarly,

the

BLDL,

FIND,

and

STOW

macro

interfaces

allow

specification

of

only

8-byte

member

names.

These

are

analogous

DESERV

functions

for

each

of

these

interfaces

to

allow

for

processing

names

greater

than

8

bytes.

See

“PDS

Directory”

on

page

408

for

a

description

of

the

fields

in

a

PDSE

directory

entry.

The

PDSE

directory

is

indexed,

permitting

more

direct

searches

for

members.

Hardware-defined

keys

are

not

used

to

search

for

members.

Instead,

the

name

and

the

relative

track

address

of

a

member

are

used

as

keys

to

search

for

members.

The

TTRs

in

the

directory

can

change

if

you

move

the

PDSE,

since

for

PDSE

members

the

TTRs

are

not

relative

track

and

record

numbers

but

rather

pseudo

randomly

generated

aliases

for

the

PDSE

member.

These

TTRs

may

sometimes

be

referred

to

as

Member

Locator

Tokens

(MLTs).

The

limit

for

the

number

of

members

in

a

PDSE

directory

is

522,236.

The

PDSE

directory

is

expandable;

you

can

keep

adding

entries

up

to

the

directory’s

size

limit

or

until

the

data

set

runs

out

of

space.

The

system

uses

the

space

it

needs

for

the

directory

entries

from

storage

available

to

the

data

set.

For

a

PDS,

the

size

of

the

directory

is

determined

when

the

data

set

is

initially

allocated.

There

can

be

fewer

members

in

the

data

set

than

the

directory

can

contain,

but

when

the

preallocated

directory

space

is

full,

the

PDS

must

be

copied

to

a

new

data

set

before

new

members

can

be

added.

PDSE

Logical

Block

Size

The

significance

of

the

block

size

keyword

(BLKSIZE)

is

slightly

different

from

a

PDS.

All

PDSEs

are

stored

on

DASD

as

fixed

4

KB

blocks.

These

4

KB

physical

blocks

are

also

known

as

pages.

The

PDSE

is

logically

reblocked

to

the

block

size

you

specify

when

you

open

the

data

set.

The

block

size

does

not

affect

how

efficiently

a

PDSE

is

stored

on

DASD,

but

it

can

influence

how

efficiently

the

system

reads

from

it

and

writes

to

it.

The

block

size

also

affects

the

size

of

the

storage

buffer

allocated

for

a

PDSE.

You

should

let

the

system-determined

block

size

function

calculate

the

best

block

size

for

your

data

set.

Reuse

of

Space

When

a

PDSE

member

is

updated

or

replaced,

it

is

written

in

the

first

available

space.

This

is

either

at

the

end

of

the

data

set

or

in

a

space

in

the

middle

of

the

data

set

marked

for

reuse.

This

space

need

not

be

contiguous.

The

objective

of

the

space

reuse

algorithm

is

not

to

extend

the

data

set

unnecessarily.

With

the

exception

of

UPDATE,

a

member

is

never

immediately

written

back

to

its

original

space.

The

old

data

in

this

space

is

available

to

programs

that

had

a

connection

to

the

member

before

it

was

rewritten.

The

space

is

marked

for

reuse

only

when

all

connections

to

the

old

data

are

dropped.

However,

once

they

are

dropped,

there

are

no

pointers

to

the

old

data,

so

no

program

can

access

it.

A

connection

may

be

established

at

the

time

a

PDSE

is

opened,

or

by

BLDL,

FIND,

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

434

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

POINT,

or

DESERV.

These

connections

remain

in

effect

until

the

program

closes

the

PDSE

or

the

connections

are

explicitly

released

by

issuing

DESERV

FUNC=RELEASE,

STOW

disconnect,

or

(under

certain

cases)

another

POINT

or

FIND.

Pointing

to

the

directory

can

also

release

connections.

Connections

are

dropped

when

the

data

set

is

closed.

Related

reading:

For

more

information

about

connections

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Directory

Structure

Logically,

a

PDSE

directory

looks

the

same

as

a

PDS

directory.

It

consists

of

a

series

of

directory

records

in

a

block.

Physically,

it

is

a

set

of

pages

at

the

front

of

the

data

set,

plus

additional

pages

interleaved

with

member

pages.

Five

directory

pages

are

initially

created

at

the

same

time

as

the

data

set.

New

directory

pages

are

added,

interleaved

with

the

member

pages,

as

new

directory

entries

are

required.

A

PDSE

always

occupies

at

least

five

pages

of

storage.

Relative

Track

Addresses

(TTR)

The

starting

location

of

each

member

is

recorded

by

the

system

as

a

relative

track

address

(TTR).

The

TTRs

do

not

represent

the

actual

track

or

record

location.

Instead,

the

TTRs

are

tokens

that

simulate

the

track

and

record

location

also

known

as

Member

Locator

Tokens

(MLT)

and

Record

Locator

Tokens

(RLT).

TTRs

used

with

PDSEs

have

the

following

format:

v

TTRs

represent

individual

logical

records,

not

blocks

or

spanned

record

segments.

v

The

TTR

for

the

PDSE

directory

is

X'000001'.

v

TTRs

for

PDSE

members

are

randomly

generated

to

be

unique

within

a

PDSE.

TTRs

for

members

that

are

deleted

can

be

reused

by

the

system

for

newly

created

members.

v

TTRs

for

PDSE

members

range

from

X'000002'

to

X'07FFFF'.

v

The

TTR

of

a

block

is

the

record

number

for

the

first

logical

record

of

that

block.

TTRs

for

a

block

are

unique

within

a

member,

but

not

unique

within

the

PDSE.

v

Record

numbers

start

at

X'100001'

within

a

PDSE

member.

v

Record

numbers

range

from

X'100001'

to

X'FFFFFF'.

v

Record

numbers

are

contiguous

within

a

PDSE

member.

While

the

preceding

notes

can

be

used

to

define

an

algorithm

for

calculating

PDSE

TTRs,

it

is

strongly

recommended

that

you

not

do

TTR

calculations

because

this

algorithm

might

change

with

new

releases

of

the

system.

Figure

86

shows

examples

of

TTRs

for

unblocked

records.

TTR of Member A = X’000002’

Block 2

X’100002’

Block 1

X’100001’14

Figure

86.

TTRs

for

a

PDSE

Member

(Unblocked

Records)

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

435

Figure

87

shows

examples

of

TTRs

for

blocked

records.

In

both

examples,

PDSE

member

A

has

a

TTR

of

X'000002'.

In

Figure

86,

the

records

are

unblocked,

the

record

number2

for

logical

record

1

is

X'100001'

and

logical

record

2

is

X'100002'.

In

Figure

87,

the

records

are

fixed

length,

blocked

with

LRECL=80

and

BLKSIZE=800.

The

first

block

is

identified

by

the

member

TTR,

the

second

block

by

a

TTR

of

X'10000B',

and

the

third

block

by

a

TTR

of

X'100015'.

Note

that

the

TTRs

of

the

blocks

differ

by

an

amount

of

10,

which

is

the

blocking

factor.

To

position

to

a

member,

use

the

TTR

obtained

from

the

BLDL

or

NOTE

macro,

or

a

BSAM

read

of

the

directory,

or

DESERV

FUNC=GET

or

FUNC=GET_ALL.

To

locate

the

TTR

of

a

record

within

a

member,

use

the

NOTE

macro

(see

“Using

the

NOTE

Macro

to

Provide

Relative

Position”

on

page

457).

Processing

PDSE

Records

PDSE

members

are

accessed

sequentially,

as

are

PDS

members.

Each

member

can

contain

a

maximum

number

of

15

728

639

logical

records.

A

logical

end-of-file

mark

is

at

the

end

of

each

PDSE

member.

Some

restrictions

on

processing

PDSEs

follow:

v

The

JCL

keyword

DSNTYPE

cannot

be

specified

with

the

JCL

keyword

RECORG.

v

You

should

not

use

PDSEs

if

your

application

is

dependent

on

processing

short

blocks

other

than

the

last

one

in

a

member

of

processing

or

SAM

record

null

segments.

See

“Processing

Short

Blocks”

on

page

438

and

“Processing

SAM

Null

Segments”

on

page

439

for

more

information.

v

See

“Using

the

BSP

Macro

to

Backspace

a

Physical

Record”

on

page

448

for

the

restrictions

in

using

BSP

with

variable

spanned

or

variable

blocked

spanned

records.

v

You

cannot

write

or

update

the

PDSE

directory

using

the

WRITE

or

PUT

macros.

To

write

or

update

the

directory,

you

must

use

the

STOW

or

DESERV

FUNC=UPDATE

macros.

v

You

cannot

add

or

replace

members

of

a

PDSE

program

library

using

the

STOW

macro.

2. The

first

record

in

a

member

can

be

pointed

to

using

the

TTR

for

the

member

(in

the

examples

above,

X'000002').

TTR of Member A = X’000002’

Block 2

X’10000B’

Block 1

X’100001’14

TTR of Member B = X’000003’

Block 2

X’10000B’

Block 1

X’100001’14

Block 3

X’100015’

Figure

87.

TTRs

for

Two

PDSE

Members

(LRECL=80,

BLKSIZE=800)

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

436

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

Aliases

for

members

must

point

to

the

beginning

of

the

member.

v

The

deletion

of

the

primary

member

name

causes

all

aliases

to

be

deleted.

v

EXCP,

EXCPVR,

and

XDAP

are

not

supported

macros

for

PDSEs.

v

If

you

allocate

a

PDSE,

it

cannot

be

read

on

an

earlier

version

or

release

of

DFSMSdfp

that

does

not

support

PDSEs.

v

Note

lists

are

not

supported

for

PDSEs.

When

using

STOW

with

a

PDSE,

do

not

supply

a

list

of

TTRs

in

the

user

data

field

of

the

directory.

v

The

CHECK,

STOW,

and

CLOSE

macros

do

not

guarantee

that

the

data

has

been

synchronized

to

DASD.

Use

the

SYNCDEV

macro

or

the

storage

class

parameter

SYNCDEV=YES

to

guarantee

synchronizing

data

when

open

for

update.

See

“Using

the

SYNCDEV

Macro

to

Synchronize

Data”

on

page

509

for

the

definition

of

synchronization.

v

DS1LSTAR

field

of

the

format

1

DSCB

is

unpredictable

for

PDSEs.

v

The

OPTCD=W

DCB

parameter

(write-check)

is

ignored

for

PDSEs.

v

A

checkpoint

data

set

cannot

be

a

PDSE.

Checkpoint

fails

if

the

checkpoint

data

set

is

a

PDSE.

Also,

a

failure

occurs

if

a

checkpoint

is

requested

when

a

DCB

is

opened

to

a

PDSE,

or

if

a

PDS

was

opened

at

checkpoint

time

but

was

changed

to

a

PDSE

by

restart

time.

v

Do

not

use

the

TRKCALC

macro

because

results

could

be

inaccurate.

(However,

no

error

indication

is

returned.)

v

A

library

that

contains

cataloged

procedures

must

be

either

a

PDS

or

PDSE.

The

system

procedure

library,

SYS1.PROCLIB,

must

be

a

PDS.

The

installation

can

have

other

procedure

libraries,

which

can

be

PDSEs.

v

When

a

cataloged

procedure

library

is

used,

the

library

is

opened

for

input

and

stays

open

for

extended

periods.

If

another

user

or

system

attempts

to

open

the

procedure

library

for

output

in

a

non-XCF

(sysplex)

environment,

the

second

user

receives

an

ABEND.

This

could

prevent

procedure

library

updates

for

extended

periods.

Using

BLKSIZE

with

PDSEs

When

reading

a

PDSE

directory

that

uses

fixed-length

blocked

records,

you

can

specify

a

BLKSIZE

value

of

256

or

greater

(the

system

ignores

the

LRECL

value).

You

can

calculate

the

block

size

and

specify

it

in

the

BLKSIZE

parameter

of

the

DCB,

or

you

can

let

the

system

determine

the

block

size

for

you.

Although

the

block

size

makes

no

difference

in

space

usage

for

PDSEs,

block

size

affects

the

buffer

size

of

a

job

using

the

PDSE.

Related

reading:

See

“Block

Size

(BLKSIZE)”

on

page

321

for

information

about

using

BLKSIZE.

Also

see

“Reading

a

PDSE

Directory”

on

page

467.

Using

KEYLEN

with

PDSEs

For

reading

a

PDSE

directory,

a

key

length

of

0

or

8

are

the

only

values

allowed.

You

can

use

keys

for

reading

PDSE

members,

but

not

for

writing

PDSE

members.

See

“Key

Length

(KEYLEN)”

on

page

328

for

information

about

using

the

KEYLEN

parameter.

Reblocking

PDSE

Records

PDSE

members

are

reblockable.

When

reading

the

PDSE

members,

the

system

constructs

the

block

size

specified

in

the

DCB.

If

the

block

size

is

not

specified

in

the

DCB,

the

default

block

size

is

used.

The

system

packs

as

many

records

as

can

fit

into

the

specified

block

size.

Logical

records

are

written

to

DASD

in

blocks

whose

lengths

are

not

determined

by

the

user,

and

can

span

physical

records.

The

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

437

user-defined

or

system-defined

block

size

is

saved

in

the

data

set

label

when

the

records

are

written,

and

becomes

the

default

block

size

for

input.

These

constructed

blocks

are

called

simulated

blocks.

Figure

88

shows

an

example

of

how

the

records

are

reblocked

when

the

PDSE

member

is

read:

Suppose

you

create

a

PDSE

member

that

has

a

logical

record

length

of

80

bytes,

such

that

you

write

five

blocks

with

a

block

size

of

160

(blocking

factor

of

2)

and

five

short

blocks

with

a

block

size

of

80.

When

you

read

back

the

PDSE

member,

the

logical

records

are

reblocked

into

seven

160-byte

simulated

blocks

and

one

short

block.

Note

that

short

block

boundaries

are

not

saved

on

output.

You

also

can

change

the

block

size

of

records

when

reading

the

data

set.

Figure

89

shows

how

the

records

are

reblocked

when

read:

Suppose

you

write

three

blocks

with

block

size

of

320,

and

the

logical

record

length

is

80

bytes.

Then

if

you

read

this

member

with

a

block

size

of

400

(blocking

factor

of

5),

the

logical

records

are

reblocked

into

two

400-byte

simulated

blocks

and

one

160-byte

simulated

block.

If

the

data

set

was

a

PDS,

you

would

not

be

able

to

change

the

block

size

when

reading

the

records.

Processing

Short

Blocks

You

should

not

use

PDSEs

if

your

application

expects

short

blocks

before

the

end

of

a

member.

You

can

create

short

blocks

for

PDSE

members,

but

their

block

boundaries

are

not

saved

when

the

data

set

is

written.

For

example,

if

you

use

the

TRUNC

macro

with

QSAM

to

create

short

blocks,

the

short

blocks

are

not

shown

when

the

data

set

is

read.

If

the

QSAM

TRUNC

macro

is

used,

a

message

is

written

to

the

job

log

and

an

indicator

is

set

in

the

SMF

record

type

15.

A

BSAM

or

BPAM

TRUNC

macro

does

not

have

this

effect.

Figure

88.

Example

of

How

PDSE

Records

Are

Reblocked

Figure

89.

Example

of

Reblocking

When

the

Block

Size

Has

Been

Changed

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

438

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Processing

SAM

Null

Segments

You

should

not

use

PDSEs

if

your

application

processes

SAM

null

record

segments.

Null

record

segments,

which

are

created

only

with

variable

blocked

spanned

(VBS)

records,

are

not

saved

when

the

data

set

is

written.

For

example,

if

you

create

a

null

record

segment

when

writing

the

data

set,

it

is

not

returned

when

the

data

set

is

read.

On

the

first

write

of

a

null

record

segment,

a

message

is

written

to

the

job

log

and

an

indicator

is

set

in

the

SMF

record

type

15.

Related

reading:

See

z/OS

MVS

System

Management

Facilities

(SMF)

for

more

information

about

SMF.

Allocating

Space

for

a

PDSE

Space

allocation

for

a

PDSE

is

different

from

a

PDS.

To

allocate

a

PDSE,

specify

LIBRARY

in

the

DSNTYPE

parameter.

This

section

shows

how

to

use

the

SPACE

JCL

keyword

to

allocate

primary

and

secondary

storage

space

amounts

for

a

PDSE.

The

PDSE

directory

can

extend

into

secondary

space.

A

PDSE

can

have

a

maximum

of

123

extents.

A

PDSE

cannot

extend

beyond

one

volume.

Note

that

a

fragmented

volume

might

use

up

extents

more

quickly

because

you

get

less

space

with

each

extent.

With

a

SPACE=(CYL,(1,1,1))

specification,

the

data

set

can

extend

to

123

cylinders

(if

space

is

available).

Because

PDSE

directory

space

is

allocated

dynamically,

you

do

not

need

to

estimate

the

number

of

PDSE

members

to

be

created.

Therefore,

the

directory

block

quantity

that

you

specify

on

the

SPACE

keyword

is

not

used

for

PDSEs,

but

is

saved

and

available

for

use

by

conversion

utilities.

Alternately,

you

can

omit

the

directory

quantity

by

specifying

DSORG=PO

in

your

JCL

DD

statement

or

the

data

class

when

allocating

the

data

set.

Guideline:

If

you

use

JCL

to

allocate

the

PDSE,

you

must

specify

the

number

of

directory

blocks

in

the

SPACE

parameter,

or

the

allocation

fails.

However,

if

you

allocate

a

PDSE

using

data

class,

you

can

omit

the

number

of

directory

blocks

in

the

SPACE

parameter.

For

a

PDSE,

the

number

of

directory

blocks

is

unlimited.

Related

reading:

v

See

“Allocating

Space

for

a

PDS”

on

page

411

for

examples

of

the

SPACE

keyword.

v

See

Chapter

3,

“Allocating

Space

on

Direct

Access

Volumes,”

on

page

35,

z/OS

MVS

JCL

User’s

Guide,

and

z/OS

MVS

JCL

Reference

for

information

about

allocating

space.

PDSE

Space

Considerations

Several

factors

affect

space

utilization

in

a

PDSE.

Compared

to

a

PDS,

there

are

both

advantages

and

disadvantages

in

how

a

PDSE

uses

space.

However,

when

considering

the

space

differences,

remember

that

a

PDSE

has

the

following

functional

advantages.

A

PDSE

does

not

need

to

be

compressed,

it

has

an

expandable

directory

so

that

space

planning

is

less

critical,

and

it

can

be

shared

more

efficiently.

The

following

are

some

areas

to

consider

when

determining

the

space

requirements

for

a

PDSE.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

439

Use

of

Noncontiguous

Space

When

members

are

created,

the

first

available

space

is

allocated.

However,

noncontiguous

space

can

be

used

if

contiguous

space

is

not

available.

This

can

be

reclaimed

space

from

deleted

members.

This

is

a

clear

advantage

over

PDSs,

which

require

all

member

space

to

be

contiguous

and

do

not

automatically

reclaim

space

from

deleted

members.

Integrated

Directory

All

PDSE

space

is

available

for

either

directory

or

member

use.

Within

a

data

set,

there

is

no

difference

between

pages

used

for

the

directory

and

pages

used

for

members.

As

the

data

set

grows,

the

members

and

directory

have

the

same

space

available

for

use.

The

directory,

or

parts

of

it,

can

be

in

secondary

extents.

Directory

pages

are

no

longer

a

factor

in

determining

space

requirements.

A

PDSE

does

not

have

preallocated,

unused,

directory

pages.

Directory

space

is

automatically

expanded

as

needed.

The

format

of

a

PDSE

lets

the

directory

contain

more

information.

This

information

can

take

more

space

than

a

PDS

directory

block.

The

PDSE

directory

contains

keys

(member

names)

in

a

compressed

format.

The

insertion

or

deletion

of

new

keys

may

cause

the

compression

of

other

directory

keys

to

change.

Therefore

the

change

in

the

directory

size

may

be

different

than

the

size

of

the

inserted

or

deleted

record.

Full

Block

Allocation

A

PDSE

member

is

allocated

in

full

page

increments.

A

member

is

maintained

on

full

page

boundaries,

and

any

remaining

space

in

the

page

is

unused.

This

unused

space

is

inaccessible

for

use

as

other

member

space

or

directory

storage.

PDSE

Unused

Space

PDS

gas

is

the

unreclaimed

space

in

a

PDS

that

was

vacated

when

members

were

deleted

or

rewritten.

Users

often

overallocate

their

PDSs

to

allow

for

the

inevitable

amount

of

PDS

gas

that

would

develop

over

time.

With

PDSEs,

you

do

not

need

to

add

additional

space

to

the

allocation

to

allow

for

growth

of

the

data

set

due

to

gas.

Studies

show

that

a

typical

installation

has

18%

to

30%

of

its

PDS

space

in

the

form

of

gas.

This

space

is

unusable

to

the

data

set

until

it

has

been

compressed.

A

PDSE

dynamically

reuses

all

the

allocated

space

according

to

a

first-fit

algorithm.

You

do

not

need

to

make

any

allowance

for

gas

when

you

allocate

space

for

a

PDSE.

Space

is

only

reclaimed

for

an

OPEN

for

output

when

it

is

the

only

open

for

output

on

that

system.

PDSE

space

cannot

be

reclaimed

immediately

after

a

member

is

deleted

or

dated.

If

a

deleted

or

updated

member

still

has

an

existing

connection

from

another

task

(or

the

input

DCB

from

an

ISPF

edit

session),

the

member

space

is

not

reclaimed

until

the

connection

is

released

and

the

data

set

is

opened

for

output

and

that

OPEN

for

OUTPUT

is

the

only

one

on

that

system.

ABEND

D37

can

occur

on

a

PDSE

indicating

it

is

FULL,

but

another

member

can

still

be

saved

in

the

data

set.

Recovery

processing

from

an

ABEND

D37

in

ISPF

closes

and

reopens

the

data

set.

This

new

open

of

the

data

set

allows

PDSE

code

to

reclaim

space

so

a

member

can

now

be

saved.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

440

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Frequency

of

Data

Set

Compression

Data

set

compression

is

the

process

by

which

unused

space

is

removed

from

a

PDS.

Data

set

compression

is

not

necessary

with

a

PDSE.

Since

there

is

no

gas

accumulation

in

a

PDSE,

there

is

no

need

for

compression.

Extent

Growth

A

PDSE

can

have

up

to

123

extents.

Because

a

PDSE

can

have

more

secondary

extents,

you

can

get

the

same

total

space

allocation

with

a

smaller

secondary

allocation.

A

PDS

requires

a

secondary

extent

about

eight

times

larger

than

a

PDSE

to

have

the

same

maximum

allocation.

Conversely,

for

a

given

secondary

extent

value,

PDSEs

can

grow

about

eight

times

larger

before

needing

to

be

condensed.

Defragmenting

is

the

process

by

which

multiple

small

extents

are

consolidated

into

fewer

large

extents.

This

operation

can

be

performed

directly

from

the

interactive

storage

management

facility

(ISMF)

data

set

list.

Although

the

use

of

smaller

extents

can

be

more

efficient

from

a

space

management

standpoint,

to

achieve

the

best

performance

you

should

avoid

fragmenting

your

data

sets

whenever

possible.

Logical

Block

Size

The

logical

block

size

can

affect

the

performance

of

a

PDSE.

In

general

a

large

block

size

improves

performance.

IBM

recommends

that

you

use

the

system-determined

block

size

function

for

allocating

data

sets.

It

chooses

the

optimal

block

size

for

the

data

set.

A

PDSE

is

given

the

maximum

block

size

of

32

760

bytes

for

variable

records.

For

fixed-length

records,

the

block

size

is

the

largest

multiple

of

record

size

that

is

less

than

or

equal

to

32

760.

Applications

can

use

different

logical

block

sizes

to

access

the

same

PDSE.

The

block

size

in

the

DCB

is

logical

and

has

no

effect

on

the

physical

block

(page)

size

being

used.

Physical

Block

Size

(Page

Size)

PDSEs

use

a

physical

block

size

of

4

KB,

the

same

size

as

an

MVS

page.

These

4

KB

physical

blocks

are

also

often

referred

to

as

pages.

The

DCB

block

size

does

not

affect

the

physical

block

size

and

all

members

of

a

PDSE

are

assumed

to

be

reblockable.

If

you

code

your

DCB

with

BLKSIZE=6160,

the

data

set

is

physically

reblocked

into

4

KB

pages,

but

your

program

still

sees

6160-byte

logical

blocks.

Free

Space

The

space

for

any

library

can

be

overallocated.

This

excess

space

can

be

released

manually

with

the

FREE

command

in

ISPF.

Or

you

could

code

the

release

(RLSE)

parameter

on

your

JCL

or

select

a

management

class

that

includes

the

release

option

partial.

RLSE

is

complemented

by

the

partial

release

parameter

in

the

management

class,

which

can

cause

DFSMShsm

to

release

free

space

during

the

daily

space

management

cycle

or

depend

on

the

equivalent

in

the

management

class.

This

function

works

the

same

for

PDSEs

as

it

does

for

PDSs

or

sequential

data

sets.

The

partial

release

parameter

frees

the

unused

space

but

it

does

not

consolidate

extents.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

441

Fragmentation

Most

allocation

units

are

approximately

the

same

size.

This

is

because

of

the

way

members

are

buffered

and

written

in

groups

of

multiple

pages.

There

is

very

little,

if

any,

fragmentation

in

a

PDSE.

If

there

is

fragmentation,

copy

the

data

set

with

IEBCOPY

or

DFSMSdss.

The

fragmented

members

are

recombined

in

the

new

copy.

Summary

of

PDSE

Storage

Requirements

When

planning

for

PDSE

processing,

consider

the

following

storage

requirements:

v

The

storage

necessary

for

directory

information

is

obtained

from

storage

that

is

generally

available

to

the

data

set.

Because

the

directory

expands

dynamically,

storage

for

the

directory

is

obtained

whenever

needed.

The

directory

storage

need

not

be

limited

to

the

primary

extent,

but

can

be

obtained

from

any

available

storage.

v

For

each

PDSE

member,

a

variety

of

information

is

retained

in

the

directory

(such

as

attributes,

statistics,

and

status).

The

directory

storage

required

to

support

any

single

member

is

variable,

as

is

the

storage

required

to

support

alias

names.

For

a

medium-sized

PDSE

containing

approximately

150

members,

approximately

12

pages

(4096

bytes

per

page)

of

directory

storage

is

required.

v

Deleting

of

a

PDSE

member

can,

in

some

rare

cases,

actually

increase

the

amount

of

directory

space

used

by

the

remaining

members.

This

can

cause

the

total

amount

of

directory

space

required

to

be

larger

after

the

delete.

The

only

time

this

problem

could

occur

is

if

nearly

all

the

storage

allocated

for

the

PDSE

is

used.

If

a

STOW

delete

or

rename

of

a

member

requires

that

the

PDSE

be

extended

and

the

extend

fails,

STOW

will

return

an

error

return

code.

This

return

code

will

indicate

why

additional

DASD

storage

could

not

be

allocated.

Defining

a

PDSE

This

section

shows

how

to

define

a

PDSE.

The

DSNTYPE

keyword

defines

either

a

PDSE

or

PDS.

The

DSNTYPE

values

follow:

v

LIBRARY

(defines

a

PDSE)

v

PDS

(defines

a

partitioned

data

set)

To

define

PDSE

data

set

types,

specify

DSNTYPE=LIBRARY

in

a

data

class

definition,

a

JCL

DD

statement,

the

LIKE

keyword,

the

TSO

ALLOCATE

command,

or

the

DYNALLOC

macro.

Your

storage

administrator

can

assign

DSNTYPE=LIBRARY

in

the

SYS1.PARMLIB

member

IGDSMSxx

as

an

installation

default

value.

If

the

installation

default

is

DSNTYPE=LIBRARY,

specify

DSORG=PO

or

DIR

space

in

the

JCL

or

data

class

definition

to

allocate

the

data

set

as

a

PDSE

(you

do

not

need

to

specify

DSNTYPE

in

this

case).

The

following

parameters

are

both

required

to

allocate

a

PDSE:

v

Specify

DIR

space

(greater

than

zero)

or

DSORG=PO

(partitioned

organization)

in

the

JCL,

in

the

DYNALLOC

macro,

in

the

data

class,

or

in

the

TSO

ALLOCATE

command.

v

Specify

DSNTYPE=LIBRARY

in

the

JCL,

in

the

data

class,

in

the

TSO

ALLOCATE

command,

using

the

LIKE

keyword,

or

as

the

installation

default

specified

in

SYS1.PARMLIB.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

442

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Recommendation:

If

you

do

not

want

to

allocate

the

data

set

as

a

PDSE,

but

the

data

class

definition

set

up

in

the

ACS

routine

specifies

DSNTYPE,

override

it

in

one

of

two

ways:

v

By

specifying

a

data

class

without

the

DSNTYPE

keyword

(in

the

JCL

DD

statement

or

ISMF

panel).

v

By

specifying

DSNTYPE=PDS

in

the

JCL

DD

statement,

data

class,

LIKE

keyword,

or

ALLOCATE

command.

When

you

create

a

data

set

and

specify

the

number

of

directory

entries

or

DSORG=PO

or

the

data

class

has

DSORG=PO

without

being

overridden,

SMS

chooses

whether

it

will

be

a

PDS

or

PDSE.

SMS

uses

the

first

source

of

information

in

the

following

list:

v

DSNTYPE=PDS

or

DSNTYPE=LIBRARY

(for

a

PDSE)

in

JCL

or

dynamic

allocation.

v

DSNTYPE

of

PDS

or

LIBRARY

in

data

class.

v

Installation

default

(in

IGDSMSxx

member

if

SYS1.PARMLIB).

v

PDS.

An

error

condition

exists

and

the

job

is

ended

with

appropriate

messages

if

the

DSNTYPE

keyword

was

specified

in

the

JCL,

but

the

job

runs

on

a

processor

with

a

release

of

MVS

that

does

not

support

the

JCL

keyword

DSNTYPE.

Message

IEF630I

is

issued.

Creating

a

PDSE

Member

You

can

create

PDSE

members

with

BSAM,

QSAM,

or

BPAM.

Creating

a

PDSE

Member

with

BSAM

or

QSAM

If

you

do

not

need

your

program

to

add

user

data

entries

to

the

directory,

you

can

write

a

member

without

using

the

STOW

macro,

as

shown

in

Figure

90.

//PDSEDD

DD

DSNAME=MASTFILE(MEMBERK),SPACE=(TRK,(100,5,7)),

//

DISP=(NEW,CATLG),DCB=(RECFM=FB,LRECL=80,BLKSIZE=80),

//

DSNTYPE=LIBRARY,STORCLAS=S1P01S01,---

...

OPEN

(OUTDCB,(OUTPUT))

...

PUT

OUTDCB,OUTAREA

Write

record

to

member

...

CLOSE

(OUTDCB)

Automatic

STOW

...

OUTAREA

DS

CL80

Area

to

write

from

OUTDCB

DCB

---,DSORG=PS,DDNAME=PDSEDD,MACRF=PM

Figure

90.

Creating

One

Member

of

a

PDSE

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

443

You

can

use

the

same

program

to

allocate

either

a

sequential

data

set

or

a

member

of

a

PDS

or

PDSE

with

only

a

change

to

the

JCL,

as

follows:

1.

The

PDSE

might

be

system

managed.

Specify

a

STORCLAS

in

the

DD

statement

for

the

PDSE,

or

let

the

ACS

routines

direct

the

data

set

to

system-managed

storage.

2.

Code

DSORG=PS

in

the

DCB

macro.

3.

Specify

in

the

DD

statement

that

the

system

is

to

store

the

data

as

a

member

of

a

PDSE;

that

is,

DSNAME=name(membername).

4.

Either

specify

a

data

class

in

the

DD

statement

or

allow

the

ACS

routines

to

assign

a

data

class.

5.

Use

an

OPEN

macro,

a

series

of

PUT

or

WRITE

macros,

and

the

CLOSE

macro

to

process

the

member.

When

the

data

set

is

closed,

the

system

issues

a

STOW

macro.

As

a

result

of

these

steps,

the

data

set

and

its

directory

are

created,

the

records

of

the

member

are

written,

and

an

entry

is

automatically

made

in

the

directory

with

no

user

data.

A

PDSE

becomes

a

PDSE

program

library

when

the

binder

stores

the

PDSE’s

first

member.

Adding

or

Replacing

PDSE

Members

Serially

To

add

additional

members

to

the

data

set

or

replace

members,

follow

the

procedure

described

in

Figure

90

on

page

443.

However

a

separate

DD

statement

omitting

the

space

request

is

required

for

each

member.

Specify

the

disposition

as

old

or

shared

(DISP=OLD

or

SHR).

You

can

process

more

than

one

member

without

closing

and

reopening

the

data

set,

as

follows:

1.

Code

DSORG=PO

in

the

DCB

macro.

2.

Use

WRITE

and

CHECK

to

write

and

check

the

member

records.

3.

When

all

the

member

records

have

been

written,

issue

a

STOW

macro

to

enter

the

member

name,

its

location

pointer,

and

any

additional

data

in

the

directory.

4.

Continue

to

use

WRITE,

CHECK,

and

STOW

until

all

the

members

of

the

data

set

and

the

directory

entries

have

been

written.

The

example

in

Figure

91

on

page

445

shows

how

to

process

more

than

one

PDSE

or

PDS

member

without

closing

and

reopening

the

data

set.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

444

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

A

option

on

STOW

in

Figure

91

means

the

members

did

not

exist

before.

You

can

code

R

to

replace

or

all

members.

Adding

or

Replacing

Multiple

PDSE

Members

Concurrently

You

can

create

PDSE

members

at

the

same

time

from

multiple

DCBs

or

jobs,

as

follows:

v

Multiple

DCBs

(open

for

output)

in

the

same

job

step

v

Multiple

jobs

on

the

same

central

processing

complex

v

A

combination

of

“1”

and

“2”.

Figure

92

shows

you

how

to

use

BPAM

to

create

multiple

PDSE

members

at

the

same

time.

//PDSEDD

DD

---,DSN=MASTFILE,DISP=MOD,SPACE=(TRK,(100,5,7))

...

OPEN

(OUTDCB,(OUTPUT))

...

**

WRITE

MEMBER

RECORDS

MEMBER

WRITE

DECBX,SF,OUTDCB,OUTAREA

WRITE

first

record

of

member

CHECK

DECBX

*

WRITE

DECBY,SF,OUTDCB,OUTAREA

WRITE

and

CHECK

next

record

CHECK

DECBY

...

WRITE/CHECK

remaining

records

of

member

*

STOW

OUTDCB,STOWLIST,A

Enter

the

information

in

directory

*

...

for

this

member

after

writing

all

records

Repeat

from

label

“MEMBER”

for

each

additional

member,

changing

the

member

name

in

the

“STOWLIST”

for

each

member.

...

CLOSE

(OUTDCB)

(NO

automatic

STOW)

...

OUTAREA

DS

CL80

Area

to

write

from

OUTDCB

DCB

---,DSORG=PO,DDNAME=PDSEDD,MACRF=W

STOWLIST

DS

0F

List

of

member

names

for

STOW

DC

CL8’MEMBERA’

Name

of

member

DS

CL3

TTR

of

first

record

(created

by

STOW)

DC

X’00’

C

byte,

no

user

TTRNs,

no

user

data

Figure

91.

Adding

PDSE

Members

Serially

...

OPEN

(DCB1,(OUTPUT),DCB2,(OUTPUT))

WRITE

DECB1,SF,DCB1,BUFFER

Write

record

to

1st

member

CHECK

DECB1

...

WRITE

DECB2,SF,DCB2,BUFFER

Write

record

to

2nd

member

CHECK

DECB2

...

STOW

DECB1,PARML1,R

Enter

1st

member

in

the

directory

STOW

DECB2,PARML2,R

Enter

2nd

member

in

the

directory

...

DCB1

DCB

DSORG=PO,DDNAME=X,

...

Both

DCBs

open

to

the

DCB2

DCB

DSORG=PO,DDNAME=X,

...

same

PDSE

Figure

92.

Replacing

Multiple

PDSE

Members

Concurrently

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

445

The

R

option

of

STOW

in

Figure

92

on

page

445

means

you

are

adding

new

members

or

replacing

members.

You

could

code

A

to

mean

you

are

only

adding

new

members.

Open

two

DCBs

to

the

same

PDSE,

write

the

member

records,

and

issue

STOW

for

them.

Code

different

names

for

the

parameter

list

in

the

STOW

macro

for

each

member

written

in

the

PDSE

directory.

Copying

a

PDSE

or

Member

to

Another

Data

Set

In

a

TSO/E

session,

you

can

use

the

OCOPY

command

to

copy:

v

A

PDSE

or

PDS

member

to

a

UNIX

file

v

A

UNIX

file

to

a

PDSE

or

PDS

member

v

A

PDSE

or

PDS

member

to

another

member

v

A

PDSE

or

PDS

member

to

a

sequential

data

set

v

A

sequential

data

set

to

a

PDSE

or

PDS

member

Related

reading:

For

more

information,

see

z/OS

UNIX

System

Services

Command

Reference.

Processing

a

Member

of

a

PDSE

Your

programs

process

PDSEs

in

the

same

manner

as

PDSs.

To

locate

a

member

or

to

process

the

directory,

several

macros

are

provided

by

the

operating

system,

and

are

discussed

in

this

section.

PDSEs

are

designed

to

automatically

reuse

data

set

storage

when

a

member

is

replaced.

PDSs

do

not

reuse

space

automatically.

If

a

member

is

deleted

or

replaced,

the

old

copy

of

the

PDS

or

PDSE

member

remains

available

to

applications

that

were

accessing

that

member’s

data

before

it

was

deleted

or

replaced.

Establishing

Connections

to

Members

A

connection

to

a

PDSE

member

provides

a

temporary

version

of

that

member.

The

connection

lets

the

member

remain

available

to

applications

that

were

accessing

that

member’s

data

before

it

was

deleted

or

replaced.

Connections

to

PDSE

members

are

established

by:

v

JCL

using

DSNAME=libname(memname).

This

connection

occurs

at

OPEN.

v

BLDL

v

DESERV

FUNC=GET

v

DESERV

FUNC=GET_ALL

v

FIND

by

name

v

FIND

by

TTR

v

POINT

All

connections

established

to

members

while

a

data

set

was

opened

are

released

when

the

data

set

is

closed.

If

the

connection

was

established

by

FIND

by

name,

the

connection

is

released

when

another

member

is

connected

through

FIND

or

POINT.

The

system

reclaims

the

space

used

when

all

connections

for

a

specific

member

have

been

released.

If

deleting

or

replacing

a

member,

the

old

version

of

the

member

is

still

accessible

by

those

applications

connected

to

it.

Any

application

connecting

to

the

member

by

name

(through

BLDL,

FIND,

or

OPEN)

following

the

replace

operation

accesses

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

446

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

the

new

version.

(The

replaced

version

cannot

be

accessed

using

a

FIND

by

TTR

or

POINT

unless

a

connection

already

exists

for

it.)

Connections

established

by

OPEN,

BLDL,

FIND,

and

POINT

are

used

by

BSAM,

QSAM,

and

BPAM

for

reading

and

writing

member

data.

Connections

established

by

DESERV

are

primarily

used

by

program

management.

When

your

program

or

the

system

closes

the

DCB,

the

system

drops

all

connections

between

the

DCB

and

the

data

set.

If

you

use

BLDL,

FIND

by

TTR,

or

POINT

to

connect

to

members,

you

can

disconnect

those

members

before

closing

the

DCB

by

issuing

STOW

DISC.

If

you

use

DESERV

to

connect

to

members

you

can

disconnect

those

members

before

closing

the

DCB

by

issuing

DESERV

FUNC=RELEASE.

Using

the

BLDL

Macro

to

Construct

a

Directory

Entry

List

The

BLDL

macro

reads

one

or

more

directory

entries

into

virtual

storage.

Place

member

names

in

a

BLDL

list

before

issuing

the

BLDL

macro.

For

each

member

name

in

the

list,

the

system

supplies

the

relative

track

address

(TTR)

and

any

additional

information

contained

in

the

directory

entry.

Note

that

if

there

is

more

than

one

member

name

in

the

list,

the

member

names

must

be

in

collating

sequence,

regardless

of

whether

the

members

are

from

the

same

or

different

PDSs

or

PDSEs

in

the

concatenation.

BLDL

also

searches

a

concatenated

series

of

directories

when

(1)

a

DCB

is

supplied

that

is

opened

for

a

concatenated

PDS

or

(2)

a

DCB

is

not

supplied,

in

which

case

the

search

order

begins

with

the

TASKLIB,

then

proceeds

to

the

JOBLIB

or

STEPLIB

(themselves

perhaps

concatenated)

followed

by

LINKLIB.

You

can

improve

retrieval

time

by

directing

a

subsequent

FIND

macro

to

the

BLDL

list

rather

than

to

the

directory

to

locate

the

member

to

be

processed.

Figure

77

on

page

417

shows

the

BLDL

list,

which

must

begin

with

a

4-byte

list

description

that

specifies

the

number

of

entries

in

the

list

and

the

length

of

each

entry

(12

to

76

bytes).

If

you

specify

an

option

such

as

NOCONNECT

or

BYPASSLLA,

an

8-byte

BLDL

prefix

must

precede

the

4-byte

list

descriptor.

The

first

8

bytes

of

each

entry

contain

the

member

name

or

alias.

The

next

6

bytes

contain

the

TTR,

K,

Z,

and

C

fields.

The

minimum

directory

length

is

12

bytes.

The

BLDL

macro,

unless

the

NOCONNECT

option

is

specified,

establishes

a

connection

to

each

member

of

a

PDSE

when

that

member

is

found

in

the

PDSE.

Like

a

BSAM

or

QSAM

read

of

the

directory,

the

BLDL

NOCONNECT

option

does

not

connect

the

PDSE

members.

The

BLDL

NOCONNECT

option

causes

the

system

to

use

less

virtual

storage.

The

NOCONNECT

option

is

appropriate

when

BLDLs

are

issued

for

many

members

that

might

not

be

processed.

Do

not

use

the

NOCONNECT

option

if

two

applications

will

process

the

same

member.

For

example,

if

an

application

deletes

or

replaces

a

version

of

a

member

and

NOCONNECT

was

specified,

that

version

is

inaccessible

to

any

application

that

is

not

connected.

For

PDSE

program

libraries,

you

can

direct

BLDL

to

search

the

LINKLST,

JOBLIB,

and

STEPLIB.

Directory

entries

for

load

modules

located

in

the

link

pack

area

(LPA)

cannot

be

accessed

by

the

BLDL

macro.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

447

Using

the

BSP

Macro

to

Backspace

a

Physical

Record

You

can

use

the

BSP

macro

to

backspace

the

current

member

one

simulated

block.

You

can

then

reread

or

rewrite

the

simulated

block.

However,

you

cannot

backspace

beyond

the

start

of

a

PDSE

member

nor

backspace

within

the

PDSE

directory.

For

variable

spanned

records

(RECFM=VS),

if

positioned

to

the

beginning

of

a

record,

the

BSP

macro

backspaces

to

the

start

of

the

previous

record.

If

positioned

within

a

record,

the

BSP

macro

backspaces

to

the

start

of

that

record.

For

variable

blocked

spanned

(RECFM=VBS)

records,

the

BSP

macro

backspaces

to

the

start

of

the

first

record

in

the

buffer

just

read.

The

system

does

not

backspace

within

record

segments.

Issuing

the

BSP

macro

followed

by

a

read

always

begins

the

block

with

the

first

record

segment

or

complete

segment.

(A

block

can

contain

more

than

one

record

segment.)

If

you

write

in

a

PDSE

member

and

issue

the

BSP

macro

followed

by

a

WRITE

macro,

you

destroy

all

the

data

of

the

member

beyond

the

record

just

written.

Using

the

Directory

Entry

Services

DESERV

provides

interfaces

to

access

the

directories

of

PDS

and

PDSE

data

sets.

With

DESERV

you

can

get

all

the

directory

entries

for

a

PDSE

or

selected

directory

entries

for

a

PDS

or

a

PDSE

with

the

GET_ALL

and

GET

functions,

respectively.

You

can

delete

or

rename

a

list

of

members

in

a

PDSE

with

the

DELETE

and

RENAME

functions.

You

can

alter

the

attributes

of

a

program

object

(in

a

PDSE)

with

the

UPDATE

function.

All

functions

return

results

to

the

caller

in

areas

provided

by

the

invoker

or

areas

returned

by

DE

services.

All

functions

provide

status

information

in

the

form

of

return

and

reason

codes.

The

IGWDES

macro

maps

all

the

parameter

areas.

DE

services

also

introduces

a

new

format

directory

entry

called

system-managed

directory

entry

(SMDE),

mapped

by

the

IGWSMDE

macro.

The

SMDE

is

an

extended

and

extensible

version

of

the

directory

entry

produced

by

BLDL.

Its

chief

features

are

that

it

provides

users

with

long

name

support,

longer

application

(user)

data,

load

module

indication

and

version

control.

Table

36

describes

all

the

functions

provided

by

DESERV.

This

section

discusses

the

GET,

GET_ALL,

RELEASE,

GET_NAMES,

and

UPDATE

functions.

The

DELETE

and

RENAME

functions

are

described

later.

Table

36.

DE

Services

Function

Summary

Function

Description

GET

Obtain

directory

entries

based

on

a

list

of

names,

or

a

BLDL

directory

entry

to

establish

connections

to

these

members.

GET_ALL

Obtain

all

directory

entries

for

each

member

name.

Optionally,

establish

connections

to

all

names

in

the

library.

GET_NAMES

Obtain

buffer

filled

with

the

names

and

directory

entries

of

each

member

name

(primary

and

aliases)

defined

to

a

specified

program

object

member

of

a

PDSE.

DELETE

DELETE

one

or

more

PDSE

member

names.

For

more

information

see

“Deleting

a

PDSE

Member”

on

page

467.

RELEASE

Remove

selected

connections

established

by

one

or

more

previous

calls

to

the

GET

or

the

GET_ALL

functions.

Or,

remove

all

connections

established

by

a

previous

call

to

the

GET

or

the

GET_ALL

function.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

448

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

36.

DE

Services

Function

Summary

(continued)

Function

Description

RENAME

Rename

one

or

more

PDSE

members.

For

more

information

see

“Renaming

a

PDSE

Member”

on

page

467.

UPDATE

Let

caller

update

select

fields

of

the

directory

entries

of

PDSE

program

objects.

FUNC=GET

DESERV

GET

returns

SMDEs

for

members

of

opened

PDSs

or

PDSEs

or

a

concatenation

of

PDSs

or

PDSEs.

The

data

set

can

be

opened

for

either

input,

output,

or

update.

The

SMDE

contains

the

PDS

or

PDSE

directory.

The

SMDE

is

mapped

by

the

IGWSMDE

macro

and

contains

a

superset

of

the

information

that

is

mapped

by

IHAPDS.

The

SMDE

returned

can

be

selected

by

name

or

by

BLDL

directory

entry.

Input

by

Name

List:

If

you

want

to

select

SMDEs

by

name,

you

supply

a

list

of

names

that

must

be

sorted

in

ascending

order,

without

duplicates.

Each

name

comprises

a

2-byte

length

field

followed

by

the

characters

of

the

name.

When

searching

for

names

with

less

than

eight

characters,

the

names

are

padded

on

the

right

with

blanks

to

make

up

eight

characters.

For

each

length

field

that

contains

a

value

greater

than

eight,

DE

services

ignores

trailing

blanks

and

nulls

beyond

the

eighth

byte

when

doing

the

search.

In

addition

to

retrieving

the

SMDE,

member

level

connections

can

be

established

for

each

member

name

found.

The

members

will

be

connected

with

the

HOLD

type

connection.

A

connection

type

of

HOLD

insures

that

the

member

cannot

be

removed

from

the

system

until

the

connection

is

released.

The

connection

intent

is

specified

by

the

CONN_INTENT

parameter,

CONN_INTENT=HOLD

must

be

specified.

All

connections

made

through

a

single

call

to

GET

are

associated

with

a

single

unique

connect

identifier.

The

connect

identifier

may

be

used

to

release

all

the

connections

in

a

single

invocation

of

the

RELEASE

function.

An

example

of

DESERV

GET

is

shown

in

Figure

93.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

449

Input

by

BLDL

Directory

Entry

(PDSDE):

If

the

search

argument

specified

is

a

PDSDE,

the

GET

function

is

significantly

restricted.

The

PDSDE

(as

mapped

by

the

IHAPDS

macro)

identifies

only

one

name

to

be

searched

for.

Since

the

PDSDE

also

identifies

the

concatenation

number

of

the

library

in

which

this

member

is

to

reside

(PDS2CNCT),

only

that

library

can

be

searched.

Since

the

PDSDE

identifies

a

specific

version

of

the

member

name

(this

identification

is

made

through

the

MLT

(PDS2TTRP)),

the

name

can

only

be

considered

found

if

the

same

version

can

be

found

in

the

target

library.

However,

a

library

search

can

only

be

performed

if

the

target

library

is

a

PDSE.

If

the

target

library

is

a

PDS,

the

input

PDSDE

will

simply

be

converted

to

an

equivalent

directory

entry

in

SMDE

format

and

returned.

No

directory

search

can

be

performed.

If

the

caller

has

specified

BYPASS_LLA=NO,

the

library

search

will

search

LLA

for

LLA

managed

libraries.

If

the

caller

has

specified

BYPASS_LLA=YES,

only

the

DASD

directories

of

the

library

will

be

searched.

An

example

of

DESERV

GET

by

PDSDE

control

block

is

shown

in

Figure

94.

Figure

93.

DESERV

GET

by

NAME_LIST

Control

Block

Structure

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

450

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

FUNC=GET_ALL

The

GET_ALL

function

returns

SMDEs

for

all

the

member

names

in

a

PDS,

a

PDSE,

or

a

concatenation

of

PDSs

and

PDSEs.

Member

level

connections

can

be

established

for

each

member

found

in

a

PDSE.

A

caller

uses

the

CONCAT

parameter

to

indicate

which

data

set

in

the

concatenation

is

to

be

processed,

or

whether

all

of

the

data

sets

in

the

concatenation

are

to

be

processed.

If

the

caller

requests

that

DESERV

GET_ALL

return

all

the

SMDE

directory

entries

for

an

entire

concatenation,

the

SMDEs

are

returned

in

sequence

as

sorted

by

the

SMDE_NAME

field

without

returning

duplicate

names.

As

with

the

GET

function,

all

connections

can

be

associated

with

a

single

connect

identifier

established

at

the

time

of

the

call.

This

connect

identifier

can

then

be

used

to

release

all

the

connections

in

a

single

invocation

of

the

RELEASE

function.

See

Figure

95

on

page

452

for

an

overview

of

control

blocks

related

to

the

GET_ALL

function.

Figure

94.

DESERV

GET

by

PDSDE

Control

Block

Structure

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

451

FUNC=GET_NAMES

The

GET_NAMES

function

will

obtain

a

list

of

all

names

and

associated

application

data

for

a

member

of

a

new

PDSE.

This

function

does

not

support

PDSs.

The

caller

provides

a

name

or

its

alias

name

for

the

member

as

input

to

the

function.

The

buffer

is

mapped

by

the

DESB

structure

and

is

formatted

by

GET_NAMES.

This

function

will

return

data

in

a

buffer

obtained

by

GET_NAMES.

The

data

structure

returned

in

the

DESB

is

the

member

descriptor

structure

(DESD).

The

DESD_NAME_PTR

field

points

to

the

member

or

alias

name.

The

DESD_DATA_PTR

points

to

the

application

data.

For

a

data

member,

the

application

data

is

the

user

data

from

the

directory

entry.

For

a

primary

member

name

of

a

program

object,

the

application

data

is

mapped

by

the

PMAR

and

PMARL

structures

of

the

IGWPMAR

macro.

For

an

alias

name

of

a

program

object,

the

application

data

is

mapped

by

the

PMARA

structure

of

the

IGWPMAR

macro.

The

DESB_COUNT

field

indicates

the

number

of

entries

in

the

DESD,

which

is

located

at

the

DESB_DATA

field.

The

buffer

is

obtained

in

a

subpool

as

specified

by

the

caller

and

must

be

released

by

the

caller.

If

the

caller

is

in

key

0

and

subpool

0

is

specified,

the

DESB

will

be

obtained

in

subpool

250.

See

Figure

96

on

page

453

for

an

overview

of

control

blocks

related

to

the

GET_NAMES

function.

Figure

95.

DESERV

GET_ALL

Control

Block

Structure

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

452

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

FUNC=RELEASE

The

RELEASE

function

can

remove

connections

established

through

the

GET

and

GET_ALL

functions.

The

caller

must

specify

the

same

DCB

which

was

passed

to

DESERV

to

establish

the

connections.

The

connections

established

by

the

BLDL,

FIND,

or

POINT

macro

are

unaffected.

The

caller

can

specify

which

connections

are

to

be

removed

in

one

of

two

ways,

either

a

connect

id

or

a

list

of

SMDEs

by

supplying.

The

function

removes

all

connects

from

a

single

request

of

the

GET

or

GETALL

functions

if

the

caller

passes

a

connect

identifier.

Alternatively,

if

provided

with

a

list

of

SMDEs,

the

function

removes

the

connections

associated

with

the

versions

of

the

member

names

in

the

SMDEs.

Recommendation:

The

SMDEs

as

returned

by

GET

and

GETALL

contain

control

information

used

to

identify

the

connection.

Do

not

modify

this

information

before

issuing

the

RELEASE

function.

If

all

connections

of

a

connect

identifier

are

released

based

on

SMDEs,

the

connect

identifier

is

not

freed

or

reclaimed.

Only

release

by

connect

identifier

will

cause

DE

services

to

reclaim

the

connect

id

for

future

use.

It

is

not

an

error

to

include

SMDEs

for

PDS

data

sets

even

though

connections

can’t

be

established.

It

is

an

error

to

release

an

used

connect

identifier.

It

is

also

an

error

to

release

a

PDSE

SMDE

for

which

there

is

no

connection.

The

DE

services

user

does

not

need

to

issue

the

RELEASE

function

to

release

connections

as

all

connections

not

explicitly

released

can

be

released

by

closing

the

DCB.

See

Figure

97

on

page

454

for

an

overview

of

control

blocks

related

to

the

RELEASE

function.

Figure

96.

DESERV

GET_NAMES

Control

Block

Structure

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

453

FUNC=UPDATE

Update

selected

fields

of

the

directory

entry

for

a

PDSE

program

object

using

the

DESERV

UPDATE

function.

This

lets

the

caller

update

selected

fields

of

the

PMAR.

The

caller

must

supply

a

DCB

that

is

open

for

output

or

update.

The

caller

must

also

supply

a

DESL

that

points

to

the

list

of

SMDEs

to

be

updated.

The

DESL

can

be

processed

in

sequence

and

a

code

can

indicate

successful

and

unsuccessful

update.

The

SMDE

(as

produced

by

the

GET

function)

contains

the

MLT

and

concatenation

number

of

the

member

as

well

as

an

item

number.

These

fields

will

be

used

to

find

the

correct

directory

record

to

be

updated.

The

DESL_NAME_PTR

is

ignored.

The

caller

should

issue

a

DESERV

GET

function

call

to

obtain

the

SMDEs;

modify

the

SMDEs

as

required;

and

issue

a

DESERV

UPDATE

function

call

to

pass

the

updated

DESL.

The

UPDATE

function

does

not

affect

the

directory

entry

imbedded

in

the

program

object.

This

has

implications

for

a

binder

inclusion

of

a

PDSE

program

object

as

a

sequential

file.

The

binder

can

use

the

directory

entry

in

the

program

object

rather

than

the

one

in

the

directory.

You

can

update

the

fields

in

Figure

98

on

page

455.

Figure

97.

DESERV

RELEASE

Input

Control

Block

Structure

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

454

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

any

field

other

than

PMAR_EPA

or

PMAR_AAMD

is

updated,

this

update

becomes

effective

for

all

entry

point

names.

If

PMAR_EPA

or

PMAR_AAMD

are

updated,

these

updates

only

affect

the

entry

point

represented

by

the

input

SMDE.

The

UPDATE

function

does

not

affect

connections

established

by

other

DE

services

invocations.

Using

the

FIND

Macro

to

Position

to

the

Beginning

of

a

Member

To

position

to

the

beginning

of

a

specific

member,

you

must

issue

a

FIND

macro.

The

next

input

or

output

operation

begins

processing

at

the

point

set

by

FIND.

The

FIND

macro

lets

you

search

a

concatenated

series

of

PDSE

and

PDS

directories

when

you

supply

a

DCB

opened

for

the

concatenated

data

set.

There

are

two

ways

you

can

direct

the

system

to

the

right

member

when

you

use

the

FIND

macro.

Specify

the

address

of

an

area

containing

the

name

of

the

member,

or

specify

the

address

of

the

TTRk

field

of

the

entry

in

a

BLDL

list

you

have

created,

by

using

the

BLDL

macro.

k

is

the

concatenation

number

of

the

data

set

containing

the

member.

In

the

first

case,

the

system

searches

the

directory

of

the

data

set

to

connect

to

the

member.

In

the

second

case,

no

search

is

required,

because

the

relative

track

address

is

in

the

BLDL

list

entry.

FIND

by

NAME

or

TTR

establishes

a

connection

to

the

specific

PDSE

member.

Connections

established

by

name

remain

until

positioning

is

established

to

another

member.

Connections

established

by

TTR

remain

until

CLOSE.

If

the

data

set

is

open

for

output,

close

it

and

reopen

it

for

input

or

update

processing

before

issuing

the

FIND

macro.

If

you

have

insufficient

access

authority

(RACF

execute

authority),

or

if

the

share

options

are

violated,

the

FIND

macro

fails.

PMAR_RENT

1

BIT

Reenterable

PMAR_REUS

1

BIT

Reusable

PMAR_TEST

1

BIT

Module

to

be

tested

-

TSO

TEST

PMAR_LOAD

1

BIT

Only

loadable

PMAR_EXEC

1

BIT

Executable

PMAR_PAGA

1

BIT

Page

alignment

is

required

PMAR_XSSI

1

BIT

SSI

information

present

PMAR_XAPF

1

BIT

APF

information

present

PMAR_RMOD

1

BIT

RMODE

is

ANY.

PMAR_AAMD

2

BITS

Alias

entry

point

addressing

mode.

If

B’00’,

AMODE

is

24.

If

B’10’,

AMODE

is

31.

If

B’11’,

AMODE

is

ANY.

PMAR_MAMD

2

BITS

Main

entry

point

addressing

mode.

If

B’00’,

AMODE

is

24.

If

B’10’,

AMODE

is

31.

If

B’11’,

AMODE

is

ANY.

PMAR_AC

BYTE

APF

authorization

code

PMAR_EPM

WORD

Main

entry

point

offset

PMAR_EPA

WORD

This

entry

point

offset

PMAR_SSI

32

BITS

SSI

information

PMARL_PRIM

1

BIT

FETCHOPT

PRIME

option

PMARL_PACK

1

BIT

FETCHOPT

PACK

option

Figure

98.

DESERV

UPDATE

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

455

Related

reading:

See

“Sharing

PDSEs”

on

page

462

for

a

description

of

the

share

options

permitted

for

PDSEs.

Using

ISITMGD

to

Determine

Whether

the

Data

Set

Is

System

Managed

You

can

use

the

ISITMGD

macro

to

determine

if

an

open

data

set

is

system

managed

and

if

it

is

a

PDSE.

The

ISITMGD

macro

sets

some

bits

in

the

ISITMGD

parameter

list

that

you

should

test

to

see

what

type

of

data

set

is

being

processed.

The

IGWCISM

macro

maps

the

ISITMGD

parameter

list.

In

the

assembler

example

in

Figure

99,

ISITMGD

was

issued

for

the

second

data

set

in

the

concatenation

(CONCAT=1).

If

you

are

testing

a

single

data

set,

use

the

CONCAT

default,

which

is

0.

The

CONCAT

parameter

is

used

only

for

partitioned

concatenation,

not

sequential

concatenation.

For

sequential

concatenation,

the

current

data

set

is

tested.

The

return

code

in

register

15

shows

whether

the

function

failed

or

is

not

supported

on

the

system.

OPEN

(PDSEDCB,(INPUT))

OPEN

PDSE

...

*

ISSUE

ISITMGD

FOR

SECOND

DATA

SET

IN

THE

CONCATENATION

ISITMGD

DCB=PDSEDCB,MF=(E,ISITPARM),CONCAT=1

USING

ISM,1

LTR

15,15

Did

it

complete

successfully

BNZ

ISITERR

No,

branch

to

error

routine

TM

ISMOFLG1,ISMMGD

Is

data

set

system-managed?

BZ

NOTMGD

No,

branch

to

non-SMS

routine

TM

ISMOFLG2,ISMPDSE

Is

data

set

a

PDSE

BO

ANPDSE

Yes,

branch

to

PDSE

routine

OTHER

WTO

’PDS:

system-managed

data

set’

B

EXIT

*

PROCESS

A

NON-SMS

MANAGED

PDS

NOTMGD

EQU

*

TM

ISMOFLG2,ISMPDSE

Is

data

set

a

PDSE

BO

ANUMPDSE

Yes,

branch

to

PDSE

routine

WTO

’PDS:

non-system-managed

data

set’

B

EXIT

*

PROCESS

AN

UNMANAGED

MANAGED

PDSE

ANUMPDSE

EQU

*

WTO

’PDSE:

unmanaged

data

set’

B

EXIT

*

PROCESS

A

MANAGED

PDSE

ANPDSE

EQU

*

WTO

’PDSE:

system-managed

data

set’

...

PDSEDCB

DCB

DSORG=PO,DDNAME=PDSEDDN,MACRF=(R)

ISITPARM

ISITMGD

MF=L

Defines

space

for

parameter

list

IGWCISM

Maps

parameter

list

...

Figure

99.

ISITMGD

Example

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

456

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

ISITMGD

can

also

be

used

to

determine

the

type

of

library,

data

or

program.

Specifying

the

DATATYPE

option

on

the

ISITMGD

macro

will

set

the

library

type

in

the

parameter

list.

See

constants

ISMDTREC,

ISMDTPGM,

and

ISMDTUNK

in

macro

IGWCISM

for

the

possible

data

type

settings.

Using

the

NOTE

Macro

to

Provide

Relative

Position

You

can

use

the

NOTE

macro

to

find

the

starting

address

(TTRz)

of

the

most

recent

record

read

or

written.

NOTE

returns

a

TTRz,

which

can

be

used

by

POINT

to

position

to

any

record

in

a

member.

NOTE

returns

a

value

of

X'7FFF'

for

the

track

balance

or

track

capacity.

There

is

no

need

to

calculate

the

track

capacity

or

balance.

If

you

issue

the

NOTE

macro

while

pointing

to

within

the

PDSE

directory,

a

TTRz

is

returned

that

represents

the

location

of

the

first

directory

record.

The

TTRz

returned

from

a

NOTE

for

the

first

directory

record

is

the

only

valid

TTRz

that

can

be

used

for

positioning

by

POINT

while

processing

within

the

PDSE

directory.

Here

are

some

examples

of

results

when

using

NOTE

with

PDSEs.

A

NOTE:

v

immediately

following

an

OPEN

returns

a

nonvalid

address

(X'00000000').

Also,

if

a

member

is

being

pointed

to

using

a

FIND

macro

or

by

the

member

name

in

the

JCL,

but

no

READ,

WRITE,

or

POINT

has

been

issued,

NOTE

returns

a

nonvalid

address

of

(X'00000000').

v

immediately

following

a

STOW

ADD

or

STOW

REPLACE

returns

the

TTRz

of

the

logical

end-of-file

mark

for

the

member

stowed.

If

the

member

is

empty

(no

writes

done),

the

value

returned

is

the

starting

TTRz

of

the

member

stowed.

v

following

any

READ

after

an

OPEN

returns

the

starting

TTRz

of

the

PDSE

directory

if

no

member

name

is

in

the

JCL,

or

the

TTRz

of

the

member

if

the

member

name

is

in

the

JCL.

v

following

the

first

READ

after

a

FIND

or

POINT

(to

the

first

record

of

a

member)

returns

the

TTRz

of

the

member.

v

following

the

first

WRITE

of

a

member

returns

the

TTRz

of

the

member.

v

following

a

later

READ

or

WRITE

returns

the

TTRz

of

the

first

logical

record

in

the

block

just

read

or

written.

v

issued

while

positioned

in

the

middle

of

a

spanned

record

returns

the

TTRz

of

the

beginning

of

that

record.

v

issued

immediately

following

a

POINT

operation

(where

the

input

to

the

POINT

was

in

the

form

“TTR1”)

will

return

a

note

value

of

“TTR0”.

v

issued

immediately

following

a

POINT

operation

(where

the

input

to

the

POINT

was

in

the

form

“TTR0”)

will

return

a

nonvalid

note

value

X'00000000').

Related

reading:

For

information

about

the

NOTE

macro,

see

“Using

the

NOTE

Macro

to

Return

the

Relative

Address

of

a

Block”

on

page

507

and

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Using

the

POINT

Macro

to

Position

to

a

Block

The

POINT

macro

causes

the

next

READ

or

WRITE

operation

to

position

at

the

beginning

of

a

PDSE

member,

or

anywhere

within

a

PDSE

member.

The

POINT

macro

uses

the

track

record

address

(TTRz),

which

you

can

obtain

from

NOTE,

BLDL,

or

a

BSAM

read

of

the

directory,

to

position

to

the

correct

location.

If

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

457

positioning

to

the

beginning

of

a

member,

the

z

byte

in

the

TTR

must

be

zero.

The

POINT

macro

establishes

a

connection

to

the

PDSE

member

(unless

the

connection

already

exists).

The

POINT

macro

positions

to

the

first

segment

of

a

spanned

record

even

if

the

NOTE

was

done

on

another

segment.

If

the

current

record

spans

blocks,

setting

the

z

byte

of

the

TTRz

field

to

one

lets

you

access

the

next

record

(not

the

next

segment).

You

can

position

from

one

PDSE

member

to

the

first

block

of

another

member.

Then

you

can

position

to

any

record

within

that

member.

Attempting

to

position

from

one

member

into

the

middle

of

another

member

causes

the

wrong

record

to

be

accessed.

Either

data

from

the

first

member

will

be

read,

or

an

I/O

error

will

occur.

When

the

PDSE

is

open

for

output,

using

the

POINT

macro

to

position

to

a

member

other

than

the

one

being

written

results

in

a

system

ABEND.

If

you

have

insufficient

access

authority

(you

have

only

RACF

execute

authority)

or

if

the

share

options

are

violated,

the

POINT

macro

fails

with

an

I/O

error.

See

“Sharing

PDSEs”

on

page

462.

Related

reading:

For

more

information

about

the

POINT

macro,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

and

“Using

the

POINT

Macro

to

Position

to

a

Block”

on

page

508.

Switching

between

Members

You

can

use

the

NOTE,

FIND,

and

POINT

macros

to

switch

between

PDSE

members

(process

member

1,

then

process

member

2,

then

continue

processing

member

1).

Information

about

how

to

locate

the

TTR

within

a

member

is

also

shown

in

Figure

100

on

page

459.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

458

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

This

example

uses

FIND

by

TTR.

Note

that

when

your

program

resumes

reading

a

member,

that

member

might

have

been

replaced

by

another

program.

See

“Sharing

PDSEs”

on

page

462.

Using

the

STOW

Macro

to

Update

the

Directory

When

you

add

more

than

one

member

to

a

PDSE,

you

must

issue

a

STOW

macro

after

writing

each

member

so

that

an

entry

for

each

one

will

be

added

to

the

directory.

To

use

the

STOW

macro,

DSORG=PO

must

be

specified

in

the

DCB

macro.

You

can

also

use

the

STOW

macro

to

add,

delete,

replace,

or

change

a

member

name

in

the

directory.

The

add

and

replace

options

also

store

additional

information

in

the

directory

entry.

When

you

use

STOW

REPLACE

to

replace

a

primary

member

name,

any

existing

aliases

are

deleted.

When

you

use

STOW

OPEN

(PODCB,(INPUT))

Open

the

DSORG=PO

DCB

...

BLDL

PODCB,BLDLLIST

Construct

directory

entry

list

...

FIND

PODCB,BLDLTTR1,C

Position

to

the

1st

member

...

READ

DECB1,SF,PODCB,BUFFER1

Read

records

from

1st

member

...

CHECK

DECB1

Check

the

read

...

NOTE

PODCB

Note

a

position

within

the

1st

member

ST

1,INMEM1

Store

the

TTR

for

the

position

in

member

1

...

FIND

PODCB,BLDLTTR2,C

Position

to

the

2nd

member

...

READ

DECBA,SF,PODCB,BUFFER1

Read

records

from

2nd

member

...

CHECK

DECBA

Check

the

read

...

FIND

PODCB,BLDLTTR1,C

Position

back

to

1st

member

...

POINT

PODCB,INMEM1,TYPE=REL

Position

to

within

1st

member

...

READ

DECB2,SF,PODCB,BUFFER1

Read

records

from

1st

member

...

CHECK

DECB2

Check

the

read

...

CLOSE

PODCB

Close

the

DCB

...

PODCB

DCB

DSORG=PO,MACRF=(R),NCP=1,DDNAME=PDSEDD,---

*

INMEM1

DS

F

*

BLDLLIST

DS

0F

BLDL

parmlist

BLDLFF

DC

H’2’

Number

of

entries

in

BLDL

list

BLDLLL

DC

H’12’

Length

of

storage

for

directory

entry

BLDLN1

DC

CL8’MEMBER1’

Member

name

BLDLTTR1

DS

CL3

TTR

of

1st

member

BLDLK1

DS

CL1

Concatenation

#

of

1st

member

BLDLN2

DC

CL8’MEMBER2’

Member

name

BLDLTTR2

DS

CL3

TTR

of

2nd

member

BLDLK2

DS

CL1

Concatenation

#

of

2st

member

*

BUFFER1

DS

...

Figure

100.

Using

NOTE

and

FIND

to

Switch

Between

Members

of

a

Concatenated

PDSE

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

459

DELETE

to

delete

a

primary

member

name,

any

existing

aliases

are

deleted.

STOW

ADD

and

REPLACE

are

not

permitted

against

PDSE

program

libraries.

The

STOW

INITIALIZE

function

allows

you

to

clear,

or

reset

to

empty,

a

PDSE

directory,

as

shown

in

Figure

101:

Issuing

the

STOW

macro

synchronizes

the

data

to

DASD.

See

“Using

the

SYNCDEV

Macro

to

Synchronize

Data”

on

page

509

for

more

information

about

synchronizing

data,

and

“STOW—Update

the

Directory”

on

page

421

for

more

information

about

using

the

STOW

macro.

Retrieving

a

Member

of

a

PDSE

To

retrieve

a

specific

member

from

a

PDSE,

use

either

BSAM

or

QSAM

as

follows:

1.

Code

DSORG=PS

in

the

DCB

macro.

2.

Specify

in

the

DD

statement

that

the

data

is

a

member

of

an

existing

PDSE

by

coding

DSNAME=name(membername)

and

DISP=OLD.

3.

Process

the

member

with

an

OPEN

macro,

a

series

of

GET

or

READ

macros,

and

the

CLOSE

macro.

Figure

102

gives

an

example

of

retrieving

a

member

of

a

PDSE.

When

your

program

is

run,

OPEN

searches

the

directory

automatically

and

positions

the

DCB

to

the

member.

To

retrieve

several

PDSE

or

PDS

members

without

closing

and

reopening

the

data

set,

use

this

procedure

or

the

procedure

shown

in

Figure

83

on

page

425:

1.

Code

DSORG=PO

in

the

DCB

macro.

2.

Specify

the

name

of

the

PDSE

in

the

DD

statement

by

coding

DSNAME=name.

3.

Issue

the

BLDL

macro

to

get

the

list

of

member

entries

you

need

from

the

directory.

4.

Repeat

the

following

steps

for

each

member

to

be

retrieved.

a.

Use

the

FIND

or

POINT

macro

to

prepare

for

reading

the

member

records.

If

you

use

the

POINT

macro,

it

will

not

work

in

a

partitioned

concatenation.

OPEN

(PDSEDCB,(OUTPUT))

Open

the

PDSE

...

STOW

PDSEDCB,,I

Initialize

(clear)

the

PDSE

directory

...

PDSEDCB

DCB

DSORG=PO,MACRF=(W),

...

PDSE

DCB

Figure

101.

STOW

INITIALIZE

Example

//PDSEDD

DD

---,DSN=MASTFILE(MEMBERK),DISP=OLD

...

OPEN

(INDCB)

Open

for

input,

automatic

FIND

...

GET

INDCB,INAREA

Read

member

record

...

CLOSE

(INDCB)

...

INAREA

DS

CL80

Area

to

read

into

INDCB

DCB

---,DSORG=PS,DDNAME=PDSEDD,MACRF=GM

Figure

102.

Retrieving

One

Member

of

a

PDSE

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

460

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

b.

The

records

can

be

read

from

the

beginning

of

the

member.

If

you

want

to

read

out

of

sequential

order,

use

the

POINT

macro

to

point

to

records

within

the

member.

c.

Read

and

check

the

records

until

all

those

required

have

been

processed.

d.

Your

end-of-data-set

(EODAD)

routine

receives

control

at

the

end

of

each

member.

At

that

time,

you

can

process

the

next

member

or

close

the

data

set.

To

read

randomly

within

a

member,

use

the

POINT

macro.

Figure

103

shows

the

technique

for

processing

several

members

without

closing

and

reopening.

Figure

83

on

page

425

shows

a

variation

of

retrieving

members.

It

gives

better

performance

with

a

PDS

or

a

concatenation

of

PDSs

and

PDSEs.

//PDSEDD

DD

---,DSN=D42.MASTFILE,DISP=SHR

...

OPEN

(INDCB)

Open

for

input,

no

automatic

FIND

...

BLDL

INDCB,BLDLLIST

Retrieve

the

relative

disk

locations

*

of

several

user-supplied

names

in

*

virtual

storage.

LA

BLDLREG,BLDLLIST+4

Point

to

the

first

entry

in

the

list

...

Begin

a

“MEMBER”,

possibly

in

another

concatenated

data

set

MVC

TTRN(4),8(BLDLREG)

Get

relative

disk

address

of

member

FIND

INDCB,TTRN,C

Point

to

the

member

...

READ

DECBX,SF,INDCB,INAREA

Read

a

block

of

the

member

CHECK

DECBX

Wait

for

completion

of

READ

...

READ

and

CHECK

additional

blocks

EODRTN

EQU

*

EOD

routine

label

AH

BLDLREG,BLDLLIST+2

Move

to

next

member

entry

Repeat

from

label

“MEMBER”

for

each

additional

member

...

CLOSE

(INDCB)

...

INAREA

DS

CL80

INDCB

DCB

---,DSORG=PO,DDNAME=PDSEDD,MACRF=R,EODAD=EODRTN

TTRN

DS

F

TTRN

of

the

start

of

the

member

BLDLREG

EQU

5

Register

to

address

BLDL

list

entries

BLDLLIST

DS

0F

List

of

member

names

for

BLDL

DC

H’10’

Number

of

entries

(10

for

example)

DC

H’14’

Number

of

bytes

per

entry

DC

CL8’MEMBERA’

Name

of

member,

supplied

by

user

DS

CL3

TTR

of

first

record

(set

by

BLDL)

*

The

following

3

fields

are

set

by

BLDL

DS

X

K

byte,

concatenation

number

DS

X

Z

byte,

location

code

DS

X

C

byte,

flag

and

user

data

length

...

one

list

entry

per

member

(14

bytes

each)

Figure

103.

Retrieving

Several

Members

of

a

PDSE

or

PDS

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

461

Sharing

PDSEs

PDSE

data

sets

and

members

can

be

shared.

If

allocated

with

DISP=SHR,

the

PDSE

directory

can

be

shared

by

multiple

writers

and

readers,

and

each

PDSE

member

can

be

shared

by

a

single

writer

or

multiple

readers.

Any

number

of

systems

can

have

the

same

PDSE

open

for

input.

If

one

system

has

a

PDSE

open

for

output

(to

create

or

replace

members),

that

PDSE

can

be

opened

on

other

systems

only

if

the

systems

are

using

the

PDSE

extended

sharing

protocol.

The

storage

administrator

can

establish

PDSE

extended

sharing

protocol

by

using

the

PDSESHARING

keyword

in

the

IGDSMSxx

member

of

SYS1.PARMLIB

as

described

in

z/OS

DFSMSdfp

Storage

Administration

Reference.

Sharing

within

a

Computer

System

Specifying

DISP=OLD,

NEW,

or

MOD

restricts

access

to

a

PDSE

by

a

single

job,

started

task,

or

TSO/E

user.

DISP=SHR

lets

multiple

jobs

or

users

access

the

PDSE

at

the

same

time,

and

permits

sharing

between

DCBs

in

the

same

job

step

and

in

different

jobs.

Member-Level

Sharing.

As

in

a

PDS,

multiple

copies

(versions)

of

a

member

having

the

same

name

but

different

TTRs

can

exist

in

a

PDSE

at

the

same

time.

Sharing

is

done

on

a

“per

version”

level.

The

sharing

rules

depend

on

whether

the

DCB

is

open

for

input,

update,

or

output.

INPUT—A

version

of

a

member

can

be

accessed

by

any

number

of

DCBs

open

for

input.

UPDATE—You

cannot

have

any

DCBs

reading

a

version

of

a

member

while

another

DCB

is

updating

the

same

version

of

the

member.

OUTPUT—Any

number

of

DCBs

open

for

output

can

create

members

at

the

same

time.

The

members

are

created

in

separate

areas

of

the

PDSE.

If

the

members

being

created

have

the

same

name

(specified

in

the

STOW

done

after

the

data

is

written),

the

last

version

stowed

is

the

version

that

is

seen

by

users,

and

the

storage

occupied

by

the

first

version

is

added

to

the

available

space

for

the

PDSE.

You

can

have:

v

Multiple

DCBs

reading

and

creating

new

versions

of

the

same

member

at

the

same

time.

Readers

continue

to

see

the

“old”

version

until

they

do

a

new

BLDL

or

FIND

by

name.

v

A

single

DCB

updating

a

version

of

a

member

while

multiple

DCBs

are

creating

new

versions

of

the

member.

The

user

updating

the

data

set

continues

to

access

the

“old”

version

until

the

application

does

a

new

BLDL

or

FIND

by

name.

Sharing

Violations

Violation

of

the

sharing

rules,

either

within

a

computer

system

or

across

several

computer

systems,

can

result

in

OPEN

failing

with

a

system

ABEND.

Under

some

conditions,

using

the

FIND

or

POINT

macro

might

violate

sharing

rules:

v

The

share

options

let

only

one

user

update

at

a

time.

Suppose

you

are

updating

a

PDSE

and

are

using

the

FIND

or

POINT

macros

to

access

a

specific

member.

If

someone

else

is

reading

that

member

at

the

same

time,

the

first

WRITE

or

PUTX

issued

after

the

FIND

or

POINT

fails.

(The

failure

does

not

occur

until

the

WRITE

or

PUTX

because

you

could

be

open

for

update

but

only

reading

the

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

462

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

member.

However,

your

FIND

or

POINT

would

succeed

if

the

other

user

is

reading

a

different

member

of

the

same

PDSE

at

the

same

time.

A

POINT

error

simulates

an

I/O

error.

v

If

the

calling

program

has

insufficient

RACF

access

authority,

the

FIND

or

POINT

will

fail.

For

example,

if

the

calling

program

opens

a

PDSE

for

input

but

only

has

RACF

execute

authority,

the

FIND

will

fail.

Related

reading:

See

z/OS

Security

Server

RACF

Security

Administrator’s

Guide.

Multiple

System

Sharing

of

PDSEs

Multiple

systems

in

a

sysplex

that

is

running

extended

sharing

can

concurrently

access

PDSE

members

for

input

and

output,

but

not

for

update-in-place.

A

shared-access

user

of

a

PDSE

can

read

existing

members

and

create

new

members

or

new

copies

of

existing

members

concurrently

with

other

shared-access

users

on

the

same

system

and

on

other

systems.

Shared

access

to

a

PDSE

during

an

update-in-place

of

a

member

is

restricted

to

a

single

system.

Programs

on

other

systems

cannot

open

the

data

set.

Figure

104

shows

the

results

of

OPEN

for

UPDAT.

Figure

104.

OPEN

Success/Failure

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

463

Figure

105

shows

the

results

of

OPEN

for

UPDAT

with

positioning

in

a

decision

table.

Buffered

Data

Invalidation—VARY

OFFLINE

When

the

PDSE

sharing

protocol

is

in

use,

PDSE

data

is

buffered

after

close

of

the

data

set.

VARY

OFFLINE

causes

the

closed

PDSE

data

in

system

buffers

of

the

system

on

which

the

VARY

occurs

to

be

invalidated.

Before

using

program

packages

which

change

the

VTOC

and

the

data

on

the

volume

(for

example,

DFSMSdss

full

volume,

and

tracks

RESTORE),

it

is

recommended

that

the

volume

be

VARIED

OFFLINE

to

all

other

systems.

Applications

that

perform

these

modifications

to

data

residing

on

volumes

without

using

the

PDSE

API

should

specify

in

their

usage

procedure

that

the

volume

being

modified

should

be

OFFLINE

to

all

other

systems,

to

help

ensure

there

are

no

active

connections

to

PDSEs

residing

on

the

volume

while

performing

the

operation.

DFP

Share

Attributes

Callable

Service

(IGWLSHR)

IGWLSHR

can

be

used

by

applications

to

determine

the

PDSE

sharing

protocol

currently

in

use.

When

PDSE

extended

sharing

protocol

is

in

use,

you

can

modify

the

OPEN

macro

and

the

access

method

to

improve

performance

for

your

programs.

If

you

are

not

updating

the

PDSE,

you

can

open

the

PDSE

and

do

reads

and

writes

from

all

systems.

If

you

are

sharing

PDSEs

using

normal

protocol,

ensure

that

only

one

user

is

on

one

system

at

a

time.

IGWLSHR

is

invoked

by

issuing

a

program

CALL

accompanied

by

a

parameter

(IGWLSHR)

identifying

the

DFP

share

attributes

call

service,

a

list

of

arguments,

and

a

storage

area

to

return

the

result.

You

can

use

the

information

obtained

from

IGWLSHR

to

optimize

PDSE

access

protocols.

With

concurrent

sharing

of

a

PDSE

for

output

between

multiple

MVS

systems,

you

can

open

a

PDSE

for

OUTPUT

for

an

extended

period

without

locking

out

other

INPUT

or

OUTPUT

sharers

of

the

PDSE.

The

exception

is

opening

for

update-in-place,

which

obtains

exclusive

control

of

the

PDSE

for

one

MVS

instance.

Related

reading:

See

z/OS

DFSMSdfp

Advanced

Services

for

information

about

the

DFP

share

attributes

callable

service.

Figure

105.

OPEN

for

UPDAT

and

Positioning

to

a

Member

Decision

Table

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

464

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Normal

or

Extended

PDSE

Sharing

You

can

use

normal

or

extended

sharing

for

PDSE

data

sets

in

a

single-system

or

multiple-system

environment.

Ensure

that

the

PDSESHARING

option

in

the

IGDSMSxx

member

of

SYS1.PARMLIB

is

set

correctly

for

your

system.

Rule:

You

also

must

have

global

resource

serialization

(GRS)

or

an

equivalent

product

running

on

your

system.

Sharing

PDSEs

in

a

Single-System

Environment

In

a

single-system

environment,

no

special

setup

is

needed.

The

system

serializes

PDSE

data

sets

and

members.

Specifying

Normal

PDSE

Sharing

in

a

Multiple-System

Environment

In

a

multiple-system

environment,

use

PDSESHARING(NORMAL)

to

share

PDSEs

at

the

data

set

level.

Specify

PDSESHARING(NORMAL)

in

the

IGDSMSxx

member

in

the

SYS1.PARMLIB.

To

change

the

PDSE

sharing

option

back

to

normal,

follow

these

steps

for

each

z/OS

system

in

your

sysplex

that

is

running

with

extended

sharing:

1.

Change

the

IGDSMSxx

member

in

SYS1.PARMLIB

to

contain

PDSESHARING(NORMAL)

or

remove

the

PDSESHARING

entry

to

allow

the

system

to

default

to

normal

sharing.

2.

Re-IPL

the

system.

Rule:

To

ensure

that

the

sysplex

does

not

continue

with

extended

sharing,

you

must

reset

all

systems

at

the

same

time.

Restriction:

All

systems

that

share

a

PDSE

must

operate

in

the

same

sharing

mode

(either

NORMAL

or

EXTENDED).

To

prevent

damage

to

the

shared

PDSE,

the

operating

system

negotiates

the

sharing

rules

when

a

system

joins

the

sysplex.

The

joining

system

is

not

allowed

to

join

the

other

systems

that

are

in

the

PDSE

sharing

sysplex.

Related

reading:

For

more

information

on

using

the

PDSESHARING

keyword,

see

the

z/OS

DFSMSdfp

Storage

Administration

Reference.

Specifying

Extended

PDSE

Sharing

in

a

Multiple-System

Environment

In

a

multiple-system

environment,

use

PDSESHARING(EXTENDED)

to

share

PDSEs

at

the

member

level.

Specify

PDSESHARING(EXTENDED)

in

the

IGDSMSxx

member

in

the

SYS1.PARMLIB

on

each

system

in

the

sysplex.

Every

system

that

is

sharing

a

PDSE

must

be

a

member

of

the

sysplex

and

have

the

sysplex

coupling

facility

(XCF)

active.

To

change

the

PDSE

sharing

option

to

extended,

follow

these

steps

for

each

z/OS

system

in

your

sysplex

that

is

running

with

extended

sharing:

1.

Change

the

IGDSMSxx

member

in

SYS1.PARMLIB

to

contain

PDSESHARING(EXTENDED).

2.

Issue

SET

SMS=xx

on

each

system.

Note:

No

systems

change

to

extended

sharing

until

they

have

all

issued

the

SET

SMS=xx

command.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

465

|

|
|

Modifying

a

Member

of

a

PDSE

The

following

sections

discuss

updating,

rewriting,

and

deleting

members

of

a

PDSE.

Members

of

a

PDSE

program

library

cannot

be

rewritten,

extended,

or

updated

in

place.

When

updating

program

objects

in

a

PDSE

program

library,

the

AMASPZAP

service

aid

invokes

the

program

management

binder,

which

creates

a

new

version

of

the

program

rather

than

updating

the

existing

version

in

place.

Updating

in

Place

A

member

of

a

PDSE

can

be

updated

in-place.

Only

one

user

can

update

at

a

time.

When

you

update-in-place,

you

read

records,

process

them,

and

write

them

back

to

their

original

positions

without

destroying

the

remaining

records.

The

following

rules

apply:

v

You

must

specify

the

UPDAT

option

in

the

OPEN

macro

to

update

the

data

set.

To

perform

the

update,

you

can

use

only

the

READ,

WRITE,

GET,

PUTX,

CHECK,

NOTE,

POINT,

FIND,

BLDL,

and

STOW

macros.

v

You

cannot

update

concatenated

PDSEs.

v

You

cannot

delete

any

record

or

change

its

length;

you

cannot

add

new

records.

v

You

cannot

use

LBI,

large

block

interface.

With

BSAM

and

BPAM

A

record

must

be

retrieved

by

a

READ

macro

before

it

can

be

updated

by

a

WRITE

macro.

Both

macros

must

be

execute

forms

that

refer

to

the

same

DECB;

the

DECB

must

be

provided

by

a

list

form.

(The

execute

and

list

forms

of

the

READ

and

WRITE

macros

are

described

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.)

With

Overlapped

Operations

See

Figure

84

on

page

428

for

an

example

of

overlap

achieved

by

having

a

read

or

write

request

outstanding

while

each

record

is

being

processed.

With

QSAM

You

can

update

a

member

of

a

PDSE

using

the

locate

mode

of

QSAM

(DCB

specifies

MACRF=(GL,PL))

and

using

the

GET

and

PUTX

macros.

The

DD

statement

must

specify

the

data

set

and

member

name

in

the

DSNAME

parameter.

Using

this

method,

only

the

member

specified

in

the

DD

statement

can

be

updated.

Extending

a

PDSE

Member

You

cannot

extend

a

PDSE

member

by

opening

the

PDSE

for

output

and

positioning

to

that

member.

If

you

used

POINT

for

positioning,

the

next

write

would

result

in

an

I/O

error.

If

you

used

FIND

for

positioning,

the

FIND

will

fail

with

an

error

return

code.

To

extend

the

member,

rewrite

it

while

open

for

output

and

issue

a

STOW

REPLACE.

When

you

rewrite

the

member,

you

must

provide

two

DCBs,

one

for

input

and

one

for

output.

Both

DCB

macros

can

refer

to

the

same

data

set;

that

is,

only

one

DD

statement

is

required.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

466

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Because

space

is

allocated

when

the

data

set

is

created,

you

do

not

need

to

request

additional

space.

You

do

not

need

to

compress

the

PDSE

after

rewriting

a

member

because

the

system

automatically

reuses

the

member’s

space

whenever

a

member

is

replaced

or

deleted.

Deleting

a

PDSE

Member

This

section

describes

the

two

interfaces

used

to

delete

members:

STOW

and

DESERV

DELETE.

DESERV

only

supports

PDSEs

but

it

does

support

deleting

names

longer

than

8

bytes.

When

the

primary

name

is

deleted,

the

system

also

deletes

all

aliases.

If

an

alias

is

deleted,

the

system

deletes

only

the

alias

name

and

its

directory

entry.

A

PDSE

member

is

not

actually

deleted

while

in

use.

Any

program

connected

to

the

member

when

the

delete

occurs

can

continue

to

access

the

member

until

the

data

set

is

closed.

This

is

called

a

deferred

delete.

Any

program

not

connected

to

the

member

at

the

time

it

is

deleted

cannot

access

the

member.

It

appears

as

though

the

member

does

not

exist

in

the

PDSE.

Unlike

a

PDS,

after

a

PDSE

member

is

deleted,

it

cannot

be

accessed.

(The

pointer

to

the

member

is

removed

so

that

the

application

can

no

longer

access

it.

The

data

can

be

overwritten

by

the

creation

of

another

member

later.)

With

DESERV

DELETE,

it

is

possible

to

define

a

list

of

PDSE

member

names

(primary

and

alias)

that

are

to

be

deleted.

The

DESL_NAME_PTR

fields

of

the

DESL

array

are

used

to

point

to

the

names

to

be

deleted.

The

DELETE

function

requires

the

caller

to

pass

a

DCB

open

for

output

or

update.

The

names

are

processed

in

DESL

sequence.

As

with

any

PDSE

member

deletion,

if

a

primary

name

is

deleted,

all

the

associated

aliases

are

also

deleted.

Codes

in

the

DESL

indicate

whether

the

DELETE

was

successful

for

each

of

the

names

in

the

list.

The

DESL_SMDE_PTR

is

ignored.

The

DELETE

function

terminates

processing

of

entries

in

the

list

if

it

encounters

an

error

where

the

return

code

value

is

greater

than

RC_WARN.

Currently

the

only

error

for

which

processing

can

continue

is

when

a

name

is

not

found,

DESRS_NOTFOUND.

Renaming

a

PDSE

Member

This

section

describes

the

two

ways

to

rename

a

member:

STOW

and

DESERV

RENAME.

DESERV

RENAME

only

supports

PDSEs

but

it

supports

names

longer

than

8

characters.

With

DESERV

RENAME,

it

is

possible

to

define

a

list

of

PDSE

member

names

(primary

and

alias)

that

are

to

be

renamed.

The

DESL_OLD_NAME_PTR

fields

of

the

DESL

array

are

used

to

point

to

the

names

which

are

to

be

renamed.

The

associated

DESL_NAME_PTR

fields

are

used

to

point

to

the

new

names.

The

RENAME

function

requires

the

caller

to

pass

a

DCB

open

for

output

or

update.

The

renames

are

processed

in

DESL

sequence.

Codes

in

the

DESL

indicate

whether

the

rename

was

successful

for

each

entry

in

the

list.

Reading

a

PDSE

Directory

You

can

read

a

PDSE

directory

sequentially

just

by

opening

the

data

set

(without

using

positioning

macros)

and

reading

it.

The

PDSE

directory

cannot

be

updated.

The

following

rules

and

guidelines

apply

to

reading

a

PDSE

directory:

v

The

DD

statement

must

identify

the

DSNAME

without

a

member

name.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

467

v

You

can

use

either

BSAM

or

QSAM

with

MACRF=R

or

G.

v

Specify

BLKSIZE=256

and

RECFM=F

or

RECFM=U.

v

If

you

also

want

to

read

the

keys

(the

name

of

the

last

member

in

that

block),

use

BSAM

and

specify

KEYLEN=8.

v

After

reading

the

last

PDSE

directory

entry,

you

read

the

next

directory,

or

control

passes

to

your

EODAD

routine.

The

last

directory

entry

is

indicated

with

a

dummy

name

of

eight

bytes

of

X'FF'.

v

Alias

entries

with

names

longer

than

eight

bytes

are

omitted.

To

read

them,

use

DESERV.

You

can

use

sequentially

read

the

directories

of

a

concatenation

of

PDSs

and

PDSEs.

However,

you

cannot

sequentially

read

a

UNIX

directory.

This

is

considered

to

be

a

like

sequential

concatenation.

To

proceed

to

each

successive

data

set,

you

can

rely

on

the

system’s

EOV

function

or

you

can

issue

the

FEOV

macro.

Concatenating

PDSEs

Two

or

more

PDSEs

can

be

automatically

retrieved

by

the

system

and

processed

successively

as

a

single

data

set.

This

technique

is

known

as

concatenation.

There

are

two

types

of

concatenation:

sequential

and

partitioned.

You

can

concatenate

PDSEs

with

sequential

and

PDSs.

Sequential

Concatenation

To

process

sequentially

concatenated

data

sets,

use

a

DCB

that

has

DSORG=PS.

Each

DD

statement

can

include

the

following

types

of

data

sets:

v

Sequential

data

sets,

which

can

be

on

disk,

tape,

instream

(SYSIN),

TSO

terminal,

card

reader,

and

subsystem

v

UNIX

files

v

PDS

members

v

PDSE

members

For

the

rules

for

concatenating

like

and

unlike

data

sets,

see

“Concatenating

Data

Sets

Sequentially”

on

page

385.

You

can

use

sequential

concatenation

(DSORG=PS

in

DCB)

to

sequentially

read

directories

of

PDSs

and

PDSEs.

See

“Reading

a

PDS

Directory

Sequentially”

on

page

430

and

“Reading

a

PDSE

Directory”

on

page

467.

Restriction:

You

cannot

use

this

technique

to

read

a

z/OS

UNIX

directory.

Partitioned

Concatenation

To

process

sequentially

concatenated

data

sets,

use

a

DCB

that

has

DSORG=PO.

When

PDSEs

are

concatenated,

the

system

treats

the

group

as

a

single

data

set.

A

partitioned

concatenation

can

contain

a

mixture

of

PDSs,

PDSEs,

and

UNIX

directories.

Each

PDSE

is

treated

as

if

it

had

one

extent,

although

it

might

have

multiple

extents.

You

can

use

partitioned

concatenation

only

when

the

DCB

is

open

for

input.

There

is

a

limit

to

how

many

DD

statements

are

allowed

in

a

partitioned

concatenation.

The

maximum

number

of

PDS

extents,

the

number

of

PDSEs,

and

UNIX

directories

must

not

exceed

the

concatenation

limit

of

255.

For

example,

you

can

concatenate

15

PDSs

of

16

extents

each

with

8

PDSEs

and

7

UNIX

directories

((15

x

16)

+

8

+

7

=

255

extents).

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

468

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Concatenated

PDSEs

are

always

treated

as

having

like

attributes,

except

for

block

size.

The

concatenation

uses

only

the

attributes

of

the

first

data

set,

except

for

the

block

size.

BPAM

OPEN

uses

the

largest

block

size

among

the

concatenated

data

sets.

For

concatenated

fixed-format

data

sets

(blocked

or

unblocked),

the

logical

record

length

for

each

data

set

must

be

equal.

Process

a

concatenation

of

PDSEs

in

the

same

way

that

you

process

a

single

PDSE,

except

that

you

must

use

the

FIND

macro

to

begin

processing

a

member.

You

cannot

use

the

POINT

(or

NOTE)

macro

until

after

you

issue

the

FIND

macro

for

the

appropriate

member.

If

two

members

of

different

data

sets

in

the

concatenation

have

the

same

name,

the

FIND

macro

determines

the

address

of

the

first

one

in

the

concatenation.

You

would

not

be

able

to

process

the

second

data

set

in

the

concatenation.

The

BLDL

macro

provides

the

concatenation

number

of

the

data

set

to

which

the

member

belongs

in

the

K

field

of

the

BLDL

list.

(See

“BLDL—Construct

a

Directory

Entry

List”

on

page

416.)

Converting

PDSs

to

PDSEs

and

Back

You

can

use

IEBCOPY

or

DFSMSdss

COPY

to

convert

PDSs

to

PDSEs.

You

can

convert

the

entire

data

set

or

individual

members,

and

also

back

up

and

restore

PDSEs.

PDSEs

can

be

converted

back

to

PDSs.

When

copying

members

from

a

PDS

load

module

library

into

a

PDSE

program

library,

or

vice

versa,

the

system

invokes

the

program

management

binder.

To

copy

one

or

more

specific

members

using

IEBCOPY,

use

the

SELECT

control

statement.

In

this

example,

IEBCOPY

copies

members

A,

B,

and

C

from

USER.PDS.LIBRARY

to

USER.PDSE.LIBRARY.

//INPDS

DD

DSN=USER.PDS.LIBRARY,DISP=SHR

//OUTPDSE

DD

DSN=USER.PDSE.LIBRARY,DISP=OLD

//SYSIN

DD

DD

*

COPY

OUTDD=OUTPDSE

INDD=INPDS

SELECT

MEMBER=(A,B,C)

This

DFSMSdss

COPY

example

converts

all

PDSs

with

the

high-level

qualifier

of

“MYTEST”

on

volume

SMS001

to

PDSEs

with

the

high-level

qualifier

of

“MYTEST2”

on

volume

SMS002.

The

original

PDSs

are

then

deleted.

If

you

use

dynamic

allocation,

specify

INDY

and

OUTDY

for

the

input

and

output

volumes.

However,

if

you

define

the

ddnames

for

the

volumes,

use

the

INDD

and

OUTDD

parameters.

COPY

DATASET(INCLUDE(MYTEST.**)

-

BY(DSORG

=

PDS))

-

INDY(SMS001)

-

OUTDY(SMS002)

-

CONVERT(PDSE(**))

-

RENAMEU(MYTEST2)

-

DELETE

If

you

want

the

PDSEs

to

retain

the

original

PDS

names,

use

the

TSO

RENAME

command

to

rename

each

PDSE

individually.

(You

cannot

use

pattern-matching

characters,

such

as

asterisks,

with

TSO

RENAME.)

RENAME

(old-data-set-name)

(new-data-set-name)

If

you

want

to

rename

all

the

PDSEs

at

once,

use

the

access

method

services

ALTER

command

and

run

a

job:

ALTER

MYTEST2.*

NEWNAME(MYTEST.*)

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

469

Related

reading:

See

z/OS

DFSMSdss

Storage

Administration

Reference

for

information

about

using

DFSMSdss

and

z/OS

DFSMSdfp

Utilities

for

information

about

using

IEBCOPY

to

convert

PDSs

to

PDSEs.

PDSE

to

PDS

Conversion

Situations

in

which

you

might

want

to

convert

a

PDSE

to

a

PDS

follow:

v

You

are

shipping

the

PDSE

to

a

system

that

does

not

support

PDSEs.

v

An

application

does

not

run

against

a

PDSE.

v

A

system

is

sharing

the

PDSE

(using

shared

DASD)

with

a

system

that

does

not

support

PDSE

access.

To

convert

a

PDSE

to

a

PDS,

specify

a

DSNTYPE

of

PDS

in

the

JCL

or

data

class

definition.

Restrictions

on

Converting

PDSEs

If

you

attempt

to

copy

members

of

PDSs

containing

user

TTRs

or

note

lists

to

a

PDSE,

you

get

an

error

message

and

the

copy

fails.

If

the

SYNCDEV

macro

is

coded

in

an

application

you

want

to

convert,

the

application

can

handle

the

return

and

reason

codes

for

PDSs

correctly.

The

correct

return

code

is

4,

which

means

“SYNCDEV

does

not

support

PDSs”.

When

copying

members

from

a

PDSE

program

library

into

a

PDS,

certain

restrictions

must

be

considered.

Program

objects

which

exceed

the

limitations

of

load

modules,

such

as

total

module

size

or

number

of

external

names,

cannot

be

correctly

converted

to

load

module

format.

Improving

Performance

After

many

adds

and

deletes,

the

PDSE

members

might

become

fragmented.

This

can

affect

performance.

To

reorganize

the

PDSE,

use

IEBCOPY

or

DFSMSdss

COPY

to

back

up

all

the

members.

You

can

either

delete

and

restore

all

members,

or

delete

and

reallocate

the

PDSE.

It

is

preferable

to

delete

and

reallocate

the

PDSE

because

it

usually

uses

less

processor

time

and

does

less

I/O

than

deleting

every

member.

Recovering

Space

in

Fragmented

PDSEs

PDSEs

can

become

fragmented

depending

on

the

access

pattern.

This

does

not

normally

occur

when

the

adding

and

deleting

of

members

is

balanced,

but

might

occur

when

members

are

deleted

and

new

members

are

not

added

to

reclaim

the

space.

To

reclaim

the

space

and

reorganize

the

PDSE,

copy

it

to

a

new

PDSE

using

IEBCOPY

or

DFSMSdss

COPY.

PDSE

Address

Spaces

This

section

is

intended

for

system

programmers

or

people

that

are

diagnosing

system

problems.

With

z/OS

V1R6,

DFSMSdfp

provides

two

address

spaces

for

processing

PDSEs:

SMSPDSE

and

SMSPDSE1.

A

z/OS

system

can

have

only

the

SMSPDSE

address

space,

or

both

the

SMSPDSE

and

SMSPDSE1

address

spaces.

Some

control

blocks

that

are

associated

with

reading,

writing,

and

loading

PDSE

members

are

still

located

in

the

extended

common

service

area

(ECSA).

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

470

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|

|
|

|
|
|
|
|

SMSPDSE

A

non-restartable

address

space

for

PDSE

data

sets

that

are

in

the

LNKLST

concatenation.

(The

linklist

and

other

system

functions

use

global

connections.)

The

SMSPDSE

address

space

cannot

be

restarted

because

global

connections

cannot

handle

the

interruption

and

reconnection

that

are

part

of

an

address

space

restart

operation.

SMSPDSE

is

the

only

PDSE

address

space

for

the

z/OS

system

when

one

of

the

following

conditions

exists:

v

The

IGDSMSxx

initialization

parameter,

PDSESHARING,

is

set

to

NORMAL.

v

The

IGDSMSxx

initialization

parameters

in

a

sysplex

coupled

systems

environment

are

set

as

follows:

–

PDSESHARING(EXTENDED)

–

PDSE_RESTARTABLE_AS(NO)

SMSPDSE1

A

restartable

address

space

that

provides

connections

to

and

processes

requests

for

those

PDSEs

that

are

not

part

of

the

LNKLST

concatenation.

To

create

the

SMSPDSE1

address

space

during

IPL

in

a

sysplex

coupled

systems

environment,

set

the

IGDSMSxx

initialization

parameters

as

follows:

v

PDSESHARING(EXTENDED)

v

PDSE_RESTARTABLE_AS(YES)

Related

reading:

v

For

information

on

configuring

the

restartable

SMSPDSE1

address

space,

see

Using

the

restartable

PDSE

address

space

in

z/OS

DFSMSdfp

Using

DFSMSdfp

in

the

z/OS

V1R6

Environment.

v

For

information

on

analyzing

and

repairing

PDSEs

and

restarting

the

SMSPDSE1

address

space,

see

Diagnosing

PDSE

problems

in

z/OS

DFSMSdfp

Diagnosis

Reference.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

Chapter

27.

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

471

||
|
|
|
|
|
|

|
|

|
|
|
|

||
|
|
|
|
|
|

|

|
|
|

|
|
|

Processing

a

Partitioned

Data

Set

Extended

(PDSE)

472

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

28.

Processing

z/OS

UNIX

Files

This

chapter

covers

the

following

topics.

Topic

Location

Accessing

the

z/OS

UNIX

File

System

473

Using

HFS

Data

Sets

475

Creating

z/OS

UNIX

Files

477

Managing

UNIX

Files

and

Directories

482

Reading

UNIX

Files

Using

BPAM

488

Concatenating

UNIX

Files

and

Directories

490

Accessing

the

z/OS

UNIX

File

System

A

z/OS

UNIX

file

system

is

a

section

of

the

UNIX

file

tree

that

is

physically

contained

on

a

single

device

or

disk

partition,

and

that

can

be

separately

mounted,

dismounted,

and

administered.

UNIX

allows

you

to

use

a

variety

of

file

systems,

including

hierarchical

file

system

(HFS),

Network

File

System

(NFS),

zSeries®

File

System

(zFS),

and

temporary

file

system

(TFS).

UNIX

files

are

byte-oriented.

The

view

of

the

data

to

the

end

user

is

a

hierarchical

directory

structure

similar

to

IBM

PC

DOS.

To

access

UNIX

files,

you

specify

the

path

leading

to

them,

as

shown

in

Figure

106

on

page

474.

Hierarchical

file

system

A

hierarchical

file

system

(HFS)

is

part

of

the

operating

system

that

includes

the

application

programming

interfaces.

HFS

enables

an

application

that

is

written

in

a

high-level

language

to

create,

store,

retrieve,

and

manipulate

data

on

a

storage

device.

Network

File

System

A

Network

File

System

(NFS)

is

a

distributed

file

system

that

enables

users

to

access

files

and

directories

located

on

remote

computers

and

treat

those

files

and

directories

as

if

they

were

local.

NFS

is

independent

of

machine

types,

operating

systems,

and

network

architectures

through

the

use

of

remote

procedure

calls.

With

z/OS

UNIX,

you

can

use

the

NFS

client

to

mount

a

file

system,

directory,

or

file

from

any

system

with

an

NFS

server

within

your

directory.

zSeries

File

System

A

zSeries

File

System

(zFS)

contains

one

or

more

file

systems

in

a

VSAM

linear

data

set.

A

zFS

can

be

SMS-managed.

You

can

share

zFS

files

in

a

sysplex.

Temporary

file

system

A

temporary

file

system

(TFS)

is

stored

in

memory

and

delivers

high-speed

I/O.

You

can

mount

a

TFS

for

storing

temporary

files.

©

Copyright

IBM

Corp.

1987,

2004

473

For

more

information,

see

z/OS

UNIX

System

Services

Planning

and

z/OS

UNIX

System

Services

User’s

Guide.

Characteristics

of

UNIX

Directories

and

Files

When

you

use

BPAM

to

access

a

UNIX

directory,

it

appears

to

the

program

as

a

PDS

or

PDSE

directory.

A

UNIX

directory

is

divided

into

sequentially

organized

files

(members),

each

described

by

the

directory

entry.

You

can

use

the

BLDL,

FIND,

and

STOW

macros

to

search

a

UNIX

directory.

You

can

code

the

path

name

with

or

without

a

trailing

slash.

The

UNIX

files

have

the

following

characteristics:

v

BPAM

treats

UNIX

files

as

members.

v

UNIX

files

can

be

regular

files,

special

character

files,

hard

or

soft

link

(symbolic)

files,

or

named

pipes.

v

Each

UNIX

file

has

a

unique

name

of

1-to-8

characters.

v

File

names

are

case-sensitive.

v

You

can

use

BSAM

or

QSAM

to

read

individual

UNIX

files

in

a

directory.

v

You

can

add,

rename,

or

delete

UNIX

members

in

a

directory,

but

not

through

BPAM.

Access

Methods

Used

Table

37

lists

the

access

methods

that

UNIX

file

systems

can

use.

Table

37.

Access

Methods

That

UNIX

Files

Use

Access

Method

Description

Reference

BSAM,

QSAM

The

application

program

sees

the

UNIX

file

as

a

single-volume,

sequential

data

set

that

resides

on

DASD.

See

“Creating

a

UNIX

File

with

BSAM

or

QSAM”

on

page

477.

VSAM

Accesses

a

UNIX

file

as

if

it

were

an

entry-sequenced

data

set

(ESDS).

UNIX

files

are

the

only

type

of

data

sets

that

you

can

access

with

both

VSAM

and

non-VSAM

interfaces.

See

“Simulated

VSAM

Access

to

UNIX

files”

on

page

80.

Root
directory

Directory Directory

PATH

Directory Directory

File
File
File
File

File
File

File
File
File

Figure

106.

UNIX

Directories

and

Files

in

a

File

System

Processing

z/OS

UNIX

Files

474

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

37.

Access

Methods

That

UNIX

Files

Use

(continued)

Access

Method

Description

Reference

BPAM

Provides

read-only

access

to

UNIX

files.

BPAM

treats

a

UNIX

directory

as

a

PDS

or

PDSE

directory,

and

treats

a

UNIX

file

as

a

PDS

or

PDSE

member.

BPAM

ignores

any

subdirectories

in

the

directory

that

you

specify.

Restriction:

You

cannot

use

BPAM

to

write

to

a

UNIX

file.

See

“Reading

UNIX

Files

Using

BPAM”

on

page

488.

For

additional

information,

see

“Processing

UNIX

Files

with

an

Access

Method”

on

page

20.

Using

HFS

Data

Sets

An

HFS

data

set

is

a

z/OS

data

set

of

HFS

type,

rather

than

VSAM

or

PDSE

type.

An

HFS

data

set

is

a

collection

of

files

and

directories

organized

in

a

hierarchical

structure

on

local

hard

drives.

Each

hierarchical

file

system

is

structured

like

a

tree,

based

on

a

root

directory

with

various

subdirectories

and

files.

You

can

share

HFS

data

sets

in

a

sysplex.

You

can

access

the

files

in

a

hierarchical

file

system

by

using

z/OS

UNIX

System

Services.

UNIX

provides

a

way

for

z/OS

to

access

hierarchical

file

systems,

and

for

UNIX

applications

to

access

z/OS

data

sets.

You

can

use

many

of

the

standard

BSAM,

QSAM,

BPAM,

and

VSAM

interfaces

to

access

files

within

a

hierarchical

file

system.

Most

applications

that

use

these

access

methods

can

access

HFS

data

sets

without

reassembly

or

recompilation.

HFS

data

sets

appear

to

the

z/OS

system

much

as

a

PDSE

does,

but

the

internal

structure

is

entirely

different.

HFS

data

sets

can

be

SMS

managed

or

non-SMS

managed.

DFSMS

accesses

the

data

within

the

files.

You

can

back

up,

recover,

migrate,

and

recall

HFS

data

sets.

HFS

data

sets

have

the

following

processing

requirements

and

restrictions:

v

They

must

reside

on

DASD

volumes

and

be

cataloged.

v

They

cannot

be

processed

with

UNIX

system

services

calls

or

with

access

methods.

You

can

process

the

file

system

with

UNIX

system

services

calls

and

with

access

methods.

v

They

can

be

created,

renamed,

and

scratched

using

standard

DADSM

routines.

v

They

can

be

dumped,

restored,

migrated,

recalled,

and

copied

using

DFSMShsm,

if

you

use

DFSMSdss

as

the

data

mover.

DFSMShsm

does

not

process

individual

files

within

an

HFS

data

set.

v

They

cannot

be

copied

using

the

IEBCOPY

utility.

For

more

information

about

managing

HFS

data

sets,

see

z/OS

DFSMSdfp

Advanced

Services

and

z/OS

UNIX

System

Services

Planning.

Creating

HFS

Data

Sets

To

create

an

HFS

data

set,

follow

these

steps:

1.

To

allocate

the

HFS

data

set,

specify

HFS

in

the

DSNTYPE

parameter

and

the

number

of

directory

blocks

in

the

SPACE

parameter,

in

either

the

JCL

or

the

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

475

data

class.

If

you

do

not

specify

the

number

of

the

directory

blocks,

the

allocation

fails.

The

value

of

the

number

has

no

effect.

2.

Define

a

data

class

for

HFS

data

sets.

Although

you

can

create

uncataloged

HFS

data

sets,

they

must

be

cataloged

when

they

are

mounted.

These

data

sets

can

expand

to

as

many

as

255

extents

of

DASD

space

on

multiple

volumes

(59

volumes

maximum

with

123

extents

per

volume).

3.

Log

on

as

a

TSO/E

user

and

define

additional

directories,

as

described

in

“Creating

Additional

Directories.”

The

following

example

creates

an

SMS-managed

HFS

data

set:

//FSJOB

JOB

//STEP1

EXEC

PGM=IEFBR14

//MKFS1

DD

DSNAME=FILE.SYSTEM.FS0001,DISP=(NEW,KEEP),

//

DSNTYPE=HFS,SPACE=(CYL,(100,100,1)),DATACLAS=FILESYS,

//

MGMTCLAS=NEVER,STORCLAS=SECURE

The

following

example

creates

a

non-SMS-managed

HFS

data

set:

//FSJOB

JOB

//STEP1

EXEC

PGM=IEFBR14

//MKFS1

DD

DSNAME=FILE.SYSTEM.FS0001,DISP=(NEW,CATLG),

//

DSNTYPE=HFS,SPACE=(CYL,(100,100,1)),DATACLAS=FILESYS,

//

MGMTCLAS=NEVER,VOL=SER=XXXXXX,UNIT=SYSDA

The

hierarchical

file

system

can

use

first-in-first-out

(FIFO)

special

files.

To

allocate

a

FIFO

special

file

in

a

z/OS

UNIX

file

system,

specify

PIPE

in

the

DSNTYPE

parameter

and

a

path

name

in

the

PATH

parameter.

Requirement:

RACF

or

an

equivalent

security

product

must

be

installed

and

active

on

your

system

to

use

z/OS

UNIX

data

sets.

You

cannot

use

a

UNIX

data

set

until

someone

with

appropriate

RACF

authority

uses

the

TSO

MOUNT

command

to

allocate

DASD

space

and

logically

mount

the

file

system.

Creating

Additional

Directories

After

you

allocate

an

HFS

data

set

for

the

root

file

system,

you

can

log

on

as

a

TSO/E

user

and

define

directories

and

subdirectories

in

the

root

file

system

by

using

the

MKDIR

command.

For

example,

to

create

the

xpm17u01

directory

using

JCL,

enter

the

following

command:

//SYSTSIN

DD

*

MKDIR

’/sj/sjpl/xsam/xpm17u01’

These

directories

can

be

used

as

mount

points

for

additional

mountable

file

systems.

You

can

also

use

an

IBM-supplied

program

that

creates

directories

and

device

files.

Users

or

application

programs

can

then

add

files

to

those

additional

file

systems.

Processing

z/OS

UNIX

Files

476

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Any

user

with

write

access

authority

to

a

directory

can

create

subdirectories

in

that

directory

using

the

MKDIR

command.

Within

the

root

directory,

only

superusers

can

create

subdirectories.

Authorized

users

can

use

the

MOUNT

command

to

mount

file

systems

in

a

directory.

Creating

z/OS

UNIX

Files

You

can

create

a

UNIX

file

for

access

through

BSAM

or

QSAM

(DCB

DSORG=PS),

BPAM

(DCB

DSORG=PO),

or

VSAM,

in

any

of

the

following

locations:

v

JCL

DD

statement

v

SVC

99

(dynamic

allocation)

v

TSO/E

ALLOCATE

command

v

UNIX

System

Services

commands

such

as

ISHELL,

BPXCOPY,

OPUT,

OPUTX,

and

OCOPY

Before

you

begin:

Be

familiar

with

how

to

use

JCL,

TSO/E

ALLOCATE,

or

SVC

99

to

create

a

data

set,

and

understand

how

to

specify

the

FILEDATA

and

PATHMODE

parameters.

For

more

information,

see

the

following

material:

v

“JCL

Parameters

for

UNIX

Files”

on

page

480

v

z/OS

MVS

JCL

Reference

v

z/OS

TSO/E

Command

Reference

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide

v

z/OS

UNIX

System

Services

Command

Reference

Creating

a

UNIX

File

with

BSAM

or

QSAM

You

can

create

a

UNIX

file

with

BSAM

or

QSAM.

The

application

program

sees

the

file

as

a

single-volume,

sequential

data

set

that

resides

on

DASD.

Because

UNIX

files

are

not

actually

stored

as

sequential

data

sets,

the

system

cannot

simulate

all

the

characteristics

of

a

sequential

data

set.

For

this

reason,

certain

macros

and

services

have

incompatibilities

or

restrictions

when

they

manage

UNIX

files.

Perform

the

following

steps

to

create

the

UNIX

file

and

its

directory,

write

the

records

to

the

file,

and

create

an

entry

in

the

directory:

1.

Code

DSORG=PS

or

DSORG=PSU

in

the

DCB

macro.

2.

In

the

DD

statement,

specify

that

the

data

be

stored

as

a

member

of

a

new

UNIX

directory.

Specify

PATH=pathname

and

PATHDISP=(KEEP,DELETE)

in

the

DD

statement.

For

an

example

of

creating

a

UNIX

file

or

directory,

see

“Creating

z/OS

UNIX

Files.”

3.

Process

the

UNIX

file

with

an

OPEN

macro,

a

series

of

PUT

or

WRITE

macros,

and

the

CLOSE

macro.

A

STOW

macro

is

issued

automatically

when

the

data

set

is

closed.

Figure

107

on

page

478

shows

an

example

of

creating

a

UNIX

file

with

QSAM.

You

can

use

BSAM,

QSAM,

BPAM,

or

UNIX

System

Services

to

read

this

new

UNIX

file.

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

477

Record

Processing

Considerations

Consider

the

following

factors

when

you

process

records

in

UNIX

files:

v

Block

boundaries

are

not

maintained

within

the

file.

If

you

write

a

short

block

other

than

at

the

end

of

the

file,

a

later

read

at

that

point

returns

a

full

block

(except

for

RECFM=VB,

which

always

returns

a

single

record).

v

Record

boundaries

are

not

maintained

within

binary

files

except

with

fixed-length

records.

v

Text

files

are

presumed

to

be

EBCDIC.

v

Repositioning

functions

(such

as

POINT,

BSP,

CLOSE

TYPE=T)

is

not

permitted

for

FIFO

or

character

special

files.

v

The

default

record

format

(DCBRECFM)

is

U

for

input

and

output.

v

The

default

block

size

(DCBBLKSI)

on

input

is

80.

There

is

no

default

for

output.

v

The

default

LRECL

(DCBLRECL)

on

input

is

80.

There

is

no

default

for

output.

v

When

RECFM=F(B(S))

–

And

the

file

is

accessed

as

binary,

if

the

last

record

in

the

file

is

smaller

than

LRECL

bytes,

it

is

padded

with

zeros

when

it

is

read.

–

And

the

file

is

accessed

as

text,

if

any

record

in

the

file

is

smaller

than

LRECL

bytes,

it

is

padded

with

blanks

when

it

is

read.

If

any

record

is

longer

than

LRECL

bytes,

it

results

in

an

I/O

error

due

to

incorrect

length

when

it

is

read.
v

When

RECFM=V(B)

–

And

the

file

is

accessed

as

binary,

each

record

is

returned

as

length

LRECL,

except,

possibly,

for

the

last

one.

–

And

the

file

is

accessed

as

text,

if

any

record

in

the

file

consists

of

zero

bytes

(that

is,

a

text

delimiter

is

followed

by

another

text

delimiter),

the

returned

record

consists

of

an

RDW

and

no

data

bytes.

If

any

record

is

longer

than

LRECL

bytes,

it

results

in

an

I/O

error

due

to

incorrect

length

when

it

is

read.
v

When

RECFM=U

–

And

the

file

is

accessed

as

binary,

each

record

is

returned

with

a

length

equal

to

block

size,

except,

possibly,

for

the

last

one.

–

And

the

file

is

accessed

as

text,

if

any

record

in

the

file

consists

of

zero

bytes

(that

is,

a

text

delimiter

is

followed

by

another

text

delimiter),

the

returned

record

consists

of

one

blank.

If

any

record

is

longer

than

the

block

size,

it

results

in

an

I/O

error

due

to

incorrect

length

when

it

is

read.

Processing

Restrictions

The

following

restrictions

are

associated

with

using

BSAM,

BPAM,

and

QSAM

with

UNIX

files:

v

OPEN

for

UPDAT

cannot

be

used.

v

EXCP

cannot

be

used.

//PDSDD

DD

PATH=’pathname’,PATHDISP=(KEEP,DELETE),

...

...

OPEN

(OUTDCB,(OUTPUT))

...

PUT

OUTDCB,OUTAREA

Write

record

to

file

...

CLOSE

(OUTDCB)

...

OUTAREA

DS

CL80

Area

to

write

from

OUTDCB

DCB

---,DSORG=PS,DDNAME=PDSDD,MACRF=PM

Figure

107.

Creating

a

UNIX

File

with

QSAM

Processing

z/OS

UNIX

Files

478

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

DCB

RECFM=V(B)S

(spanned

record

format)

cannot

be

used.

v

DCB

MACRF=P

(NOTE/POINT)

cannot

be

used

for

FIFO,

for

character

special

files,

or

if

PATHOPTS=OAPPEND

is

specified.

v

NOTE/POINT

cannot

use

a

file

that

contains

more

than

16

megarecords

minus

two.

A

NOTE

after

16

megarecords

minus

two

(16

777

214)

returns

a

value

of

X'FFFFFF’

that

is

not

valid.

A

POINT

to

a

value

that

is

not

valid

causes

the

next

READ

or

WRITE

to

fail

with

an

I/O

error,

unless

preceded

by

another

POINT.

v

In

a

binary

file

with

RECFM=V(B)

or

RECFM=U,

a

POINT

to

a

block

other

than

the

first

block

in

the

file

results

in

an

abend.

v

You

can

issue

BSP

only

after

a

successful

CHECK

(for

READ

or

WRITE),

NOTE,

or

CLOSE

TYPE=T

LEAVE

request.

Creating

a

UNIX

File

Using

JCL

To

create

a

UNIX

file

using

JCL,

follow

these

steps:

1.

Specify

the

PATH=pathname

parameter

on

the

DD

statement

instead

of

using

the

DSNAME

keyword.

You

might

code

the

following:

//DD1

DD

PATH=’/usr/applics/paytime’,PATHOPTS=ORDONLY

The

OPEN

macro

can

use

the

PATH

parameter

only

for

DCBs

that

specify

DSORG=PS,

DSORG=PO,

and

for

ACBs.

You

can

use

the

following

DCB

parameters

with

the

PATH

parameter:

v

BLKSIZE

v

LRECL

v

RECFM

v

BUFNO

v

NCP

Guideline:

BLKSIZE,

RECFM,

and

LRECL

values

are

not

stored

with

a

UNIX

file.

If

you

do

not

want

the

default

values,

you

must

specify

values

for

these

fields

in

JCL,

SVC

99,

or

TSO/E

ALLOCATE,

or

in

the

DCB.

2.

Specify

the

FILEDATA

parameter

to

indicate

whether

the

UNIX

file

consists

of

text

data

or

binary

data.

3.

Specify

the

PATHMODE

parameter

to

indicate

whether

the

owner,

the

group,

or

others

can

read

or

write

to

the

file

or

directory.

This

parameter

is

similar

to

the

chmod

command

in

UNIX.

For

example,

if

you

specify

PATHMODE=(SIRWXU,SIRGRP)

for

a

file,

the

owner

can

read,

write,

and

run

the

file,

and

the

group

can

read

the

file.

For

more

information,

see

“Specifying

Security

Settings

for

UNIX

Files

and

Directories”

on

page

482.

4.

Use

the

PATHDISP

parameter

to

specify

the

disposition

(such

as

KEEP

or

DELETE)

for

a

UNIX

file

when

the

job

ends

normally

or

abnormally.

(You

cannot

put

the

DISP

parameter

in

a

DD

statement

that

contains

a

PATH

parameter.)

5.

Specify

the

PATHOPTS

parameter

to

specify

the

file

access

group

and

status

for

the

UNIX

file.

For

example,

PATHOPTS=(ORDONLY,OCREAT)

creates

a

new

read-only

data

set.

6.

Submit

the

job,

or

issue

the

SVC

99

or

TSO

ALLOCATE

command.

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

479

7.

Issue

the

ISHELL

command

in

a

TSO/E

session

to

confirm

that

you

have

successfully

created

the

UNIX

file

or

directory.

8.

Use

ISPF

Option

3.4

to

browse

the

new

UNIX

file.

Result:

The

ISHELL

command

displays

all

the

directories

and

files

in

a

UNIX

directory.

The

new

file

is

empty

until

you

run

a

program

to

write

data

into

it.

Example:

The

following

example

shows

how

to

create

a

UNIX

file,

paytime

in

the

xpm17u01

directory,

using

JCL.

The

new

directory

and

file

can

be

any

type

of

UNIX

file

system

(such

as

HFS,

NFS,

zFS,

or

TFS).

//SYSUT2

DD

PATH=’/sj/sjpl/xsam/xpm17u01/paytime’,

//

PATHDISP=(KEEP,DELETE),

Disposition

//

PATHOPTS=(OCREAT,ORDWR),

//

PATHMODE=(SIRUSR,SIWUSR,

Owner

can

read

and

write

file

//

SIRGRP,SIROTH)

Others

can

read

the

file

//

FILEDATA=TEXT

Removes

trailing

blanks

in

the

file

JCL

Parameters

for

UNIX

Files

You

can

use

the

following

JCL

parameters

when

working

with

UNIX

files.

FILEDATA

Use

the

FILEDATA

keyword

to

describe

the

organization

of

a

UNIX

file

so

that

the

system

can

determine

how

to

process

the

file.

The

access

methods

use

both

EBCDIC

text

and

binary

formats

for

UNIX

files.

With

BPAM,

files

can

have

differing

values

for

the

FILEDATA

parameter.

Each

DD

statement

can

have

its

own

FILEDATA

value.

If

you

do

not

code

the

FILEDATA

keyword

on

the

DD

statement,

the

FILEDATA

value

that

is

associated

with

each

file

takes

effect.

BINARY

Indicates

the

data

does

not

contain

record

delimiters.

Each

record

is

the

maximum

length.

Binary

is

the

default

value.

Code

FILEDATA=BINARY

for

records

without

line

delimiters.

TEXT

Indicates

that

the

data

consists

of

records

separated

by

a

delimiter

of

the

EBCDIC

newline

character

(X'15’).

Code

FILEDATA=TEXT

if

records

are

text

and

each

record

ends

with

a

line

delimiter.

On

input,

the

access

method

uses

the

delimiter

to

find

the

end

of

each

record

and

adds

trailing

blanks

if

the

record

format

(RECFM)

is

fixed

and

is

shorter

than

the

LRECL

value.

Processing

z/OS

UNIX

Files

480

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

PATH

Specifies

the

name

of

the

UNIX

file.

PATHOPTS

Use

the

PATHOPTS

parameter

to

specify

the

file

access

and

attributes

for

the

UNIX

file

named

in

the

PATH

parameter.

During

allocation

of

a

new

UNIX

file,

if

you

specify

either

OCREAT

alone

or

OCREAT

with

OEXCL

in

the

PATHOPTS

parameter,

DFSMS

performs

an

open(

)

function.

The

path

name

from

the

PATH

parameter,

the

options

from

PATHOPTS,

and

the

options

from

PATHMODE,

if

specified,

are

passed

to

the

open(

)

function.

When

the

application

program

issues

an

OPEN

macro

for

an

existing

UNIX

file,

the

OPEN

macro

establishes

a

connection

to

the

existing

file.

The

path

name

from

the

PATH

parameter

is

passed

without

modification.

The

options

from

PATHMODE

are

not

passed

because

the

UNIX

file

must

already

exist.

PATHDISP

Specifies

the

disposition

of

the

UNIX

file.

You

can

specify

whether

to

keep

or

delete

the

file

when

the

job

step

ends.

PATHMODE

Specifies

the

file

access

attributes

when

the

system

is

creating

the

UNIX

file

named

on

the

PATH

parameter.

To

create

the

file,

specify

a

PATHOPTS=OCREAT

parameter.

Restriction:

For

a

DD

statement

that

contains

a

PATH

parameter,

you

cannot

specify

the

DATACLAS,

STORCLAS,

and

MGMTCLAS

options

because

the

ACS

routines

are

not

called.

Related

reading:

For

more

information

on

the

JCL

parameters

for

UNIX

files,

see

z/OS

MVS

JCL

Reference.

For

more

information

on

using

UNIX

files,

see

z/OS

UNIX

System

Services

User’s

Guide.

Creating

a

Macro

Library

in

a

UNIX

Directory

You

might

want

to

create

a

macro

library

in

a

UNIX

directory

to

copy

code

from

UNIX

systems

to

z/OS

or

to

copy

MVS

data

sets

to

UNIX

files.

Before

you

begin:

For

more

information

on

utilities

for

copying

files,

see

z/OS

DFSMSdfp

Utilities

and

z/OS

DFSORT

Reference

Summary.

Perform

the

following

steps

to

create

a

macro

library

in

a

UNIX

directory:

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

481

1.

Use

IEBGENER

to

copy

from

a

PDS

or

PDSE

member

to

a

UNIX

file.

(You

also

can

use

TSO/E

commands

and

other

copying

utilities

such

as

ICEGENER

or

BPXCOPY

to

copy

a

PDS

or

PDSE

member

to

a

UNIX

file.)

In

this

example,

the

data

set

in

SYSUT1

is

a

PDS

or

PDSE

member

and

the

data

set

in

SYSUT2

is

a

UNIX

file.

This

job

creates

a

macro

library

in

the

UNIX

directory.

//

EXEC

PGM=IEBGENER

//SYSPRINT

DD

SYSOUT=*

//SYSUT1

DD

DSN=PROJ.BIGPROG.MACLIB(MAC1),DISP=SHR

//SYSUT2

DD

PATH=’/u/BIGPROG/macros/special/MAC1’,PATHOPTS=OCREAT,

//

PATHDISP=(KEEP,DELETE),

Normal

and

abnormal

dispositions

//

PATHMODE=(SIRUSR,SIWUSR,

Owner

can

read

and

write

file

//

SIRGRP,SIROTH)

Everyone

else

can

read

file

//

FILEDATA=TEXT

Remove

trailing

blanks

//SYSIN

DD

DUMMY

Tip:

The

assembler

requires

the

macro

file

name

to

be

all

capitals.

Other

programs

such

as

a

compiler

might

not

require

the

filename

to

be

all

capitals.

2.

Code

other

DD

statements

to

copy

additional

PDS

or

PDSE

members

to

UNIX

files.

You

also

can

copy

an

entire

PDS,

PDSE,

or

UNIX

directory

to

a

new

UNIX

directory.

3.

Use

the

macro

library

to

browse

or

copy

additional

files.

In

the

following

example,

the

system

macro

library,

SYS1.MACLIB,

is

concatenated

with

a

UNIX

directory

that

contains

macros

that

were

copied

from

elsewhere.

//

EXEC

PGM=ASMA90

High-level

assembler

//SYSPRINT

DD

SYSOUT=*

//SYSLIB

DD

DSN=SYS1.MACLIB,DISP=SHR

//

DD

PATH=’/u/BIGPROG/macros/special’,PATHOPTS=ORDONLY,

//

FILEDATA=TEXT

Recognize

line

delimiters

.

.

.

(other

DD

statements)

Managing

UNIX

Files

and

Directories

This

topic

explains

several

procedures

and

commands

for

managing

UNIX

files:

v

Specifying

security

settings

for

UNIX

files

and

directories

v

Using

the

ISPF

shell

to

manage

UNIX

files

and

directories

v

Editing

a

UNIX

file

v

Creating

a

macro

library

in

a

UNIX

directory

v

Copying

a

PDS

or

PDSE

to

a

UNIX

directory

v

Copying

members

from

a

PDS

or

PDSE

to

a

UNIX

file

v

Copying

a

sequential

data

set

to

a

UNIX

file

Specifying

Security

Settings

for

UNIX

Files

and

Directories

The

access

methods

use

standard

UNIX

security

settings

(also

called

permissions)

for

UNIX

files.

If

you

are

the

file

owner,

you

can

set

UNIX

permissions

for

each

UNIX

directory

and

file.

Ensure

that

the

users

have

search

authority

to

the

correct

directory

and

appropriate

authority

to

each

file.

Processing

z/OS

UNIX

Files

482

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Permissions

for

UNIX

Files

and

Directories

A

file

or

directory

owner

can

set

access

permissions

bits

for

three

classes:

owner,

group,

and

other.

Set

permissions

in

the

following

ways:

v

DD

PATHMODE

parameter

in

the

JCL

statement

v

chmod

command

v

Calls

from

a

program

Table

38

shows

the

UNIX

permissions

classes

for

UNIX

files

and

directories.

For

more

information

on

setting

UNIX

file

permissions,

see

z/OS

UNIX

System

Services

Planning.

Owner

class

The

user

ID

of

the

file

owner

or

creator.

Group

class

The

user

IDs

that

belong

to

a

specific

UNIX

group,

such

as

the

Information

Technology

department.

Other

class

Any

user

ID

that

is

not

in

the

owner

or

group

class.

The

other

class

usually

has

the

most

restrictive

permissions.

Table

38.

Access

Permissions

for

UNIX

Files

and

Directories

UNIX

file

type

Security

Settings

Owner

Group

Other

Directory

search

write

read

no

access

search

write

read

no

access

search

write

read

no

access

File

(member)

execute

write

read

no

access

execute

write

read

no

access

execute

write

read

no

access

BPAM

OPEN

verifies

that

you

have

UNIX

search

authority

to

each

UNIX

directory.

The

FIND

and

BLDL

macros

verify

that

you

have

UNIX

read

authority

to

each

UNIX

file.

FIND

and

BLDL

call

UNIX

OPEN.

If

the

open

fails

because

you

do

not

have

read

authority

to

the

UNIX

file,

FIND

returns

return

code

8,

reason

code

20.

A

UNIX

directory

can

contain

files

for

which

you

do

not

have

read

authority.

Ensure

that

the

application

program

does

not

issue

BLDL

and

FIND

for

those

UNIX

files.

RACF

Authorization

for

UNIX

Files

DFSMS

depends

on

z/OS

UNIX

to

address

security

for

files

being

accessed.

For

UNIX

files,

the

file

system

called

by

z/OS

UNIX

performs

RACF

authorization

checking.

Related

reading:

For

more

information

on

using

RACF

with

UNIX

files,

see

z/OS

UNIX

System

Services

Planning.

Editing

UNIX

Files

Use

the

OEDIT

command

to

edit

a

UNIX

file.

Figure

108

on

page

484

shows

the

Edit-Entry

panel

for

editing

a

UNIX

file.

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

483

Using

ISHELL

to

Manage

UNIX

Files

and

Directories

Use

the

ISPF

shell

(ISHELL)

to

perform

the

following

functions

on

UNIX

files:

v

Copy

a

PDS

or

PDSE

to

a

UNIX

directory.

v

Copy

a

UNIX

directory

to

a

PDS

or

PDSE.

v

List

files

in

a

directory.

v

Create,

delete,

or

rename

directories,

files,

and

special

files.

v

Browse,

edit,

and

copy

files.

v

Display

file

attributes.

v

Search

files

for

text

strings.

v

Compare

files

or

directories.

v

Run

executable

files.

v

Display

information

about

symbolic

links.

v

Mount

and

unmount

a

hierarchical

file

system.

v

Create

an

HFS

data

set

or

other

UNIX

file.

v

Set

up

character-special

files.

v

Set

up

directories

for

a

root

file

system.

v

Set

up

users

and

groups

for

z/OS

UNIX

access.

You

can,

for

example,

use

ISHELL

to

list

all

the

directories

and

files

in

a

UNIX

directory.

Use

the

Options

menu

choice

to

display

all

the

fields

for

each

file.

Figure

109

shows

the

ISPF

Shell

panel.

Before

you

begin:

To

allow

you

to

use

UNIX

files,

you

must

have

a

home

directory

that

corresponds

to

your

user

ID,

such

as

/u/joe,

and

a

RACF

identity.

All

UNIX

directory

and

filenames

are

case

sensitive.

EDIT

-

ENTRY

PANEL

Directory

===>

/u/BIGPROG/

Filename

===>

TESTMAC

Profile

name

===>

Initial

macro

===>

Figure

108.

Edit-Entry

Panel

File

Directory

Special_file

Tools

File_system

Options

Setup

Help

--

UNIX

System

Services

ISPF

Shell

Enter

a

path

name

and

do

one

of

these:

-

Press

Enter.

-

Select

an

action

bar

choice.

-

Specify

an

action

code

or

command

on

the

command

line.

Return

to

this

panel

to

work

with

a

different

path

name.

More:

+

/u/BIGPROG

Figure

109.

ISPF

Shell

Panel

Processing

z/OS

UNIX

Files

484

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

You

can

get

to

a

UNIX

session

from

either

TSO/E

or

ISPF.

Once

inside

the

UNIX

session,

you

can

toggle

between

UNIX

and

TSO/E

or

ISPF.

Perform

the

following

steps

to

establish

a

UNIX

session

and

display

UNIX

files

and

directories:

1.

In

a

TSO/E

session,

issue

the

OMVS

command

to

establish

a

UNIX

session

inside

the

TSO

session.

a.

For

more

information

about

using

OMVS,

press

PF1

to

display

the

online

help.

b.

Select

OMVS

to

get

to

the

UNIX

session.

2.

Issue

the

ISHELL

command

to

enter

the

ISPF

shell

which

allows

you

to

work

with

UNIX

directories,

files,

FIFO

special

files,

and

symbolic

links,

and

mount

or

unmount

file

systems.

a.

Select

File

to

display

a

UNIX

file.

b.

Select

Directory

to

display

a

UNIX

directory.

3.

Press

PF3

to

exit

the

ISPF

shell

and

return

to

the

OMVS

screen.

4.

Use

the

Exit

command

to

end

the

UNIX

session

and

return

to

the

TSO

screen.

Related

reading:

For

more

information,

see

z/OS

UNIX

System

Services

Command

Reference.

Copying

UNIX

Files

or

Directories

This

topic

discusses

various

commands

for

copying

UNIX

files

or

directories

to

other

types

of

data

sets.

Restriction:

Although

you

can

use

IEBCOPY

to

copy

a

PDS

or

PDSE,

you

cannot

use

IEBCOPY

to

copy

a

UNIX

file.

Copying

a

PDS

to

a

UNIX

Directory

or

a

UNIX

Directory

to

a

PDS

The

ISPF

shell

allows

you

to

copy

a

PDS

to

a

UNIX

directory

or

a

UNIX

directory

to

a

PDS.

You

also

can

copy

a

PDSE

to

a

UNIX

directory

or

a

UNIX

directory

to

a

PDSE.

For

more

information,

see

Figure

109

on

page

484.

Using

the

OPUT

Command

to

Copy

Members

from

a

PDS

or

PDSE

to

a

UNIX

File

In

a

TSO/E

session,

you

can

use

the

OPUT

command

to

copy

the

following

data

sets:

v

Members

from

a

PDS

or

PDSE

to

a

UNIX

file

v

A

sequential

data

set

to

a

UNIX

file.

Example:

The

example

in

Figure

110

uses

OPUT

to

copy

member

MEM1

in

XMP17U36.PDSE01

to

the

UNIX

file,

MEM2

in

the

special

directory.

Related

reading:

For

the

OPUT

syntax,

see

z/OS

UNIX

System

Services

Command

Reference

or

the

TSO/E

Help.

OPUT

’XPM17U36.PDSE01(MEM1)’

’/u/BIGPROG/macros/special/MEM2’

Figure

110.

Using

OPUT

to

Copy

Members

of

a

PDS

or

PDSE

to

a

UNIX

File

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

485

Using

the

OPUTX

Command

to

Copy

Members

from

a

PDS

or

PDSE

to

a

UNIX

Directory

or

File

In

a

TSO/E

session,

you

can

use

the

OPUTX

command

to

copy

the

following

data

sets:

v

Members

from

a

PDS

or

PDSE

to

a

UNIX

directory

or

file

v

A

sequential

data

set

or

PDS

or

PDSE

member

to

a

UNIX

file

For

example,

you

could

copy

SYS1.MACLIB

to

a

UNIX

directory.

Related

reading:

For

more

information

on

the

OPUTX

command,

see

z/OS

UNIX

System

Services

Command

Reference.

Using

the

OCOPY

Command

to

Copy

a

PDS,

PDSE,

or

UNIX

Member

to

Another

Member

In

a

TSO/E

session,

you

can

use

the

OCOPY

command

to

copy

the

following

data

sets:

v

A

PDS

or

PDSE

member

to

a

UNIX

file

v

A

sequential

data

set

to

a

UNIX

file

v

A

UNIX

file

to

a

PDS

or

PDSE

member

v

A

UNIX

file

to

a

sequential

data

set

v

A

UNIX

file

to

another

UNIX

file

Related

reading:

For

more

information

on

the

OCOPY

command,

see

z/OS

UNIX

System

Services

Command

Reference.

Using

the

OGET

Command

to

Copy

a

UNIX

File

to

a

z/OS

Data

Set

In

a

TSO/E

session,

you

can

use

the

OGET

command

to

copy

a

UNIX

file:

v

To

a

PDS

or

PDSE

member

v

To

a

sequential

data

set

Related

reading:

For

more

information

on

the

OGET

command,

see

z/OS

UNIX

System

Services

Command

Reference.

Using

the

OGETX

Command

to

Copy

a

UNIX

Directory

to

a

PDS

or

PDSE

In

a

TSO/E

session,

you

can

use

the

OGETX

command

to

copy

UNIX

files:

v

Files

from

a

UNIX

directory

to

a

member

of

a

PDS

or

PDSE

v

One

UNIX

file

to

a

sequential

data

set

or

member

of

a

PDS

or

PDSE

Related

reading:

For

more

information

on

the

OGETX

command,

see

z/OS

UNIX

System

Services

Command

Reference.

Services

and

Utilities

for

UNIX

Files

The

following

services

and

utilities

work

with

UNIX

files:

RDJFCB

macro

Use

the

RDJFCB

macro

with

the

IHAARL

and

IHAARA

mapping

macros

to

retrieve

the

path

name,

options,

or

mode

for

a

UNIX

directory

or

file.

Programs

that

print

or

process

the

names

of

data

sets

see

a

dummy

name

of

...PATH=.SPECIFIED...

for

each

DD

statement

for

a

UNIX

directory

or

file.

Processing

z/OS

UNIX

Files

486

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Issue

the

RDJFCB

macro

to

obtain

the

directory

file

name.

The

RDJFCB

macro

returns

the

filename

in

the

allocation

retrieval

area

(ARA)

if

you

pass

an

allocation

retrieval

list

(ARL).

DEVTYPE

macro

If

PATH

is

specified

in

the

DD

statement,

DEVTYPE

returns

a

return

code

of

0,

a

UCBTYP

simulated

value

of

X'00000103’,

and

a

maximum

block

size

of

32

760.

Before

DFSMS/MVS®

1.3,

BSAM

and

QSAM

did

not

support

UNIX

files

and

DEVTYPE

gave

return

code

8

for

a

UNIX

file.

Relative

track

address

(TTR)

convert

routines

When

called

for

a

UNIX

file,

the

TTR

convert

routines

return

the

input

value

without

performing

conversion.

Related

reading:

For

more

information

on

these

services

and

utilities,

see

z/OS

DFSMSdfp

Advanced

Services.

Services

and

Utilities

Cannot

be

Used

with

UNIX

Files

The

following

services

and

utilities

cannot

be

used

with

UNIX

files.

Unless

stated

otherwise,

they

return

an

error

or

unpredictable

value

when

they

are

issued

for

a

UNIX

file.

v

OBTAIN

v

SCRATCH

v

RENAME

v

TRKCALC

v

Sector

Convert

Routine

v

PARTREL

v

PURGE

by

DSID

is

ignored

v

EXCP

is

not

allowed.

The

preceding

services

and

utilities

require

a

DSCB

or

UCB.

UNIX

files

do

not

have

DSCBs

or

valid

UCBs.

Although

you

cannot

use

ISPF

Browse/Edit

with

UNIX

files,

you

can

use

the

OBROWSE

command.

z/OS

UNIX

Signals

In

UNIX,

a

signal

is

a

mechanism

by

which

a

process

may

be

notified

of

an

event

or

affected

by

an

event

occurring

in

the

system.

The

access

methods

do

not

perform

any

type

of

signal

processing.

The

only

signal

that

might

be

expected

is

when

a

FIFO

breaks,

such

as

when

the

reader

closes

the

file

and

a

writer

tries

to

write

to

it.

This

results

in

a

signal

(SIGPIPE)

that

is

sent

to

the

writer.

The

default

action

for

the

signal

terminates

the

writer’s

task

with

an

abend

EC6-FF0D.

z/OS

UNIX

Fork

Service

The

UNIX

fork

service

is

a

function

that

creates

a

new

process

(child

process),

which

is

almost

an

exact

copy

of

the

calling

process

(parent

process).

Do

not

use

the

z/OS

UNIX

fork

service

while

a

DCB

or

ACB

is

open

to

a

UNIX

file.

The

fork

service

creates

a

child

process

that

is

a

duplicate

of

the

calling

(parent)

process;

however,

the

service

does

not

duplicate

various

MVS

control

blocks,

which

creates

unpredictable

results

in

the

child

process.

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

487

SMF

Records

CLOSE

does

not

write

SMF

type

14,

15,

or

60–69

records

for

UNIX

files.

DFSMS

relies

on

UNIX

System

Services

to

write

the

requested

SMF

records.

Reading

UNIX

Files

Using

BPAM

You

can

use

BPAM

to

read

UNIX

files

and

directories,

and

also

include

a

UNIX

file

in

a

DD

statement.

BPAM

treats

each

directory

as

a

PDS

or

PDSE

directory.

BPAM

treats

each

file

as

a

member.

Executable

programs

can

reside

in

UNIX

files

as

program

objects

but

you

cannot

run

them

using

BPAM.

BPAM

provides

file

integrity

for

UNIX

files

that

is

equivalent

to

that

for

PDSEs.

Restrictions:

v

BPAM

cannot

write

to

UNIX

files.

v

BSAM

and

QSAM

cannot

sequentially

read

a

UNIX

directory.

v

BPAM

cannot

store

user

data

in

UNIX

directory

entries.

v

BPAM

cannot

use

the

DESERV

macro

for

UNIX

files.

v

The

BLDL

macro

creates

simulated

TTRs

dynamically.

You

cannot

compare

them

from

a

different

run

of

your

program.

Using

Macros

for

UNIX

Files

Ensure

that

you

issue

the

following

macros

under

the

same

task

for

each

UNIX

file:

v

BLDL

v

CHECK

v

FIND

v

READ

v

STOW

v

TRUNC

(used

for

compatibility

only)

As

with

all

access

methods,

you

can

issue

the

OPEN

and

CLOSE

macros

under

the

same

task.

Related

reading:

For

more

information

on

macros,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

BLDL—Constructing

a

Directory

Entry

List

When

the

application

program

issues

BLDL,

BPAM

opens

the

specified

UNIX

file

and

establishes

a

connection.

BPAM

retains

the

logical

connection

until

the

program

issues

STOW

DISC

or

CLOSE,

or

ends

the

task.

The

BLDL

macro

reads

one

or

more

UNIX

directory

entries

into

virtual

storage.

Place

UNIX

file

names

in

a

BLDL

list

before

issuing

the

BLDL

macro.

For

each

file

name

in

the

list,

BLDL

returns

a

three-byte

simulated

relative

track

address

(TTR).

This

TTR

is

like

a

simulated

PDS

directory

entry.

Each

open

DCB

has

its

own

set

of

simulated

TTRs

for

the

UNIX

files.

This

TTR

is

no

longer

valid

after

the

file

is

closed.

If

more

than

one

filename

exists

in

the

list,

the

filenames

must

be

in

collating

sequence,

regardless

of

whether

the

members

are

from

the

same

or

different

UNIX

directories,

PDSs,

or

PDSEs

in

the

concatenation.

Processing

z/OS

UNIX

Files

488

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

You

can

improve

retrieval

time

by

directing

a

subsequent

FIND

macro

to

the

BLDL

list

rather

than

to

the

directory

to

locate

the

file

to

be

processed.

The

FIND

macro

uses

the

simulated

TTR

to

identify

the

UNIX

file.

The

BLDL

list

must

begin

with

a

4-byte

list

descriptor

that

specifies

the

number

of

entries

in

the

list

and

the

length

of

each

entry

(12

to

76

bytes).

The

first

8

bytes

of

each

entry

contain

the

file

name

or

alias.

The

next

6

bytes

contain

the

TTR,

K,

Z,

and

C

fields.

Restriction:

BLDL

does

not

return

user

data

or

NOTE

lists

in

the

simulated

PDS

directory

entry.

CHECK—Checking

for

I/O

Completion

The

CHECK

macro

works

the

same

way

for

UNIX

files

as

for

MVS

data

sets.

Before

issuing

the

CLOSE

macro,

a

issue

a

CHECK

macro

for

all

outstanding

I/O

from

READ

macros.

The

CHECK

macro

guarantees

I/O

completion.

For

more

information,

see

“Issuing

the

CHECK

Macro”

on

page

332.

CLOSE—to

Close

the

DCB

You

can

use

the

CLOSE

macro

to

close

the

UNIX

files

and

the

DCB.

For

more

information,

see

“Using

CLOSE

to

End

the

Processing

of

a

Data

Set”

on

page

332.

FIND—Positioning

to

the

Starting

Address

of

a

File

To

position

to

the

beginning

of

a

specific

UNIX

file,

you

must

issue

a

FIND

macro.

The

FIND

macro

uses

the

simulated

relative

track

address

(TTR)

to

identify

the

UNIX

file.

The

next

input

or

output

operation

begins

processing

at

the

point

set

by

the

FIND.

The

FIND

macro

lets

you

search

a

concatenated

series

of

UNIX,

PDSE,

and

PDS

directories

when

you

supply

a

DCB

opened

for

the

concatenated

data

sets.

There

are

two

ways

that

you

can

direct

the

system

to

the

correct

file

when

you

use

the

FIND

macro:

v

Specify

the

address

of

an

area

that

contains

the

name

of

the

file.

v

Specify

the

address

of

the

TTR

field

of

the

entry

in

a

BLDL

that

list

you

have

created

by

using

the

BLDL

macro.

In

the

first

case,

the

system

searches

the

directory

of

the

data

set

for

the

relative

track

address.

In

the

second

case,

no

search

is

required,

because

the

TTR

is

in

the

BLDL

list

entry.

When

the

application

program

issues

FIND,

BPAM

opens

the

specified

file

and

establishes

a

connection.

BPAM

retains

the

logical

connection

until

the

program

issues

STOW

DISC

or

CLOSE

or

ends

the

task.

If

you

want

to

process

only

one

UNIX

file,

you

can

specify

DSORG=PS

using

either

BSAM

or

QSAM.

You

specify

the

name

of

the

file

that

you

want

to

process

and

the

name

of

the

UNIX

in

the

PATH

parameter

of

the

DD

statement.

When

you

open

the

data

set,

the

system

places

the

starting

address

in

the

DCB

so

that

a

subsequent

GET

or

READ

macro

begins

processing

at

that

point.

Restriction:

You

cannot

use

the

FIND,

BLDL,

or

STOW

macro

when

you

are

processing

one

UNIX

file

sequentially.

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

489

READ—Reading

a

UNIX

File

Both

BSAM

and

BPAM

provide

the

READ

macro

for

reading

a

simulated

block

from

a

UNIX

file.

For

more

information,

see

“Accessing

Data

with

READ

and

WRITE”

on

page

353.

STOW

DISC—Closing

a

UNIX

File

BPAM

keeps

open

each

UNIX

file

that

is

being

read.

You

can

use

the

STOW

DISC

macro

to

disconnect

from

a

UNIX

file

to

optimize

storage

usage.

To

use

the

STOW

macro,

specify

DSORG=PO

or

POU

in

the

DCB

macro.

The

UNIX

file

also

closes

when

the

task

ends.

If

your

program

does

not

issue

STOW

DISC,

the

CLOSE

macro

automatically

issues

STOW

DISC

for

each

connected

file.

If

the

file

cannot

be

closed,

STOW

DISC

returns

status

code

4

and

issues

an

error

message.

That

different

tasks

issue

the

FIND

and

STOW

macros

for

the

same

file

can

be

a

possible

cause

of

errors.

A

UNIX

file

cannot

be

deleted

between

the

time

a

program

issues

FIND

or

BLDL

for

the

file

until

the

connection

for

the

program

ends

and

BPAM

closes

the

file.

For

programs

that

run

for

a

long

time

or

access

many

files,

keeping

this

connection

open

for

a

long

time

can

be

a

processing

bottleneck.

The

connections

consume

virtual

storage

above

the

16

MB

line

and

might

interfere

with

other

programs

that

are

trying

to

update

the

files.

The

solution

is

for

the

application

program

to

issue

the

STOW

DISC

macro

to

close

the

file

as

soon

as

it

is

no

longer

needed.

To

reaccess

the

UNIX

file,

the

application

program

must

reissue

the

BLDL

or

FIND

macro.

Concatenating

UNIX

Files

and

Directories

Two

or

more

UNIX

files

or

directories

can

be

automatically

retrieved

by

the

system

and

processed

successively

as

a

single

file.

This

technique

is

known

as

concatenation.

There

are

two

types

of

concatenation:

sequential

and

partitioned.

Each

DD

statement

within

a

sequential

or

partitioned

concatenation

can

have

a

FILEDATA

value

of

BINARY

or

TEXT.

Sequential

Concatenation

To

process

sequentially

concatenated

data

sets

and

UNIX

files,

use

a

DCB

that

has

DSORG=PS.

Each

DD

statement

can

specify

any

of

the

following

types

of

data

sets:

v

Sequential

data

sets,

which

can

be

on

disk,

tape,

instream

(SYSIN),

TSO/E

terminal,

card

reader,

and

subsystem

(SUBSYS)

v

UNIX

files

v

PDS

members

v

PDSE

members

When

a

UNIX

file

is

found

within

a

sequential

concatenation,

the

system

forces

the

use

of

the

LRECL,

RECFM,

and

BUFNO

from

the

previous

data

set.

(The

unlike

attributes

bit

is

not

set

in

a

like

sequential

concatenation.)

Also,

the

system

uses

the

same

NCP

and

BLKSIZE

values

as

for

any

BSAM

sequential

like

concatenation.

For

QSAM,

the

system

uses

the

value

of

BLKSIZE

for

each

data

set.

For

the

rules

for

concatenating

like

and

unlike

data

sets,

see

“Concatenating

Data

Sets

Sequentially”

on

page

385.

Processing

z/OS

UNIX

Files

490

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Restriction:

You

cannot

use

sequential

concatenation

(DSORG=PS

in

DCB)

to

read

UNIX

directories

sequentially.

Partitioned

Concatenation

Concatenated

UNIX

directories

are

processed

with

a

DSORG=PO

in

the

DCB.

When

UNIX

directories

are

concatenated,

the

system

treats

the

group

as

a

single

data

set.

A

partitioned

concatenation

can

contain

a

mixture

of

PDSs,

PDSEs,

and

UNIX

directories

in

any

order.

Partitioned

concatenation

is

supported

only

when

the

DCB

is

open

for

input.

There

is

a

limit

to

how

many

DD

statements

are

allowed

in

a

partitioned

concatenation.

The

sum

of

PDS

extents,

PDSEs,

and

UNIX

directories

must

not

exceed

the

concatenation

limit

of

255.

Each

UNIX

directory

is

counted

as

1

toward

this

concatenation

limit.

For

example,

you

can

concatenate

15

PDSs

of

16

extents

each

with

8

PDSEs

and

7

UNIX

directories

((15

x

16)

+

8

+

7

=

255

extents).

Figure

111

shows

an

example

of

a

partitioned

concatenation

of

PDS

extents,

several

PDSEs,

and

two

UNIX

directories,

for

a

total

of

255

extents.

Concatenated

UNIX

directories

are

always

treated

as

having

like

attributes,

except

for

block

size.

They

use

the

attributes

of

the

first

file

only,

except

for

the

block

size.

BPAM

OPEN

uses

the

largest

block

size

among

the

concatenated

files.

All

attributes

of

the

first

data

set

are

used,

even

if

they

conflict

with

the

block

size

parameter

specified.

//DATA01

DD

DSN=XPM17U19.PDS001,DISP=SHR,VOL=SER=1P0101,UNIT=SYSDA

//

DD

DSN=XPM17U19.PDS001,DISP=SHR,VOL=SER=1P0101,UNIT=SYSDA

//

DD

DSN=XPM17U19.PDS001,DISP=SHR,VOL=SER=1P0101,UNIT=SYSDA

//

.

.

.

//

DD

DSN=XPM17U19.PDSE01,DISP=SHR,VOL=SER=1P0101,UNIT=SYSDA

//

DD

DSN=XPM17U19.PDSE01,DISP=SHR,VOL=SER=1P0101,UNIT=SYSDA

//

DD

DSN=XPM17U19.PDSE01,DISP=SHR,VOL=SER=1P0101,UNIT=SYSDA

//

DD

DSN=XPM17U19.PDSE01,DISP=SHR,VOL=SER=1P0101,UNIT=SYSDA

//

DD

PATH=’/sj/sjpl/xsam/xpm17u01/’,

#

two

UNIX

directories

//

PATHDISP=KEEP,FILEDATA=TEXT,

//

PATHOPTS=(ORDONLY)

//

RECFM=FB,LRECL=80,BLKSIZE=800

//

DD

PATH=’/sj/sjpl/xsam/xpm17u02/’,

//

PATHDISP=KEEP,FILEDATA=TEXT,

//

PATHOPTS=(ORDONLY)

//

RECFM=FB,LRECL=80,BLKSIZE=800

Figure

111.

A

Partitioned

Concatenation

of

PDS

extents,

PDSEs,

and

UNIX

directories

Processing

z/OS

UNIX

Files

Chapter

28.

Processing

z/OS

UNIX

Files

491

492

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

29.

Processing

Generation

Data

Groups

This

chapter

covers

the

following

topics.

Topic

Location

Absolute

Generation

and

Version

Numbers

494

Relative

Generation

Number

495

Programming

Considerations

for

Multiple-Step

Jobs

495

Naming

Generation

Data

Groups

for

ISO/ANSI

Version

3

or

Version

4

Labels

497

Creating

a

New

Generation

498

Reclaiming

Generation

Data

Sets

503

Retrieving

a

Generation

Data

Set

502

Building

a

Generation

Data

Group

Index

504

You

can

catalog

successive

updates

or

generations

of

related

data.

They

are

called

generation

data

groups

(GDGs).

Each

data

set

within

a

GDG

is

called

a

generation

data

set

(GDS)

or

generation.

Within

a

GDG,

the

generations

can

have

like

or

unlike

DCB

attributes

and

data

set

organizations.

If

the

attributes

and

organizations

of

all

generations

in

a

group

are

identical,

the

generations

can

be

retrieved

together

as

a

single

data

set.

There

are

advantages

to

grouping

related

data

sets.

For

example,

the

catalog

management

routines

can

refer

to

the

information

in

a

special

index

called

a

generation

index

in

the

catalog.

Thus:

v

All

of

the

data

sets

in

the

group

can

be

referred

to

by

a

common

name.

v

The

operating

system

is

able

to

keep

the

generations

in

chronological

order.

v

Outdated

or

obsolete

generations

can

be

automatically

deleted

by

the

operating

system.

Generation

data

sets

have

sequentially

ordered

absolute

and

relative

names

that

represent

their

age.

The

catalog

management

routines

use

the

absolute

generation

name.

Older

data

sets

have

smaller

absolute

numbers.

The

relative

name

is

a

signed

integer

used

to

refer

to

the

latest

(0),

the

next

to

the

latest

(−1),

and

so

forth,

generation.

For

example,

a

data

set

name

LAB.PAYROLL(0)

refers

to

the

most

recent

data

set

of

the

group;

LAB.PAYROLL(−1)

refers

to

the

second

most

recent

data

set;

and

so

forth.

The

relative

number

can

also

be

used

to

catalog

a

new

generation

(+1).

A

generation

data

group

(GDG)

base

is

allocated

in

a

catalog

before

the

generation

data

sets

are

cataloged.

Each

GDG

is

represented

by

a

GDG

base

entry.

Use

the

access

method

services

DEFINE

command

to

allocate

the

GDG

base.

Note:

For

new

non-system-managed

data

sets,

if

you

do

not

specify

a

volume

and

the

data

set

is

not

opened,

the

system

does

not

catalog

the

data

set.

New

system-managed

data

sets

are

always

cataloged

when

allocated,

with

the

volume

assigned

from

a

storage

group.

©

Copyright

IBM

Corp.

1987,

2004

493

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

information

about

defining

and

cataloging

generation

data

sets

in

a

catalog.

Notes:

1.

A

GDG

base

that

is

to

be

system

managed

must

be

created

in

a

catalog.

Generation

data

sets

that

are

to

be

system

managed

must

also

be

cataloged

in

a

catalog.

2.

Both

system-managed

and

non-system-managed

generation

data

sets

can

be

contained

in

the

same

GDG.

However,

if

the

catalog

of

a

GDG

is

on

a

volume

that

is

system

managed,

the

model

DSCB

cannot

be

defined.

3.

You

can

add

new

non-system-managed

generation

data

sets

to

the

GDG

by

using

cataloged

data

sets

as

models

without

needing

a

model

DSCB

on

the

catalog

volume.

Data

Set

Organization

of

Generation

Data

Sets

Generation

data

sets

can

be

sequential,

PDSs,

direct,

or

indexed

sequential.

If

you

use

PDSs

as

generation

data

sets,

you

should

reference

them

using

absolute

data

set

names

rather

than

relative

names.

Example:

When

referencing

a

generation

data

set,

it

is

common

to

use

relative

naming,

as

in

A.B.C(0),

A.B.C(+1),

or

A.B.C(-1).

You

cannot

use

relative

naming

with

a

PDS.

You

can

refer

to

a

specific

member

of

a

PDS

that

is

a

generation

data

set.

Use

absolute

names

such

as

A.B.C.G0005V00(member)

when

referring

to

a

member

of

a

PDS.

Restriction:

Generation

data

sets

cannot

be

PDSEs,

UNIX

files,

or

VSAM

data

sets.

Absolute

Generation

and

Version

Numbers

An

absolute

generation

and

version

number

is

used

to

identify

a

specific

generation

of

a

GDG.

The

generation

and

version

numbers

are

in

the

form

GxxxxVyy,

where

xxxx

is

an

unsigned

4-digit

decimal

generation

number

(0001

through

9999)

and

yy

is

an

unsigned

2-digit

decimal

version

number

(00

through

99).

For

example:

v

A.B.C.G0001V00

is

generation

data

set

1,

version

0,

in

generation

data

group

A.B.C.

v

A.B.C.G0009V01

is

generation

data

set

9,

version

1,

in

generation

data

group

A.B.C.

The

number

of

generations

and

versions

is

limited

by

the

number

of

digits

in

the

absolute

generation

name;

that

is,

there

can

be

9,999

generations.

Each

generation

can

have

100

versions.

The

system

automatically

maintains

the

generation

number.

The

number

of

generations

kept

depends

on

the

size

of

the

generation

index.

For

example,

if

the

size

of

the

generation

index

permits

ten

entries,

the

ten

latest

generations

can

be

maintained

in

the

GDG.

The

version

number

lets

you

perform

normal

data

set

operations

without

disrupting

the

management

of

the

GDG.

For

example,

if

you

want

to

update

the

second

generation

in

a

3-generation

group,

replace

generation

2,

version

0,

with

generation

2,

version

1.

Only

one

version

is

kept

for

each

generation.

Processing

Generation

Data

Groups

494

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|

|
|
|

|
|
|
|
|

|

You

can

catalog

a

generation

using

either

absolute

or

relative

numbers.

When

a

generation

is

cataloged,

a

generation

and

version

number

is

placed

as

a

low-level

entry

in

the

GDG.

To

catalog

a

version

number

other

than

V00,

you

must

use

an

absolute

generation

and

version

number.

You

can

catalog

a

new

version

of

a

specific

generation

automatically

by

specifying

the

old

generation

number

along

with

a

new

version

number.

For

example,

if

generation

A.B.C.G0005V00

is

cataloged

and

you

now

create

and

catalog

A.B.C.G0005V01,

the

new

entry

is

cataloged

in

the

location

previously

occupied

by

A.B.C.G0005V00.

The

old

entry

is

removed

from

the

catalog,

to

make

room

for

the

newer

version,

and

may

or

may

not

be

scratched

depending

on

what

limit

processing

options

are

specified

for

the

GDG

base.

For

system-managed

data

sets,

if

scratch

is

specified,

the

older

version

is

scratched

from

the

volume.

If

noscratch

is

specified,

or

if

the

attempt

to

scratch

the

DSCB

fails,

the

older

version

is

not

scratched

and

the

generation

data

sets

is

recataloged

as

a

non-VSAM

data

set

with

the

GnnnnVnn

name

not

associated

with

the

GDG

base.

For

non-system-managed

data

sets,

the

older

version

is

also

governed

by

the

GDG

base

limit

processing

options.

If

noscratch

is

specified

for

the

base,

the

older

GDS

version

is

not

scratched.

To

scratch

the

old

version

and

make

its

space

available

for

reallocation,

include

a

DD

statement,

describing

the

data

set

to

be

deleted,

with

DISP=(OLD,DELETE)

when

the

data

set

is

to

be

replaced

by

the

new

version.

Relative

Generation

Number

As

an

alternative

to

using

absolute

generation

and

version

numbers

when

cataloging

or

referring

to

a

generation,

you

can

use

a

relative

generation

number.

To

specify

a

relative

number,

use

the

GDG

name

followed

by

a

negative

integer,

a

positive

integer,

or

a

0,

enclosed

in

parentheses.

For

example,

A.B.C(−1).

A.B.C(+1),

or

A.B.C(0).

The

value

of

the

specified

integer

tells

the

operating

system

what

generation

number

to

assign

to

a

new

generation,

or

it

tells

the

system

the

location

of

an

entry

representing

a

previously

cataloged

generation.

When

you

use

a

relative

generation

number

to

catalog

a

generation,

the

operating

system

assigns

an

absolute

generation

number

and

a

version

number

of

V00

to

represent

that

generation.

The

absolute

generation

number

assigned

depends

on

the

number

last

assigned

and

the

value

of

the

relative

generation

number

that

you

are

now

specifying.

For

example

if,

in

a

previous

job

generation,

A.B.C.G0005V00

was

the

last

generation

cataloged,

and

you

specify

A.B.C(+1),

the

generation

now

cataloged

is

assigned

the

number

G0006V00.

Though

any

positive

relative

generation

number

can

be

used,

a

number

greater

than

1

can

cause

absolute

generation

numbers

to

be

skipped.

For

example,

if

you

have

a

single

step

job,

and

the

generation

being

cataloged

is

a

+2,

one

generation

number

is

skipped.

However,

in

a

multiple-step

job,

one

step

might

have

a

+1

and

a

second

step

a

+2,

in

which

case

no

numbers

are

skipped.

Programming

Considerations

for

Multiple-Step

Jobs

One

reason

for

using

GDGs

is

to

allow

the

system

to

maintain

a

given

number

of

related

cataloged

data

sets.

If

you

attempt

to

delete

or

uncatalog

any

but

the

oldest

of

the

data

sets

of

a

GDG

in

a

multiple-step

job,

catalog

management

can

lose

orientation

within

the

data

group.

This

can

cause

the

wrong

data

set

to

be

deleted,

Processing

Generation

Data

Groups

Chapter

29.

Processing

Generation

Data

Groups

495

uncataloged,

or

retrieved

when

referring

to

a

specified

generation.

The

rule

is,

if

you

delete

a

generation

data

set

in

a

multiple-step

job,

do

not

refer

to

any

older

generation

in

subsequent

job

steps.

Cataloging

Generation

Data

Groups

Also,

in

a

multiple-step

job,

you

should

catalog

or

uncatalog

data

sets

using

JCL

rather

than

IEHPROGM

or

a

user

program.

Because

data

set

allocation

and

unallocation

monitors

data

sets

during

job

execution

and

is

not

aware

of

the

functions

performed

by

IEHPROGM

or

user

programs,

data

set

orientation

might

be

lost

or

conflicting

functions

might

be

performed

in

subsequent

job

steps.

When

you

use

a

relative

generation

number

to

refer

to

a

generation

that

was

previously

cataloged,

the

relative

number

has

the

following

meaning:

v

A.B.C(0)

refers

to

the

latest

existing

cataloged

entry.

v

A.B.C(−1)

refers

to

the

next-to-the-latest

entry,

and

so

forth.

When

cataloging

is

requested

using

JCL,

all

actual

cataloging

occurs

at

step

termination,

but

the

relative

generation

number

remains

the

same

throughout

the

job.

The

following

results

can

occur:

v

A

relative

number

used

in

the

JCL

refers

to

the

same

generation

throughout

a

job.

v

A

job

step

that

ends

abnormally

can

be

deferred

for

a

later

step

restart.

If

the

job

step

successfully

cataloged

a

generation

data

set

in

its

GDG,

you

must

change

all

relative

generation

numbers

in

the

next

steps

using

JCL

before

resubmitting

the

job.

For

example,

if

the

next

steps

contained

the

following

relative

generation

numbers:

v

A.B.C(+1)

refers

to

the

entry

cataloged

in

the

terminated

job

step,

or

v

A.B.C(0)

refers

to

the

next

to

the

latest

entry,

or

v

A.B.C(−1)

refers

to

the

latest

entry,

before

A.B.C(0).

You

must

change

A.B.C(+1)

to

A.B.C(0),

A.B.C(0)

to

A.B.C(−1),

and

A.B.C(−1)

to

A.B.C(−2)

before

restarting

the

step.

Submitting

Multiple

Jobs

to

Update

a

Generation

Data

Group

This

topic

provides

guidelines

that

you

can

use

when

you

submit

multiple

jobs

that

update

a

particular

GDG:

v

No

two

jobs

running

concurrently

can

refer

to

the

same

GDG.

v

For

batch

or

dynamic

allocation

jobs

that

specify

relative

generation

numbers,

the

system

enqueues

the

GDG

base

name

as

shared

or

exclusive,

depending

on

the

highest

disposition

that

is

used

in

the

job.

The

GDG

base

name

is

exclusive

if

the

highest

job

disposition

is

NEW

or

MOD.

The

GDG

base

name

is

shared

if

the

highest

job

disposition

is

SHR.

This

safeguard

prevents

concurrent

users

from

updating

the

GDG

by

adding

or

deleting

generation

data

sets

while

other

users

are

using

the

GDG.

v

For

batch

or

dynamic

allocation

jobs

that

use

absolute

generation

data

set

names,

the

system

does

not

enqueue

the

GDG

base.

Multiple

users

are

able

to

update

the

GDG

by

deleting

or

adding

generation

data

sets

at

the

same

time.

This

situation

does

not

affect

the

integrity

of

the

GDG

or

generation

data

sets.

However,

jobs

that

use

relative

generation

numbers

might

obtain

the

wrong

generation,

because

the

numbers

can

change.

Even

if

you

use

absolute

generation

numbers,

a

job

might

accidentally

replace

a

generation

data

set

that

another

job

is

using.

Processing

Generation

Data

Groups

496

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

only

time

that

you

can

use

absolute

generation

numbers

is

when

you

need

to

run

concurrent

jobs

that

use

the

same

GDG

and

at

least

one

of

the

jobs

uses

a

disposition

of

NEW

or

MOD.

Ensure

that

the

jobs

do

not

accidentally

overlay

a

generation

data

set

that

another

job

is

using.

Restriction:

Be

careful

when

you

update

GDGs

because

two

or

more

jobs

can

compete

for

the

same

resource

and

accidentally

replace

the

generation

data

set

with

the

wrong

version

in

the

GDG.

To

prevent

two

users

from

allocating

the

same

absolute

generation

data

set,

take

one

of

the

following

actions:

v

Specify

DISP=OLD.

v

Specify

DISP=SHR

and

open

the

data

set

for

output.

Naming

Generation

Data

Groups

for

ISO/ANSI

Version

3

or

Version

4

Labels

In

a

Version

3

or

Version

4

ISO/ANSI

label

(LABEL=(,AL)),

the

generation

number

and

version

number

are

maintained

separately

from

the

file

identifier.

Label

processing

removes

the

generation

number

and

version

number

from

the

generation

data

set

name.

The

generation

number

is

placed

in

the

generation

number

field

(file

label

1

positions

36

through

39),

and

the

version

number

is

placed

in

its

position

on

the

same

label

(position

40

and

41).

The

file

identifier

portion

of

a

Version

3

or

Version

4

ISO/ANSI

label

contains

the

generation

data

set

name

without

the

generation

number

and

version

number.

For

Version

3

or

Version

4

labels,

you

must

observe

the

following

specifications

created

by

the

GDG

naming

convention.

v

Data

set

names

whose

last

9

characters

are

of

the

form

.GnnnnVnn

(n

is

0

through

9)

can

only

be

used

to

specify

GDG

data

sets.

When

a

name

ending

in

.GnnnnVnn

is

found,

it

is

automatically

processed

as

a

GDG.

The

generation

number

Gnnnn

and

the

version

number

Vnn

are

separated

from

the

rest

of

the

data

set

name

and

placed

in

the

generation

number

and

version

number

fields.

v

Tape

data

set

names

for

GDG

files

are

expanded

from

a

maximum

of

8

user-specified

characters

to

17

user-specified

characters.

(The

tape

label

file

identifier

field

has

space

for

9

additional

user-specified

characters

because

the

generation

number

and

version

number

are

no

longer

contained

in

this

field.)

v

A

generation

number

of

all

zeros

is

not

valid,

and

is

treated

as

an

error

during

label

validation.

The

error

appears

as

a

“RANG”

error

in

message

IEC512I

(IECIEUNK)

during

the

label

validation

installation

exit.

v

In

an

MVS

system-created

GDG

name,

the

version

number

is

always

be

0.

(MVS

does

not

increase

the

version

number

by

1

for

subsequent

versions.)

To

obtain

a

version

number

other

than

0,

you

must

explicitly

specify

the

version

number

(for

example,

A.B.C.G0004V03)

when

the

data

set

is

allocated.

You

must

also

explicitly

specify

the

version

number

to

retrieve

a

GDG

with

a

version

number

other

than

0.

v

Because

the

generation

number

and

version

number

are

not

contained

on

the

identifier

of

HDR1,

generations

of

the

same

GDG

have

the

same

name.

Therefore,

an

attempt

to

place

more

than

one

generation

of

a

GDG

on

the

same

volume

results

in

an

ISO/ANSI

standards

violation

in

a

system

supporting

Version

3

and

MVS

enters

the

validation

installation

exit.

Processing

Generation

Data

Groups

Chapter

29.

Processing

Generation

Data

Groups

497

Creating

a

New

Generation

To

allocate

a

new

generation

data

set,

you

must

first

allocate

space

for

the

generation,

then

catalog

the

generation.

This

section

also

discusses

passing

a

generation,

rolling

in

a

generation,

and

allocating

an

indexed

sequential

data

set

as

part

of

a

GDG.

Allocating

a

Generation

Data

Set

The

allocation

can

be

patterned

after

a

previously

allocated

generation

in

the

same

group,

by

specifying

DCB

attributes

for

the

new

generation,

described

as

follows.

If

you

are

using

absolute

generation

and

version

numbers,

DCB

attributes

for

a

generation

can

be

supplied

directly

in

the

DD

statement

defining

the

generation

to

be

created

and

cataloged.

If

you

are

using

relative

generation

numbers

to

catalog

generations,

DCB

attributes

can

be

supplied:

1.

By

referring

to

a

cataloged

data

set

for

the

use

of

its

attributes.

2.

By

creating

a

model

DSCB

on

the

volume

on

which

the

index

resides

(the

volume

containing

the

catalog).

Attributes

can

be

supplied

before

you

catalog

a

generation,

when

you

catalog

it,

or

at

both

times.

Restriction:

You

cannot

use

a

model

DSCB

for

system-managed

generation

data

sets.

3.

By

using

the

DATACLAS

and

LIKE

keywords

in

the

DD

statement

for

both

system-managed

and

non-system-managed

generation

data

sets.

The

generation

data

sets

can

be

on

either

tape

or

DASD.

4.

Through

the

assignment

of

a

data

class

to

the

generation

data

set

by

the

data

class

ACS

routine.

Referring

to

a

Cataloged

Data

Set

You

do

not

need

to

create

a

model

DSCB

if

you

can

refer

to

a

cataloged

data

set

whose

attributes

are

identical

to

those

you

desire.

You

can

refer

to

the

cataloged

data

set’s

DCB

attributes

by

referring

to

its

DCB

or

to

the

DD

statement

that

allocated

it.

To

refer

to

a

cataloged

data

set

for

the

use

of

its

attributes,

you

can

specify

one

of

the

following

on

the

DD

statement

that

creates

and

catalogs

your

generation:

v

DCB=(dsname),

where

dsname

is

the

name

of

the

cataloged

data

set.

v

LIKE=dsname,

where

dsname

is

the

name

of

the

cataloged

data

set.

v

REFDD=ddname,

where

ddname

is

the

name

of

a

DD

statement

that

allocated

the

cataloged

data

set.

Examples:

An

example

of

allocating

a

generation

data

set

by

supplying

its

DCB

attributes

using

DATACLAS

is:

//DD1

DD

DSN=GDG(+1),DISP=(NEW,CATLG),DATACLAS=ALLOCL01

The

DCB

attributes

allocated

to

the

new

data

set

depend

on

the

attributes

defined

in

data

class

ALLOCL01.

Your

storage

administrator

can

provide

information

on

the

attributes

specified

by

the

data

classes

available

to

your

installation.

An

example

of

referring

to

a

cataloged

data

set

by

referring

to

its

DD

statement

is:

//DD2

DD

DSN=GDG(+1),DISP=(NEW,CATLG),REFDD=DD1

Processing

Generation

Data

Groups

498

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

new

generation

data

set

have

the

same

attributes

as

the

data

set

defined

in

the

first

example.

You

can

also

refer

to

an

existing

model

DSCB

for

which

you

can

supply

overriding

attributes.

To

refer

to

an

existing

model,

specify

DCB=(modeldscbname,

your

attributes)

on

the

DD

statement

that

creates

and

catalogs

your

generation.

Assume

that

you

have

a

GDG

base

name

ICFUCAT8.GDGBASE

and

its

model

DSCB

name

is

ICFUCAT8.GDGBASE.

You

can

specify:

//DD1

DD

DSN=ICFUCAT8.GDGBASE(+1),DISP=(NEW,CATLG),

//

UNIT=3380,SPACE=(TRK,(5)),VOL=SER=338001

Creating

a

Model

DSCB

You

can

create

a

model

DSCB

on

the

volume

on

which

your

index

resides.

Restriction:

You

cannot

use

a

model

DSCB

for

system-managed

generation

data

sets.

You

can

provide

initial

DCB

attributes

when

you

create

your

model;

however,

you

need

not

provide

any

attributes

now.

Because

only

the

attributes

in

the

data

set

label

are

used,

allocate

the

model

data

set

with

SPACE=(TRK,0)

to

conserve

direct

access

space.

You

can

supply

initial

or

overriding

attributes

creating

and

cataloging

a

generation.

To

create

a

model

DSCB,

include

the

following

DD

statement

in

the

job

step

that

builds

the

index

or

in

any

other

job

step

that

precedes

the

step

in

which

you

create

and

catalog

your

generation:

//name

DD

DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,(0)),

//

UNIT=yyyy,VOLUME=SER=xxxxxx,

//

DCB=(applicable

subparameters)

Recommendation:

Only

one

model

DSCB

is

necessary

for

any

number

of

generations.

If

you

plan

to

use

only

one

model,

do

not

supply

DCB

attributes

when

you

create

the

model.

When

you

subsequently

create

and

catalog

a

generation,

include

necessary

DCB

attributes

in

the

DD

statement

referring

to

the

generation.

In

this

manner,

any

number

of

GDGs

can

refer

to

the

same

model.

The

catalog

and

model

data

set

label

are

always

located

on

a

direct

access

volume,

even

for

a

magnetic

tape

GDG.

Processing

Generation

Data

Groups

Chapter

29.

Processing

Generation

Data

Groups

499

In

the

preceding

example,

datagrpname

is

the

common

name

that

identifies

each

generation,

and

xxxxxx

is

the

serial

number

of

the

volume

that

contains

the

catalog.

If

you

do

not

want

any

DCB

subparameters

initially,

you

need

not

code

the

DCB

parameter.

The

model

DSCB

must

reside

on

the

catalog

volume.

If

you

move

a

catalog

to

a

new

volume,

you

also

need

to

move

or

create

a

new

model

DSCB

on

this

new

volume.

If

you

split

or

merge

a

catalog

and

the

catalog

remains

on

the

same

volume

as

the

existing

model

DSCB,

you

do

not

have

to

move

or

create

a

new

model

DSCB.

Using

DATACLAS

and

LIKE

Keywords

You

can

use

the

DATACLAS

and

LIKE

keywords

in

the

DD

statement

for

both

system-managed

and

non-system-managed

generation

data

sets.

For

non-system-managed

generation

data

sets,

DATACLAS

and

LIKE

can

be

used

in

place

of

a

model

DSCB.

The

data

sets

can

be

on

either

tape

or

DASD.

See

z/OS

DFSMS:

Using

Magnetic

Tapes

about

using

data

class

with

tape

data

sets.

The

LIKE

keyword

specifies

the

allocation

attributes

of

a

new

data

set

by

copying

the

attributes

of

a

cataloged

model

data

set.

The

cataloged

data

set

referred

to

in

LIKE=dsname

must

be

on

DASD.

Recommendation:

You

can

still

use

model

DSCBs

if

they

are

present

on

the

volume,

even

if

LIKE

and

DATACLAS

are

also

used

for

a

non-system-managed

generation

data

set.

If

you

use

model

DSCBs,

you

do

not

need

to

change

the

JCL

(to

scratch

the

model

DSCB)

when

migrating

the

data

to

system-managed

storage

or

migrating

from

system-managed

storage.

If

you

do

not

specify

DATACLAS

and

LIKE

in

the

JCL

for

a

non-system-managed

generation

data

set,

and

there

is

no

model

DSCB,

the

allocation

fails.

An

example

of

allocating

a

non-system-managed

generation

data

set

by

supplying

its

DCB

attributes

using

DATACLAS

and

LIKE

follows.

This

example

would

also

work

for

system-managed

generation

data

sets.

//DDNAME

DSN=HLQ.----.LLQ(+1),DISP=(NEW,CATLG),DATACLAS=dc_name

//DDNAME

DSN=HLQ.----.LLQ(+1),DISP=(NEW,CATLG),LIKE=dsn

For

more

information

on

the

JCL

keywords

used

to

allocate

a

generation

data

set,

see

z/OS

MVS

JCL

Reference.

The

new

generation

data

set

is

cataloged

at

allocation

time,

and

rolled

into

the

GDG

at

the

end-of-job

step.

If

your

job

ends

after

allocation

but

before

the

end-of-job

step,

the

generation

data

set

is

cataloged

in

a

deferred

roll-in

state.

A

generation

data

set

is

in

a

deferred

roll-in

state

when

SMS

does

not

remove

the

temporary

catalog

entry

and

does

not

update

the

GDG

base.

You

can

resubmit

your

job

to

roll

the

new

generation

data

set

into

the

GDG.

For

more

information

about

rolling

in

generation

data

sets

see

“Rolling

In

a

Generation

Data

Set”

on

page

501.

Processing

Generation

Data

Groups

500

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Passing

a

Generation

Data

Set

A

new

generation

can

be

passed

when

created.

That

generation

can

then

be

cataloged

in

a

succeeding

job

step,

or

deleted

at

the

end

of

the

job

as

in

normal

disposition

processing

when

DISP=(,PASS)

is

specified

on

the

DD

statement.

However,

after

a

generation

has

been

created

with

DISP=(NEW,PASS)

specified

on

the

DD

statement,

another

new

generation

for

that

data

group

must

not

be

cataloged

until

the

passed

version

has

been

deleted

or

cataloged.

To

catalog

another

generation

causes

the

wrong

generation

to

be

used

when

referencing

the

passed

generation

data

set.

If

that

data

set

is

later

cataloged,

a

bad

generation

is

cataloged

and

a

good

one

lost.

For

example,

if

A.B.C(+1)

is

created

with

DISP=(NEW,PASS)

specified

on

the

DD

statement,

then

A.B.C.(+2)

must

not

be

created

with

DISP=(NEW,CATLG)

until

A.B.C(+1)

has

been

cataloged

or

deleted.

By

using

the

proper

JCL,

the

advantages

to

this

support

are:

v

JCL

does

not

have

to

be

changed

to

rerun

the

job.

v

The

lowest

generation

version

is

not

deleted

from

the

index

until

a

valid

version

is

cataloged.

Rolling

In

a

Generation

Data

Set

If

you

code

DISP=(NEW,CATLG)

for

a

system-managed

GDG,

when

the

system

allocates

the

data

set,

the

system

catalogs

a

new

generation

in

a

deferred

roll-in

state.

When

the

system

performs

end-of-job

step

processing,

the

system

rolls

the

deferred

generation

data

set

into

the

GDG.

Generation

data

sets

can

be

in

a

deferred

roll-in

state

if

the

job

never

reached

the

end-of-job

step

or

if

they

are

allocated

with

a

DISP=(NEW,KEEP).

Generation

data

sets

in

a

deferred

roll-in

state

can

be

referred

to

by

their

absolute

generation

numbers.

You

can

use

the

access

method

services

command

ALTER

ROLLIN

to

roll

in

these

generation

data

sets.

The

attributes

specified

for

the

GDG

determines

what

happens

to

the

older

generations

when

a

new

generation

is

rolled.

The

access

method

services

command

DEFINE

GENERATIONDATAGROUP

creates

a

GDG.

It

also

specifies

the

limit

(the

maximum

number

of

active

generation

data

sets)

for

a

GDG,

and

specifies

whether

all

or

only

the

oldest

generation

data

sets

should

be

rolled

off

when

the

limit

is

reached.

When

a

GDG

contains

its

maximum

number

of

active

generation

data

sets,

and

a

new

generation

data

set

is

rolled

in

at

the

end-of-job

step,

the

oldest

generation

data

set

is

rolled

off

and

is

no

longer

active.

If

a

GDG

is

defined

using

DEFINE

GENERATIONDATAGROUP

EMPTY,

and

is

at

its

limit,

then,

when

a

new

generation

data

set

is

rolled

in,

all

the

currently

active

generation

data

sets

are

rolled

off.

The

parameters

you

specify

on

the

DEFINE

GENERATIONDATAGROUP

command

determines

what

happens

to

rolled

off

generation

data

sets.

For

example,

if

you

specify

the

SCRATCH

parameter,

the

generation

data

set

is

scratched

when

it

is

rolled

off.

If

you

specify

the

NOSCRATCH

parameter,

the

rolled

off

generation

data

set

is

recataloged

as

rolled

off

and

is

disassociated

with

its

GDG.

Processing

Generation

Data

Groups

Chapter

29.

Processing

Generation

Data

Groups

501

The

access

method

services

command

ALTER

LIMIT

can

increase

or

reduce

the

limit

for

an

existing

GDG.

If

a

limit

is

reduced,

the

oldest

active

generation

data

sets

are

automatically

rolled

off

as

needed

to

meet

the

decreased

limit.

If

a

change

in

the

limit

causes

generations

to

be

rolled

off,

then

the

rolled

off

data

sets

are

listed

with

their

disposition

(uncataloged,

recataloged,

or

deleted).

If

a

limit

is

increased,

and

there

are

generation

data

sets

in

a

deferred

roll-in

state,

these

generation

data

sets

are

not

rolled

into

the

GDG.

The

access

method

services

command

ALTER

ROLLIN

can

be

used

to

roll

the

generation

data

sets

into

the

GDG

in

active

status.

For

more

information

about

using

the

access

method

services

commands

DEFINE

GENERATIONDATAGROUP

and

ALTER

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Controlling

Expiration

of

a

Rolled-Off

Generation

Data

Set

Three

variables

control

the

expiration

of

a

rolled-off

generation

data

set,

in

the

following

order:

1.

Expiration

date

coded

2.

Base

SCRATCH

or

NOSCRATCH

3.

Management

class

EXPIRE/MIGRATE

Creating

an

ISAM

Data

Set

as

Part

of

a

Generation

Data

Group

To

allocate

an

indexed

sequential

data

set

as

part

of

a

GDG,

you

must:

(1)

allocate

the

indexed

sequential

data

set

separately

from

the

generation

group

and

(2)

use

IEHPROGM

to

put

the

indexed

sequential

data

set

into

the

generation

group.

An

ISAM

generation

data

set

cannot

be

system

managed.

Example:

In

catalogs,

use

access

method

services

commands

to

catalog

the

data

set.

For

example,

you

would

code

the

following

IDCAMS

command,

where

MASTER

is

the

name

of

the

GDG,

and

GggggVvv

is

the

absolute

generation

name:

ALTER

ISAM

NEWNAME(MASTER.GggggVvv)

If

you

are

using

IEHPROGM

command

to

catalog

the

data

set,

you

would

code

the

following

IEHPROGM

commands:

RENAME

DSNAME=ISAM,VOL=3380=SCRTH1,NEWNAME=MASTER.GggggVvv

CATLG

DSNAME=MASTER.GggggVvv,VOL=3380=SCRTH1

Retrieving

a

Generation

Data

Set

You

can

retrieve

a

generation

using

JCL

procedures.

Any

operation

that

can

be

applied

to

a

nongeneration

data

set

can

be

applied

to

a

generation

data

set.

For

example,

a

generation

data

set

can

be

updated

and

reentered

in

the

catalog,

or

it

can

be

copied,

printed,

punched,

or

used

in

the

creation

of

new

generation

or

nongeneration

data

sets.

You

can

retrieve

a

generation

data

set

by

using

either

relative

generation

numbers

or

absolute

generation

and

version

numbers.

Refer

to

generation

data

sets

that

are

in

a

deferred

roll-in

state

by

their

relative

number,

such

as

(+1),

within

the

job

that

allocates

it.

Refer

to

generation

data

sets

that

are

in

a

deferred

roll-in

state

by

their

absolute

generation

number

(GxxxxVyy)

in

subsequent

jobs.

Processing

Generation

Data

Groups

502

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Reclaiming

Generation

Data

Sets

You

can

choose

whether

to

automatically

reclaim

SMS-managed

generation

data

sets

(GDSs)

that

are

in

deferred

roll-in

state

or

turn

off

that

function.

By

default,

SMS

automatically

reclaims

GDSs

when

a

new

generation

of

a

generation

data

set

does

not

get

rolled

into

the

GDG

base

for

various

reasons.

Any

job

that

creates

a

new

(+1)

generation

causes

SMS

to

automatically

reclaim

the

GDS.

When

SMS

reclaims

a

GDS,

it

reuses

a

GDS

that

is

in

a

deferred

roll-in

state.

This

reuse

could

destroy

a

new

generation

created

by

the

first

job

if

another

job

overlays

it.

For

example,

job

A

creates

A.B.C.G0009V00

but

the

roll-in

does

not

occur

because

the

address

space

abnormally

ends.

Because

generation

G0009V00

did

not

get

rolled

in,

jobs

that

refers

to

A.B.C

(+1)

attempt

to

recreate

G0009V00.

SMS

gets

a

failure

due

to

the

duplicate

data

set

name

when

it

tries

to

catalog

the

new

version

of

G0009V00.

However,

SMS

detects

that

this

failure

occurred

because

a

previous

roll-in

of

G0009V00

did

not

occur.

Consequently,

SMS

reuses

the

old

version

of

G0009V00.

Any

data

that

was

written

in

this

old

version

gets

rewritten.

Warning:

Usually,

GDS

reclaim

processing

works

correctly

when

you

rerun

the

abending

job.

However,

if

you

accidentally

run

another

job

before

rerunning

the

previous

job,

data

loss

might

occur.

If

this

situation

occurs

in

your

installation,

you

might

want

to

turn

off

automatic

GDS

reclaim

processing.

If

you

turn

off

GDS

reclaim

processing,

you

will

need

to

manually

delete

or

use

the

IDCAMS

ROLLIN

command

to

roll

in

the

generation

that

did

not

get

rolled-in.

Note

that

the

OPTION

to

either

turn

“on”

GDS

reclaim

processing

or

to

turn

it

“off”

applies

to

the

entire

system.

It

is

not

possible

to

set

this

OPTION

to

a

particular

value

just

for

one

JOB

or

STEP.

Different

systems

in

a

sysplex

may

set

their

own

value

for

this

option

but

this

may

lead

to

unpredictable

results.

Turning

on

GDS

Reclaim

Processing

By

default,

SMS

reclaims

generation

data

sets.

A

system

programmer

can

turn

on

GDS

reclaim

processing

in

either

of

two

ways:

v

Set

the

value

of

GDS_RECLAIM

in

the

PARMLIB

member

IGDSMSxx

to

YES,

and

issue

the

SET

SMS=xx

command.

v

Issue

the

SETSMS

GDS_RECLAIM(YES)

command.

This

change

is

in

effect

until

a

system

operator

or

system

programmer

reissues

the

command

or

IPLs

the

system.

Turning

off

GDS

Reclaim

Processing

A

system

programmer

can

turn

off

GDS

reclaim

processing

in

either

of

two

ways:

v

Set

the

value

of

GDS_RECLAIM

in

the

PARMLIB

member

IGDSMSxx

to

NO,

and

issue

the

SET

SMS=xx

command.

v

Issue

the

SETSMS

GDS_RECLAIM(NO)

command.

Guideline:

If

GDS

reclaim

processing

is

turned

off,

use

the

access

method

services

ALTER

command

to

delete,

rename,

or

roll

in

the

generation

that

did

not

get

rolled

in.

Otherwise,

any

attempt

to

create

a

new

(+1)

generation

fails

with

error

message

IGD17358I.

Related

reading:

For

information

on

changing

the

setting

for

GDS

reclaim

processing,

see

the

z/OS

DFSMSdfp

Storage

Administration

Reference.

For

information

Processing

Generation

Data

Groups

Chapter

29.

Processing

Generation

Data

Groups

503

on

the

access

method

services

commands

for

generation

data

sets,

see

the

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Building

a

Generation

Data

Group

Index

A

GDG

contained

in

a

catalog

is

managed

through

access

method

services.

The

access

method

services

DEFINE

command

can

be

used

to

allocate

a

GDG

and

to

specify

how

to

handle

older

and

obsolete

generations.

A

GDG

is

managed

using

the

information

found

in

a

generation

index.

Rule:

An

alias

name

cannot

be

assigned

to

the

highest

level

of

a

generation

index.

The

BLDG

function

of

IEHPROGM

builds

the

index.

The

BLDG

function

also

indicates

how

older

or

obsolete

generations

are

to

be

handled

when

the

index

is

full.

For

example,

when

the

index

is

full,

you

might

want

to

empty

it,

scratch

existing

generations,

and

begin

cataloging

a

new

series

of

generations.

After

the

index

is

built,

a

generation

can

be

cataloged

by

its

GDG

name,

and

by

either

an

absolute

generation

and

version

number

or

a

relative

generation

number.

Examples

of

how

to

build

a

GDG

index

are

found

in

z/OS

DFSMS

Access

Method

Services

for

Catalogs

and

in

z/OS

DFSMSdfp

Utilities.

Processing

Generation

Data

Groups

504

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

30.

Using

I/O

Device

Control

Macros

This

chapter

explains

how

to

use

the

z/OS

operating

system’s

macros

for

controlling

I/O

devices.

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

explains

how

to

invoke

each

of

these

time-saving

features.

To

varying

degrees,

each

macro

is

device

dependent,

so

you

must

exercise

care

if

you

want

to

achieve

device

independence.

You

can

adapt

your

application

to

various

device

types

by

issuing

the

DEVTYPE

macro.

See

z/OS

DFSMSdfp

Advanced

Services.

This

chapter

covers

the

following

topics.

Topic

Location

Using

the

CNTRL

Macro

to

Control

an

I/O

Device

505

Using

the

PRTOV

Macro

to

Test

for

Printer

Overflow

506

Using

the

SETPRT

Macro

to

Set

Up

the

Printer

506

Using

the

BSP

Macro

to

Backspace

a

Magnetic

Tape

or

Direct

Access

Volume

507

Using

the

NOTE

Macro

to

Return

the

Relative

Address

of

a

Block

507

Using

the

POINT

Macro

to

Position

to

a

Block

508

Using

the

SYNCDEV

Macro

to

Synchronize

Data

509

When

you

use

the

queued

access

method,

only

unit

record

equipment

can

be

controlled

directly.

When

using

the

basic

access

method,

limited

device

independence

can

be

achieved

between

magnetic

tape

and

direct

access

storage

devices.

With

BSAM

you

must

check

all

read

or

write

operations

before

issuing

a

device

control

macro.

Using

the

CNTRL

Macro

to

Control

an

I/O

Device

The

CNTRL

macro

performs

these

device-dependent

control

functions:

v

Card

reader

stacker

selection

(SS)

v

Printer

line

spacing

(SP)

v

Printer

carriage

control

(SK)

v

Magnetic

tape

backspace

(BSR)

over

a

specified

number

of

blocks

v

Magnetic

tape

backspace

(BSM)

past

a

tape

mark

and

forward

space

over

the

tape

mark

v

Magnetic

tape

forward

space

(FSR)

over

a

specified

number

of

blocks

v

Magnetic

tape

forward

space

(FSM)

past

a

tape

mark

and

a

backspace

over

the

tape

mark

Backspacing

moves

the

tape

toward

the

load

point;

forward

spacing

moves

the

tape

away

from

the

load

point.

Restriction:

The

CNTRL

macro

cannot

be

used

with

an

input

data

set

containing

variable-length

records

on

the

card

reader.

If

you

specify

OPTCD=H

in

the

DCB

parameter

field

of

the

DD

statement,

you

can

use

the

CNTRL

macro

to

position

VSE

tapes

even

if

they

contain

embedded

©

Copyright

IBM

Corp.

1987,

2004

505

checkpoint

records.

The

CNTRL

macro

cannot

be

used

to

backspace

VSE

7-track

tapes

that

are

written

in

data

convert

mode

and

contain

embedded

checkpoint

records.

Using

the

PRTOV

Macro

to

Test

for

Printer

Overflow

The

PRTOV

macro

tests

for

channel

9

or

12

of

the

printer

carriage

control

tape

or

the

forms

control

buffer

(FCB).

An

overflow

condition

causes

either

an

automatic

skip

to

channel

1

or,

if

specified,

transfer

of

control

to

your

routine

for

overflow

processing.

If

you

specify

an

overflow

exit

routine,

set

DCBIFLGS

to

X'00'

before

issuing

another

PRTOV.

If

the

device

specified

on

the

DD

statement

is

not

for

a

directly

allocated

printer,

no

action

is

taken.

Using

the

SETPRT

Macro

to

Set

Up

the

Printer

The

SETPRT

macro

controls

how

information

is

printed.

It

is

used

with

the

IBM

3800

Printing

Subsystem,

IBM

3900

Printing

Subsystem,

with

various

other

universal

character

set

(UCS)

printers,

and

SYSOUT

data

sets.

For

printers

that

are

allocated

to

your

program,

the

SETPRT

macro

is

used

to

initially

set

or

dynamically

change

the

printer

control

information.

For

more

information

about

using

the

SETPRT

macro,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

For

printers

that

have

a

universal

character

set

(UCS)

buffer

and

optionally,

a

forms

control

buffer

(FCB),

the

SETPRT

macro

is

used

to

specify

the

UCS

or

FCB

images

to

be

used.

Note

that

universal

character

sets

for

the

various

printers

are

not

compatible.

The

three

formats

of

FCB

images

(the

FCB

image

for

the

3800

Printing

Subsystem,

the

4248

format

FCB,

and

the

3211

format

FCB)

are

incompatible.

The

3211

format

FCB

is

used

by

the

3203,

3211,

4248,

3262

Model

5,

and

4245

printers.

IBM-supplied

UCS

images,

UCS

image

tables,

FCB

images,

and

character

arrangement

table

modules

are

included

in

the

SYS1.IMAGELIB

at

system

initialization

time.

For

1403,

3203,

3211,

3262

Model

5,

4245,

and

4248

printers,

user-defined

character

sets

can

be

added

to

SYS1.IMAGELIB.

Related

reading:

v

For

a

description

of

how

images

are

added

to

SYS1.IMAGELIB

and

how

band

names/aliases

are

added

to

image

tables

see

z/OS

DFSMSdfp

Advanced

Services.

v

For

the

3800

and

3900,

user-defined

character

arrangement

table

modules,

FCB

modules,

graphic

character

modification

modules,

copy

modification

modules,

and

library

character

sets

can

be

added

to

SYS1.IMAGELIB

as

described

for

IEBIMAGE

in

z/OS

DFSMSdfp

Utilities.

v

For

information

on

building

a

4248

format

FCB

(which

can

also

be

used

for

the

IBM

3262

Model

5

printer),

see

z/OS

DFSMSdfp

Utilities.

The

FCB

contents

can

be

selected

from

the

system

library

(or

an

alternate

library

if

you

are

using

a

3800

or

3900),

or

defined

in

your

program

through

the

exit

list

of

the

DCB

macro.

For

information

about

the

DCB

exit

list

see

“DCB

Exit

List”

on

page

527.

Using

I/O

Device

Control

Macros

506

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

For

a

non-3800

or

non-3900

printer,

the

specified

UCS

or

FCB

image

can

be

found

in

one

of

the

following:

v

SYS1.IMAGELIB

v

Image

table

(UCS

image

only)

v

DCB

exit

list

(FCB

image

only)

If

the

image

is

not

found,

the

operator

is

asked

to

specify

an

alternate

image

name

or

cancel

the

request.

For

a

printer

that

has

no

carriage

control

tape,

you

can

use

the

SETPRT

macro

to

select

the

FCB,

to

request

operator

verification

of

the

contents

of

the

buffer,

or

to

allow

the

operator

to

align

the

paper

in

the

printer.

For

a

SYSOUT

data

set,

the

specified

images

must

be

available

at

the

destination

of

the

data

set,

which

can

be

JES2,

JES3,

VM,

or

other

type

of

system.

Using

the

BSP

Macro

to

Backspace

a

Magnetic

Tape

or

Direct

Access

Volume

The

BSP

macro

backspaces

one

block

on

the

magnetic

tape

or

direct

access

volume

being

processed.

The

block

can

then

be

reread

or

rewritten.

An

attempt

to

rewrite

the

block

destroys

the

contents

of

the

remainder

of

the

tape

or

track.

See

“Using

the

BSP

Macro

to

Backspace

a

Physical

Record”

on

page

448

for

information

on

using

the

BSP

macro

to

process

PDSEs.

The

direction

of

movement

is

toward

the

load

point

or

the

beginning

of

the

extent.

You

can

not

use

the

BSP

macro

if

the

track

overflow

option

was

specified

or

if

the

CNTRL,

NOTE,

or

POINT

macro

is

used.

The

BSP

macro

should

be

used

only

when

other

device

control

macros

could

not

be

used

for

backspacing.

Any

attempt

to

backspace

across

the

beginning

of

the

data

set

on

the

current

volume

results

in

return

code

X'04'

in

register

15,

and

your

tape

or

direct

access

volume

is

positioned

before

the

first

block.

You

cannot

issue

a

successful

backspace

command

after

your

EODAD

routine

is

entered

unless

you

first

reposition

the

tape

or

direct

access

volume

into

your

data

set.

CLOSE

TYPE=T

can

position

you

at

the

end

of

your

data

set.

You

can

use

the

BSP

macro

to

backspace

VSE

tapes

containing

embedded

checkpoint

records.

If

you

use

this

means

of

backspacing,

you

must

test

for

and

bypass

the

embedded

checkpoint

records.

You

cannot

use

the

BSP

macro

for

VSE

7-track

tapes

written

in

translate

mode.

Using

the

NOTE

Macro

to

Return

the

Relative

Address

of

a

Block

The

NOTE

macro

requests

the

relative

address

of

the

first

logical

record

of

the

block

just

read

or

written.

In

a

multivolume

non-extended-format

data

set,

the

address

is

relative

to

the

beginning

of

the

data

set

on

the

volume

currently

being

processed.

In

a

striped

data

set,

the

address

is

always

relative

to

the

beginning

of

the

data

set.

Your

program

later

uses

the

address

in

positioning

operations.

If

a

NOTE

macro

is

issued

after

an

automatic

volume

switch

occurs,

and

before

a

READ

or

WRITE

macro

is

issued

to

the

next

volume,

NOTE

returns

a

relative

block

address

of

zero

except

for

extended

format

data

sets.

Using

I/O

Device

Control

Macros

Chapter

30.

Using

I/O

Device

Control

Macros

507

For

magnetic

tape,

the

address

is

in

the

form

of

a

4-byte

relative

block

address.

If

TYPE=REL

is

specified

or

defaults,

the

address

provided

by

the

operating

system

is

returned

in

register

1.

If

TYPE=ABS

is

specified,

the

physical

block

identifier

of

a

data

block

on

tape

is

returned

in

register

0.

Later

you

can

use

the

relative

block

address

or

the

block

identifier

as

a

search

argument

for

the

POINT

macro.

For

non-extended-format

data

sets

on

direct

access

storage

devices,

the

address

is

in

the

form

of

a

4-byte

relative

track

record

address.

For

extended

format

data

sets,

the

address

is

in

the

form

of

a

block

locator

token

(BLT).

The

BLT

is

essentially

the

relative

block

number

(RBN)

within

the

current

logical

volume

of

the

data

set

where

the

first

block

has

an

RBN

of

1.

The

user

sees

a

multistriped

data

set

as

a

single

logical

volume;

therefore,

for

a

multistriped

data

set,

the

RBN

is

relative

to

the

beginning

of

the

data

set

and

incorporates

all

stripes.

For

PDSEs,

the

address

is

in

the

form

of

a

record

locator

token.

The

address

provided

by

the

operating

system

is

returned

in

register

1.

For

non-extended-format

data

sets

and

partitioned

data

sets,

NOTE

returns

the

track

balance

in

register

0

if

the

last

I/O

operation

was

a

WRITE,

or

returns

the

track

capacity

if

the

NOTE

follows

a

READ

or

POINT.

For

PDSEs,

extended

format

data

sets

and

HFS

data

sets,

NOTE

returns

X'7FFF'

in

register

0.

See

“Using

the

NOTE

Macro

to

Provide

Relative

Position”

on

page

457

for

information

about

using

the

NOTE

macro

to

process

PDSEs.

Using

the

POINT

Macro

to

Position

to

a

Block

The

POINT

macro

repositions

a

magnetic

tape

or

direct

access

volume

to

a

specified

block.

The

next

read

or

write

operation

begins

at

this

block.

See

“Using

the

POINT

Macro

to

Position

to

a

Block”

on

page

457

for

information

on

using

the

POINT

macro

to

process

PDSEs.

In

a

multivolume

sequential

data

set

you

must

ensure

that

the

volume

referred

to

is

the

volume

currently

being

processed.

The

user

sees

a

multistriped

extended-format

data

set

as

a

single

logical

volume;

therefore,

no

special

positioning

is

needed.

However,

a

single-striped

multivolume

extended-format

data

set

does

require

you

to

be

positioned

at

the

correct

volume.

For

disk,

if

a

write

operation

follows

the

POINT

macro,

all

of

the

track

following

the

write

operation

is

erased,

unless

the

data

set

is

opened

for

UPDAT.

Closing

the

data

set

after

such

a

write

logically

truncate

ends

the

data

set.

POINT

is

not

meant

to

be

used

before

a

WRITE

macro

when

a

data

set

is

opened

for

UPDAT.

If

you

specify

OPTCD=H

in

the

DCB

parameter

field

of

the

DD

statement,

you

can

use

the

POINT

macro

to

position

VSE

tapes

even

if

they

contain

embedded

checkpoint

records.

The

POINT

macro

cannot

be

used

to

backspace

VSE

7-track

tapes

that

are

written

in

data

convert

mode

and

that

contain

embedded

checkpoint

records.

If

you

specify

TYPE=ABS,

you

can

use

the

physical

block

identifier

as

a

search

argument

to

locate

a

data

block

on

tape.

The

identifier

can

be

provided

from

the

output

of

a

prior

execution

of

the

NOTE

macro.

When

using

the

POINT

macro

for

a

direct

access

storage

device

that

is

opened

for

OUTPUT,

OUTIN,

OUTINX,

or

INOUT,

and

the

record

format

is

not

fixed

standard,

the

number

of

blocks

per

track

might

vary

slightly.

Using

I/O

Device

Control

Macros

508

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Using

the

SYNCDEV

Macro

to

Synchronize

Data

Data

still

in

the

buffer

might

not

yet

reside

on

the

final

recording

medium.

This

is

called

data

that

is

not

synchronized.

Data

synchronization

is

the

process

by

which

the

system

ensures

that

data

previously

given

to

the

system

via

WRITE,

PUT,

and

PUTX

macros

is

written

to

the

storage

medium.

The

SYNCDEV

macro

performs

data

synchronization

for

the

following:

v

Magnetic

tape

cartridge

devices

supporting

buffered

write

mode

v

PDSEs

to

DASD

v

Compressed

format

data

sets

to

DASD.

You

can

do

the

following

for

a

magnetic

tape

cartridge

device:

v

Request

information

regarding

synchronization,

or

v

Demand

that

synchronization

occur

based

on

a

specified

number

of

data

blocks

that

are

allowed

to

be

buffered.

If

zero

is

specified,

synchronization

will

always

occur.

When

SYNCDEV

completes

successfully

(return

code

0),

a

value

is

returned

that

shows

the

number

of

data

blocks

remaining

in

the

control

unit

buffer.

For

PDSEs

and

compressed

format

data

sets,

the

value

returned

is

always

zero.

For

PDSEs

and

compressed

format

data

sets,

requests

for

synchronization

information

or

for

partial

synchronization

cause

complete

synchronization.

Specify

Guaranteed

Synchronous

Write

through

storage

class

to

ensure

that

data

is

synchronized

to

DASD

at

the

completion

of

each

CHECK

macro.

However,

this

degrades

performance.

This

produces

the

same

result

as

issuing

the

SYNCDEV

macro

after

each

CHECK

macro.

See

z/OS

DFSMSdfp

Storage

Administration

Reference

for

information

about

how

the

storage

administrator

specifies

guaranteed

synchronous

write.

Using

I/O

Device

Control

Macros

Chapter

30.

Using

I/O

Device

Control

Macros

509

510

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

This

chapter

covers

the

following

topics.

Topic

Location

General

Guidance

511

EODAD

End-of-Data-Set

Exit

Routine

519

SYNAD

Synchronous

Error

Routine

Exit

520

DCB

Exit

List

527

Allocation

Retrieval

List

530

DCB

ABEND

Exit

531

DCB

OPEN

Exit

535

Defer

Nonstandard

Input

Trailer

Label

Exit

List

Entry

536

Block

Count

Unequal

Exit

536

EOV

Exit

for

Sequential

Data

Sets

537

FCB

Image

Exit

538

JFCB

Exit

539

JFCBE

Exit

540

Open/Close/EOV

Standard

User

Label

Exit

541

Open/EOV

Nonspecific

Tape

Volume

Mount

Exit

545

Open/EOV

Volume

Security

and

Verification

Exit

548

QSAM

Parallel

Input

Exit

550

User

Totaling

for

BSAM

and

QSAM

550

General

Guidance

You

can

identify

user-written

exit

routines

for

use

with

non-VSAM

access

methods.

These

user-written

exit

routines

can

perform

a

variety

of

functions

for

non-VSAM

data

sets,

including

error

analysis,

requesting

user

totaling,

performing

I/O

operations

for

data

sets,

and

creating

your

own

data

set

labels.

These

functions

are

not

for

use

with

VSAM

data

sets.

Similar

VSAM

functions

are

described

in

Chapter

16,

“Coding

VSAM

User-Written

Exit

Routines,”

on

page

235.

The

DCB

and

DCBE

macros

can

be

used

to

identify

the

locations

of

exit

routines:

v

The

routine

that

performs

end-of-data

procedures

(the

EODAD

parameter

of

DCB

or

DCBE).

v

The

routine

that

supplements

the

operating

system’s

error

recovery

routine

(the

SYNAD

parameter

of

DCB

or

DCBE).

v

The

list

that

contains

addresses

of

special

exit

routines

(the

EXLST

parameter

of

DCB).

The

exit

addresses

can

be

specified

in

the

DCB

or

DCBE

macro,

or

you

can

complete

the

DCB

or

DCBE

fields

before

they

are

needed.

Table

39

on

page

512

summarizes

the

exits

that

you

can

specify

either

explicitly

in

the

DCB

or

DCBE,

or

implicitly

by

specifying

the

address

of

an

exit

list

in

the

DCB.

©

Copyright

IBM

Corp.

1987,

2004

511

Table

39.

DCB

Exit

Routines

Exit

Routine

When

Available

Page

End-of-data-set

When

no

more

sequential

records

or

blocks

are

available

519

Error

analysis

After

an

uncorrectable

input/output

error

520

Allocation

retrieval

list

When

issuing

an

RDJFCB

macro

instruction

527

Block

count

After

unequal

block

count

comparison

by

end-of-volume

routine

527

DCB

abend

When

an

abend

condition

occurs

in

OPEN,

CLOSE,

or

end-of-volume

routine

527

DCB

open

When

opening

a

data

set

527

End-of-volume

When

changing

volumes

527

FCB

image

When

opening

a

data

set

or

issuing

a

SETPRT

macro

527

JFCB

When

opening

a

data

set

with

TYPE=J

and

reading

the

JFCB

527

Standard

user

label

(physical

sequential

or

direct

organization)

When

opening,

closing,

or

reaching

the

end

of

a

data

set,

and

when

changing

volumes

527

JFCB

extension

(JFCBE)

When

opening

a

data

set

for

the

IBM

3800

527

Open/EOV

nonspecific

tape

volume

mount

When

a

scratch

tape

is

requested

during

OPEN

or

EOV

routines

527

Open/EOV

volume

security/verification

When

a

scratch

tape

is

requested

during

OPEN

or

EOV

routines

527

QSAM

parallel

processing

Opening

a

data

set

527

User

totaling

(for

BSAM

and

QSAM)

When

creating

or

processing

a

data

set

with

user

labels

527

Programming

Considerations

Most

exit

routines

described

in

this

chapter

must

return

to

their

caller.

The

only

two

exceptions

are

the

end-of-data

and

error

analysis

routines.

Status

Information

Following

an

Input/Output

Operation

Following

an

I/O

operation

with

a

DCB,

the

control

program

makes

certain

status

information

available

to

the

application

program.

This

status

information

is

a

2

byte

exception

code,

or

a

16

byte

field

of

standard

status

indicators,

or

both.

Exception

codes

are

provided

in

the

data

control

block

(QISAM),

or

in

the

data

event

control

block

(BISAM

and

BDAM).

The

data

event

control

block

is

described

below,

and

the

exception

code

lies

within

the

block

as

shown

in

Table

40

on

page

513.

If

a

DCBD

macro

instruction

is

coded,

the

exception

code

in

a

data

control

block

can

be

addressed

as

two

1-byte

fields,

DCBEXCD1

and

DCBEXCD2.

QISAM

exception

codes

are

described

in

Table

45

on

page

521.

The

other

exception

codes

are

described

in

Table

41

on

page

514,

Table

43

on

page

517,

and

Table

45

on

page

521.

Using

Non-VSAM

User-Written

Exit

Routines

512

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Status

indicators

are

available

only

to

the

error

analysis

routine

designated

by

the

SYNAD

entry

in

the

data

control

block

or

the

data

control

block

extension.

Or,

they

are

available

after

I/O

completion

from

BSAM

or

BPAM

until

the

next

WAIT

or

CHECK

for

the

DCB.

A

pointer

to

the

status

indicators

is

provided

either

in

the

data

event

control

block

(BSAM,

BPAM,

and

BDAM),

or

in

register

0

(QISAM

and

QSAM).

The

contents

of

registers

on

entry

to

the

SYNAD

exit

routine

are

shown

in

Table

46

on

page

523,

Table

47

on

page

524,

and

Table

48

on

page

524.

The

status

indicators

for

BSAM,

BPAM,

BDAM,

and

QSAM

are

shown

in

Figure

112

on

page

518.

Data

Event

Control

Block

A

data

event

control

block

is

constructed

as

part

of

the

expansion

of

READ

and

WRITE

macro

instructions

and

is

used

to

pass

parameters

to

the

control

program,

help

control

the

read

or

write

operation,

and

receive

indications

of

the

success

or

failure

of

the

operation.

The

data

event

control

block

is

named

by

the

READ

or

WRITE

macro

instruction,

begins

on

a

fullword

boundary,

and

contains

the

information

shown

in

Table

40.

Table

40.

Data

Event

Control

Block

Offset

from

DECB

Address

(Bytes)

Field

Contents

BSAM

and

BPAM

BISAM

BDAM

0

ECB

ECB

ECB1

+4

Type

Type

Type

+6

Length

Length

Length

+8

DCB

address

DCB

address

DCB

address

+12

Area

address

Area

address

Area

address

+16

Address

of

status

indicators3

Logical

record

address

Address

of

status

indicators3

+20

Key

address

Key

address

+24

Exception

code

(2

bytes)2

Block

address

+28

Next

address

Note:

1.

The

control

program

returns

exception

codes

in

bytes

+1

and

+2

of

the

ECB.

2.

See

Table

41

on

page

514.

3.

See

Figure

112

on

page

518.

For

BISAM,

exception

codes

are

returned

by

the

control

program

after

the

corresponding

WAIT

or

CHECK

macro

instruction

is

issued,

as

indicated

in

Table

41

on

page

514.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

513

Table

41.

Exception

Code

Bits—BISAM

Exception

Code

Bit

in

DECB

READ

WRITE

Condition

If

On

0

X

Type

K

Record

not

found

1

X

X

Record

Length

Check

2

Type

KN

Space

not

found

3

X

Type

K

Nonvalid

request

4

X

X

Uncorrectable

I/O

error

5

X

X

Unreachable

block

6

X

Overflow

record

7

Type

KN

Duplicate

record

8-15

Reserved

for

control

program

use

Descriptions

of

the

conditions

in

Table

41

follow:

v

Record

Not

Found:

The

logical

record

with

the

specified

key

is

not

found

in

the

data

set

if

the

specified

key

is

higher

than

the

highest

key

in

the

highest-level

index

or

if

the

record

is

not

in

either

the

prime

area

or

the

overflow

area

of

the

data

set.

v

Record

Length

Check:

For

READ

and

update

WRITE

macro

instructions,

an

overriding

length

is

specified

and

(1)

the

record

format

is

blocked,

(2)

the

record

format

is

unblocked

but

the

overriding

length

is

greater

than

the

length

known

to

the

control

program,

or

(3)

the

record

is

fixed

length

and

the

overriding

length

does

not

agree

with

the

length

known

to

the

control

program.

This

condition

is

reported

for

the

add

WRITE

macro

instruction

if

an

overriding

length

is

specified.

When

blocked

records

are

being

updated,

the

control

program

must

find

the

high

key

in

the

block

to

write

the

block.

(The

high

key

is

not

necessarily

the

same

as

the

key

supplied

by

the

application

program.)

The

high

key

is

needed

for

writing

because

the

control

unit

for

direct

access

devices

permits

writing

only

if

a

search

on

equal

is

satisfied;

this

search

can

be

satisfied

only

with

the

high

key

in

the

block.

If

the

user

were

permitted

to

specify

an

overriding

length

shorter

than

the

block

length,

the

high

key

might

not

be

read;

then,

a

subsequent

write

request

could

not

be

satisfied.

In

addition,

failure

to

write

a

high

key

during

update

would

make

a

subsequent

update

impossible.

v

Space

Not

Found:

No

room

exists

for

adding

a

new

record

to

the

data

set

in

either

the

appropriate

cylinder

overflow

area

or

the

independent

overflow

area.

The

data

set

is

not

changed

in

any

way

in

this

situation.

v

Invalid

Request:

This

condition

occurs

for

either

of

two

reasons:

–

Because

the

application

program

altered

the

contents

of

byte

25

of

the

data

event

control

block,

byte

25

could

indicate

that

this

request

is

an

update

WRITE

macro

instruction

corresponding

to

a

READ

(for

update)

macro

instruction,

but

the

I/O

block

(IOB)

for

the

READ

instruction

is

not

in

the

update

queue.

–

A

READ

or

WRITE

macro

instruction

specifies

dynamic

buffering

(that

is,

‘S’

in

the

area

address

operand),

but

the

DCBMACRF

field

of

the

data

control

block

does

not

specify

dynamic

buffering.
v

Uncorrectable

Input/Output

Error:

The

control

program’s

error

recovery

procedures

encounter

an

uncorrectable

error

in

transferring

data.

Using

Non-VSAM

User-Written

Exit

Routines

514

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

Unreachable

Block:

An

uncorrectable

I/O

error

occurs

during

a

search

of

the

indexes

or

following

an

overflow

chain.

This

condition

is

also

posted

if

the

data

field

of

an

index

record

contains

an

improper

address

(that

is,

points

to

the

wrong

cylinder

or

track

or

is

not

valid).

v

Overflow

Record:

The

record

just

read

is

an

overflow

record.

The

SYNAD

exit

routine

is

entered

only

if

the

CHECK

macro

is

issued

after

the

READ

macro,

and

bit

0,

4,

5,

or

7

is

also

on.

(See

the

section

on

direct

retrieval

and

update

in

Appendix

D,

“Processing

Indexed

Sequential

Data

Sets,”

on

page

571

for

considerations

during

BISAM

updating.)

v

Duplicate

Record

Presented

for

Inclusion

in

the

Data

Set:

The

new

record

to

be

added

has

the

same

key

as

a

record

in

the

data

set.

However,

if

the

delete

option

was

specified

and

the

record

in

the

data

set

is

marked

for

deletion,

this

condition

is

not

reported.

Instead,

the

new

record

replaces

the

existing

record.

If

the

record

format

is

blocked

and

the

relative

key

position

is

zero,

the

new

record

cannot

replace

an

existing

record

that

is

of

equal

key

and

is

marked

for

deletion.

Event

Control

Block

The

ECB

is

located

in

the

first

word

of

the

DECB.

An

event

control

block

is

the

subject

of

WAIT

and

POST

macro

instructions.

See

Table

42.

Table

42.

Event

Control

Block

Offset

Bytes

Bit

Value

Hex

Code

Description

00

1

10xx

xxxx

W—Waiting

for

completion

of

an

event.

01xx

xxxx

C—The

event

has

completed.

One

of

the

following

completion

codes

will

appear

at

the

completion

of

the

operation

that

was

initiated

by

the

READ

or

WRITE

macro:

Access

Methods

other

than

BDAM

0111

1111

7F

Channel

program

has

terminated

without

error.

(The

status

indicators

in

Figure

112

on

page

518

are

valid.)

0100

0001

41

Channel

program

has

terminated

with

permanent

error.

(The

status

indicators

in

Figure

112

on

page

518

are

valid.)

0100

0010

42

Channel

program

has

terminated

because

a

direct

access

extent

address

has

been

violated.

(The

status

indicators

in

Figure

112

on

page

518

are

not

valid.)

0100

0011

43

Abend

condition

occurred

in

the

error

recovery

routine.

(The

status

indicators

in

Figure

112

on

page

518

are

not

valid.)

0100

0100

44

Channel

program

has

been

intercepted

because

of

permanent

error

associated

with

device

end

for

previous

request.

You

may

reissue

the

intercepted

request.

(The

status

indicators

in

Figure

112

on

page

518

are

not

valid.)

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

515

Table

42.

Event

Control

Block

(continued)

Offset

Bytes

Bit

Value

Hex

Code

Description

0100

1000

48

The

channel

program

was

purged.

(The

status

indicators

in

Figure

112

on

page

518

are

not

valid.)

0100

1011

4B

One

of

the

following

errors

occurred

during

tape

error

recovery

processing:

v

The

CSW

command

address

was

zeros.

v

An

unexpected

load

point

was

encountered.

(The

status

indicators

in

Figure

112

on

page

518

are

not

valid.)

0100

1111

4F

Error

recovery

routines

have

been

entered

because

of

direct

access

error

but

are

unable

to

read

home

addresses

or

record

0.

(The

status

indicators

in

Figure

112

on

page

518

are

not

valid.)

0101

0000

50

Channel

program

terminated

with

error.

Input

block

was

a

VSE-embedded

checkpoint

record.

(The

status

indicators

in

Figure

112

on

page

518

are

not

valid.)

1

3

Contains

the

address

of

the

RB

issuing

the

WAIT

macro

if

the

ECB

has

the

WAIT

bit

on.

Once

the

event

has

completed

and

ECB

is

posted

the

C

bit

is

set

with

other

bits

in

byte

0

and

these

3

bytes

(1-3)

are

zero,

for

all

access

methods

except

BDAM.

For

BDAM,

only

the

C

bit

is

set

in

byte

zero

and

the

exception

codes

are

returned

in

bytes

1

and

2

or

the

ECB

for

BDAM.

Table

43

on

page

517

shows

the

exception

bit

codes

for

BDAM.

Using

Non-VSAM

User-Written

Exit

Routines

516

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

43.

Exception

Code

Bits—BDAM

Exception

Code

Bit

READ

WRITE

Condition

If

On

0

X

X

Record

not

found.

(This

Record

Not

Found

condition

is

reported

if

the

search

argument

is

not

found

in

the

data

set.)

1

X

X

Record

length

check.

(This

Record

Length

Check

condition

occurs

for

READ

and

WRITE

(update)

and

WRITE

(add).

For

WRITE

(update)

variable-length

records

only,

the

length

in

the

BDW

does

not

match

the

length

of

the

record

to

be

updated.

For

all

remaining

READ

and

WRITE

(update)

conditions,

the

BLKSIZE,

when

S

is

specified

in

the

READ

or

WRITE

macro,

or

the

length

given

with

these

macros

does

not

agree

with

the

actual

length

of

the

record.

For

WRITE

(add),

fixed-length

records,

the

BLKSIZE,

when

S

is

specified

in

the

WRITE

macro,

or

the

length

given

with

this

macro

does

not

agree

with

the

actual

length

of

the

record.

For

WRITE

(add),

all

other

conditions,

no

error

can

occur.)

2

X

Space

not

found.

(This

Space

Not

Found

for

Adding

a

Record

condition

occurs

if

either

there

is

no

dummy

record

when

adding

an

F-format

record,

or

there

is

no

space

available

when

adding

a

V-

or

U-format

record.)

3

X

X

Nonvalid

request—see

bits

9-15

4

X

X

Uncorrectable

I/O

error.

(This

Uncorrectable

Input/Output

Error

condition

is

reported

if

the

control

program’s

error

recovery

procedures

encounter

an

uncorrectable

error

in

transferring

data

between

real

and

secondary

storage.)

5

X

X

End

of

data.

(This

End

of

Data

only

occurs

as

a

result

of

a

READ

(type

DI,

DIF,

or

DIX)

when

the

record

requested

is

an

end-of-data

record.)

6

X

X

Uncorrectable

error.

(Same

conditions

as

for

bit

4.)

7

X

Not

read

with

exclusive

control.

(A

WRITE,

type

DIX

or

DKX,

has

occurred

for

which

there

is

no

previous

corresponding

READ

with

exclusive

control.)

8

Not

used

9

X

A

WRITE

was

attempted

for

an

input

data

set.

10

X

X

An

extended

search

was

requested,

but

LIMCT

was

zero.

11

X

X

The

relative

block

or

relative

track

requested

was

not

in

the

data

set.

12

X

Writing

a

capacity

record

(R0)

was

attempted.

13

X

X

A

READ

or

WRITE

with

key

was

attempted,

but

either

KEYLEN

equaled

zero

or

the

key

address

was

not

supplied.

14

X

X

The

READ

or

WRITE

macro

request

options

conflict

with

the

OPTCD

or

MACRF

parameters.

15

X

A

WRITE

(add)

with

fixed

length

was

attempted

with

the

key

beginning

with

X'FF'.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

517

Figure

112

lists

status

indicators

for

BDAM,

BPAM,

BSAM,

and

QSAM.

If

the

sense

bytes

are

X'10FE',

the

control

program

has

set

them

to

this

nonvalid

combination

because

sense

bytes

could

not

be

obtained

from

the

device

because

of

recurrence

of

unit

checks.

Offset

in

status

indicator

area

Byte

Bit

Meaning

Name

-12

-

Word

containing

length

that

was

read

Valid

only

when

reading

with

LBI

+2

0

Command

reject

Sense

byte

0

1

Intervention

required

2

Bus-out

check

3

Equipment

check

4

Data

check

5

Overrun

6,7

Device-dependent

information;

see

the

appropriate

device

manual

+3

0-7

Device-dependent

information;

Sense

byte

1

see

the

appropriate

device

manual

The

following

bytes

make

up

the

low-order

seven

bytes

of

a

simulated

channel

status

word

(CSW):

+9

—

Command

address

pointing

after

last

executed

CCW

The

ending

CCW

may

have

the

indirect

data

addressing

bit

and/or

data

chaining

bit

on

+12

0

Attention

Status

byte

0

1

Status

modifier

(Unit)

2

Control

unit

end

3

Busy

4

Channel

end

5

Device

end

6

Unit

check—must

be

on

for

sense

bytes

to

be

significant

7

Unit

exception

+13

0

Program-controlled

interrupt

Status

byte

1

1

Incorrect

length

(Channel)

2

Program

check

3

Protection

check

4

Channel

data

check

5

Channel

control

check

6

Interface

control

check

7

Chaining

check

+14

—

Count

field

(2

bytes)

Not

valid

with

LBI

Figure

112.

Status

Indicators—BDAM,

BPAM,

BSAM,

and

QSAM

Using

Non-VSAM

User-Written

Exit

Routines

518

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

EODAD

End-of-Data-Set

Exit

Routine

The

EODAD

parameter

of

the

DCB

or

DCBE

macro

specifies

the

address

of

your

end-of-data-set

routine,

which

can

perform

any

final

processing

on

an

input

data

set.

The

EODAD

routine

generally

is

not

regarded

as

being

a

subroutine.

This

routine

is

entered

when

your

program

does

any

of

the

following:

v

Issues

a

CHECK

macro

(for

a

READ

macro)

or

a

GET

macro

and

there

are

no

more

records

or

blocks

to

be

retrieved.

v

Issues

an

FEOV

macro

while

reading

on

the

last

or

only

volume.

With

sequential

concatenation

these

events

cause

entry

to

your

EODAD

routine

only

if

you

are

reading

the

end

of

the

last

data

set.

For

a

BSAM

data

set

that

is

opened

for

UPDAT,

this

routine

is

entered

at

the

end

of

each

volume.

This

lets

you

issue

WRITE

macros

before

an

FEOV

macro

is

issued.

Register

Contents

Table

44

shows

the

contents

of

the

registers

when

control

is

passed

to

the

EODAD

routine.

Table

44.

Contents

of

Registers

at

Entry

to

EODAD

Exit

Routine

Register

Contents

0-1

Reserved

2-13

Contents

before

execution

of

GET,

CHECK,

FEOV

or

EOV

(EXCP)

14

Contains

the

address

after

a

GET

or

CHECK

as

these

macros

generate

a

branch

and

link

to

the

access

method

routines.

FEOV

is

an

SVC.

Register

14

will

contain

what

is

contained

at

the

time

the

FEOV

was

issued.

15

Reserved

Programming

Considerations

You

can

treat

your

EODAD

routine

as

a

subroutine

(and

end

by

branching

on

register

14)

or

as

a

continuation

of

the

routine

that

issued

the

CHECK,

GET

or

FEOV

macro.

The

EODAD

routine

generally

is

not

regarded

as

being

a

subroutine.

After

control

passes

to

your

EODAD

routine,

you

can

continue

normal

processing,

such

as

repositioning

and

resuming

processing

of

the

data

set,

closing

the

data

set,

or

processing

another

data

set.

For

BSAM,

you

must

first

reposition

the

data

set

that

reached

end-of-data

if

you

want

to

issue

a

BSP,

READ,

or

WRITE

macro.

You

can

reposition

your

data

set

by

issuing

a

CLOSE

TYPE=T

macro

instruction.

If

a

READ

macro

is

issued

before

the

data

set

is

repositioned,

unpredictable

results

occur.

For

BPAM,

you

may

reposition

the

data

set

by

issuing

a

FIND

or

POINT

macro.

(CLOSE

TYPE=T

with

BPAM

results

in

no

operation

performed.)

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

519

For

QISAM,

you

can

continue

processing

the

input

data

set

that

reached

end-of-data

by

first

issuing

an

ESETL

macro

to

end

the

sequential

retrieval,

then

issuing

a

SETL

macro

to

set

the

lower

limit

of

sequential

retrieval.You

can

then

issue

GET

macros

to

the

data

set.

Your

task

will

abnormally

end

under

either

of

the

following

conditions:

v

No

exit

routine

is

provided.

v

A

GET

macro

is

issued

in

the

EODAD

routine

to

the

DCB

that

caused

this

routine

to

be

entered

(unless

the

access

method

is

QISAM).

For

BSAM,

BPAM,

and

QSAM

your

EODAD

routine

is

entered

with

the

addressability

(24-

or

31-bit)

of

when

you

issued

the

macro

that

caused

entry

to

EODAD.

This

typically

is

a

CHECK,

GET,

or

FEOV

macro.

DCB

EODAD

identifies

a

routine

that

resides

below

the

line

(RMODE

is

24).

DCBE

EODAD

identifies

a

routine

that

may

reside

above

the

line.

If

it

resides

above

the

line,

then

all

macros

that

might

detect

an

end-of-data

must

be

issued

in

31-bit

mode.

If

both

the

DCB

and

DCBE

specify

EODAD,

the

DCBE

routine

is

used.

SYNAD

Synchronous

Error

Routine

Exit

The

SYNAD

parameter

of

the

DCB

or

DCBE

macro

specifies

the

address

of

an

error

routine

that

is

to

be

given

control

when

an

input/output

error

occurs.

You

can

use

this

routine

to

analyze

exceptional

conditions

or

uncorrectable

errors.

I/O

errors

usually

occur

asynchronously

to

your

program,

but

the

access

method

calls

your

SYNAD

routine

synchronously

to

macros

that

your

program

issues.

If

an

I/O

error

occurs

during

data

transmission,

standard

error

recovery

procedures

that

are

provided

by

the

operating

system

try

to

correct

the

error

before

returning

control

to

your

program.

These

error

recovery

procedures

generally

are

asynchronous

to

your

program.

An

uncorrectable

error

usually

causes

an

abnormal

termination

of

the

task.

However,

if

you

specify

the

address

of

an

error

analysis

routine

(called

a

SYNAD

routine)

in

the

DCB

or

DCBE

macro,

that

routine

can

try

to

correct

or

ignore

the

error

and

prevent

an

abnormal

termination.

The

routine

is

given

control

when

the

application

program

issues

the

access

method

macro

that

requires

the

buffer

that

received

the

uncorrectable

error.

For

the

queued

access

methods

this

generally

means

after

enough

PUT

or

GET

macros

to

fill

BUFNO-1

buffers

past

the

failing

block.

For

the

basic

access

methods

this

means

when

your

program

issues

a

CHECK

macro

for

the

failing

DECB.

For

BDAM,

BSAM,

BPAM,

and

QSAM,

the

control

program

provides

a

pointer

to

the

status

indicators

shown

in

Figure

112

on

page

518.

The

block

being

read

or

written

can

be

accepted

or

skipped,

or

processing

can

be

terminated.

Table

45

on

page

521

shows

the

exception

code

bits

for

QISAM.

Using

Non-VSAM

User-Written

Exit

Routines

520

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

45.

Exception

Code

Bits—QISAM

Exception

Field

Code

Bit

CLOSE

Code

GET

Set

PUT

by

PUTX

SETL

Condition

If

On

DCBEXCD1

0

Type

K

Record

Not

Found

1

Type

I

Nonvalid

actual

address

for

lower

limit

2

X

Space

not

found

for

adding

a

record

3

X

Nonvalid

request

4

X

Uncorrectable

input

error

5

X

X

X

Uncorrectable

output

error

6

X

X

Block

could

not

be

reached

(input)

7

X

X

Block

could

not

be

reached

(update)

DCBEXCD2

0

X

Sequence

check

1

X

Duplicate

record

2

X

Data

control

block

closed

when

error

routine

entered

3

X

Overflow

record

4

X

Incorrect

record

length

5-7

Reserved

for

future

use

Descriptions

of

the

conditions

in

Table

45

follow:

v

Record

Not

Found:

The

logical

record

with

the

specified

key

is

not

found

in

the

data

set.

This

happens

if

the

specified

key

is

higher

than

the

highest

key

in

the

highest-level

index

or

if

the

record

is

not

in

either

the

primary

area

or

the

overflow

area

of

the

data

set.

v

Invalid

Actual

Address

for

Lower

Limit

condition

is

reported

if

the

specified

lower

limit

address

is

outside

the

space

allocated

to

the

data

set.

v

Space

Not

Found

for

Adding

a

Record:

The

space

allocated

to

the

data

set

is

already

filled.

In

locate

mode,

a

buffer

segment

address

is

not

provided.

In

move

mode,

data

is

not

moved.

v

Invalid

Request:

(1)

The

data

set

is

already

being

referred

to

sequentially

by

the

application

program,

(2)

the

buffer

cannot

contain

the

key

and

the

data,

or

(3)

the

specified

type

is

not

also

specified

in

the

DCBMACRF

field

of

the

data

control

block.

v

Uncorrectable

Input

Error:

The

control

program’s

error

recovery

procedures

encounter

an

uncorrectable

error

when

transferring

a

block

from

secondary

storage

to

an

input

buffer.

The

buffer

address

is

placed

in

register

1,

and

the

SYNAD

exit

routine

is

given

control

when

a

GET

macro

instruction

is

issued

for

the

first

logical

record.

v

Uncorrectable

Output

Error:

The

control

program’s

error

recovery

procedures

encounter

an

uncorrectable

error

when

transferring

a

block

from

an

output

buffer

to

secondary

storage.

If

the

error

is

encountered

during

closing

of

the

data

control

block,

bit

2

of

DCBEXCD2

is

set

to

1

and

the

SYNAD

exit

routine

is

given

control

immediately.

Otherwise,

control

program

action

depends

on

whether

load

mode

or

scan

mode

is

being

used.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

521

If

a

data

set

is

being

created

(load

mode),

the

SYNAD

exit

routine

is

given

control

when

the

next

PUT

or

CLOSE

macro

instruction

is

issued.

If

a

failure

to

write

a

data

block

occurs,

register

1

contains

the

address

of

the

output

buffer,

and

register

0

contains

the

address

of

a

work

area

containing

the

first

16

bytes

of

the

IOB;

for

other

errors,

the

contents

of

register

1

are

meaningless.

After

appropriate

analysis,

the

SYNAD

exit

routine

should

close

the

data

set

or

end

the

job

step.

If

records

are

to

be

subsequently

added

to

the

data

set

using

the

queued

indexed

sequential

access

method

(QISAM),

the

job

step

should

be

terminated

by

issuing

an

abend

macro

instruction.

(Abend

closes

all

open

data

sets.

However,

an

ISAM

data

set

is

only

partially

closed,

and

it

can

be

reopened

in

a

later

job

to

add

additional

records

by

using

QISAM.)

Subsequent

execution

of

a

PUT

macro

instruction

would

cause

reentry

to

the

SYNAD

exit

routine,

because

an

attempt

to

continue

loading

the

data

set

would

produce

unpredictable

results.

If

a

data

set

is

being

processed

(scan

mode),

the

address

of

the

output

buffer

in

error

is

placed

in

register

1,

the

address

of

a

work

area

containing

the

first

16

bytes

of

the

IOB

is

placed

in

register

0,

and

the

SYNAD

exit

routine

is

given

control

when

the

next

GET

macro

instruction

is

issued.

Buffer

scheduling

is

suspended

until

the

next

GET

macro

instruction

is

reissued.

v

Block

Could

Not

Be

Reached

(Input)

condition

is

reported

if

the

control

program’s

error

recovery

procedures

encounter

an

uncorrectable

error

in

searching

an

index

or

overflow

chain.

The

SYNAD

exit

routine

is

given

control

when

a

GET

macro

instruction

is

issued

for

the

first

logical

record

of

the

unreachable

block.

v

Block

Could

Not

Be

Reached

(Update):

The

control

program’s

error

recovery

procedures

encounter

an

uncorrectable

error

in

searching

an

index

or

overflow

chain.

If

the

error

is

encountered

during

closing

of

the

data

control

block,

bit

2

of

DCBEXCD2

is

set

to

1

and

the

SYNAD

exit

routine

is

given

control

immediately.

Otherwise,

the

SYNAD

exit

routine

is

given

control

when

the

next

GET

macro

instruction

is

issued.

v

Sequence

Check:

A

PUT

macro

instruction

refers

to

a

record

whose

key

has

a

smaller

numeric

value

than

the

key

of

the

record

previously

referred

to

by

a

PUT

macro

instruction.

The

SYNAD

exit

routine

is

given

control

immediately;

the

record

is

not

transferred

to

secondary

storage.

v

Duplicate

Record:

A

PUT

macro

instruction

refers

to

a

record

whose

key

duplicates

the

record

previously

referred

to

by

a

PUT

macro

instruction.

The

SYNAD

exit

routine

is

given

control

immediately;

the

record

is

not

transferred

to

secondary

storage.

v

Data

Control

Block

Closed

When

Error

Routine

Entered:

The

control

program’s

error

recovery

procedures

encounter

an

uncorrectable

output

error

during

closing

of

the

data

control

block.

Bit

5

or

7

of

DCBEXCD1

is

set

to

1,

and

the

SYNAD

exit

routine

is

immediately

given

control.

After

appropriate

analysis,

the

SYNAD

routine

must

branch

to

the

address

in

return

register

14

so

that

the

control

program

can

finish

closing

the

data

control

block.

v

Overflow

Record:

The

input

record

is

an

overflow

record.

The

SYNAD

exit

routine

is

entered

only

if

bit

4,

5,

6,

or

7

of

DCBEXCD1

is

also

on.

v

Incorrect

Record

Length:

The

length

of

the

record

as

specified

in

the

record-descriptor

word

(RDW)

is

larger

than

the

value

in

the

DCBLRECL

field

of

the

data

control

block.

Using

Non-VSAM

User-Written

Exit

Routines

522

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Register

Contents

Table

46

shows

the

register

contents

on

entry

to

the

SYNAD

routine

for

BDAM,

BPAM,

BSAM,

and

QSAM.

Table

46.

Register

Contents

on

Entry

to

SYNAD

Routine—BDAM,

BPAM,

BSAM,

and

QSAM

Register

Bits

Meaning

0

0-7

Value

to

be

added

to

the

status

indicator’s

address

to

provide

the

address

of

the

first

CCW

(QSAM

only).

Value

may

be

zero,

meaning

unavailable,

if

LBI

is

used.

8-31

Address

of

the

associated

data

event

control

block

for

BDAM,

BPAM,

and

BSAM

unless

bit

2

of

register

1

is

on;

address

of

the

status

indicators

shown

in

Figure

112

on

page

518

for

QSAM.

If

bit

2

of

register

1

is

on,

the

failure

occurred

in

CNTRL,

POINT,

or

BSP

and

this

field

contains

the

address

on

an

internal

BSAM

ECB.

1

0

Bit

is

on

for

error

caused

by

input

operation.

1

Bit

is

on

for

error

caused

by

output

operation.

2

Bit

is

on

for

error

caused

by

BSP,

CNTRL,

or

POINT

macro

instruction

(BPAM

AND

BSAM

only).

3

Bit

is

on

if

error

occurred

during

update

of

existing

record

or

if

error

did

not

prevent

reading

of

the

record.

Bit

is

off

if

error

occurred

during

creation

of

a

new

record

or

if

error

prevented

reading

of

the

record.

4

Bit

is

on

if

the

request

was

nonvalid.

The

status

indicators

pointed

to

in

the

data

event

control

block

are

not

present

(BDAM,

BPAM,

and

BSAM

only).

5

Bit

is

on

if

a

nonvalid

character

was

found

in

paper

tape

conversion

(BSAM

and

QSAM

only).

6

Bit

is

on

for

a

hardware

error

(BDAM

only).

7

Bit

is

on

if

no

space

was

found

for

the

record

(BDAM

only).

8-31

Address

of

the

associated

data

control

block.

2-13

0-31

Contents

that

existed

before

the

macro

instruction

was

issued.

14

0-7

Reserved.

8-31

Return

address.

15

0-31

Address

of

the

error

analysis

routine.

Table

47

on

page

524

shows

the

register

contents

on

entry

to

the

SYNAD

routine

for

BISAM.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

523

Table

47.

Register

Contents

on

Entry

to

SYNAD

Routine—BISAM

Register

Bits

Meaning

0

0-7

Reserved.

8-31

Address

of

the

first

of

two

sense

bytes.

(Sense

information

is

valid

only

when

associated

with

a

unit

check

condition.)

1

0-7

Reserved.

8-31

Address

of

the

DECB.

See

Table

40

on

page

513.

2-13

0-31

Contents

that

existed

before

the

macro

instruction

was

issued.

14

0-7

Reserved.

8-31

Return

address.

15

0-7

Reserved.

8-31

Address

of

the

SYNAD

exit

routine.

Table

48

shows

the

register

contents

on

entry

to

the

SYNAD

routine

for

QISAM.

Table

48.

Register

Contents

on

Entry

to

SYNAD

Routine—QISAM

Register

Bits

Meaning

0

0

Bit

0=1

indicates

that

bits

8-31

hold

the

address

of

the

key

in

error

(only

set

for

a

sequence

error).

If

bit

0=1—address

of

key

that

is

out

of

sequence.

If

bit

0=0—address

of

a

work

area.

1-7

Reserved.

8-31

Address

of

a

work

area

containing

the

first

16

bytes

of

the

IOB

(after

an

uncorrectable

I/O

error

caused

by

a

GET,

PUT,

or

PUTX

macro

instruction;

original

contents

destroyed

in

other

cases).

If

the

error

condition

was

detected

before

I/O

was

started,

register

0

contains

all

zeros.

1

0-7

Reserved.

8-31

Address

of

the

buffer

containing

the

error

record

(after

an

uncorrectable

I/O

error

caused

by

a

GET,

PUT,

or

PUTX

macro

instruction

while

attempting

to

read

or

write

a

data

record;

in

other

cases,

this

register

contains

0).

2-13

0-31

Contents

that

existed

before

the

macro

instruction

was

issued.

14

0-7

Reserved.

8-31

Return

address.

This

address

is

either

an

address

in

the

control

program’s

CLOSE

routine

(bit

2

of

DCBEXCD2

is

on),

or

the

address

of

the

instruction

following

the

expansion

of

the

macro

instruction

that

caused

the

SYNAD

exit

routine

to

be

given

control

(bit

2

of

DCBEXCD2

is

off).

15

0-7

Reserved.

8-31

Address

of

the

SYNAD

exit

routine.

Using

Non-VSAM

User-Written

Exit

Routines

524

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Programming

Considerations

For

BSAM,

BPAM,

and

QSAM

your

SYNAD

routine

is

entered

with

the

addressability

(24-

or

31-bit)

of

when

you

issued

the

macro

that

caused

entry

to

SYNAD.

This

typically

is

a

CHECK,

GET,

or

PUT

macro.

DCB

SYNAD

identifies

a

routine

that

resides

below

the

line

(RMODE

is

24).

DCBE

SYNAD

identifies

a

routine

that

may

reside

above

the

line.

If

it

resides

above

the

line,

then

all

macros

that

might

detect

an

I/O

error

must

be

issued

in

31-bit

mode.

If

both

the

DCB

and

DCBE

specify

SYNAD,

the

DCBE

routine

will

be

used.

You

can

write

a

SYNAD

routine

to

determine

the

cause

and

type

of

error

that

occurred

by

examining:

v

The

contents

of

the

general

registers

v

The

data

event

control

block

(see

“Status

Information

Following

an

Input/Output

Operation”

on

page

512)

v

The

exceptional

condition

code

v

The

standard

status

and

sense

indicators

You

can

use

the

SYNADAF

macro

to

perform

this

analysis

automatically.

This

macro

produces

an

error

message.

Your

program

can

use

a

PUT,

WRITE,

or

WTO

macro

to

print

the

message.

Your

SYNAD

routine

can

act

as

an

exit

routine

and

return

to

its

caller,

or

the

SYNAD

routine

can

continue

in

your

main

program

with

restrictions

on

the

DCB.

The

SYNAD

routine

branches

elsewhere

in

your

program

and,

after

the

analysis

is

complete,

you

can

return

control

to

the

operating

system

or

close

the

data

set.

If

you

close

the

data

set,

you

cannot

use

the

temporary

close

(CLOSE

TYPE=T)

option

in

the

SYNAD

routine.

To

continue

processing

the

same

data

set,

you

must

first

return

control

to

the

control

program

by

a

RETURN

macro.

The

control

program

then

transfers

control

to

your

processing

program,

subject

to

the

conditions

described

below.

Never

attempt

to

reread

or

rewrite

the

record,

because

the

system

has

already

attempted

to

recover

from

the

error.

You

should

not

use

the

FEOV

macro

against

the

data

set

for

which

the

SYNAD

routine

was

entered,

within

the

SYNAD

routine.

Queued

Access

Methods

When

you

are

using

GET

and

PUT

to

process

a

sequential

data

set,

the

operating

system

provides

three

automatic

error

options

(EROPT)

to

be

used

if

there

is

no

SYNAD

routine

or

if

you

want

to

return

control

to

your

program

from

the

SYNAD

routine:

ACC—accept

the

erroneous

block

SKP—skip

the

erroneous

block

ABE—abnormally

terminate

the

task

These

options

are

applicable

only

to

data

errors,

because

control

errors

result

in

abnormal

termination

of

the

task.

Data

errors

affect

only

the

validity

of

a

block

of

data.

Control

errors

affect

information

or

operations

necessary

for

continued

processing

of

the

data

set.

These

options

are

not

applicable

to

a

spooled

data

set,

a

subsystem

data

set,

or

output

errors,

except

output

errors

on

a

real

printer.

If

the

EROPT

and

SYNAD

fields

are

not

complete,

ABE

is

assumed.

Because

EROPT

applies

to

a

physical

block

of

data,

and

not

to

a

logical

record,

use

of

SKP

or

ACC

may

result

in

incorrect

assembly

of

spanned

records.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

525

Basic

Access

Methods

When

you

use

READ

and

WRITE

macros,

errors

are

detected

when

you

issue

a

CHECK

macro.

If

you

are

processing

a

direct

data

set,

sequential

data

set,

or

PDS

and

you

return

to

the

control

program

from

your

SYNAD

routine,

the

operating

system

assumes

that

you

have

accepted

the

bad

block.

If

you

are

creating

a

direct

data

set

and

you

return

to

the

control

program

from

your

SYNAD

routine,

your

task

ends

abnormally.

If

you

are

processing

a

direct

data

set,

make

the

return

to

the

control

program

through

register

14

to

make

an

internal

system

control

block

available

for

reuse

in

a

READ

or

WRITE

macro.

Returning

from

the

SYNAD

routine

Your

SYNAD

routine

can

end

by

branching

to

another

routine

in

your

program,

such

as

a

routine

that

closes

the

data

set.

It

can

also

end

by

returning

control

to

the

control

program.

The

control

program

then

returns

control

to

the

next

sequential

instruction

(after

the

macro)

in

your

program,

after

a

basic

access

method

or

if

the

queued

access

method

is

honoring

EROPT=AC

or

EROPT=SKP.

If

your

routine

returns

control,

the

conventions

for

saving

and

restoring

the

contents

of

registers

are

as

follows:

v

The

SYNAD

routine

must

preserve

the

contents

of

registers

13

and

14.

The

routine

must

also

preserve

the

contents

of

registers

2

through

12

if

the

logic

of

your

program

requires

their

preservation.

On

return

to

your

program,

the

contents

of

registers

2

through

12

will

be

the

same

as

on

return

to

the

control

program

from

the

SYNAD

routine.

v

Register

13

contains

the

address

of

a

save

area

that

the

control

program

uses.

The

SYNAD

routine

must

not

use

this

save

area.

If

the

routine

saves

and

restores

register

contents,

it

must

provide

its

own

save

area.

v

If

the

SYNAD

routine

calls

another

routine

or

issues

supervisor

or

data

management

macros,

it

must

provide

its

own

save

area

or

issue

a

SYNADAF

macro.

The

SYNADAF

macro

provides

a

save

area

for

its

own

use,

and

makes

this

area

available

to

the

SYNAD

routine.

A

SYNADRLS

macro

must

remove

such

a

save

area

from

the

save

area

chain

before

control

is

returned

to

the

control

program.

Using

Non-VSAM

User-Written

Exit

Routines

526

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

ISAM

If

the

error

analysis

routine

receives

control

from

the

CLOSE

routine

when

indexed

sequential

data

sets

are

being

created

(the

DCB

is

opened

for

QISAM

load

mode),

bit

3

of

the

IOBFLAGS

field

in

the

load

mode

buffer

control

table

(IOBBCT)

is

set

to

1.

The

DCBWKPT6

field

in

the

DCB

contains

an

address

of

a

list

of

work

area

pointers

(ISLVPTRS).

The

pointer

to

the

IOBBCT

is

at

offset

8

in

this

list

as

shown

in

the

following

diagram:

If

the

error

analysis

routine

receives

control

from

the

CLOSE

routine

when

indexed

sequential

data

sets

are

being

processed

using

QISAM

scan

mode,

bit

2

of

the

DCB

field

DCBEXCD2

is

set

to

1.

For

information

about

QISAM

error

conditions

and

the

meanings

they

have

when

the

ISAM

interface

to

VSAM

is

being

used,

see

Appendix

E,

“Using

ISAM

Programs

with

VSAM

Data

Sets,”

on

page

603.

DCB

Exit

List

The

EXLST

parameter

of

the

DCB

macro

specifies

the

address

of

a

DCB

exit

list.

The

DCB

exit

list

may

contain

the

addresses

of

special

processing

routines,

a

forms

control

buffer

(FCB)

image,

a

user

totaling

area,

an

area

for

a

copy

of

the

JFCB,

and

an

allocation

retrieval

list.

A

DCB

exit

list

must

be

created

if

user

label,

data

control

block,

end-of-volume,

block

count,

JFCBE,

or

DCB

abend

exits

are

used,

or

if

a

PDAB

macro

or

FCB

image

is

defined

in

the

processing

program.

The

DCB

exit

list

must

begin

on

a

fullword

boundary

and

each

entry

in

the

list

requires

one

fullword.

Each

exit

list

entry

is

identified

by

a

code

in

the

high-order

byte,

and

the

address

of

the

routine,

image,

or

area

is

specified

in

the

3

low-order

bytes.

Codes

and

addresses

(including

the

information

location)

for

the

exit

list

entries

are

shown

in

Table

49.

DCBWKPT6
A(IOBBCT)

IOBBCT

IOBFLAGS

Work area
pointers

(ISLVPTRS)
DCB

248

0 1
4

8

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

527

Table

49.

DCB

Exit

List

Format

and

Contents

Entry

Type

Hex

Code

3

Byte

Address—Purpose

Page

Inactive

entry

00

Ignore

the

entry;

it

is

not

active.

Input

header

label

exit

01

Process

a

user

input

header

label.

541

Output

header

label

exit

02

Create

a

user

output

header

label.

541

Input

trailer

label

exit

03

Process

a

user

input

trailer

label.

541

Output

trailer

label

exit

04

Create

a

user

output

trailer

label.

541

Data

control

block

OPEN

exit

05

Take

an

exit

during

OPEN

processing.

535

End-of-volume

exit

06

Take

an

end-of-volume

exit.

537

JFCB

exit

07

JFCB

address

for

RDJFCB

and

OPEN

TYPE=J

macros.

539

08

Reserved.

09

Reserved.

User

totaling

area

0A

Address

of

beginning

of

user’s

totaling

area.

550

Block

count

unequal

exit

0B

Process

tape

block

count

discrepancy.

536

Defer

input

trailer

label

0C

Defer

processing

of

a

user

input

trailer

label

from

end-of-data

until

closing.

541

Defer

nonstandard

input

trailer

label

0D

Defer

processing

of

a

nonstandard

input

trailer

label

on

magnetic

tape

unit

from

end-of-data

until

closing

(no

exit

routine

address).

536

0E-0F

Reserved.

FCB

image

10

Define

an

FCB

image.

537

DCB

abend

exit

11

Examine

the

abend

condition

and

select

one

of

several

options.

531

QSAM

parallel

input

12

Address

of

the

PDAB

for

which

this

DCB

is

a

member.

550

Allocation

retrieval

list

13

Retrieve

allocation

information

for

one

or

more

data

sets

with

the

RDJFCB

macro.

530

14

Reserved.

JFCBE

exit

15

Take

an

exit

during

OPEN

to

let

a

user

examine

JCL-specified

setup

requirements

for

a

3800

printer.

540

16

Reserved.

OPEN/EOV

nonspecific

tape

volume

mount

17

Option

to

specify

a

tape

volume

serial

number.

545

OPEN/EOV

volume

security/verification

18

Verify

a

tape

volume

and

some

security

checks.

548

1A-7F

Reserved.

Last

entry

80

Treat

this

entry

as

the

last

entry

in

the

list.

This

code

can

be

specified

with

any

of

the

above

but

must

always

be

specified

with

the

last

entry.

Using

Non-VSAM

User-Written

Exit

Routines

528

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

You

can

activate

or

deactivate

any

entry

in

the

list

by

placing

the

required

code

in

the

high-order

byte.

Care

must

be

taken,

however,

not

to

destroy

the

last

entry

indication.

The

operating

system

routines

scan

the

list

from

top

to

bottom,

and

the

first

active

entry

found

with

the

proper

code

is

selected.

You

can

shorten

the

list

during

execution

by

setting

the

high-order

bit

to

1,

and

extend

it

by

setting

the

high-order

bit

to

0.

Exit

routines

identified

in

a

DCB

exit

list

are

entered

in

24-bit

mode

even

if

the

rest

of

your

program

is

executing

in

31-bit

mode.

z/OS

DFSMS

Macro

Instructions

for

Data

Sets

has

an

example

showing

how

to

build

a

24-bit

routine

in

an

area

below

the

16

MB

line

that

acts

as

a

glue

routine

and

branches

to

your

31-bit

routine

above

the

line.

Register

Contents

for

Exits

from

EXLST

When

control

is

passed

to

an

exit

routine,

the

registers

contain

the

following

information:

Register

Contents

0

Variable;

see

exit

routine

description.

1

The

3

low-order

bytes

contain

the

address

of

the

DCB

currently

being

processed,

except

when

the

user-label

exits

(X'01'

-

X'04'

and

X'0C'),

user

totaling

exit

(X'0A'),

DCB

abend

exit

(X'11'),

nonspecific

tape

volume

mount

exit

(X'17'),

or

the

tape

volume

security/verification

exit

(X'18')

is

taken,

when

register

1

contains

the

address

of

a

parameter

list.

The

contents

of

the

parameter

list

are

described

in

the

explanation

of

each

exit

routine.

2-13

Contents

before

execution

of

the

macro.

Note:

These

register

contents

are

unpredictable

if

the

exit

is

called

during

task

termination.

For

example,

the

system

might

call

the

DCB

ABEND

exit

or

the

end-of-volume

exit

for

QSAM

output.

14

Return

address

(must

not

be

altered

by

the

exit

routine).

15

Address

of

exit

routine

entry

point.

The

conventions

for

saving

and

restoring

register

contents

are

as

follows:

v

The

exit

routine

must

preserve

the

contents

of

register

14.

It

need

not

preserve

the

contents

of

other

registers.

The

control

program

restores

the

contents

of

registers

2

to

13

before

returning

control

to

your

program.

v

The

exit

routine

must

not

use

the

save

area

whose

address

is

in

register

13,

because

this

area

is

used

by

the

control

program.

If

the

exit

routine

calls

another

routine

or

issues

supervisor

or

data

management

macros,

it

must

provide

the

address

of

a

new

save

area

in

register

13.

v

The

exit

routine

must

not

issue

an

access

method

macro

that

refers

to

the

DCB

for

which

the

exit

routine

was

called,

unless

otherwise

specified

in

the

individual

exit

routine

descriptions

that

follow.

Serialization

During

any

of

the

exit

routines

described

in

this

section,

the

system

might

hold

an

enqueue

on

the

SYSZTIOT

resource.

The

resource

represents

the

TIOT

and

DSAB

chain

and

holding

it

or

being

open

to

the

DD

are

the

only

ways

to

ensure

that

dynamic

unallocation

in

another

task

does

not

eliminate

those

control

blocks

while

they

are

being

examined.

If

the

system

holds

the

SYSZTIOT

resource,

your

exit

routine

cannot

use

certain

system

functions

that

might

need

the

resource.

Those

functions

include

LOCATE,

OBTAIN,

SCRATCH,

CATALOG,

OPEN,

CLOSE,

FEOV,

and

dynamic

allocation.

Whether

the

system

holds

that

resource

is

part

of

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

529

system

logic

and

IBM

might

change

it

in

a

future

release.

IBM

recommends

that

your

exit

routine

not

depend

on

the

system

holding

or

not

holding

SYSZTIOT.

One

example

of

your

exit

routine

depending

on

the

system

holding

SYSZTIOT

is

your

routine

testing

control

blocks

for

DDs

outside

the

concatenation.

Allocation

Retrieval

List

The

RDJFCB

macro

uses

the

DCB

exit

list

entry

with

code

X'13'

to

retrieve

allocation

information

(JFCBs

and

volume

serial

numbers).

When

you

issue

RDJFCB,

the

JFCBs

for

the

specified

data

sets,

including

concatenated

data

sets,

and

their

volume

serial

numbers

are

placed

in

the

area

located

at

the

address

specified

in

the

allocation

retrieval

list.

The

DCB

exit

list

entry

contains

the

address

of

the

allocation

retrieval

list.

The

RDJFCB

macro

passes

the

following

return

codes

in

register

15:

Return

Code

Meaning

0

(X'00')

RDJFCB

has

completed

the

allocation

retrieval

list

successfully.

4

(X'04')

One

or

more

DCBs

had

one

of

the

following

conditions

and

were

skipped:

v

DCB

currently

being

processed

by

O/C/EOV

or

a

similar

function.

v

No

data

set

is

allocated

with

the

ddname

that

is

in

the

DCB.

v

The

DCB

is

not

open

and

its

ddname

is

blank.

DCBs

that

were

not

skipped

were

handled

successfully.

8

(X'08')

One

or

more

DCBs

had

an

allocation

retrieval

list

which

could

not

be

handled.

Each

allocation

retrieval

list

contains

a

reason

code

to

describe

its

status.

One

or

more

DCBs

may

have

an

error

described

by

return

code

4,

in

which

case

their

allocation

retrieval

lists

will

not

have

a

reason

code.

For

more

information

about

the

RDJFCB

macro,

see

z/OS

DFSMSdfp

Advanced

Services.

Programming

Conventions

The

allocation

retrieval

list

must

be

below

the

16

MB

line,

but

the

allocation

return

area

can

be

above

the

16

MB

line.

When

you

are

finished

obtaining

information

from

the

retrieval

areas,

free

the

storage

with

a

FREEMAIN

or

STORAGE

macro.

You

can

use

the

IHAARL

macro

to

generate

and

map

the

allocation

retrieval

list.

For

more

information

about

the

IHAARL

macro

see

z/OS

DFSMSdfp

Advanced

Services.

Restrictions

When

OPEN

TYPE=J

is

issued,

the

X'13'

exit

has

no

effect.

The

JFCB

exit

at

X'07'

can

be

used

instead

(see

“JFCB

Exit”

on

page

539).

Using

Non-VSAM

User-Written

Exit

Routines

530

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

DCB

ABEND

Exit

The

DCB

ABEND

exit

is

provided

to

give

you

some

options

regarding

the

action

you

want

the

system

to

take

when

a

condition

occurs

that

may

result

in

abnormal

termination

of

your

task.

This

exit

can

be

taken

any

time

an

abend

condition

occurs

during

the

process

of

opening,

closing,

or

handling

an

end-of-volume

condition

for

a

DCB

associated

with

your

task.

The

exit

is

taken

only

for

determinate

errors

that

the

system

can

associate

with

the

DCB.

When

an

abend

condition

occurs,

a

write-to-programmer

message

about

the

abend

is

issued

and

your

DCB

abend

exit

is

given

control,

provided

there

is

an

active

DCB

abend

exit

routine

address

in

the

exit

list

contained

in

the

DCB

being

processed.

If

STOW

called

the

end-of-volume

routines

to

get

secondary

space

to

write

an

end-of-file

mark

for

a

PDS,

or

if

the

DCB

being

processed

is

for

an

indexed

sequential

data

set,

the

DCB

abend

exit

routine

is

not

given

control

if

an

abend

condition

occurs.

When

your

exit

routine

is

entered

the

contents

of

the

registers

are

the

same

as

for

other

DCB

exit

list

routines,

except

that

the

3

low-order

bytes

of

register

1

contain

the

address

of

the

parameter

list

described

in

Figure

113.

Your

ABEND

exit

routine

can

choose

one

of

four

options:

1.

To

terminate

your

task

immediately

2.

To

delay

the

abend

until

all

the

DCBs

in

the

same

OPEN

or

CLOSE

macro

are

opened

or

closed

3.

To

ignore

the

abend

condition

and

continue

processing

without

making

reference

to

the

DCB

on

which

the

abend

condition

was

encountered,

or

4.

To

try

to

recover

from

the

error.

Not

all

of

these

options

are

available

for

each

abend

condition.

Your

DCB

ABEND

exit

routine

must

determine

which

option

is

available

by

examining

the

contents

of

the

option

mask

byte

(byte

3)

of

the

parameter

list.

The

address

of

the

parameter

Length

or

Offset

Bit

Pattern

Description

0(0)

2

System

completion

code

in

first

12

bits.

2(2)

1

Return

code

associated

with

system

completion

code.

For

example,

with

abend

213-30,

this

byte

will

have

X’30’.

Input

to

exit:

3(3)

1

Option

mask.

xxxx

...x

Reserved.

....

1...

Okay

to

recover.

....

.1..

Okay

to

ignore.

....

..1.

Okay

to

delay.

Output

from

exit:

3(3)

1

Option.

See

Table

50

on

page

532

Input

to

exit:

4(4)

4

Address

of

DCB.

8(8)

4

For

system

diagnostic

use.

12(C)

4

Address

of

recovery

work

area.

Must

be

below

16

MB.

Figure

113.

Parameter

List

Passed

to

DCB

Abend

Exit

Routine

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

531

list

is

passed

in

register

1.

Figure

113

shows

the

contents

of

the

parameter

list

and

the

possible

settings

of

the

option

mask

when

your

routine

receives

control.

When

your

DCB

ABEND

exit

routine

returns

control

to

the

system

control

program

(this

can

be

done

using

the

RETURN

macro),

the

option

mask

byte

must

contain

the

setting

that

specifies

the

action

you

want

to

take.

These

actions

and

the

corresponding

settings

of

the

option

mask

byte

are

in

Table

50.

Table

50.

Option

Mask

Byte

Settings

Decimal

Value

Action

0

Abnormally

terminate

the

task

immediately.

4

Ignore

the

abend

condition.

8

Delay

the

abend

until

the

other

DCBs

being

processed

concurrently

are

opened

or

closed.

12

Make

an

attempt

to

recover.

Your

exit

routine

must

inspect

bits

4,

5,

and

6

of

the

option

mask

byte

(byte

3

of

the

parameter

list)

to

determine

which

options

are

available.

If

a

bit

is

set

to

1,

the

corresponding

option

is

available.

Indicate

your

choice

by

inserting

the

appropriate

value

in

byte

3

of

the

parameter

list,

overlaying

the

bits

you

inspected.

If

you

use

a

value

that

specifies

an

option

that

is

not

available,

the

abend

is

issued

immediately.

If

the

contents

of

bits

4,

5,

and

6

of

the

option

mask

are

0,

you

must

not

change

the

option

mask.

This

unchanged

option

mask

results

in

a

request

for

an

immediate

abend.

If

bit

5

of

the

option

mask

is

set

to

1,

you

can

ignore

the

abend

by

placing

a

value

of

4

in

byte

3

of

the

parameter

list.

Processing

on

the

current

DCB

stops

and

bit

DCBOFOPN

is

off.

There

is

no

need

to

issue

CLOSE.

If

you

subsequently

attempt

to

use

this

DCB

other

than

to

issue

CLOSE

or

FREEPOOL,

the

results

are

unpredictable.

If

you

ignore

an

error

in

end-of-volume,

the

DCB

is

closed

and

control

is

returned

to

your

program

at

the

point

that

caused

the

end-of-volume

condition

(unless

the

end-of-volume

routines

were

called

by

the

CLOSE

routines).

If

the

end-of-volume

routines

were

called

by

the

CLOSE

routines,

an

ABEND

macro

is

issued

even

though

the

IGNORE

option

was

selected.

If

bit

6

of

the

option

mask

is

set

to

1,

you

can

delay

the

abend

by

placing

a

value

of

8

in

byte

3

of

the

parameter

list.

All

other

DCBs

being

processed

by

the

same

OPEN

or

CLOSE

invocation

will

be

processed

before

the

abend

is

issued.

For

end-of-volume,

however,

you

can’t

delay

the

abend

because

the

end-of-volume

routine

never

has

more

than

one

DCB

to

process.

If

bit

4

of

the

option

mask

is

set

to

1,

you

can

attempt

to

recover.

Place

a

value

of

12

in

byte

3

of

the

parameter

list

and

provide

information

for

the

recovery

attempt.

Table

51

on

page

533

lists

the

abend

conditions

for

which

recovery

can

be

attempted.

See

z/OS

MVS

System

Messages,

Vol

7

(IEB-IEE);

z/OS

MVS

System

Messages,

Vol

8

(IEF-IGD);

z/OS

MVS

System

Messages,

Vol

9

(IGF-IWM);

z/OS

MVS

System

Messages,

Vol

10

(IXC-IZP);

and

z/OS

MVS

System

Codes.

Using

Non-VSAM

User-Written

Exit

Routines

532

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

51.

Conditions

for

Which

Recovery

Can

Be

Attempted

Completion

Code

Return

Code

Description

of

Error

117

X'38'

An

I/O

error

occurred

during

execution

of

a

read

block

ID

command

issued

to

establish

tape

position.

214

X'10'

DCB

block

count

did

not

agree

with

the

calculated

data

block

count

for

the

tape

data

set.

137

X'24'

A

specific

volume

serial

number

was

specified

for

the

second

or

subsequent

volume

of

an

output

data

set

on

magnetic

tape.

During

EOV

processing,

it

was

discovered

that

the

expiration

date

(from

the

HDR1

label

of

the

first

data

set

currently

on

the

specified

volume)

had

not

passed.

When

requested

to

specify

if

the

volume

could

be

used

despite

the

expiration

date,

the

operator

did

not

reply

U.

214

X'0C'

An

I/O

error

occurred

during

execution

of

a

read

block

ID

command

issued

to

establish

tape

position.

237

X'04'

Block

count

in

DCB

does

not

agree

with

block

count

in

trailer

label.

X'0C'

DCB

block

count

did

not

agree

with

the

calculated

block

count

on

a

cartridge.

413

X'18'

Data

set

was

opened

for

input

and

no

volume

serial

number

was

specified.

X'24'

LABEL=(n)

was

specified,

where

n

was

greater

than

1

and

vol=ser

was

not

specified

for

a

tape

data

set.

613

X'08'

I/O

error

occurred

during

reading

of

tape

label.

X'0C'

Nonvalid

tape

label

was

read.

X'10'

I/O

error

occurred

during

writing

of

tape

label.

X'14'

I/O

error

occurred

during

writing

of

tape

label.

713

X'04'

A

data

set

on

magnetic

tape

was

opened

for

INOUT,

but

the

volume

contained

a

data

set

whose

expiration

date

had

not

been

reached

and

the

operator

denied

permission.

717

X'10'

I/O

error

occurred

during

reading

of

trailer

label

1

to

update

block

count

in

DCB.

737

X'28'

The

EOV

DA

module

was

passed

an

error

return

code

in

register

15

after

issuing

the

IEFSSREQ

macro

instruction.

This

indicates

the

subsystem

(JES3)

discovered

a

functional

or

logical

error

that

it

could

not

process.

813

X'04'

Data

set

name

on

header

label

does

not

match

data

set

name

on

DD

statement.

Recovery

Requirements

For

most

types

of

recoverable

errors,

you

should

supply

a

recovery

work

area

(see

Figure

114

on

page

534)

with

a

new

volume

serial

number

for

each

volume

associated

with

an

error.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

533

If

no

new

volumes

are

supplied

for

such

errors,

recovery

will

be

attempted

with

the

existing

volumes,

but

the

likelihood

of

successful

recovery

is

greatly

reduced.

If

you

request

recovery

for

system

completion

code

117,

return

code

3C,

or

system

completion

code

214,

return

code

0C,

or

system

completion

code

237,

return

code

0C,

you

do

not

need

to

supply

new

volumes

or

a

work

area.

The

condition

that

caused

the

abend

is

disagreement

between

the

DCB

block

count

and

the

calculated

count

from

the

hardware.

To

permit

recovery,

this

disagreement

is

ignored

and

the

value

in

the

DCB

is

used.

If

you

request

recovery

for

system

completion

code

237,

return

code

04,

you

don’t

need

to

supply

new

volumes

or

a

work

area.

The

condition

that

caused

the

abend

is

the

disagreement

between

the

block

count

in

the

DCB

and

that

in

the

trailer

label.

To

permit

recovery,

this

disagreement

is

ignored.

If

you

request

recovery

for

system

completion

code

717,

return

code

10,

you

don’t

need

to

supply

new

volumes

or

a

work

area.

The

abend

is

caused

by

an

I/O

error

during

updating

of

the

DCB

block

count.

To

permit

recovery,

the

block

count

is

not

updated.

So,

an

abnormal

termination

with

system

completion

code

237,

return

code

04,

may

result

when

you

try

to

read

from

the

tape

after

recovery.

You

may

attempt

recovery

from

the

abend

with

system

completion

code

237,

return

code

04,

as

explained

in

the

preceding

paragraph.

System

completion

codes

and

their

associated

return

codes

are

described

in

z/OS

MVS

System

Codes.

The

work

area

that

you

supply

for

the

recovery

attempt

must

begin

on

a

halfword

boundary

and

can

contain

the

information

described

in

Figure

114.

Place

a

pointer

to

the

work

area

in

the

last

3

bytes

of

the

parameter

list

pointed

to

by

register

1

and

described

in

Figure

113

on

page

531.

If

you

acquire

the

storage

for

the

work

area

by

using

the

GETMAIN

macro,

you

can

request

that

it

be

freed

by

a

FREEMAIN

macro

after

all

information

has

been

extracted

from

it.

Set

the

high-order

bit

of

the

option

byte

in

the

work

area

to

1

and

place

the

number

of

the

subpool

from

which

the

work

area

was

requested

in

byte

3

of

the

recovery

work

area.

Only

one

recovery

attempt

per

data

set

is

permitted

during

OPEN,

CLOSE,

or

end-of-volume

processing.

If

a

recovery

attempt

is

unsuccessful,

you

can

not

request

another

recovery.

The

second

time

through

the

exit

routine

you

may

request

only

one

of

the

other

options

(if

allowed):

Issue

the

abend

immediately,

ignore

the

abend,

or

delay

the

abend.

If

at

any

time

you

select

an

option

that

is

not

permitted,

the

abend

is

issued

immediately.

Length

or

Offset

Bit

Pattern

Description

0

2

Length

of

this

work

area.

2

1

Option

byte.

1...

....

Free

this

work

area.

.1..

....

Volume

serial

numbers

provided.

..xx

xxxx

Reserved.

3

1

Subpool

number.

4

1

Number

of

volumes

that

follow.

5

n*6

New

volume

serial

numbers

(six

bytes

each)

Figure

114.

Recovery

Work

Area

Using

Non-VSAM

User-Written

Exit

Routines

534

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

If

recovery

is

successful,

you

still

receive

an

abend

message

on

your

listing.

This

message

refers

to

the

abend

that

would

have

been

issued

if

the

recovery

had

not

been

successful.

DCB

Abend

Installation

Exit

The

DCB

abend

installation

exit

gives

your

installation

an

additional

option

for

handling

error

situations

that

result

in

an

abend.

This

exit

is

taken

any

time

an

abend

condition

occurs

during

the

process

of

opening,

closing,

or

handling

an

end-of-volume

condition

for

a

DCB.

An

IBM-supplied

installation

exit

routine

gives

your

installation

the

option

to

retry

tape

positioning

when

you

receive

a

613

system

completion

code,

return

code

08

or

0C.

For

more

information

about

the

DCB

abend

installation

exit,

see

z/OS

DFSMS

Installation

Exits.

DCB

OPEN

Exit

You

can

specify

in

an

exit

list

the

address

of

a

routine

that

completes

or

modifies

a

DCB

and

does

any

additional

processing

required

before

the

data

set

is

completely

open.

The

routine

is

entered

during

the

opening

process

after

the

JFCB

has

been

used

to

supply

information

for

the

DCB.

“Filling

in

the

DCB”

on

page

318

describes

other

functions

performed

by

OPEN

before

and

after

the

DCB

OPEN

exit.

The

routine

can

determine

data

set

characteristics

by

examining

fields

completed

from

the

data

set

labels.

When

your

DCB

exit

routine

receives

control,

the

3

low-order

bytes

of

register

1

will

contain

the

address

of

the

DCB

currently

being

processed.

See

“Changing

and

Testing

the

DCB

and

DCBE”

on

page

330.

When

opening

a

data

set

for

output

and

the

record

format

is

fixed

or

variable,

you

can

force

the

system

to

calculate

an

optimal

block

size

by

setting

the

block

size

in

the

DCB

or

DCBE

to

zero

before

returning

from

this

exit.

The

system

uses

DCB

block

size

if

it

is

not

using

the

large

block

interface

(LBI).

See

“Large

Block

Interface

(LBI)”

on

page

322.

If

the

zero

value

you

supply

is

not

changed

by

the

DCB

OPEN

installation

exit,

OPEN

determines

a

block

size

when

OPEN

takes

control

after

return

from

the

DCB

OPEN

installation

exit.

See

“System-Determined

Block

Size”

on

page

323.

As

with

label

processing

routines,

the

contents

of

register

14

must

be

preserved

and

restored

if

any

macros

are

used

in

the

routine.

Control

is

returned

to

the

operating

system

by

a

RETURN

macro;

no

return

code

is

required.

This

exit

is

mutually

exclusive

with

the

JFCBE

exit.

If

you

need

both

the

JFCBE

and

DCB

OPEN

exits,

you

must

use

the

JFCBE

exit

to

pass

control

to

your

routines.

The

DCB

OPEN

exit

is

intended

for

modifying

or

updating

the

DCB.

System

functions

should

not

be

attempted

in

this

exit

before

returning

to

OPEN

processing.

In

particular,

dynamic

allocation,

OPEN,

CLOSE,

EOV,

and

DADSM

functions

should

not

be

invoked

because

of

an

existing

OPEN

enqueue

on

the

SYSZTIOT

resources.

Calls

to

DCB

OPEN

Exit

for

Sequential

Concatenation

If

your

program

uses

like

sequential

concatenation

processing,

the

system

calls

your

DCB

OPEN

exit

only

for

the

first

data

set

and

calls

your

EOV

exit

for

the

beginning

of

each

subsequent

data

set

and

for

each

disk

or

tape

volume

after

reading

the

first

volume

of

each

data

set.

If

your

program

uses

unlike

sequential

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

535

concatenation,

the

system

calls

your

DCB

OPEN

exit

at

the

beginning

of

each

data

set

and

calls

your

EOV

exit

only

for

each

volume

of

each

disk

or

tape

data

set

after

the

first

volume

of

the

data

set.

Installation

DCB

OPEN

Exit

After

the

system

calls

your

application’s

optional

DCB

OPEN

exit

or

JFCBE

exit,

it

calls

the

installation

DCB

OPEN

exit.

That

exit

can

augment

or

override

your

application’s

DCB

OPEN

exit.

See

z/OS

DFSMS

Installation

Exits.

Defer

Nonstandard

Input

Trailer

Label

Exit

List

Entry

In

an

exit

list,

you

can

specify

a

code

that

indicates

that

you

want

to

defer

nonstandard

input

trailer

label

processing

from

end-of-data

until

the

data

set

is

closed.

The

address

portion

of

the

entry

is

not

used

by

the

operating

system.

This

exit

list

entry

has

an

effect

only

when

reading

magnetic

tape

that

has

nonstandard

labels.

You

specified

LABEL=(x,NSL)

on

the

DD

statement.

An

end-of-volume

condition

exists

in

several

situations.

Two

examples

are:

(1)

when

the

system

reads

a

tape

mark

at

the

end

of

a

volume

of

a

multivolume

data

set

but

that

volume

is

not

the

last,

and

(2)

when

the

system

reads

a

tape

mark

at

the

end

of

a

data

set.

The

first

situation

is

referred

to

here

as

an

end-of-volume

condition,

and

the

second

as

an

end-of-data

condition,

although

it,

too,

can

occur

at

the

end

of

a

volume.

For

an

end-of-volume

(EOV)

condition,

the

EOV

routine

passes

control

to

your

installation’s

nonstandard

input

trailer

label

routine,

whether

this

exit

code

is

specified.

For

an

end-of-data

condition

when

this

exit

code

is

specified,

the

EOV

routine

does

not

pass

control

to

your

installation’s

nonstandard

input

trailer

label

routine.

Instead,

the

CLOSE

routine

passes

control

to

your

installation’s

nonstandard

input

trailer

label.

Block

Count

Unequal

Exit

In

an

exit

list

you

can

specify

the

address

of

a

routine

that

lets

you

abnormally

terminate

the

task

or

continue

processing

when

the

EOV

routine

finds

an

unequal

block

count

condition.

When

you

are

using

IBM

standard

or

ISO/ANSI

standard

labeled

input

tapes,

the

EOV

function

compares

the

block

count

in

the

trailer

label

with

the

block

count

in

the

DCB.

The

count

in

the

trailer

label

reflects

the

number

of

blocks

written

when

the

data

set

was

created.

The

number

of

blocks

read

when

the

tape

is

used

as

input

is

contained

in

the

DCBBLKCT

field

of

the

DCB.

When

the

system

reads

or

writes

any

kind

of

cartridge

tape,

it

calls

the

block-count-unequal

exit

if

the

DCB

block

count

does

not

match

the

block

count

calculated

for

the

cartridge.

The

EOV

and

CLOSE

functions

perform

these

comparisons

for

cartridges,

even

for

unlabeled

tapes

and

for

writes.

The

result

can

be

a

117-3C

or

237-0C

ABEND,

but

the

system

calls

your

optional

DCB

ABEND

exit.

The

routine

is

entered

during

EOV

processing.

The

trailer

label

block

count

is

passed

in

register

0.

You

can

gain

access

to

the

count

field

in

the

DCB

by

using

the

address

passed

in

register

1

plus

the

proper

displacement,

which

is

shown

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

If

the

block

count

in

the

DCB

differs

from

that

in

the

trailer

label

when

no

exit

routine

is

provided

or

your

exit

gives

return

code

0,

the

system

calls

your

optional

DCB

abend

exit

and

possibly

your

installation’s

DCB

abend

exit.

If

these

exits

do

not

exist

or

they

allow

abnormal

Using

Non-VSAM

User-Written

Exit

Routines

536

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

end,

the

task

is

abnormally

terminated.

The

routine

must

terminate

with

a

RETURN

macro

and

a

return

code

that

indicates

what

action

is

to

be

taken

by

the

operating

system,

as

shown

in

Table

52.

Table

52.

System

Response

to

Block

Count

Exit

Return

Code

Return

Code

System

Action

0

(X'00')

The

task

is

to

be

abnormally

terminated

with

system

completion

code

237,

return

code

4.

4

(X'04')

Normal

processing

is

to

be

resumed.

As

with

other

exit

routines,

the

contents

of

register

14

must

be

saved

and

restored

if

any

macros

are

used.

EOV

Exit

for

Sequential

Data

Sets

You

can

specify

in

an

exit

list

the

address

of

a

routine

that

is

entered

when

end

of

volume

is

reached

in

processing

of

a

physical

sequential

data

set

and

the

system

finds

either

of

these

conditions:

v

There

is

another

tape

or

DASD

volume

for

the

data

set.

v

You

reached

the

end

of

the

data

set,

another

is

concatenated

and

your

program

did

not

have

on

the

DCB

unlike-attributes

bit.

When

you

concatenate

data

sets

with

unlike

attributes,

no

EOV

exits

are

taken

when

beginning

each

data

set.

The

system

treats

the

volumes

of

a

striped

extended

format

data

set

as

if

they

were

one

volume.

For

such

a

data

set

your

EOV

exit

is

called

only

when

the

end

of

the

data

set

is

reached

and

it

is

part

of

a

like

sequential

concatenation.

When

the

EOV

routine

is

entered,

register

0

contains

0

unless

user

totaling

was

specified.

If

you

specified

user

totaling

in

the

DCB

macro

(by

coding

OPTCD=T)

or

in

the

DD

statement

for

an

output

data

set,

register

0

contains

the

address

of

the

user

totaling

image

area.

The

routine

is

entered

after

the

next

volume

has

been

positioned

and

all

necessary

label

processing

has

been

completed.

If

the

volume

is

a

reel

or

cartridge

of

magnetic

tape,

the

tape

is

positioned

after

the

tape

mark

that

precedes

the

beginning

of

the

data.

You

can

use

the

EOV

exit

routine

to

take

a

checkpoint

by

issuing

the

CHKPT

macro

(see

z/OS

DFSMS

Checkpoint/Restart).

If

a

checkpointed

job

step

terminates

abnormally,

it

can

be

restarted

from

the

EOV

checkpoint.

When

the

job

step

is

restarted,

the

volume

is

mounted

and

positioned

as

on

entry

to

the

routine.

Restart

becomes

impossible

if

changes

are

made

to

the

link

pack

area

(LPA)

library

between

the

time

the

checkpoint

is

taken

and

the

job

step

is

restarted.

When

the

EOV

exit

is

entered,

register

1

contains

the

address

of

the

DCB.

Registers

2

-

13

contain

the

contents

when

your

program

issued

the

macro

that

resulted

in

the

EOV

condition.

Register

14

has

the

return

address.

When

the

step

is

restarted,

pointers

to

EOV

modules

must

be

the

same

as

when

the

checkpoint

was

taken.

The

EOV

exit

routine

returns

control

in

the

same

manner

as

the

DCB

exit

routine.

The

contents

of

register

14

must

be

preserved

and

restored

if

any

macros

are

used

in

the

routine.

Control

is

returned

to

the

operating

system

by

a

RETURN

macro;

no

return

code

is

required.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

537

FCB

Image

Exit

You

can

specify

in

an

exit

list

the

address

of

a

forms

control

buffer

(FCB)

image.

This

FCB

image

can

be

loaded

into

the

forms

control

buffer

of

the

printer

control

unit.

The

FCB

controls

the

movement

of

forms

in

printers

that

do

not

use

a

carriage

control

tape.

Multiple

exit

list

entries

in

the

exit

list

can

define

FCBs.

The

OPEN

and

SETPRT

routines

search

the

exit

list

for

requested

FCBs

before

searching

SYS1.IMAGELIB.

The

first

4

bytes

of

the

FCB

image

contain

the

image

identifier.

To

identify

the

FCB,

this

image

identifier

is

specified

in

the

FCB

parameter

of

the

DD

statement,

by

your

JFCBE

exit,

by

the

SETPRT

macro,

or

by

the

system

operator

in

response

to

message

IEC127D

or

IEC129D.

For

an

IBM

3203,

3211,

3262,

4245,

or

4248

Printer,

the

image

identifier

is

followed

by

the

FCB

image

described

in

z/OS

DFSMSdfp

Advanced

Services.

You

can

create,

modify,

and

list

FCB

images

in

libraries

with

the

IEBIMAGE

utility

and

the

CIPOPS

utility.

IEBIMAGE

is

described

in

z/OS

DFSMSdfp

Utilities.

The

system

searches

the

DCB

exit

list

for

an

FCB

image

only

when

writing

to

a

printer

that

is

allocated

to

the

job

step.

The

system

does

not

search

the

DCB

exit

list

with

a

SYSOUT

data

set.

Figure

115

on

page

539

shows

one

way

the

exit

list

can

be

used

to

define

an

FCB

image.

Using

Non-VSAM

User-Written

Exit

Routines

538

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

JFCB

Exit

This

exit

list

entry

does

not

define

an

exit

routine.

It

is

used

with

the

RDJFCB

macro

and

OPEN

TYPE=J.

The

RDJFCB

macro

uses

the

address

specified

in

the

DCB

exit

list

entry

at

X'07'

to

place

a

copy

of

the

JFCB

for

each

DCB

specified

by

the

RDJFCB

macro.

The

area

is

176

bytes

and

must

begin

on

a

fullword

boundary.

It

must

be

located

in

the

user’s

address

space.

This

area

must

be

located

below

16

MB

virtual.

The

DCB

can

be

either

open

or

closed

when

the

RDJFCB

macro

is

run.

If

RDJFCB

fails

while

processing

a

DCB

associated

with

your

RDJFCB

request,

your

task

is

abnormally

terminated.

You

cannot

use

the

DCB

abend

exit

to

recover

from

a

failure

of

the

RDJFCB

macro.

See

z/OS

DFSMSdfp

Advanced

Services.

...

DCB

..,EXLST=EXLIST

...

EXLIST

DS

0F

DC

X’10’

Flag

code

for

FCB

image

DC

AL3(FCBIMG)

Address

of

FCB

image

DC

X’80000000’

End

of

EXLST

and

a

null

entry

FCBIMG

DC

CL4’IMG1’

FCB

identifier

DC

X’00’

FCB

is

not

a

default

DC

AL1(67)

Length

of

FCB

DC

X’90’

Offset

print

line

*

16

line

character

positions

to

the

right

DC

X’00’

Spacing

is

6

lines

per

inch

DC

5X’00’

Lines

2-6,

no

channel

codes

DC

X’01’

Line

7,

channel

1

DC

6X’00’

Lines

8-13,

no

channel

codes

DC

X’02’

Line

(or

Lines)

14,

channel

2

DC

5X’00’

Line

(or

Lines)

15-19,

no

channel

codes

DC

X’03’

Line

(or

Lines)

20,

channel

3

DC

9X’00’

Line

(or

Lines)

21-29,

no

channel

codes

DC

X’04’

Line

(or

Lines)

30,

channel

4

DC

19X’00’

Line

(or

Lines)

31-49,

no

channel

codes

DC

X’05’

Line

(or

Lines)

50,

channel

5

DC

X’06’

Line

(or

Lines)

51,

channel

6

DC

X’07’

Line

(or

Lines)

52,

channel

7

DC

X’08’

Line

(or

Lines)

53,

channel

8

DC

X’09’

Line

(or

Lines)

54,

channel

9

DC

X’0A’

Line

(or

Lines)

55,

channel

10

DC

X’0B’

Line

(or

Lines)

56,

channel

11

DC

X’0C’

Line

(or

Lines)

57,

channel

12

DC

8X’00’

Line

(or

Lines)

58-65,

no

channel

codes

DC

X’10’

End

of

FCB

image

...

END

//ddname

DD

UNIT=3211,FCB=(IMG1,VERIFY)

/*

Figure

115.

Defining

an

FCB

Image

for

a

3211

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

539

JFCBE

Exit

JCL-specified

setup

requirements

for

the

IBM

3800

and

3900

Printing

Subsystem

cause

a

JFCB

extension

(JFCBE)

to

be

created

to

reflect

those

specifications.

Your

JFCBE

exists

if

BURST,

MODIFY,

CHARS,

FLASH,

or

any

copy

group

is

coded

on

the

DD

statement.

The

JFCBE

exit

can

examine

or

modify

those

specifications

in

the

JFCBE.

Although

use

of

the

JFCBE

exit

is

still

supported,

its

use

is

not

recommended.

Place

the

address

of

the

routine

in

an

exit

list.

The

device

allocated

does

not

have

to

be

a

printer.

This

exit

is

taken

during

OPEN

processing

and

is

mutually

exclusive

with

the

DCB

OPEN

exit.

If

you

need

both

the

JFCBE

and

DCB

OPEN

exits,

you

must

use

the

JFCBE

exit

to

pass

control

to

your

routines.

Everything

that

you

can

do

in

a

DCB

OPEN

exit

routine

can

also

be

done

in

a

JFCBE

exit.

See

“DCB

OPEN

Exit”

on

page

535.

When

you

issue

the

SETPRT

macro

to

a

SYSOUT

data

set,

the

JFCBE

is

further

updated

from

the

information

in

the

SETPRT

parameter

list.

When

control

is

passed

to

your

exit

routine,

the

contents

of

register

1

will

be

the

address

of

the

DCB

being

processed.

The

area

pointed

to

by

register

0

will

contain

a

176

byte

JFCBE

followed

by

the

4

byte

FCB

identification

that

is

obtained

from

the

JFCB.

If

the

FCB

operand

was

not

coded

on

the

DD

statement,

this

FCB

field

will

be

binary

zeros.

If

your

exit

routine

modifies

your

copy

of

the

JFCBE,

you

should

indicate

this

by

turning

on

bit

JFCBEOPN

(X'80'

in

JFCBFLAG)

in

the

JFCBE

copy.

On

return

to

OPEN,

this

bit

indicates

if

the

system

copy

is

to

be

updated.

The

4-byte

FCB

identification

in

your

area

is

used

to

update

the

JFCB

regardless

of

the

bit

setting.

Checkpoint/restart

also

interrogates

this

bit

to

determine

which

version

of

the

JFCBE

to

use

at

restart

time.

If

this

bit

is

not

on,

the

JFCBE

generated

by

the

restart

JCL

is

used.

Using

Non-VSAM

User-Written

Exit

Routines

540

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Open/Close/EOV

Standard

User

Label

Exit

When

you

create

a

data

set

with

physical

sequential

or

direct

organization,

you

can

provide

routines

to

create

your

own

data

set

labels

to

augment

the

system’s

labels.

You

can

also

provide

routines

to

verify

these

labels

when

you

use

the

data

set

as

input.

Each

label

is

80

characters

long,

with

the

first

four

characters

UHL1,UHL2,

through

UHL8

for

a

header

label

or

UTL1,UTL2,...,UTL8

for

a

trailer

label.

User

labels

are

not

permitted

on

partitioned,

indexed

sequential,

spooled,

or

extended

format

data

sets

or

HFS

data

sets.

The

physical

location

of

the

labels

on

the

data

set

depends

on

the

data

set

organization.

For

direct

(BDAM)

data

sets,

user

labels

are

placed

on

a

separate

user

label

track

in

the

first

volume.

User

label

exits

are

taken

only

during

execution

of

the

OPEN

and

CLOSE

routines.

Thus

you

can

create

or

examine

as

many

as

eight

user

header

labels

only

during

execution

of

OPEN

and

as

many

as

eight

trailer

labels

only

during

execution

of

CLOSE.

Because

the

trailer

labels

are

on

the

same

track

as

the

header

labels,

the

first

volume

of

the

data

set

must

be

mounted

when

the

data

set

is

closed.

For

physical

sequential

(BSAM

or

QSAM)

data

sets

on

DASD

or

tape

with

IBM

standard

labels,

you

can

create

or

examine

as

many

as

eight

header

labels

and

eight

trailer

labels

on

each

volume

of

the

data

set.

For

ISO/ANSI

tape

label

data

sets,

you

can

create

an

unlimited

number

of

user

header

and

trailer

labels.

The

user

label

exits

are

taken

during

OPEN,

CLOSE,

and

EOV

processing.

To

create

or

verify

labels,

you

must

specify

the

addresses

of

your

label

exit

routines

in

an

exit

list

as

shown

in

Table

49

on

page

528.

Thus

you

can

have

separate

routines

for

creating

or

verifying

header

and

trailer

label

groups.

Care

must

be

taken

if

a

magnetic

tape

is

read

backward,

because

the

trailer

label

group

is

processed

as

header

labels

and

the

header

label

group

is

processed

as

trailer

labels.

When

your

routine

receives

control,

the

contents

of

register

0

are

unpredictable.

Register

1

contains

the

address

of

a

parameter

list.

The

contents

of

registers

2

to

13

are

the

same

as

when

the

macro

instruction

was

issued.

However,

if

your

program

does

not

issue

the

CLOSE

macro,

or

abnormally

ends

before

issuing

CLOSE,

the

CLOSE

macro

will

be

issued

by

the

control

program,

with

control-program

information

in

these

registers.

The

parameter

list

pointed

to

by

register

1

is

a

16

byte

area

aligned

on

a

fullword

boundary.

Figure

116

shows

the

contents

of

the

area:

Figure

116.

Parameter

List

Passed

to

User

Label

Exit

Routine

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

541

The

first

address

in

the

parameter

list

points

to

an

80-byte

label

buffer

area.

The

format

of

a

user

label

is

described

in

“User

Label

Groups”

on

page

556.

For

input,

the

control

program

reads

a

user

label

into

this

area

before

passing

control

to

the

label

routine.

For

output,

your

user

label

exit

routine

builds

labels

in

this

area

and

returns

to

the

control

program,

which

writes

the

label.

When

an

input

trailer

label

routine

receives

control,

the

EOF

flag

(high-order

byte

of

the

second

word

in

the

parameter

list)

is

set

as

follows:

Bit

0

=

0:

Entered

at

EOV

Bit

0

=

1:

Entered

at

end-of-file

Bits

1-7:

Reserved

When

a

user

label

exit

routine

receives

control

after

an

uncorrectable

I/O

error

has

occurred,

the

third

word

of

the

parameter

list

contains

the

address

of

the

standard

status

indicators.

The

error

flag

(high-order

byte

of

the

third

word

in

the

parameter

list)

is

set

as

follows:

Bit

0

=

1:

Uncorrectable

I/O

error

Bit

1

=

1:

Error

occurred

during

writing

of

updated

label

Bits

2-7:

Reserved

The

fourth

entry

in

the

parameter

list

is

the

address

of

the

user

totaling

image

area.

This

image

area

is

the

entry

in

the

user

totaling

save

area

that

corresponds

to

the

last

record

physically

written

on

the

volume.

(The

image

area

is

discussed

in

“User

Totaling

for

BSAM

and

QSAM”

on

page

550.)

Each

routine

must

create

or

verify

one

label

of

a

header

or

trailer

label

group,

place

a

return

code

in

register

15,

and

return

control

to

the

operating

system.

The

operating

system

responds

to

the

return

code

as

shown

in

Table

53

on

page

543.

You

can

create

user

labels

only

for

data

sets

on

magnetic

tape

volumes

with

IBM

standard

labels

or

ISO/ANSI

labels

and

for

data

sets

on

direct

access

volumes.

When

you

specify

both

user

labels

and

IBM

standard

labels

in

a

DD

statement

by

specifying

LABEL=(,SUL)

and

there

is

an

active

entry

in

the

exit

list,

a

label

exit

is

always

taken.

Thus,

a

label

exit

is

taken

even

when

an

input

data

set

does

not

contain

user

labels,

or

when

no

user

label

track

has

been

allocated

for

writing

labels

on

a

direct

access

volume.

In

either

case,

the

appropriate

exit

routine

is

entered

with

the

buffer

area

address

parameter

set

to

0.

On

return

from

the

exit

routine,

normal

processing

is

resumed;

no

return

code

is

necessary.

Using

Non-VSAM

User-Written

Exit

Routines

542

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

53.

System

Response

to

a

User

Label

Exit

Routine

Return

Code

Routine

Type

Return

Code

System

Response

Input

header

or

trailer

label

0

(X'00')

Normal

processing

is

resumed.

If

there

are

any

remaining

labels

in

the

label

group,

they

are

ignored.

4

(X'04')

The

next

user

label

is

read

into

the

label

buffer

area

and

control

is

returned

to

the

exit

routine.

If

there

are

no

more

labels

in

the

label

group,

normal

processing

is

resumed.

8¹

(X'08')

The

label

is

written

from

the

label

buffer

area

and

normal

processing

is

resumed.

12¹

(X'0C')

The

label

is

written

from

the

label

area,

the

next

label

is

read

into

the

label

buffer

area,

and

control

is

returned

to

the

label

processing

routine.

If

there

are

no

more

labels,

processing

is

resumed.

Output

header

or

trailer

label

0

(X'00')

Normal

processing

is

resumed;

no

label

is

written

from

the

label

buffer

area.

4

(X'04')

User

label

is

written

from

the

label

buffer

area.

Normal

processing

is

resumed.

8

(X'08')

User

label

is

written

from

the

label

buffer

area.

If

fewer

than

eight

labels

have

been

created,

control

is

returned

to

the

exit

routine,

which

then

creates

the

next

label.

If

eight

labels

have

been

created,

normal

processing

is

resumed.

Note:

1.

Your

input

label

routines

can

return

these

codes

only

when

you

are

processing

a

physical

sequential

data

set

opened

for

UPDAT

or

a

direct

data

set

opened

for

OUTPUT

or

UPDAT.

These

return

codes

let

you

verify

the

existing

labels,

update

them

if

necessary,

and

request

that

the

system

write

the

updated

labels.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

543

Label

exits

are

not

taken

for

system

output

(SYSOUT)

data

sets,

or

for

data

sets

on

volumes

that

do

not

have

standard

labels.

For

other

data

sets,

exits

are

taken

as

follows:

v

When

an

input

data

set

is

opened,

the

input

header

label

exit

01

is

taken.

If

the

data

set

is

on

tape

being

opened

for

RDBACK,

user

trailer

labels

will

be

processed.

v

When

an

output

data

set

is

opened,

the

output

header

label

exit

02

is

taken.

However,

if

the

data

set

already

exists

and

DISP=MOD

is

coded

in

the

DD

statement,

the

input

trailer

label

exit

03

is

taken

to

process

any

existing

trailer

labels.

If

the

input

trailer

label

exit

03

does

not

exist,

then

the

deferred

input

trailer

label

exit

0C

is

taken

if

it

exists;

otherwise,

no

label

exit

is

taken.

For

tape,

these

trailer

labels

will

be

overwritten

by

the

new

output

data

or

by

EOV

or

close

processing

when

writing

new

standard

trailer

labels.

For

direct

access

devices,

these

trailer

labels

will

still

exist

unless

rewritten

by

EOV

or

close

processing

in

an

output

trailer

label

exit.

v

When

an

input

data

set

reaches

EOV,

the

input

trailer

label

exit

03

is

taken.

If

the

data

set

is

on

tape

opened

for

RDBACK,

header

labels

will

be

processed.

The

input

trailer

label

exit

03

is

not

taken

if

you

issue

an

FEOV

macro.

If

a

defer

input

trailer

label

exit

0C

is

present,

and

an

input

trailer

label

exit

03

is

not

present,

the

0C

exit

is

taken.

After

switching

volumes,

the

input

header

label

exit

01

is

taken.

If

the

data

set

is

on

tape

opened

for

RDBACK,

trailer

labels

will

be

processed.

v

When

an

output

data

set

reaches

EOV,

the

output

trailer

label

exit

04

is

taken.

After

switching

volumes,

output

header

label

exit

02

is

taken.

v

When

an

input

data

set

reaches

end-of-data,

the

input

trailer

label

exit

03

is

taken

before

the

EODAD

exit,

unless

the

DCB

exit

list

contains

a

defer

input

trailer

label

exit

0C.

v

When

an

input

data

set

is

closed,

no

exit

is

taken

unless

the

data

set

was

previously

read

to

end-of-data

and

the

defer

input

trailer

label

exit

0C

is

present.

If

so,

the

defer

input

trailer

label

exit

0C

is

taken

to

process

trailer

labels,

or

if

the

tape

is

opened

for

RDBACK,

header

labels.

v

When

an

output

data

set

is

closed,

the

output

trailer

label

exit

04

is

taken.

To

process

records

in

reverse

order,

a

data

set

on

magnetic

tape

can

be

read

backward.

When

you

read

backward,

header

label

exits

are

taken

to

process

trailer

labels,

and

trailer

label

exits

are

taken

to

process

header

labels.

The

system

presents

labels

from

a

label

group

in

ascending

order

by

label

number,

which

is

the

order

in

which

the

labels

were

created.

If

necessary,

an

exit

routine

can

determine

label

type

(UHL

or

UTL)

and

number

by

examining

the

first

four

characters

of

each

label.

Tapes

with

IBM

standard

labels

and

direct

access

devices

can

have

as

many

as

eight

user

labels.

Tapes

with

ISO/ANSI

labels

can

have

an

unlimited

number

of

user

labels.

After

an

input

error,

the

exit

routine

must

return

control

with

an

appropriate

return

code

(0

or

4).

No

return

code

is

required

after

an

output

error.

If

an

output

error

occurs

while

the

system

is

opening

a

data

set,

the

data

set

is

not

opened

(DCB

is

flagged)

and

control

is

returned

to

your

program.

If

an

output

error

occurs

at

any

other

time,

the

system

attempts

to

resume

normal

processing.

Using

Non-VSAM

User-Written

Exit

Routines

544

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Open/EOV

Nonspecific

Tape

Volume

Mount

Exit

This

user

exit

gives

you

the

option

of

identifying

a

specific

tape

volume

to

be

requested

in

place

of

a

nonspecific

(scratch)

tape

volume.

An

X'17'

in

the

DCB

exit

list

(EXLST)

activates

this

exit

(see

“DCB

Exit

List”

on

page

527).

This

exit,

which

supports

only

IBM

standard

labeled

tapes,

was

designed

to

be

used

with

the

Open/EOV

volume

security

and

verification

user

exit.

However,

this

exit

can

be

used

by

itself.

Open

or

EOV

calls

this

exit

when

either

must

issue

mount

message

IEC501A

or

IEC501E

to

request

a

scratch

tape

volume.

Open

issues

the

mount

message

if

you

specify

the

DEFER

parameter

with

the

UNIT

option,

and

either

you

did

not

specify

a

volume

serial

number

in

the

DD

statement

or

you

specified

'VOL=SER=SCRTCH'.

EOV

always

calls

this

exit

for

a

scratch

tape

volume

request.

This

user

exit

gets

control

in

the

key

and

state

of

the

program

that

issued

the

OPEN

or

EOV,

and

no

locks

are

held.

This

exit

must

provide

a

return

code

in

register

15.

Return

Code

Meaning

00

(X'00')

Continue

with

the

scratch

tape

request

as

if

this

exit

had

not

been

called.

04

(X'04')

Replace

the

scratch

tape

request

with

a

specific

volume

serial

number.

Register

0

contains

the

address

of

a

6-byte

volume

serial

number.

Note:

A

value

other

than

0

or

4

in

register

15

is

treated

as

a

0.

If

OPEN

or

EOV

finds

that

the

volume

pointed

to

by

register

0

is

being

used

either

by

this

or

by

another

job

(an

active

ENQ

on

this

volume),

it

calls

this

exit

again

and

continues

to

do

so

until

you

either

specify

an

available

volume

serial

number

or

request

a

scratch

volume.

If

the

volume

you

specify

is

available

but

is

rejected

by

OPEN

or

EOV

for

some

other

reason

(I/O

errors,

expiration

date,

password

check,

and

so

forth),

this

exit

is

not

called

again.

When

this

exit

gets

control,

register

1

points

to

the

parameter

list

described

by

the

IECOENTE

macro.

Figure

117

on

page

546

shows

this

parameter

list.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

545

Length

or

Offset

Bit

Pattern

Description

0

4

OENTID

PLIST

ID

(’OENT’)

4

1

OENTFLG

FLAG

BYTES

1...

....

OENTOEOV

Set

to

0

if

OPEN

called

this

exit;

set

to

1

if

EOV

or

FEOV

called

this

exit

....

...1

OENTNTRY

Set

to

1

if

this

is

not

the

first

time

this

exit

was

called

because

the

requested

tape

volume

is

being

used

by

this

job

or

other

job

5

1

OENTOPTN

Contains

the

options

from

the

OPEN

parameter

list

(OUTPUT,

INPUT,

OUTIN,

INOUT,

and

so

forth).

For

EOV

processing,

the

options

byte

in

the

DCB

parameter

list

indicates

how

EOV

is

processing

this

volume.

For

example,

if

you

open

a

tape

volume

for

OUTIN

and

EOV

is

called

during

an

output

operation

on

this

tape

volume,

OENTOPTN

is

set

to

indicate

OUTPUT.

Possible

values

follow:

xxxx

0000

INPUT

or

reading

at

EOV

with

INOUT,

OUTIN,

or

OUTINX

xxxx

0001

RDBACK

xxxx

1111

OUTPUT

or

EXTEND

or

writing

at

EOV

with

INOUT,

OUTIN,

or

OUTINX

xxxx

0011

INOUT

during

OPEN

xxxx

0111

OUTIN

or

OUTINX

during

OPEN

xxxx

....

RESERVED

0000

1111

OENTMASK

TO

MASK

OFF

UNNECESSARY

BITS

6

2

OENTRSVD

RESERVED

8

4

OENTDCBA

ADDRESS

OF

USER

DCB

12(X’C’)

4

OENTVSRA

Points

to

the

last

volume

serial

number

you

requested

in

this

exit

but

was

in

use

either

by

this

or

another

job.

OENTVSRA

is

set

to

0

the

first

time

this

exit

is

called.

16(X’10’)

4

OENTJFCB

Points

to

the

OPEN

or

EOV

copy

of

the

JFCB.

The

high

order

bit

is

always

on,

indicating

that

this

is

the

end

of

the

parameter

list.

OENTLENG

PLIST

LENGTH

(Current

value

is

20.)

Figure

117.

IECOENTE

Macro

Parameter

List

Using

Non-VSAM

User-Written

Exit

Routines

546

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

When

this

user

exit

is

entered,

the

general

registers

contain

the

information

in

Table

54

for

saving

and

restoring.

Table

54.

Saving

and

Restoring

General

Registers

Register

Contents

0

Variable

1

Address

of

the

parameter

list

for

this

exit

2-13

Contents

of

the

registers

before

the

OPEN,

FEOV,

or

EOV

was

issued

14

Return

address

(you

must

preserve

the

contents

of

this

register

in

this

user

exit)

15

Entry

point

address

to

this

user

exit

You

do

not

have

to

preserve

the

contents

of

any

register

other

than

register

14.

The

operating

system

restores

the

contents

of

registers

2

through

13

before

it

returns

to

OPEN

or

EOV

and

before

it

returns

control

to

the

original

calling

program.

Do

not

use

the

save

area

pointed

to

by

register

13;

the

operating

system

uses

it.

If

you

call

another

routine,

or

issue

a

supervisor

or

data

management

macro

in

this

user

exit,

you

must

provide

the

address

of

a

new

save

area

in

register

13.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

547

Open/EOV

Volume

Security

and

Verification

Exit

This

user

exit

lets

you

verify

that

the

volume

that

is

currently

mounted

is

the

one

you

want.

You

can

also

use

it

to

bypass

the

OPEN

or

EOV

expiration

date,

password,

and

data

set

name

security

checks.

An

X'18'

in

the

DCB

exit

list

(EXLST)

activates

this

exit

(see

“DCB

Exit

List”

on

page

527).

This

exit,

which

supports

IBM

standard

label

tapes,

was

designed

to

be

used

with

the

OPEN/EOV

nonspecific

tape

volume

mount

user

exit,

but

you

can

use

this

exit

by

itself

(see

“Open/EOV

Nonspecific

Tape

Volume

Mount

Exit”

on

page

545).

This

exit

is

available

only

for

APF-authorized

programs.

This

user

exit

gets

control

in

the

key

and

state

of

the

program

that

issued

the

OPEN

or

EOV

request,

and

no

locks

are

held.

This

exit

must

provide

a

return

code

in

register

15.

Return

Code

Meaning

00

(X'00')

Use

this

tape

volume.

Return

to

OPEN

or

EOV

as

if

this

exit

had

not

been

called.

04

(X'04')

Reject

this

volume

and:

v

Output

–

If

the

data

set

is

the

first

data

set

on

the

volume,

request

a

scratch

tape.

This

causes

OPEN

or

EOV

to

issue

demount

message

IEC502E

for

the

rejected

tape

volume,

and

mount

message

IEC501A

or

IEC501E

for

a

scratch

tape

volume.

If

the

nonspecific

tape

volume

mount

exit

is

active,

it

is

called.

–

If

the

data

set

is

other

than

the

first

one

on

the

volume,

process

this

return

code

as

if

it

were

return

code

08.

v

Input

–

Treat

this

return

code

as

if

it

were

return

code

08.

08

(X'08')

Abnormally

terminate

OPEN

or

EOV

unconditionally;

no

scratch

tape

request

is

issued.

OPEN

abnormally

terminates

with

a

913-34

ABEND

code,

and

EOV

terminates

with

a

937-44

ABEND

code.

12

(X'0C')

Use

this

volume

without

checking

the

data

set’s

expiration

date.

Password,

RACF

authority,

and

data

set

name

checking

still

occurs.

16

(X'10')

Use

this

volume.

A

conflict

with

the

password,

label

expiration

date,

or

data

set

name

does

not

prevent

the

new

data

set

from

writing

over

the

current

data

set

if

it

is

the

first

one

on

the

volume.

To

write

over

other

than

the

first

data

set,

the

new

data

set

must

have

the

same

level

of

security

protection

as

the

current

data

set.

When

this

exit

gets

control,

register

1

points

to

the

parameter

list

described

by

the

IECOEVSE

macro.

The

parameter

list

is

shown

in

Figure

118

on

page

549.

Using

Non-VSAM

User-Written

Exit

Routines

548

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Length

or

Offset

Bit

Pattern

Description

0

OEVSE

DSECT

name

0

4

OEVSID

ID

field

=

"OEVS"

4

1

OEVSFLG

A

flag

field

1...

....

OEVSEOV

Set

to

0

if

OPEN

called

this

exit

and

set

to

1

if

EOV

called

this

exit

....

...1

OEVSFILE

Set

to

0

if

the

first

data

set

on

the

volume

is

to

be

written

and

set

to

1

if

this

is

not

the

first

data

set

on

the

volume

to

be

written.

This

bit

is

always

0

for

INPUT

processing.

.xxx

xxx.

Bits

1

through

6

reserved

5

1

OEVSOPTN

OPEN

options

from

the

DCB

parameter

list

(OUTPUT,

INPUT,INOUT,

and

so

forth).

For

EOV

processing,

this

byte

indicates

how

EOV

is

processing

this

volume.

For

example,

if

you

opened

a

tape

volume

for

OUTIN

and

EOV

is

called

during

an

output

operation

on

the

tape

volume,

the

DCB

parameter

list

and

OEVSOPTN

are

set

to

indicate

OUTPUT.

Possible

values

follow:

xxxx

0000

INPUT

or

reading

at

EOV

with

INOUT,

OUTIN,

or

OUTINX

xxxx

0001

RDBACK

xxxx

1111

OUTPUT

or

EXTEND

or

writing

at

EOV

with

INOUT,

OUTIN,

or

OUTINX

xxxx

0011

INOUT

during

OPEN

xxxx

0111

OUTIN

or

OUTINX

during

OPEN

0000

1111

OEVSMASK

Mask

6

2

OEVSRSVD

Reserved

8

4

OEVSDCBA

Address

of

user

DCB

12(X’C’)

4

OEVSVSRA

A

pointer

to

the

current

volume

serial

number

that

OPEN

or

EOV

is

processing

16(X’10’)

4

OEVSHDR1

A

pointer

to

an

HDR1

label,

if

one

exists,

or

to

an

EOF1

label,

if

you

are

creating

other

than

the

first

data

set

on

this

volume

20(X’14’)

4

OEVSJFCB

A

pointer

to

the

OPEN,

CLOSE,

or

EOV

copy

of

the

JFCB.

The

high-order

bit

is

always

on,

indicating

that

this

is

the

end

of

the

parameter

list.

24

OEVSLENG

OEVSID

PLIST

LENGTH

Figure

118.

IECOEVSE

Macro

Parameter

List

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

549

When

this

user

exit

is

entered,

the

general

registers

have

the

following

contents.

Register

Contents

0

Variable

1

Address

of

the

parameter

list

for

this

exit.

2-13

Contents

of

the

registers

before

the

OPEN

or

EOV

was

issued

14

Return

address

(you

must

preserve

the

contents

of

this

register

in

this

user

exit)

15

Entry

point

address

to

this

user

exit

You

do

not

have

to

preserve

the

contents

of

any

register

other

than

register

14.

The

operating

system

restores

the

contents

of

registers

2

through

13

before

it

returns

to

OPEN

or

EOV

and

before

it

returns

control

to

the

original

calling

program.

Do

not

use

the

save

area

pointed

to

by

register

13;

the

operating

system

uses

it.

If

you

call

another

routine

or

issue

a

supervisor

or

data

management

macro

in

this

user

exit,

you

must

provide

the

address

of

a

new

save

area

in

register

13.

QSAM

Parallel

Input

Exit

QSAM

parallel

input

processing

can

be

used

to

process

two

or

more

input

data

sets

concurrently,

such

as

sorting

or

merging

several

data

sets

at

the

same

time.

A

request

for

parallel

input

processing

is

indicated

by

including

the

address

of

a

parallel

data

access

block

(PDAB)

in

the

DCB

exit

list.

The

address

must

be

on

a

fullword

boundary

with

the

first

byte

of

the

entry

containing

X'12'

or,

if

it

is

the

last

entry,

X'92'.

For

more

information

about

parallel

input

processing

see

“PDAB—Parallel

Input

Processing

(QSAM

Only)”

on

page

360.

User

Totaling

for

BSAM

and

QSAM

When

creating

or

processing

a

data

set

with

user

labels,

you

can

develop

control

totals

for

each

volume

of

the

data

set

and

store

this

information

in

your

user

labels.

For

example,

a

control

total

that

was

accumulated

as

the

data

set

was

created

can

be

stored

in

your

user

label

and

later

compared

with

a

total

accumulated

during

processing

of

the

volume.

User

totaling

helps

you

by

synchronizing

the

control

data

you

create

with

records

physically

written

on

a

volume.

For

an

output

data

set

without

user

labels,

you

can

also

develop

a

control

total

that

is

available

to

your

EOV

routine.

User

totaling

is

ignored

for

extended

format

data

sets

and

HFS

data

sets.

To

request

user

totaling,

you

must

specify

OPTCD=T

in

the

DCB

macro

instruction

or

in

the

DCB

parameter

of

the

DD

statement.

The

area

in

which

you

collect

the

control

data

(the

user

totaling

area)

must

be

identified

to

the

control

program

by

an

entry

of

X'0A'

in

the

DCB

exit

list.

OPTCD=T

cannot

be

specified

for

SYSIN

or

SYSOUT

data

sets.

The

user

totaling

area,

an

area

in

storage

that

you

provide,

must

begin

on

a

halfword

boundary

and

be

large

enough

to

contain

your

accumulated

data

plus

a

2

byte

length

field.

The

length

field

must

be

the

first

2

bytes

of

the

area

and

specify

the

length

of

the

complete

area.

A

data

set

for

which

you

have

specified

user

totaling

(OPTCD=T)

will

not

be

opened

if

either

the

totaling

area

length

or

the

address

in

the

exit

list

is

0,

or

if

there

is

no

X'0A'

entry

in

the

exit

list.

Using

Non-VSAM

User-Written

Exit

Routines

550

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

control

program

establishes

a

user

totaling

save

area,

where

the

control

program

preserves

an

image

of

your

totaling

area,

when

an

I/O

operation

is

scheduled.

When

the

output

user

label

exits

are

taken,

the

address

of

the

save

area

entry

(user

totaling

image

area)

corresponding

to

the

last

record

physically

written

on

a

volume

is

passed

to

you

in

the

fourth

entry

of

the

user

label

parameter

list.

(This

parameter

list

is

described

in

“Open/Close/EOV

Standard

User

Label

Exit”

on

page

541.)

When

an

EOV

exit

is

taken

for

an

output

data

set

and

user

totaling

has

been

specified,

the

address

of

the

user

totaling

image

area

is

in

register

0.

When

using

user

totaling

for

an

output

data

set,

that

is,

when

creating

the

data

set,

you

must

update

your

control

data

in

your

totaling

area

before

issuing

a

PUT

or

a

WRITE

macro.

The

control

program

places

an

image

of

your

totaling

area

in

the

user

totaling

save

area

when

an

I/O

operation

is

scheduled.

A

pointer

to

the

save

area

entry

(user

totaling

image

area)

corresponding

to

the

last

record

physically

written

on

the

volume

is

passed

to

you

in

your

label

processing

routine.

Thus

you

can

include

the

control

total

in

your

user

labels.

When

subsequently

using

this

data

set

for

input,

you

can

collect

the

same

information

as

you

read

each

record

and

compare

this

total

with

the

one

previously

stored

in

the

user

trailer

label.

If

you

have

stored

the

total

from

the

preceding

volume

in

the

user

header

label

of

the

current

volume,

you

can

process

each

volume

of

a

multivolume

data

set

independently

and

still

maintain

this

system

of

control.

When

variable-length

records

are

specified

with

the

totaling

function

for

user

labels,

special

considerations

are

necessary.

Because

the

control

program

determines

if

a

variable-length

record

fits

in

a

buffer

after

a

PUT

or

a

WRITE

is

issued,

the

total

you

have

accumulated

can

include

one

more

record

than

is

really

written

on

the

volume.

For

variable-length

spanned

records,

the

accumulated

total

includes

the

control

data

from

the

volume-spanning

record

although

only

a

segment

of

the

record

is

on

that

volume.

However,

when

you

process

such

a

data

set,

the

volume-spanning

record

or

the

first

record

on

the

next

volume

will

not

be

available

to

you

until

after

the

volume

switch

and

user

label

processing

are

completed.

Thus

the

totaling

information

in

the

user

label

cannot

agree

with

that

developed

during

processing

of

the

volume.

One

way

you

can

resolve

this

situation

is

to

maintain,

when

you

are

creating

a

data

set,

control

data

about

each

of

the

last

two

records

and

include

both

totals

in

your

user

labels.

Then

the

total

related

to

the

last

complete

record

on

the

volume

and

the

volume-spanning

record

or

the

first

record

on

the

next

volume

would

be

available

to

your

user

label

routines.

During

subsequent

processing

of

the

data

set,

your

user

label

routines

can

determine

if

there

is

agreement

between

the

generated

information

and

one

of

the

two

totals

previously

saved.

When

the

totaling

function

for

user

labels

is

selected

with

DASD

devices

and

secondary

space

is

specified,

the

total

accumulated

can

be

one

less

than

the

actual

written.

Using

Non-VSAM

User-Written

Exit

Routines

Chapter

31.

Using

Non-VSAM

User-Written

Exit

Routines

551

552

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Appendix

A.

Using

Direct

Access

Labels

This

appendix

covers

the

following

topics.

Topic

Location

Direct

Access

Storage

Device

Architecture

553

Volume

Label

Group

554

Data

Set

Control

Block

(DSCB)

556

User

Label

Groups

556

This

chapter

is

intended

to

help

you

understand

direct

access

labels.

Direct

Access

Storage

Device

Architecture

Disks

reside

in

direct

access

storage

subsystems.

The

real

disks

might

have

an

architecture

that

differs

from

what

the

subsystem

presents

to

the

operating

system.

The

operating

system

sees

direct

access

storage

devices

(DASDs).

This

document

and

other

z/OS

documentation

describe

DASDs.

Hardware

documentation

describes

internal

characteristics

of

direct

access

storage

subsystems.

As

seen

by

software,

each

disk

or

tape

is

called

a

volume.

Each

volume

can

contain

one

or

more

complete

data

sets

and

parts

of

data

sets.

Each

complete

or

partial

data

set

on

a

DASD

volume

has

a

data

set

label.

Each

complete

or

partial

data

set

on

a

tape

volume

has

a

data

set

label

only

if

the

volume

has

IBM

standard

labels

or

ISO

or

ANSI

standard

labels.

For

information

about

data

sets

and

labels

on

magnetic

tapes,

see

“Magnetic

Tape

Volumes”

on

page

11.

Only

standard

label

formats

are

used

on

direct

access

volumes.

Volume,

data

set,

and

optional

user

labels

are

used

(see

Figure

119

on

page

554).

In

the

case

of

direct

access

volumes,

the

data

set

label

is

the

data

set

control

block

(DSCB).

The

system

programmer

or

storage

administrator

uses

ICKDSF

to

format

tracks,

write

a

volume

label,

and

create

a

volume

table

of

contents

(VTOC).

The

VTOC

contains

all

the

DSCBs.

RACF

DASDVOL

authority

is

required

to

create

a

VTOC.

DASDVOL

authority

is

not

required

to

allocate

space

on

volumes.

The

system

controls

space

on

SMS

volumes

by

other

means

such

as

the

ACS

routines,

storage

group

definitions

and

ISMF

commands.

Related

reading:

For

more

information

about

tracks

and

records,

see

“Direct

Access

Storage

Device

(DASD)

Volumes”

on

page

8.

©

Copyright

IBM

Corp.

1987,

2004

553

Volume

Label

Group

The

volume

label

group

immediately

follows

the

first

two

initial

program

loading

(IPL)

records

on

track

0

of

cylinder

0

of

the

volume.

It

consists

of

the

initial

volume

label

at

record

3

plus

a

maximum

of

seven

additional

volume

labels.

The

initial

volume

label

identifies

a

volume

and

its

owner,

and

is

used

to

verify

that

the

correct

volume

is

mounted.

It

can

also

be

used

to

prevent

use

of

the

volume

by

unauthorized

programs.

The

additional

labels

can

be

processed

by

an

installation

routine

that

is

incorporated

into

the

system.

The

format

of

the

data

portion

of

the

direct

access

volume

label

group

is

shown

in

Figure

120

on

page

555.

Cylinder

Tracks

Cylinder 0

Track 0

All remaining
tracks of volume

Unused storage
area for data sets

VTOC

IPL records

Volume label

Additional labels

(Optional)

VTOC DSCB

Free space DSCB

DSCB

DSCB

DCSB

Figure

119.

Direct

Access

Labeling

Using

Direct

Access

Labels

554

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

operating

system

identifies

an

initial

volume

label

when,

in

reading

the

initial

record,

it

finds

that

the

first

4

characters

of

the

record

are

VOL1.

That

is,

they

contain

the

volume

label

identifier

and

the

volume

label

number.

The

initial

volume

label

is

80

bytes.

The

format

of

an

initial

volume

label

are

described

in

the

following

text.

Volume

Label

Identifier

(VOL).

Field

1

identifies

a

volume

label.

Volume

Label

Number

(1).

Field

2

identifies

the

relative

position

of

the

volume

label

in

a

volume

label

group.

It

must

be

written

as

X'F1'.

Volume

Serial

Number.

Field

3

contains

a

unique

identification

code

assigned

when

the

volume

enters

the

system.

You

can

place

the

code

on

the

external

surface

of

the

disk

drive

for

visual

identification.

The

code

is

any

1

to

6

alphanumeric

or

national

(#,

$,

@)

characters,

or

a

hyphen

(X'60').

If

this

field

is

fewer

than

6

characters,

it

is

padded

on

the

right

with

blanks.

Volume

Security.

Field

4

is

reserved

for

use

by

installations

that

want

to

provide

security

for

volumes.

Make

this

field

an

X'C0'

unless

you

have

your

own

security

processing

routines.

VTOC

Pointer.

Field

5

of

direct

access

volume

label

1

contains

the

address

of

the

VTOC

in

the

form

of

CCHHR.

Reserved.

Field

6

is

reserved

for

possible

future

use,

and

should

be

left

blank.

Owner

Name

and

Address

Code.

Field

7

contains

an

optional

identification

of

the

owner

of

the

volume.

Figure

120.

Initial

Volume

Label

Format

Using

Direct

Access

Labels

Appendix

A.

Using

Direct

Access

Labels

555

Field

8.

All

the

bytes

in

Field

8

are

left

blank.

Data

Set

Control

Block

(DSCB)

The

system

automatically

constructs

a

DSCB

when

space

is

requested

for

a

data

set

on

a

direct

access

volume.

Each

data

set

on

a

direct

access

volume

has

one

or

more

DSCBs

to

describe

its

characteristics.

The

DSCB

appears

in

the

VTOC

and,

in

addition

to

space

allocation

and

other

control

information,

contains

operating

system

data,

device-dependent

information,

and

data

set

characteristics.

There

are

seven

kinds

of

DSCBs,

each

with

a

different

purpose

and

a

different

format

number.

See

z/OS

DFSMSdfp

Advanced

Services

for

an

explanation

of

format-1

through

format-7

DSCBs.

Format

0

DSCBs

are

used

to

show

empty

space

in

the

VTOC.

User

Label

Groups

User

header

and

trailer

label

groups

can

be

included

with

data

sets

of

physically

sequential

or

direct

organization.

They

are

not

supported

for

extended

format

data

sets.

The

labels

in

each

group

have

the

format

shown

in

Figure

121.

Each

group

can

include

as

many

as

eight

labels,

but

the

space

required

for

both

groups

must

not

be

more

than

one

track

on

a

direct

access

storage

device.

A

program

becomes

device-dependent

(among

direct

access

storage

devices)

when

it

creates

more

than

eight

header

labels

or

eight

trailer

labels.

If

user

labels

are

specified

in

the

DD

statement

(LABEL=SUL),

an

additional

track

is

normally

allocated

when

the

data

set

is

created.

No

additional

track

is

allocated

when

specific

tracks

are

requested

(SPACE=(ABSTR,...)).

In

that

case,

labels

are

written

on

the

first

track

that

is

allocated.

User

Header

Label

Group.

The

operating

system

writes

these

labels

as

directed

by

the

processing

program

recording

the

data

set.

The

first

four

characters

of

the

user

header

label

must

be

UHL1,UHL2,

through

UHL8;

you

can

specify

the

remaining

76

characters.

When

the

data

set

is

read,

the

operating

system

makes

the

user

header

labels

available

to

the

application

program

for

processing.

User

Trailer

Label

Group.

These

labels

are

recorded

(and

processed)

as

explained

in

the

preceding

text

for

user

header

labels,

except

that

the

first

four

characters

must

be

UTL1,UTL2,

through

UTL8.

Field 1

2

3

(3)

(1)

(76)

Label Identifier (”UHL” if Header, “UTL” if Trailer)

Label Number (a numeric character from “1” to “8”)

User-Specified

80-Byte Physical Record (Maximum of 8)

Figure

121.

User

Header

and

Trailer

Labels

on

DASD

or

Tape

Using

Direct

Access

Labels

556

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

format

of

user

header

and

trailer

labels

follows:

Label

Identifier.

Field

1

shows

the

kind

of

user

header

label.

“UHL”

means

a

user

header

label;

“UTL”

means

a

user

trailer

label.

Label

Number.

Field

2

identifies

the

relative

position

(1

to

8)

of

the

label

within

the

user

label

group.

It

is

an

EBCDIC

character.

User-Specified.

Field

3

(76

bytes).

Using

Direct

Access

Labels

Appendix

A.

Using

Direct

Access

Labels

557

558

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Appendix

B.

Using

the

Double-Byte

Character

Set

(DBCS)

This

appendix

covers

the

following

topics.

Topic

Location

DBCS

Character

Support

559

Record

Length

When

Using

DBCS

Characters

559

Double-byte

character

set

(DBCS)

support

lets

you

process

characters

in

languages

that

contain

too

many

characters

or

symbols

for

each

to

be

assigned

a

1-byte

hexadecimal

value.

You

can

use

DBCS

to

process

languages,

such

as

Japanese

and

Chinese,

that

use

ideographic

characters.

In

DBCS,

two

bytes

are

used

to

describe

each

character;

this

lets

you

describe

more

than

35

000

characters.

When

one

byte

is

used

to

describe

a

character,

as

in

EBCDIC,

it

is

called

a

single-byte

character

set

(SBCS).

DBCS

Character

Support

DBCS

support

is

not

used

to

create

characters;

it

is

used

to

print

and

copy

DBCS

characters

already

in

the

data

set.

To

print

and

copy

DBCS

characters,

use

the

access

method

services

commands

PRINT

and

REPRO.

See

z/OS

DFSMS

Access

Method

Services

for

Catalogs

for

information

on

using

PRINT

and

REPRO

with

DBCS

data.

When

the

data

has

a

mixture

of

DBCS

and

SBCS

strings,

you

must

use

two

special

delimiters,

SO

(shift

out)

and

SI

(shift

in),

which

designate

where

a

DBCS

string

begins

and

where

it

ends.

SO

tells

you

when

you

are

leaving

an

SBCS

string,

and

SI

tells

you

when

you

are

returning

to

an

SBCS

string.

Use

the

PRINT

and

REPRO

commands

to

insert

the

SO

and

SI

characters

around

the

DBCS

data.

DBCS

data

must

satisfy

the

following

criteria:

1.

The

data

must

be

bracketed

by

paired

SO

and

SI

characters

when

used

in

combination

with

SBCS

data.

2.

The

number

of

bytes

between

the

SO

and

SI

characters

must

be

even

because

each

DBCS

character

requires

two

bytes

to

represent

it.

3.

Each

DBCS

character

must

reside

within

a

range

of

valid

character

codes.

The

valid

character

codes

range

from

X'41'

through

X'FE'

for

both

the

first

and

second

byte.

For

example,

X'41FE'

is

a

valid

DBCS

character

but

not

X'39FF'.

X'4040'

is

a

DBCS

space.

Record

Length

When

Using

DBCS

Characters

This

section

shows

how

to

define

the

record

length

for

fixed-length

and

variable-length

records

when

using

DBCS

characters.

Fixed-Length

Records

Because

inserting

of

SO

and

SI

characters

increases

the

output

record

length,

you

must

define

the

output

data

set

with

enough

space

in

the

output

record.

The

record

length

of

the

output

data

set

must

be

equal

to

the

input

data

set’s

record

length

plus

the

additional

number

of

bytes

necessary

to

insert

the

SO

and

SI

pairs.

©

Copyright

IBM

Corp.

1987,

2004

559

Each

SO

and

SI

pair

consists

of

2

bytes.

In

the

following

example

for

a

fixed-length

record,

the

input

record

length

is

80

bytes

and

consists

of

one

DBCS

string

surrounded

by

an

SO

and

SI

pair.

The

output

record

length

would

be

82

bytes,

which

is

correct.

Input

record

length

=

80;

number

of

SO

and

SI

pairs

=

1

Output

record

length

=

82

(correct

length)

An

output

record

length

of

84

bytes,

for

example,

would

be

too

large

and

would

result

in

an

error.

An

output

record

length

of

80

bytes,

for

example,

would

be

too

small

because

there

would

not

be

room

for

the

SO

and

SI

pair.

If

the

output

record

length

is

too

small

or

too

large,

an

error

message

is

issued,

a

return

code

of

12

is

returned

from

IEBGENER,

and

the

command

ends.

Variable-Length

Records

Because

insertion

of

SO

and

SI

characters

increases

the

output

record

length,

you

must

define

the

output

data

set

with

enough

space

in

the

output

record.

The

input

data

set’s

record

length

plus

the

additional

number

of

bytes

necessary

to

insert

the

SO

and

SI

pairs

must

not

exceed

the

maximum

record

length

of

the

output

data

set.

Each

SO

and

SI

pair

consists

of

2

bytes.

If

the

output

record

length

is

too

small,

an

error

message

will

be

issued,

a

return

code

of

12

will

be

returned

from

IEBGENER,

and

the

command

will

be

ended.

In

the

following

example

for

a

variable-length

record,

the

input

record

length

is

50

bytes

and

consists

of

four

DBCS

string

surrounded

by

SO

and

SI

pairs.

The

output

record

length

is

50

bytes

which

is

too

small

because

the

SO

and

SI

pairs

add

eight

extra

bytes

to

the

record

length.

The

output

record

length

should

be

at

least

58

bytes.

Input

record

length

=

50;

number

of

SO

and

SI

pairs

=

4

Output

record

length

=

50

(too

small;

should

be

at

least

58

bytes)

Using

the

Double-Byte

Character

Set

(DBCS)

560

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Appendix

C.

Processing

Direct

Data

Sets

This

appendix

covers

the

following

topics.

Topic

Location

Using

the

Basic

Direct

Access

Method

(BDAM)

561

Processing

a

Direct

Data

Set

Sequentially

562

Organizing

a

Direct

Data

Set

562

Creating

a

Direct

Data

Set

563

Referring

to

a

Record

565

Adding

or

Updating

Records

566

Sharing

DCBs

570

If

you

use

BDAM,

be

aware

of

the

following

limitations:

v

Keyed

blocks

use

hardware

keys,

which

are

less

efficient

than

VSAM

keys.

v

BDAM

does

not

support

extended

format

data

sets.

v

The

use

of

relative

track

addressing

or

actual

device

addresses

easily

can

lead

to

program

logic

that

is

dependent

on

characteristics

that

are

unique

to

certain

device

types.

v

Updating

R0

can

be

inefficient.

v

Load

mode

does

not

support

31-bit

addressing

mode.

VSAM

does

not

have

any

of

these

limitations.

Using

the

Basic

Direct

Access

Method

(BDAM)

Create

a

direct

data

set

with

the

basic

sequential

access

method

(BSAM).

Use

the

MACRF=WL

parameter

in

the

BSAM

DCB

macro

to

create

a

direct

data

set.

The

application

program

must

synchronize

all

I/O

operations

with

a

CHECK

or

a

WAIT

macro.

The

application

program

must

block

and

unblock

its

own

input

and

output

records.

(BDAM

only

reads

and

writes

data

blocks.)

You

can

find

data

blocks

within

a

data

set

with

one

of

the

following

addressing

techniques.

Actual

device

addresses.

This

specifies

the

actual

location.

Relative

track

address

technique.

This

locates

a

track

on

a

direct

access

storage

device

starting

at

the

beginning

of

the

data

set.

Relative

block

address

technique.

This

locates

a

fixed-length

data

block

starting

from

the

beginning

of

the

data

set.

BDAM

macros

can

be

issued

in

24-bit

or

31-bit

addressing

mode.

©

Copyright

IBM

Corp.

1987,

2004

561

Processing

a

Direct

Data

Set

Sequentially

Although

you

can

process

a

direct

data

set

sequentially

using

either

the

queued

access

method

or

the

basic

access

method,

you

cannot

read

record

keys

using

the

queued

access

method.

When

you

use

the

basic

access

method,

each

unit

of

data

transmitted

between

virtual

storage

and

an

I/O

device

is

regarded

by

the

system

as

a

record.

If,

in

fact,

it

is

a

block,

you

must

perform

any

blocking

or

deblocking

required.

For

that

reason,

the

LRECL

field

is

not

used

when

processing

a

direct

data

set.

Only

BLKSIZE

must

be

specified

when

you

read,

add,

or

update

records

on

a

direct

data

set.

If

dynamic

buffering

is

specified

for

your

direct

data

set,

the

system

will

provide

a

buffer

for

your

records.

If

dynamic

buffering

is

not

specified,

you

must

provide

a

buffer

for

the

system

to

use.

The

discussion

of

direct

access

storage

devices

shows

that

record

keys

are

optional.

If

they

are

specified,

they

must

be

used

for

every

record

and

must

be

of

a

fixed

length.

Organizing

a

Direct

Data

Set

In

a

direct

data

set,

there

is

a

relationship

between

a

control

number

(or

identification

of

each

record)

and

its

location

on

the

direct

access

volume.

Therefore,

you

can

access

a

record

without

an

index

search.

You

determine

the

actual

organization

of

the

data

set.

If

the

data

set

has

been

carefully

organized,

location

of

a

particular

record

takes

less

time

than

with

an

indexed

sequential

data

set.

You

can

use

direct

addressing

to

develop

the

organization

of

your

data

set.

When

you

use

direct

addresses,

the

location

of

each

record

in

the

data

set

is

known.

By

Range

of

Keys

If

format-F

records

with

keys

are

being

written,

the

key

of

each

record

can

be

used

to

identify

the

record.

For

example,

a

data

set

with

keys

ranging

from

0

to

4999

should

be

allocated

space

for

5000

records.

Each

key

relates

directly

to

a

location

that

you

can

refer

to

as

a

relative

record

number.

Therefore,

each

record

should

be

assigned

a

unique

key.

If

identical

keys

are

used,

it

is

possible,

during

periods

of

high

processor

and

channel

activity,

to

skip

the

desired

record

and

retrieve

the

next

record

on

the

track.

The

main

disadvantage

of

this

type

of

organization

is

that

records

might

not

exist

for

many

of

the

keys,

even

though

space

has

been

reserved

for

them.

By

Number

of

Records

Space

could

be

allocated

based

on

the

number

of

records

in

the

data

set

rather

than

on

the

range

of

keys.

Allocating

space

based

on

the

number

of

records

requires

the

use

of

a

cross-reference

table.

When

a

record

is

written

in

the

data

set,

you

must

note

the

physical

location

as

a

relative

block

number,

an

actual

address,

or

as

a

relative

track

and

record

number.

The

addresses

must

then

be

stored

in

a

table

that

is

searched

when

a

record

is

to

be

retrieved.

Disadvantages

are

that

cross-referencing

can

be

used

efficiently

only

with

a

small

data

set;

storage

is

required

for

the

table,

and

processing

time

is

required

for

searching

and

updating

the

table.

Processing

Direct

Data

Sets

562

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

With

Indirect

Addressing

A

more

common,

but

somewhat

complex,

technique

for

organizing

the

data

set

involves

the

use

of

indirect

addressing.

In

indirect

addressing,

the

address

of

each

record

in

the

data

set

is

determined

by

a

mathematical

manipulation

of

the

key,

also

called

randomizing

or

conversion.

Because

several

randomizing

procedures

could

be

used,

no

attempt

is

made

here

to

describe

or

explain

those

that

might

be

most

appropriate

for

your

data

set.

Creating

a

Direct

Data

Set

After

the

organization

of

a

direct

data

set

has

been

determined,

the

process

of

creating

it

is

almost

identical

to

creating

a

sequential

data

set.

The

BSAM

DCB

macro

should

be

used

with

the

WRITE

macro

(the

form

used

to

allocate

a

direct

data

set).

Issue

the

WRITE

and

CHECK

macros

in

24-bit

mode.

The

following

parameters

must

be

specified

in

the

DCB

macro:

v

DSORG=PS

or

PSU

v

DEVD=DA

or

omitted

v

MACRF=WL

The

DD

statement

must

specify

direct

access

(DSORG=DA

or

DAU).

If

keys

are

used,

a

key

length

(KEYLEN)

must

also

be

specified.

Record

length

(LRECL)

need

not

be

specified,

but

can

provide

compatibility

with

sequential

access

method

processing

of

a

direct

data

set.

DSORG

and

KEYLEN

can

be

specified

through

data

class.

For

more

information

about

data

class

see

Chapter

21,

“Specifying

and

Initializing

Data

Control

Blocks,”

on

page

311.

Restrictions

in

Creating

a

Direct

Data

Set

Using

QSAM

It

is

possible

to

create

a

direct

data

set

using

QSAM

(no

keys

allowed)

or

BSAM

(with

or

without

keys

and

the

DCB

specifies

MACRF=W).

However,

it

is

not

recommended

that

you

access

a

direct

data

set

using

QSAM

because

you

cannot

request

a

function

that

requires

the

information

in

the

capacity

record

(R0)

data

field.

For

example,

the

following

restrictions

would

apply:

v

Variable-length

or

undefined-length

spanned

record

processing

is

not

permitted.

v

The

WRITE

add

function

with

extended

search

for

fixed-length

records

(with

or

without

track

overflow)

is

not

permitted.

If

a

direct

data

set

is

created

and

updated

or

read

within

the

same

job

step,

and

the

OPTCD

parameter

is

used

in

the

creation,

updating,

or

reading

of

the

data

set,

different

DCBs

and

DD

statements

should

be

used.

With

Direct

Addressing

with

Keys

If

you

are

using

direct

addressing

with

keys,

you

can

reserve

space

for

future

format-F

records

by

writing

a

dummy

record.

To

reserve

or

truncate

a

track

for

format-U,

format-V,

or

format-VS

records,

write

a

capacity

record.

Format-F

records

are

written

sequentially

as

they

are

presented.

When

a

track

is

filled,

the

system

automatically

writes

the

capacity

record

and

advances

to

the

next

track.

Rule:

Direct

data

sets

whose

records

are

to

be

identified

by

relative

track

address

must

be

limited

in

size

to

no

more

than

65

536

tracks

for

the

entire

data

set.

Processing

Direct

Data

Sets

Appendix

C.

Processing

Direct

Data

Sets

563

With

BDAM

to

Allocate

a

VIO

Data

Set

If

a

VIO

data

set

is

opened

for

processing

with

the

extended

search

option,

BDAM

does

not

search

unused

tracks.

The

information

needed

to

determine

the

data

set

size

is

written

in

the

DSCB

during

the

close

of

the

DCB

used

in

the

create

step.

Therefore,

if

this

data

set

is

being

allocated

and

processed

by

the

same

program,

and

the

DCB

used

for

creating

the

data

set

has

not

been

closed

before

opening

the

DCB

to

be

used

for

processing,

the

resultant

beginning

and

ending

CCHH

will

be

equal.

Example:

In

the

example

problem

in

Figure

122,

a

tape

containing

204-byte

records

arranged

in

key

sequence

is

used

to

allocate

a

direct

data

set.

A

4-byte

binary

key

for

each

record

ranges

from

1000

to

8999,

so

space

for

8000

records

is

requested.

//DAOUTPUT

DD

DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA,

C

//

BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),---

//TAPINPUT

DD

...

DIRECT

START

...

L

9,=F’1000’

OPEN

(DALOAD,(OUTPUT),TAPEDCB)

LA

10,COMPARE

NEXTREC

GET

TAPEDCB

LR

2,1

COMPARE

C

9,0(2)

Compare

key

of

input

against

*

control

number

BNE

DUMMY

WRITE

DECB1,SF,DALOAD,(2)

Write

data

record

CHECK

DECB1

AH

9,=H’1’

B

NEXTREC

DUMMY

C

9,=F’8999’

Have

8000

records

been

written?

BH

ENDJOB

WRITE

DECB2,SD,DALOAD,DUMAREA

Write

dummy

CHECK

DECB2

AH

9,=H’1’

BR

10

INPUTEND

LA

10,DUMMY

BR

10

ENDJOB

CLOSE

(TAPEDCB,,DALOAD)

...

DUMAREA

DS

8F

DALOAD

DCB

DSORG=PS,MACRF=(WL),DDNAME=DAOUTPUT,

C

DEVD=DA,SYNAD=CHECKER,---

TAPEDCB

DCB

EODAD=INPUTEND,MACRF=(GL),

...

Figure

122.

Creating

a

Direct

Data

Set

(Tape-to-Disk)

Processing

Direct

Data

Sets

564

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Referring

to

a

Record

You

choose

among

three

types

of

record

addressing

and

you

can

choose

other

addressing

options.

Record

Addressing

After

you

have

determined

how

your

data

set

is

to

be

organized,

you

must

consider

how

the

individual

records

will

be

referred

to

when

the

data

set

is

updated

or

new

records

are

added.

You

refer

to

records

using

one

of

three

forms

of

addressing:

v

Relative

Block

Address.

You

specify

the

relative

location

of

the

record

(block)

within

the

data

set

as

a

3-byte

binary

number.

You

can

use

this

type

of

reference

only

with

format-F

records.

The

system

computes

the

actual

track

and

record

number.

The

relative

block

address

of

the

first

block

is

0.

v

Relative

Track

Address.

You

specify

the

relative

track

as

a

2-byte

binary

number

and

the

actual

record

number

on

that

track

as

a

1-byte

binary

number.

The

relative

track

address

of

the

first

track

is

0.

The

number

of

the

first

record

on

each

track

is

1.

Direct

data

sets

whose

records

are

to

be

identified

by

relative

track

address

must

be

limited

in

size

to

no

more

than

65

536

tracks

for

the

entire

data

set.

v

Actual

Address.

You

supply

the

actual

address

in

the

standard

8-byte

form,

MBBCCHHR.

Remember

that

using

an

actual

address

might

force

you

to

specify

that

the

data

set

is

unmovable.

In

that

case

the

data

set

is

ineligible

to

be

system

managed.

In

addition

to

the

relative

track

or

block

address,

you

specify

the

address

of

a

virtual

storage

location

containing

the

record

key.

The

system

computes

the

actual

track

address

and

searches

for

the

record

with

the

correct

key.

Extended

Search

You

request

that

the

system

begin

its

search

with

a

specified

starting

location

and

continue

for

a

certain

number

of

records

or

tracks.

You

can

use

the

extended

search

option

to

request

a

search

for

unused

space

where

a

record

can

be

added.

To

use

the

extended

search

option,

you

must

specify

in

the

DCB

(DCBLIMCT)

the

number

of

tracks

(including

the

starting

track)

or

records

(including

the

starting

record)

that

are

to

be

searched.

If

you

specify

a

number

of

records,

the

system

might

actually

examine

more

than

this

number.

In

searching

a

track,

the

system

searches

the

entire

track

(starting

with

the

first

record);

it

therefore

might

examine

records

that

precede

the

starting

record

or

follow

the

ending

record.

If

the

DCB

specifies

a

number

equal

to

or

greater

than

the

number

of

tracks

allocated

to

the

data

set

or

the

number

of

records

within

the

data

set,

the

entire

data

set

is

searched

in

the

attempt

to

satisfy

your

request.

In

addition

to

the

relative

track

or

block

address,

you

specify

the

address

of

a

virtual

storage

location

containing

the

record

key.

The

system

computes

the

actual

track

address

and

searches

for

the

record

with

the

correct

key.

Processing

Direct

Data

Sets

Appendix

C.

Processing

Direct

Data

Sets

565

Exclusive

Control

for

Updating

When

more

than

one

task

is

referring

to

the

same

data

set,

exclusive

control

of

the

block

being

updated

is

required

to

prevent

referring

to

the

same

record

at

the

same

time.

Rather

than

issuing

an

ENQ

macro

each

time

you

update

a

block,

you

can

request

exclusive

control

through

the

MACRF

field

of

the

DCB

and

the

type

parameter

of

the

READ

macro.

The

coding

example

in

Figure

124

on

page

569

shows

the

use

of

exclusive

control.

After

the

READ

macro

is

run,

your

task

has

exclusive

control

of

the

block

being

updated.

No

other

task

in

the

system

requesting

access

to

the

block

is

given

access

until

the

operation

started

by

your

WRITE

macro

is

complete.

If,

however,

the

block

is

not

to

be

written,

you

can

release

exclusive

control

using

the

RELEX

macro.

Feedback

Option

The

feedback

option

specifies

that

the

system

is

to

provide

the

address

of

the

record

requested

by

a

READ

or

WRITE

macro.

This

address

can

be

in

the

same

form

that

was

presented

to

the

system

in

the

READ

or

WRITE

macro,

or

as

an

8-byte

actual

address.

You

can

specify

the

feedback

option

in

the

OPTCD

parameter

of

the

DCB

and

in

the

READ

or

WRITE

macro.

If

the

feedback

option

is

omitted

from

the

DCB,

but

is

requested

in

a

READ

or

WRITE

macro,

an

8-byte

actual

address

is

returned

to

you.

The

feedback

option

is

automatically

provided

for

a

READ

macro

requesting

exclusive

control

for

updating.

This

feedback

will

be

in

the

form

of

an

actual

address

(MBBCCHHR)

unless

feedback

was

specified

in

the

OPTCD

field

of

the

DCB.

In

that

case,

feedback

is

returned

in

the

format

of

the

addressing

scheme

used

in

the

application

program

(an

actual

or

a

relative

address).

When

a

WRITE

or

RELEX

macro

is

issued

(which

releases

the

exclusive

control

for

the

READ

request),

the

system

will

assume

that

the

addressing

scheme

used

for

the

WRITE

or

RELEX

macro

is

in

the

same

format

as

the

addressing

scheme

used

for

feedback

in

the

READ

macro.

Adding

or

Updating

Records

The

techniques

for

adding

records

to

a

direct

data

set

depend

on

the

format

of

the

records

and

the

organization

used.

Format-F

with

Keys

Essentially,

adding

a

record

amounts

to

updating

by

record

identification.

You

can

refer

to

the

record

using

either

a

relative

block

address

or

a

relative

track

address.

If

you

want

to

add

a

record

passing

a

relative

block

address,

the

system

converts

the

address

to

an

actual

track

address.

That

track

is

searched

for

a

dummy

record.

If

a

dummy

record

is

found,

the

new

record

is

written

in

place

of

it.

If

there

is

no

dummy

record

on

the

track,

you

are

informed

that

the

write

operation

did

not

take

place.

If

you

request

the

extended

search

option,

the

new

record

will

be

written

in

place

of

the

first

dummy

record

found

within

the

search

limits

you

specify.

If

none

is

found,

you

are

notified

that

the

write

operation

could

not

take

place.

In

the

same

way,

a

reference

by

relative

track

address

causes

the

record

to

be

written

in

place

of

a

dummy

record

on

the

referenced

track

or

the

first

within

the

search

limits,

if

requested.

If

extended

search

is

used,

the

search

begins

with

the

first

record

on

the

track.

Without

extended

search,

the

search

can

start

at

any

record

on

the

track.

Therefore,

records

that

were

added

to

a

track

are

not

necessarily

located

on

the

track

in

the

same

sequence

they

were

written

in.

Processing

Direct

Data

Sets

566

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Format-F

without

Keys

Here

too,

adding

a

record

is

really

updating

a

dummy

record

already

in

the

data

set.

The

main

difference

is

that

dummy

records

cannot

be

written

automatically

when

the

data

set

is

allocated.

You

will

have

to

use

your

own

method

for

flagging

dummy

records.

The

update

form

of

the

WRITE

macro

(MACRF=W)

must

be

used

rather

than

the

add

form

(MACRF=WA).

You

will

have

to

retrieve

the

record

first

(using

a

READ

macro),

test

for

a

dummy

record,

update,

and

write.

Format-V

or

Format-U

with

Keys

The

technique

used

to

add

format-V

and

-U

records

with

keys

depends

on

whether

records

are

located

by

indirect

addressing

or

by

a

cross-reference

table.

If

indirect

addressing

is

used,

you

must

at

least

initialize

each

track

(write

a

capacity

record)

even

if

no

data

is

actually

written.

That

way

the

capacity

record

shows

how

much

space

is

available

on

the

track.

If

a

cross-reference

table

is

used,

you

should

enter

all

the

actual

input

and

initialize

enough

succeeding

tracks

to

contain

any

additions

that

might

be

required.

To

add

a

new

record,

use

a

relative

track

address.

The

system

examines

the

capacity

record

to

see

if

there

is

room

on

the

track.

If

there

is,

the

new

record

is

written.

Under

the

extended

search

option,

the

record

is

written

in

the

first

available

area

within

the

search

limit.

Format-V

or

Format-U

without

Keys

Because

a

record

of

this

type

does

not

have

a

key,

you

can

access

the

record

only

by

its

relative

track

or

actual

address

(direct

addressing

only).

When

you

add

a

record

to

this

data

set,

you

must

retain

the

relative

track

or

actual

address

data

(for

example,

by

updating

your

cross-reference

table).

The

extended

search

option

is

not

permitted

because

it

requires

keys.

Processing

Direct

Data

Sets

Appendix

C.

Processing

Direct

Data

Sets

567

Tape-to-Disk

Add—Direct

Data

Set

The

example

in

Figure

123

involves

adding

records

to

the

data

set

allocated

in

Figure

122

on

page

564.

The

write

operation

adds

the

key

and

the

data

record

to

the

data

set.

If

the

existing

record

is

not

a

dummy

record,

an

indication

is

returned

in

the

exception

code

of

the

DECB.

For

that

reason,

it

is

better

to

use

the

WAIT

macro

instead

of

the

CHECK

macro

to

test

for

errors

or

exceptional

conditions.

//DIRADD

DD

DSNAME=SLATE.INDEX.WORDS,---

//TAPEDD

DD

...

DIRECTAD

START

...

OPEN

(DIRECT,(OUTPUT),TAPEIN)

NEXTREC

GET

TAPEIN,KEY

L

4,KEY

Set

up

relative

record

number

SH

4,=H’1000’

ST

4,REF

WRITE

DECB,DA,DIRECT,DATA,’S’,KEY,REF+1

WAIT

ECB=DECB

CLC

DECB+1(2),=X'0000'

Check

for

any

errors

BE

NEXTREC

Check

error

bits

and

take

required

action

DIRECT

DCB

DDNAME=DIRADD,DSORG=DA,RECFM=F,KEYLEN=4,BLKSIZE=200,

C

MACRF=(WA)

TAPEIN

DCB

KEY

DS

F

DATA

DS

CL200

REF

DS

F

...

Figure

123.

Adding

Records

to

a

Direct

Data

Set

Processing

Direct

Data

Sets

568

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Tape-to-Disk

Update—Direct

Data

Set

The

example

in

Figure

124

is

similar

to

that

in

Figure

123,

but

involves

updating

a

record

rather

than

adding

one.

There

is

no

check

for

dummy

records.

The

existing

direct

data

set

contains

25

000

records

whose

5-byte

keys

range

from

00

001

to

25

000.

Each

data

record

is

100

bytes

long.

The

first

30

characters

are

to

be

updated.

Each

input

tape

record

consists

of

a

5-byte

key

and

a

30-byte

data

area.

Notice

that

only

data

is

brought

into

virtual

storage

for

updating.

When

you

are

updating

variable-length

records,

you

should

use

the

same

length

to

read

and

write

a

record.

With

User

Labels

If

you

use

user

labels,

they

must

be

created

when

the

data

set

is

allocated.

They

can

be

updated,

but

not

added

or

deleted,

during

processing

of

a

direct

data

set.

When

creating

a

multivolume

direct

data

set

using

BSAM,

you

should

turn

off

the

header

exit

entry

after

OPEN

and

turn

on

the

trailer

label

exit

entry

just

before

issuing

the

CLOSE.

Turning

off

the

header

exit

entry

and

turning

on

the

trailer

label

exit

entry

eliminate

the

end-of-volume

exits.

The

first

volume,

containing

the

user

label

track,

must

be

mounted

when

the

data

set

is

closed.

If

you

have

requested

exclusive

control,

OPEN

and

CLOSE

issues

ENQ

and

DEQ,

preventing

simultaneous

reference

to

user

labels.

//DIRECTDD

DD

DSNAME=SLATE.INDEX.WORDS,---

//TAPINPUT

DD

...

DIRUPDAT

START

...

OPEN

(DIRECT,(UPDAT),TAPEDCB)

NEXTREC

GET

TAPEDCB,KEY

PACK

KEY,KEY

CVB

3,KEYFIELD

SH

3,=H’1’

ST

3,REF

READ

DECBRD,DIX,DIRECT,’S’,’S’,0,REF+1

CHECK

DECBRD

L

3,DECBRD+12

MVC

0(30,3),DATA

ST

3,DECBWR+12

WRITE

DECBWR,DIX,DIRECT,’S’,’S’,0,REF+1

CHECK

DECBWR

B

NEXTREC

...

KEYFIELD

DS

0D

DC

XL3’0’

KEY

DS

CL5

DATA

DS

CL30

REF

DS

F

DIRECT

DCB

DSORG=DA,DDNAME=DIRECTDD,MACRF=(RISXC,WIC),

C

OPTCD=RF,BUFNO=1,BUFL=100

TAPEDCB

DCB

...

Figure

124.

Updating

a

Direct

Data

Set

Processing

Direct

Data

Sets

Appendix

C.

Processing

Direct

Data

Sets

569

Sharing

DCBs

BDAM

permits

several

tasks

to

share

the

same

DCB

and

several

jobs

to

share

the

same

data

set.

It

synchronizes

I/O

requests

at

both

levels

by

maintaining

a

read-exclusive

list.

When

several

tasks

share

the

same

DCB

and

each

asks

for

exclusive

control

of

the

same

block,

BDAM

issues

a

system

ENQ

for

the

block

(or

in

some

cases

the

entire

track).

It

reads

in

the

block

and

passes

it

to

the

first

caller

while

putting

all

subsequent

requests

for

that

block

on

a

wait

queue.

When

the

first

task

releases

the

block,

BDAM

moves

it

into

the

next

caller’s

buffer

and

posts

that

task

complete.

The

block

is

passed

to

subsequent

callers

in

the

order

the

request

was

received.

BDAM

not

only

synchronizes

the

I/O

requests,

but

also

issues

only

one

ENQ

and

one

I/O

request

for

several

read

requests

for

the

same

block.

Because

BDAM

processing

is

not

sequential

and

I/O

requests

are

not

related,

a

caller

can

continue

processing

other

blocks

while

waiting

for

exclusive

control

of

the

shared

block.

Because

BDAM

issues

a

system

ENQ

for

each

record

held

exclusively,

it

permits

a

data

set

to

be

shared

between

jobs,

so

long

as

all

callers

use

BDAM.

The

system

enqueues

on

BDAM’s

commonly

understood

argument.

BDAM

supports

multiple

task

users

of

a

single

DCB

when

working

with

existing

data

sets.

When

operating

in

load

mode,

however,

only

one

task

can

use

the

DCB

at

a

time.

The

following

restrictions

and

comments

apply

when

more

than

one

task

shares

the

same

DCB,

or

when

multiple

DCBs

are

used

for

the

same

data

set.

v

Subpool

0

must

be

shared.

v

You

should

ensure

that

a

WAIT

or

CHECK

macro

has

been

issued

for

all

outstanding

BDAM

requests

before

the

task

issuing

the

READ

or

WRITE

macro

ends.

In

case

of

abnormal

termination,

this

can

be

done

through

a

STAE/STAI

or

ESTAE

exit.

v

FREEDBUF

or

RELEX

macros

should

be

issued

to

free

any

resources

that

could

still

be

held

by

the

terminating

task.

You

can

free

the

resources

during

or

after

task

termination.

Rule:

OPEN,

CLOSE,

and

all

I/O

must

be

performed

in

the

same

key

and

state

(problem

state

or

supervisor

state).

Processing

Direct

Data

Sets

570

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

This

appendix

covers

the

following

topics.

Topic

Location

Using

the

Basic

Indexed

Sequential

Access

Method

(BISAM)

571

Using

the

Queued

Indexed

Sequential

Access

Method

(QISAM)

571

Processing

ISAM

Data

Sets

572

Organizing

Data

Sets

572

Creating

an

ISAM

Data

Set

576

Allocating

Space

579

Calculating

Space

Requirements

582

Retrieving

and

Updating

587

Adding

Records

592

Maintaining

an

Indexed

Sequential

Data

Set

595

Recommendation:

Do

not

use

BISAM

or

QISAM

to

process

indexed

sequential

data

sets

because

it

is

less

efficient

and

less

reliable

than

VSAM

and

ISAM

and

requires

24-bit

addressing.

Use

VSAM

data

sets

instead.

You

can

use

BISAM

or

QISAM

to

process

indexed

sequential

data

sets.

Indexed

sequential

data

sets

cannot

be

system

managed.

To

ease

the

task

of

converting

programs

from

ISAM

to

VSAM,

consider

using

the

ISAM

interface

for

VSAM.

See

Appendix

E,

“Using

ISAM

Programs

with

VSAM

Data

Sets,”

on

page

603.

Note:

The

presence

of

the

ISAM

system

code

in

your

system

is

optional.

The

system

programmer

might

have

omitted

the

function

from

your

operating

system.

Using

the

Basic

Indexed

Sequential

Access

Method

(BISAM)

BISAM

cannot

be

used

to

create

an

indexed

sequential

data

set.

BISAM

directly

retrieves

logical

records

by

key,

updates

blocks

of

records

in-place,

and

inserts

new

records

in

their

correct

key

sequence.

Your

program

must

synchronize

all

I/O

operations

with

a

CHECK

or

a

WAIT

macro.

Other

DCB

parameters

are

available

to

reduce

I/O

operations

by

defining

work

areas

that

contain

the

highest

level

master

index

and

the

records

being

processed.

Using

the

Queued

Indexed

Sequential

Access

Method

(QISAM)

The

characteristics

of

an

indexed

sequential

data

set

are

established

when

the

data

set

is

created

using

QISAM.

You

cannot

change

them

without

reorganizing

the

data

set.

The

DCB

parameters

that

establish

these

characteristics

are:

BLKSIZE,

CYLOFL,

KEYLEN,

LRECL,

NTM,

OPTCD,

RECFM,

and

RKP.

©

Copyright

IBM

Corp.

1987,

2004

571

A

data

set

processed

with

QISAM

can

have

unblocked

fixed-length

records

(F),

blocked

fixed-length

records

(FB),

unblocked

variable-length

records

(V),

or

blocked

variable-length

records

(VB).

QISAM

can

create

an

indexed

sequential

data

set

(QISAM,

load

mode),

add

additional

data

records

at

the

end

of

the

existing

data

set

(QISAM,

resume

load

mode),

update

a

record

in

place,

or

retrieve

records

sequentially

(QISAM,

scan

mode).

For

an

indexed

sequential

data

set,

you

can

allocate

space

on

the

same

or

separate

volumes

for

the

data

set’s

prime

area,

overflow

area,

and

cylinder/master

index

or

indexes.

For

more

information

about

space

allocation,

see

z/OS

MVS

JCL

User’s

Guide.

QISAM

automatically

generates

a

track

index

for

each

cylinder

in

the

data

set

and

one

cylinder

index

for

the

entire

data

set.

Specify

the

DCB

parameters

NTM

and

OPTCD

to

show

that

the

data

set

requires

a

master

index.

QISAM

creates

and

maintains

as

many

as

three

levels

of

master

indexes.

You

can

purge

records

by

specifying

the

OPTCD=L

DCB

option

when

you

allocate

an

indexed

sequential

data

set.

The

OPTCD=L

option

flags

the

records

you

want

to

purge

with

a

X'FF'

in

the

first

data

byte

of

a

fixed-length

record

or

the

fifth

byte

of

a

variable-length

record.

QISAM

ignores

these

flagged

records

during

sequential

retrieval.

You

can

get

reorganization

statistics

by

specifying

the

OPTCD=R

DCB

option

when

an

indexed

sequential

data

set

is

allocated.

The

application

program

uses

these

statistics

to

determine

the

status

of

the

data

set’s

overflow

areas.

When

you

allocate

an

indexed

sequential

data

set,

you

must

write

the

records

in

ascending

key

order.

Processing

ISAM

Data

Sets

The

queued

access

method

must

be

used

to

allocate

an

indexed

sequential

data

set.

It

can

also

be

used

to

sequentially

process

or

update

the

data

set

and

to

add

records

to

the

end

of

the

data

set.

The

basic

access

method

can

be

used

to

insert

new

records

between

records

already

in

the

data

set

and

to

update

the

data

set

directly.

Because

indexed

sequential

data

sets

cannot

take

advantage

of

system-managed

storage,

you

should

consider

converting

indexed

sequential

data

sets

to

VSAM

data

sets.

You

can

use

access

method

services

to

allocate

a

VSAM

data

set

and

copy

the

indexed

sequential

data

set

into

it.

For

information

about

converting

to

VSAM

data

sets

see

Appendix

E,

“Using

ISAM

Programs

with

VSAM

Data

Sets,”

on

page

603.

Organizing

Data

Sets

The

organization

of

an

indexed

sequential

data

set

allows

you

much

flexibility

in

the

operations

you

can

perform.

The

data

set

can

be

read

or

written

sequentially,

individual

records

can

be

processed

in

any

order,

records

can

be

deleted,

and

new

records

can

be

added.

The

system

automatically

locates

the

proper

position

in

the

data

set

for

new

records

and

makes

any

necessary

adjustments

when

records

are

deleted.

Processing

Indexed

Sequential

Data

Sets

572

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

The

records

in

an

indexed

sequential

data

set

are

arranged

according

to

collating

sequence

by

a

key

field

in

each

record.

Each

block

of

records

is

preceded

by

a

key

field

that

corresponds

to

the

key

of

the

last

record

in

the

block.

An

indexed

sequential

data

set

resides

on

direct

access

storage

devices

and

can

occupy

as

many

as

three

different

areas:

v

The

prime

area,

also

called

the

prime

data

area,

contains

data

records

and

related

track

indexes.

It

exists

for

all

indexed

sequential

data

sets.

v

The

index

area

contains

master

and

cylinder

indexes

associated

with

the

data

set.

It

exists

for

a

data

set

that

has

a

prime

area

occupying

more

than

one

cylinder.

v

The

overflow

area

contains

records

that

overflow

from

the

prime

area

when

new

data

records

are

added.

It

is

optional.

The

track

indexes

of

an

indexed

sequential

data

set

are

similar

to

the

card

catalog

in

a

library.

For

example,

if

you

know

the

name

of

the

book

or

the

author,

you

can

look

in

the

card

catalog

and

obtain

a

catalog

number

that

enables

you

to

locate

the

book

in

the

book

files.

You

then

go

to

the

shelves

and

go

through

rows

until

you

find

the

shelf

containing

the

book.

Then

you

look

at

the

individual

book

numbers

on

that

shelf

until

you

find

the

particular

book.

ISAM

uses

the

track

indexes

in

much

the

same

way

to

locate

records

in

an

indexed

sequential

data

set.

As

the

records

are

written

in

the

prime

area

of

the

data

set,

the

system

accounts

for

the

records

contained

on

each

track

in

a

track

index

area.

Each

entry

in

the

track

index

identifies

the

key

of

the

last

record

on

each

track.

There

is

a

track

index

for

each

cylinder

in

the

data

set.

If

more

than

one

cylinder

is

used,

the

system

develops

a

higher-level

index

called

a

cylinder

index.

Each

entry

in

the

cylinder

index

identifies

the

key

of

the

last

record

in

the

cylinder.

To

increase

the

speed

of

searching

the

cylinder

index,

you

can

request

that

a

master

index

be

developed

for

a

specified

number

of

cylinders,

as

shown

in

Figure

125

on

page

574.

Rather

than

reorganize

the

entire

data

set

when

records

are

added,

you

can

request

that

space

be

allocated

for

additional

records

in

an

overflow

area.

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

573

Prime

Area

Records

are

written

in

the

prime

area

when

the

data

set

is

allocated

or

updated.

The

last

track

of

prime

data

is

reserved

for

an

end-of-file

mark.

The

portion

of

Figure

125

labeled

cylinder

1

illustrates

the

initial

structure

of

the

prime

area.

Although

the

prime

area

can

extend

across

several

noncontiguous

areas

of

the

volume,

all

the

records

are

written

in

key

sequence.

Each

record

must

contain

a

key;

the

system

automatically

writes

the

key

of

the

highest

record

before

each

block.

When

the

ABSTR

option

of

the

SPACE

parameter

of

the

DD

statement

is

used

to

generate

a

multivolume

prime

area,

the

VTOC

of

the

second

volume,

and

of

all

succeeding

volumes,

must

be

contained

within

cylinder

0

of

the

volume.

Index

Areas

The

operating

system

generates

track

and

cylinder

indexes

automatically.

As

many

as

three

levels

of

master

index

are

created

if

requested.

Track

Index

The

track

index

is

the

lowest

level

of

index

and

is

always

present.

There

is

one

track

index

for

each

cylinder

in

the

prime

area;

it

is

written

on

the

first

tracks

of

the

cylinder

that

it

indexes.

The

index

consists

of

a

series

of

paired

entries,

that

is,

a

normal

entry

and

an

overflow

entry

for

each

prime

track.

Figure

126

on

page

575

shows

the

format

of

a

track

index.

100

200

Data
10

500

1000

450

600

1200

900

700

1500

2000

900

2000

Data
150

Data
175

Data
190

Data
200

Data
20

Data
40

Data
100

Track
Index

Prime
Data

Prime
Data

100

300

Cylinder 1

Cylinder Index

Master Index

Cylinder 11 Cylinder 12

200

375

1500 2000200

450

1500 2000

Overflow

Figure

125.

Indexed

Sequential

Data

Set

Organization

Processing

Indexed

Sequential

Data

Sets

574

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

For

fixed-length

records,

each

normal

entry

points

to

record

0

or

to

the

first

data

record

on

a

track

shared

by

index

and

data

records.

(DCBFIRSH

also

points

to

it.)

For

variable-length

records,

the

normal

entry

contains

the

key

of

the

highest

record

on

the

track

and

the

address

of

the

last

record.

The

overflow

entry

is

originally

the

same

as

the

normal

entry.

(This

is

why

100

appears

twice

on

the

track

index

for

cylinder

1

in

Figure

125.)

The

overflow

entry

is

changed

when

records

are

added

to

the

data

set.

Then

the

overflow

entry

contains

the

key

of

the

highest

overflow

record

and

the

address

of

the

lowest

overflow

record

logically

associated

with

the

track.

If

all

the

tracks

allocated

for

the

prime

data

area

are

not

used,

the

index

entries

for

the

unused

tracks

are

flagged

as

inactive.

The

last

entry

of

each

track

index

is

a

dummy

entry

indicating

the

end

of

the

index.

When

fixed-length

record

format

has

been

specified,

the

remainder

of

the

last

track

of

each

cylinder

used

for

a

track

index

contains

prime

data

records,

if

there

is

room

for

them.

Each

index

entry

has

the

same

format

as

the

others.

It

is

an

unblocked,

fixed-length

record

consisting

of

a

count,

a

key,

and

a

data

area.

The

length

of

the

key

corresponds

to

the

length

of

the

key

area

in

the

record

to

which

it

points.

The

data

area

is

always

10

bytes

long.

It

contains

the

full

address

of

the

track

or

record

to

which

the

index

points,

the

level

of

the

index,

and

the

entry

type.

Cylinder

Index

For

every

track

index

created,

the

system

generates

a

cylinder

index

entry.

There

is

one

cylinder

index

for

a

data

set

that

points

to

a

track

index.

Because

there

is

one

track

index

per

cylinder,

there

is

one

cylinder

index

entry

for

each

cylinder

in

the

prime

data

area,

except

for

a

1-cylinder

prime

area.

As

with

track

indexes,

inactive

entries

are

created

for

any

unused

cylinders

in

the

prime

data

area.

Figure

126.

Format

of

Track

Index

Entries

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

575

Master

Index

As

an

optional

feature,

the

operating

system

creates

a

master

index

at

your

request.

The

presence

of

this

index

makes

long,

serial

searches

through

a

large

cylinder

index

unnecessary.

You

can

specify

the

conditions

under

which

you

want

a

master

index

created.

For

example,

if

you

have

specified

NTM=3

and

OPTCD=M

in

your

DCB

macro,

a

master

index

is

created

when

the

cylinder

index

exceeds

3

tracks.

The

master

index

consists

of

one

entry

for

each

track

of

cylinder

index.

If

your

data

set

is

extremely

large,

a

higher-level

master

index

is

created

when

the

first-level

master

index

exceeds

three

tracks.

This

higher-level

master

index

consists

of

one

entry

for

each

track

of

the

first-level

master

index.

This

procedure

can

be

repeated

for

as

many

as

three

levels

of

master

index.

Overflow

Areas

As

records

are

added

to

an

indexed

sequential

data

set,

space

is

required

to

contain

those

records

that

will

not

fit

on

the

prime

data

track

on

which

they

belong.

You

can

request

that

a

number

of

tracks

be

set

aside

as

a

cylinder

overflow

area

to

contain

overflows

from

prime

tracks

in

each

cylinder.

An

advantage

of

using

cylinder

overflow

areas

is

a

reduction

of

search

time

required

to

locate

overflow

records.

A

disadvantage

is

that

there

will

be

unused

space

if

the

additions

are

unevenly

distributed

throughout

the

data

set.

Instead

of,

or

in

addition

to,

cylinder

overflow

areas,

you

can

request

an

independent

overflow

area.

Overflow

from

anywhere

in

the

prime

data

area

is

placed

in

a

specified

number

of

cylinders

reserved

solely

for

overflow

records.

An

advantage

of

having

an

independent

overflow

area

is

a

reduction

in

unused

space

reserved

for

overflow.

A

disadvantage

is

the

increased

search

time

required

to

locate

overflow

records

in

an

independent

area.

If

you

request

both

cylinder

overflow

and

independent

overflow,

the

cylinder

overflow

area

is

used

first.

It

is

a

good

practice

to

request

cylinder

overflow

areas

large

enough

to

contain

a

reasonable

number

of

additional

records,

and

an

independent

overflow

area

to

be

used

as

the

cylinder

overflow

areas

are

filled.

Creating

an

ISAM

Data

Set

You

can

allocate

an

indexed

sequential

data

set

either

by

writing

all

records

in

a

single

step,

or

by

writing

one

group

of

records

in

one

step

and

writing

additional

groups

of

records

in

subsequent

steps.

Writing

records

in

subsequent

steps

is

called

resume

loading.

One-Step

Method

To

create

an

indexed

sequential

data

set

by

the

one-step

method,

take

the

following

actions:

1.

Code

DSORG=IS

or

DSORG=ISU

and

MACRF=PM

or

MACRF=PL

in

the

DCB

macro.

2.

Specify

the

following

attributes

in

the

DD

statement:

v

DCB

attributes

DSORG=IS

or

DSORG=ISU

v

Record

length

(LRECL)

v

Block

size

(BLKSIZE)

v

Record

format

(RECFM)

v

Key

length

(KEYLEN)

v

Relative

key

position

(RKP)

Processing

Indexed

Sequential

Data

Sets

576

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

Options

required

(OPTCD)

v

Cylinder

overflow

(CYLOFL)

v

Number

of

tracks

for

a

master

index

(NTM)

v

Space

requirements

(SPACE)

v

To

reuse

previously

allocated

space,

omit

the

SPACE

parameter

and

code

DISP=(OLD,

KEEP)
3.

Open

the

data

set

for

output.

4.

Use

the

PUT

macro

to

place

all

the

records

or

blocks

on

the

direct

access

volume.

5.

Close

the

data

set.

The

records

that

comprise

a

newly

created

data

set

must

be

presented

for

writing

in

ascending

order

by

key.

You

can

merge

two

or

more

input

data

sets.

If

you

want

a

data

set

with

no

records

(a

null

data

set),

you

must

write

at

least

one

record

when

you

allocate

the

data

set.

You

can

subsequently

delete

this

record

to

achieve

the

null

data

set.

Recommendations:

v

If

you

unload

a

data

set

so

that

it

deletes

all

existing

records

in

an

ISAM

data

set,

at

least

one

record

must

be

written

on

the

subsequent

load.

If

no

record

is

written,

the

data

set

will

be

unusable.

v

If

the

records

are

blocked,

do

not

write

a

record

with

a

hexadecimal

value

of

FF

and

a

key

of

hexadecimal

value

FF.

This

value

of

FF

is

used

for

padding.

If

it

occurs

as

the

last

record

of

a

block,

the

record

cannot

be

retrieved.

If

the

record

is

moved

to

the

overflow

area,

the

record

is

lost.

v

After

an

indexed

sequential

data

set

has

been

allocated,

you

cannot

change

its

cms

characteristics.

However,

for

added

flexibility,

the

system

lets

you

retrieve

records

by

using

either

the

queued

access

technique

with

simple

buffering

or

the

basic

access

method

with

dynamic

buffering.

Full-Track-Index

Write

Option

When

creating

an

indexed

sequential

data

set,

you

can

improve

performance

by

using

the

full-track-index

write

option.

You

do

this

by

specifying

OPTCD=U

in

the

DCB.

OPTCD=U

causes

the

operating

system

to

accumulate

track

index

entries

in

virtual

storage.

The

full-track-index

write

option

can

be

used

only

for

fixed-length

records.

If

you

do

not

specify

full-track-index

write,

the

operating

system

writes

each

normal

overflow

pair

of

entries

for

the

track

index

after

the

associated

prime

data

track

has

been

written.

If

you

do

specify

full-track-index

write,

the

operating

system

accumulates

track

index

entries

in

virtual

storage

until

either

(a)

there

are

enough

entries

to

fill

a

track

or

(b)

end-of-data

or

end-of-cylinder

is

reached.

Then

the

operating

system

writes

these

entries

as

a

group,

writing

one

group

for

each

track

of

track

index.

The

OPTCD=U

option

requires

allocation

of

more

storage

space

(the

space

in

which

the

track

index

entries

are

gathered),

but

the

number

of

I/O

operations

required

to

write

the

index

can

be

significantly

decreased.

When

you

specify

the

full-track-index

write

option,

the

track

index

entries

are

written

as

fixed-length

unblocked

records.

If

the

area

of

virtual

storage

available

is

not

large

enough

the

entries

are

written

as

they

are

created,

that

is,

in

normal

overflow

pairs.

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

577

Example:

The

example

in

Figure

127

shows

the

creation

of

an

indexed

sequential

data

set

from

an

input

tape

containing

60-character

records.

The

key

by

which

the

data

set

is

organized

is

in

positions

20

through

29.

The

output

records

will

be

an

exact

image

of

the

input,

except

that

the

records

will

be

blocked.

One

track

per

cylinder

is

to

be

reserved

for

cylinder

overflow.

Master

indexes

are

to

be

built

when

the

cylinder

index

exceeds

6

tracks.

Reorganization

information

about

the

status

of

the

cylinder

overflow

areas

is

to

be

maintained

by

the

system.

The

delete

option

will

be

used

during

any

future

updating.

Multiple-Step

Method

To

create

an

indexed

sequential

data

set

in

more

than

one

step,

create

the

first

group

of

records

using

the

procedure

in

“one-step

method”.

This

first

group

of

records

must

contain

at

least

one

data

record.

The

remaining

records

can

then

be

added

to

the

end

of

the

data

set

in

subsequent

steps,

using

resume

load.

Each

group

to

be

added

must

contain

records

with

successively

higher

keys.

This

method

lets

you

allocate

the

indexed

sequential

data

set

in

several

short

time

periods

rather

than

in

a

single

long

one.

This

method

also

lets

you

provide

limited

recovery

from

uncorrectable

output

errors.

When

an

uncorrectable

output

error

is

detected,

do

not

attempt

to

continue

processing

or

to

close

the

data

set.

If

you

have

provided

a

SYNAD

routine,

it

should

issue

the

ABEND

macro

to

end

processing.

If

no

SYNAD

routine

is

provided,

the

control

program

will

end

your

processing.

If

the

error

shows

that

//INDEXDD

DD

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=1,

C

//

DSORG=IS,OPTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19,

C

//

KEYLEN=10),UNIT=3380,SPACE=(CYL,25,,CONTIG),---

//INPUTDD

DD

...

ISLOAD

START

0

...

DCBD

DSORG=IS

ISLOAD

CSECT

OPEN

(IPDATA,,ISDATA,(OUTPUT))

NEXTREC

GET

IPDATA

Locate

mode

LR

0,1

Address

of

record

in

register

1

PUT

ISDATA,(0)

Move

mode

B

NEXTREC

...

CHECKERR

L

3,=A(ISDATA)

Initialize

base

for

errors

USING

IHADCB,3

TM

DCBEXCD1,X'04'

BO

OPERR

Uncorrectable

error

TM

DCBEXCD1,X'20'

BO

NOSPACE

Space

not

found

TM

DCBEXCD2,X'80'

BO

SEQCHK

Record

out

of

sequence

Rest

of

error

checking

Error

routine

End-of-job

routine

(EODAD

FOR

IPDATA)

IPDATA

DCB

ISDATA

DCB

DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR

...

Figure

127.

Creating

an

Indexed

Sequential

Data

Set

Processing

Indexed

Sequential

Data

Sets

578

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

space

in

which

to

add

the

record

was

not

found,

you

must

close

the

data

set;

issuing

subsequent

PUT

macros

can

cause

unpredictable

results.

You

should

begin

recovery

at

the

record

following

the

end

of

the

data

as

of

the

last

successful

close.

The

rerun

time

is

limited

to

that

necessary

to

add

the

new

records,

rather

than

to

that

necessary

to

re-create

the

entire

data

set.

Resume

Load

When

you

extend

an

indexed

sequential

data

set

with

resume

load,

the

disposition

parameter

of

the

DD

statement

must

specify

MOD.

To

ensure

that

the

necessary

control

information

is

in

the

DSCB

before

attempting

to

add

records,

you

should

at

least

open

and

close

the

data

set

successfully

on

a

system

that

includes

resume

load.

This

is

necessary

only

if

the

data

set

was

allocated

on

a

previous

version

of

the

system.

Records

can

be

added

to

the

data

set

by

resume

load

until

the

space

allocated

for

prime

data

in

the

first

step

has

been

filled.

During

resume

load

on

a

data

set

with

a

partially

filled

track

or

a

partially

filled

cylinder,

the

track

index

entry

or

the

cylinder

index

entry

is

overlaid

when

the

track

or

cylinder

is

filled.

Resume

load

for

variable-length

records

begins

at

the

next

sequential

track

of

the

prime

data

set.

If

resume

load

abnormally

ends

after

these

index

entries

have

been

overlaid,

a

subsequent

resume

load

will

result

in

a

sequence

check

when

it

adds

a

key

that

is

higher

than

the

highest

key

at

the

last

successful

CLOSE

but

lower

than

the

key

in

the

overlaid

index

entry.

When

the

SYNAD

exit

is

taken

for

a

sequence

check,

register

0

contains

the

address

of

the

high

key

of

the

data

set.

However,

if

the

SYNAD

exit

is

taken

during

CLOSE,

register

0

will

contain

the

IOB

address.

Allocating

Space

An

indexed

sequential

data

set

has

three

areas:

prime,

index,

and

overflow.

Space

for

these

areas

can

be

subdivided

and

allocated

as

follows:

v

Prime

area—If

you

request

only

a

prime

area,

the

system

automatically

uses

a

portion

of

that

space

for

indexes,

taking

one

cylinder

at

a

time

as

needed.

Any

unused

space

in

the

last

cylinder

used

for

index

will

be

allocated

as

an

independent

overflow

area.

More

than

one

volume

can

be

used

in

most

cases,

but

all

volumes

must

be

for

devices

of

the

same

device

type.

v

Index

area—You

can

request

that

a

separate

area

be

allocated

to

contain

your

cylinder

and

master

indexes.

The

index

area

must

be

contained

within

one

volume,

but

this

volume

can

be

on

a

device

of

a

different

type

than

the

one

that

contains

the

prime

area

volume.

If

a

separate

index

area

is

requested,

you

cannot

catalog

the

data

set

with

a

DD

statement.

If

the

total

space

occupied

by

the

prime

area

and

index

area

does

not

exceed

one

volume,

you

can

request

that

the

separate

index

area

be

imbedded

in

the

prime

area

(to

reduce

access

arm

movement)

by

indicating

an

index

size

in

the

SPACE

parameter

of

the

DD

statement

defining

the

prime

area.

If

you

request

space

for

prime

and

index

areas

only,

the

system

automatically

uses

any

space

remaining

on

the

last

cylinder

used

for

master

and

cylinder

indexes

for

overflow,

provided

the

index

area

is

on

a

device

of

the

same

type

as

the

prime

area.

v

Overflow

area—Although

you

can

request

an

independent

overflow

area,

it

must

be

contained

within

one

volume

and

must

be

of

the

same

device

type

as

the

prime

area.

If

no

specific

request

for

index

area

is

made,

then

it

will

be

allocated

from

the

specified

independent

overflow

area.

To

request

that

a

designated

number

of

tracks

on

each

cylinder

be

used

for

cylinder

overflow

records,

you

must

use

the

CYLOFL

parameter

of

the

DCB

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

579

macro.

The

number

of

tracks

that

you

can

use

on

each

cylinder

equals

the

total

number

of

tracks

on

the

cylinder

minus

the

number

of

tracks

needed

for

track

index

and

for

prime

data.

That

is:

Overflow

tracks

=

total

tracks

−

(track

index

tracks

+

prime

data

tracks)

When

you

allocate

a

1-cylinder

data

set,

ISAM

reserves

1

track

on

the

cylinder

for

the

end-of-file

mark.

You

cannot

request

an

independent

index

for

an

indexed

sequential

data

set

that

has

only

1

cylinder

of

prime

data.

When

you

request

space

for

an

indexed

sequential

data

set,

the

DD

statement

must

follow

several

rules,

as

shown

below

and

summarized

in

Table

55.

v

Space

can

be

requested

only

in

cylinders,

SPACE=(CYL,(...)),

or

absolute

tracks,

SPACE=(ABSTR,(...)).

If

the

absolute

track

technique

is

used,

the

designated

tracks

must

make

up

a

whole

number

of

cylinders.

v

Data

set

organization

(DSORG)

must

be

specified

as

indexed

sequential

(IS

or

ISU)

in

both

the

DCB

macro

and

the

DCB

parameter

of

the

DD

statement.

v

All

required

volumes

must

be

mounted

when

the

data

set

is

opened;

that

is,

volume

mounting

cannot

be

deferred.

v

If

your

prime

area

extends

beyond

one

volume,

you

must

specify

the

number

of

units

and

volumes

to

be

spanned;

for

example,

UNIT=(3380,3),VOLUME=(,,,3).

v

You

can

catalog

the

data

set

using

the

DD

statement

parameter

DISP=(,CATLG)

only

if

the

entire

data

set

is

defined

by

one

DD

statement;

that

is,

if

you

did

not

request

a

separate

index

or

independent

overflow

area.

As

your

data

set

is

allocated,

the

operating

system

builds

the

track

indexes

in

the

prime

data

area.

Unless

you

request

a

separate

index

area

or

an

imbedded

index

area,

the

cylinder

and

master

indexes

are

built

in

the

independent

overflow

area.

If

you

did

not

request

an

independent

overflow

area,

the

cylinder

and

master

indexes

are

built

in

the

prime

area.

If

an

error

is

found

during

creation

of

a

multivolume

data

set,

the

IEHPROGM

utility

program

should

be

used

to

scratch

the

DSCBs

on

the

volumes

where

the

data

set

was

successfully

allocated.

You

can

use

the

IEHLIST

utility

program

to

determine

whether

part

of

the

data

set

has

been

allocated.

The

IEHLIST

utility

program

also

determines

whether

space

is

available

or

whether

identically

named

data

sets

exist

before

space

allocation

is

attempted

for

indexed

sequential

data

sets.

These

utility

programs

are

described

in

z/OS

DFSMSdfp

Utilities.

Table

55

lists

the

criteria

for

requesting

indexed

sequential

data

sets.

Table

55.

Requests

for

Indexed

Sequential

Data

Sets

Index

Size

Coded?

Restrictions

on

Unit

Types

and

Number

of

Units

Resulting

Arrangement

of

Areas

n/a

None

Separate

index,

prime,

and

overflow

areas.

See

“Specifying

an

Independent

Overflow

Area”

on

page

582.

n/a

None

Separate

index

and

prime

areas.

Any

partially

used

index

cylinder

is

used

for

independent

overflow

if

the

index

and

prime

areas

are

on

the

same

type

of

device.

See

“Specifying

a

Separate

Index

Area”

on

page

582.

No

None

Prime

area

and

overflow

area

with

an

index

at

its

end.

See

“Specifying

a

Prime

Area

and

Overflow

Area”

on

page

582.

Processing

Indexed

Sequential

Data

Sets

580

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

55.

Requests

for

Indexed

Sequential

Data

Sets

(continued)

Index

Size

Coded?

Restrictions

on

Unit

Types

and

Number

of

Units

Resulting

Arrangement

of

Areas

Yes

Prime

area

cannot

have

more

than

one

unit.

Prime

area,

imbedded

index,

and

overflow

area.

See

“Specifying

a

Prime

Area

and

Overflow

Area”

on

page

582.

No

None

Prime

area

with

index

at

its

end.

Any

partially

used

index

cylinder

is

used

for

independent

overflow.

See

“Prime

Data

Area.”

Yes

Prime

area

cannot

have

more

than

one

unit.

Prime

area

with

imbedded

index

area;

independent

overflow

in

remainder

of

partially

used

index

cylinder.

See

“Prime

Data

Area.”

Prime

Data

Area

To

request

that

the

system

allocate

space

and

subdivide

it

as

required,

you

should

code

your

data

definition

as

follows:

//ddname

DD

DSNAME=dsname,DCB=DSORG=IS,

//

SPACE=(CYL,quantity,,CONTIG),UNIT=unitname,

//

DISP=(,KEEP),---

You

can

accomplish

the

same

type

of

allocation

by

qualifying

your

dsname

with

the

element

indication

(PRIME).

The

PRIME

element

is

assumed

if

it

is

omitted.

It

is

required

only

if

you

request

an

independent

index

or

an

overflow

area.

To

request

an

imbedded

index

area

when

an

independent

overflow

area

is

specified,

you

must

specify

DSNAME=dsname(PRIME).

To

indicate

the

size

of

the

imbedded

index,

you

specify

SPACE=(CYL,(quantity,,index

size)).

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

581

Specifying

a

Separate

Index

Area

To

request

a

separate

index

area,

other

than

an

imbedded

area

as

described

above,

you

must

use

a

separate

DD

statement.

The

element

name

is

specified

as

(INDEX).

The

space

and

unit

designations

are

as

required.

Notice

that

only

the

first

DD

statement

can

have

a

data

definition

name.

The

data

set

name

(dsname)

must

be

the

same.

//ddname

DD

DSNAME=dsname(INDEX),---

//

DD

DSNAME=dsname(PRIME),---

Specifying

an

Independent

Overflow

Area

A

request

for

an

independent

overflow

area

is

essentially

the

same

as

for

a

separate

index

area.

Only

the

element

name,

OVFLOW,

is

changed.

If

you

do

not

request

a

separate

index

area,

only

two

DD

statements

are

required.

//ddname

DD

DSNAME=dsname(INDEX),---

//

DD

DSNAME=dsname(PRIME),---

//

DD

DSNAME=dsname(OVFLOW),---

Specifying

a

Prime

Area

and

Overflow

Area

You

can

specify

a

prime

area,

imbedded

index,

and

overflow

area,

or

a

prime

area

and

overflow

area

with

an

index

at

the

end.

//ddname

DD

DSNAME=dsname(PRIME),---

//

DD

DSNAME=dsname(OVFLOW),---

Calculating

Space

Requirements

To

determine

the

number

of

cylinders

required

for

an

indexed

sequential

data

set,

you

must

consider

the

number

of

blocks

that

will

fit

on

a

cylinder,

the

number

of

blocks

that

will

be

processed,

and

the

amount

of

space

required

for

indexes

and

overflow

areas.

When

you

make

the

computations,

consider

how

much

additional

space

is

required

for

device

overhead.

The

IBM

documents

for

storage

devices

contain

device-specific

information

on

device

capacities

and

overhead

formulas.

Refer

to

the

document

written

for

your

device.

In

the

formulas

that

follow,

the

length

of

the

last

(or

only)

block

must

include

device

overhead.

Blocks

=

Track

capacity

/

Length

of

blocks

Use

modulo-32

arithmetic

when

calculating

key

length

and

data

length

terms

in

your

equations.

Compute

these

terms

first,

then

round

up

to

the

nearest

increment

of

32

bytes

before

completing

the

equation.

The

following

eight

steps

summarize

calculation

of

space

requirements

for

an

indexed

sequential

data

set.

Step

1.

Number

of

Tracks

Required

After

you

know

how

many

records

will

fit

on

a

track

and

the

maximum

number

of

records

you

expect

to

create,

you

can

determine

how

many

tracks

you

will

need

for

your

data.

Number

of

tracks

required

=

(Maximum

number

of

blocks

/

Blocks

per

track)

+

1

The

ISAM

load

mode

reserves

the

last

prime

data

track

for

the

file

mark.

Processing

Indexed

Sequential

Data

Sets

582

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Example:

Assume

that

a

200,000

record

parts-of-speech

dictionary

is

stored

on

an

IBM

3380

Disk

Storage

as

an

indexed

sequential

data

set.

Each

record

in

the

dictionary

has

a

12-byte

key

that

contains

the

word

itself

and

an

8-byte

data

area

that

contains

a

parts-of-speech

code

and

control

information.

Each

block

contains

50

records;

LRECL=20

and

BLKSIZE=1000.

Using

the

following

formula,

you

can

calculate

that

each

track

can

contain

26

blocks,

or

1300

records,

and

a

total

of

155

tracks

is

required

for

the

dictionary.

Blocks

=

47968/(256+((12+267)/32)(32)+((1000+267)/32)(32))

=

47968/1824

=

26

Records

per

track

=

(26

blocks)(50

records

per

block)

=

1300

Prime

data

tracks

required

=

(200000

records

/

1300

records

per

track)

+

1

=

155

Step

2.

Overflow

Tracks

Required

You

will

want

to

anticipate

the

number

of

tracks

required

for

cylinder

overflow

areas.

The

computation

is

the

same

as

for

prime

data

tracks,

but

you

must

remember

that

overflow

records

are

unblocked

and

a

10-byte

link

field

is

added.

Remember

also

that,

if

you

exceed

the

space

allocated

for

any

cylinder

overflow

area,

an

independent

overflow

area

is

required.

Those

records

are

not

placed

in

another

cylinder

overflow

area.

Overflow

records

per

track

=

Track

capacity

/

Length

of

overflow

records

Example:

Approximately

5000

overflow

records

are

expected

for

the

data

set

described

in

step

1.

Because

55

overflow

records

will

fit

on

a

track,

91

overflow

tracks

are

required.

There

are

91

overflow

tracks

for

155

prime

data

tracks,

or

approximately

1

overflow

track

for

every

2

prime

data

tracks.

Because

the

3380

disk

pack

for

a

3380

Model

AD4

has

15

tracks

per

cylinder,

it

would

probably

be

best

to

allocate

5

tracks

per

cylinder

for

overflow.

Overflow

=

47968/(256+((12+267)/32)(32)+((30+267)/32)(32))

records

=

47968/864

per

track

=

55

Overflow

tracks

required

=

5000

records

/

55

records

per

track

=

91

Overflow

tracks

per

cylinder

=

5

Step

3.

Index

Entries

Per

Track

You

will

have

to

set

aside

space

in

the

prime

area

for

track

index

entries.

There

will

be

two

entries

(normal

and

overflow)

for

each

track

on

a

cylinder

that

contains

prime

data

records.

The

data

field

of

each

index

entry

is

always

10

bytes

long.

The

key

length

corresponds

to

the

key

length

for

the

prime

data

records.

How

many

index

entries

will

fit

on

a

track?

Index

entries

per

track

=

Track

capacity

/

Length

of

index

entries

Example:

Again

assuming

a

3380

Model

AD4

disk

pack

and

records

with

12-byte

keys,

57

index

entries

fit

on

a

track.

Index

=

47968/(256+((12+267)/32)(32)+((10+267)/32)(32))

entries

=

47968/832

per

track

=

57

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

583

Step

4.

Determine

Unused

Space

Unused

space

on

the

last

track

of

the

track

index

depends

on

the

number

of

tracks

required

for

track

index

entries,

which

in

turn

depends

upon

the

number

of

tracks

per

cylinder

and

the

number

of

track

index

entries

per

track.

You

can

use

any

unused

space

for

any

prime

data

records

that

will

fit.

Unused

space

=

(Number

of

index

entries

per

track)

−

(2

(Number

of

tracks

per

cylinder

−

Number

of

overflow

tracks

per

cyl.)

+

1)

(Number

of

bytes

per

index)

For

variable-length

records,

or

when

a

prime

data

record

will

not

fit

on

the

last

track

of

the

track

index,

the

last

track

of

the

track

index

is

not

shared

with

prime

data

records.

In

this

case,

if

the

remainder

of

the

division

is

less

than

or

equal

to

2,

drop

the

remainder.

In

all

other

cases,

round

the

quotient

up

to

the

next

integer.

Example:

The

3380

disk

pack

from

the

3380

Model

AD4

has

15

tracks

per

cylinder.

You

can

fit

57

track

index

entries

into

one

track.

Therefore,

you

need

less

than

1

track

for

each

cylinder.

Number

of

trk

index

=

(2

(15

−

5)

+

1)

/

(57

+

2)

trks

per

cylinder

=

21

/

59

The

space

remaining

on

the

track

is

47968

−

(21

(832))

=

30496

bytes.

This

is

enough

space

for

16

blocks

of

prime

data

records.

Because

the

normal

number

of

blocks

per

track

is

26,

the

blocks

use

16/26ths

of

the

track,

and

the

effective

number

of

track

index

tracks

per

cylinder

is

therefore

1

−

16/26

or

0.385.

Space

is

required

on

the

last

track

of

the

track

index

for

a

dummy

entry

to

show

the

end

of

the

track

index.

The

dummy

entry

consists

of

an

8-byte

count

field,

a

key

field

the

same

size

as

the

key

field

in

the

preceding

entries,

and

a

10-byte

data

field.

Step

5.

Calculate

Tracks

for

Prime

Data

Records

Next

you

have

to

calculate

the

number

of

tracks

available

on

each

cylinder

for

prime

data

records.

You

cannot

include

tracks

set

aside

for

cylinder

overflow

records.

Prime

data

tracks

=

Tracks

per

cylinder

−

Overflow

tracks

per

cylinder

per

cylinder

−

Index

tracks

per

cylinder

Example:

If

you

set

aside

5

cylinder

overflow

tracks,

and

you

need

0.385ths

of

a

track

for

the

track

index,

9.615

tracks

are

available

on

each

cylinder

for

prime

data

records.

Prime

data

tracks

per

cylinder

=

15

−

5

−

(0.385)

=

9.615

Processing

Indexed

Sequential

Data

Sets

584

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Step

6.

Cylinders

Required

The

number

of

cylinders

required

to

allocate

prime

space

is

determined

by

the

number

of

prime

data

tracks

required

divided

by

the

number

of

prime

data

tracks

available

on

each

cylinder.

This

area

includes

space

for

the

prime

data

records,

track

indexes,

and

cylinder

overflow

records.

Number

of

cylinders

needed

=

Prime

data

tracks

needed

/

Prime

data

tracks

per

cylinder

needed

Example:

You

need

155

tracks

for

prime

data

records.

You

can

use

9.615

tracks

per

cylinder.

Therefore,

you

need

17

cylinders

for

your

prime

area

and

cylinder

overflow

areas.

Number

of

cylinders

required

=

(155)

/

(9.615)

=

16.121

(round

up

to

17)

Step

7.

Space

for

Cylinder

Indexes

and

Track

Indexes

You

will

need

space

for

a

cylinder

index

and

track

indexes.

There

is

a

cylinder

index

entry

for

each

track

index

(for

each

cylinder

allocated

for

the

data

set).

The

size

of

each

entry

is

the

same

as

the

size

of

the

track

index

entries;

therefore,

the

number

of

entries

that

will

fit

on

a

track

is

the

same

as

the

number

of

track

index

entries.

Unused

space

on

a

cylinder

index

track

is

not

shared.

Number

of

tracks

=

(Track

indexes

+

1)

required

for

/

(Index

entries

per

track

cylinder

index)

Example:

You

have

17

track

indexes

(from

Step

6).

Because

57

index

entries

fit

on

a

track

(from

Step

3),

you

need

1

track

for

your

cylinder

index.

The

remaining

space

on

the

track

is

unused.

Number

of

tracks

required

for

cyl.

index

=

(17

+

1)

/

57

=

18

/

57

=

0.316

<

1

Every

time

a

cylinder

index

crosses

a

cylinder

boundary,

ISAM

writes

a

dummy

index

entry

that

lets

ISAM

chain

the

index

levels

together.

The

addition

of

dummy

entries

can

increase

the

number

of

tracks

required

for

a

given

index

level.

To

determine

how

many

dummy

entries

will

be

required,

divide

the

total

number

of

tracks

required

by

the

number

of

tracks

on

a

cylinder.

If

the

remainder

is

0,

subtract

1

from

the

quotient.

If

the

corrected

quotient

is

not

0,

calculate

the

number

of

tracks

these

dummy

entries

require.

Also

consider

any

additional

cylinder

boundaries

crossed

by

the

addition

of

these

tracks

and

by

any

track

indexes

starting

and

stopping

within

a

cylinder.

Step

8.

Space

for

Master

Indexes

If

you

have

a

data

set

large

enough

to

require

master

indexes,

you

will

want

to

calculate

the

space

required

according

to

the

number

of

tracks

for

master

indexes

(NTM

parameter)

you

specified

in

the

DCB

macro

or

the

DD

statement.

If

the

cylinder

index

exceeds

the

NTM

specification,

an

entry

is

made

in

the

master

index

for

each

track

of

the

cylinder

index.

If

the

master

index

itself

exceeds

the

NTM

specification,

a

second-level

master

index

is

started.

As

many

as

three

levels

of

master

indexes

are

created

if

required.

The

space

requirements

for

the

master

index

are

computed

in

the

same

way

as

those

for

the

cylinder

index.

Calculate

the

number

of

tracks

for

master

indexes

as

follows:

#

Master

index

tracks

=

(#

Cylinder

index

tracks

+

1)

/

Index

entries

per

track

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

585

If

the

number

of

cylinder

indexes

is

greater

than

NTM,

calculate

the

number

of

tracks

for

a

first

level

master

index

as

follows:

#

Tracks

for

first

level

master

index

=

(Cylinder

track

indexes

+

1)

/

Index

entries

per

track

If

the

number

of

first

level

master

indexes

is

greater

than

NTM,

calculate

the

number

of

tracks

for

a

second

level

master

index

as

follows:

#

Tracks

for

second

level

master

index

=

(First

level

master

index

+

1)

/

Index

entries

per

track

If

the

number

of

second

level

master

indexes

is

greater

than

NTM,

calculate

the

number

of

tracks

for

a

third

level

master

index

as

follows:

#

Tracks

for

second

level

master

index

=

(Second

level

master

index

+

1)

/

Index

entries

per

track

Example:

Assume

that

your

cylinder

index

will

require

22

tracks.

Because

large

keys

are

used,

only

10

entries

will

fit

on

a

track.

If

NTM

was

specified

as

2,

3

tracks

will

be

required

for

a

master

index,

and

two

levels

of

master

index

will

be

created.

Number

of

tracks

required

for

master

indexes

=

(22

+

1)

/

10

=

2.3

Summary

of

Indexed

Sequential

Space

Requirements

Calculations

Indexed

sequential

space

requirement

calculations

can

be

summarized

as

follows:

1.

How

many

blocks

will

fit

on

a

track?

Blocks

=

Track

capacity

/

Length

of

blocks

2.

How

many

overflow

records

will

fit

on

a

track?

Overflow

records

=

Track

capacity

/

Length

of

Overflow

records

per

track

3.

How

many

index

entries

will

fit

on

a

track?

Index

entries

per

track

=

Track

capacity

/

Length

of

index

entries

4.

How

much

space

is

left

on

the

last

track

of

the

track

index?

Unused

=

(Number

of

index

entries

per

track)

space

−

(2

(Number

of

tracks

per

cylinder

−

Number

of

overflow

tracks

per

cylinder)

+

1)

(Number

of

bytes

per

index)

5.

How

many

tracks

on

each

cylinder

can

you

use

for

prime

data

records?

Prime

data

=

Tracks

per

cylinder

tracks

per

−

Overflow

tracks

per

cylinder

−

Index

tracks

per

cylinder

6.

How

many

cylinders

do

you

need

for

the

prime

data

area?

Number

of

cylinders

=

Prime

data

tracks

/

Prime

data

tracks

per

cylinder

7.

How

many

tracks

do

you

need

for

the

cylinder

index?

Number

of

tracks

required

=

(Track

indexes

+

1)

/

Index

entries

per

track

for

cylinder

index

8.

How

many

tracks

do

you

need

for

master

indexes?

Number

of

tracks

required

=

(Number

of

cylinder

index

tracks

+

1)

for

master

indexes

/

Index

entries

per

track

Processing

Indexed

Sequential

Data

Sets

586

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Retrieving

and

Updating

Retrieving

and

updating

an

indexed

sequential

data

set

can

be

accomplished

either

sequentially

or

directly,

as

described

in

this

section.

Sequential

Retrieval

and

Update

To

sequentially

retrieve

and

update

records

in

an

indexed

sequential

data

set,

take

the

following

actions:

1.

Code

DSORG=IS

or

DSORG=ISU

to

agree

with

what

you

specified

when

you

allocated

the

data

set,

and

MACRF=GL,

MACRF=SK,

or

MACRF=PU

in

the

DCB

macro.

2.

Code

a

DD

statement

for

retrieving

the

data

set.

The

data

set

characteristics

and

options

are

as

defined

when

the

data

set

was

allocated.

3.

Open

the

data

set.

4.

Set

the

beginning

of

sequential

retrieval

(SETL).

5.

Retrieve

records

and

process

as

required,

marking

records

for

deletion

as

required.

6.

Return

records

to

the

data

set.

7.

Use

ESETL

to

end

sequential

retrieval

as

required

and

reset

the

starting

point.

8.

Close

the

data

set

to

end

all

retrieval.

Using

the

data

set

allocated

in

Figure

127

on

page

578,

assume

that

you

are

to

retrieve

all

records

whose

keys

begin

with

915.

Those

records

with

a

date

(positions

13

through

16)

before

the

current

date

are

to

be

deleted.

The

date

is

in

the

standard

form

as

returned

by

the

system

in

response

to

the

TIME

macro,

that

is,

packed

decimal

0cyyddds.

Overflow

records

can

be

logically

deleted

even

though

they

cannot

be

physically

deleted

from

the

data

set.

Figure

128

on

page

588

shows

how

to

update

an

indexed

sequential

data

set

sequentially.

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

587

Direct

Retrieval

and

Update

By

using

the

basic

indexed

sequential

access

method

(BISAM)

to

process

an

indexed

sequential

data

set,

you

can

directly

access

the

records

in

the

data

set

for:

v

Direct

retrieval

of

a

record

by

its

key

v

Direct

update

of

a

record

v

Direct

insertion

of

new

records.

Because

the

operations

are

direct,

there

is

no

anticipatory

buffering.

However,

if

‘S’

is

specified

on

the

READ

macro,

the

system

provides

dynamic

buffering

each

time

a

read

request

is

made.

(See

Figure

129

on

page

591.)

Ensuring

a

Record

is

in

Virtual

Storage

To

ensure

that

the

requested

record

is

in

virtual

storage

before

you

start

processing,

you

must

issue

a

WAIT

or

CHECK

macro.

If

you

issue

a

WAIT

macro,

you

must

test

the

exception

code

field

of

the

DECB.

If

you

issue

a

CHECK

macro,

the

system

tests

the

exception

code

field

in

the

DECB.

If

an

error

analysis

routine

has

not

been

specified

and

a

CHECK

is

issued,

and

an

error

situation

exists,

the

program

abnormally

ends

with

a

system

completion

code

of

X'001'.

For

both

WAIT

and

CHECK,

if

you

want

to

determine

whether

the

record

is

an

overflow

record,

you

should

test

the

exception

code

field

of

the

DECB.

//INDEXDD

DD

DSNAME=SLATE.DICT,---

...

ISRETR

START

0

DCBD

DSORG=IS

ISRETR

CSECT

...

USING

IHADCB,3

LA

3,ISDATA

OPEN

(ISDATA)

SETL

ISDATA,KC,KEYADDR

Set

scan

limit

TIME

,

Today’s

date

in

register

1

ST

1,TODAY

NEXTREC

GET

ISDATA

Locate

mode

CLC

19(10,1),LIMIT

BNL

ENDJOB

CP

12(4,1),TODAY

Compare

for

old

date

BNL

NEXTREC

MVI

0(1),X’FF’

Flag

old

record

for

deletion

PUTX

ISDATA

Return

delete

record

B

NEXTREC

TODAY

DS

F

KEYADDR

DC

C’915’

Key

prefix

DC

XL7’0’

Key

padding

LIMIT

DC

C’916’

DC

XL7’0’

...

CHECKERR

Test

DCBEXCD1

and

DCBEXDE2

for

error

indication:

Error

Routines

ENDJOB

CLOSE

(ISDATA)

...

ISDATA

DCB

DDNAME=INDEXDD,DSORG=IS,MACRF=(GL,SK,PU),

C

...

SYNAD=CHECKRR

Figure

128.

Sequentially

Updating

an

Indexed

Sequential

Data

Set

Processing

Indexed

Sequential

Data

Sets

588

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

After

you

test

the

exception

code

field,

you

need

not

set

it

to

0.

If

you

have

used

a

READ

KU

(read

an

updated

record)

macro,

and

if

you

plan

to

use

the

same

DECB

again

to

rewrite

the

updated

record

using

a

WRITE

K

macro,

you

should

not

set

the

field

to

0.

If

you

do,

your

record

might

not

be

rewritten

properly.

Updating

Existing

Records

To

update

existing

records,

you

must

use

the

READ

KU

and

WRITE

K

combination.

Because

READ

KU

implies

that

the

record

will

be

rewritten

in

the

data

set,

the

system

retains

the

DECB

and

the

buffer

used

in

the

READ

KU

and

uses

them

when

the

record

is

written.

If

you

decide

not

to

write

the

record,

you

should

use

the

same

DECB

in

another

READ

or

WRITE

macro,

or

if

dynamic

buffering

was

used,

issue

a

FREEDBUF

macro.

If

you

issue

several

READ

KU

or

WRITE

K

macros

before

checking

the

first

one,

you

could

destroy

some

of

your

updated

records

unless

the

records

are

from

different

blocks.

When

you

are

using

scan

mode

with

QISAM

and

you

want

to

issue

PUTX,

issue

an

ENQ

on

the

data

set

before

processing

it

and

a

DEQ

after

processing

is

complete.

ENQ

must

be

issued

before

the

SETL

macro,

and

DEQ

must

be

issued

after

the

ESETL

macro.

When

you

are

using

BISAM

to

update

the

data

set,

do

not

modify

any

DCB

fields

or

issue

a

DEQ

until

you

have

issued

CHECK

or

WAIT.

Sharing

a

BISAM

DCB

between

Related

Tasks

If

there

is

the

possibility

that

your

task

and

another

task

will

be

accessing

the

same

data

set

simultaneously,

or

the

same

task

has

two

or

more

DCBs

opened

for

the

same

data

set,

use

data

set

sharing.

You

specify

data

set

sharing

by

coding

DISP=SHR

in

your

DD

statement.

When

a

data

set

is

shared,

the

DCB

fields

are

maintained

for

your

program

to

process

the

data

set

correctly.

If

you

do

not

use

DISP=SHR,

and

more

than

one

DCB

is

open

for

updating

the

data

set,

the

results

are

unpredictable.

If

you

specify

DISP=SHR,

you

must

also

issue

an

ENQ

for

the

data

set

before

each

I/O

request

and

a

DEQ

on

completion

of

the

request.

All

users

of

the

data

set

must

use

the

same

qname

and

rname

operands

for

ENQ.

For

example,

you

might

use

the

data

set

name

as

the

qname

operand.

For

more

information

about

using

ENQ

and

DEQ,

see

z/OS

MVS

Programming:

Assembler

Services

Reference

ABE-HSP

and

z/OS

MVS

Programming:

Assembler

Services

Guide.

Subtasking

For

subtasking,

I/O

requests

should

be

issued

by

the

task

that

owns

the

DCB

or

a

task

that

will

remain

active

while

the

DCB

is

open.

If

the

task

that

issued

the

I/O

request

ends,

the

storage

used

by

its

data

areas

(such

as

IOBs)

can

be

freed,

or

queuing

switches

in

the

DCB

work

area

can

be

left

on,

causing

another

task

issuing

an

I/O

request

to

the

DCB

to

program

check

or

to

enter

the

wait

state.

For

example,

if

a

subtask

issues

and

completes

a

READ

KU

I/O

request,

the

IOB

created

by

the

subtask

is

attached

to

the

DCB

update

queue.

(READ

KU

means

the

record

retrieved

is

to

be

updated.)

If

that

subtask

ends,

and

subpool

zero

is

not

shared

with

the

subtask

owning

the

DCB,

the

IOB

storage

area

is

freed

and

the

integrity

of

the

ISAM

update

queue

is

destroyed.

A

request

from

another

subtask,

attempting

to

use

that

queue,

could

cause

unpredictable

abends.

As

another

example,

if

a

WRITE

KEY

NEW

is

in

process

when

the

subtask

ends,

a

'WRITE-KEY-NEW-IN-PROCESS'

bit

is

left

on.

If

another

I/O

request

is

issued

to

the

DCB,

the

request

is

queued

but

cannot

proceed.

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

589

Direct

Updating

with

Exclusive

Control

In

the

example

shown

in

Figure

129

on

page

591,

the

previously

described

data

set

is

to

be

updated

directly

with

transaction

records

on

tape.

The

input

tape

records

are

30

characters

long,

the

key

is

in

positions

1

through

10,

and

the

update

information

is

in

positions

11

through

30.

The

update

information

replaces

data

in

positions

31

through

50

of

the

indexed

sequential

data

record.

Exclusive

control

of

the

data

set

is

requested,

because

more

than

one

task

might

be

referring

to

the

data

set

at

the

same

time.

Notice

that,

to

avoid

tying

up

the

data

set

until

the

update

is

completed,

exclusive

control

is

released

after

each

block

is

written.

Using

FREEDBUF:

Note

the

use

of

the

FREEDBUF

macro

in

Figure

129

on

page

591.

Usually,

the

FREEDBUF

macro

has

two

functions:

v

To

indicate

to

the

ISAM

routines

that

a

record

that

has

been

read

for

update

will

not

be

written

back

v

To

free

a

dynamically

obtained

buffer.

In

Figure

129,

because

the

read

operation

was

unsuccessful,

the

FREEDBUF

macro

frees

only

the

dynamically

obtained

buffer.

The

first

function

of

FREEDBUF

lets

you

read

a

record

for

update,

then

decide

not

to

update

it

without

performing

a

WRITE

for

update.

You

can

use

this

function

even

when

your

READ

macro

does

not

specify

dynamic

buffering,

if

you

have

included

S

(for

dynamic

buffering)

in

the

MACRF

field

of

your

READ

DCB.

You

can

cause

an

automatic

FREEDBUF

merely

by

reusing

the

DECB;

that

is,

by

issuing

another

READ

or

a

WRITE

KN

to

the

same

DECB.

You

should

use

this

feature

whenever

possible,

because

it

is

more

efficient

than

FREEDBUF.

For

example,

in

Figure

129,

the

FREEDBUF

macro

could

be

eliminated,

because

the

WRITE

KN

addressed

the

same

DECB

as

the

READ

KU.

Processing

Indexed

Sequential

Data

Sets

590

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Using

Other

Updating

Methods:

For

an

indexed

sequential

data

set

with

variable-length

records,

you

can

make

three

types

of

updates

by

using

the

basic

access

method.

You

can

read

a

record

and

write

it

back

with

no

change

in

its

length,

simply

updating

some

part

of

the

record.

You

do

this

with

a

READ

KU,

followed

by

a

WRITE

K,

the

same

way

you

update

fixed-length

records.

//INDEXDD

DD

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1,...),---

//TAPEDD

DD

...

ISUPDATE

START

0

...

NEXTREC

GET

TPDATA,TPRECORD

ENQ

(RESOURCE,ELEMENT,E,,SYSTEM)

READ

DECBRW,KU,,’S’,MF=E

Read

into

dynamically

*

obtained

buffer

WAIT

ECB=DECBRW

TM

DECBRW+24,X’FD’

Test

for

any

condition

BM

RDCHECK

but

overflow

L

3,DECBRW+16

Pick

up

pointer

to

*

record

MVC

ISUPDATE-ISRECORD

Update

record

WRITE

DECBRW,K,MF=E

WAIT

ECB=DECBRW

TM

DECBRW+24,X’FD’

Any

errors?

BM

WRCHECK

DEQ

(RESOURCE,ELEMENT,,SYSTEM)

B

NEXTREC

RDCHECK

TM

DECBRW+24,X’80’

No

record

found

BZ

ERROR

If

not,

go

to

error

*

routine

FREEDBUF

DECBRW,K,ISDATA

Otherwise,

free

buffer

MVC

ISKEY,KEY

Key

placed

in

ISRECORD

MVC

ISUPDATE,UPDATE

Updated

information

*

placed

in

ISRECORD

WRITE

DECBRW,KN,,WKNAREA,’S’,MF=E

Add

record

to

data

set

WAIT

ECB=DECBRW

TM

DECBRW+24,X’FD’

Test

for

errors

BM

ERROR

DEQ

(RESOURCE,ELEMENT,,SYSTEM)

Release

exclusive

*

control

B

NEXTREC

WKNAREA

DS

4F

BISAM

WRITE

KN

work

field

ISRECORD

DS

0CL50

50-byte

record

from

ISDATA

DS

CL19

DCB

First

part

of

ISRECORD

ISKEY

DS

CL10

Key

field

of

ISRECORD

DS

CL1

Part

of

ISRECORD

ISUPDATE

DS

CL20

Update

area

of

ISRECORD

ORG

ISUPDATE

Overlay

ISUPDATE

with

TPRECORD

DS

0CL30

TPRECORD

30-byte

record

KEY

DS

CL10

from

TPDATA

DCB

Key

*

for

locating

UPDATE

DS

CL20

ISDATA

record

update

RESOURCE

DC

CL8’SLATE’

information

or

new

data

ELEMENT

DC

C’DICT’

READ

DECBRW,KU,ISDATA,’S’,’S’,KEY,MF=L

ISDATA

DCB

DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA),

C

MSHI=INDEX,SMSI=2000

TPDATA

DCB

INDEX

DS

2000C

...

Figure

129.

Directly

Updating

an

Indexed

Sequential

Data

Set

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

591

Two

other

methods

for

updating

variable-length

records

use

the

WRITE

KN

macro

and

lets

you

change

the

record

length.

In

one

method,

a

record

read

for

update

(by

a

READ

KU)

can

be

updated

in

a

manner

that

will

change

the

record

length

and

be

written

back

with

its

new

length

by

a

WRITE

KN

(key

new).

In

the

second

method,

you

can

replace

a

record

with

another

record

having

the

same

key

and

possibly

a

different

length

using

the

WRITE

KN

macro.

To

replace

a

record,

it

is

not

necessary

to

have

first

read

the

record.

In

either

method,

when

changing

the

record

length,

you

must

place

the

new

length

in

the

DECBLGTH

field

of

the

DECB

before

issuing

the

WRITE

KN

macro.

If

you

use

a

WRITE

KN

macro

to

update

a

variable-length

record

that

has

been

marked

for

deletion,

the

first

bit

(no

record

found)

of

the

exceptional

condition

code

field

(DECBEXC1)

of

the

DECB

is

set

on.

If

this

condition

is

found,

the

record

must

be

written

using

a

WRITE

KN

with

nothing

specified

in

the

DECBLGTH

field.

Recommendation:

Do

not

try

to

use

the

DECBLGTH

field

to

determine

the

length

of

a

record

read

because

DECBLGTH

is

for

use

with

writing

records,

not

reading

them.

If

you

are

reading

fixed-length

records,

the

length

of

the

record

read

is

in

DCBLRECL,

and

if

you

are

reading

variable-length

records,

the

length

is

in

the

record

descriptor

word

(RDW).

Direct

Update

with

Variable-Length

Records

In

Figure

130

on

page

593,

an

indexed

sequential

data

set

with

variable-length

records

is

updated

directly

with

transaction

records

on

tape.

The

transaction

records

are

of

variable

length

and

each

contains

a

code

identifying

the

type

of

transaction.

Transaction

code

1

means

that

an

existing

record

is

to

be

replaced

by

one

with

the

same

key;

code

2

means

that

the

record

is

to

be

updated

by

appending

additional

information,

thus

changing

the

record

length;

code

3

or

greater

means

that

the

record

is

to

be

updated

with

no

change

to

its

length.

For

this

example,

the

maximum

record

length

of

both

data

sets

is

256

bytes.

The

key

is

in

positions

6

through

15

of

the

records

in

both

data

sets.

The

transaction

code

is

in

position

5

of

records

on

the

transaction

tape.

The

work

area

(REPLAREA)

size

is

equal

to

the

maximum

record

length

plus

16

bytes.

Adding

Records

You

can

use

either

the

queued

access

method

or

the

basic

access

method

to

add

records

to

an

indexed

sequential

data

set.

To

insert

a

record

between

existing

records

in

the

data

set,

you

must

use

the

basic

access

method

and

the

WRITE

KN

(key

new)

macro.

Records

added

to

the

end

of

a

data

set

(that

is,

records

with

successively

higher

keys),

can

be

added

to

the

prime

data

area

or

the

overflow

area

by

the

basic

access

method

using

WRITE

KN,

or

they

can

be

added

to

the

prime

data

area

by

the

queued

access

method

using

the

PUT

macro.

Figure

130

on

page

593

shows

an

example

of

directly

updating

an

indexed

sequential

data

set

with

variable-length

records.

Processing

Indexed

Sequential

Data

Sets

592

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Inserting

New

Records

As

you

add

records

to

an

indexed

sequential

data

set,

the

system

inserts

each

record

in

its

proper

sequence

according

to

the

record

key.

The

remaining

records

on

the

track

are

then

moved

up

one

position

each.

If

the

last

record

does

not

fit

on

the

track,

it

is

written

in

the

first

available

location

in

the

overflow

area.

A

10-byte

link

field

is

added

to

the

record

put

in

the

overflow

area

to

connect

it

logically

to

the

correct

track.

The

proper

adjustments

are

made

to

the

track

index

entries.

This

procedure

is

illustrated

in

Figure

131

on

page

595.

//INDEXDD

DD

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1,...),---

//TAPEDD

DD

...

ISUPDVLR

START

0

...

NEXTREC

GET

TPDATA,TRANAREA

CLI

TRANCODE,2

Determine

if

replacement

or

*

other

transaction

BL

REPLACE

Branch

if

replacement

READ

DECBRW,KU,,’S’,’S’,MF=E

Read

record

for

update

CHECK

DECBRW,DSORG=IS

Check

exceptional

conditions

CLI

TRANCODE,2

Determine

if

change

or

append

BH

CHANGE

Branch

if

change

...

...

*

CODE

TO

MOVE

RECORD

INTO

REPLACEA+16

AND

APPEND

DATA

FROM

TRANSACTION

*

RECORD

...

MVC

DECBRW+6(2),REPLAREA+16

Move

new

length

from

RDW

*

into

DECBLGTH

(DECB+6)

WRITE

DECBRW,KN,,REPLAREA,MF=E

Rewrite

record

with

*

changed

length

CHECK

DECBRW,DSORG=IS

B

NEXTREC

CHANGE

...

...

*

CODE

TO

CHANGE

FIELDS

OR

UPDATE

FIELDS

OF

THE

RECORD

...

WRITE

DECBRW,K,MF=E

Rewrite

record

with

no

*

change

of

length

CHECK

DECBRW,DSORG=IS

B

NEXTREC

REPLACE

MVC

DECBRW+6(2),TRANAREA

Move

new

length

from

RDW

*

into

DECBLGTH

(DECB+6)

WRITE

DECBRW,KN,,TRANAREA-16,MF=E

Write

transaction

record

*

as

replacement

for

record

*

with

the

same

key

CHECK

DECBRW,DSORG=IS

B

NEXTREC

CHECKERR

...

SYNAD

routine

...

REPLAREA

DS

CL272

TRANAREA

DS

CL4

TRANCODE

DS

CL1

KEY

DS

CL10

TRANDATA

DS

CL241

READ

DECBRW,KU,ISDATA,’S’,’S’,KEY,MF=L

ISDATA

DCB

DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECKERR

TPDATA

DCB

...

Figure

130.

Directly

Updating

an

Indexed

Sequential

Data

Set

with

Variable-Length

Records

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

593

Subsequent

additions

are

written

either

on

the

prime

track

or

as

part

of

the

overflow

chain

from

that

track.

If

the

addition

belongs

after

the

last

prime

record

on

a

track

but

before

a

previous

overflow

record

from

that

track,

it

is

written

in

the

first

available

location

in

the

overflow

area.

Its

link

field

contains

the

address

of

the

next

record

in

the

chain.

For

BISAM,

if

you

add

a

record

that

has

the

same

key

as

a

record

in

the

data

set,

a

“duplicate

record”

condition

is

shown

in

the

exception

code.

However,

if

you

specified

the

delete

option

and

the

record

in

the

data

set

is

marked

for

deletion,

the

condition

is

not

reported

and

the

new

record

replaces

the

existing

record.

For

more

information

about

exception

codes,

see

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Adding

New

Records

to

the

End

of

a

Data

Set

Records

added

to

the

end

of

a

data

set

(that

is,

records

with

successively

higher

keys),

can

be

added

by

the

basic

access

method

using

WRITE

KN,

or

by

the

queued

access

method

using

the

PUT

macro

(resume

load).

In

either

case,

records

can

be

added

to

the

prime

data

area.

When

you

use

the

WRITE

KN

macro,

the

record

being

added

is

placed

in

the

prime

data

area

only

if

there

is

room

for

it

on

the

prime

data

track

containing

the

record

with

the

highest

key

currently

in

the

data

set.

If

there

is

not

sufficient

room

on

that

track,

the

record

is

placed

in

the

overflow

area

and

linked

to

that

prime

track,

even

though

additional

prime

data

tracks

originally

allocated

have

not

been

filled.

When

you

use

the

PUT

macro,

records

are

added

to

the

prime

data

area

until

the

space

originally

allocated

is

filled.

After

this

allocated

prime

area

is

filled,

you

can

add

records

to

the

data

set

using

WRITE

KN,

in

which

case

they

will

be

placed

in

the

overflow

area.

Resume

load

is

discussed

in

more

detail

under

“Creating

an

ISAM

Data

Set”

on

page

576.

To

add

records

with

successively

higher

keys

using

the

PUT

macro:

v

The

key

of

any

record

to

be

added

must

be

higher

than

the

highest

key

currently

in

the

data

set.

v

The

DD

statement

must

specify

DISP=MOD

or

specify

the

EXTEND

option

in

the

OPEN

macro.

v

The

data

set

must

have

been

successfully

closed

when

it

was

allocated

or

when

records

were

previously

added

using

the

PUT

macro.

You

can

continue

to

add

fixed-length

records

in

this

manner

until

the

original

space

allocated

for

prime

data

is

exhausted.

When

you

add

records

to

an

indexed

sequential

data

set

using

the

PUT

macro,

new

entries

are

also

made

in

the

indexes.

During

resume

load

on

a

data

set

with

a

partially

filled

track

or

a

partially

filled

cylinder,

the

track

index

entry

or

the

cylinder

index

entry

is

overlaid

when

the

track

or

cylinder

is

filled.

If

resume

load

abnormally

ends

after

these

index

entries

have

been

overlaid,

a

subsequent

resume

load

will

get

a

sequence

check

when

adding

a

key

that

is

higher

than

the

highest

key

at

the

last

successful

CLOSE

but

lower

than

the

key

in

the

overlaid

index

entry.

When

the

SYNAD

exit

is

taken

for

a

sequence

check,

register

0

contains

the

address

of

the

highest

key

of

the

data

set.

Figure

131

on

page

595

graphically

represents

how

records

are

added

to

an

indexed

sequential

data

set.

Processing

Indexed

Sequential

Data

Sets

594

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Maintaining

an

Indexed

Sequential

Data

Set

An

indexed

sequential

data

set

must

be

reorganized

occasionally

for

two

reasons:

The

overflow

area

eventually

fill.

Additions

increase

the

time

required

to

locate

records

directly.

The

frequency

of

reorganization

depends

on

the

activity

of

the

data

set

and

on

your

timing

and

storage

requirements.

There

are

two

ways

to

reorganize

the

data

set:

v

In

two

passes

by

writing

it

sequentially

into

another

area

of

direct

access

storage

or

magnetic

tape

and

re-creating

it

in

the

original

area.

Normal Entry

Initial
format

Add records
25 and 101

Add records
26 and 199

100

40

26

10

10

10

150

101

101

100

100 199

175

150

150

190

175

175

200

190

190

20

20

20

40

25

25

40

100

40

26

100

100

100

200

200

100

190

190

200

200

200

Track
1

Track
1

Track
1

Track
1

Track
1

Track
1

Track 3
record 1

Track 3
record 3

Track 3
record 1

Track 3
record 2

Track
2

Track
2

Track
2

Track
2

Track
2

Track
2

Track 3
record 2

Track 3
record 4

Track
Index

Track
Index

Track
Index

Overflow

Overflow

Overflow

Prime
Data

Prime
Data

Prime
Data

Overflow Entry

Figure

131.

Adding

Records

to

an

Indexed

Sequential

Data

Set

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

595

v

In

one

pass

by

writing

it

directly

into

another

area

of

direct

access

storage.

In

this

case,

the

area

occupied

by

the

original

data

set

cannot

be

used

by

the

reorganized

data

set.

The

operating

system

maintains

statistics

that

are

pertinent

to

reorganization.

The

statistics,

written

on

the

direct

access

volume

and

available

in

the

DCB

for

checking,

include

the

number

of

cylinder

overflow

areas,

the

number

of

unused

tracks

in

the

independent

overflow

area,

and

the

number

of

references

to

overflow

records

other

than

the

first.

They

appear

in

the

RORG1,

RORG2,

and

RORG3

fields

of

the

DCB.

When

creating

or

updating

the

data

set,

if

you

want

to

be

able

to

flag

records

for

deletion

during

updating,

set

the

delete

code

(the

first

byte

of

a

fixed-length

record

or

the

fifth

byte

of

a

variable-length

record)

to

X'FF'.

Figure

132

describes

the

process

for

deleting

indexed

data

set

records,

and

how

a

flagged

record

will

not

be

rewritten

in

the

overflow

area

after

it

has

been

forced

off

its

prime

track

(unless

it

has

the

highest

key

on

that

cylinder)

during

a

subsequent

update.

Similarly,

when

you

process

sequentially,

flagged

records

are

not

retrieved

for

processing.

During

direct

processing,

flagged

records

are

retrieved

the

same

as

any

other

records,

and

you

should

check

them

for

the

delete

code.

Initial format

Fixed-length

Variable-length

Record 100 is
marked for deletion
and record 25 is
added to the
data set

100

40

10

10

150

150

100

40

20

20

175

175

200

X'FF'

200

40

25

190

190

200

200

100

40

200

200

Track 1

Track 1

Track 1

LL00 LL00

Delete code

Delete code

X'FF'

Track 1

Track 2

Track 2

Track 2

LL00

Data

Data

Key

Key

Track 2

BDW RDW

Figure

132.

Deleting

Records

from

an

Indexed

Sequential

Data

Set

Processing

Indexed

Sequential

Data

Sets

596

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

A

WRITE

KN

instruction

for

a

data

set

containing

variable-length

records

removes

all

the

deleted

records

from

that

prime

data

track.

Also,

to

use

the

delete

option,

RKP

must

be

greater

than

0

for

fixed-length

records

and

greater

than

4

for

variable-length

records.

Buffer

Requirements

The

only

case

in

which

you

will

ever

have

to

compute

the

buffer

length

(BUFL)

requirements

for

your

program

occurs

when

you

use

the

BUILD

or

GETPOOL

macro

to

construct

the

buffer

area.

If

you

are

creating

an

indexed

sequential

data

set

(using

the

PUT

macro),

each

buffer

must

be

8

bytes

longer

than

the

block

size

to

allow

for

the

hardware

count

field.

That

is:

One

exception

to

this

formula

arises

when

you

are

dealing

with

an

unblocked

format-F

record

whose

key

field

precedes

the

data

field;

its

relative

key

position

is

0

(RKP=0).

In

that

case,

the

key

length

must

also

be

added:

The

buffer

requirements

for

using

the

queued

access

method

to

read

or

update

(using

the

GET

or

PUTX

macro)

an

indexed

sequential

data

set

are

discussed

below.

For

fixed-length

unblocked

records

when

both

the

key

and

data

are

to

be

read,

and

for

variable-length

unblocked

records,

padding

is

added

so

that

the

data

will

be

on

a

doubleword

boundary,

that

is:

For

fixed-length

unblocked

records

when

only

data

is

to

be

read:

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

597

The

buffer

area

for

fixed-length

blocked

records

must

be:

Tip:

When

you

use

the

basic

access

method

to

update

records

in

an

indexed

sequential

data

set,

the

key

length

field

need

not

be

considered

in

determining

your

buffer

requirements.

For

variable-length

blocked

records,

padding

is

2

if

the

buffer

starts

on

a

fullword

boundary

that

is

not

also

a

doubleword

boundary,

or

6

if

the

buffer

starts

on

a

doubleword

boundary.

The

buffer

area

must

be:

Work

Area

Requirements

If

you

are

using

the

input

data

set

with

fixed-length,

unblocked

records

as

a

basis

for

creating

a

new

data

set,

a

work

area

is

required.

The

size

of

the

work

area

is

given

by:

If

you

are

reading

only

the

data

portion

of

fixed-length

unblocked

records

or

variable-length

records,

the

work

area

is

the

same

size

as

the

record.

You

can

save

processing

time

by

adding

fixed-length

or

variable-length

records

to

a

data

set

by

using

the

MSWA

(main

storage

work

area)

parameter

of

the

DCB

macro

to

provide

a

special

work

area

for

the

operating

system.

The

size

of

the

work

area

(SMSW

parameter

in

the

DCB)

must

be

large

enough

to

contain

a

full

track

of

data,

the

count

fields

of

each

block,

and

the

work

space

for

inserting

the

new

record.

The

size

of

the

work

area

needed

varies

according

to

the

record

format

and

the

device

type.

You

can

calculate

it

during

execution

using

device-dependent

Processing

Indexed

Sequential

Data

Sets

598

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

information

obtained

with

the

TRKCALC

macro,

DEVTYPE

macro,

and

data

set

information

from

the

DSCB

obtained

with

the

OBTAIN

macro.

The

TRKCALC,

DEVTYPE

and

OBTAIN

macros

are

discussed

in

z/OS

DFSMSdfp

Advanced

Services.

Restriction:

You

can

use

the

TRKCALC

or

DEVTYPE

macro

only

if

the

index

and

prime

areas

are

on

devices

of

the

same

type

or

if

the

index

area

is

on

a

device

with

a

larger

track

capacity

than

the

device

containing

the

prime

area.

If

you

do

not

need

to

maintain

device

independence,

you

can

precalculate

the

size

of

the

work

area

needed

and

specify

it

in

the

SMSW

field

of

the

DCB

macro.

The

maximum

value

for

SMSW

is

65

535.

Calculating

the

Size

of

the

Work

Area

For

calculating

the

size

of

the

work

area,

see

the

IBM

storage

device

document

specific

to

your

device.

For

fixed-length

blocked

records,

the

size

of

the

main

storage

work

area

(SMSW)

is

calculated

as

follows:

SMSW

=

(DS2HIRPR)

(BLKSIZE

+

8)

+

LRECL

+

KEYLEN

The

formula

for

fixed-length

unblocked

records

is

SMSW

=

(DS2HIRPR)

(KEYLEN

+

LRECL

+

8)

+

2

The

value

for

DS2HIRPR

is

in

the

index

(format-2)

DSCB.

If

you

do

not

use

the

MSWA

and

SMSW

parameters,

the

control

program

supplies

a

work

area

using

the

formula

BLKSIZE

+

LRECL

+

KEYLEN.

For

variable-length

records,

SMSW

can

be

calculated

by

one

of

two

methods.

The

first

method

can

lead

to

faster

processing,

although

it

might

require

more

storage

than

the

second

method.

The

first

method

is:

SMSW

=

DS2HIRPR

(BLKSIZE

+

8)

+

LRECL

+

KEYLEN

+

10

The

second

method

is

as

follows:

SMSW

=

(

(Trk

Cap

−

Bn

+

1)

/

Block

length)

(BLKSIZE)

+

8

(DS2HIRPR)

+

LRECL

+

KEYLEN

+

10

+

(REM

−

N

−

KEYLEN)

The

second

method

yields

a

minimum

value

for

SMSW.

Therefore,

the

first

method

is

valid

only

if

its

application

results

in

a

value

higher

than

the

value

that

would

be

derived

from

the

second

method.

If

neither

MSWA

nor

SMSW

is

specified,

the

control

program

supplies

the

work

area

for

variable-length

records,

using

the

second

method

to

calculate

the

size.

In

all

the

above

formulas,

the

terms

BLKSIZE,

LRECL,

KEYLEN,

and

SMSW

are

the

same

as

the

parameters

in

the

DCB

macro

(Trk

Cap=track

capacity).

REM

is

the

remainder

of

the

division

operation

in

the

formula

and

N

is

the

first

constant

in

the

block

length

formulas.

(REM-N-KEYLEN)

is

added

only

if

its

value

is

positive.

Space

for

the

Highest-Level

Index

Another

technique

to

increase

the

speed

of

processing

is

to

provide

space

in

virtual

storage

for

the

highest-level

index.

To

specify

the

address

of

this

area,

use

the

MSHI

(main

storage

highest-level

index)

parameter

of

the

DCB.

When

the

address

of

that

area

is

specified,

you

must

also

specify

its

size,

which

you

can

do

by

using

the

SMSI

(size

of

main

storage

index)

parameter

of

the

DCB.

The

maximum

value

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

599

for

SMSI

is

65

535.

If

you

do

not

use

this

technique,

the

index

on

the

volume

must

be

searched.

If

the

high-level

index

is

greater

than

65

535

bytes

in

length,

your

request

for

the

high-level

index

in

storage

is

ignored.

The

size

of

the

storage

area

(SMSI

parameter)

varies.

To

allocate

that

space

during

execution,

you

can

find

the

size

of

the

high-level

index

in

the

DCBNCRHI

field

of

the

DCB

during

your

DCB

user

exit

routine

or

after

the

data

set

is

open.

Use

the

DCBD

macro

to

gain

access

to

the

DCBNCRHI

field

(see

Chapter

21,

“Specifying

and

Initializing

Data

Control

Blocks,”

on

page

311).

You

can

also

find

the

size

of

the

high-level

index

in

the

DS2NOBYT

field

of

the

index

(format

2)

DSCB,

but

you

must

use

the

utility

program

IEHLIST

to

print

the

information

in

the

DSCB.

You

can

calculate

the

size

of

the

storage

area

required

for

the

high-level

index

by

using

the

formula

SMSI

=

(Number

of

Tracks

in

High-Level

Index)

(Number

of

Entries

per

Track)

(Key

Length

+

10)

The

formula

for

calculating

the

number

of

tracks

in

the

high-level

index

is

in

“Calculating

Space

Requirements”

on

page

582.

When

a

data

set

is

shared

and

has

the

DCB

integrity

feature

(DISP=SHR),

the

high-level

index

in

storage

is

not

updated

when

DCB

fields

are

changed.

Device

Control

An

indexed

sequential

data

set

is

processed

sequentially

or

directly.

Direct

processing

is

accomplished

by

the

basic

access

method.

Because

you

provide

the

key

for

the

record

you

want

read

or

written,

all

device

control

is

handled

automatically

by

the

system.

If

you

are

processing

the

data

set

sequentially,

using

the

queued

access

method,

the

device

is

automatically

positioned

at

the

beginning

of

the

data

set.

In

some

cases,

you

might

want

to

process

only

a

section

or

several

separate

sections

of

the

data

set.

You

do

that

by

using

the

SETL

macro,

which

directs

the

system

to

begin

sequential

retrieval

at

the

record

having

a

specific

key.

The

processing

of

succeeding

records

is

the

same

as

for

normal

sequential

processing,

except

that

you

must

recognize

when

the

last

desired

record

has

been

processed.

At

this

point,

issue

the

ESETL

macro

to

ends

sequential

processing.

You

can

then

begin

processing

at

another

point

in

the

data

set.

If

you

do

not

specify

a

SETL

macro

before

retrieving

the

data,

the

system

assumes

default

SETL

values.

See

the

GET

and

SETL

macros

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

SETL—Specifying

Start

of

Sequential

Retrieval

The

SETL

macro

lets

you

retrieve

records

starting

at

the

beginning

of

an

indexed

sequential

data

set

or

at

any

point

in

the

data

set.

Processing

that

is

to

start

at

a

point

other

than

the

beginning

can

be

requested

in

the

form

of

a

record

key,

a

key

class

(key

prefix),

or

an

actual

address

of

a

prime

data

record.

The

key

class

is

useful

because

you

do

not

have

to

know

the

entire

key

of

the

first

record

to

be

processed.

A

key

class

consists

of

all

the

keys

that

begin

with

identical

characters.

The

key

class

is

defined

by

specifying

the

desired

characters

of

the

key

class

at

the

address

specified

in

the

lower-limit

address

of

the

SETL

macro

and

setting

the

remaining

characters

to

the

right

of

the

key

class

to

binary

zeros.

To

use

actual

addresses,

you

must

keep

a

record

of

where

the

records

were

written

when

the

data

set

was

allocated.

The

device

address

of

the

block

containing

the

Processing

Indexed

Sequential

Data

Sets

600

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

record

just

processed

by

a

PUT-move

macro

is

available

in

the

8-byte

data

control

block

field

DCBLPDA.

For

blocked

records,

the

address

is

the

same

for

each

record

in

the

block.

Retrieval

of

Deleted

Records

Normally,

when

a

data

set

is

allocated

with

the

delete

option

specified,

deleted

records

cannot

be

retrieved

using

the

QISAM

retrieval

mode.

When

the

delete

option

is

not

specified

in

the

DCB,

the

SETL

macro

options

function

as

follows.

SETL

B—Start

at

the

first

record

in

the

data

set.

SETL

K—Start

with

the

record

having

the

specified

key.

SETL

KH—Start

with

the

record

whose

key

is

equal

to

or

higher

than

the

specified

key.

SETL

KC—Start

with

the

first

record

having

a

key

that

falls

into

the

specified

key

class.

SETL

I—Start

with

the

record

found

at

the

specified

direct

access

address

in

the

prime

area

of

the

data

set.

Because

the

DCBOPTCD

field

in

the

DCB

can

be

changed

after

the

data

set

is

allocated

(by

respecifying

the

OPTCD

in

the

DCB

or

DD

statement),

it

is

possible

to

retrieve

deleted

records.

Then,

SETL

functions

as

noted

above.

When

the

delete

option

is

specified

in

the

DCB,

the

SETL

macro

options

function

as

follows.

SETL

B—Start

retrieval

at

the

first

undeleted

record

in

the

data

set.

SETL

K—Start

retrieval

at

the

record

matching

the

specified

key,

if

that

record

is

not

deleted.

If

the

record

is

deleted,

an

NRF

(no

record

found)

indication

is

set

in

the

DCBEXCD

field

of

the

DCB,

and

SYNAD

is

given

control.

SETL

KH—Start

with

the

first

undeleted

record

whose

key

is

equal

to

or

higher

than

the

specified

key.

SETL

KC—Start

with

the

first

undeleted

record

having

a

key

that

falls

into

the

specified

key

class

or

follows

the

specified

key

class.

SETL

I—Start

with

the

first

undeleted

record

following

the

specified

direct

access

address.

Without

the

delete

option

specified,

QISAM

retrieves

and

handles

records

marked

for

deletion

as

nondeleted

records.

Regardless

of

the

SETL

or

delete

option

specified,

the

NRF

condition

will

be

posted

in

the

DCBEXCD

field

of

the

DCB,

and

SYNAD

is

given

control

if

the

key

or

key

class:

v

Is

higher

than

any

key

or

key

class

in

the

data

set

v

Does

not

have

a

matching

key

or

key

class

in

the

data

set

ESETL—Ending

Sequential

Retrieval

The

ESETL

macro

directs

the

system

to

stop

retrieving

records

from

an

indexed

sequential

data

set.

A

new

scan

limit

can

then

be

set,

or

processing

ends.

An

Processing

Indexed

Sequential

Data

Sets

Appendix

D.

Processing

Indexed

Sequential

Data

Sets

601

end-of-data-set

indication

automatically

ends

retrieval.

An

ESETL

macro

must

be

run

before

another

SETL

macro

(described

above)

using

the

same

DCB

is

run.

Note:

If

the

previous

SETL

macro

completed

with

an

error,

an

ESETL

macro

should

be

run

before

another

SETL

macro.

Processing

Indexed

Sequential

Data

Sets

602

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

This

appendix

covers

the

following

topics.

Topic

Location

Upgrading

ISAM

Applications

to

VSAM

604

How

an

ISAM

Program

Can

Process

a

VSAM

Data

Set

605

Conversion

of

an

Indexed

Sequential

Data

Set

609

JCL

for

Processing

with

the

ISAM

Interface

610

Restrictions

on

the

Use

of

the

ISAM

Interface

612

This

appendix

is

intended

to

help

you

use

ISAM

programs

with

VSAM

data

sets.

Use

of

ISAM

is

not

recommended.

The

information

in

this

appendix

is

shown

to

facilitate

conversion

to

VSAM.

Although

the

ISAM

interface

is

an

efficient

way

of

processing

your

existing

ISAM

programs,

all

new

programs

that

you

write

should

be

VSAM

programs.

Indexed

sequential

data

sets

should

be

migrated

to

VSAM

key-sequenced

data

sets.

Existing

programs

can

use

the

ISAM/VSAM

interface

to

access

those

data

sets

and

need

not

be

deleted.

You

can

use

the

REPRO

command

with

the

ENVIRONMENT

keyword

to

handle

the

ISAM

“dummy”

records.

SMS

does

not

support

indexed

sequential

data

sets.

VSAM,

through

its

ISAM

interface

program,

allows

a

debugged

program

that

processes

an

indexed

sequential

data

set

to

process

a

key-sequenced

data

set.

The

key-sequenced

data

set

can

have

been

converted

from

an

indexed-sequential

or

a

sequential

data

set

(or

another

VSAM

data

set)

or

can

be

loaded

by

one

of

your

own

programs.

The

loading

program

can

be

coded

with

VSAM

macros,

ISAM

macros,

PL/I

statements,

or

COBOL

statements.

That

is,

you

can

load

records

into

a

newly

defined

key-sequenced

data

set

with

a

program

that

was

coded

to

load

records

into

an

indexed

sequential

data

set.

Figure

133

on

page

604

shows

the

relationship

between

ISAM

programs

processing

VSAM

data

with

the

ISAM

interface

and

VSAM

programs

processing

the

data.

©

Copyright

IBM

Corp.

1987,

2004

603

There

are

some

minor

restrictions

on

the

types

of

processing

an

ISAM

program

can

do

if

it

is

to

be

able

to

process

a

key-sequenced

data

set.

These

restrictions

are

described

in

“Restrictions

on

the

Use

of

the

ISAM

Interface”

on

page

612.

Significant

performance

improvement

can

be

gained

by

modifying

an

ISAM

program

that

issues

multiple

OPEN

and

CLOSE

macros

to

switch

between

a

QISAM

and

BISAM

DCB.

The

ISAM

program

can

be

modified

to

open

the

QISAM

and

BISAM

DCBs

at

the

beginning

of

the

program

and

to

close

them

when

all

processing

is

complete.

The

performance

improvement

is

proportional

to

the

frequency

of

OPEN

and

CLOSE

macros

in

the

ISAM

program.

Upgrading

ISAM

Applications

to

VSAM

If

an

application

opens

an

ISAM

data

set,

the

system

prints

informational

message

IEC134I

to

the

job

log.

This

message

allows

you

to

identify

applications

that

use

ISAM

data

sets

so

that

you

can

convert

the

data

sets

to

VSAM.

You

can

use

automation

software

to

detect

this

message:

IEC134i

jjj,sss,dsn

WARNING:

IBM

INTENDS

TO

DROP

ISAM

SUPPORT

IN

A

FUTURE

RELEASE.

IBM

provides

the

ISAM

compatibility

interface

that

allows

you

to

run

an

ISAM

program

against

a

VSAM

key-sequenced

data

set.

To

convert

your

ISAM

data

sets

to

VSAM,

use

the

ISAM

compatibility

interface

or

IDCAMS

REPRO.

Related

reading:

For

more

information,

see

Appendix

E,

“Using

ISAM

Programs

with

VSAM

Data

Sets,”

on

page

603

and

z/OS

Migration.

ISAM or
VSAM

programs

VSAM

VSAM

New VSAM
programs

ISAM programs
converted to

VSAM programs

Access

Access

Load

Convert

Access

Existing
ISAM

programs

ISAM
interface

Indexed
sequential
data set

Key
sequenced

data set

Figure

133.

Use

of

ISAM

Processing

Programs

Using

ISAM

Programs

with

VSAM

Data

Sets

604

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

How

an

ISAM

Program

Can

Process

a

VSAM

Data

Set

When

a

processing

program

that

uses

ISAM

(assembler-language

macros,

PL/I,

or

COBOL)

issues

an

OPEN

to

open

a

key-sequenced

data

set,

the

ISAM

interface

is

given

control

to:

v

Construct

control

blocks

that

are

required

by

VSAM

v

Load

the

appropriate

ISAM

interface

routines

into

virtual

storage

v

Initialize

the

ISAM

DCB

(data

control

block)

to

enable

the

interface

to

intercept

ISAM

requests

v

Take

the

DCB

user

exit

requested

by

the

processing

program

The

ISAM

interface

intercepts

each

subsequent

ISAM

request,

analyzes

it

to

determine

the

equivalent

keyed

VSAM

request,

defines

the

keyed

VSAM

request

in

a

request

parameter

list,

and

initiates

the

request.

The

ISAM

interface

receives

return

codes

and

exception

codes

for

logical

and

physical

errors

from

VSAM,

translates

them

to

ISAM

codes,

and

routes

them

to

the

processing

program

or

error-analysis

(SYNAD)

routine

through

the

ISAM

DCB

or

DECB.

Table

56

shows

QISAM

error

conditions

and

the

meaning

they

have

when

the

ISAM

interface

is

being

used.

Table

56.

QISAM

Error

Conditions

Byte

and

Offset

QISAM

Meaning

Error

Detected

By

Request

Parameter

List

Error

Code

Interface/VSAM

Meaning

DCBEXCD1

Bit

0

Record

not

found

Interface

Record

not

found

(SETL

K

for

a

deleted

record)

VSAM

16

Record

not

found

VSAM

24

Record

on

nonmountable

volume

Bit

1

Invalid

device

address

–

–

Always

0

Bit

2

Space

not

found

VSAM

28

Data

set

cannot

be

extended

VSAM

40

Virtual

storage

not

available

Bit

3

Invalid

request

Interface

Two

consecutive

SETL

requests

Interface

Invalid

SETL

(I

or

ID)

Interface

Invalid

generic

key

(KEY=0)

VSAM

4

Request

after

end-of-data

VSAM

20

Exclusive

use

conflict

VSAM

36

No

key

range

defined

for

insertion

VSAM

64

Placeholder

not

available

for

concurrent

data-set

positioning

VSAM

96

Key

change

attempted

Bit

4

Uncorrectable

input

error

VSAM

4

Physical

read

error

(register

15

contains

a

value

of

12)

in

the

data

component

VSAM

8

Physical

read

error

(register

15

contains

a

value

of

12)

in

the

index

component

VSAM

12

Physical

read

error

(register

15

contains

a

value

of

12)

in

the

sequence

set

of

the

index

Using

ISAM

Programs

with

VSAM

Data

Sets

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

605

Table

56.

QISAM

Error

Conditions

(continued)

Byte

and

Offset

QISAM

Meaning

Error

Detected

By

Request

Parameter

List

Error

Code

Interface/VSAM

Meaning

Bit

5

Uncorrectable

output

error

VSAM

16

Physical

write

error

(register

15

contains

a

value

of

12)

in

the

data

component

VSAM

20

Physical

write

error

(register

15

contains

a

value

of

12)

in

the

index

component

VSAM

24

Physical

write

error

(register

15

contains

a

value

of

12)

in

the

sequence

set

of

the

index

Bit

6

Unreachable

block

input

VSAM

Logical

error

not

covered

by

other

exception

codes

Bit

7

Unreachable

block

(output)

VSAM

Logical

error

not

covered

by

other

exception

codes

DEBEXCD2

Bit

0

Sequence

check

VSAM

12

Sequence

check

Interface

Sequence

check

(occurs

only

during

resume

load)

Bit

1

Duplicate

record

VSAM

8

Duplicate

record

Bit

2

DCB

closed

when

error

routine

entered

VSAM

Error

in

close

error

routine

entered

Bit

3

Overflow

record

Interface

–

Always

1

Bit

4

Length

of

logical

record

is

greater

than

DCBLRECL

(VLR

only)

Interface

–

Length

of

logical

record

is

greater

than

DCBLRECL

(VLR

only)

VSAM

108

Invalid

record

length

Bits

5-7

Reserved

–

Always

0

Table

57

shows

BISAM

error

conditions

and

the

meaning

they

have

when

the

ISAM

interface

is

being

used.

If

invalid

requests

occur

in

BISAM

that

did

not

occur

previously

and

the

request

parameter

list

indicates

that

VSAM

is

unable

to

handle

concurrent

data-set

positioning,

the

value

specified

for

the

STRNO

AMP

parameter

should

be

increased.

If

the

request

parameter

list

indicates

an

exclusive-use

conflict,

reevaluate

the

share

options

associated

with

the

data.

Table

57.

BISAM

Error

Conditions

Byte

and

Offset

BISAM

Meaning

Error

Detected

By

Request

Parameter

List

Error

Code

Interface/VSAM

Meaning

DCBEXC1

Bit

0

Record

not

found

VSAM

16

Record

not

found

VSAM

24

Record

on

nonmountable

volume

Bit

1

Record

length

check

VSAM

108

Record

length

check

Bit

2

Space

not

found

VSAM

28

Data

set

cannot

be

extended

Bit

3

Invalid

request

Interface

–

No

request

parameter

list

available

VSAM

20

Exclusive-use

conflict

Using

ISAM

Programs

with

VSAM

Data

Sets

606

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

57.

BISAM

Error

Conditions

(continued)

Byte

and

Offset

BISAM

Meaning

Error

Detected

By

Request

Parameter

List

Error

Code

Interface/VSAM

Meaning

VSAM

36

No

key

range

defined

for

insertion

VSAM

64

Placeholder

not

available

for

concurrent

data-set

positioning

VSAM

96

Key

change

attempted

Bit

4

Uncorrectable

I/O

VSAM

–

Physical

error

(register

15

will

contain

a

value

of

12)

Bit

5

Unreachable

block

VSAM

–

Logical

error

not

covered

by

any

other

exception

code

Bit

6

Overflow

record

Interface

–

Always

1

for

a

successful

READ

request

Bit

7

Duplicate

record

VSAM

8

Duplicate

record

DECBEXC2

Bits

0-5

Reserved

–

Always

0

Bit

6

Channel

program

initiated

by

an

asynchronous

routine

–

Always

0

Bit

7

Previous

macro

was

READ

KU

Interface

–

Previous

macro

was

READ

KU

Table

58

gives

the

contents

of

registers

0

and

1

when

a

SYNAD

routine

specified

in

a

DCB

gets

control.

Table

58.

Register

Contents

for

DCB-Specified

ISAM

SYNAD

Routine

Register

BISAM

QISAM

0

Address

of

the

DECB

0,

or,

for

a

sequence

check,

the

address

of

a

field

containing

the

higher

key

involved

in

the

check

1

Address

of

the

DECB

0

You

can

also

specify

a

SYNAD

routine

through

the

DD

AMP

parameter

(see

“JCL

for

Processing

with

the

ISAM

Interface”

on

page

610).

Table

59

gives

the

contents

of

registers

0

and

1

when

a

SYNAD

routine

specified

through

AMP

gets

control.

Table

59.

Register

Contents

for

AMP-Specified

ISAM

SYNAD

Routine

Register

BISAM

QISAM

0

Address

of

the

DECB

0,

or,

for

a

sequence

check,

the

address

of

a

field

containing

the

higher

key

involved

in

the

check

1

Address

of

the

DECB

Address

of

the

DCB

If

your

SYNAD

routine

issues

the

SYNADAF

macro,

registers

0

and

1

are

used

to

communicate.

When

you

issue

SYNADAF,

register

0

must

have

the

same

contents

it

had

when

the

SYNAD

routine

got

control

and

register

1

must

contain

the

address

of

the

DCB.

Using

ISAM

Programs

with

VSAM

Data

Sets

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

607

When

you

get

control

back

from

SYNADAF,

the

registers

have

the

same

contents

they

would

have

if

your

program

were

processing

an

indexed

sequential

data

set:

register

0

contains

a

completion

code,

and

register

1

contains

the

address

of

the

SYNADAF

message.

The

completion

codes

and

the

format

of

a

SYNADAF

message

are

given

in

z/OS

DFSMS

Macro

Instructions

for

Data

Sets.

Table

60

shows

abend

codes

issued

by

the

ISAM

interface

when

there

is

no

other

method

of

communicating

the

error

to

the

user.

Table

60.

ABEND

Codes

Issued

by

the

ISAM

Interface

ABEND

Code

Error

Detected

By

DCB/DECB

Set

By

Module/Routine

ABEND

Issued

By

Error

Condition

03B

OPEN

OPEN/OPEN

ACB

and

VALID

CHECK

OPEN

Validity

check;

either

(1)

access

method

services

and

DCB

values

for

LRECL,

KEYLE,

and

RKP

do

not

correspond,

(2)

DISP=OLD,

the

DCB

was

opened

for

output,

and

the

number

of

logical

records

is

greater

than

zero

(RELOAD

is

implied),

or

(3)

OPEN

ACB

error

code

116

was

returned

for

a

request

to

open

a

VSAM

structure.

031

VSAM

SYNAD

SYNAD

SYNAD

(ISAM)

was

not

specified

and

a

VSAM

physical

and

logical

error

occurred.

VSAM

SCAN/GET

and

SETL

SYNAD

SYNAD

(ISAM)

was

not

specified

and

an

invalid

request

was

found.

LOAD

LOAD/RESUME

LOAD

SYNAD

(ISAM)

was

not

specified

and

a

sequence

check

occurred.

LOAD

LOAD

LOAD

SYNAD

(ISAM)

was

not

specified

and

the

RDW

(record

descriptor

word)

was

greater

than

LRECL.

039

VSAM

SCAN/EODAD

SCAN

End-of-data

was

found,

but

there

was

no

EODAD

exit.

001

VSAM

SYNAD

I/O

error

detected.

BISAM

SYNAD

BISAM

I/O

error

detected

during

check.

BISAM

BISAM

BISAM

Invalid

request.

If

a

SYNAD

routine

specified

through

AMP

issues

the

SYNADAF

macro,

the

parameter

ACSMETH

can

specify

either

QISAM

or

BISAM,

regardless

of

which

of

the

two

is

used

by

your

processing

program.

A

dummy

DEB

is

built

by

the

ISAM

interface

to

support:

v

References

by

the

ISAM

processing

program

v

Checkpoint/restart

v

ABEND

Table

61

shows

the

DEB

fields

that

are

supported

by

the

ISAM

interface.

Except

as

noted,

field

meanings

are

the

same

as

in

ISAM.

Table

61.

DEB

Fields

Supported

by

ISAM

Interface

DEB

Section

Bytes

Fields

Supported

PREFIX

16

LNGTH

Using

ISAM

Programs

with

VSAM

Data

Sets

608

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

61.

DEB

Fields

Supported

by

ISAM

Interface

(continued)

DEB

Section

Bytes

Fields

Supported

BASIC

32

TCBAD,

OPATB,

DEBAD,

OFLGS

(DISP

ONLY),

FLGS1

(ISAM-interface

bit),

AMLNG

(104),

NMEXT(2),

PRIOR,

PROTG,

DEBID,

DCBAD,

EXSCL

(0-DUMMY

DEB),

APPAD

ISAM

Device

16

EXPTR,

FPEAD

Direct

Access

16

UCBAD

(VSAM

UCB)

Access

Method

24

WKPT5

(ISAM-interface

control

block

pointer),

FREED

(pointer

to

IDAIIFBF)

Conversion

of

an

Indexed

Sequential

Data

Set

Access

method

services

is

used

to

convert

an

indexed-sequential

data

set

to

a

key-sequenced

data

set.

If

a

master

and/or

user

catalog

has

been

defined,

define

a

key-sequenced

data

set

with

the

attributes

and

performance

options

you

want.

Then

use

the

access

method

services

REPRO

command

to

convert

the

indexed-sequential

records

and

load

them

into

the

key-sequenced

data

set.

VSAM

builds

the

index

for

the

key-sequenced

data

set

as

it

loads

the

data

set.

Each

volume

of

a

multivolume

component

must

be

on

the

same

type

of

device;

the

data

component

and

the

index

component,

however,

can

be

on

volumes

of

devices

of

different

types.

When

you

define

the

key-sequenced

data

set

into

which

the

indexed

sequential

data

set

is

to

be

copied,

you

must

specify

the

attributes

of

the

VSAM

data

set

for

variable

and

fixed-length

records.

For

variable-length

records:

v

VSAM

record

length

equals

ISAM

DCBLRECL-4.

v

VSAM

key

length

equals

ISAM

DCBKEYLE.

v

VSAM

key

position

equals

ISAM

DCBRKP-4.

For

fixed-length

records:

v

VSAM

record

length

(average

and

maximum

must

be

the

same)

equals

ISAM

DCBLRECL

(+

DCBKEYLE,

if

ISAM

DCBRKP

is

not

equal

to

0

and

records

are

unblocked).

v

VSAM

key

length

equals

ISAM

DCBKEYLE.

v

VSAM

key

position

equals

ISAM

DCBRKP.

To

learn

the

attributes

of

the

ISAM

data

set

you

can

use

a

program

such

as

ISPF/PDF,

ISMF,

or

the

IEHLIST

utility.

IEHLIST

can

be

used

to

get

the

dump

format

of

the

format

1

DSCB.

The

layout

is

in

z/OS

DFSMSdfp

Advanced

Services.

The

RKP

is

at

X'5B'.

The

level

of

sharing

permitted

when

the

key-sequenced

data

set

is

defined

should

be

considered.

If

the

ISAM

program

opens

multiple

DCBs

pointing

to

different

DD

statements

for

the

same

data

set,

a

share-options

value

of

1,

which

is

the

default,

permits

only

the

first

DD

statement

to

be

opened.

See

“Cross-Region

Share

Options”

on

page

195

for

a

description

of

the

cross-region

share-options

values.

JCL

is

used

to

identify

data

sets

and

volumes

for

allocation.

Data

sets

can

also

be

allocated

dynamically.

Using

ISAM

Programs

with

VSAM

Data

Sets

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

609

If

JCL

is

used

to

describe

an

indexed

sequential

data

set

to

be

converted

to

VSAM

using

the

access

method

services

REPRO

command,

include

DCB=DSORG=IS.

Use

a

STEPCAT

or

JOBCAT

DD

statement

as

described

in

“Retrieving

an

Existing

VSAM

Data

Set”

on

page

266

to

make

user

catalogs

available;

you

can

also

use

dynamic

allocation.

Restriction:

1.

Do

not

use

JOBCAT

or

STEPCAT

DD

statements

for

system-managed

data

sets.

The

JOBCAT

or

STEPCAT

DD

statement

fails

if

it

references

a

system-managed

catalog,

or

if

the

data

set

being

searched

is

system

managed.

Also,

you

must

connect

all

referenced

catalogs

to

the

system

master

catalog.

2.

JOBCAT

and

STEPCAT

DD

statements

are

disabled

by

default.

To

enable

JOBCAT

and

STEPCAT

DD

statements,

see

z/OS

DFSMS:

Managing

Catalogs.

With

ISAM,

deleted

records

are

flagged

as

deleted,

but

are

not

actually

removed

from

the

data

set.

To

avoid

reading

VSAM

records

that

are

flagged

as

deleted

(X'FF'),

code

DCB=OPTCD=L.

If

your

program

depends

on

a

record’s

only

being

flagged

and

not

actually

removed,

you

might

want

to

keep

these

flagged

records

when

you

convert

and

continue

to

have

your

programs

process

these

records.

The

access

method

services

REPRO

command

has

a

parameter

(ENVIRONMENT)

that

causes

VSAM

to

keep

the

flagged

records

when

you

convert.

JCL

for

Processing

with

the

ISAM

Interface

To

process

a

key-sequenced

data

set,

replace

the

ISAM

DD

card

with

a

VSAM

DD

card

using

the

ddname

that

was

used

for

ISAM.

The

VSAM

DD

card

names

the

key-sequenced

data

set

and

gives

any

necessary

VSAM

parameters

(through

AMP).

Specify

DISP=MOD

for

resume

loading

and

DISP=OLD

or

SHR

for

all

other

processing.

You

do

not

have

to

specify

anything

about

the

ISAM

interface

itself.

The

interface

is

automatically

brought

into

action

when

your

processing

program

opens

a

DCB

whose

associated

DD

statement

describes

a

key-sequenced

data

set

(instead

of

an

indexed

sequential

data

set).

If

you

have

defined

your

VSAM

data

set

in

a

user

catalog,

specify

the

user

catalog

in

a

JOBCAT

or

STEPCAT

DD

statement.

The

DCB

parameter

in

the

DD

statement

that

identifies

a

VSAM

data

set

is

nonvalid

and

must

be

removed.

If

the

DCB

parameter

is

not

removed,

unpredictable

results

can

occur.

Certain

DCB-type

information

can

be

specified

in

the

AMP

parameter,

which

is

described

later

in

this

chapter.

Table

62

shows

the

DCB

fields

supported

by

the

ISAM

interface.

Table

62.

DCB

Fields

Supported

by

ISAM

Interface

Field

Name

Meaning

BFALN

Same

as

in

ISAM;

defaults

to

a

doubleword

BLKSI

Set

equal

to

LRECL

if

not

specified

BUFCB

Same

as

in

ISAM

BUFL

The

greater

value

of

AMDLRECL

or

DCBLRECL

if

not

specified

BUFNO

For

QISAM,

one;

for

BISAM,

the

value

of

STRNO

if

not

specified

DDNAM

Same

as

in

ISAM

DEBAD

During

the

DCB

exit,

contains

internal

system

information;

after

the

DCB

exit,

contains

the

address

of

the

dummy

DEB

built

by

the

ISAM

interface

DEVT

Set

from

the

VSAM

UCB

device

type

code

Using

ISAM

Programs

with

VSAM

Data

Sets

610

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

62.

DCB

Fields

Supported

by

ISAM

Interface

(continued)

Field

Name

Meaning

DSORG

Same

as

in

ISAM

EODAD

Same

as

in

ISAM

ESETL

Address

of

the

ISAM

interface

ESETL

routine

(see

Table

45

on

page

521)

EXCD1

See

the

QISAM

exception

codes

EXCD2

See

the

QISAM

exception

codes

EXLST

Same

as

in

ISAM

(except

that

VSAM

does

not

support

the

JFCBE

exit)

FREED

Address

of

the

ISAM-interface

dynamic

buffering

routine

GET/PUT

For

QISAM

LOAD,

the

address

of

the

ISAM-interface

PUT

routine;

for

QISAM

SCAN,

0,

the

address

of

the

ISAM-interface

GET

routine;

4,

the

address

of

the

ISAM-interface

PUTX

routine;

and

8,

the

address

of

the

ISAM-interface

RELSE

routine

KEYLE

Same

as

in

ISAM

LRAN

Address

of

the

ISAM-interface

READ

K/WRITE

K

routine

LRECL

Set

to

the

maximum

record

size

specified

in

the

access

method

services

DEFINE

command

if

not

specified

(adjusted

for

variable-length,

fixed,

unblocked,

and

RKP=0

records)

LWKN

Address

of

the

ISAM-interface

WRITE

KN

routine

MACRF

Same

as

in

ISAM

NCP

For

BISAM,

defaults

to

one

NCRHI

Set

to

a

value

of

8

before

DCB

exit

OFLGS

Same

as

in

ISAM

OPTCD

Bit

0

(W),

same

as

in

ISAM;

bit

3

(I),

dummy

records

are

not

to

be

written

in

the

VSAM

data

set;

bit

6

(L),

VSAM-deleted

records

(X'FF')

are

not

read;

dummy

records

are

to

be

treated

as

in

ISAM;

all

other

options

ignored

RECFM

Same

as

in

ISAM;

default

to

unblocked,

variable-length

records

RKP

Same

as

in

ISAM

RORG1

Set

to

a

value

of

0

after

DCB

exit

RORG2

Set

to

a

value

of

X'7FFFF'

after

DCB

exit

RORG3

Set

to

a

value

of

0

after

DCB

exit

SETL

For

BISAM,

address

of

the

ISAM-interface

CHECK

routine;

for

QISAM,

address

of

the

ISAM-interface

SETL

routine

ST

Bit

1

(key-sequence

check),

same

as

in

ISAM;

bit

2

(loading

has

completed),

same

as

in

ISAM

SYNAD

Same

as

in

ISAM

TIOT

Same

as

in

ISAM

WKPT1

For

QISAM

SCAN,

WKPT1

+112=address

of

the

W1CBF

field

pointing

to

the

current

buffer

WKPT5

Address

of

an

internal

system

control

block

WKPT6

For

QISAM

LOAD,

address

of

the

dummy

DCB

work

area

vector

pointers;

the

only

field

supported

is

ISLVPTRS+4=pointer

to

KEYSAVE

When

an

ISAM

processing

program

is

run

with

the

ISAM

interface,

the

AMP

parameter

enables

you

to

specify:

v

That

a

VSAM

data

set

is

to

be

processed

(AMORG)

v

The

need

for

additional

data

buffers

to

improve

sequential

performance

(BUFND)

Using

ISAM

Programs

with

VSAM

Data

Sets

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

611

v

The

need

for

extra

index

buffers

for

simulating

the

residency

of

the

highest

level(s)

of

an

index

in

virtual

storage

(BUFNI)

v

Whether

to

remove

records

flagged

(OPTCD)

v

What

record

format

(RECFM)

is

used

by

the

processing

program

v

The

number

of

concurrent

BISAM

and

QISAM

(basic

and

queued

indexed-sequential

access

methods)

requests

that

the

processing

program

can

issue

(STRNO)

v

The

name

of

an

ISAM

user

exit

routine

to

analyze

physical

and

logical

errors

(SYNAD).

For

a

complete

description

of

the

AMP

parameter

and

its

syntax,

see

z/OS

MVS

JCL

Reference.

Restrictions

on

the

Use

of

the

ISAM

Interface

Some

restrictions

indicated

earlier

in

this

chapter

can

require

you

to

modify

an

ISAM

processing

program

to

process

a

key-sequenced

data

set.

All

operating

system

and

VSAM

restrictions

apply

to

the

use

of

the

ISAM

interface,

including

the

following

restrictions:

v

VSAM

does

not

allow

the

OPEN

TYPE=J

macro.

If

your

program

issues

it,

remove

TYPE=J

and

the

RDJFCB

macro.

v

VSAM

does

not

allow

an

empty

data

set

to

be

opened

for

input.

v

If

a

GET

macro

is

issued

for

an

empty

data

set,

the

resulting

messages

indicate

“no

record

found

(NRF)”

rather

than

“end

of

data

(EOD)”,

as

it

would

appear

in

the

QISAM

environment.

v

The

DUMMY

DD

statement

is

not

supported

for

the

ISAM

interface.

An

attempt

to

use

the

DUMMY

DD

statement

with

the

ISAM

interface

will

result

in

a

system

03B

ABEND.

If

your

program

uses

a

DUMMY

DD

statement,

you

might

be

able

to

change

your

JCL

to

use

a

temporary

or

permanent

VSAM

data

set.

See

“Examples

Using

JCL

to

Allocate

VSAM

Data

Sets”

on

page

263

for

examples.

Sharing

Restrictions:

v

You

can

share

data

among

subtasks

that

specify

the

same

DD

statement

in

their

DCB(s),

and

VSAM

ensures

data

integrity.

But,

if

you

share

data

among

subtasks

that

specify

different

DD

statements

for

the

data,

you

are

responsible

for

data

integrity.

The

ISAM

interface

does

not

ensure

DCB

integrity

when

two

or

more

DCBs

are

opened

for

a

data

set.

All

of

the

fields

in

a

DCB

cannot

be

depended

on

to

contain

valid

information.

v

Processing

programs

that

issue

concurrent

requests

requiring

exclusive

control

can

encounter

exclusive-use

conflicts

if

the

requests

are

for

the

same

control

interval.

For

more

information,

see

Chapter

12,

“Sharing

VSAM

Data

Sets,”

on

page

189.

v

When

a

data

set

is

shared

by

several

jobs

(DISP=SHR),

you

must

use

the

ENQ

and

DEQ

macros

to

ensure

exclusive

control

of

the

data

set.

Exclusive

control

is

necessary

to

ensure

data

integrity

when

your

program

adds

or

updates

records

in

the

data

set.

You

can

share

the

data

set

with

other

users

(that

is,

relinquish

exclusive

control)

when

reading

records.

Additional

restrictions:

v

A

program

must

run

successfully

under

ISAM

using

standard

ISAM

interfaces;

the

interface

does

not

check

for

parameters

that

are

nonvalid

for

ISAM.

v

VSAM

path

processing

is

not

supported

by

the

ISAM

interface.

Using

ISAM

Programs

with

VSAM

Data

Sets

612

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

v

Your

ISAM

program

(on

TSO/E)

cannot

dynamically

allocate

a

VSAM

data

set

(use

LOGON

PROC).

v

CATALOG/DADSM

macros

in

the

ISAM

processing

program

must

be

replaced

with

access

method

services

commands.

v

ISAM

programs

will

run,

with

sequential

processing,

if

the

key

length

is

defined

as

smaller

than

it

actually

is.

This

is

not

permitted

with

the

ISAM

interface.

v

If

your

ISAM

program

creates

dummy

records

with

a

maximum

key

to

avoid

overflow,

remove

that

code

for

VSAM.

v

If

your

program

counts

overflow

records

to

determine

reorganization

needs,

its

results

will

be

meaningless

with

VSAM

data

sets.

v

For

processing

programs

that

use

locate

processing,

the

ISAM

interface

constructs

buffers

to

simulate

locate

processing.

v

For

blocked-record

processing,

the

ISAM

interface

simulates

unblocked-record

processing

by

setting

the

overflow-record

indicator

for

each

record.

(In

ISAM,

an

overflow

record

is

never

blocked

with

other

records.)

Programs

that

examine

ISAM

internal

data

areas

(for

example,

block

descriptor

words

(BDW)

or

the

MBBCCHHR

address

of

the

next

overflow

record)

must

be

modified

to

use

only

standard

ISAM

interfaces.The

ISAM

RELSE

instruction

causes

no

action

to

take

place.

v

If

your

DCB

exit

list

contains

an

entry

for

a

JFCBE

exit

routine,

remove

it.

The

interface

does

not

support

the

use

of

a

JFCBE

exit

routine.

If

the

DCB

exit

list

contains

an

entry

for

a

DCB

open

exit

routine,

that

exit

is

taken.

v

The

work

area

into

which

data

records

are

read

must

not

be

shorter

than

a

record.

If

your

processing

program

is

designed

to

read

a

portion

of

a

record

into

a

work

area,

you

must

change

the

design.

The

interface

takes

the

record

length

indicated

in

the

DCB

to

be

the

actual

length

of

the

data

record.

The

record

length

in

a

BISAM

DECB

is

ignored,

except

when

you

are

replacing

a

variable-length

record

with

the

WRITE

macro.

v

If

your

processing

program

issues

the

SETL

I

or

SETL

ID

instruction,

you

must

modify

the

instruction

to

some

other

form

of

the

SETL

or

remove

it.

The

ISAM

interface

cannot

translate

a

request

that

depends

on

a

specific

block

or

device

address.

v

Although

asynchronous

processing

can

be

specified

in

an

ISAM

processing

program,

all

ISAM

requests

are

handled

synchronously

by

the

ISAM

interface;

WAIT

and

CHECK

requests

are

always

satisfied

immediately.

The

ISAM

CHECK

macro

does

not

result

in

a

VSAM

CHECK

macro’s

being

issued

but

merely

causes

exception

codes

in

the

DECB

(data

event

control

block)

to

be

tested.

v

If

your

ISAM

SYNAD

routine

examines

information

that

cannot

be

supported

by

the

ISAM

interface

(for

example,

the

IOB),

specify

a

replacement

ISAM

SYNAD

routine

in

the

AMP

parameter

of

the

VSAM

DD

statement.

v

The

ISAM

interface

uses

the

same

RPL

over

and

over,

thus,

for

BISAM,

a

READ

for

update

uses

up

an

RPL

until

a

WRITE

or

FREEDBUF

is

issued

(when

the

interface

issues

an

ENDREQ

for

the

RPL).

(When

using

ISAM

you

can

merely

issue

another

READ

if

you

do

not

want

to

update

a

record

after

issuing

a

BISAM

READ

for

update.)

v

The

ISAM

interface

does

not

support

RELOAD

processing.

RELOAD

processing

is

implied

when

an

attempt

is

made

to

open

a

VSAM

data

set

for

output,

specifying

DISP=OLD,

and,

also,

the

number

of

logical

records

in

the

data

set

is

greater

than

zero.

Using

ISAM

Programs

with

VSAM

Data

Sets

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

613

Example:

Converting

a

Data

Set

In

this

example,

the

indexed

sequential

data

set

to

be

converted

(ISAMDATA)

is

cataloged.

A

key-sequenced

data

set,

VSAMDATA,

has

previously

been

defined

in

user

catalog

USERCTLG.

Because

both

the

indexed-sequential

and

key-sequenced

data

set

are

cataloged,

unit

and

volume

information

need

not

be

specified.

ISAMDATA

contains

records

flagged

for

deletion;

these

records

are

to

be

kept

in

the

VSAM

data

set.

The

ENVIRONMENT(DUMMY)

parameter

in

the

REPRO

command

tells

the

system

to

copy

the

records

flagged

for

deletion.

//CONVERT

JOB

...

//JOBCAT

DD

DISP=SHR,DSNAME=USERCTLG

//STEP

EXEC

PGM=IDCAMS

//SYSPRINT

DD

SYSOUT=A

//ISAM

DD

DISP=OLD,DSNAME=ISAMDATA,DCB=DSORG=IS

//VSAM

DD

DISP=OLD,DSNAME=VSAMDATA

//SYSIN

DD

*

REPRO

-

INFILE(ISAM

ENVIRONMENT(DUMMY))

-

OUTFILE(VSAM)

/*

To

drop

records

flagged

for

deletion

in

the

indexed-sequential

data

set,

omit

ENVIRONMENT(DUMMY).

The

use

of

the

JOBCAT

DD

statement

prevents

this

job

from

accessing

any

system-managed

data

sets.

Using

ISAM

Programs

with

VSAM

Data

Sets

614

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Example:

Issuing

a

SYNADAF

Macro

The

following

example

shows

how

a

SYNAD

routine

specified

through

AMP

can

issue

a

SYNADAF

macro

without

preliminaries.

Registers

0

and

1

already

contain

what

SYNADAF

expects

to

find.

AMPSYN

CSECT

USING

*,15

Register

15

contains

the

entry

address

to

AMPSYN.

SYNADAF

ACSMETH=QISAM

Either

QISAM

or

BISAM

can

be

specified.

STM

14,12,12(13)

BALR

7,0

Load

address

of

next

instruction

USING

*,7

L

15,132(1)

The

address

of

the

DCB

is

stored

132

bytes

into

the

SYNADAF

message.

L

14,128(1)

The

address

of

the

DECB

is

stored

128

bytes

into

the

SYNADAF

message.

TM

42(15),X’40’

Does

the

DCB

indicate

QISAM

scan?

BO

QISAM

Yes.

TM

43(15),X’40’

Does

the

DCB

indicate

QISAM

load?

BO

QISAM

Yes.

BISAM

TM

24(14),X’10’

Does

the

DECB

indicate

an

nonvalid

BISAM

request?

BO

INVBISAM

Yes.

The

routine

might

print

the

SYNADAF

message

or

issue

ABEND.

QISAM

TM

80(15),X’10’

Does

the

DCB

indicate

an

nonvalid

QISAM

request?

BO

INVQISAM

Yes.

The

routine

might

print

the

SYNADAF

message

or

issue

ABEND.

INVBISAM

EQU

*

INVQISAM

EQU

*

LM

14,12,12(13)

DROP

7

USING

AMPSYN,15

SYNADRLS

BR

14

END

AMPSYN

When

the

processing

program

closes

the

data

set,

the

interface

issues

VSAM

PUT

macros

for

ISAM

PUT

locate

requests

(in

load

mode),

deletes

the

interface

routines

from

virtual

storage,

frees

virtual-storage

space

that

was

obtained

for

the

interface,

and

gives

control

to

VSAM.

Using

ISAM

Programs

with

VSAM

Data

Sets

Appendix

E.

Using

ISAM

Programs

with

VSAM

Data

Sets

615

616

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Appendix

F.

Converting

Character

Sets

This

appendix

covers

the

following

topics.

Topic

Location

Coded

Character

Sets

Sorted

by

CCSID

617

Coded

Character

Sets

Sorted

by

Default

LOCALNAME

620

CCSID

Conversion

Groups

626

CCSID

Decision

Tables

629

Tables

for

Default

Conversion

Codes

634

Coded

Character

Sets

Sorted

by

CCSID

A

complete

list

of

coded

character

sets

follows,

sorted

by

the

decimal

value

of

the

coded

character

set

identifier

(CCSID),

in

the

character

data

representation

architecture

(CDRA)

repository.

You

can

specify

and

define

data

sets

that

use

specific

coded

character

sets

with

ISMF

panels.

The

same

information

is

sorted

by

the

default

LOCALNAME

element

in

“Coded

Character

Sets

Sorted

by

Default

LOCALNAME”

on

page

620.

In

the

table

below,

the

CCSID

Conversion

Group

column

identifies

the

group,

if

any,

containing

the

CCSIDs

which

can

be

supplied

to

BSAM

or

QSAM

for

ISO/ANSI

V4

tapes

to

convert

from

or

to

the

CCSID

shown

in

the

CCSID

column.

For

a

description

of

CCSID

conversion

and

how

you

can

request

it

see

“Character

Data

Conversion”

on

page

297.

See

“CCSID

Conversion

Groups”

on

page

626

for

the

conversion

groups.

A

blank

in

the

CCSID

Conversion

Group

column

indicates

that

the

CCSID

is

not

supported

by

BSAM

or

QSAM

for

CCSID

conversion

with

ISO/ANSI

V4

tapes.

For

more

information

about

CCSIDs

and

LOCALNAMEs,

see

Character

Data

Representation

Architecture

Reference

and

Registry.

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

37

1,

4,

5

COM

EUROPE

EBCDIC

4993

JAPAN

SB

PC-DATA

256

NETHERLANDS

EBCDIC

5014

URDU

EBCDIC

259

SYMBOLS

SET

7

5026

JAPAN

MIX

EBCDIC

273

1,

4,

5

AUS/GERM

EBCDIC

5028

JAPAN

MIX

PC-DATA

277

1,

4,

5

DEN/NORWAY

EBCDIC

5029

KOREA

MIX

EBCDIC

278

1,

4,

5

FIN/SWEDEN

EBCDIC

5031

S-CH

MIXED

EBCDIC

280

1,

4,

5

ITALIAN

EBCDIC

5033

1,

4,

5

T-CHINESE

EBCDIC

282

1,

4,

5

PORTUGAL

EBCDIC

5035

JAPAN

MIX

EBCDIC

284

1,

4,

5

SPANISH

EBCDIC

5045

KOREA

KS

PC-DATA

285

1,

4,

5

UK

EBCDIC

5047

KOREA

KS

PC-DATA

286

AUS/GER

3270

EBCDIC

5143

1,

2,

3,

4,

5

LATIN

OPEN

SYS

290

2,

4,

5

JAPANESE

EBCDIC

8229

1,

4,

5

INTL

EBCDIC

297

1,

4,

5

FRENCH

EBCDIC

8448

INTL

EBCDIC

300

JAPAN

LATIN

HOST

8476

SPAIN

EBCDIC

©

Copyright

IBM

Corp.

1987,

2004

617

|

|

|
|
|||

|
|
||

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

301

JAPAN

DB

PC-DATA

8489

FRANCE

EBCDIC

367

1,

2,

4,

5

US

ANSI

X3.4

ASCII

8612

ARABIC

EBCDIC

420

ARABIC

EBCDIC

8629

AUS/GERM

PC-DATA

421

MAGHR/FREN

EBCDIC

8692

1,

2,

4,

5

AUS/GERMAN

EBCDIC

423

GREEK

EBCDIC

9025

KOREA

SB

EBCDIC

424

HEBREW

EBCDIC

9026

KOREA

DB

EBCDIC

437

USA

PC-DATA

9047

CYRILLIC

PC-DATA

500

1,

2,

4,

5

INTL

EBCDIC

9056

ARABIC

PC-DATA

803

HEBREW

EBCDIC

9060

URDU

PC-DATA

813

GREEK/LATIN

ASCII

9089

JAPAN

PC-DATA

SB

819

ISO

8859-1

ASCII

9122

JAPAN

MIX

EBCDIC

833

KOREAN

EBCDIC

9124

JAPAN

MIX

EBCDIC

834

KOREAN

DB

EBCDIC

9125

KOREA

MIX

PC-DATA

835

T-CHINESE

DB

EBCDIC

12325

CANADA

EBCDIC

836

S-CHINESE

EBCDIC

12544

FRANCE

EBCDIC

837

S-CHINESE

EBCDIC

12725

FRANCE

PC-DATA

838

THAILAND

EBCDIC

12788

1,

2,

4,

5

ITALY

EBCDIC

839

THAI

DB

EBCDIC

13152

ARABIC

PC-DATA

850

LATIN-1

PC-DATA

13218

JAPAN

MIX

EBCDIC

851

GREEK

PC-DATA

13219

JAPAN

MIX

EBCDIC

852

ROECE

PC-DATA

13221

KOREA

MIX

EBCDIC

853

TURKISH

PC-DATA

16421

1,

4,

5

CANADA

EBCDIC

855

CYRILLIC

PC-DATA

16821

ITALY

PC-DATA

856

HEBREW

PC-DATA

16884

1,

2,

4,

5

FIN/SWEDEN

EBCDIC

857

TURKISH

PC-DATA

20517

4,

5

PORTUGAL

EBCDIC

860

PORTUGUESE

PC-DATA

20917

UK

PC-DATA

861

ICELAND

PC-DATA

20980

1,

2,

4,

5

DEN/NORWAY

EBCDIC

862

HEBREW

PC-DATA

24613

1,

4,

5

INTL

EBCDIC

863

CANADA

PC-DATA

24877

JAPAN

DB

PC-DISPL

864

ARABIC

PC-DATA

25013

USA

PC-DISPLAY

865

DEN/NORWAY

PC-DAT

25076

1,

2,

4,

5

DEN/NORWAY

EBCDIC

866

CYRILLIC

PC-DATA

25426

LATIN-1

PC-DISP

868

URDU

PC-DATA

25427

GREECE

PC-DISPLAY

869

GREEK

PC-DATA

25428

LATIN-2

PC-DISP

870

ROECE

EBCDIC

25429

TURKEY

PC-DISPLAY

871

1,

4,

5

ICELAND

EBCDIC

25431

CYRILLIC

PC-DISP

874

THAI

PC-DISPLAY

25432

HEBREW

PC-DISPLAY

875

3,

4,

5

GREEK

EBCDIC

25433

TURKEY

PC-DISPLAY

880

CYRILLIC

EBCDIC

25436

PORTUGAL

PC-DISP

891

KOREA

SB

PC-DATA

25437

ICELAND

PC-DISP

895

JAPAN

7-BIT

LATIN

25438

HEBREW

PC-DISPLAY

896

JAPAN

7-BIT

KATAK

25439

CANADA

PC-DISPLAY

897

JAPAN

SB

PC-DATA

25440

ARABIC

PC-DISPLAY

899

SYMBOLS

-

PC

25441

DEN/NOR

PC-DISP

903

S-CHINESE

PC-DATA

25442

CYRILLIC

PC-DISP

904

T-CHINESE

PC-DATA

25444

URDU

PC-DISPLAY

905

TURKEY

EBCDIC

25445

GREECE

PC-DISPLAY

912

ISO

8859-2

ASCII

25450

THAILAND

PC-DISP

915

ISO

8859-5

ASCII

25467

KOREA

SB

PC-DISP

916

ISO

8859-8

ASCII

25473

JAPAN

SB

PC-DISP

918

URDU

EBCDIC

25479

S-CHIN

SB

PC-DISP

920

ISO

8859-9

ASCII

25480

T-CHINESE

PC-DISP

Converting

Character

Sets

618

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|

|
|
|||

|
|
||

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

926

KOREA

DB

PC-DATA

25502

KOREA

DB

PC-DISP

927

T-CHINESE

PC-DATA

25503

T-CHINESE

PC-DISP

928

S-CHINESE

PC-DATA

25504

S-CHINESE

PC-DISP

929

THAI

DB

PC-DATA

25505

THAILAND

PC-DISP

930

JAPAN

MIX

EBCDIC

25508

JAPAN

PC-DISPLAY

931

JAPAN

MIX

EBCDIC

25510

KOREA

PC-DISPLAY

932

JAPAN

MIX

PC-DATA

25512

S-CHINESE

PC-DISP

933

KOREA

MIX

EBCDIC

25514

T-CHINESE

PC-DISP

934

KOREA

MIX

PC-DATA

25518

JAPAN

PC-DISPLAY

935

S-CHINESE

MIX

EBC

25520

KOREA

PC-DISPLAY

936

S-CHINESE

PC-DATA

25522

S-CHINESE

PC-DISP

937

1,

4,

5

T-CHINESE

MIX

EBC

25524

T-CHINESE

PC-DISP

938

T-CHINESE

MIX

PC

25525

KOREA

KS

PC-DISP

939

JAPAN

MIX

EBCDIC

25527

KOREA

KS

PC-DISP

942

JAPAN

MIX

PC-DATA

25616

KOREA

SB

PC-DISP

944

KOREA

MIX

PC-DATA

25617

JAPAN

PC-DISPLAY

946

S-CHINESE

PC-DATA

25618

S-CHINESE

PC-DISP

948

T-CHINESE

PC-DATA

25619

T-CHINESE

PC-DISP

949

KOREA

KS

PC-DATA

25664

KOREA

KS

PC-DISP

951

IBM

KS

PC-DATA

28709

1,

4,

5

T-CHINESE

EBCDIC

1008

ARABIC

ISO/ASCII

29109

USA

PC-DISPLAY

1010

FRENCH

ISO-7

ASCII

29172

1,

2,

4,

5

BRAZIL

EBCDIC

1011

GERM

ISO-7

ASCII

29522

LATIN-1

PC-DISP

1012

ITALY

ISO-7

ASCII

29523

GREECE

PC-DISPLAY

1013

UK

ISO-7

ASCII

29524

ROECE

PC-DISPLAY

1014

SPAIN

ISO-7

ASCII

29525

TURKEY

PC-DISPLAY

1015

PORTUGAL

ISO-7

ASC

29527

CYRILLIC

PC-DISP

1016

NOR

ISO-7

ASCII

29528

HEBREW

PC-DISPLAY

1017

DENMK

ISO-7

ASCII

29529

TURKEY

PC-DISPLAY

1018

FIN/SWE

ISO-7

ASC

29532

PORTUGAL

PC-DISP

1019

BELG/NETH

ASCII

29533

ICELAND

PC-DISP

1020

CANADA

ISO-7

29534

HEBREW

PC-DISPLAY

1021

SWISS

ISO-7

29535

CANADA

PC-DISPLAY

1023

SPAIN

ISO-7

29536

ARABIC

PC-DISPLAY

1025

CYRILLIC

EBCDIC

29537

DEN/NOR

PC-DISP

1026

3,

4,

5

TURKEY

LATIN-5

EB

29540

URDU

PC-DISPLAY

1027

2,

4,

5

JAPAN

LATIN

EBCDIC

29541

GREECE

PC-DISPLAY

1040

KOREA

PC-DATA

29546

THAILAND

PC-DISP

1041

JAPAN

PC-DATA

29614

JAPAN

PC-DISPLAY

1042

S-CHINESE

PC-DATA

29616

KOREA

PC-DISPLAY

1043

T-CHINESE

PC-DATA

29618

S-CHINESE

PC-DISP

1046

ARABIC

-

PC

29620

T-CHINESE

PC-DISP

1047

1,

2,

3,

4,

5

LATIN

OPEN

SYS

EB

29621

KOREA

KS

MIX

PC

1051

HP

EMULATION

29623

KOREA

KS

PC-DISP

1088

KOREA

KS

PC-DATA

29712

KOREA

PC-DISPLAY

1089

ARABIC

ISO

8859-6

29713

JAPAN

PC-DISPLAY

1097

FARSI

EBCDIC

29714

S-CHINESE

PC-DISP

1098

FARSI

-

PC

29715

T-CHINESE

PC-DISP

1100

MULTI

EMULATION

29760

KOREA

KS

PC-DISP

1101

BRITISH

ISO-7

NRC

32805

1,

4,

5

JAPAN

LATIN

EBCDIC

1102

DUTCH

ISO-7

NRC

33058

2,

4,

5

JAPAN

EBCDIC

1103

FINNISH

ISO-7

NRC

33205

SWISS

PC-DISPLAY

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

619

|

|
|
|||

|
|
||

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

DEFAULT

LOCALNAME

1104

FRENCH

ISO-7

NRC

33268

1,

2,

4,

5

UK/PORTUGAL

EBCDIC

1105

NOR/DAN

ISO-7

NRC

33618

LATIN-1

PC-DISP

1106

SWEDISH

ISO-7

NRC

33619

GREECE

PC-DISPLAY

1107

NOR/DAN

ISO-7

NRC

33620

ROECE

PC-DISPLAY

4133

1,

4,

5

USA

EBCDIC

33621

TURKEY

PC-DISPLAY

4369

1,

4,

5

AUS/GERMAN

EBCDIC

33623

CYRILLIC

PC-DISP

4370

1,

4,

5

BELGIUM

EBCDIC

33624

HEBREW

PC-DISPLAY

4371

1,

4,

5

BRAZIL

EBCDIC

33632

ARABIC

PC-DISPLAY

4372

CANADA

EBCDIC

33636

URDU

PC-DISPLAY

4373

1,

4,

5

DEN/NORWAY

EBCDIC

33637

GREECE

PC-DISPLAY

4374

1,

4,

5

FIN/SWEDEN

EBCDIC

33665

JAPAN

PC-DISPLAY

4376

1,

4,

5

ITALY

EBCDIC

33698

JAPAN

KAT/KAN

EBC

4378

1,

4,

5

PORTUGAL

EBCDIC

33699

JAPAN

LAT/KAN

EBC

4380

1,

4,

5

LATIN

EBCDIC

33700

JAPAN

PC-DISPLAY

4381

1,

4,

5

UK

EBCDIC

33717

KOREA

KS

PC-DISP

4386

2,

4,

5

JAPAN

EBCDIC

SB

37301

AUS/GERM

PC-DISP

4393

1,

4,

5

FRANCE

EBCDIC

37364

BELGIUM

EBCDIC

4396

JAPAN

EBCDIC

DB

37719

CYRILLIC

PC-DISP

4516

ARABIC

EBCDIC

37728

ARABIC

PC-DISPLAY

4519

GREEK

EBCDIC

3174

37732

URDU

PC-DISPLAY

4520

HEBREW

EBCDIC

37761

JAPAN

SB

PC-DISP

4533

SWISS

PC-DATA

37796

JAPAN

PC-DISPLAY

4596

1,

2,

4,

5

LATIN

AMER

EBCDIC

37813

KOREA

KS

PC-DISP

4929

KOREA

SB

EBCDIC

41397

FRANCE

PC-DISPLAY

4932

S-CHIN

SB

EBCDIC

41460

1,

2,

4,

5

SWISS

EBCDIC

4934

THAI

SB

EBCDIC

41824

ARABIC

PC-DISPLAY

4946

LATIN-1

PC-DATA

41828

URDU

PC-DISPLAY

4947

GREEK

PC-DATA

45493

ITALY

PC-DISPLAY

4948

LATIN-2

PC-DATA

45556

1,

2,

4,

5

SWISS

EBCDIC

4949

TURKEY

PC-DATA

45920

ARABIC

PC-DISPLAY

4951

CYRILLIC

PC-DATA

49589

UK

PC-DISPLAY

4952

HEBREW

PC-DATA

49652

1,

2,

4,

5

BELGIUM

EBCDIC

4953

TURKEY

PC-DATA

53748

1,

2,

4

INTL

EBCDIC

4960

ARABIC

PC-DATA

59748

4

INTL

EBCDIC

4964

URDU

PC-DATA

61696

1,

2,

4,

5

GLOBAL

SB

EBCDIC

4965

GREEK

PC-DATA

61697

GLOBAL

SB

PC-DATA

4966

ROECE

LATIN-2

EBC

61698

GLOBAL

PC-DISPLAY

4967

1,

4,

5

ICELAND

EBCDIC

61699

GLBL

ISO-8

ASCII

4970

THAI

SB

PC-DATA

61700

GLBL

ISO-7

ASCII

4976

CYRILLIC

EBCDIC

61710

GLOBAL

USE

ASCII

61711

1,

2,

4,

5

GLOBAL

USE

EBCDIC

61712

1,

2,

4,

5

GLOBAL

USE

EBCDIC

Coded

Character

Sets

Sorted

by

Default

LOCALNAME

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

ARABIC

-

PC

1046

ARABIC

EBCDIC

420

ARABIC

EBCDIC

4516

ARABIC

EBCDIC

8612

ARABIC

ISO

8859-6

1089

Converting

Character

Sets

620

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|

|
|
|||

|
|
||

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

ARABIC

ISO/ASCII

1008

ARABIC

PC-DATA

864

ARABIC

PC-DATA

4960

ARABIC

PC-DATA

9056

ARABIC

PC-DATA

13152

ARABIC

PC-DISPLAY

25440

ARABIC

PC-DISPLAY

29536

ARABIC

PC-DISPLAY

33632

ARABIC

PC-DISPLAY

37728

ARABIC

PC-DISPLAY

41824

ARABIC

PC-DISPLAY

45920

AUS/GER

3270

EBCDIC

286

AUS/GERM

EBCDIC

273

1,

4,

5

AUS/GERM

PC-DATA

8629

AUS/GERM

PC-DISP

37301

AUS/GERMAN

EBCDIC

4369

1,

4,

5

AUS/GERMAN

EBCDIC

8692

1,

2,

4,

5

BELG/NETH

ASCII

1019

BELGIUM

EBCDIC

4370

1,

4,

5

BELGIUM

EBCDIC

37364

BELGIUM

EBCDIC

49652

1,

2,

4,

5

BRAZIL

EBCDIC

4371

1,

4,

5

BRAZIL

EBCDIC

29172

1,

2,

4,

5

BRITISH

ISO-7

NRC

1101

CANADA

EBCDIC

4372

CANADA

EBCDIC

12325

CANADA

EBCDIC

16421

1,

4,

5

CANADA

ISO-7

1020

CANADA

PC-DATA

863

CANADA

PC-DISPLAY

25439

CANADA

PC-DISPLAY

29535

COM

EUROPE

EBCDIC

37

1,

4,

5

CYRILLIC

EBCDIC

880

CYRILLIC

EBCDIC

1025

CYRILLIC

EBCDIC

4976

CYRILLIC

PC-DATA

855

CYRILLIC

PC-DATA

866

CYRILLIC

PC-DATA

4951

CYRILLIC

PC-DATA

9047

CYRILLIC

PC-DISP

25431

CYRILLIC

PC-DISP

25442

CYRILLIC

PC-DISP

29527

CYRILLIC

PC-DISP

33623

CYRILLIC

PC-DISP

37719

DEN/NOR

PC-DISP

25441

DEN/NOR

PC-DISP

29537

DEN/NORWAY

EBCDIC

277

1,

4,

5

DEN/NORWAY

EBCDIC

4373

1,

4,

5

DEN/NORWAY

EBCDIC

20980

1,

2,

4,

5

DEN/NORWAY

EBCDIC

25076

1,

2,

4,

5

DEN/NORWAY

PC-DAT

865

DENMK

ISO-7

ASCII

1017

DUTCH

ISO-7

NRC

1102

FARSI

-

PC

1098

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

621

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

FARSI

EBCDIC

1097

FIN/SWE

ISO-7

ASC

1018

FIN/SWEDEN

EBCDIC

278

1,

4,

5

FIN/SWEDEN

EBCDIC

4374

1,

4,

5

FIN/SWEDEN

EBCDIC

16884

1,

2,

4,

5

FINNISH

ISO-7

NRC

1103

FRANCE

EBCDIC

4393

1,

4,

5

FRANCE

EBCDIC

8489

FRANCE

EBCDIC

12544

FRANCE

PC-DATA

12725

FRANCE

PC-DISPLAY

41397

FRENCH

EBCDIC

297

1,

4,

5

FRENCH

ISO-7

ASCII

1010

FRENCH

ISO-7

NRC

1104

GERM

ISO-7

ASCII

1011

GLBL

ISO-7

ASCII

61700

GLBL

ISO-8

ASCII

61699

GLOBAL

PC-DISPLAY

61698

GLOBAL

SB

EBCDIC

61696

1,

2,

4,

5

GLOBAL

SB

PC-DATA

61697

GLOBAL

USE

ASCII

61710

GLOBAL

USE

EBCDIC

61711

1,

2,

4,

5

GLOBAL

USE

EBCDIC

61712

1,

2,

4,

5

GREECE

PC-DISPLAY

25427

GREECE

PC-DISPLAY

25445

GREECE

PC-DISPLAY

29523

GREECE

PC-DISPLAY

29541

GREECE

PC-DISPLAY

33619

GREECE

PC-DISPLAY

33637

GREEK

EBCDIC

423

GREEK

EBCDIC

875

3,

4,

5

GREEK

EBCDIC

3174

4519

GREEK

PC-DATA

851

GREEK

PC-DATA

869

GREEK

PC-DATA

4947

GREEK

PC-DATA

4965

GREEK/LATIN

ASCII

813

HEBREW

EBCDIC

424

HEBREW

EBCDIC

803

HEBREW

EBCDIC

4520

HEBREW

PC-DATA

856

HEBREW

PC-DATA

862

HEBREW

PC-DATA

4952

HEBREW

PC-DISPLAY

25432

HEBREW

PC-DISPLAY

25438

HEBREW

PC-DISPLAY

29528

HEBREW

PC-DISPLAY

29534

HEBREW

PC-DISPLAY

33624

HP

EMULATION

1051

IBM

KS

PC-DATA

951

ICELAND

EBCDIC

871

1,

4,

5

ICELAND

EBCDIC

4967

1,

4,

5

ICELAND

PC-DATA

861

ICELAND

PC-DISP

25437

Converting

Character

Sets

622

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

ICELAND

PC-DISP

29533

INTL

EBCDIC

500

1,

2,

4,

5

INTL

EBCDIC

8229

1,

4,

5

INTL

EBCDIC

8448

INTL

EBCDIC

24613

1,

4,

5

INTL

EBCDIC

53748

1,

2,

4,

5

ISO

8859-1

ASCII

819

ISO

8859-2

ASCII

912

ISO

8859-5

ASCII

915

ISO

8859-8

ASCII

916

ISO

8859-9

ASCII

920

ITALIAN

EBCDIC

280

1,

4,

5

ITALY

EBCDIC

4376

1,

4,

5

ITALY

EBCDIC

12788

1,

2,

4,

5

ITALY

ISO-7

ASCII

1012

ITALY

PC-DATA

16821

ITALY

PC-DISPLAY

45493

JAPAN

DB

PC-DATA

300

JAPAN

DB

PC-DATA

301

JAPAN

DB

PC-DISPL

24877

JAPAN

EBCDIC

33058

2,

4,

5

JAPAN

EBCDIC

DB

4396

JAPAN

EBCDIC

SB

4386

2,

4,

5

JAPAN

KAT/KAN

EBC

33698

JAPAN

LAT/KAN

EBC

33699

JAPAN

LATIN

EBCDIC

1027

2,

4,

5

JAPAN

LATIN

EBCDIC

32805

1,

4,

5

JAPAN

MIX

EBCDIC

930

JAPAN

MIX

EBCDIC

931

JAPAN

MIX

EBCDIC

939

JAPAN

MIX

EBCDIC

5026

JAPAN

MIX

EBCDIC

5035

JAPAN

MIX

EBCDIC

9122

JAPAN

MIX

EBCDIC

13218

JAPAN

MIX

EBCDIC

13219

JAPAN

MIX

PC-DATA

932

JAPAN

MIX

PC-DATA

942

JAPAN

MIX

PC-DATA

5028

JAPAN

MIX

PC-DATA

9124

JAPAN

PC-DATA

1041

JAPAN

PC-DATA

SB

9089

JAPAN

PC-DISPLAY

25508

JAPAN

PC-DISPLAY

25518

JAPAN

PC-DISPLAY

25617

JAPAN

PC-DISPLAY

29614

JAPAN

PC-DISPLAY

29713

JAPAN

PC-DISPLAY

33665

JAPAN

PC-DISPLAY

33700

JAPAN

PC-DISPLAY

37796

JAPAN

SB

PC-DATA

897

JAPAN

SB

PC-DATA

4993

JAPAN

SB

PC-DISP

25473

JAPAN

SB

PC-DISP

37761

JAPAN

7-BIT

KATAK

896

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

623

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

JAPAN

7-BIT

LATIN

895

JAPANESE

EBCDIC

290

2,

4,

5

KOREA

DB

EBCDIC

9026

KOREA

DB

PC-DATA

926

KOREA

DB

PC-DISP

25502

KOREA

KS

MIX

PC

29621

KOREA

KS

PC

DATA

5047

KOREA

KS

PC-DATA

949

KOREA

KS

PC-DATA

1088

KOREA

KS

PC-DATA

5045

KOREA

KS

PC-DISP

25525

KOREA

KS

PC-DISP

25527

KOREA

KS

PC-DISP

25664

KOREA

KS

PC-DISP

29623

KOREA

KS

PC-DISP

29760

KOREA

KS

PC-DISP

33717

KOREA

KS

PC-DISP

37813

KOREA

MIX

EBCDIC

933

KOREA

MIX

EBCDIC

5029

KOREA

MIX

EBCDIC

9125

KOREA

MIX

EBCDIC

13221

KOREA

MIX

PC-DATA

934

KOREA

MIX

PC-DATA

944

KOREA

PC-DATA

1040

KOREA

PC-DISPLAY

25510

KOREA

PC-DISPLAY

25520

KOREA

PC-DISPLAY

29616

KOREA

PC-DISPLAY

29712

KOREA

SB

EBCDIC

4929

KOREA

SB

EBCDIC

9025

KOREA

SB

PC-DATA

891

KOREA

SB

PC-DISP

25467

KOREA

SB

PC-DISP

25616

KOREAN

DB

EBCDIC

834

KOREAN

EBCDIC

833

LATIN

AMER

EBCDIC

4596

1,

2,

4,

5

LATIN

EBCDIC

4380

1,

4,

5

LATIN

OPEN

SYS

5143

1,

2,

3,

4,

5

LATIN

OPEN

SYS

EB

1047

1,

2,

3,

4,

5

LATIN-1

PC-DATA

850

LATIN-1

PC-DATA

4946

LATIN-1

PC-DISP

25426

LATIN-1

PC-DISP

29522

LATIN-1

PC-DISP

33618

LATIN-2

PC-DATA

4948

LATIN-2

PC-DISP

25428

MAGHR/FREN

EBCDIC

421

MULTI

EMULATION

1100

NETHERLANDS

EBCDIC

256

NOR

ISO-7

ASCII

1016

NOR/DAN

ISO-7

NRC

1105

NOR/DAN

ISO-7

NRC

1107

PORTUGAL

EBCDIC

282

1,

4,

5

PORTUGAL

EBCDIC

4378

1,

4,

5

Converting

Character

Sets

624

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

PORTUGAL

EBCDIC

20517

1,

4,

5

PORTUGAL

ISO-7

ASC

1015

PORTUGAL

PC-DISP

25436

PORTUGAL

PC-DISP

29532

PORTUGUESE

PC-DATA

860

ROECE

EBCDIC

870

ROECE

LATIN-2

EBC

4966

ROECE

PC-DATA

852

ROECE

PC-DISPLAY

29524

ROECE

PC-DISPLAY

33620

S-CH

MIXED

EBCDIC

5031

S-CHIN

SB

EBCDIC

4932

S-CHIN

SB

PC-DISP

25479

S-CHINESE

EBCDIC

836

S-CHINESE

EBCDIC

837

S-CHINESE

MIX

EBC

935

S-CHINESE

PC-DATA

903

S-CHINESE

PC-DATA

928

S-CHINESE

PC-DATA

936

S-CHINESE

PC-DATA

946

S-CHINESE

PC-DATA

1042

S-CHINESE

PC-DISP

25504

S-CHINESE

PC-DISP

25512

S-CHINESE

PC-DISP

25522

S-CHINESE

PC-DISP

25618

S-CHINESE

PC-DISP

29618

S-CHINESE

PC-DISP

29714

SPAIN

EBCDIC

8476

SPAIN

ISO-7

1023

SPAIN

ISO-7

ASCII

1014

SPANISH

EBCDIC

284

1,

4,

5

SWEDISH

ISO-7

NRC

1106

SWISS

EBCDIC

41460

1,

2,

4,

5

SWISS

EBCDIC

45556

1,

2,

4,

5

SWISS

ISO-7

1021

SWISS

PC-DATA

4533

SWISS

PC-DISPLAY

33205

SYMBOLS

-

PC

899

SYMBOLS

SET

7

259

T-CHINESE

DB

EBCDIC

835

T-CHINESE

EBCDIC

5033

1,

4,

5

T-CHINESE

EBCDIC

28709

1,

4,

5

T-CHINESE

MIX

EBC

937

1,

4,

5

T-CHINESE

MIX

PC

938

T-CHINESE

PC-DATA

904

T-CHINESE

PC-DATA

927

T-CHINESE

PC-DATA

948

T-CHINESE

PC-DATA

1043

T-CHINESE

PC-DISP

25480

T-CHINESE

PC-DISP

25503

T-CHINESE

PC-DISP

25514

T-CHINESE

PC-DISP

25524

T-CHINESE

PC-DISP

25619

T-CHINESE

PC-DISP

29620

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

625

DEFAULT

LOCALNAME

CCSID

CCSID

Conversion

Group

T-CHINESE

PC-DISP

29715

THAI

DB

EBCDIC

839

THAI

DB

PC-DATA

929

THAI

PC-DISPLAY

874

THAI

SB

EBCDIC

4934

THAI

SB

PC-DATA

4970

THAILAND

EBCDIC

838

THAILAND

PC-DISP

25450

THAILAND

PC-DISP

25505

THAILAND

PC-DISP

29546

TURKEY

EBCDIC

905

TURKEY

LATIN-5

EB

1026

3,

4,

5

TURKEY

PC-DATA

4949

TURKEY

PC-DATA

4953

TURKEY

PC-DISPLAY

25429

TURKEY

PC-DISPLAY

25433

TURKEY

PC-DISPLAY

29525

TURKEY

PC-DISPLAY

29529

TURKEY

PC-DISPLAY

33621

TURKISH

PC-DATA

853

TURKISH

PC-DATA

857

UK

EBCDIC

285

1,

4,

5

UK

EBCDIC

4381

1,

4,

5

UK

ISO-7

ASCII

1013

UK

PC-DATA

20917

UK

PC-DISPLAY

49589

UK/PORTUGAL

EBCDIC

33268

1,

2,

4,

5

URDU

EBCDIC

918

URDU

EBCDIC

5014

URDU

PC-DATA

868

URDU

PC-DATA

4964

URDU

PC-DATA

9060

URDU

PC-DISPLAY

25444

URDU

PC-DISPLAY

29540

URDU

PC-DISPLAY

33636

URDU

PC-DISPLAY

37732

URDU

PC-DISPLAY

41828

US

ANSI

X3.4

ASCII

367

1,

2,

4,

5

USA

EBCDIC

4133

1,

4,

5

USA

PC-DATA

437

USA

PC-DISPLAY

25013

USA

PC-DISPLAY

29109

CCSID

Conversion

Groups

The

following

figures

list

the

CCSID

conversion

groups.

Figure

134

on

page

627

lists

conversion

group

1,

Figure

135

on

page

627

lists

conversion

group

2,

Figure

136

on

page

627

lists

conversion

group

3,

Figure

137

on

page

627

lists

conversion

group

4,

and

Figure

138

on

page

628

lists

conversion

group

5.

Converting

Character

Sets

626

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

367

29172

500

33268

1047

41460

4596

45556

5143

49652

8692

53748

12788

61696

16884

61711

20980

61712

25076

Figure

134.

CCSID

Conversion

Group

1

290

25076

367

29172

500

33058

1027

33268

1047

41460

4386

45556

4596

49652

5143

53748

8692

61696

12788

61711

16884

61712

20980

Figure

135.

CCSID

Conversion

Group

2

1047

5143

Figure

136.

CCSID

Conversion

Group

3

37

4133

16421

273

4369

16884

275

4370

20517

277

4371

20980

278

4373

24613

280

4374

25076

282

4376

28709

284

4378

29172

285

4380

32805

290

4381

33058

297

4386

33268

367

4393

41460

500

4596

45556

871

4967

49652

875

5033

53748

937

5143

61696

1026

8229

61711

1027

8692

61712

1047

12788

Figure

137.

CCSID

Conversion

Group

4

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

627

37

4133

16421

273

4369

16884

275

4370

20517

277

4371

20980

278

4373

24613

280

4374

25076

282

4376

28709

284

4378

29172

285

4380

32805

290

4381

33058

297

4386

33268

367

4393

41460

500

4596

45556

871

4967

49652

875

5033

53748

937

5143

61696

1026

8229

61711

1027

8692

61712

1047

12788

Figure

138.

CCSID

Conversion

Group

5

Converting

Character

Sets

628

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|

CCSID

Decision

Tables

The

following

three

tables

are

used

by

data

management

to

determine

the

type

of

data

conversion

to

perform

for

ISO/ANSI

tapes.

See

“Character

Data

Conversion”

on

page

297

for

a

description

of

data

conversion

and

how

it

is

requested.

For

purposes

of

these

tables:

USER

Refers

to

the

CCSID

which

describes

the

data

used

by

the

application

program.

It

is

derived

from

(in

order

of

precedence):

1.

CCSID

parameter

on

the

EXEC

statement,

or

2.

CCSID

parameter

on

the

JOB

statement.

If

the

table

entry

contains

a

0,

it

means

that

the

CCSID

parameter

was

not

supplied

in

the

JCL.

In

this

case,

if

data

management

performs

CCSID

conversion,

a

system

default

CCSID

of

500

is

used.

TAPE

(DD)

Refers

to

the

CCSID

which

is

specified

by

the

CCSID

parameter

on

the

DD

statement,

dynamic

allocation,

or

TSO

ALLOCATE.

If

the

table

entry

contains

a

0,

it

means

that

the

CCSID

parameter

was

not

supplied.

In

this

case,

if

data

management

performs

CCSID

conversion,

a

system

default

CCSID

of

367

is

used

when

open

for

output

and

not

DISP=MOD.

Label

Refers

to

the

CCSID

which

will

be

stored

in

the

tape

label

during

output

processing

(not

DISP=MOD),

or

which

is

found

in

an

existing

label

during

DISP=MOD

or

input

processing.

Unless

otherwise

indicated

in

the

tables,

a

CCSID

found

in

the

tape

label

overrides

a

CCSID

specified

on

the

DD

statement

on

input.

Conversion

Refers

to

the

type

of

data

conversion

data

management

will

perform

based

on

the

combination

of

CCSIDs

supplied

from

the

previous

three

columns.

v

Default

denotes

that

data

management

performs

conversion

using

Default

Character

conversion

as

described

in

“Character

Data

Conversion”

on

page

297.

This

conversion

is

used

when

CCSIDs

are

not

supplied

by

any

source.

An

existing

data

set

created

using

Default

Character

conversion

cannot

be

read

or

written

(unless

DISP=OLD)

using

CCSIDs.

v

Convert

a->b

denotes

that

data

management

performs

CCSID

conversion

with

a

and

b

representing

the

CCSIDs

used.

v

No

conversion

denotes

that

data

management

performs

no

conversion

on

the

data.

v

Fail

denotes

that

the

combination

of

CCSIDs

is

invalid.

This

results

in

an

ABEND513-14

during

open.

A

CCSID

of

X,

Y,

or

Z

is

used

to

represent

any

of

the

supported

CCSIDs

(other

than

65

535)

where

X

≠

Y

≠

Z.

Unless

otherwise

specified

in

the

tables,

a

CCSID

of

65

535

indicates

that

data

management

will

perform

no

conversion.

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

629

Table

63

describes

processing

used

when

the

data

set

is

opened

for

output

(not

EXTEND)

with

DISP=NEW

or

DISP=OLD.

The

label

column

indicates

what

will

be

stored

in

the

label.

Table

63.

Output

DISP=NEW,OLD

USER

TAPE(DD)

Label

Conversion

Comments

0

0

BLANK

Default

No

CCSIDs

specified.

Use

Default

Character

Conversion.

0

Y

Y

Convert

500->Y

USER

default

is

500.

0

65535

65535

No

conversion

No

convert

specified

on

DD.

CCSID

of

data

is

unknown.

X

0

367

Convert

X->367

Default

tape

is

367.

X

Y

Y

Convert

X->Y

USER

is

X.

DD

is

Y.

X

65535

X

No

conversion

User

data

assumed

to

be

X.

65535

0

65535

No

conversion

No

convert

specified

on

JOB/EXEC.

CCSID

of

data

unknown.

65535

Y

Y

No

conversion

User

data

assumed

to

be

Y.

65535

65535

65535

No

conversion

No

convert

specified.

Table

64

describes

processing

used

when

the

data

set

is

opened

for

output

with

DISP=MOD

or

when

the

OPEN

option

is

EXTEND.

This

is

only

allowed

for

IBM

created

Version

4

tapes.

Attempting

to

open

a

non-IBM

created

Version

4

tape

with

DISP=MOD

will

result

in

ABEND513-10.

Table

64.

Output

DISP=MOD

(IBM

V4

tapes

only)

USER

TAPE(DD)

Label

Conversion

Comments

0

0

BLANK

Default

No

CCSIDs

specified.

Use

Default

Character

Conversion.

0

0

Z

Convert

500->Z

USER

default

is

500.

0

0

65535

Fail

CCSID

of

tape

data

is

unknown.

Prevent

mixed

user

data.

0

Y

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

Y

specified.

CCSID

mismatch.

0

Y

Z

Fail

CCSID

mismatch.

Label

says

Z

but

DD

says

Y.

0

Y

Y

Convert

500->Y

USER

default

is

500.

Label

says

Y

and

DD

says

Y.

0

Y

65535

Fail

DD

says

Y

but

CCSID

of

data

is

unknown.

CCSID

mismatch.

0

65535

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

unknown

CCSID

on

tape.

0

65535

Z

Fail

DD

says

no

convert.

Label

says

Z

and

USER

CCSID

not

specified.

0

65535

65535

No

conversion

No

convert

specified.

User

must

ensure

data

is

in

correct

CCSID.

X

0

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

USER

CCSID

is

X.

No

interface

to

convert

X

to

7-bit

ASCII.

X

0

Z

Convert

X->Z

USER

is

X.

Label

is

Z.

X

0

65535

Fail

Label

CCSID

is

unknown,

but

USER

is

X

with

no

convert

specified.

Potential

mismatch.

X

Y

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

DD

says

Y.

CCSID

mismatch.

X

Y

Z

Fail

DD

says

Y

but

label

says

Z.

CCSID

mismatch.

Converting

Character

Sets

630

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

64.

Output

DISP=MOD

(IBM

V4

tapes

only)

(continued)

USER

TAPE(DD)

Label

Conversion

Comments

X

Y

Y

Convert

X->Y

DD

says

Y

and

label

says

Y.

X

Y

65535

Fail

DD

says

Y

but

tape

CCSID

is

unknown.

Possible

mismatch.

X

65535

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

USER

says

X

with

no

convert.

CCSID

mismatch.

X

65535

Z

Fail

USER

and

label

CCSID

mismatch

with

no

convert

specified.

X

65535

X

No

conversion

USER

and

label

CCSID

agree

with

no

convert

specified.

X

65535

65535

No

conversion

DD

and

label

agree

but

data

on

tape

must

be

X

as

well

or

it

will

cause

problems

later.

65535

0

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

USER

CCSID

specified.

CCSID

mismatch.

65535

0

Z

No

conversion

No

convert

specified.

Must

assume

tape

data

is

Z

or

it

will

cause

problems

later.

65535

0

65535

No

conversion

No

convert

specified

and

label

says

no

convert.

65535

Y

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

DD

says

Y.

CCSID

mismatch.

65535

Y

Z

Fail

DD

say

Y

but

label

says

Z.

CCSID

mismatch

even

though

no

convert

is

specified.

65535

Y

Y

No

conversion

TAPE

and

label

agree

and

no

conversion

specified.

65535

Y

65535

No

conversion

Label

is

unknown

and

USER

specified

no

convert.

Assume

data

is

correct.

Otherwise,

problems

later

on.

65535

65535

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion.

Even

though

no

convert

specified,

still

possible

mismatch.

65535

65535

Z

No

conversion

No

convert

specified

but

data

must

be

in

Z

or

it

will

cause

problems

later.

65535

65535

65535

No

conversion

No

convert

specified.

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

631

Table

65

describes

processing

used

when

the

data

set

is

opened

for

INPUT

or

RDBACK.

Table

65.

Input

USER

TAPE(DD)

Label

Conversion

Comments

0

0

BLANK

Default

No

CCSIDs

specified.

Assume

Default

Character

Conversion.

0

0

Z

Convert

Z->500

USER

default

is

500.

Label

says

Z.

0

0

65535

No

conversion

Label

says

no

convert

and

no

CCSIDs

specified.

0

Y

BLANK

Fail

Fail

if

IBM

V4

tape

because

blank

in

label

means

Default

Character

Conversion

but

DD

says

Y.

0

Y

BLANK

Convert

Y->500

Allow

if

not

IBM

V4

tape

because

user

is

indicating

data

on

tape

is

Y

via

the

DD.

0

Y

Z

Fail

Label

say

Z

but

DD

says

Y.

CCSID

mismatch.

0

Y

Y

Convert

Y->500

USER

default

is

500.

DD

says

Y

and

label

says

Y.

0

Y

65535

Convert

Y->500

DD

is

saying

tape

data

is

Y.

USER

default

is

500.

0

65535

BLANK

No

conversion

DD

specified

no

conversion.

0

65535

Z

No

conversion

DD

specified

no

conversion.

0

65535

65535

No

conversion

DD

specified

no

conversion.

X

0

BLANK

Fail

Blank

in

label

means

Default

Character

Conversion

but

USER

specified

CCSID.

CCSID

mismatch.

X

0

Z

Convert

Z->X

USER

is

X.

Label

is

Z.

X

0

65535

No

conversion

Label

says

no

conversion

and

no

CCSID

specified

on

DD,

therefore,

no

conversion.

X

Y

BLANK

Fail

Fail

if

IBM

V4

tape

because

blank

in

label

means

Default

Character

Conversion

but

DD

says

Y.

CCSID

mismatch.

X

Y

BLANK

Convert

Y->X

Allow

if

not

IBM

V4

tape

because

DD

is

indicating

data

is

Y.

USER

is

X.

X

Y

Z

Fail

Label

says

Z

but

DD

says

Y.

CCSID

mismatch.

X

Y

Y

Convert

Y->X

Label

and

DD

both

specify

Y.

USER

is

X.

X

Y

65535

Convert

Y->X

Label

CCSID

is

unknown

but

DD

says

Y.

USER

is

X.

Assume

data

is

Y.

X

65535

BLANK

Fail

Fail

if

IBM

V4

tape

because

blank

in

label

means

Default

Character

Conversion

but

USER

says

X.

CCSID

mismatch.

X

65535

BLANK

No

conversion

Allow

if

not

IBM

V4

tape

because

DD

specified

no

convert.

X

65535

Z

Fail

Label

says

Z,

USER

says

X

but

DD

says

no

convert.

CCSID

mismatch

between

USER

and

label.

X

65535

X

No

conversion

Label

says

X

and

USER

says

X,

therefore,

allow

no

conversion.

X

65535

65535

No

conversion

No

conversion

specified,

but

tape

data

must

be

X.

65535

0

BLANK

No

conversion

USER

specified

no

conversion

indicating

that

application

can

accept

any

data

including

7-bit

ASCII.

65535

0

Z

No

conversion

USER

specified

no

conversion

indicating

that

application

can

accept

any

data

including

Z.

Converting

Character

Sets

632

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Table

65.

Input

(continued)

USER

TAPE(DD)

Label

Conversion

Comments

65535

0

65535

No

conversion

USER

specified

no

conversion

indicating

that

application

can

accept

any

data

including

unknown

data

on

tape.

65535

Y

BLANK

Fail

Fail

if

IBM

V4

tape

because

blank

means

Default

Character

Conversion

but

DD

says

Y.

CCSID

mismatch.

65535

Y

BLANK

No

conversion

Allow

if

not

IBM

V4

tape

because

DD

is

indicating

tape

is

Y

with

no

conversion

specified.

65535

Y

Z

Fail

Label

says

Z

but

DD

says

Y.

CCSID

mismatch.

65535

Y

Y

No

conversion

Label

and

DD

agree,

therefore,

no

convert.

65535

Y

65535

No

conversion

Label

data

is

unknown

and

no

convert

specified.

65535

65535

BLANK

No

conversion

USER

specified

no

convert

so

application

can

accept

tape

data

in

any

format

including

7-bit

ASCII.

65535

65535

Z

No

conversion

USER

specified

no

convert

so

application

can

accept

tape

data

in

any

format

including

Z.

65535

65535

65535

No

conversion

No

convert

specified.

Converting

Character

Sets

Appendix

F.

Converting

Character

Sets

633

Tables

for

Default

Conversion

Codes

The

following

tables

are

used

by

data

management

when

performing

default

character

conversion

as

described

in

“Character

Data

Conversion”

on

page

297.

They

are

also

used

by

the

system

when

you

issue

the

XLATE

macro

instruction.

When

converting

EBCDIC

code

to

ASCII

code,

all

EBCDIC

code

not

having

an

ASCII

equivalent

is

converted

to

X'1A'.

When

converting

ASCII

code

to

EBCDIC

code,

all

ASCII

code

not

having

an

EBCDIC

equivalent

is

converted

to

X'3F'.

Because

Version

3

ASCII

uses

only

7

bits

in

each

byte,

bit

0

is

always

set

to

0

during

EBCDIC

to

ASCII

conversion

and

is

expected

to

be

0

during

ASCII

to

EBCDIC

conversion.

Converting

from

EBCDIC

to

ASCII

The

next

line

shows

that

the

first

four

EBCDIC

values

(00,

01,

02,

03)

are

not

changed

during

conversion

to

ASCII.

For

example,

EBCDIC

“A”

is

X'C1'

and

is

converted

to

X'41'.

Converting

from

ASCII

to

EBCDIC

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

00-0F

000102031A091A7F

1A1A1A0B0C0D0E0F

10-1F

101112131A1A081A

18191A1A1C1D1E1F

20-2F

1A1A1A1A1A0A171B

1A1A1A1A1A050607

30-3F

1A1A161A1A1A1A04

1A1A1A1A14151A1A

40-4F

201A1A1A1A1A1A1A

1A1A5B2E3C282B21

50-5F

261A1A1A1A1A1A1A

1A1A5D242A293B5E

60-6F

2D2F1A1A1A1A1A1A

1A1A7C2C255F3E3F

70-7F

1A1A1A1A1A1A1A1A

1A603A2340273D22

80-8F

1A61626364656667

68691A1A1A1A1A1A

90-9F

1A6A6B6C6D6E6F70

71721A1A1A1A1A1A

A0-AF

1A7E737475767778

797A1A1A1A1A1A1A

B0-BF

1A1A1A1A1A1A1A1A

1A1A1A1A1A1A1A1A

C0-CF

7B41424344454647

48491A1A1A1A1A1A

D0-DF

7D4A4B4C4D4E4F50

51521A1A1A1A1A1A

E0-EF

5C1A535455565758

595A1A1A1A1A1A1A

F0-FF

3031323334353637

38391A1A1A1A1A1A

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

00-0F

00010203372D2E2F

1605250B0C0D0E0F

10-1F

101112133C3D3226

18193F271C1D1E1F

20-2F

404F7F7B5B6C507D

4D5D5C4E6B604B61

30-3F

F0F1F2F3F4F5F6F7

F8F97A5E4C7E6E6F

40-4F

7CC1C2C3C4C5C6C7

C8C9D1D2D3D4D5D6

50-5F

D7D8D9E2E3E4E5E6

E7E8E94AE05A5F6D

60-6F

7981828384858687

8889919293949596

70-7F

979899A2A3A4A5A6

A7A8A9C06AD0A107

80-8F

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

90-9F

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

A0-AF

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

B0-BF

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

C0-CF

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

D0-DF

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

E0-EF

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

F0-FF

3F3F3F3F3F3F3F3F

3F3F3F3F3F3F3F3F

Converting

Character

Sets

634

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Appendix

G.

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

major

accessibility

features

in

z/OS

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Using

assistive

technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

user

interfaces

found

in

z/OS.

Consult

the

assistive

technology

documentation

for

specific

information

when

using

such

products

to

access

z/OS

interfaces.

Keyboard

navigation

of

the

user

interface

Users

can

access

z/OS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

z/OS

TSO/E

Primer,

z/OS

TSO/E

User’s

Guide,

and

z/OS

ISPF

User’s

Guide

Volume

I

for

information

about

accessing

TSO/E

and

ISPF

interfaces.

These

guides

describe

how

to

use

TSO/E

and

ISPF,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

z/OS

information

z/OS

information

is

accessible

using

screen

readers

with

the

BookServer/Library

Server

versions

of

z/OS

books

in

the

Internet

library

at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

One

exception

is

command

syntax

that

is

published

in

railroad

track

format;

screen-readable

copies

of

z/OS

books

with

that

syntax

information

are

separately

available

in

HTML

zipped

file

form

upon

request

to

mhvrcfs@us.ibm.com.

©

Copyright

IBM

Corp.

1987,

2004

635

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

636

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

©

Copyright

IBM

Corp.

1987,

2004

637

IBM

Corporation

Mail

Station

P300

2455

South

Road

Poughkeepsie,

NY

12601-5400

USA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Programming

interface

information

The

purpose

of

this

document

is

to

help

you

use

access

methods

to

process

data

sets.

This

publication

documents

intended

Programming

Interfaces

that

allow

the

customer

to

write

programs

to

obtain

the

services

of

DFSMS.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

in

other

countries,

or

both:

IBM

CICS

DB2

DFSMSdfp

DFSMSdss

DFSMShsm

DFSMSrmm

DFSMS/MVS

DFSORT

Hiperbatch

Hiperspace

IBMLink

MVS

OS/390

Parallel

Sysplex

RACF

RAMAC

Resource

Link

SAA

System/390

Systems

Application

Architecture

S/390

VTAM

z/OS

zSeries

z/VM

Microsoft®,

Windows,

Windows

NT®,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

638

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Glossary

This

glossary

defines

technical

terms

and

abbreviations

used

in

DFSMS

documentation.

If

you

do

not

find

the

term

you

are

looking

for,

refer

to

the

index

of

the

appropriate

DFSMS

manual

or

view

the

Glossary

of

Computing

Terms

located

at:

http://www.ibm.com/ibm/terminology/

This

glossary

includes

terms

and

definitions

from:

v

The

American

National

Standard

Dictionary

for

Information

Systems,

ANSI

X3.172-1990,

copyright

1990

by

the

American

National

Standards

Institute

(ANSI).

Copies

may

be

purchased

from

the

American

National

Standards

Institute,

11

West

42nd

Street,

New

York,

New

York

10036.

Definitions

are

identified

by

the

symbol

(A)

after

the

definition.

v

The

Information

Technology

Vocabulary

developed

by

Subcommittee

1,

Joint

Technical

Committee

1,

of

the

International

Organization

for

Standardization

and

the

International

Electrotechnical

Commission

(ISO/IEC

JTC1/SC1).

Definitions

of

published

part

of

this

vocabulary

are

identified

by

the

symbol

(I)

after

the

definition;

definitions

taken

from

draft

international

standards,

committee

drafts,

and

working

papers

being

developed

by

ISO/IEC

JTC1/SC1

are

identified

by

the

symbol

(T)

after

the

definition,

indicating

that

final

agreement

has

not

yet

been

reached

among

the

participating

National

Bodies

of

SC1.

v

The

IBM

Dictionary

of

Computing,

New

York:

McGraw-Hill,

1994.

The

following

cross-reference

is

used

in

this

glossary:

See:

This

refers

the

reader

to

(a)

a

related

term,

(b)

a

term

that

is

the

expanded

form

of

an

abbreviation

or

acronym,

or

(c)

a

synonym

or

more

preferred

term.

A

ABSTR.

Absolute

track

(value

of

SPACE).

ACB.

Access

method

control

block.

access

method

services.

A

multifunction

service

program

that

manages

VSAM

and

non-VSAM

data

sets,

as

well

as

catalogs.

Access

method

services

provides

the

following

functions:

v

Defines

and

allocates

space

for

data

sets

and

catalogs

v

Converts

indexed-sequential

data

sets

to

key-sequenced

data

sets

v

Modifies

data

set

attributes

in

the

catalog

v

Reorganizes

data

sets

v

Facilitates

data

portability

among

operating

systems

v

Creates

backup

copies

of

data

sets

v

Assists

in

making

inaccessible

data

sets

accessible

v

Lists

the

records

of

data

sets

and

catalogs

v

Defines

and

builds

alternate

indexes

ACS.

See

automatic

class

selection

(ACS)

routine.

ADSP.

See

automatic

data

set

protection.

AL.

American

National

Standard

Labels.

alias.

An

alternate

name

for

a

member

of

a

partitioned

data

set.

allocation.

(1)

The

entire

process

of

obtaining

a

volume

and

unit

of

external

storage.

(2)

Setting

aside

space

on

that

storage

for

a

data

set.

alternate

index.

In

systems

with

VSAM,

a

collection

of

index

entries

related

to

a

given

base

cluster

and

organized

by

an

alternate

key,

that

is,

a

key

other

than

the

primary

key

of

the

associated

base

cluster

data

records.

An

alternate

index

gives

an

alternate

directory

for

finding

records

in

the

data

component

of

a

base

cluster.

AMODE.

Addressing

mode

(24,

31,

ANY).

ANSI.

American

National

Standards

Institute.

AOR.

Application

owning

region.

APF.

Authorized

program

facility.

application.

The

use

to

which

an

access

method

is

put

or

the

end

result

that

it

serves,

contrasted

to

the

internal

operation

of

the

access

method.

ASCII.

American

National

Standard

Code

for

Information

Interchange.

ATL.

See

automated

tape

library.

AUL.

American

National

Standard

user

labels

(value

of

LABEL).

©

Copyright

IBM

Corp.

1987,

2004

639

automated

tape

library

data

server.

A

device

that

consists

of

robotic

components,

cartridge

storage

areas,

tape

subsystems,

and

controlling

hardware

and

software,

together

with

the

set

of

tape

volumes

that

reside

in

the

library

and

can

be

mounted

on

the

library

tape

drives.

Contrast

with

manual

tape

library.

See

also

tape

library.

automatic

class

selection

(ACS)

routine.

A

procedural

set

of

ACS

language

statements.

Based

on

a

set

of

input

variables,

the

ACS

language

statements

generate

the

name

of

a

predefined

SMS

class,

or

a

list

of

names

of

predefined

storage

groups,

for

a

data

set.

automatic

data

set

protection

(ADSP).

In

z/OS,

a

user

attribute

that

causes

all

permanent

data

sets

created

by

the

user

to

be

automatically

defined

to

RACF

with

a

discrete

RACF

profile.

AVGREC.

Average

record

scale

(JCL

keyword).

B

backup.

The

process

of

creating

a

copy

of

a

data

set

or

object

to

be

used

in

case

of

accidental

loss.

base

configuration.

The

part

of

an

SMS

configuration

that

contains

general

storage

management

attributes,

such

as

the

default

management

class,

default

unit,

and

default

device

geometry.

It

also

identifies

the

systems

or

system

groups

that

an

SMS

configuration

manages.

BCDIC.

Binary

coded

decimal

interchange

code.

BCS.

Basic

catalog

structure.

BDAM.

Basic

direct

access

method.

BDW.

Block

descriptor

word.

BFALN.

Buffer

alignment

(parameter

of

DCB

and

DD).

BFTEK.

Buffer

technique

(parameter

of

DCB

and

DD).

BISAM.

Basic

indexed

sequential

access

method.

BLKSIZE.

Block

size

(parameter

of

DCB,

DCBE

and

DD).

blocking.

(1)

The

process

of

combining

two

or

more

records

in

one

block.

(2)

Suspending

a

program

process

(UNIX).

block

size.

A

measure

of

the

size

of

a

block,

usually

specified

in

units

such

as

records,

words,

computer

words,

or

characters.

BLP.

Bypass

label

processing.

BLT.

Block

locator

token.

BPAM.

Basic

partitioned

access

method.

BPI.

Bytes

per

inch.

BSAM.

Basic

sequential

access

method.

BSM.

Backspace

past

tape

mark

and

forward

space

over

tape

mark

(parameter

of

CNTRL).

BSP.

Backspace

one

block

(macro).

BSR.

Backspace

over

a

specified

number

of

blocks

(parameter

of

CNTRL).

BUFC.

Buffer

control

block.

BUFCB.

Buffer

pool

control

block

(parameter

of

DCB).

BUFL.

Buffer

length

(parameter

of

DCB

and

DD).

BUFNO.

Buffer

number

(parameter

of

DCB

and

DD).

BUFOFF.

Buffer

offset

(length

of

ASCII

block

prefix

by

which

the

buffer

is

offset;

parameter

of

DCB

and

DD).

C

CA.

Control

area.

catalog.

A

data

set

that

contains

extensive

information

required

to

locate

other

data

sets,

to

allocate

and

deallocate

storage

space,

to

verify

the

access

authority

of

a

program

or

operator,

and

to

accumulate

data

set

usage

statistics.

A

catalog

has

a

basic

catalog

structure

(BCS)

and

its

related

volume

tables

of

contents

(VTOCs)

and

VSAM

volume

data

sets

(VVDSs).

See

master

catalog

and

user

catalog.

See

also

VSAM

volume

data

set.

CBIC.

See

control

blocks

in

common.

CBUF.

Control

block

update

facility.

CCHHR.

Cylinder/head/record

address.

CCSID.

Coded

Character

Set

Identifier.

CCW.

Channel

command

word.

CDRA.

See

Character

Data

Representation

Architecture

(CDRA)

API.

CF.

Coupling

facility.

Character

Data

Representation

Architecture

(CDRA)

API.

A

set

of

identifiers,

services,

supporting

resources,

and

conventions

for

consistent

representation,

processing,

and

interchange

of

character

data.

character

special

file.

A

special

file

that

provides

access

to

an

input

or

output

device.

The

character

interface

is

used

for

devices

that

do

not

use

block

I/O.

CI.

Control

interval.

640

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|

|

|

CICS.

Customer

Information

Control

System.

CIDF.

See

control

interval

definition

field.

CKD.

See

count-key

data.

CKDS.

Cryptographic

key

data

set.

class.

See

SMS

class.

cluster.

A

named

structure

consisting

of

a

group

of

related

components.

For

example,

when

the

data

set

is

key

sequenced,

the

cluster

contains

both

the

data

and

index

components;

when

the

data

set

is

entry

sequenced,

the

cluster

contains

only

a

data

component.

collating

sequence.

An

ordering

assigned

to

a

set

of

items,

such

that

any

two

sets

in

that

assigned

order

can

be

collated.

component.

In

systems

with

VSAM,

a

named,

cataloged

collection

of

stored

records,

such

as

the

data

component

or

index

component

of

a

key-sequenced

file

or

alternate

index.

compress.

(1)

To

reduce

the

amount

of

storage

required

for

a

given

data

set

by

having

the

system

replace

identical

words

or

phrases

with

a

shorter

token

associated

with

the

word

or

phrase.

(2)

To

reclaim

the

unused

and

unavailable

space

in

a

partitioned

data

set

that

results

from

deleting

or

modifying

members

by

moving

all

unused

space

to

the

end

of

the

data

set.

compressed

format.

A

particular

type

of

extended-format

data

set

specified

with

the

(COMPACTION)

parameter

of

data

class.

VSAM

can

compress

individual

records

in

a

compressed-format

data

set.

SAM

can

compress

individual

blocks

in

a

compressed-format

data

set.

See

compress.

concurrent

copy.

A

function

to

increase

the

accessibility

of

data

by

enabling

you

to

make

a

consistent

backup

or

copy

of

data

concurrent

with

the

usual

application

program

processing.

configuration.

The

arrangement

of

a

computer

system

as

defined

by

the

characteristics

of

its

functional

units.

See

SMS

configuration.

CONTIG.

Contiguous

space

allocation

(value

of

SPACE).

control

blocks

in

common

(CBIC).

A

facility

that

allows

a

user

to

open

a

VSAM

data

set

so

the

VSAM

control

blocks

are

placed

in

the

common

service

area

(CSA)

of

the

MVS

operating

system.

This

provides

the

capability

for

multiple

memory

accesses

to

a

single

VSAM

control

structure

for

the

same

VSAM

data

set.

control

interval

definition

field

(CIDF).

In

VSAM,

the

four

bytes

at

the

end

of

a

control

interval

that

contain

the

displacement

from

the

beginning

of

the

control

interval

to

the

start

of

the

free

space

and

the

length

of

the

free

space.

If

the

length

is

0,

the

displacement

is

to

the

beginning

of

the

control

information.

control

unit.

A

hardware

device

that

controls

the

reading,

writing,

or

displaying

of

data

at

one

or

more

input/output

devices.

A

control

unit

acts

as

the

interface

between

channels

and

devices.

count-key

data.

A

disk

storage

device

for

storing

data

in

the

format:

count

field

normally

followed

by

a

key

field

followed

by

the

actual

data

of

a

record.

The

count

field

contains,

in

addition

to

other

information,

the

address

of

the

record

in

the

format:

CCHHR

(where

CC

is

the

two-digit

cylinder

number,

HH

is

the

two-digit

head

number,

and

R

is

the

record

number)

and

the

length

of

the

data.

The

key

field

contains

the

record’s

key.

cross

memory.

A

synchronous

method

of

communication

between

address

spaces.

CSA.

Common

service

area.

CSW.

Channel

status

word.

CYLOFL.

Number

of

tracks

for

cylinder

overflow

records

(parameter

of

DCB).

D

DA.

Direct

access

(value

of

DEVD

or

DSORG).

DADSM.

See

direct

access

device

space

management.

DASD

volume.

Direct

access

storage

device

volume.

DATACLAS.

Data

class

(JCL

keyword).

data

class.

A

collection

of

allocation

and

space

attributes,

defined

by

the

storage

administrator,

that

are

used

to

create

a

data

set.

data

control

block

(DCB).

A

control

block

used

by

access

method

routines

in

storing

and

retrieving

data.

data

definition

(DD)

statement.

A

job

control

statement

that

describes

a

data

set

associated

with

a

particular

job

step.

Data

Facility

Storage

Management

Subsystem

(DFSMS).

An

operating

environment

that

helps

automate

and

centralize

the

management

of

storage.

To

manage

storage,

SMS

provides

the

storage

administrator

with

control

over

data

class,

storage

class,

management

class,

storage

group,

and

automatic

class

selection

routine

definitions.

Data

Facility

Storage

Management

Subsystem

data

facility

product

(DFSMSdfp).

A

DFSMS

functional

component

and

a

base

element

of

z/OS

that

provides

functions

for

storage

management,

data

management,

program

management,

device

management,

and

distributed

data

access.

Glossary

641

|

|

|

|

|

|

|

|

|

|

Data

Facility

Storage

Management

Subsystem

Transactional

VSAM

Services

(DFSMStvs).

An

optional

feature

of

DFSMS

for

running

batch

VSAM

processing

concurrently

with

CICS

online

transactions.

DFSMStvs

users

can

run

multiple

batch

jobs

and

online

transactions

against

VSAM

data,

in

data

sets

defined

as

recoverable,

with

concurrent

updates.

data

integrity.

Preservation

of

data

or

programs

for

their

intended

purpose.

As

used

in

this

publication,

data

integrity

is

the

safety

of

data

from

inadvertent

destruction

or

alteration.

data

management.

The

task

of

systematically

identifying,

organizing,

storing,

and

cataloging

data

in

an

operating

system.

data

record.

A

collection

of

items

of

information

from

the

standpoint

of

its

use

in

an

application,

as

a

user

supplies

it

to

VSAM

for

storage.

Contrast

with

index

record.

data

security.

Prevention

of

access

to

or

use

of

data

or

programs

without

authorization.

As

used

in

this

publication,

data

security

is

the

safety

of

data

from

unauthorized

use,

theft,

or

purposeful

destruction.

data

set.

In

DFSMS,

the

major

unit

of

data

storage

and

retrieval,

consisting

of

a

collection

of

data

in

one

of

several

prescribed

arrangements

and

described

by

control

information

to

which

the

system

has

access.

In

z/OS

non-UNIX

environments,

the

terms

data

set

and

file

are

generally

equivalent

and

sometimes

are

used

interchangeably.

In

z/OS

UNIX

environments,

the

terms

data

set

and

file

have

quite

distinct

meanings.

See

also

hierarchical

file

system

(HFS)

data

set.

data

synchronization.

The

process

by

which

the

system

ensures

that

data

previously

given

to

the

system

through

WRITE,

CHECK,

PUT,

and

PUTX

macros

is

written

to

some

form

of

nonvolatile

storage.

DAU.

Direct

access

unmovable

data

set

(value

of

DSORG).

DBB.

Dictionary

building

block.

DBCS.

See

double-byte

character

set.

DCB.

Data

control

block

name,

macro,

or

parameter

of

DD

statement.

See

also

data

control

block.

DCBD.

Data-control-block

dummy

section.

DCBE.

Data

control

block

extension.

DD.

Data

definition.

See

also

data

definition

(DD)

statement.

DDM.

Distributed

data

management

(DDM).

DEB.

Data

extent

block.

DECB.

Data

event

control

block.

DEN.

Magnetic

tape

density

(parameter

of

DCB

and

DD).

DES.

Data

Encryption

Standard.

DEVD.

Device

dependent

(parameter

of

DCB

and

DCBD).

DFSMSdss.

A

DFSMS

functional

component

or

base

element

of

z/OS,

used

to

copy,

move,

dump,

and

restore

data

sets

and

volumes.

DFSMShsm.

A

DFSMS

functional

component

or

base

element

of

z/OS,

used

for

backing

up

and

recovering

data,

and

managing

space

on

volumes

in

the

storage

hierarchy.

DFSMSrmm.

A

DFSMS

functional

component

or

base

element

of

z/OS,

that

manages

removable

media.

DFSMStvs.

See

Data

Facility

Storage

Management

Subsystem

Transactional

VSAM

Services.

dictionary.

A

table

that

associates

words,

phrases,

or

data

patterns

to

shorter

tokens.

The

tokens

replace

the

associated

words,

phrases,

or

data

patterns

when

a

data

set

is

compressed.

direct

access.

The

retrieval

or

storage

of

data

by

a

reference

to

its

location

in

a

data

set

rather

than

relative

to

the

previously

retrieved

or

stored

data.

direct

access

device

space

management

(DADSM).

A

collection

of

subroutines

that

manages

space

on

disk

volumes.

The

subroutines

are

Create,

Scratch,

Extend,

and

Partial

Release.

direct

data

set.

A

data

set

whose

records

are

in

random

order

on

a

direct

access

volume.

Each

record

is

stored

or

retrieved

according

to

its

actual

address

or

its

address

according

to

the

beginning

of

the

data

set.

Contrast

with

sequential

data

set.

directory

entry

services

(DE

Services).

Directory

Entry

(DE)

Services

provides

directory

entry

services

for

PDS

and

PDSE

data

sets.

Not

all

of

the

functions

will

operate

on

a

PDS

however.

DE

Services

is

usable

by

authorized

as

well

as

unauthorized

programs

through

the

executable

macro,

DESERV.

discrete

profile.

An

RACF

profile

that

contains

security

information

about

a

single

data

set,

user,

or

resource.

Contrast

with

generic

profile.

DISP.

Disposition

(JCL

DD

parameter).

DIV.

Data-in-virtual.

DLF.

Data

lookaside

facility.

double-byte

character

set

(DBCS).

A

2-byte

value

that

can

represent

a

single

character

for

languages

that

contain

too

many

characters

or

symbols

for

each

to

be

assigned

a

1-byte

value.

642

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|
|
|
|
|

|

|

DSCB.

Data

set

control

block.

DSORG.

Data

set

organization

(parameter

of

DCB

and

DD

and

in

a

data

class

definition).

dummy

storage

group.

A

type

of

storage

group

that

contains

the

serial

numbers

of

volumes

no

longer

connected

to

a

system.

Dummy

storage

groups

allow

existing

JCL

to

function

without

having

to

be

changed.

See

also

storage

group.

dynamic

allocation.

The

allocation

of

a

data

set

or

volume

using

the

data

set

name

or

volume

serial

number

rather

than

using

information

contained

in

a

JCL

statement.

dynamic

buffering.

A

user-specified

option

that

requests

that

the

system

handle

acquisition,

assignment,

and

release

of

buffers.

E

EBCDIC.

Extended

binary

coded

decimal

interchange

code.

ECB.

Event

control

block.

ECKD.

Extended

count-key-data.

ECSA.

Extended

common

service

area.

entry-sequenced

data

set

(ESDS).

A

data

set

whose

records

are

loaded

without

respect

to

their

contents

and

whose

RBAs

cannot

change.

Records

are

retrieved

and

stored

by

addressed

access,

and

new

records

are

added

at

the

end

of

the

data

set.

EOB.

End-of-block.

EOD.

End-of-data.

EODAD.

End-of-data-set

exit

routine

address

(parameter

of

DCB,

DCBE,

and

EXLST).

EOV.

End-of-volume.

ESDS.

See

entry-sequenced

data

set.

ESETL.

End-of-sequential

retrieval

(QISAM

macro).

exception.

An

abnormal

condition

such

as

an

I/O

error

encountered

in

processing

a

data

set

or

a

file.

EXCEPTIONEXIT.

An

exit

routine

invoked

by

an

exception.

EXCP.

Execute

channel

program.

EXLST.

Exit

list

(parameter

of

DCB

and

VSAM

macros).

EXPDT.

Expiration

date

for

a

data

set

(JCL

keyword).

export.

To

create

a

backup

or

portable

copy

of

a

VSAM

cluster,

alternate

index,

or

user

catalog.

extended

format.

The

format

of

a

data

set

that

has

a

data

set

name

type

(DSNTYPE)

of

EXTENDED.

The

data

set

is

structured

logically

the

same

as

a

data

set

that

is

not

in

extended

format

but

the

physical

format

is

different.

Data

sets

in

extended

format

can

be

striped

or

compressed.

Data

in

an

extended

format

VSAM

KSDS

can

be

compressed.

See

also

striped

data

set

and

compressed

format.

extent.

A

continuous

space

on

a

DASD

volume

occupied

by

a

data

set

or

portion

of

a

data

set.

F

FCB.

Forms

control

buffer.

FEOV.

Force

end-of-volume

(macro).

field.

In

a

record

or

control

block,

a

specified

area

used

for

a

particular

category

of

data

or

control

information.

FIFO.

See

first-in-first-out.

file

permission

bits.

Information

about

a

file

that

is

used,

along

with

other

information,

to

determine

if

a

process

has

access

permission

to

a

file.

The

bits

are

divided

into

three

parts:

owner,

group,

and

other.

Each

part

is

used

with

the

corresponding

file

class

of

processes.

These

bits

are

contained

in

the

file

mode.

file

system.

In

the

z/OS

UNIX

HFS

environment,

the

collection

of

files

and

file

management

structures

on

a

physical

or

logical

mass

storage

device,

such

as

a

diskette

or

minidisk.

See

also

HFS

data

set.

first-in-first-out

(FIFO).

A

queuing

technique

in

which

the

next

item

to

be

retrieved

is

the

item

that

has

been

in

the

queue

for

the

longest

time.

first-in-first-out

(FIFO)

special

file.

A

type

of

file

with

the

property

that

data

written

to

such

a

file

is

read

on

a

first-in

first-out

basis.

FOR.

File

owning

region.

format-D.

ASCII

or

ISO/ANSI

variable-length

records.

format-DB.

ASCII

variable-length,

blocked

records.

format-DBS.

ASCII

variable-length,

blocked

spanned

records.

format-DS.

ASCII

variable-length,

spanned

records.

format-F.

Fixed-length

records.

format-FB.

Fixed-length,

blocked

records.

format-FBS.

Fixed-length,

blocked,

standard

records.

Glossary

643

|

|

|

|

|

|

|

|

|

|

format-FBT.

Fixed-length,

blocked

records

with

track

overflow

option.

format-FS.

Fixed-length,

standard

records.

format-U.

Undefined-length

records.

format-V.

Variable-length

records.

format-VB.

Variable-length,

blocked

records.

format-VBS.

Variable-length,

blocked,

spanned

records.

format-VS.

Variable-length,

spanned

records.

free

control

interval

pointer

list.

In

a

sequence-set

index

record,

a

vertical

pointer

that

gives

the

location

of

a

free

control

interval

in

the

control

area

governed

by

the

record.

free

space.

Space

reserved

within

the

control

intervals

of

a

key-sequenced

data

set

for

inserting

new

records

into

the

data

set

in

key

sequence

or

for

lengthening

records

already

there;

also,

whole

control

intervals

reserved

in

a

control

area

for

the

same

purpose.

FSM.

Forward

space

past

tape

mark

and

backspace

over

tape

mark

(parameter

of

CNTRL).

FSR.

Forward

space

over

a

specified

number

of

blocks

(parameter

of

CNTRL).

G

GCR.

Group

coded

recording

(tape

recording).

GDG.

See

generation

data

group.

GDS.

See

generation

data

set.

generation

data

group

(GDG).

A

collection

of

historically

related

non-VSAM

data

sets

that

are

arranged

in

chronological

order;

each

data

set

is

called

a

generation

data

set.

generation

data

group

base

entry.

An

entry

that

permits

a

non-VSAM

data

set

to

be

associated

with

other

non-VSAM

that

sets

as

generation

data

sets.

generation

data

set

(GDS).

One

of

the

data

sets

in

a

generation

data

group;

it

is

historically

related

to

the

others

in

the

group.

generic

profile.

An

RACF

profile

that

contains

security

information

about

multiple

data

sets,

users,

or

resources

that

may

have

similar

characteristics

and

require

a

similar

level

of

protection.

Contrast

with

discrete

profile.

gigabyte.

230

bytes,

1

073

741

824

bytes.

This

is

approximately

a

billion

bytes

in

American

English.

GL.

GET

macro,

locate

mode

(value

of

MACRF).

GM.

GET

macro,

move

mode

(value

of

MACRF).

GRS.

Global

resource

serialization.

GSR.

Global

shared

resources.

GTF.

Generalized

trace

facility.

H

header

entry.

In

a

parameter

list

of

GENCB,

MODCB,

SHOWCB,

or

TESTCB,

the

entry

that

identifies

the

type

of

request

and

control

block

and

gives

other

general

information

about

the

request.

header,

index

record.

In

an

index

record,

the

24-byte

field

at

the

beginning

of

the

record

that

contains

control

information

about

the

record.

header

label.

(1)

An

internal

label,

immediately

preceding

the

first

record

of

a

file,

that

identifies

the

file

and

contains

data

used

in

file

control.

(2)

The

label

or

data

set

label

that

precedes

the

data

records

on

a

unit

of

recording

media.

HFS.

Hierarchical

file

system.

hierarchical

file

system

(HFS)

data

set.

A

data

set

that

contains

a

POSIX-compliant

file

system,

which

is

a

collection

of

files

and

directories

organized

in

a

hierarchical

structure,

that

can

be

accessed

using

z/OS

UNIX

System

Services.

See

also

file

system.

Hiperbatch.

An

extension

to

both

QSAM

and

VSAM

designed

to

improve

performance.

Hiperbatch

uses

the

data

lookaside

facility

to

provide

an

alternate

fast

path

method

of

making

data

available

to

many

batch

jobs.

Hiperspace.

A

high

performance

virtual

storage

space

of

up

to

2

GB.

Unlike

an

address

space,

a

Hiperspace

contains

only

user

data

and

does

not

contain

system

control

blocks

or

common

areas;

code

does

not

execute

in

a

Hiperspace.

Unlike

a

data

space,

data

in

Hiperspace

cannot

be

referenced

directly;

data

must

be

moved

to

an

address

space

in

blocks

of

4

KB

before

they

can

be

processed.

Hiperspace

pages

can

be

backed

by

expanded

storage

or

auxiliary

storage,

but

never

by

main

storage.

The

Hiperspace

used

by

VSAM

is

only

backed

by

expanded

storage.

See

also

Hiperspace

buffer.

Hiperspace

buffer.

A

4

KB-multiple

buffer

that

facilitates

the

moving

of

data

between

a

Hiperspace

and

an

address

space.

VSAM

Hiperspace

buffers

are

backed

only

by

expanded

storage.

I

IBG.

Interblock

gap.

ICI.

Improved

control

interval

access.

644

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

import.

To

restore

a

VSAM

cluster,

alternate

index,

or

catalog

from

a

portable

data

set

created

by

the

EXPORT

command.

index

record.

A

collection

of

index

entries

that

are

retrieved

and

stored

as

a

group.

Contrast

with

data

record.

INOUT.

Input

and

then

output

(parameter

of

OPEN).

I/O.

Input/output.

I/O

device.

An

addressable

input/output

unit,

such

as

a

direct

access

storage

device,

magnetic

tape

device,

or

printer.

IOB.

Input/output

block.

IRG.

Interrecord

gap.

IS.

Indexed

sequential

(value

of

DSORG).

ISAM

interface.

A

set

of

routines

that

allow

a

processing

program

coded

to

use

ISAM

(indexed

sequential

access

method)

to

gain

access

to

a

VSAM

key-sequenced

data

set.

ISMF.

Interactive

storage

management

facility.

ISO.

International

Organization

for

Standardization.

ISU.

Indexed

sequential

unmovable

(value

of

DSORG).

J

JES.

Job

entry

subsystem.

JFCB.

Job

file

control

block.

JFCBE.

Job

file

control

block

extension.

K

KEYLEN.

Key

length

(JCL

and

DCB

keyword).

key-sequenced

data

set

(KSDS).

A

VSAM

data

set

whose

records

are

loaded

in

ascending

key

sequence

and

controlled

by

an

index.

Records

are

retrieved

and

stored

by

keyed

access

or

by

addressed

access,

and

new

records

can

be

inserted

in

key

sequence

because

of

free

space

allocated

in

the

data

set.

Relative

byte

addresses

can

change,

because

of

control

interval

or

control

area

splits.

kilobyte.

210

bytes,

1

024

bytes.

KSDS.

See

key-sequenced

data

set.

L

large

block

interface

(LBI).

The

set

of

BSAM,

BPAM,

and

QSAM

interfaces

that

deal

with

block

sizes

in

4

byte

fields

instead

of

2

byte

fields.

LBI.

See

large

block

interface.

LDS.

See

linear

data

set.

library.

A

partitioned

data

set

(PDS)

that

contains

a

related

collection

of

named

members.

See

partitioned

data

set.

linear

data

set

(LDS).

A

VSAM

data

set

that

contains

data

but

no

control

information.

A

linear

data

set

can

be

accessed

as

a

byte-addressable

string

in

virtual

storage.

load

module.

The

output

of

the

linkage

editor;

a

program

in

a

format

ready

to

load

into

virtual

storage

for

execution.

locate

mode.

A

way

of

providing

data

by

pointing

to

its

location

instead

of

moving

it.

LRI.

Logical

record

interface.

LSR.

Local

shared

resources.

M

MACRF.

Macro

instruction

form

(parameter

of

DCB

and

ACB).

management

class.

(1)

A

named

collection

of

management

attributes

describing

the

retention

and

backup

characteristics

for

a

group

of

data

sets,

or

for

a

group

of

objects

in

an

object

storage

hierarchy.

For

objects,

the

described

characteristics

also

include

class

transition.

(2)

In

DFSMSrmm,

if

assigned

by

ACS

routine

to

system-managed

tape

volumes,

management

class

can

be

used

to

identify

a

DFSMSrmm

vital

record

specification.

manual

tape

library.

Installation-defined

set

of

tape

drives

defined

as

a

logical

unit

together

with

the

set

of

system-managed

volumes

that

can

be

mounted

on

the

drives.

master

catalog.

A

catalog

that

contains

extensive

data

set

and

volume

information

that

VSAM

requires

to

locate

data

sets,

to

allocate

and

deallocate

storage

space,

to

verify

the

authorization

of

a

program

or

operator

to

gain

access

to

a

data

set,

and

to

accumulate

usage

statistics

for

data

sets.

MBBCCHHR.

Module

number,

bin

number,

cylinder

number,

head

number,

record

number.

media.

The

disk

surface

on

which

data

is

stored.

MEDIA2.

Enhanced

Capacity

Cartridge

System

Tape.

Glossary

645

MEDIA3.

High

Performance

Cartridge

Tape.

MEDIA4.

Extended

High

Performance

Cartridge

Tape.

megabyte.

220

bytes,

1

048

576

bytes.

member.

A

partition

of

a

PDS

or

PDSE.

migration.

The

process

of

moving

unused

data

to

lower

cost

storage

in

order

to

make

space

for

high-availability

data.

If

you

wish

to

use

the

data

set,

it

must

be

recalled.

See

also

migration

level

1

and

migration

level

2.

migration

level

1.

DFSMShsm-owned

DASD

volumes

that

contain

data

sets

migrated

from

primary

storage

volumes.

The

data

can

be

compressed.

See

also

storage

hierarchy.

Contrast

with

migration

level

2

and

primary

storage.

migration

level

2.

DFSMShsm-owned

tape

or

DASD

volumes

that

contain

data

sets

migrated

from

primary

storage

volumes

or

from

migration

level

1

volumes.

The

data

can

be

compressed.

See

also

storage

hierarchy.

Contrast

with

migration

level

1

and

primary

storage.

MLA.

See

multilevel

alias

(MLA)

facility.

MOD.

Modify

data

set

(value

of

DISP).

mount.

A

host-linked

operation

which

results

in

a

tape

cartridge

being

physically

inserted

into

a

tape

drive.

mountable

file

system.

A

file

system

stored

in

an

hierarchical

file

system

(HFS)

data

set

and,

therefore,

able

to

be

logically

mounted

in

another

file

system.

mount

point.

A

directory

established

in

a

workstation

or

a

server

local

directory

that

is

used

during

the

transparent

accessing

of

a

remote

file.

move

mode.

A

transmittal

mode

in

which

the

record

to

be

processed

is

moved

into

a

user

work

area.

MSHI.

Main

storage

for

highest-level

index

(parameter

of

DCB).

MSWA.

Main

storage

for

work

area

(parameter

of

DCB).

multilevel

alias

(MLA)

facility.

A

function

in

catalog

address

space

that

allows

catalog

selection

based

on

one

to

four

data

set

name

qualifiers.

MVS/DFP.

An

IBM

licensed

program

that

is

the

base

for

the

storage

management

subsystem.

MVS/ESA.

Multiple

Virtual

Storage/Enterprise

Systems

Architecture.

A

z/OS

operating

system

environment

that

supports

ESA/390.

MVS/ESA

SP.

An

IBM

licensed

program

used

to

control

the

MVS

operating

system.

MVS/ESA

SP

together

with

DFSMS

compose

the

base

MVS/ESA

operating

environment.

N

named

pipe.

A

pipe

that

an

application

opens

by

name

in

order

to

write

data

into

or

read

data

from

the

pipe.

Synonym

for

FIFO

special

file.

national.

In

z/OS,

the

three

characters

that

in

U.S.

EBCDIC

are

represented

as

X'7C',

X'7B'

and

X'5B',

which

are

@

(“at”),

#

(“pound”

sign

or

“number”)

and

$

(“dollar”

sign).

On

many

keyboards

and

display

screens

in

other

countries,

these

byte

values

display

differently.

NCI.

Normal

control

interval.

NCP.

Number

of

channel

programs

(parameter

of

DCB

and

DD).

Network

File

System.

A

protocol,

developed

by

Sun

Microsystems,

Inc.,

that

allows

any

host

in

a

network

to

gain

access

to

another

host

or

netgroup

and

their

file

directories.

NFS.

Network

File

System.

NIST.

National

Institute

of

Standards

and

Technology.

non-VSAM

data

set.

A

data

set

allocated

and

accessed

using

one

of

the

following

methods:

BDAM,

BISAM,

BPAM,

BSAM,

QSAM,

QISAM.

NOPWREAD.

No

password

required

to

read

a

data

set

(value

of

LABEL).

NRZI.

Nonreturn-to-zero-inverted.

NSL.

Nonstandard

label

(value

of

LABEL).

NSR.

Nonshared

resources.

NTM.

Number

of

tracks

in

cylinder

index

for

each

entry

in

lowest

level

of

master

index

(parameter

of

DCB).

NUB.

No

user

buffering.

NUP.

No

update.

O

object.

A

named

byte

stream

having

no

specific

format

or

record

orientation.

object

backup

storage

group.

A

type

of

storage

group

that

contains

optical

or

tape

volumes

used

for

backup

copies

of

objects.

See

also

storage

group.

646

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|

|

|

|

|

|

|

|

object

storage

group.

A

type

of

storage

group

that

contains

objects

on

DASD,

tape,

or

optical

volumes.

See

also

storage

group.

operand.

Information

entered

with

a

command

name

to

define

the

data

on

which

a

command

operates

and

to

control

the

execution

of

the

command.

operating

system.

Software

that

controls

the

execution

of

programs;

an

operating

system

input/output

control,

and

data

management.

OPTCD.

Optional

services

code

(parameter

of

DCB).

optical

volume.

Storage

space

on

an

optical

disk,

identified

by

a

volume

label.

See

also

volume.

optimum

block

size.

For

non-VSAM

data

sets,

optimum

block

size

represents

the

block

size

that

would

result

in

the

greatest

space

utilization

on

a

device,

taking

into

consideration

record

length

and

device

characteristics.

OUTIN.

Output

and

then

input

(parameter

of

OPEN).

OUTINX.

Output

at

end

of

data

set

(to

extend)

and

then

input

(parameter

of

OPEN).

P

page.

(1)

A

fixed-length

block

of

instructions,

data,

or

both,

that

can

be

transferred

between

real

storage

and

external

page

storage.

(2)

To

transfer

instructions,

data,

or

both

between

real

storage

and

external

page

storage.

page

space.

A

system

data

set

that

contains

pages

of

virtual

storage.

The

pages

are

stored

in

and

retrieved

from

the

page

space

by

the

auxiliary

storage

manager.

paging.

A

technique

in

which

blocks

of

data,

or

pages,

are

moved

back

and

forth

between

main

storage

and

auxiliary

storage.

Paging

is

the

implementation

of

the

virtual

storage

concept.

Parallel

Sysplex.

A

collection

of

systems

in

a

multisystem

environment

supported

by

Cross

System

Coupling

Facility

(XCF).

partitioned

data

set

(PDS).

A

data

set

on

direct

access

storage

that

is

divided

into

partitions,

called

members,

each

of

which

can

contain

a

program,

part

of

a

program,

or

data.

partitioned

data

set

extended

(PDSE).

A

system-managed

data

set

that

contains

an

indexed

directory

and

members

that

are

similar

to

the

directory

and

members

of

partitioned

data

sets.

A

PDSE

can

be

used

instead

of

a

partitioned

data

set.

password.

A

unique

string

of

characters

that

a

program,

a

computer

operator,

or

a

terminal

user

must

supply

to

meet

security

requirements

before

a

program

gains

access

to

a

data

set.

PDAB.

Parallel

data

access

block.

PDS.

See

partitioned

data

set.

PDS

directory.

A

set

of

records

in

a

partitioned

data

set

(PDS)

used

to

relate

member

names

to

their

locations

on

a

DASD

volume.

PDSE.

See

partitioned

data

set

extended.

PE.

Phase

encoding

(tape

recording

mode).

petabyte.

250

bytes,

1

125

899

906

842

624

bytes.

This

is

approximately

a

quadrillion

bytes

in

American

English.

PL.

PUT

macro,

locate

mode

(value

of

MACRF).

PM.

PUT

macro,

move

mode

(value

of

MACRF).

PO.

Partitioned

organization

(value

of

DSORG).

pointer.

An

address

or

other

indication

of

location.

For

example,

an

RBA

is

a

pointer

that

gives

the

relative

location

of

a

data

record

or

a

control

interval

in

the

data

set

to

which

it

belongs.

pool

storage

group.

A

type

of

storage

group

that

contains

system-managed

DASD

volumes.

Pool

storage

groups

allow

groups

of

volumes

to

be

managed

as

a

single

entity.

See

also

storage

group.

portability.

The

ability

to

use

VSAM

data

sets

with

different

operating

systems.

Volumes

whose

data

sets

are

cataloged

in

a

user

catalog

can

be

demounted

from

storage

devices

of

one

system,

moved

to

another

system,

and

mounted

on

storage

devices

of

that

system.

Individual

data

sets

can

be

transported

between

operating

systems

using

access

method

services.

POSIX.

Portable

operating

system

interface

for

computer

environments.

POU.

Partitioned

organization

unmovable

(value

of

DSORG).

primary

space

allocation.

Amount

of

space

requested

by

a

user

for

a

data

set

when

it

is

created.

Contrast

with

secondary

space

allocation.

primary

key.

One

or

more

characters

within

a

data

record

used

to

identify

the

data

record

or

control

its

use.

A

primary

key

must

be

unique.

primary

storage.

A

DASD

volume

available

to

users

for

data

allocation.

The

volumes

in

primary

storage

are

called

primary

volumes.

See

also

storage

hierarchy.

Contrast

with

migration

level

1

and

migration

level

2.

PRTSP.

Printer

line

spacing

(parameter

of

DCB).

PS.

Physical

sequential

(value

of

DSORG).

PSU.

Physical

sequential

unmovable

(value

of

DSORG).

Glossary

647

PSW.

Program

status

word.

Q

QISAM.

Queued

indexed

sequential

access

method.

QSAM.

Queued

sequential

access

method.

R

R0.

Record

zero.

RACF.

See

Resource

Access

Control

Facility.

RACF

authorization.

(1)

The

facility

for

checking

a

user’s

level

of

access

to

a

resource

against

the

user’s

desired

access.

(2)

The

result

of

that

check.

random

access.

See

direct

access.

RBA.

Relative

byte

address.

RDBACK.

Read

backward

(parameter

of

OPEN).

RDF.

See

record

definition

field.

RDW.

Record

descriptor

word.

RECFM.

Record

format

(JCL

keyword

and

DCB

macro

parameter).

record

definition

field

(RDF).

A

field

stored

as

part

of

a

stored

record

segment;

it

contains

the

control

information

required

to

manage

stored

record

segments

within

a

control

interval.

record-level

sharing.

See

VSAM

Record-Level

Sharing

(VSAM

RLS).

REFDD.

Refer

to

previous

DD

statement

(JCL

keyword).

register.

An

internal

computer

component

capable

of

storing

a

specified

amount

of

data

and

accepting

or

transferring

this

data

rapidly.

relative

record

data

set

(RRDS).

A

VSAM

data

set

whose

records

have

fixed

or

variable

lengths,

and

are

accessed

by

relative

record

number.

Resource

Access

Control

Facility

(RACF).

An

IBM

licensed

program

that

is

included

in

z/OS

Security

Server

and

is

also

available

as

a

separate

program

for

the

z/OS

and

VM

environments.

RACF

provides

access

control

by

identifying

and

verifying

the

users

to

the

system,

authorizing

access

to

protected

resources,

logging

detected

unauthorized

attempts

to

enter

the

system,

and

logging

detected

accesses

to

protected

resources.

RETPD.

Retention

period

(JCL

keyword).

reusable

data

set.

A

VSAM

data

set

that

can

be

reused

as

a

work

file,

regardless

of

its

old

contents.

It

must

not

be

a

base

cluster

of

an

alternate

index.

RKP.

Relative

key

position

(parameter

of

DCB).

RLS.

Record-level

sharing.

See

VSAM

Record-Level

Sharing

(VSAM

RLS).

RLSE.

Release

unused

space

(DD

statement).

RMODE.

Residence

mode.

RPL.

Request

parameter

list.

S

SAA.

Systems

Application

Architecture.

SBCS.

Single-byte

character

set.

scheduling.

The

ability

to

request

that

a

task

set

should

be

started

at

a

particular

interval

or

on

occurrence

of

a

specified

program

interrupt.

SDW.

Segment

descriptor

word.

secondary

space

allocation.

Amount

of

additional

space

requested

by

the

user

for

a

data

set

when

primary

space

is

full.

Contrast

with

primary

space

allocation.

security.

See

data

security.

SEOF.

Software

end-of-file.

sequence

checking.

The

process

of

verifying

the

order

of

a

set

of

records

relative

to

some

field’s

collating

sequence.

sequential

data

set.

A

data

set

whose

records

are

organized

on

the

basis

of

their

successive

physical

positions,

such

as

on

magnetic

tape.

Contrast

with

direct

data

set.

sequential

data

striping.

A

software

implementation

of

a

disk

array

that

distributes

data

sets

across

multiple

volumes

to

improve

performance.

SER.

Volume

serial

number

(value

of

VOLUME).

serialization.

In

MVS,

the

prevention

of

a

program

from

using

a

resource

that

is

already

being

used

by

an

interrupted

program

until

the

interrupted

program

is

finished

using

the

resource.

service

request

block

(SRB).

A

system

control

block

used

for

dispatching

tasks.

SETL.

Set

lower

limit

of

sequential

retrieval

(QISAM

macro).

SF.

Sequential

forward

(parameter

of

READ

or

WRITE).

648

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

shared

resources.

A

set

of

functions

that

permit

the

sharing

of

a

pool

of

I/O

related

control

blocks,

channel

programs,

and

buffers

among

several

VSAM

data

sets

open

at

the

same

time.

See

also

LSR

and

GSR.

SI.

Shift

in.

SK.

Skip

to

a

printer

channel

(parameter

of

CNTRL).

SL.

IBM

standard

labels

(value

of

LABEL).

slot.

For

a

relative

record

data

set,

the

data

area

addressed

by

a

relative

record

number

which

may

contain

a

record

or

be

empty.

SMB.

See

system-managed

buffering.

SMS.

See

storage

management

subsystem

and

system-managed

storage.

SMS

class.

A

list

of

attributes

that

SMS

applies

to

data

sets

having

similar

allocation

(data

class),

performance

(storage

class),

or

backup

and

retention

(management

class)

needs.

SMS

configuration.

A

configuration

base,

Storage

Management

Subsystem

class,

group,

library,

and

drive

definitions,

and

ACS

routines

that

the

Storage

Management

Subsystem

uses

to

manage

storage.

See

also

configuration,

base

configuration,

and

source

control

data

set.

SMSI.

Size

of

main-storage

area

for

highest-level

index

(parameter

of

DCB).

SMS-managed

data

set.

A

data

set

that

has

been

assigned

a

storage

class.

SMSVSAM.

The

name

of

the

VSAM

server

that

provides

VSAM

record-level

sharing

(RLS).

See

also

VSAM

record-level

sharing

(VSAM

RLS).

SMSW.

Size

of

main-storage

work

area

(parameter

of

DCB).

SO.

Shift

out.

soft

link.

See

symbolic

link.

source

control

data

set

(SCDS).

A

VSAM

linear

data

set

containing

an

SMS

configuration.

The

SMS

configuration

in

an

SCDS

can

be

changed

and

validated

using

ISMF.

SP.

Space

lines

on

a

printer

(parameter

of

CNTRL).

spanned

record.

A

logical

record

whose

length

exceeds

control

interval

length,

and

as

a

result,

crosses,

or

spans,

one

or

more

control

interval

boundaries

within

a

single

control

area.

SRB.

See

service

request

block.

SS.

Select

stacker

on

card

reader

(parameter

of

CNTRL).

storage

administrator.

A

person

in

the

data

processing

center

who

is

responsible

for

defining,

implementing,

and

maintaining

storage

management

policies.

storage

class.

A

collection

of

storage

attributes

that

identify

performance

goals

and

availability

requirements,

defined

by

the

storage

administrator,

used

to

select

a

device

that

can

meet

those

goals

and

requirements.

storage

group.

A

collection

of

storage

volumes

and

attributes,

defined

by

the

storage

administrator.

The

collections

can

be

a

group

of

DASD

volumes

or

tape

volumes,

or

a

group

of

DASD,

optical,

or

tape

volumes

treated

as

a

single

object

storage

hierarchy.

storage

hierarchy.

An

arrangement

of

storage

devices

with

different

speeds

and

capacities.

The

levels

of

the

storage

hierarchy

include

main

storage

(memory,

DASD

cache),

primary

storage

(DASD

containing

uncompressed

data),

migration

level

1

(DASD

containing

data

in

a

space-saving

format),

and

migration

level

2

(tape

cartridges

containing

data

in

a

space-saving

format).

See

also

primary

storage,

migration

level

1

and

migration

level

2.

Storage

Management

Subsystem

(SMS).

A

DFSMS

facility

used

to

automate

and

centralize

the

management

of

storage.

Using

SMS,

a

storage

administrator

describes

data

allocation

characteristics,

performance

and

availability

goals,

backup

and

retention

requirements,

and

storage

requirements

to

the

system

through

data

class,

storage

class,

management

class,

storage

group,

and

ACS

routine

definitions.

STORCLAS.

Storage

class

(JCL

keyword).

stripe.

In

DFSMS,

the

portion

of

a

striped

data

set,

such

as

an

extended

format

data

set,

that

resides

on

one

volume.

The

records

in

that

portion

are

not

always

logically

consecutive.

The

system

distributes

records

among

the

stripes

such

that

the

volumes

can

be

read

from

or

written

to

simultaneously

to

gain

better

performance.

Whether

it

is

striped

is

not

apparent

to

the

application

program.

striped

data

set.

An

extended

format

data

set

that

occupies

multiple

volumes.

A

software

implementation

of

sequential

data

striping.

striping.

A

software

implementation

of

a

disk

array

that

distributes

a

data

set

across

multiple

volumes

to

improve

performance.

SUL.

IBM

standard

and

user

labels

(value

of

LABEL).

symbolic

link.

A

type

of

file

that

contains

the

path

name

of

and

acts

as

a

pointer

to

another

file

or

directory.

Also

called

a

soft

link.

SYNAD.

The

physical

error

user

exit

routine.

Synchronous

error

routine

address

(parameter

of

DCB,

DCBE,

and

EXLST).

Glossary

649

|

|

|

synchronize.

See

data

synchronization.

SYSOUT

class.

A

category

of

output

with

specific

characteristics

and

written

on

a

specific

output

device.

Each

system

has

its

own

set

of

SYSOUT

classes,

designated

by

a

character

from

A

to

Z,

a

number

from

0

to

9,

or

a

*.

sysplex.

A

set

of

z/OS

systems

communicating

and

cooperating

with

each

other

through

certain

multisystem

hardware

components

and

software

services

to

process

customer

workloads.

system.

A

functional

unit,

consisting

of

one

or

more

computers

and

associated

software,

that

uses

common

storage

for

all

or

part

of

a

program

and

also

for

all

or

part

of

the

data

necessary

for

the

execution

of

the

program.

Note:

A

computer

system

can

be

a

stand-alone

unit,

or

it

can

consist

of

multiple

connected

units.

system-managed

data

set.

A

data

set

that

has

been

assigned

a

storage

class.

system-managed

buffering

(SMB).

A

facility

available

for

system-managed

extended-format

VSAM

data

sets

in

which

DFSMSdfp

determines

the

type

of

buffer

management

technique

along

with

the

number

of

buffers

to

use,

based

on

data

set

and

application

specifications.

system-managed

directory

entry

(SMDE).

A

directory

that

contains

all

the

information

contained

in

the

PDS

directory

entry

(as

produced

by

the

BLDL

macro)

as

well

as

information

specific

to

program

objects,

in

the

extensible

format.

system-managed

storage.

Storage

managed

by

the

Storage

Management

Subsystem.

SMS

attempts

to

deliver

required

services

for

availability,

performance,

and

space

to

applications.

system-managed

tape

library.

A

collection

of

tape

volumes

and

tape

devices,

defined

in

the

tape

configuration

database.

A

system-managed

tape

library

can

be

automated

or

manual.

See

also

tape

library.

system

management

facilities

(SMF).

A

component

of

z/OS

that

collects

input/output

(I/O)

statistics,

provided

at

the

data

set

and

storage

class

levels,

which

helps

you

monitor

the

performance

of

the

direct

access

storage

subsystem.

T

T.

Track

overflow

option

(value

of

RECFM);

user-totaling

(value

of

OPTCD).

tape

library.

A

set

of

equipment

and

facilities

that

support

an

installation’s

tape

environment.

This

can

include

tape

storage

racks,

a

set

of

tape

drives,

and

a

set

of

related

tape

volumes

mounted

on

those

drives.

See

also

automated

tape

library

data

server

and

system-managed

tape

library.

tape

storage

group.

A

type

of

storage

group

that

contains

system-managed

private

tape

volumes.

The

tape

storage

group

definition

specifies

the

system-managed

tape

libraries

that

can

contain

tape

volumes.

See

also

storage

group.

tape

volume.

A

tape

volume

is

the

recording

space

on

a

single

tape

cartridge

or

reel.

See

also

volume.

task

control

block

(TCB).

Holds

control

information

related

to

a

task.

TCB.

See

task

control

block.

terabyte.

240

bytes,

1

099

511

627

776

bytes.

This

is

approximately

a

trillion

bytes

in

American

English.

TIOT.

Task

input/output

table.

TMP.

Terminal

monitor

program.

trailer

label.

A

file

or

data

set

label

that

follows

the

data

records

on

a

unit

of

recording

media.

transaction

ID

(TRANSID).

A

number

associated

with

each

of

several

request

parameter

lists

that

define

requests

belonging

to

the

same

data

transaction.

TRC.

Table

reference

character.

TRTCH.

Track

recording

technique

(parameter

of

DCB

and

of

DD

statement).

TTR.

Track

record

address.

A

representation

of

a

relative

track

address.

U

UCB.

Unit

control

block.

UCS.

See

universal

character

set.

UHL.

User

header

label.

universal

character

set

(UCS).

A

printer

feature

that

permits

the

use

of

a

variety

of

character

arrays.

Character

sets

used

for

these

printers

are

called

UCS

images.

UPAD.

User

processing

exit

routine.

UPD.

Update.

update

number.

For

a

spanned

record,

a

binary

number

in

the

second

RDF

of

a

record

segment

that

indicates

how

many

times

the

segments

of

a

spanned

record

should

be

equal.

An

inequality

indicates

a

possible

error.

USAR.

User

security

authorization

record.

650

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

|
|
|
|
|

user

buffering.

The

use

of

a

work

area

in

the

processing

program’s

address

space

for

an

I/O

buffer;

VSAM

transmits

the

contents

of

a

control

interval

between

the

work

area

and

direct

access

storage

without

intermediary

buffering.

user

catalog.

An

optional

catalog

used

in

the

same

way

as

the

master

catalog

and

pointed

to

by

the

master

catalog.

It

also

lessens

the

contention

for

the

master

catalog

and

facilitates

volume

portability.

USVR.

User

security

verification

routine.

UTL.

User

trailer

label.

V

VBS.

Variable

blocked

spanned.

VIO.

Virtual

input/output.

volume.

The

storage

space

on

DASD,

tape,

or

optical

devices,

which

is

identified

by

a

volume

label.

See

also

DASD

volume,

optical

volume,

and

tape

volume.

volume

positioning.

Rotating

the

reel

or

cartridge

so

that

the

read-write

head

is

at

a

particular

point

on

the

tape.

VSAM.

Virtual

storage

access

method.

VSAM

record-level

sharing

(VSAM

RLS).

An

extension

to

VSAM

that

provides

direct

record-level

sharing

of

VSAM

data

sets

from

multiple

address

spaces

across

multiple

systems.

Record-level

sharing

uses

the

z/OS

Coupling

Facility

to

provide

cross-system

locking,

local

buffer

invalidation,

and

cross-system

data

caching.

VSAM

RLS.

See

VSAM

record-level

sharing.

VSAM

shared

information

(VSI).

Blocks

that

are

used

for

cross-system

sharing.

VSAM

sphere.

The

base

cluster

of

a

VSAM

data

set

and

its

associated

alternate

indexes.

VSAM

volume

data

set

(VVDS).

A

data

set

that

describes

the

characteristics

of

VSAM

and

system-managed

data

sets

that

reside

on

a

given

DASD

volume;

part

of

a

catalog.

See

also

catalog.

VSI.

See

VSAM

shared

information.

VTOC.

Volume

table

of

contents.

VVDS.

See

VSAM

volume

data

set.

X

XDAP.

Execute

direct

access

program.

W

word.

A

fundamental

unit

of

storage

in

a

computer.

Z

zFS.

See

zSeries

File

System.

z/OS.

z/OS

is

a

network

computing-ready,

integrated

operating

system

consisting

of

more

than

50

base

elements

and

integrated

optional

features

delivered

as

a

configured,

tested

system.

z/OS

Network

File

System.

A

base

element

of

z/OS,

that

allows

remote

access

to

z/OS

host

processor

data

from

workstations,

personal

computers,

or

any

other

system

on

a

TCP/IP

network

that

is

using

client

software

for

the

Network

File

System

protocol.

z/OS

UNIX

System

Services

(z/OS

UNIX).

The

set

of

functions

provided

by

the

SHELL

and

UTILITIES,

kernel,

debugger,

file

system,

C/C++

Run-Time

Library,

Language

Environment,

and

other

elements

of

the

z/OS

operating

system

that

allow

users

to

write

and

run

application

programs

that

conform

to

UNIX

standards.

zSeries

File

System

(zFS).

A

UNIX

file

system

that

contains

one

or

more

file

systems

in

a

data

set.

zFS

is

complementary

with

the

hierarchical

file

system.

Glossary

651

|

|

|

|

|

652

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Index

Numerics
16

MB

line
above

342,

404

above,

below

335

below

342

2

GB

bar
DCB

central

storage

address

353

DCBE

central

storage

address

353

real

buffer

address

342,

343

24-bit

addressing

mode

405

2540

Card

Read

Punch

310

31-bit

addressing
VSAM

257

31-bit

addressing

mode

343,

351,

405

buffers

above

16

MB

164

keywords

for

VSAM

258

multiple

LSR

pools

206

OPEN,

CLOSE

(non-VSAM)

335

3211

printer

506

3262

Model

5

printer

506

3525

Card

Punch
opening

associated

data

sets

375

record

format

310

3800

Model

3

printer,

table

reference

character

288,

291,

308

4245

printer

506

4248

printer

506

64-bit

address,

coding

342

7-track

tapes,

VSE

(Virtual

Storage

Extended)

505

A
abend

EC6-FF0D

487

ABEND
001

314,

608

002

291

002-68

401

013

341,

342,

380

013-4C

341

013-60

386

013-DC

304

013-FD

323

013-FE

323

013-FF

323

031

608

039

608

03B

608,

612

0C4

257

117-3C

536

213

336

213-FD

372

237-0C

536

513-10

630

513-14

629

913

60

913-34

548

937-44

548

D37

440

ABEND

macro

532,

578

abnormal

termination

149

ABS

value

508

absolute

generation

name

493

absolute

track

allocation

29

ABSTR

(absolute

track)

value

for

SPACE

parameter
absolute

track

allocation

29

ISAM

574,

580

SMS

restriction

37

ACB

(access

control

block)

335

ACB

macro
access

method

control

block

133

buffer

space

135,

164

improved

control

interval

access

185

MACRF

parameter

192

PASSWD

parameter

56

RMODE31

parameter

164

storage

for

control

block

138

STRNO

parameter

170

ACCBIAS

subparameter

165,

167

access

method

services
allocation

examples

32,

33

ALTER

LIMIT

command

501

ALTER

ROLLIN

command

501

commands

16

cryptographic

option

63

DEFINE

command

(non-VSAM)

493

access

methods

609

above

2

GB

18

basic

347,

353

BDAM

(basic

direct

access

method)

561

create

control

block

134

data

management

15

EXAMINE

command

229

indexed

sequential

data

set

571

KSDS

cluster

analysis

229

processing

signals

487

processing

UNIX

files

20

queued

359,

363

queued,

buffer

control

346

selecting,

defining

4,

8

VSAM

73,

100

VSAM

(virtual

storage

access

method)

18

VSAM,

non-VSAM

16

accessibility

635

accessing
VSAM

data

sets

using

DFSMStvs

217

z/OS

UNIX

files

7

ACS

(automatic

class

selection)

29

assigning

classes

329

data

class

29

distributed

file

manager

(DFM)

28

installation

data

class

318

management

class

29

SMS

configuration

27

storage

class

29

ACS

routines

383

actual

track

address
BDAM

(basic

direct

access

method)

561

DASD

volumes

10

direct

data

sets

565

ISAM

600

using

feedback

option

566

add

PDS

members

414

address
accessing

a

KSDS’s

index

269

relative
direct

data

sets

565

directories

408,

410,

433

address

spaces,

PDSE

470

addressed

access

95

addressed

direct

retrieval

144

addressed

sequential

retrieval

143

ADDVOL

command

42

ADSP

processing,

cluster

profiles

54

AL

(ISO/ANSI

standard

label)

12,

55

alias

name
PDS

creating

421

deleting

421

directory

format

409

PDSE
creating

459

deleting

459,

467

differences

from

PDS

433

directory

format

433

length

431

program

object

452

renaming

467

restrictions

437

storage

requirements

442

ALLOCATE

command
building

alternate

indexes

117

creating

data

sets

383

data

set

allocation

16,

30

defining

data

sets

102

examples

30,

32,

33,

34,

128

releasing

space

334

temporary

data

set

names

103

UNIX

files

477

allocation
data

set
definition

16,

30

examples

30,

34,

330

generation

498,

500

partitioned

412,

415

sequential

383,

384

system-managed

330

using

access

method

services

32,

33

VSAM

263

retrieval

list

530

ALTER

command

16,

56,

57,

60,

110,

121,

162,

470

GDG

limits

501

rolling

in

generation

data

sets

501

©

Copyright

IBM

Corp.

1987,

2004

653

ALTER

LIMIT

command,

access

method

services

502

alternate

index

99,

168

automatic

upgrade

99

backing

up

120

maximum

definition

119

name,

define

117

nonunique

keys

118

nonunique

pointers,

maximum

96

verification

50

alternate

key

147

ALTERNATEINDEX

parameter

117

ALX

command

22

AMASPZAP

service

aid

466

AMP

parameter

135,

155,

266,

606,

607,

611

ANSI

(American

National

Standards

Institute)

11

ANSI

control

characters,

chained

scheduling

396

AOR

(application-owning

region)

219

APF

(authorized

program

facility)

53,

123,

186,

548

access

method

services

62

improved

control

interval

access

185

applications
bypassing

enhanced

data

integrity

371

ARG

parameter

213

ASCII

(American

National

Standard

Code

for

Information

Interchange)
block

prefix,

format-D

records

300

buffer

alignment

342

data

conversion

17

format,

converting

data

356,

359

ISO/ANSI

tapes

297

label

character

coding

11

tape

records

342

associated

data

sets,

opening

375

asynchronous

mode

148

ATL

(automatic

tape

library)

14

ATTACH

macro

191,

215,

367

ATTEMPTS

parameter

59

AUTHORIZATION

parameter

60,

106

USVR

255

authorized

program

facility

62

enhanced

data

integrity

371

automatic

blocking/deblocking,

queued

access

methods

359

automatic

error

options

525

automatic

upgrade

of

alternate

indexes

99

average

block

length

35

AVGREC

keyword
allocating

space

35,

412

scale,

modify

36

AVGREC

parameter

128,

411,

412

B
backspacing

BSP

macro

507

CNTRL

macro

505

backup
EXPORT/IMPORT

47

program

(write)

48

backup

procedures

45

backup-while-open

data

set

52

base
cluster

96,

194

RBA

index

entry

274

sphere

194

basic

access

method
buffer

control

341

overlapped

I/O

353

reading

and

writing

data

353

basic

direct

access

method
description

4

basic

indexed

sequential

access

method

5

basic

partitioned

access

method
description

5

basic

sequential

access

method
description

5

batch
CICSVR

applications

52

batch

override

exit

238

BCS

(basic

catalog

structure)

122

BDAM

(basic

direct

access

method)
creating

direct

data

sets

563

data

set

sharing

365,

368

data

sets

570

description

4

dynamic

buffering

562

exclusive

control

(block)

566

extended

search

option

565

feedback

option

566

I/O

requests

570

I/O

status

information

512

organization

562

READ

macro

355,

356

record

addressing

565

records

(adding,

updating)

566

spanned

variable-length

records

292,

295

user

labels

569

using

561

VIO

data

sets

564

WRITE

macro

356

BDW

(block

descriptor

word)

322

blocked

records

300

extended

292

location

in

buffer

355

nonextended

290,

292

variable-length

block

291

BFRFND

field

208

BFTEK

parameter

355

binder

444,

454

BISAM

(basic

indexed

sequential

access

method)
description

571

ECB

(event

control

block)
conditions

514,

515

exception

code

bits

514

error

conditions

606

I/O

status

information

512

indexed

sequential

data

set
retrieving

587,

592

updating

587,

593

not

recommended

for

use

5

sequential

data

sets

383

sharing

a

data

set

365,

367,

368

sharing

a

DCB

367

SYNAD

routine

523

BISAM

(queued

indexed

sequential

access

method)
SYNAD

routine

523

BLDINDEX

command

101,

119,

131

alternate

index,

build

131

BLDL

macro

408,

414,

416,

426,

434,

436,

447,

453,

455,

460

build

list

format

416,

488

coding

example

424

description
PDS

(partitioned

data

set)

416,

417

UNIX

files

488

reading

multiple

members

19

BLDL

NOCONNECT

option

447

BLDVRP

macro

133,

215,

257

access

method

206

resource

pool

205

BLKSIZE

parameter
BDAM

562

block

size
maximum

321

minimum

322

system

determined

325

card

reader

and

punch

309

determining

block

length

398,

399

device

independence

394

extended-format

data

sets

401

LBI

(large

block

interface)

321

PDS

space

411

performance

394,

395

reading

PDSE

directory

437,

467

recommendation

313

sequential

concatenation

386,

387

space

allocation

35

BLKSZLIM

parameter
block

size

limit

325

keyword

313,

323

block
average

length

35

boundaries

478

control
real

storage

186

single

structure,

share

191

count
EOV

exit

536

exit

routine

536,

537

event

control

513,

515

grouping

records

287

length
BSAM,

BPAM,

or

BDAM

READ

398

change

399

descriptor

word

291

determining

398

extended-format

data

sets

35

variable

291

level
compression

402

location

and

address

3

null

segment

294

output

buffer

521

prefix
access

method

requirements

300

ASCII

magnetic

tape

342

block

length

300

blocked

records

300

654

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

block

(continued)
prefix

(continued)
buffer

alignment

342

creating

300

data

types

299,

300

format-D

records

300

reading

300

prefix,

reading

299

processing
READ

macro

353

WRITE

macro

353

READ

macro

355

record

processing

478

size
32-byte

suffix

401,

405

BSAM,

BPAM,

or

BDAM

READ

398

card

reader

and

punch

309

compressed

format

data

set

402

ISO/ANSI

spanned

records

301

ISO/ANSI

Version

3

or

Version

4

tapes

301

JFCLRECL

field

380

large

395

like

concatenation

388

limit

321,

324

maximum

319

minimum

307

new

DASD

data

set

324

non-VSAM

data

sets

321

PDSE

(partitioned

data

set

extended)

434,

437

physical

441

printer

359

recommendation

313

SYSOUT

DD

statement

381

tape

data

set

325

VSAM

data

sets

155,

156

spanned

records

292

blocking

9

automatic

359

fixed-length

records

288,

300

records
QISAM

571

variable-length

records

290,

291

blocking

factor

379

BLP

(bypass

label

processing)

12,

55

BLT

(block

locator

token)

11,

403

boundary
alignment

buffer

342

boundary

alignment
data

control

block

331

boundary

extent
cylinder,

track

334

BPAM

(basic

partitioned

access

method)
concatenating

UNIX

directories

491

data

set
DCB

ABEND

exit

routine

531

sharing

365,

368

data

set

(EODAD

(end-of-data-set))

519

description

5,

19

I/O

status

information

512

PDSE

(partitioned

data

set

extended)

442

BPAM

(basic

partitioned

access

method)

(continued)
processing

PDS

(partitioned

data

set)

407,

430

PDSE

431,

469,

470

UNIX

files

473

reading

UNIX

directories

385

retrieving

members
PDS

(partitioned

data

set)

422,

426

retrieving

members

(PDSE)

460

BSAM

(basic

sequential

access

method)
BLKSIZE

parameter

398

block

size
like

concatenation

388

BUFOFF

parameter
chained

scheduling

396

CHECK

macro

403

compatible

record

format

389

creating
PDS

(partitioned

data

set)

412,

415

PDSE

446

creating

(PDSE)

443

data

set
user

labels

541

data

set

(EODAD)

519

data

sets
user

totaling

550,

551

description

5,

19

extended-format

data

sets
sequential

data

striping

403

extending

a

sequential

data

set

393

I/O

status

information

512

incompatible
record

format

386

larger

NCP,

set

404

like

concatenation

390

NCP

parameter

396

OPEN

processing
JFCB

389

overlap

I/O

396

overlap

of

I/O

353

performance

chaining

405

READ

397

read

(PDSE

directory)

434,

467

READ

macro

355,

356

reading
PDS

directory

430

reading

UNIX

directories

385

record

length

398

retrieving
PDS

member

422

retrieving

(PDSE

member)

460

sequential

data

sets

387

sharing

a

data

set

365,

368

UNIX

files

477

update

PDSE

directory

459

updating
PDS

member

427

PDSE

member

466

updating

(PDS

directory)

421

WRITE

397

WRITE

macro

356

write,

short

block

399

BSAM

DCB

macro

561

BSP

macro

394,

448,

507,

519

BSAM

313

BSTRNO

parameter

174

BUFCB

parameter

343

buffer
acquisition

351

alignment

342

control

351

flushing

337,

395

index

allocation

170

length
calculating

597

managing

177

non-VSAM
acquisition

341

control

346

pool

342,

351

segment

346

nonshared

resource

164

pool

341

constructing

345

constructing

automatically

344

record

area

343

real

storage,

VSAM

186

releasing

350

retain,

release

145

segment

341

sequential

access

173

simple
parallel

input

360

SMBHWT

Hiperspace

166

space

164

VSAM

155

truncating

350,

351

VSAM
acquisition

174

allocation

164,

174

concurrent

data

set

positioning

164

Hiperspace

206

invalidation

200

marking

for

output

213

parameters

174

pool

205,

208,

210

UBF

184

user

storage

area

184

VSAM,

direct

access

170

VSAM,

path

174

writing

(deferred/forced)

145

buffer

pool
size

maximum

342

buffered

data

invalidation
VARY

OFFLINE

464

buffering
simple

384

buffering

macros
queued

access

method

350

BUFFERS

parameter

208

BUFFERSPACE

parameter

105,

118,

164,

174

BUFL

parameter

309,

310,

313,

323,

344

BUFND

parameter

164,

174

BUFNI

parameter

164,

174

BUFNO
buffer

pool
construct

automatically

344

Index

655

BUFNO

(number

of

buffers)

313

BUFNO

parameter

396,

404

BUFOFF

parameter

396

writing

format-U

or

format-D

records

323

BUFRDS

field

208

BUFSP

parameter

164,

174

BUILD

macro

323,

341,

342,

345,

351,

597

buffer

pool

342

description

343

BUILDRCD

macro

293,

323,

341,

343,

346

usage

294

BWD

(backward)

94

bypass

label

processing

(BLP)

12,

55

BYPASSLLA

option

416,

447

C
CA

(control

area)

92

read

integrity

options

226

caching

VSAM

RLS

data

218

CANCEL

command

401

candidate

with

space

amount

108

capacity

record

563

card
reader

(CNTRL

macro)

505

catalog

53,

493,

502

BCS

component

229

control

interval

size

155

description

23

EXAMINE

command

229

protection

56

structural

analysis

229

user,

examining

230

catalog

damage

recovery

49

catalog

management

18

CATALOG

parameter

59,

105,

118,

130,

131

catalog

search

interface

24

catalog

verification

50

cataloging
data

sets
GDG

493

tape,

file

sequence

number

12

cataloging

data

sets

493,

495

CATLIST

line

operator

122

CBIC

(control

blocks

in

common)

186,

194

CBUF

(control

block

update

facility)

199

CCSID

(coded

character

set

identifier)

396,

617,

620,

626

CCSID

parameter

297

decision

tables

629

QSAM

(queued

sequential

access

method)

297,

359

CDRA

617

central

storage

address
DCB,

DCBE

353

CF

(coupling

facility)

217

CF

cache

for

VSAM

RLS

data

218

chained
scheduling

channel

programs

396

description

395

ignored

request

conditions

396

chained

(continued)
scheduling

(continued)
non-DASD

data

sets

396

chaining
RPL

(request

parameter

list)

137

Change

Accumulation

52

channel
programs

chained

segments

396

channel

programs
number

of

(NCP)

355

channel

status

word

518

chapter

reference
control

intervals,

processing

177

character
control

chained

scheduling

396

character

codes
DBCS

559

character

special

files

7

CHARS

parameter

308

CHECK

macro

149

BDAM

561

before

CLOSE

332

BPAM

353

BSAM

353

compressed

format

data

set

403

DECB

354

description

356

determining

block

length

398

end-of-data-set

routine

519

I/O

operations

20

MULTACC

397

PDSE

synchronization

437

performance

397

read

398

sharing

data

set

366

SYNAD

routine

526

TRUNC

macro

356

unlike

data

sets

391

update

392,

426

VSAM

148,

149

writing

PDS

414

checkpoint
shared

data

sets

201

shared

resource

restrictions

214

checkpoint

data

set
data

sets

supported

375

security

375

checkpoint/restart

214

CHKPT

macro

214,

537

CI

(control

interval)
read

integrity

options

226

CICS

(Customer

Information

Control

System)
recoverable

data

sets

221

VSAM

RLS

219

CICS

transactional

recovery
VSAM

recoverable

data

sets

221

CICS

VSAM

Recovery

(CICSVR)
description

52

CICSVR
description

52

CIDF

(control

interval

definition

field)

179

control

information

74

CIMODE

parameter

48

ciphertext

64

CIPOPS

utility

538

class

specifications

32

classes
examples

330

JCL

keyword

for

329

clear,

reset

to

empty

(PDSE

directory)
STOW

INITIALIZE

460

CLOSE

macro

312,

335,

525

buffer

flushing

337

description
non-VSAM

332,

338

VSAM

149

device-dependent

considerations

395

multiple

data

sets

332

parallel

input

processing

361,

363

PDS

(partitioned

data

set)

421,

422

SYNAD

332

temporary

close

option

332,

338

TYPE=T

332,

338

volume

positioning

332,

339

closing

a

data

set
non-VSAM

332,

338

VSAM

149

CLUSTER

parameter

104,

127

cluster

verification

50

clusters

102

define,

naming

102

CNTRL

macro

313,

395,

396,

505

CO

(Create

Optimized)

167,

169

COBOL

applications

78

COBOL

programming

language

326

CODE

parameter

58

coded

character

sets
sorted

by

CCSID

617

sorted

by

default

LOCALNAME

620

codes
exception

518

coding

VSAM

user-written

exit

routines

235

common

service

area

186

COMPACTION

option

402

completion

check
asynchronous

requests

148

COMPRESS

parameter

402

compressed

control
information

field

75

compressed

format

data

set
specifying

block

size

322

compressed

format

data

sets

36,

402,

403

access

method

307

CHECK

macro

403

fixed-length

blocked

records

328

MULTACC

option

397

synchronizing

data

509

compression
DBB,

tailored

403

type,

tailored

402

CON_INTENT=HOLD

parameter

449

CONCAT

parameter

419,

451,

456

concatenation
data

sets
extended-format

404

related

386

tape

and

DASD

387

unlike

attributes

390

656

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

concatenation

(continued)
data

sets

(QSAM,

BSAM)

387

defined

429

like,

sequential

468

partitioned

429,

430,

468,

469,

491

reading

a

PDS

or

PDSE

directory

430

sequential

429,

468,

490

sequential,

partitioned

468,

490

concurrent
copy

(backup,

recovery)

49

copy

(DASD)

45

copy

(DFSMShsm)

49

data

set

positioning

170

positioning

(STRNO)

170

requests

(maximum

(255))

147

requests

(parallel)

137

requests

(positioning)

147

condition,

exception

512

Consistent

read

228

Consistent

read

explicit

228

consolidating

extents,

VSAM

data

sets

109

control

access,

shared

VSAM

data

224

control

area
description

76

free

control

intervals

160

size

159,

160

control

block
data

event

513

event

515

generate

138

grouping

353

in

common

186

macros

18

manipulation

macros

138,

140

structure

199

update

facility

199

control

buffer

506

control

characters
ANSI

300

fixed-length

records

298

format-D

records

300

format-F

records

298

format-V

records

291

ISO/ANSI

298

optional

306

SYSOUT

data

set

380

variable-length

records

291

control

information

274

structure

179

control

interval

74

access

177,

185

improved

185

index

269

update

contents

179

access,

password

136

definition

field

179

device

selection

185

free

space

160

improved

access

185,

186

index

RBA

274

maximum

record

size

156

size

156,

157

adjustments

158

KSDS

158

split
JRNAD

routine

242

control

interval

(continued)
storage

174

control

interval

splits

84

control

section,

dummy

331

CONTROLINTERVALSIZE

parameter

105

conversion
ASCII

to/from

EBCDIC

356,

359

indirect

addressing

563

ISAM

to

VSAM

609

PDS

to

PDSE

413

PDSE

to

PDS

413

conversion

codes,

tables

634

copy

DBCS

characters

559

count

area
ISAM

index

entry

format

575

count-data

format

9

count-key-data

format

9

coupling

facility

CF

cache

for

VSAM

RLS

data

218

CPOOL

macro

341

CR

(consistent

read)

226

CR

(Create

Recovery

Optimized)

167,

169

CR

subparameter
RLS

parameter

228

CRE

(consistent

read

explicit)

226

CRE

subparameter
RLS

parameter

228

creating
PDSE

member
BSAM

(basic

sequential

access

method)

443

cross
region

sharing

197

system

sharing

198

cross

reference

table
direct

data

sets

562

cross-memory

mode
non-VSAM

access

methods

364

VSAM

access

method

150

cross-region

sharing

195,

201

cryptographic

option

63

CSA

(common

service

area)

186

Customer

Information

Control

System

(CICS)
recoverable

data

sets

221

VSAM

RLS

219

CVAF

macros

24

cylinder
combining

extents

109

index
calculating

space

requirements

579

definition

573,

575

overflow
calculating

space

579,

583

defined

576

specifying

size

579

tracks

579

CYLINDERS

parameter

105,

127,

130

extending

the

data

set

109

CYLOFL

parameter

577,

579

D
DASD

(direct

access

storage

device)
architecture

553

characteristics

329

control

interval

size

156

data

set
erasing

61

indexed

sequential

573

data

set

input

377

defined

3

device

selection

185

Hiperspace

buffer

206

labels

8

record

format

307

shared

375

track

capacity

156

data
compressed

format

402

control

block

535

control

interval

270

DASD
erase-on-scratch

60

deciphering

63

decryption

63

enciphering

63

encryption

63,

65

encryption

keys

66

event

control

block

513

integrity
passwords

55,

60

protection

53

RACF

(Resource

Access

Control

Facility)

53

lookaside

facility

400

secondary

key-encrypting

key

66

data

area
prime

574

data

buffers
nonshared

resources

173

data

class
attributes

Dynamic

Volume

Count

41

Reduce

Space

Up

To

41

Space

Constraint

Relief

41

definition

27

examples

330

multivolume

VSAM

38,

108

data

component
processing

144

Data

Control

Block

Closed

When

Error

Routine

Entered

condition

522

data

control

interval

157,

218

data

integrity
enhanced

for

sequential

data

sets

368

sharing

DASD

368

sharing

data

sets

opened

for

output

365

data

management
description

3

macros
not

recommended

for

use

16

summary

15

quick

start

312

data

mode

346

DATA

parameter

104,

117,

127

Index

657

data

set
closing

non-VSAM

332,

338

compatible

characteristics

389

concatenation
like

attributes

430

partitioned

429

concatenation,

partitioned

468,

491

control

interval

access

185

conversion

469,

470

description

308

name

sharing

190,

193

processing

17

RECFM

287,

305,

308

resource

pool,

connection

209

reusable

114

security

53

space

allocation
indexed

sequential

data

set

586

SYSIN

341

SYSOUT

341

temporary
allocation

262

names

262

unlike

characteristics

388,

429

unopened

208

VIO

maximum

size,

SMS

managed

37

data

sets
adding

records

162

allocating

16

allocation

types

443

attributes,

component

110

buffers,

assigning

341

characteristics

3

checkpoint

(PDSE)

437

checkpoint

security

375

compress

99

compressed

format

321

UPDAT

option

392

concatenation
like

attributes

386

unlike

attributes

390

conversion

413,

609

copy

64

DASD,

erasing

61

direct

561

discrete

profile

54

DSORG

parameter

327

duplicate

names

103

encryption

63,

65

exporting

48

extended,

sequential

43

extents,

VSAM

109

free

space,

altering

163

guaranteed

space

38

improperly

closed

50

ISMF

(interactive

storage

management

facility)

441

KSDS

structural

analysis

229

learning

names

of

24

linear

extended

format

111

loading

(VSAM)

111,

114

loading

VSAM

data

sets

163

maximum

number

of

volumes

37

maximum

size

37

data

sets

(continued)
maximum

size

(4

GB)

73

multiple

cylinders

108

name

hiding

55

naming

22

non-system-managed

32,

33

nonspanned

records

76

open

for

processing

135

options

311

organization
indexed

sequential

572

organization,

defined

4

password

56

read

sharing

(recoverable)

222

read/write

sharing

(nonrecoverable)

222

record

loading
REPRO

command

111,

113

recovery

49

recovery,

backup

45

request

access

139

restrictions

(SMS)

28

routing

379,

381

RPL

access

136

security

60

sequential
overlapping

operations

392

sequential

(extend)

393

sequential

and

PDS
quick

start

312

sequential

concatenation

385

shared
cross-system

203

shared

(search

direct)

377

sharing

189

sharing

DCBs

(data

control

block)

570

small

107

space

allocation

439

indexed

sequential

data

set

579

PDS

(partitioned

data

set)

411,

412

specifying

35,

44

space

allocation

(DASD

volume)

413

space

allocation

(direct)

562

spanned

records

77

summary

(VSAM)

86

SYSIN

379,

381

SYSOUT

379,

381

SYSOUT

parameter

380

system-managed

31

tape

55

temporary

(BDAM,

VIO)

564

type
VSAM

77,

100

VIO

(virtual

I/O)

22

VSAM

processing

133

data

storage
DASD

volumes

8

magnetic

tape

11

overview

3

data

synchronization

509

data-in-virtual

(DIV)

5

DATACLAS

parameter

30,

383,

498,

500

DATATEST

parameter

229,

230,

232

DATATYPE

option

456

DB2

striping

111

DBB-based

(dictionary

building

blocks)

402

DBCS

(double-byte

character

set)
character

codes

559

printing

and

copying

559

record

length
fixed-length

records

559

variable-length

records

560

SBCS

strings

559

SI

(shift

in)

559

SO

(shift

out)

559

DCB

(data

control

block)

511

ABEND

exit
description

531

ABEND

exit,

options

531

ABEND

installation

exit

535

address

331

allocation

retrieval

list

530

attributes

of,

determining

311,

331

changing

331

creation

311

description

311,

319

dummy

control

section

331

exit

list

527

fields

311

Installation

OPEN

exit

536

modifying

312

OPEN

exit

535

parameters

321

sequence

of

completion

318

sharing

570

sharing

a

data

set

365

DCB

(DCBLIMCT)

565

DCB

macro

395,

413,

414,

459,

563

DCBBLKSI

(without

LBI)

399

DCBD

macro

331,

426

DCBE

macro
DCBEEXPS

flag

371

IHADCBE

macro

332

LBI

(large

block

interface)

426

MULTACC

parameter

397

MULTSDN

parameter

397

non-VSAM

data

set

311

number

of

stripes

404

parameters

321

PASTEOD=YES

375

PDSs

and

PDSEs

19

performance

with

BSAM

and

BPAM

397

sharing

365

DCBEBLKSI

(with

LBI)

399

DCBEEXPS

flag

371

DCBLPDA

field

600

DCBLRECL

field

291,

346

DCBNCRHI

field

600

DCBOFOPN

(test)

337

DCBOFPPC

bit
set

386

DCBPRECL

field

291

DCBRELAD

address
DCB

(data

control

block)

420

DCBSYNAD

field

331

DD

statement
ABSTR

value

29

allocating

data

sets

29

coding

file

sequence

numbers

12

copying

a

data

set

112,

116

658

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

DD

statement

(continued)
defining

a

VSAM

data

set

259,

260

deleting

a

VSAM

data

set

123

JOBCAT

and

STEPCAT

statements

27

LIKE

and

REFDD

keywords

30

name

sharing

190

OPEN

TYPE=J

macro

24

retrieving

PDS

and

PDSE

members

19

selecting

the

record

format

287

selecting

the

record

length

304

SPACE

keyword

31

VSAM

access

to

UNIX

files

80

DDM

(distributed

data

management)

21,

48

DDSR

option

61

DE

services

(directory

entry

services)
DESERV

448

DESERV

DELETE

467

DESERV

GET

449

DESERV

GET_ALL

451

DESERV

GET_NAMES

452

DESERV

RELEASE

453

DESERV

RENAME

467

DESERV

UPDATE

454

updating

member

(DESERV

UPDATE)

455

DE

Services

(directory

entry

services)

417,

419

DEB

(data

extent

block)
ISAM

interface

608

DECB

(data

event

control

block)

392

contents

513

exception

code

512,

518

SYNAD

routine

353

update

restrictions
PDS

427

PDSE

466

DECIPHER

parameter
REPLACE

parameter

65

deciphering

data

63

decryption
data

using

the

REPRO

DECIPHER

command

63

DEFER

parameter

545

deferred
requests

by

transaction

ID

211

roll-in
changing

the

GDG

limit

502

job

abends

500,

501

relative

number

502

reusing

the

GDS

503

write

requests

210

writing

buffers

211

deferred

delete

467

DEFINE

ALTERNATEINDEX

command

101,

129

DEFINE

CLUSTER

command

29,

65,

101,

102,

117,

126

DEFINE

CLUSTER|ALTERNATEINDEX

command

115

DEFINE

command

30,

56,

57,

60,

74,

104,

117,

119,

127,

130,

155

creating

a

generation

data

group

504

free

space

160

GENERATIONDATAGROUP

501

DEFINE

command

(continued)
USVR

255

DEFINE

commands

114

DEFINE

NONVSAM

command

16

DEFINE

PAGESPACE

command

121

DEFINE

PATH

command

99,

101,

120,

121,

129

DEFINE

USERCATALOG

command

126

DELAY

option

337

DELETE

command

16,

61,

121,

123,

261

deleting

a

member
STOW,

DESERV

DELETE

467

delimiter

parameters

65

DEQ

macro

198,

366,

367

sharing

BISAM

DCB

589

DES

(data

encryption

standard)

66

DESERV
DELETE

467

FUNC=UPDATE

macro

436

GET

449,

450,

454

GET_ALL

451

GET_NAMES

452

macro

434,

448

RELEASE

453

UPDATE

454

determinate

errors

336

DEVD

parameter

381,

563

specifying

306

device
block

size
maximum

342

control

for

sequential

data

sets

505,

508

dependent
macros

394

dependent

macros

505,

509

direct

access,

storage

307

independence
DCB

subparameters

395

PDSE

433

sequential

data

set

393

sequential

data

sets

395

unit-record

devices

395

record

format
summary

305

type
DEVD

parameter

(DCB

macro)

306

DEVSUPxx

member

of

SYS1.PARMLIB
block

size

limit

313,

324

DEVSUPxx

member

of

SYS1.PARMLIB
compression

308

DEVTYPE

macro

81,

391,

598

INFO=AMCAP

322

UNIX

files

486

DFA

(data

facilities

area)

324

DFM

(distributed

file

manager)

4,

21,

28,

48

DFR

option

194,

210

DFSMS

Data

Set

Services

45

DFSMS

Hierarchical

Storage

Manager

45

DFSMSdss
COPY

PDS

469

PDSE

469

COPY

(high-level

qualifier)

469

DFSMSdss

(continued)
migrate,

recall

475

PDSE

back

up

470

space,

reclaim

470

DFSMSdss

COPY
convert

PDS

to

PDSE

413

convert

PDSE

to

PDS

413

DFSMShsm
dump,

restore

475

management

class

27

PARTREL

macro

334

space

release

441

DFSMSrmm
management

class

27

security

classes

62

VTS

(Virtual

Tape

Server)

27,

29

DFSMStvs
accessing

VSAM

data

sets

217

timeout

value

for

lock

requests

228

DFSORT

work

data

sets

402

DIAGNOSE

command

122

diagnostic

trace

176

direct
processing

control

interval

size

157

direct

access
device

selection

185

scheduling

buffers

172

storage

device

architecture

553

volume
device

characteristics

329

labels

553

RECFM

305,

308

record

format

307

write

validity

check

329

direct

access

buffers

170

direct

addressing

562

with

keys

563

direct

bias

167

direct

data

sets
adding

records

568

number

of

extents

38

processing

561

tape-to-disk

update

569

direct

insertion

141,

142

directory
accessing

with

BPAM

7

directory

block
PDS

408,

411

PDSE

439

directory

entry

(PDS)

408

directory

level

sharing

462

disability

635

discrete
profile

54

DISP

parameter

366,

421,

462,

481,

544,

594

description

340

passing

a

generation

501

shared

data

sets
indexed

sequential

589

distributed

file

manager

4

DIV

macro

5,

84,

95,

142

DLF

(data

lookaside

facility)

176,

400

DLVRP

macro
delete

a

resource

pool

209

DO

(Direct

Optimized)

167,

168

random

record

access

166

Index

659

documents,

licensed

xix

DSAB

chain

529

DSCB

(data

set

control

block)
data

set

label

553,

557

description

556

index

(format-2)

DS2HTRPR

field

600

model

498,

499

security

byte

59

DSECT

statement
DCB

331

DCBE

332

DSNAME

parameter

128,

420

DSNTYPE

parameter

31,

33,

328,

436,

442

DSORG

parameter

327,

333,

412,

420,

422,

563

indexed

sequential

data

set

576

dummy
control

section

331

records
direct

data

sets

566

DUMMY

option

112

Duplicate

Record

condition

522

Duplicate

Record

Presented

for

Inclusion

in

the

Data

Set

condition

515

DW

(Direct

Weighted)

167,

168

DYNALLOC

macro

30,

442

bypassing

enhanced

data

integrity

371

SVC

99

parameter

list

312

dynamic
buffering

ISAM

data

set

577,

588

dynamic

allocation

34

bypassing

enhanced

data

integrity

371

dynamic

buffering
direct

data

set

562

Dynamic

Volume

Count

attribute

41,

42

E
EBCDIC

(extended

binary

coded

decimal

interchange

code)
conversion

to/from

ASCII

356,

359

data

conversion

17

record

format

dependencies

308

EBCDIC

(extended

binary

coded

decimal

Interchange

code)
label

character

coding

11

ECB

(event

control

block)
description

513,

515

exception

code

bits

515

ECSA

(extended

common

service

area)

470

empty

sequential

data

set

336

ENCIPHER

parameter
REPLACE

parameter

65

enciphering

data

63

encryption
data

encryption

keys

66

data

using

the

REPRO

ENCIPHER

command

63

using

ICSF

66

VSAM

data

sets

65

end

of
sequential

retrieval

520

end-of-file
software

180

end-of-file

mark

414

end-of-volume
exit

387

processing

390

ENDREQ

macro

133,

139,

145,

146,

149,

193

enhanced

data

integrity
applications

bypassing

371

diagnosing

enhanced

data

integrity

violations

371

IFGEDI

task

369,

370

IFGPSEDI

member

369,

371

restriction,

multiple

sysplexes

370

setting

up

368

synchronizing

370

ENQ

macro

204,

366,

367,

566

entry-sequenced

180

ENVIRONMENT

parameter

113

EOD

(end-of-data)
restoring

values

(VERIFY)

50

EODAD

(end-of-data-set)

routine
BSP

macro

507

changing

address

331

concatenated

data

sets

430

description

519

EODAD

routine

entered

519

indicated

by

CIDF

178

processing

385

programming

considerations

240,

519

receives

control

461

register

contents

239,

240,

519

specifications

519

user

exit

151

EODAD

(end-of-data)

routine
exit

routine
EXCEPTIONEXIT

240

JRNAD,

journalizing

transactions

241

EODAD

parameter

511

EOV

(end-of-volume)
defer

nonstandard

input

trailer

label

exit

536

EODAD

routine

entered

519

forcing

340,

341

processing

201,

338,

341

EOV

function

468

ERASE

macro

133,

139,

145,

146

ERASE

option

61

ERASE

parameter

106,

123

erase-on-scratch
DASD

data

sets

60,

61

RAMAC

Virtual

Array

61

EROPT

(automatic

error

options)
DCB

macro

525

error
analysis

logical

247

physical

250

register

contents

523,

524

status

indicators

513

uncorrectable

520

conditions

605,

606

error

(continued)
determinate

336

handling

363

handling

deferred

writes

212

indeterminate

336

KSDS

(key-sequenced

data

set)

229

multiple

regions

200

structural

229

error

analysis
exception

codes

516

options,

automatic

525

status

indicators

518

error

message
IEC983I

369,

370

IEC984I

371

IEC985I

371

IGD17358I

503

ERRORLIMIT

parameter

231

ESDS

(entry-sequenced

data

set)
alternate

index

structure

98

defined

6

extent

consolidation

109

insert

record

140

processing

79

record

access

94

sequential

(non-VSAM)

data

sets

78

ESDS

(entry-sequenced

data

sets)

78

ESETL

(end-of-sequential

retrieval)

macro

520

description

601

ESETL

macro

367,

519

ESTAE

exit

570

EVENTS

macro

353,

356,

397

EXAMINE

command

122,

229,

231,

233

example
creating

a

temporary

VSAM

data

set

with

default

parameter

values

129

defining

a

temporary

VSAM

data

set

using

ALLOCATE

128

exception
calling

the

optional

DCB

OPEN

exit

routine

339

code

512,

518

exit

routine
I/O

errors

240

register

contents

240

exception

code

bits
BDAM

(basic

direct

access

method)

516

EXCEPTIONEXIT

parameter

106

exchange

buffering

396

exclusive
control

deadlocks

193

nonshared

resources

191

release

193

exclusive

control
direct

data

sets

566

sharing

a

direct

data

set

367

EXCP

macro

21

EXCPVR

macro

21

existing,

change
BSAM

applications

404

QSAM

applications

404

exit
MVS

router

(SAF)

377

660

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

exit

list
programming

conventions

530

restrictions

530

exit

list,

create

134

exit

routine
batch

override

238

block

count

536,

537

DCB
abend

531,

535

defer

nonstandard

input

trailer

label

536

end-of-data-set

519

EODAD

239

example

251

exception

exit

240

IGW8PNRU

238

JRNAD

241

LERAD

247

returning

to

main

program

237

RLSWAIT

248

standard

user

label

541,

544

SYNAD
analyzing

physical

errors

250

UPAD

252

user
written

235

exit

routines
DCB

(data

control

block)

511

EXLST

macro

133,

134,

138,

235,

529

exception

processing

235

parameter
VSAM

exit

locations

235

EXLST

parameter

135,

511,

527

expiration

date

processing

548

EXPORT

command

45,

48

exporting

a

data

set

48

EXTEND

option

43

EXTEND

parameter

319,

320,

594

extended

common

service

area

(ECSA)

470

extended

format

data

sets
allocating

31

defining

87

ICI

(improved

control

interval

access)

185

restrictions

88

types

of

87

extended

logical

record

interface

304

Extended

PDSE

sharing

465

extended

search

option

565

extended-format

data

set
calculating

block

size

405

extended-format

data

sets
BSAM

access

5

calculating

disk

space

401

calculating

space

35

closing

403

compressed

format

402

DS1LSTAR,

DS1TRBAL

405

free

space

405

Hiperbatch,

cannot

use

with

400

maximum

(123

extents)

400

MULTACC

option

397

number

of

extents

38

opening

403

QSAM

access

6

read,

short

block

399

extended-format

data

sets

(continued)
relative

block

addresses

11

sequential

data

striping
data

class

403

storage

class

403

specifying

block

size

322

striped

data

sets

400

extended-format

sequential

data

sets
compressed

format

402

extent
concatenation,

limit

468,

491

extent

growth

441

extents
concatenation

limit

429

consolidating

adjacent

109

defined

38

maximum

38

VSAM

limit

108

external

links,

access

method

restriction

7

F
facility

class
IHJ.CHKPT.volser

375

FCB

(forms

control

buffer)

506,

538,

540

image

(SETPRT)

506

overflow

condition

506

feedback
BDAM

READ

macro

355

feedback

option

566

FEOV

macro
concatenation

387,

388

DCB

OPEN

exit

routine

339

end-of-data-set

routine

519

EOV

(end-of-volume),

forcing

340

extending

to

another

DASD

volume

41

nonspecific

tape

volume

mount

exit

544

QSAM

locate

mode

349

QSAM

spanned

records

293

reading

a

PDS

directory

430

reading

a

PDSE

directory

468

SYNAD

routine

525

field
control

values
nonspanned

data

sets

181

relative

record

data

sets

184

spanned

records

183

display

contents

139

FIFO

(first-in-first-out)

312

FIFO

special

files
allocating

476

file

access

exit

337

file

sequence

number
creating

tape

data

sets,

example

12,

13

sequence,

tape

volumes

11

specifying,

tape

volumes

12

file

system
create

475

FILEDATA

parameter

480

FIND

macro

367,

408,

414,

416,

426,

434,

447,

453,

455,

457,

458,

460,

519

description
PDS

(partitioned

data

set)

420

FIND

macro

(continued)
PDS

(partitioned

data

set)

416

reading

multiple

members

19

UNIX

files

488

first-in-first-out

(FIFO)

312

first-in-first-out

file
accessing

7

allocating

476

fixed-length
record

(unblocked)

398

RRDS

(relative-record

data

set)

85

fixed-length

records

441

description

288,

300

members

(PDSE/PDS)

289

fixed-length

RRDS

180

defined

6

FOR

(file-owning

region)

219

format
control

interval
definition

field

180

index
entry

276

record

273

record

entry

275

record

header

273

format-D

records
block

prefix

300

tape

data

sets

300

variable-length

spanned

records

301

writing

without

BUFOFF=L

323

format-F

records

562

card

reader

and

punch

309,

310

description

288,

300

ISO/ANSI

tapes

298,

300

format-S

records
extended

logical

record

interface

304

segment

descriptor

word

303

format-U

records
card

reader

and

punch

309

description

305

ISO/ANSI

tapes

305

writing

without

BUFOFF=L

323

format-V

records
BDW

(block

descriptor

word)

291

card

punch

309,

310

description

290,

295

record

descriptor

word

291

segment

control

codes

293

segment

descriptor

word

293

spanned

292,

295

forms

control

buffer

538

forward

recovery,

CICSVR

52

fragmentation

442

FREE

command

441

free

control

interval

275

free

space
altering

163

DEFINE

command

160

determining

161

optimal

control

interval

162

performance

160

threshold

162

FREE=CLOSE

parameter

338

FREEBUF

macro

347,

351,

589,

590

buffer

control

341

description

351

FREEDBUF

macro

570,

590

Index

661

FREEMAIN

macro

344,

345,

530,

534

FREEPOOL

macro

309,

310,

335,

342,

344,

345

FREESPACE

parameter

82,

106

full

access,

password

136

full

page

increments

440

full-track-index

write

option

577

G
gaps

interblock

287

GDG

(generation

data

group)
absolute,

relative

name

493

allocating

data

sets

498,

501

building

an

index

504

creating

a

new

498,

502

deferred

roll-in

501,

503

entering

in

the

catalog

493,

495

ISAM

data

set

501,

502

limits

501

naming

conventions

497

retrieving

496,

502

ROLLOFF/expiration

502

GDS

(generation

data

set)
absolute,

relative

name

493

activating

501

passing

501

reclaim

processing

503

roll-in

501,

503

GDS_RECLAIM

keyword

503

GENCB

ACB

macro

192

GENCB

macro

133,

135,

136,

138,

139,

170,

257

general

registers

546

generation
index,

name

493

number
relative

493,

498

generic
profile

54

generic

key

144

GET

macro

205,

296,

340,

360,

387,

388,

391,

392,

398,

426,

428,

519,

522

description

359

parallel

input

361

GET_ALL

function

451

GET-locate

347,

350

pointer

to

current

segment

384

GETBUF

macro

347,

351

buffer

control

341

description

351

GETIX

macro
processing

the

index

269

GETMAIN

macro

341,

534

GETPOOL

macro

323,

341,

344,

345,

351,

597

buffer

pool

342

global

resource

serialization

195

global

shared

resources

206

GRS

(global

resource

serialization)

195,

365

GSR

(global

shared

resources)

93,

99,

147

control

block

structure

194

subpool

206

GTF

(generalized

trace

facility)
extended-format

402

VSAM

176

guaranteed
SPACE

attribute

39,

40

DASD

volumes

38

synchronous

write

509

guaranteed

space

allocation

108

guaranteed

space

attribute

91

H
header

index

record

273

label,

user

541,

544,

556

HFS

data

sets
defined

473

FIFO

special

files

476

planning

475

requirements

475

restrictions

475

type

of

UNIX

file

system

20,

473

hierarchical

file

system
UNIX

file

system

20

Hiperbatch
DLF

(data

lookaside

facility)

400

not

for

extended-format

data

set

400

performance

400

QSAM

18

Hiperspace

18

buffer
LRU

(least

recently

used)

168

LSR

206

SMBHWT

166

HOLD

type

connection

417

horizontal

pointer

index

entry

274

I
I/O

(input/output)
buffers

managing

with

shared

resources

210

sharing

205

space

management

164

control

block

sharing

205

error

recovery

364

journaling

of

errors

212

overlap

353

sequential

data

sets,

overlapping

operations

392

I/O

data

sets,

spooling

379

I/O

status

indicators

512,

518

IBM

3380

Direct

Access

Storage
drive

394

IBM

standard

label

(SL)

55,

553

ICFCATALOG

parameter

127

ICI

(improved

control

interval

access)
ACB

macro

185

APF

(authorized

program

facility)

185

cross-memory

mode

150

extended

format

data

sets

185

MACRF

option

194

not

for

compressed

data

set

93

not

for

extended

format

data

set

88

ICI

(improved

control

interval

access)

(continued)
SHAREOPTIONS

parameter

199

UPAD

routine

253

user

buffering

(UBF)

184

using

185

VSAM

150,

186

ICKDSF

(Device

Support

Facilities)

364,

553

ICSF,

for

encrypting

data

63

IDC01700I–IDC01724I

messages

231

IDC01723I

message

230

IDCAMS

print

81

IDRC

(Improved

Data

Recording

Capability)

320

IEBCOPY
compress

431

compressing

PDSs

407,

408,

429

convert

PDS

to

PDSE

413

convert

PDSE

to

PDS

413

fragmentation

442

PDS

to

PDSE

469

PDSE

back

up

470

SELECT

(member)

469

space,

reclaim

470

IEBIMAGE

506,

538

IEC034I

message

389

IEC127D

message

538

IEC129D

message

538

IEC161I

message

168

IEC501A

message

545,

548

IEC501E

message

545,

548

IEC502E

message

548

IECOENTE

macro

545

IECOEVSE

macro

548

IEF630I

message

443

IEFBR14

job

step

111

IEHLIST

program

600

IEHLIST

utility

25,

580,

609

IEHMOVE

program

409,

410

IEHPROGM

utility

program
generation

data

group
building

index

504

ISAM

data

set

502

ISAM

data

set,

generation

data

group

502

muiltivolume

data

set

creation

error

580

PROTECT

command

59

SCRATCH

control

statement

61

tape,

file

sequence

number

12

IFGEDI

task,

starting

369,

370

IFGPSEDI

member
excluding

data

sets

371

setting

mode

369

IGDSMSxx

PARMLIB

member
GDS_RECLAIM

503

PDSESHARING

471

IGDSMSxxPARMLIB

member
PDSESHARING

465

IGW8PNRU

(batch

override)

routine
programming

considerations

238

register

contents

238

IGWCISM

macro

456

IGWDES

macro

448

IGWLSHR

parameter

464

IGWPMAR

macro

452

662

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

IGWSMDE

macro

417,

448,

449

IHAARL

macro

530

IHADCB

dummy

section

331

IHADCBE

macro

332,

404

IHAPDS

macro

417,

450

imbedded

index

area

579,

580

IMPORT

command

45,

47,

51,

57

improved

control

interval

(ICI)

253

Improved

Data

Recording

Capability

308

Incorrect

Record

Length

condition

522

INDATASET

parameter

64,

131

independent

overflow

area
description

576

specifying

582

indeterminate

errors

336

index
access,

with

GETIX

and

PUTIX

269

alternate,

buffers

174

area
calculating

space

579,

580

creation

572

component
control

interval

size

156

opening

269

control

interval
data

control

area

270

size

158

split

279

control

interval

size

175

cylinder
calculating

space

579

overflow

area

576

data

(separate

volumes)

175

entry
data

control

interval

relation

270

record

format

275

spanned

records

280

levels,

VSAM

271

master
calculating

space

579

creating

576

using

573

pointers

272

prime

270

processing

269

record
format

273

sequence

set

272,

273

space

allocation

572

structure

271

track,

space

579

update

279

virtual

storage

175

index

area

573

index

buffers

170

index

options
replicating,

imbedding

175

INDEX

parameter

104,

117

index/overflow

chain

522

indexed

sequential

access

method

603

description

5

indexed

sequential

data

set
adding

records

at

the

end

592,

594

allocating

space

579,

586,

597,

600

areas
index

574,

576

indexed

sequential

data

set

(continued)
areas

(continued)
overflow

576

prime

574

buffer
requirements

597

converting

to

VSAM
example

614

using

access

method

services

609

using

JCL

609,

613

creation

576,

579

deleting

records

596

device

control

600,

602

full-track-index

write

option

577

inserting

new

records

592,

593

ISAM

602

retrieving

587,

589

updating

587,

589,

593

using

BISAM

571

using

QISAM

571

INDEXTEST

parameter

230

description

229

EXAMINE

output

232

testing

230

indirect

addressing
randomizing,

conversion

563

INFILE

parameter

64,

127

INHIBITSOURCE

parameter

48

INHIBITTARGET

parameter

48

INOUT

parameter

318,

508

INPUT

parameter

318,

320

input/output

devices

307

INSPECT

command

364

installation

exit
DCB

OPEN

319

ISO/ANSI

Version

3

or

Version

4

tapes

337

Integrated

Cryptographic

Service

Facility

(ICSF)
description

63

integrity,

data
enhanced

for

sequential

data

sets

368

sharing

DASD

368

sharing

data

sets

opened

for

output

365

Interactive

System

Productivity

Facility

25

interface

program,

ISAM

603

Interface

Storage

Management

Facility

(ISMF)
description

25

interval
control

split

279

INTOEMPTY

parameter

48

invalid

data

set

names

23

Invalid

Request

condition

514

invalidating

data

and

index

buffers

197

IOB

(input/output

block)

527

IOBBCT

(load

mode

buffer

control

table)

527

IOBFLAGS

field

527

IRG

(interrecord

gap)

287

ISAM

(indexed

sequential

access

method)

527

converting

from

ISAM

to

VSAM

609,

614

ISAM

(indexed

sequential

access

method)

(continued)
description

5

interface
abend

codes

608

DCB

fields

610,

611

DEB

fields

608

program

603

restrictions

612

processing

a

VSAM

data

set

605

SYNADAF

macro

example

615

upgrade

applications

to

VSAM

604

warning

message

when

data

set

is

opened

604

ISAM

compatibility

interface

604

ISAM

data

set
GDG

(generation

data

group)

502

ISITMGD

macro

456

ISMDTPGM

constant

456

ISMDTREC

constant

456

ISMDTUNK

constant

456

ISMF

(interactive

storage

management

facility)

122,

441

ISO

(International

Organization

for

Standardization)

11

ISO/ANSI
control

characters
format-D

records

300

format-F

tape

records

298

tape
fixed-length

records

298

formats

297

undefined-length

records

305

variable-length

records

300

Version

3

tapes

337

Version

4

tapes

337

ISO/ANSI

standard

label

(AL)

12,

55

J
JCL

(job

control

language)

129

allocation

examples
temporary

VSAM

data

set

262

coding

259

converting

from

ISAM

to

VSAM

609

DD

parameters

266,

329,

330

ISAM

interface

processing

610

non-VSAM

data

set

329,

330

tape,

file

sequence

number

12

VSAM

data

set

259

JCL

keyword

(DSNTYPE)
message

IEF630I

443

JES

(job

entry

subsystem)

379,

381

JFCB

(job

file

control

block)

318,

539

open

function

317

tape,

file

sequence

number

12

JFCBE

(job

file

control

block

extension)

540

JFCLRECL

field

380

job

control

language

(JCL)

129

journaling

I/O

errors

212

journalizing

transactions
JRNAD

exit

241

JRNAD

exit

routine
back

up

data

48

building

parameter

list

244

control

interval

splits

242

Index

663

JRNAD

exit

routine

(continued)
deferred

writes

212

example

243

exit,

register

contents

241

journalizing

transactions

135,

242

recording

RBA

changes

242

shared

resources

212

transactions,

journalizing

135

values

212

K
key

alternate

98

compression

84,

278

front

276

rear

276

control

interval

size

158

data

encryption

66

field
indexed

sequential

data

set

572

file,

secondary

66

indexed

sequential

data

set
adding

records

592,

596

retrieving

records

588,

593

RKP

(relative

key

position)

577,

597

track

index

572,

575

key

class
key

prefix

600

key

length
reading

a

PDSE

directory

437

key-range

data

sets
restriction,

extent

consolidation

109

key-sequenced

180

key-sequenced

data

sets
ISAM

compatibility

interface

604

keyboard

635

keyed

direct

retrieval

144

keyed

sequential

retrieval

142

keyed-direct

access

94,

95,

96

keyed-sequential

access

94,

95

KEYLEN

parameter

208,

307,

328,

437,

563

KEYS

parameter

105,

118,

130

keyword

parameters
31-bit

addressing,

VSAM

257

KILOBYTES

parameter

105,

127

KN

(key,

new)

590

KSDS

(key-sequenced

data

set)

78,

161

alternate

index

96

buffers

170

CI,

CA

splits

222

cluster

analysis

229

control

interval
access

177

data

component

144

defined

6

extent

consolidation

109

free

space

158

index
accessing

269

processing

269

index

options

175

insert

record
description

84

sequential

140

KSDS

(key-sequenced

data

set)

(continued)
inserting

records
description

81

logical

records

81

record

(retrieval,

storage)

175

sequential

access

94

structural

errors

229

VSAM

(virtual

storage

access

method)

402

KU

(key,

update)
coding

example

590

defined

355

read

updated

ISAM

record

589

L
LABEL

parameter

12,

59,

320,

339,

542

label

validation

337

label

validation

installation

exit

321

labels
character

coding

11

DASD,

volumes

8

direct

access
DSCB

553,

557

format

553

user

label

groups

556

volume

label

group

554,

555

exits

541,

544

tape

volumes

11

last-volume
extend

393

LBI

(large

block

interface)
BLKSIZE

parameter

321

block

size

merge

319

converting

BSAM

to

LBI

426

DCB

OPEN

exit

313

determining

BSAM

block

length

398

JCL

example

390

like

concatenation

390

performance

395

recommendation

313

requesting

322

system-determined

block

size

327,

397

using

larger

blocks
BPAM

322

BSAM

322

QSAM

322

writing

short

BSAM

block

399

LDS

(linear

data

set)
allocating

space

for

108

defined

6

extent

consolidation

109

leading

tape

mark

tape

12

LEAVE

option

333,

340

close

processing

332

tape

last

read

backward

339

tape

last

read

forward

339

LERAD

exit

routine

151

error

analysis

247

register

contents

248

level

sharing
directory,

member

462

licensed

documents

xix

like
concatenation

387,

388

like

(continued)
BSAM

block

size

388

data

sets

386

DCB,

DCBE

387

like

concatenation

390

LIKE

keyword

31,

93,

403,

442,

498,

500

linear

data

sets

78,

95

processing

142

link

field

597

link

pack

area

(LPA)

447

linkage

editor
note

list

410

LISTCAT

command

16,

101,

110,

126,

158,

207

LISTCAT

output
VSAM

cylinders

109

LISTCAT

parameter

128

load

mode
BDAM

(basic

direct

access

method)

570

QISAM
description

572

sharing

a

DCB

368

loading
VSAM

data

sets
REPRO

command

111,

113

local

locking,

non-RLS

access

223

local

shared

resources

206

locate
mode

parallel

input

361

mode

(QSAM)

466

LOCATE

macro

24

locate

mode

77,

346

buffers

349

QSAM

(queued

sequential

access

method)

384

records

exceeding

32

760

bytes

294

lock

manager

(CF

based)

217

locking

unit

203

logging

for

batch

applications

52

logical
error

analysis

routine

247

logical

block

size

441

logical

end-of-file

mark

436

logical

record
control

interval

83

length,

SYSIN

380

LookAt

message

retrieval

tool

xviii

lower-limit

address

600

LPA

(link

pack

area)

447

LRD

(last

record)

94

LRECL

parameter

112,

128,

328,

359,

380,

577,

599

coding

in

K

units

304

records

exceeding

32

760

bytes

294

LRI

(logical

record

interface)
QSAM

293

LRU

(least

recently

used)

168

LSR

(local

shared

resources)

18,

147,

167

buffering

166

Hiperspace

buffers

206

pools
resource

206

specifying

control

block

structure

194

LTM

(leading

tape

mark

tape)

12

664

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

M
machine

control

characters
described

306

MACRF

parameter

205,

367,

428,

455,

466,

563,

590

ACB

macro

192

control

interval

access

178

WAIT

macro

357

MACRF=WL

parameter

561

macros
buffering

basic

access

method

351

data

management
device

dependent

394

not

recommended

for

use

16

summary

15

magnetic

tape
direct

access

volumes
NOTE

macro

394

storing

data

sets

3

magnetic

tape

volumes
identifying

unlabeled

tapes

14

labels
user

541,

544

positioning
close

processing

332,

338

end-of-volume

processing

339

using

file

sequence

numbers

12

using

tape

labels

11

using

tape

marks

14

management

class
definition

27

examples

330

mark,

end-of-file

414

mass

sequential

insertion

140

master

index

576

MASTERPW

parameter

130

maximum

block

size

441

maximum

number

of

volumes

37

maximum

strings
255

147

MEGABYTES

parameter

105

member
PDS

(partitioned

data

set)

421

PDSE,

add

records

466

PDSE,

address

455

PDSE,

level

sharing

462

member-level

sharing

462

member,

delete

467

members
adding,

replacing
PDSE

members

serially

444

message

IEC983I

369,

370

message

retrieval

tool,

LookAt

xviii

metadata

24

MGMTCLAS

parameter

30

millisecond

response

167

mixed

processing

157

MKDIR

command

476

MLA

(multilevel

alias)

103

MLT

(Member

Locator

Tokens)

434,

435,

454

MMBBCCHHR
actual

address

565

ISM

613

MODCB

macro

94,

133,

138,

139,

257

mode
load

521

resume

594

locate,

member

(QSAM)

428

request

execution
requirements

226

scan

522

model

DSCB

499

MODEL

parameter

104

modify
PDS

(partitioned

data

set)

426

modifying

members
PDSE

466

MOUNT

command

476

move
mode

parallel

input

360

move

mode

346

PDSE

restriction

321

MRKBFR

macro
marking

buffer

for

output

213

releasing

exclusive

control

193

MSWA

parameter

599

MULTACC

parameter

397

DCBE

macro

313,

404

performance

397

TRUNC

macro

356

WAIT

macro

357

multiple
data

sets
closing

335

opening

335

multiple

string
processing

146

multiple

system

sharing

(PDSEs)

463,

465

multiple-step

job

495

multitasking

mode
sharing

data

sets

367

multivolume
data

sets
DASD

(extending)

393

NOTE

macro

507

RACF-protected

54

tape

54

unlike

concatenation

391

MULTSDN

parameter

313,

354,

397,

404

MXIG

command

22

N
NAME

parameter

127,

130

name-hiding

function
overview

25

using

55

naming

data

sets

22

national

23

NCP

(number

of

channel

programs)

396

BSAM,

BPAM

313

NCP

parameter

396

BSAM

355

Network

File

System
defined

473

UNIX

file

system

20

NEW

parameter

128

NFS

(Network

File

System)
accessing

7

NFS

(Network

File

System)

(continued)
type

of

UNIX

file

system

20

NFS

files
defined

473

NL

(no

label)

55

NLW

subparameter
MACRF

parameter

192

no

label

(NL)

55

no

post

code

358

No

read

integrity

228

no

user

buffering

(NUB)

178

NOCONNECT

option

447

NODSI

flag

371

NOERASE

option
AMS

commands

61

non-CICS

use

of

VSAM

RLS

222

non-RLS

access

to

VSAM

data

sets

223

locking

223

share

options

223

non-system-managed

data

set
allocating

GDSs

500

non-VSAM
creating

data

set

labels

511

error

analysis

511

performing

I/O

operations

(data

sets)

511

requesting

user

totaling

511

system-managed

data

sets

32

non-VSAM

data

set
password

59

nonguaranteed

space

allocation

108

nonrecoverable

data

set
overview

221

read

and

write

sharing

222

NONSPANNED

parameter

77

nonspecific

tape

volume

mount

exit
return

codes
specifying

545

NONUNIQUEKEY

parameter

130,

148

NOPWREAD

parameter

59

NOREUSE

parameter

105

Normal

PDSE

sharing

465

NOSCRATCH

parameter

123

NOTE

macro

11,

20,

392,

394,

403,

410,

414,

426,

436,

457,

458,

507

NRI

(no

read

integrity)

226

NRI

subparameter
RLS

parameter

228

NSP

(note

string

positioning)

94

NSR

(nonshared

resources)
Create

Optimized

(CO)

169

Create

Recovery

Optimized

(CR)

169

Direct

Weighted

(DW)

169

job

control

language

(JCL)

165

LSR

(local

shared

resources)

166

NSR

subparameter

147

Sequential

Optimized

(SO)

168

Sequential

Weighted

(SW)

167,

169

NSR

subparameter

209

NTM

parameter

576

NUB

(no

user

buffering)

178

NUIW

parameter

208

null

data

set

336

null

record

segments
PDSE

(partitioned

data

set

extended)

439

Index

665

O
O/EOV

(open/end-of-volume)
nonspecific

tape

volume

mount

exit

545

volume

security/verification

exit
described

548,

550

OAM

(object

access

method)

6,

27

object
improved

control

interval

access

185

object

access

method

6

OBJECT

parameter

139

OBROWSE

command

81,

487

OBTAIN

macro

24,

81,

598

offset

reading

355

OPEN

macro

392,

394,

413,

466

connecting

program

to

data

set

311

control

interval

processing

185

data

sets

335

description

317,

321

EXTEND

parameter

319

functions

317,

321

multiple

335

options

319,

321

parallel

input

processing

361

protect

key

of

zero

345

resource

pool,

connection

209

OPEN

TYPE=J

macro

24

tape,

file

sequence

number

12

OPEN

UPDAT
positioning

463

OPTCD

parameter

359,

395,

505,

550,

563,

566,

577

control

interval

access

178

master

index

576

OPTCD=B
generate

concatenation

391

OPTCD=C

option

397

OPTCD=H
VSE

checkpoint

records

396

optimal

block

size

323

OUTDATASET

parameter

64,

127,

131

OUTFILE

parameter

64

OUTIN

option

43

OUTIN

parameter

508

OUTINX

option

43

OUTINX

parameter

508

output

buffer,

truncate

350

OUTPUT

option

43

output

stream

379,

381

overflow
area

573,

576

chain

594

PRTOV

macro

506

records

576

overflow

area

573

Overflow

Record

condition

515

overlap
input/output

performance

396

overlap

I/O

427

overlapping

operations

392

P
padded

record
end-of-block

condition

300

padded

record

(continued)
variable-length

blocks

301

page
real

storage
fixing

186

page

size
physical

block

size

441

page

space

121

PAGEDEF

parameter

308

paging
excessive

175

paging

operations
reduce

353

paper

tape

reader

310

parallel
input

processing

360

parallel

data

access

blocks

(PDAB)

361

Parallel

Sysplex-wide

locking

223

partial

release

107

partitioned

concatenation
including

UNIX

directories

491

partitioned

table

spaces

(DB2)

111

PARTREL

macro

61,

81,

334

PASS

disposition

340

PASSWD

parameter

56

password
access

56

authorization

checking

60

authorize

access

136

LABEL

parameter

59

non-VSAM

data

sets

59

prompting

58

protection

precautions

57

VSAM

data

sets

56

PATH

parameter

477,

480

path

verification

50

PATHENTRY

parameter

130

PATHOPTS

parameter

481

PC

(card

punch)

record

format

309,

310

PDAB

(parallel

data

access

block)

550

PDAB

(parallel

data

access

blocks)

361

PDAB

(parallel

input

processing)

360

PDAB

macro

527

work

area

361

PDF

directory

entry

408

PDS

(partitioned

data

set)
adding

members

414

concatenation

429,

430

converting

to

and

from

PDSE

413,

469

creating

412,

415

defined

5,

407,

409

directory

416

description

408,

411

processing

macros

415

reading

430

directory

(size

limit)

408

directory,

updating

421

extents

429

locating

members

415,

416

macros

416,

421

maximum

number

of

volumes

37

number

of

extents

38

processing

19

quick

start

312

retrieving

members

422,

426,

461

rewriting

428,

429

PDS

(partitioned

data

set)

(continued)
space

allocation

411,

412

structure

407

updating

member

426,

428

PDS

and

PDSE

differences

433

PDSDE

(BLDL

Directory

Entry)

450

PDSE

(partitioned

data

set

extended)
ABEND

D37

440

address

spaces

470

allocating

31,

33,

442

block

size

434

block

size,

physical

441

concatenation

468,

469,

490

connection

446

convert

469

convert

(PDS,

PDSE)

470

converting

413

creating

442,

446

data

set

compression

441

data

set

types

442

defined

5,

431

deleting

467

directory

448,

457

BLDL

macro

447

description

433,

434

indexed

search

432,

434

reading

469

size

limit

434

directory

(FIND

macro)

455

directory

structure

435

directory,

read

467

directory,

update

459

DYNALLOC

macro

442

extended

sharing

protocol

464

extents

441,

468,

491

fixed-length

blocked

records

437

fragmentation

442

free

space

441

full

block

allocation

440

integrated

directory

440

logical

block

size

441

macros

447,

460

maximum

number

of

volumes

37

member
add

record

466

retrieving

460

members
adding,

replacing

444

members

(multiple)

445

multiple

system

sharing

463

multiple-system

environment

465

NOTE

macro

(TTRz)

457

null

segments

294

OPEN

macro

options

321

performance

470

advantages

431

positioning

436

processing

19

reblocking

437

reblocking

records

432

record
numbers

435

record

processing

436,

439

records

(unblocked,

blocked)

435

relative

track

addresses

434

rename

469

restrictions

436

666

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

PDSE

(partitioned

data

set

extended)

(continued)
rewrite

466

sharing

462,

465

single-system

environment

465

size
dynamic

variation

433

space

(contiguous,

noncontiguous)

440

space

allocation

439

space

considerations

439

space

reuse

434

storage

requirements

442

switching

members

458

SYNCDEV

macro

509

TRUNC

macro

restriction

350

TTR

(track

record

address)

11

unreclaimed

space

440

update

455

updating

466

PDSE_RESTARTABLE_AS

keyword

471

PDSESHARING

keyword

465

PDSESHARING(EXTENDED)

keyword

465,

471

performance
buffering

329

control

interval

access

185

cylinder

boundaries

334

DASD,

tape

397

data

lookaside

facility

400

Hiperbatch

400

improvement

155,

176

sequential

data

sets

395

sequential

data

sets

353,

422

performance

chaining

405

physical

block

size

156

physical

errors
analysis

routine

212

analyzing

250

physical

sequential

data

sets

537

POINT

macro

11,

20,

94,

133,

139,

142,

143,

313,

392,

394,

403,

426,

453,

457,

460,

508,

519

retrieving

records
VSAM

205

pointers

272

pool
resource

size

207

resources
shared

206

position

volumes

340

positioning
direct

access

volume

(to

a

block)

508

member

address
FIND

macro

420

PDS

(partitioned

data

set)

420

sequential

access

205

tapes

(to

a

block)

508

volumes
magnetic

tape

338,

341

post

code

358

POST

macro

515

prefix,

key

600

primary
space

allocation

38,

108

PRIME

allocation

108

prime

data

area
description

573

space

allocation

579,

581

prime

index

84,

270,

272

PRINT

command

16,

101,

123,

126,

131

print

DBCS

characters

559

PRINT

parameter

128

printer
overflow

(PRTOV

macro)

506

record

format

308

processing
adding,

replacing
multiple

PDSE

members

445

data

sets

through

programs

17

members

(PDSE)

446

modes

350

open,

close,

EOV

337

VSAM

data

sets

18

Product-sensitive

Programming

Interface

177

profile
generic,

discrete

54

program

library
binder

444

program

properties

table

(PPT)

371

Programmed

Cryptographic

Facility

63

programming

conventions

530

protect

key

of

zero
buffer

pool

345

PROTECT

macro

59,

60

protection
access

method

services
cryptographic

option

63

offline

data

63

APF

60,

62

data

sets

53

deciphering

data

63

enciphering

data

63

non-VSAM

data

set
password

59,

60

RACF

54

password

55,

60

RACF

53

system-managed

data

sets

55

VSAM

data

set
password

55,

59

RACF

53,

61

PRTOV

macro

395,

396,

506

PUT
OPTCD=NUP

184

PUT

macro

296,

413,

436,

522,

525

control

interval
update

contents

179

deferring

write

requests

210

description

359,

360

indexed

sequential

data

set

594

linear

data

set

140

locate

mode

346,

350

relative

record

data

set

140

simple

buffering

347,

349

update

record

144

PUT-locate

346

PUTIX

macro
processing

the

index

269

PUTX

macro

296,

366,

392,

426,

428,

462

description

360

simple

buffering

347,

349

Q
QISAM

(queued

indexed

sequential

access

method)
data

set

(EODAD

routine)

520

data

set

(SYNAD

routine)

520

ECB

(event

control

block)
conditions

521,

522

exception

code

bits

520

error

conditions

605

I/O

status

information

512

load

mode

527

not

recommended

for

use

5

processing

an

indexed

sequential

data

set

571

scan

mode

589

sequential

data

sets

383

sharing

366,

368

QSAM

(queued

sequential

access

method)

391

BUFNO
chained

buffers

397

BUFNO

parameter

396,

404

creating

(PDSE)

443

defined

359

description

6

direct

data

set

restrictions

563

extended-format

data

sets
sequential

data

striping

403

Hiperbatch

18

I/O

status

information

512

like

concatenation

390

move

mode

384

parallel

input

processing

360,

550

performance

improvement

396

printer

control

309

processing

modes

346,

347

read

(PDSE

directory)

434,

467

reading
PDS

directory

430

retrieving
PDSE

member

460

sequential

data

sets

387

sharing

a

data

set

366,

367

short

block

438

spanned

variable-length

records

293

UNIX

files

477

update
PDSE

member

466

updating
PDS

directory

421

PDS

member

428

user

totaling

550

using

buffers

347

queued

access

method
buffer

control,

pool

341

buffering

macros

350

sequential

data

set

350

queued

indexed

sequential

access

method

5

queued

sequential

access

method
description

6

quick

reference
accessing

records

353

backup,

recovery

45

CCSIDs

617

data

control

block

(DCB)

311

Index

667

quick

reference

(continued)
data

sets,

introducing

3

DBCS,

using

559

direct

access

labels,

using

553

direct

access

volume,

space

35

direct

data

sets,

processing

561

generation

data

groups,

processing

493

I/O

device

control

macros

505

indexed

sequential

data

sets

571

ISAM

program,

VSAM

data

sets

603

JCL,

VSAM

259

KSDS

Cluster

Errors

229

KSDS,

index

269

magnetic

tape

volumes

11

non-VSAM

data

sets,

RECFM

287

non-VSAM

data

sets,

sharing

365

non-VSAM

user-written

exit

routines

511

PDS,

processing

407

PDSE,

processing

431

protecting

data

sets

53

sequential

data

sets

383

sharing

resources

205

spooling

and

scheduling

data

sets

379

UNIX,

processing

473

using

31-bit

addressing,

VSAM

257

using

SMS

27

VSAM

data

set
define

101

examples

125

organizing

73

processing

133

sharing

189

VSAM

performance

155

VSAM

RLS

217

VSAM

user-written

exit

routines

235

quick

start
data

sets
sequential,

PDS

312

R
R0

record
capacity

record

data

field

563

RACF

(Resource

Access

Control

Facility)
alter

53

checkpoint

data

sets

375

control

53

DASD

data

sets,

erasing

61

DASDVOL

authority

553

erase

DASD

data

60

name

hiding

55

protection

54

RACF

command

55

read

53

STGADMIN.IFG.READVTOC.volser

facility

class

55

update

53

z/OS

Security

Server

53

RAMAC

Virtual

Array

61

randomizing
indirect

addressing

563

RBA

(relative

byte

address)

78,

79,

93,

94,

107,

113,

135,

137,

143,

144,

147,

149

RBA

(relative

byte

address)

(continued)
JRNAD

parameter

list

212

recording

changes

242

locate

a

buffer

pool

213

RBA

(relative

record

number)
slots

180

RBN

(relative

block

number)

11,

403

RD

(card

reader)

309,

310

RDBACK

parameter

319,

320,

544

RDF

(record

definition

field)

112

format

180

free

space

84

linear

data

set

84

new

record

length

84

records

74

slot

85

structure

181,

183

RDJFCB

macro

24

allocation

retrieval

list

511,

530

BLKSZLIM

retrieval

324

JFCB

exit

539

tape,

file

sequence

number

12

UNIX

files

486

RDW

(record

descriptor

word)

396

data

mode

exception
spanned

records

291

description

291

extended

logical

record

interface

305

prefix

301

segment

descriptor

word

294

updating

indexed

sequential

data

set

592

variable-length

records

format-D

301,

303

read
access,

data

set

names

55

access,

password

136

backward,

truncated

block

289

forward
SF

394

integrity,

cross-region

sharing

196

integrity,

VSAM

data

set

226,

228

READ

macro

296,

354,

367,

391,

392,

394,

398,

426,

427,

519,

526,

590

basic

access

method

355

block

processing

353

BSAM

357

description

355

direct

data

set

355

existing

records

(ISAM

data

sets)

589

spanned

records,

keys

355

read

sharing
integrity

across

CI

and

CA

splits

222

recoverable

data

sets

222

read

short

block
extended-format

data

set

399

READPW

parameter

130

real

buffer

address

342,

343

reblocking
records

PDSE

432

reblocking

records
PDSE

(partitioned

data

set

extended)

437

RECATALOG

parameter

105

RECFM

(record

format)
fixed-length

300

ISO/ANSI

300

magnetic

tape

307

parameter
card

punch

309,

310

card

reader

309,

310

sequential

data

sets

287

sequential

data

sets

307

spanned

variable-length

292,

295

undefined-length

305

variable-length

290,

301

RECFM

parameter

328

RECFM

subparameter

289

reclaiming

generation

data

sets
overview

503

procedure

503

recommendation
extending

data

sets

during

EOV

processing

339

recommendations
block

size

calculation

35

catalog,

analyzing

231

EXAMINE

command,

use

VERIFY

before

231

record
access

KSDS

(key-sequenced

data

set)

94,

96

access,

password

136

access,

path

147

adding

to

a

data

set

162

average

length

412

block
boundaries

478

control

characters

305

control

interval

size

156

data

set

address

9

definition

field

74,

180

deleting

145

descriptor

word

(see

BDW)

291

direct

data

sets

568

direct

retrieval

144

ESDS

(entry-sequenced

data

set)

140

fixed-length
full-track-index

write

option

577

parallel

input

360

restrictions

289

format
device

type

305

fixed

length

289

fixed-length

288

ISO/ANSI

297

variable

length

290

format

(fixed-length

standard)

289

free

space

162

index
format

273

header

273

length

273

set

274

index,

replicate

105

indexed

sequential

data

set

592,

594

insert,

add

140

insertion
free

space

162

insertion,

path

148

668

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

record

(continued)
ISAM

356

KSDS

81

KSDS

(key-sequenced

data

set)

140

length
DBCS

characters

559

length

(LRECL

parameter)

328

logical

293

longer

than
32

760

294

maximum

size

156

nonspanned

181

number
PDSE

435

padded

300

parallel

input
processing

360

restrictions

on

fixed-length

format

289

retrieval
sequential

359,

601

retrieve

142

data

set

360

rewrite,

PDSE

466

segments

294

sequence

set

274

sequential

data

set

(add,

modify)

392

sequential

data

set

(add)

393

sequential

retrieval

142

spanned

288,

292

basic

direct

294

index

entries

280

RDF

structure

183

segments

number

183

variable-length

360

spanned

format-V

294

spanned,

QSAM

processing

293

undefined-length

296

parallel

input

360

variable-length
format-V

360

parallel

input

360

variable-length

RRDS

insertion

141

variable-length,

sequential

access

method

292

VSAM

sequential

retrieve

143

VSE

checkpoint

396

write,

new

356

XLRI

395

record

descriptor

word

(RDW)

396

record

key

600

Record

Length

Check

514

Record

Locator

Tokens

(RLT)

435

record

locks,

share

and

exclusive

224

record

management

18

Record

Not

Found

517

record-level

sharing,

VSAM
specifying

read

integrity

228

timeout

value

for

lock

requests

228

using

217

RECORDS

parameter

105

RECORDSIZE

parameter

65,

105,

118,

130

control

interval

156

RECORG

keyword

436

RECORG

parameter

128,

129

recoverable

data

set
CICS

transactional

recovery

221

overview

221

recovery
EXPORT/IMPORT

47

program

(write)

48

VSAM

data

set

groups

52

RECOVERY

option

167,

169

RECOVERY

parameter

114

recovery

procedures

45

recovery

requirements

533

Reduce

Space

Up

To

%

attribute

41

register
contents

SYNAD

exit

routine

518,

524

RELATE

parameter

118,

130

relative
block

address
direct

data

sets

565

feedback

option

566

byte

address

213

generation

name

493,

498

key

position

(RKP)

parameter

577,

597

track

address
direct

access

565

feedback

option

566

relative

address
DASD

volumes

10

description

10

relative

block

addressing

11,

561

relative

generation

number

495

relative

track

addressing

561

release
control

interval

193

RELEASE

command

334

release,

partial

441

RELEX

macro

570

READ

request

566

RELSE

macro

341,

344,

350

RENAME

macro

81

reorganization
ISAM

data

set

595

ISAM

statistics

572

REPLACE

parameter

47

REPRO

command

45,

51,

65,

101,

112,

115,

126,

127

REPRO

DECIPHER

parameter
input

and

output

data

sets

64

overview

63

REPRO

ENCIPHER

parameter
overview

63

REPRO

parameter

114

request
macros

18

requirements
HFS

data

sets

475

REREAD

option

332

tape

last

read

backward

339

tape

last

read

forward

339

RESERVE

macro

198,

199

residual

data
erasing

60

reading

errors

336

Resource

Access

Control

Facility

53

Resource

Access

Control

Facility

(RACF)
name-hiding

25

resource

pool
building

205

connecting

209

deferred

writes

210

deleting

209

statistics

208

types

206

restartable

PDSE

address

space

471

restriction
using

enhanced

data

integrity,

multiple

sysplexes

370

VSAM

extent

consolidation

109

restrictions
alternate

index,

maximum

nonunique

pointers

96

CCSID

conversion

298

CNTRL

macro

505

compressed-format

data

set
UPDAT

option

392

update-in-place

392

concatenation

of

variable-blocked

spanned

data

set

392

control

interval

access
compressed

data

sets

177

key-sequenced

data

sets

177

variable-length

RRDSs

177

data

sets
control

interval

access

177

extended

forma

88

data

sets,

SMS-managed

28

DEVTYPE

macro

599

Direct

Optimized

technique

168

exit

list

530

extended

format

data

sets

88

fixed-length

record

format

289

generation

data

set,

model

DSCB

498,

499

HFS

data

sets

475

IDRC

mode

320

JOBCAT

statement

47,

610

JRNAD

exit,

no

RLS

support

241

load

failure

113

name

segment

length

23

note

list

411

PDSE
alias

name

437

converting

470

processing

436

PRINT

command,

input

errors

123

sharing

612

sharing

violations

462

SMS
absolute

track

allocation

37

ABSTR

value

for

SPACE

parameter

37

STEPCAT

statement

47,

610

system-managed

data

set

47,

610

tapes,

Version

3

or

4

321

TRKCALC

macro

599

UNIX

files

478

UNIX

files,

simulated

VSAM

access

80

UPDAT

option,

compressed-format

data

set

392

update-in-place,

compressed-format

data

set

392

VSAM

data

set

processing

7

Index

669

restrictions

(continued)
VSAM

data

sets
concatenation

not

allowed

in

JCL

18

VSAM,

space

constraint

relief

41

resume

load

mode
extending

indexed

sequential

data

set

579

partially

filled

track

or

cylinder

579

QISAM

572

resume

loading

576

retained

locks,

non-RLS

access

225

retention

period

330

RETPD

keyword

330

retrieve
sequential

data

sets

384

retrieving
generation

data

set

496,

502

PDS

members

422,

426

PDSE

members

460,

461

records
directly

588

sequentially

587

RETURN

macro

525,

536,

537

reusable

VSAM

data

sets

114

REUSE

parameter

64,

105,

115,

118

REWIND

option

332,

340

rewriting
PDS

(partitioned

data

set)

429

RKP

(relative

key

position)

parameter

577,

597

RLS

(record-level

sharing)

101,

115

accessing

223

accessing

data

sets

217

CF

caching

218

read

integrity

options

226

run-mode

requirements

226

setting

up

resources

217

specifying

read

integrity

228

timeout

value

for

lock

requests

228

RLS

parameter
CR

subparameter

228

CRE

subparameter

228

NRI

subparameter

228

RLSE

parameter

334,

441

RLSE

subparameter

107

RLSWAIT

exit

249

RLSWAIT

exit

routine

248

RLT

(Record

Locator

Tokens)

435

roll-in,

generation
ALTER

ROLLIN

command

501,

503

reclaim

processing

503

routine
exit

VSAM

user-written

235

RPL

(request

parameter

list)

147

coding

guidance

236

create

136

exit

routine

correction

237

parameter

178

transaction

IDs

211

RPL

macro

133,

138

RRDS

(relative

record

data

set)

141

defined

6

free

space

106

hexadecimal

values

184

variable-length

156

RRDS

(relative-record

data

set)

78,

85,

95

extent

consolidation

109

RRN

(relative

record

number)

47,

85,

111

run-mode,

VSAM

RLS

226

S
S99NORES

flag

371

SAA

(Systems

Application

Architecture)

21

SAM

(sequential

access

method)
buffer

space

341

null

record

segments

439

SBCS

(single-byte

character

set)

559

scan

mode

572,

589

SCHBFR

macro
description

213

SCRATCH

macro

81

IEHPROGM

utility

program

61

scratch

tape

requests
OPEN

or

EOV

routines

511

SDR

(sustained

data

rate)

91

SDW

(segment

descriptor

word)
conversion

303

description

293

format-S

records

303

format-V

records

293

location

in

buffer

355

secondary
space

allocation

38,

91,

108

storage

devices

3

secondary

key-encrypting

keys

66

security
APF

protection

53,

60,

62

cryptographic

53,

62

O/EOV

security/verification

exit

548,

550

password

protection

53,

55,

60

RACF

protection

53

security

(USVR)

255

segment
buffer

341,

346

control

code

293

descriptor

word
indicating

a

null

segment

294

spanned

records

293

null

294

PDSE

restriction

294

Selective

Forward

Recovery

52

Sequence

Check

condition

522

sequence

set

record
index

entries

272

sequence-set

record
format

273

free-control-interval

entry

274

index

entries

274

RBA

274

sequential
access

RRDS

95

processing

control

interval

size

157

sequential

access

buffers

174

sequential

bias

167

sequential

concatenation
data

sets

385

sequential

concatenation

(continued)
read

directories

sequentially
PDSs/PDSEs

468

UNIX

directories

490

UNIX

files

490

sequential

data

set
concatenation

429

device
control

505,

508

modify

392

queued

access

method

350

update-in-place

392

sequential

data

sets

383

chained

scheduling

395

device
independence

393,

395

enhanced

data

integrity

368

maximum

(16

extents)

400

modify

393

number

of

extents

38

quick

start

312

read

398

record
retrieve

384,

385

record

length

398

striping

39

sequential

data

striping
compared

with

VSAM

striping

39

extended-format

data

sets

403

migrating

extended-format

data

sets

404

sequential

insertion

140,

141,

142

sequential

millisecond

response

167

serialization
SYSZTIOT

resource

529

serializing

requests

204

serially
adding,

replacing
PDSE

members

444

server

address

space

218

service

request

block

(SRB)

185

service

request

block

(SRB)

mode
non-VSAM

access

methods

364

VSAM

access

method

150

SETL

macro

367,

520,

600,

601

specifying

600

SETPRINT

macro

511

SETPRT

macro

381,

506,

538,

540

SETROPTS

command

61

SETSMS

command
GDS_RECLAIM

503

share

options

199,

223,

259

shared
cross-system

198

data

set
enhanced

data

integrity

368

data

sets

198

cross-region

201

non-VSAM

365,

368

PDSE

432

data

sets

(PDSE)

462,

465

resources
among

data

sets

205

I/O

buffers

210

JRNAD

exit

212

restrictions

214

subtasks

190,

195

670

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

shared

DASD
checkpoint

data

sets

(RACF)

375

SHAREOPTIONS

parameter

106,

120,

148,

199

sharing
DCBs

462

multiple

jobs/users

462

sharing

protocol

464

sharing

rules

462

shift

in

(SI)

559

shift

out

(SO)

559

short

block
magnetic

tape

289

reading

399

write

399

short

block

processing

438

short

form

parameter

list

335

shortcut

keys

635

SHOWCAT

macro

207

description

208

SHOWCB

macro

133,

138,

139,

207

action

requests

211

buffer

pool

208

SHRPOOL

parameter

209

SI

(shift

in)

559

SIGPIPE

signal

487

single

unique

connect

identifier

418

single-system

environment,

sharing

PDSEs

465

size
control

area

159

interval

155

data

control

interval

157

dynamic

variation
PDSE

index

433

index

control

interval

158

limits
control

interval

155

skip-sequential

access

95,

96

fixed-length

RRDS

141

variable-length

RRDS

141

SL

(IBM

standard

label)

12,

55

SMB

(system-managed

buffering)

87,

169

requirements

165

SMBDFR
buffers,

write

166

SMBHWT

parameter

168

SMBHWT,

Hiperspace

buffers

166

SMBVSP
virtual

storage

166

SMBVSP

parameter

168

SMDE

(system-managed

directory

entry)

417,

419,

448

connect

identifier

453

input

by

name

list

449

SMF

(System

Management

Facilities)
data

set

59

SMF

records,

type

14

and

15

371,

372

SMS

(Storage

Management

Subsystem)
data

sets

(PDSE,

PDS)

443

description

27

requirements

27

SMSI

parameter

599

SMSPDSE

address

space

471

SMSPDSE1

address

space

471

SMSVSAM

server

218

SMSW

parameter

599

SO

(Sequential

Optimized)

167,

168

SO

(shift

out)

559

software

end-of-file

180

space
calculated

DASD

(used)

405

free

155

extended-format

data

sets

405

release

334

requirements,

calculate

411

VIO

data

set

22

space

allocation
calculation

data

component

109,

110

direct

data

set

562

indexed

sequential

data

set

572,

579,

586

PDS

(partitioned

data

set)

411,

412

PDSE

(partitioned

data

set

extended)

439

record

length

36

spanned

records

159

specifying

35,

44

VSAM

data

sets

108

VSAM,

performance

157

space

constraint

relief
attributes

Dynamic

Volume

Count

41

Reduce

Space

Up

To

%

41

Space

Constraint

Relief

41

restriction,

VSAM

striped

components

41

Space

Constraint

Relief

attribute

41,

42

SPACE

keyword

412

space

management

441

Space

Not

Found

514

SPACE

parameter

19,

22,

29,

31,

35,

128,

334,

412,

577

ABSTR

value

574

allocating

a

PDS

411

allocating

a

PDSE

439

SPANNED

parameter

76,

77,

105,

155,

156

spanned

records
space

allocation

159

SPEED

option

167,

169

SPEED

parameter

114

SPEED|RECOVERY

parameter

105

sphere
data

set

name

sharing

193

spooling

SYSIN

and

SYSOUT

data

sets
input

streams

379

OPEN

macro

options

321

output

streams

379

SPZAP

service

aid

25

SRB

(service

request

block)

150,

151,

185,

364

SRB

dispatching

185

STACK

parameter

309

stacker

selection

310,

505

control

characters

288

STAE/STAI

exit

570

standard

label
DASD

volumes

553

tape

file

sequence

number

12

standard

user

label

tape

12

START

IFGEDI

command

369,

370

status
following

an

I/O

operation

513

STEPCAT

DD

statement

259

STGADMIN.IFG.READVTOC.volser

FACILITY

class

25,

55

storage

administrator

27

storage

class
examples

330

JCL

keywords

329

STORCLAS

keyword

329

using

329

STORAGE

macro

341,

530

storage,

data
DASD

volumes

8

magnetic

tape

11

overview

3

STORAGECLASS

parameter

106

STORCLAS

parameter

30,

128

STOW

ADD

457

STOW

macro

19,

367,

408,

410,

413,

414,

415,

416,

421,

426,

434,

436,

437,

446,

459,

531

update

directory
PDS

(partitioned

data

set)

421

STOW

member
rename,

delete

442

STOW

REPLACE

457

PDSE

member,

extend

466

striped
alternate

index

92

CA

(control

area)

92

data

sets,

SMS

44

extended-format

sequential

data

sets

37

multivolume

VSAM

data

sets

38

VSAM

data

sets

38

VSAM,

space

constraint

relief

41

striped

data

sets
extended-format

data

set

385

multi

403

multistriped

404

number

of

buffers

313

partial

release

request

403

RLS

(not

supported)

225

sequential

data

400

single-striped

404

striped

VSAM

data

set
maximum

number

of

extents

92

striping
data

87

data

(layering)

90

DB2

(partitioned

table

spaces)

111

guaranteed

space

attribute

40

Hiperbatch

400

sequential

data

400

sequential

data

(migrating

extended-format

data

sets)

404

space

allocation

91

VSAM

data

88

STRMAX

field

208

STRNO

parameter

170,

174

structural

analysis,

data

sets

229

SUBALLOCATION

parameter

107

subgroup,

point
note

list

414

Index

671

subpool
resources

shared

206

subpool

252
user

key

storage

345

subpool,

shared

resources

215

subtask

sharing

190

SUL

(IBM

standard

user

label)

12

suppression,

validation

337

SW

(Sequential

Weighted)

167,

169

switching

from

24-bit

addressing

mode

405

symbolic

links,

accessing

7

SYNAD

(physical

error

exit)

151

SYNAD

exit

routine

134,

150,

379,

516,

518,

520,

521

add

records
ISAM

data

set

594

analyzing

errors

250

changing

address

in

DCB

331

deferred,

write

buffers

212

example

251

exception

codes

522

macros

used

in

363,

364

programming

considerations

250

register

contents

523

DCB-specified

607

entry

250,

524

SETL

option

601

sharing

a

data

set

368

synchronous
programming

considerations

525

temporary

close

restriction

332

SYNAD

exit

routines

527

SYNAD

parameter

511

SYNAD

routine
CHECK

routine

353

SYNADAF

macro

323,

525,

526,

607

description

363,

364

example

615

message

format

363,

364

SYNADRLS

macro

526

description

364

SYNCDEV

macro

437,

470,

509

synchronizing

data

509

synchronous

mode

148

SYS1.DBBLIB

402

SYS1.IMAGELIB

data

set

506

SYS1.PARMLIB
IFGPSEDI

member

369,

371

SYSIN

data

set

379

input

stream

380

logical

record

length

380

routing

data

381

SYSOUT

data

set

379

control

characters

305,

381

routing

data

379,

381,

507

sysplex,

enhanced

data

integrity

370

system
cross

sharing

203

determined

block

size
tape

data

sets

325

enhanced

data

integrity

370

input

stream

379,

381

output

stream

379,

381

system-determined

block

size

323

system-determined

block

size

(continued)
different

data

types

322

SYSVTOC

enqueue

339

SYSZTIOT

resource

529

exit

routines
DCB

OPEN

exit

535

T
tape

data

set
system-determined

block

size

325

density

307

end

358

exceptional

conditions

358

labels
identifying

volumes

11

library

3,

4,

27,

29

mark

14,

358

recording

technique

(TRTCH)

388

to

disk
create

direct

data

sets

564

update

direct

data

sets

569

to

print

384

volume

positioning

332

tape

data

sets
creating

with

file

sequence

number

13

creating

with

file

sequence

number

>

9999

12

TAPEBLKSZLIM

keyword

324

tasks
<gerund

phrase>
steps

for

483

bypassing

enhanced

data

integrity,

applications

371

copying

PDS

413

copying

PDSE

446

copying

UNIX

files
OCOPY

command

486

OGET

command

486

OGETX

command

486

OPUT

485

OPUTX

486

steps

for

485

creating

a

UNIX

macro

library
steps

for

481

creating

UNIX

files
steps

for

477

diagnosing

enhanced

data

integrity

violations

371

displaying

UNIX

files

and

directories
steps

for

484

enhanced

data

integrity,

setting

up

369

reclaiming

generation

data

sets
overview

503

procedure

503

setting

up

enhanced

data

integrity
multiple

systems

370

overview

368

termination,

QSAM

337,

395

temporary
close

option

332,

338

data

set

names

262

TEMPORARY

attribute

48

temporary

file

system
accessing

7

defined

473

UNIX

file

system

20

TESTCB

ACB

macro

192

TESTCB

macro

133,

138

request

parameter

list

211

TFS

(temporary

file

system)

7

TFS

files
defined

473

type

of

UNIX

file

system

20

time

sharing

option

62

timeout

value

for

lock

requests

228

TIOT

chain

529

TIOT

option

385

track
capacity

156

format

8

index
entries

574

indexed

sequential

data

set

573

resume

load

579

number

on

cylinder

579

overflow

9

TRACKS

parameter

105

trailer

label

391,

541

transaction

ID
relate

action

requests

211

transactions,

journalizing

241

TRANSID

parameter

211

translation
ASCII

to/from

EBCDIC

356,

359

TRC

(table

reference

character,

3800)

288,

291,

296,

308,

381

TRKCALC

macro

81,

437,

598

TRTCH

(tape

recording

technique)

308,

388

TRTCH

parameter

308

TRUNC

macro

341,

344,

349,

350,

356,

397,

438

description

350,

351

MULTACC

397

TSO/E

(time

sharing

option)
ALLOCATE

command

33

APF

authorization

62

DELETE

command

61

RENAME

command

469

TTR

(relative

track

address)
BLDL

list

447

convert

routines
UNIX

files

487

directory

entry

list

447

FIND

macro

455

format

10

PDS

(partitioned

data

set)

409

PDSE

(partitioned

data

set

extended)

434,

435,

436

POINT

macro

457

TTR

(relative

track

record)
extended-format

data

sets

11

PDSEs

11

UNIX

files

11

TYPE=T

parameter

332,

338

672

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

U
UBF

(user

buffering)

184,

194

UCS

(universal

character

set)

506

UHL

(user

header

label)

541,

544

UIW

field

(user-initiated

writes)

208

unblocking

records
QISAM

572

Uncorrectable

Input/Output

Error

condition

514

UNIQUE

parameter

107

UNIQUEKEY

attribute

148

UNIT

parameter

267

UNIX

directory
accessing

with

BPAM

7

processing

19

UNIX

file
defined

473

UNIX

files
accessing

7

BSAM

477

BSAM

access

5

buffer

number

default

344

defined

5

DEVTYPE

macro

486

NFS

(Network

File

System)

3

path-related

parameters

480

processing

20

QSAM

477

QSAM

access

6

RACF

system

security

482

RDJFCB

macro

486

reading

directories
BSAM

restriction

385

using

BPAM

385

sequential

concatenation

490

device

types

387

overview

385

services

81

SMF

records

488

TTR

(track

record

address)

11

utilities

81

VSAM

477

VSAM

access

6

VSAM

access,

simulated

80

z/OS

UNIX

fork

service

487

unlabeled

magnetic

tape

11,

14

unlike

concatenation
data

sets

391

unmovable,

marked

409

Unreachable

Block

condition

515

UPAD

exit

routine

150

cross-memory

mode

255

parameter

list

254

programming

considerations

254

register

contents

at

entry

252

user

processing

252

UPAD

wait

exit

135

UPDAT

mode

349

UPDAT

option

323,

392,

426,

466

restriction

392

UPDAT

parameter

320

update
ESDS

records

144

ISAM

records

587,

592

KSDS

records

144

PDS

(partitioned

data

set)

426,

428

PDSE

466

UPDATE

function

454

update

mode

519

UPDATEPW

parameter

130

UPGRADE

attribute

119

UPGRADE

parameter

130

USAR

(user-security-authorization

record)

255

user
buffering

184,

194

catalog

259

CBUF

processing

considerations

200

header

label

(UHL)

541,

544

label
header

556

trailer

556

label

exit

routine

541,

544

trailer

label

(UTL)

541,

544

written

exit

routines

235,

251

user

buffering

(UBF)

184

user

labels

569

creating,

processing

(data

sets)

511

user-written

exit

routines
identifying

511

USVR

(user-security-verification

routine)

53,

60,

117,

255

utility

programs

410

IEHLIST

600

IEHPROGM

502

UTL

(user

trailer

label)

541,

544

V
variable

blocked

spanned

(VBS)

439

variable

length
packing

tracks

294

record

(blocked)

398

record

format-D

300,

301

record

format-S

300,

301

record

format-V
description

295

spanned

295

unblocked

logical

records

294

variable-length
record

format-D

290

record

format-V
description

290

segments

290,

293

spanned

293

SYSIN

and

SYSOUT

data

sets

293

relative

record

data

set
control

interval

access

177

relative-record

data

set
record

access

95

relative-record

data

sets
description

86

RRDS

(relative-record

data

set)
description

86

variable-length

records

441

variable-length

RRDS

180

defined

6

VBS

(variable

blocked

spanned)

391,

439

VERIFY

command

50,

51,

122,

149,

231

VERIFY

macro

135,

201

GET

macro

197

version

number
absolute

generation

494

vertical

pointer,

index

entry

274

VIO

(virtual

I/O)
maximum

size,

SMS-managed

data

set

37

temporary

data

sets

22

VIO

MAXSIZE

parameter

37

virtual
resource

pool

207

virtual

storage

access

method
description

6

virtual

storage

access

method

(VSAM)
maximum

number

of

extents

92

volumes
access

exit

337

defined

3

direct

access

8,

307

dump

45

label

554

magnetic

tape

11,

307,

553

maximum

number

37

multiple

43

multiple

data

sets,

switching

339

positioning
CLOSE

macro

332,

339,

340

EOV

(end-of-volume)

processing

338

releasing

data

set

338

releasing

volume

338

security/verification

exit

548,

550

separation

data

(index)

176

switching

357,

359,

385

system-residence

60

unlabeled

tape

14

VOLUMES

parameter

105,

118,

127,

130,

267

VRRDS

(variable-length

RRDS)

86

VSAM

(virtual

storage

access

method)
31-bit

addresses
buffers

above

16

MB

164

keywords

258

multiple

LSR

pools

206

31-bit

addressing

257

addressing

mode

(31-bit,

24-bit)

18

allocate

data

sets

31

allocating

space

for

data

sets

106

alternate

index

96

backup

program

48

buffer

155

catalog

(generation

data

group

base)

493

CICS

VSAM

Recovery

52

cluster

(replacing)

48

control

interval

105

control

interval

size

155

converting

from

ISAM

to

VSAM

609

Create

Optimized

(CO)

169

Create

Recovery

Optimized

(CR)

169

data

set
access

93

types

100

data

set

(logical

record

retrieval)

73

data

sets
defining

101

types

77

description

6

DFSMStvs

access

217

Direct

Weighted

(DW)

168

entry-sequenced

data

set

94

Index

673

VSAM

(virtual

storage

access

method)

(continued)
description

78

entry-sequenced

data

sets
description

80

error

analysis

134

EXAMINE

command

229

extending

a

data

set

109

extending

data

108

Hiperspace

18

I/O

buffers

164

ICI

(improved

control

interval

access)

186

ISAM

programs

for

processing

605

JCL

DD

statement

259

key-sequenced

data

set

94

examining

for

errors

229

index

processing

269

key-sequenced

data

sets
description

81,

84

KSDS

(key-sequenced

data

set)

402

levels,

password
control

53

master

53

read

53

update

53

linear

data

sets
description

84

logical

record

retrieval

73

lookaside

processing

146

mode

(asynchronous,

synchronous)

148

non-RLS

access

to

data

sets

223

number

of

extents

38

performance

improvement

155

processing

data

sets

18

programming

considerations

235

relative-

record

data

sets
variable

length

records

86

relative-record

data

set
accessing

records

95

relative-record

data

sets
fixed-length

records

85,

86

variable-length

records

86

reusing

data

sets

114

RLS
timeout

value

for

lock

requests

228

using

217

RLS

CF

caching

218

sample

program

151,

152

Sequential

Weighted

(SW)

169

shared

information

blocks

199

specifying

read

integrity

228

sphere

193

string

processing

164

striping

39,

111

structural

analysis

229

temporary

data

set

262

UNIX

files

477

upgrading

alternate

indexes

99

user-written

exit

routines
coding

guidelines

236

functions

235

volume

data

sets

105

VSAM

data

sets
Extended

Addressability

37

VSAM

data

sets

(continued)
striped

38,

39

VSAM

user-written

exit

routines
coding

235

data

sets

237

guidelines

for

coding

235

multiple

request

parameter

lists

237

programming

guidelines

236

return

to

a

main

program

237

VSE

(Virtual

Storage

Extended)
embedded

checkpoint

records

506,

508

chained

scheduling

396

embedded

checkpoint

records

(BSP)

507

embedded

checkpoint

records

(CNTRL)

505

tapes

396

VSI

blocks
cross-system

sharing

199

data

component

204

VTOC

(volume

table

of

contents)

8,

553

description

23

DSCB

(data

set

control

block)

556

ISAM

data

set

574

pointer

555

reading

data

set

names

55

VTS

(Virtual

Tape

Server)

27,

29

VVDS

(VSAM

volume

data

set)

105,

122

VVR

(VSAM

volume

record)

123

W
WAIT

macro

353,

356,

360,

391,

397,

515,

561,

568,

570,

590

DECB

357

description

357

WAREA

parameter

138

WORKFILES

parameter

119

write

integrity,

cross-region

sharing

197

WRITE

macro

296,

354,

367,

392,

394,

399,

410,

413,

414,

426,

427,

436,

448,

462,

508,

519,

525,

526,

563,

567,

594,

596

BISAM

357

block

processing

353

description

356

K

(key)

589

READ

request

566

record

return

355

S

parameter

323

write

validity

check

329

WRITECHECK

parameter

106

writing
buffer

211

WRTBFR

macro

210,

215

deferred,

writing

buffers

211

WTO

macro

525

X
XDAP

macro

21

XLRI

(extended

logical

record

interface)
using

304

Z
z/OS

Security

Server

53

z/OS

UNIX

files
accessing

7

defined

5

processing

20

zFS

(zSeries

file

system)

7

zSeries

File

System
accessing

7

defined

473

type

of

UNIX

file

system

20

UNIX

file

system

20

674

z/OS

V1R6.0

DFSMS:

Using

Data

Sets

Readers’

Comments

—

We’d

Like

to

Hear

from

You

z/OS

DFSMS:

Using

Data

Sets

Publication

No.

SC26-7410-04

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC26-7410-04

SC26-7410-04

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Department

55JA,

Mail

Station

P384

2455

South

Road

Poughkeepsie,

NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program

Number:

5694-A01

Printed

in

USA

SC26-7410-04

	Contents
	Figures
	Tables
	About This Document
	Major Divisions of This Document
	Required product knowledge
	Referenced documents
	Accessing z/OS DFSMS documents on the Internet
	Using LookAt to look up message explanations
	Accessing z/OS licensed documents on the Internet

	Summary of Changes
	Summary of Changes for SC26-7410-04 z/OS Version 1 Release 6
	New Information
	Changed Information

	Summary of Changes for SC26-7410-03 z/OS Version 1 Release 5
	New Information
	Changed Information
	Moved Information

	Summary of Changes for SC26-7410-02 z/OS Version 1 Release 3
	New Information
	Changed Information

	Part 1. All Data Sets
	Chapter 1. Working with Data Sets
	Data Storage and Management
	System-Managed Data Sets
	Distributed File Manager

	Access Methods
	Basic Direct Access Method
	Basic Partitioned Access Method
	Basic Sequential Access Method
	Data-in-Virtual (DIV)
	Indexed Sequential Access Method
	Object Access Method
	Queued Sequential Access Method
	Virtual Storage Access Method
	Access to z/OS UNIX Files
	Selection of an Access Method

	Direct Access Storage Device (DASD) Volumes
	DASD Labels
	Track Format
	Track Overflow
	VSAM Record Addressing
	Actual and Relative Addressing with Non-VSAM Access Methods
	Actual Addresses
	Relative Addresses

	Magnetic Tape Volumes
	Using Magnetic Tape Labels
	Specifying the File Sequence Number
	Example of Creating a Tape Data Set with a File Sequence Number Greater than 9999
	Example of Creating a Tape Data Set Using Any File Sequence Number

	Identifying Unlabeled Tapes
	Using Tape Marks

	Data Management Macros
	Data Set Processing
	Allocating Data Sets
	Access Method Services
	ALLOCATE Command
	JCL

	Processing Data Sets through Programs
	Using Access Methods
	Using Addressing Modes
	VSAM Addressing Modes
	Non-VSAM Addressing Modes

	Using Hiperspace and Hiperbatch
	Processing VSAM Data Sets
	Processing PDSs, PDSEs, and UNIX Directories
	Processing Sequential Data Sets and Members of PDSEs and PDSs
	BSAM Processing
	QSAM Processing

	Processing UNIX Files with an Access Method
	Processing EXCP, EXCPVR, and XDAP Macros

	Distributed Data Management (DDM) Attributes
	Virtual I/O for Temporary Data Sets
	Data Set Names
	Catalogs and Volume Table of Contents
	VTOC
	Catalogs
	Data Set Names and Metadata
	Security of Data Set Names

	Chapter 2. Using the Storage Management Subsystem
	Using Automatic Class Selection Routines
	Allocating Data Sets
	Allocating Data Sets with JCL
	Allocating an HFS Data Set
	Allocating System-Managed Data Sets
	Allocating Non-System-Managed Data Sets

	Allocating System-Managed Data Sets with the Access Method Services ALLOCATE Command
	Allocating a Data Set Using Class Specifications
	Allocating a VSAM Data Set Using Class Specifications
	Allocating a System-Managed Non-VSAM Data Set
	Allocating a PDSE
	Allocating a New Non-System-Managed Data Set

	Allocating Data Sets with the TSO ALLOCATE Command
	Allocating Data Sets with Dynamic Allocation

	Chapter 3. Allocating Space on Direct Access Volumes
	Specification of Space Requirements
	Blocks
	Average Record Length
	Tracks or Cylinders
	Absolute Track
	Additional Space-Allocation Options

	Maximum Data Set Size
	Maximum Size on One Volume
	Maximum Number of Volumes
	Maximum VSAM Data Set Size

	Primary and Secondary Space Allocation without the Guaranteed Space Attribute
	Multivolume VSAM Data Sets
	Multivolume Non-VSAM Data Sets
	Extended-Format Data Sets

	Allocation of Data Sets with the Guaranteed Space Attribute
	Guaranteed Space with DISP=NEW or MOD
	Guaranteed Space for VSAM
	Guaranteed Space with DISP=OLD or SHR
	Guaranteed Space with Extended-Format Data Sets
	Guaranteed Space Example

	Allocation of Data Sets with the Space Constraint Relief Attributes
	Extension to Another DASD Volume
	Examples of Dynamic Volume Count When Defining a Data Set
	Examples of Dynamic Volume Count When Allocating an Existing Data Set

	Multiple Volume Considerations for Sequential Data Sets
	Additional Information on Space Allocation

	Chapter 4. Backing Up and Recovering Data Sets
	Using REPRO for Backup and Recovery
	Using EXPORT and IMPORT for Backup and Recovery of VSAM Data Sets
	Structure of an Exported Data Set
	EXPORT and IMPORT Commands

	Writing a Program for Backup and Recovery
	Using Concurrent Copy for Backup and Recovery
	Updating a Data Set After Recovery
	Synchronizing Catalog and VSAM Data Set Information During Recovery
	Handling an Abnormal Termination
	Using VERIFY to Process Improperly Closed Data Sets
	Recovering from Errors Due to an Improperly Closed VSAM Data Set
	Using VERIFY with Catalogs

	CICS VSAM Recovery

	Chapter 5. Protecting Data Sets
	z/OS Security Server (RACF)
	RACF Protection for VSAM Data Sets
	Generic and Discrete Profiles for VSAM Data Sets
	RACF Protection for Non-VSAM Data Sets
	Hiding Data Set Names

	Data Set Password Protection
	Passwords for VSAM Data Sets
	Passwords to Authorize Access
	Password-Protection Precautions
	Data Set and Catalog Protection
	Password Prompting

	Passwords for Non-VSAM Data Sets
	Assigning a Password
	Protecting a Data Set When You Define It
	Supplying a Password for a Catalog
	Handling Incorrect Passwords
	Entering a Record in the PASSWORD Data Set

	User-Security-Verification Routine
	Erasure of Residual Data
	Erasing DASD Data
	System Erasure of Data
	RAMAC Virtual Array

	Erasing Tape Data

	Authorized Program Facility and Access Method Services
	Access Method Services Cryptographic Option
	Data Enciphering and Deciphering
	Encryption of VSAM Data Sets
	Data Encryption Keys
	Secondary Key-Encrypting Keys

	REPRO ENCIPHER and DECIPHER on ICSF

	Part 2. VSAM Data Sets
	Chapter 6. Organizing VSAM Data Sets
	VSAM Data Formats
	Data Set Size
	Control Intervals
	Control Information Fields
	Compressed Control Information Field
	Control Areas
	Spanned Records

	Selection of VSAM Data Set Types
	Entry-Sequenced Data Sets
	Simulated VSAM Access to UNIX files
	Record Processing for UNIX Files
	Restrictions on UNIX Files
	Services and Utilities for UNIX Files

	Key-Sequenced Data Sets
	Free Space
	Considerations for Increasing Keys and Space
	Insertion of a Logical Record in a CI
	Prime Index
	Key Compression
	Control Interval Splits

	Linear Data Sets
	Fixed-Length Relative-Record Data Sets
	Variable-Length Relative-Record Data Sets
	Summary of VSAM Data Set Types

	Extended-Format VSAM Data Sets
	Restrictions on Defining Extended-Format Data Sets
	VSAM Data Striping
	Layering Concept for Data Striping
	Other Considerations for Data Striping

	Compressed Data

	Access to Records in a VSAM Data Set
	Access to Entry-Sequenced Data Sets
	Access to Key-Sequenced Data Sets
	Keyed-Sequential Access
	Keyed-Direct Access
	Skip-Sequential Access
	Addressed Access

	Access to Linear Data Sets
	Access to Fixed-Length Relative-Record Data Sets
	Keyed-Sequential Access
	Skip-Sequential Access
	Keyed-Direct Access

	Access to Variable-Length Relative-Record Data Sets
	Keyed-Sequential Access
	Skip-Sequential Access
	Keyed-Direct Access

	Access to Records through Alternate Indexes
	Alternate Index Structure for a Key-Sequenced Data Set
	Alternate Index Structure for an Entry-Sequenced Data Set
	Building of an Alternate Index
	Automatic Upgrade of Alternate Indexes

	Data Compression

	Chapter 7. Defining VSAM Data Sets
	Using Cluster Names for Data and Index Components
	Defining a Data Set with Access Method Services
	Naming a Cluster
	Duplicate Data Set Names
	Temporary Data Set Names

	Specifying Cluster Information
	Using Access Method Services Parameters
	Descriptive Parameters
	Performance Parameters
	Security and Integrity Parameters

	Allocating Space for VSAM Data Sets
	Partial Release
	Small Data Sets
	Multiple Cylinder Data Sets
	Linear Data Sets
	Using VSAM Extents
	VSAM Extent Consolidation

	Calculating Space for the Data Component of a KSDS
	Calculating Space for the Index Component
	Using ALTER to Modify Attributes of a Component
	Using ALTER to Rename Data Sets

	Defining a Data Set with JCL
	Loading a VSAM Data Set
	Using REPRO to Copy a VSAM Data Set
	Using a Program to Load a Data Set
	Reusing a VSAM Data Set as a Work File

	Copying and Merging Data Sets
	Defining Alternate Indexes
	Naming an Alternate Index
	Specifying Alternate Index Information
	Specifying Descriptive Information for an Alternate Index
	Specifying RECORDSIZE for an Alternate Index with Nonunique Keys

	Building an Alternate Index
	Maintaining Alternate Indexes
	How Reorganization Affects Alternate Indexes
	Alternate Index Backups

	Defining a Path

	Defining a Page Space
	Checking for Problems in Catalogs and Data Sets
	Listing Catalog Entries
	Printing the Contents of Data Sets

	Deleting Data Sets

	Chapter 8. Defining and Manipulating VSAM Data Sets: Examples
	Example of Defining a VSAM Data Set
	Examples of Defining Temporary VSAM Data Sets
	Example 1: Defining a Temporary VSAM Data Set Using ALLOCATE
	Example 2: Creating a Temporary Data Set with Default Parameter Values

	Examples of Defining Alternate Indexes and Paths
	JCL Statements
	Commands

	Chapter 9. Processing VSAM Data Sets
	Creating an Access Method Control Block
	Creating an Exit List
	Opening a Data Set
	Creating a Request Parameter List
	Manipulating the Contents of Control Blocks
	Generating a Control Block
	Testing the Contents of ACB, EXLST, and RPL Fields
	Modifying the Contents of an ACB, EXLST, or RPL
	Displaying the Contents of ACB, EXLST, and RPL Fields

	Requesting Access to a Data Set
	Inserting and Adding Records
	Insertions into an Entry-Sequenced Data Set
	Insertions into a Key-Sequenced Data Set
	Insertions into a Fixed-Length Relative-Record Data Set
	Insertions into a Variable-Length Relative-Record Data Set
	Insertions into a Linear Data Set

	Retrieving Records
	Sequential Retrieval
	POINT Macro for Positioning
	Direct Retrieval

	Updating Records
	Changing Record Length
	Processing the Data Component of a Key-Sequenced Data Set

	Deleting Records
	Deferring and Forcing Buffer Writing
	Retaining and Positioning Data Buffers
	Processing Multiple Strings
	Making Concurrent Requests
	Using a Path to Access Records
	Making Asynchronous Requests
	Specifying Asynchronous Mode
	Checking for Completion of Asynchronous Requests

	Ending a Request

	Closing Data Sets
	Operating in SRB or Cross-Memory Mode
	Using VSAM Macros in Programs

	Chapter 10. Optimizing VSAM Performance
	Optimizing Control Interval Size
	Control Interval Size Limitations
	Physical Block Size and Track Capacity
	Track Allocations versus Cylinder Allocations

	Data Control Interval Size
	Index Control Interval Size
	How VSAM Adjusts Control Interval Size

	Optimizing Control Area Size
	Advantages of a Large Control Area Size
	Disadvantages of a Large Control Area Size

	Optimizing Free Space Distribution
	Selecting the Optimal Percentage of Free Space
	Altering the Free Space Specification When Loading a Data Set

	Determining I/O Buffer Space for Nonshared Resource
	Obtaining Buffers Above 16 MB
	Virtual Storage Constraint Relief
	Dynamic Allocation Options for Reducing Storage Usage

	Tuning for System-Managed Buffering
	Processing Techniques
	Internal Processing Techniques
	Processing Guidelines and Restrictions
	General Considerations for the Use of SMB

	Allocating Buffers for Concurrent Data Set Positioning
	Allocating Buffers for Direct Access
	Data Buffers for Direct Access
	Index Buffers for Direct Access
	Example of Buffer Allocation for Direct Access

	Allocating Buffers for Sequential Access
	Allocating Buffers for a Path
	Acquiring Buffers

	Using Index Options
	Increasing Virtual Storage for Index Set Records
	Avoiding Control Area Splits
	Putting the Index and Data on Separate Volumes

	Obtaining Diagnostic Information
	Migrating from the Mass Storage System
	Using Hiperbatch

	Chapter 11. Processing Control Intervals
	Access to a Control Interval
	Structure of Control Information
	CIDF—Control Interval Definition Field
	RDF—Record Definition Field
	Control Field Values for Nonspanned Key-Sequenced, Entry-Sequenced, and Variable-Length Relative Record Data Sets
	Control Field Values for Spanned Key-Sequenced and Entry-Sequenced Data Sets
	Control Field Values for Fixed-Length Relative-Record Data Sets

	User Buffering
	Improved Control Interval Access
	Opening an Object for Improved Control Interval Access
	Processing a Data Set with Improved Control Interval Access
	Fixing Control Blocks and Buffers in Real Storage

	Control Blocks in Common (CBIC) Option

	Chapter 12. Sharing VSAM Data Sets
	Subtask Sharing
	Building a Single Control Block Structure
	Resolving Exclusive Control Conflicts
	Preventing Deadlock in Exclusive Control of Shared Resources
	Data Set Name Sharing
	Consistent Processing Options
	Shared Subtasks

	Cross-Region Sharing
	Cross-Region Share Options
	Read Integrity During Cross-Region Sharing
	Invalidating Index Buffers
	Invalidating Data Buffers

	Write Integrity During Cross-Region Sharing

	Cross-System Sharing
	Control Block Update Facility (CBUF)
	Considerations for CBUF Processing
	Checkpoints for Shared Data Sets

	Techniques of Data Sharing
	Cross-Region Sharing
	Cross-System Sharing
	User Access to VSAM Shared Information

	Chapter 13. Sharing Resources Among VSAM Data Sets
	Provision of a Resource Pool
	Building a Resource Pool: BLDVRP
	Using Hiperspace Buffers with LSR
	Deciding the Size of a Virtual Resource Pool
	Displaying Information about an Unopened Data Set
	Displaying Statistics about a Buffer Pool

	Connecting a Data Set to a Resource Pool: OPEN
	Deleting a Resource Pool Using the DLVRP Macro

	Management of I/O Buffers for Shared Resources
	Deferring Write Requests
	Relating Deferred Requests by Transaction ID
	Writing Buffers Whose Writing is Deferred: WRTBFR
	Handling Exits to Physical Error Analysis Routines
	Using the JRNAD Exit with Shared Resources

	Accessing a Control Interval with Shared Resources
	Locating an RBA in a Buffer Pool: SCHBFR
	Marking a Buffer for Output: MRKBFR

	Restrictions and Guidelines for Shared Resources

	Chapter 14. Using VSAM Record-Level Sharing
	Controlling Access to VSAM Data Sets
	Accessing Data Sets Using DFSMStvs and VSAM Record-Level Sharing
	Record-Level Sharing CF Caching
	Using VSAM RLS with CICS
	Recoverable and Nonrecoverable Data Sets
	CICS Transactional Recovery for VSAM Recoverable Data Sets

	Using VSAM RLS Outside of CICS
	Read Sharing of Recoverable Data Sets
	Read-Sharing Integrity across KSDS CI and CA Splits
	Read and Write Sharing of Nonrecoverable Data Sets
	Using Non-RLS Access to VSAM Data Sets
	Comparing RLS Access and Non-RLS Access
	Share Options
	Locking
	VSAM Options Not Used by RLS

	Requesting VSAM RLS Run-Mode
	Using VSAM RLS Read Integrity Options

	Using VSAM RLS with ESDS
	Specifying Read Integrity
	Specifying a Timeout Value for Lock Requests

	Chapter 15. Checking VSAM Key-Sequenced Data Set Clusters for Structural Errors
	EXAMINE Command
	Types of Data Sets
	EXAMINE Users

	How to Run EXAMINE
	Deciding to Run INDEXTEST, DATATEST, or Both Tests
	Skipping DATATEST on Major INDEXTEST Errors
	Examining a User Catalog
	Understanding Message Hierarchy
	Controlling Message Printout

	Samples of Output from EXAMINE Runs
	INDEXTEST and DATATEST Tests of an Error-Free Data Set
	INDEXTEST and DATATEST Tests of a Data Set with a Structural Error
	INDEXTEST and DATATEST Tests of a Data Set with a Duplicate Key Error

	Chapter 16. Coding VSAM User-Written Exit Routines
	Guidelines for Coding Exit Routines
	Programming Guidelines
	Multiple Request Parameter Lists or Data Sets
	Return to a Main Program

	IGW8PNRU Routine for Batch Override
	Register Contents
	Programming Considerations

	EODAD Exit Routine to Process End of Data
	Register Contents
	Programming Considerations

	EXCEPTIONEXIT Exit Routine
	Register Contents
	Programming Considerations

	JRNAD Exit Routine to Journalize Transactions
	Register Contents
	Programming Considerations
	Journalizing Transactions
	RBA Changes
	Control Interval Splits
	Parameter List

	LERAD Exit Routine to Analyze Logical Errors
	Register Contents
	Programming Considerations

	RLSWAIT Exit Routine
	Register Contents
	Request Environment

	SYNAD Exit Routine to Analyze Physical Errors
	Register Contents
	Programming Considerations
	Example of a SYNAD User-Written Exit Routine

	UPAD Exit Routine for User Processing
	Register Contents
	Programming Considerations

	User-Security-Verification Routine

	Chapter 17. Using 31-Bit Addressing Mode with VSAM
	VSAM Options

	Chapter 18. Using Job Control Language for VSAM
	Using JCL Statements and Keywords
	Data Set Name
	Disposition

	Creating VSAM Data Sets with JCL
	Temporary VSAM Data Sets
	Data Set Names
	Allocation
	Restrictions for Temporary VSAM Data Sets

	Examples Using JCL to Allocate VSAM Data Sets
	Example 1: Allocate a Key-Sequenced Data Set
	Example 2: Allocate a System-Managed Key-Sequenced Data Set Using Keywords
	Example 3: Allocate a VSAM Data Set Using Keyword Defaults
	Example 4: Allocate a Temporary VSAM Data Set
	Example 5: Allocate a Temporary VSAM Data Set Taking All Defaults

	Retrieving an Existing VSAM Data Set
	Migration Consideration
	Keywords Used to Process VSAM Data Sets

	Chapter 19. Processing Indexes of Key-Sequenced Data Sets
	Access to a Key-Sequenced Data Set Index
	Access to an Index with GETIX and PUTIX
	Access to the Index Component Alone
	Prime Index
	Index Levels

	Format of an Index Record
	Header Portion
	Free Control Interval Entry Portion
	Index Entry Portion

	Key Compression
	Index Update Following a Control Interval Split
	Index Entries for a Spanned Record

	Part 3. Non-VSAM Data Sets and UNIX Files
	Chapter 20. Selecting Record Formats for Non-VSAM Data Sets
	Format Selection
	Fixed-Length Record Formats
	Standard Format
	Restrictions

	Variable-Length Record Formats
	Format-V Records
	Block Descriptor Word (BDW)
	Record Descriptor Word (RDW)

	Spanned Format-VS Records (Sequential Access Method)
	Restrictions in Processing Spanned Records with QSAM
	Segment Descriptor Word
	Records Longer than 32 760 Bytes
	Null Segments

	Spanned Format-V Records (Basic Direct Access Method)

	Undefined-Length Record Format
	ISO/ANSI Tapes
	Character Data Conversion
	Format-F Records
	Format-D Records
	ISO/ANSI Format-DS and Format-DBS Records
	Converting the Segment Descriptor Word
	Processing Records Longer than 32 760 Bytes
	Processing DS/DBS Tapes with QSAM
	Processing DS/DBS Tapes with BSAM

	Format-U Records

	Record Format—Device Type Considerations
	Using Optional Control Characters
	Using Direct Access Storage Devices (DASD)
	Using Magnetic Tape
	Using a Printer
	Table Reference Character
	Record Formats

	Using a Card Reader and Punch
	Using a Paper Tape Reader

	Chapter 21. Specifying and Initializing Data Control Blocks
	Processing Sequential and Partitioned Data Sets
	Using OPEN to Prepare a Data Set for Processing
	Filling in the DCB
	Specifying the Forms of Macros, Buffering Requirements, and Addresses
	Coding Processing Methods

	Selecting Data Set Options
	Block Size (BLKSIZE)
	Large Block Interface (LBI)
	System-Determined Block Size

	Data Set Organization (DSORG)
	Key Length (KEYLEN)
	Record Length (LRECL)
	Record Format (RECFM)
	Write Validity Check Option (OPTCD=W)
	DD Statement Parameters

	Changing and Testing the DCB and DCBE
	Using the DCBD Macro
	Changing an Address in the DCB
	Using the IHADCBE Macro

	Using CLOSE to End the Processing of a Data Set
	Issuing the CHECK Macro
	Closing a Data Set Temporarily
	Using CLOSE TYPE=T with Sequential Data Sets
	Releasing Space
	Managing Buffer Pools When Closing Data Sets

	Opening and Closing Data Sets: Considerations
	Parameter Lists with 31-Bit Addresses
	Open and Close of Multiple Data Sets at the Same Time
	Factors to Consider When Allocating Direct Access Data Sets
	Guidelines for Opening and Closing Data Sets
	Open/Close/EOV Errors
	Installation Exits

	Positioning Volumes
	Releasing Data Sets and Volumes
	Processing End-of-Volume
	Positioning During End-of-Volume
	Using the OPEN Macro to Position Tape Volumes
	Using the DISP Parameter to Position Volumes

	Forcing End-of-Volume

	Managing SAM Buffer Space
	Constructing a Buffer Pool
	Building a Buffer Pool
	Building a Buffer Pool and a Record Area
	Getting a Buffer Pool
	Constructing a Buffer Pool Automatically
	Freeing a Buffer Pool
	Constructing a Buffer Pool: Examples

	Controlling Buffers
	Queued Access Method
	Basic Access Method
	QSAM in an Application
	Exchange Buffering

	Choosing Buffering Techniques and GET/PUT Processing Modes
	Using Buffering Macros with Queued Access Method
	RELSE—Release an Input Buffer
	TRUNC—Truncate an Output Buffer

	Using Buffering Macros with Basic Access Method
	GETBUF—Get a Buffer from a Pool
	FREEBUF—Return a Buffer to a Pool

	Chapter 22. Accessing Records
	Accessing Data with READ and WRITE
	Using the Data Event Control Block (DECB)
	Grouping Related Control Blocks in a Paging Environment
	Using Overlapped I/O with BSAM
	Reading a Block
	Writing a Block
	Ensuring I/O Initiation with the TRUNC Macro
	Testing Completion of a Read or Write Operation
	Waiting for Completion of a Read or Write Operation
	Handling Exceptional Conditions on Tape

	Accessing Data with GET and PUT
	GET—Retrieve a Record
	PUT—Write a Record
	PUTX—Write an Updated Record
	PDAB—Parallel Input Processing (QSAM Only)
	Using Parallel Data Access Blocks (PDAB)
	Testing for Parallel Processing

	Analyzing I/O Errors
	SYNADAF—Perform SYNAD Analysis Function
	SYNADRLS—Release SYNADAF Message and Save Areas
	Device Support Facilities (ICKDSF): Diagnosing I/O Problems

	Limitations with Using SRB or Cross-Memory Mode

	Chapter 23. Sharing Non-VSAM Data Sets
	Enhanced Data Integrity for Shared Sequential Data Sets
	Setting Up the Enhanced Data Integrity Function
	Synchronizing the Enhanced Data Integrity Function on Multiple Systems
	Using the START IFGEDI Command
	Bypassing the Enhanced Data Integrity Function for Applications
	Diagnosing Data Integrity Warnings and Violations
	Data Integrity Messages
	Data Integrity Violations

	PDSEs
	Direct Data Sets (BDAM)
	Factors to Consider When Opening and Closing Data Sets
	Control of Checkpoint Data Sets on Shared DASD Volumes
	System Use of Search Direct for Input Operations

	Chapter 24. Spooling and Scheduling Data Sets
	Job Entry Subsystem
	SYSIN Data Set
	SYSOUT Data Set

	Chapter 25. Processing Sequential Data Sets
	Creating a Sequential Data Set
	Retrieving a Sequential Data Set
	Concatenating Data Sets Sequentially
	Concatenating Like Data Sets
	Rules for a Sequential Like Data Set
	OPEN/EOV Exit Processing
	Persistence of DCB and DCBE Fields
	SMS-Managed Data Sets with Like Concatenation
	BSAM Block Size with Like Concatenation

	Concatenating Unlike Data Sets

	Modifying Sequential Data Sets
	Updating in Place
	Using Overlapped Operations
	Extending a Data Set
	Multivolume DASD Data Set
	Extended-Format Sequential Data Sets

	Achieving Device Independence
	Device-Dependent Macros
	DCB and DCBE Subparameters

	Improving Performance for Sequential Data Sets
	Limitations on Using Chained Scheduling with Non-DASD Data Sets
	DASD and Tape Performance

	Determining the Length of a Block when Reading with BSAM, BPAM, or BDAM
	Writing a Short Format-FB Block with BSAM or BPAM
	Using Hiperbatch
	Processing Extended-Format Sequential Data Sets
	Characteristics of Extended-Format Data Sets
	Allocating Extended-Format Data Sets
	Allocating Compressed-Format Data Sets
	Types of Compression
	Characteristics of Compressed Format Data Sets

	Opening and Closing Extended-Format Data Sets
	Reading, Writing, and Updating Extended-Format Data Sets Using BSAM and QSAM
	Concatenating Extended-Format Data Sets with Other Data Sets
	Extending Striped Sequential Data Sets
	Migrating to Extended-Format Data Sets
	Changing Existing BSAM and QSAM Applications
	Calculating DASD Space Used

	Chapter 26. Processing a Partitioned Data Set (PDS)
	Structure of a PDS
	PDS Directory
	Allocating Space for a PDS
	Calculating Space
	Allocating Space with SPACE and AVGREC

	Creating a PDS
	Creating a PDS Member with BSAM or QSAM
	Converting PDSs
	Copying a PDS or Member to Another Data Set
	Adding Members

	Processing a Member of a PDS
	BLDL—Construct a Directory Entry List
	DESERV
	FUNC=GET
	FUNC=GET_ALL

	FIND—Position to the Starting Address of a Member
	STOW—Update the Directory

	Retrieving a Member of a PDS
	Modifying a PDS
	Updating in Place
	With BSAM and BPAM
	With Overlapped Operations
	With QSAM

	Rewriting a Member

	Concatenating PDSs
	Sequential Concatenation
	Partitioned Concatenation

	Reading a PDS Directory Sequentially

	Chapter 27. Processing a Partitioned Data Set Extended (PDSE)
	Advantages of PDSEs
	PDSE and PDS Similarities
	PDSE and PDS Differences

	Structure of a PDSE
	PDSE Logical Block Size
	Reuse of Space
	Directory Structure
	Relative Track Addresses (TTR)

	Processing PDSE Records
	Using BLKSIZE with PDSEs
	Using KEYLEN with PDSEs
	Reblocking PDSE Records
	Processing Short Blocks
	Processing SAM Null Segments

	Allocating Space for a PDSE
	PDSE Space Considerations
	Use of Noncontiguous Space
	Integrated Directory
	Full Block Allocation
	PDSE Unused Space
	Frequency of Data Set Compression
	Extent Growth
	Logical Block Size
	Physical Block Size (Page Size)
	Free Space
	Fragmentation

	Summary of PDSE Storage Requirements

	Defining a PDSE
	Creating a PDSE Member
	Creating a PDSE Member with BSAM or QSAM
	Adding or Replacing PDSE Members Serially
	Adding or Replacing Multiple PDSE Members Concurrently
	Copying a PDSE or Member to Another Data Set

	Processing a Member of a PDSE
	Establishing Connections to Members
	Using the BLDL Macro to Construct a Directory Entry List
	Using the BSP Macro to Backspace a Physical Record
	Using the Directory Entry Services
	FUNC=GET
	FUNC=GET_ALL
	FUNC=GET_NAMES
	FUNC=RELEASE
	FUNC=UPDATE

	Using the FIND Macro to Position to the Beginning of a Member
	Using ISITMGD to Determine Whether the Data Set Is System Managed
	Using the NOTE Macro to Provide Relative Position
	Using the POINT Macro to Position to a Block
	Switching between Members
	Using the STOW Macro to Update the Directory

	Retrieving a Member of a PDSE
	Sharing PDSEs
	Sharing within a Computer System
	Sharing Violations
	Multiple System Sharing of PDSEs
	Buffered Data Invalidation—VARY OFFLINE
	DFP Share Attributes Callable Service (IGWLSHR)

	Normal or Extended PDSE Sharing
	Sharing PDSEs in a Single-System Environment
	Specifying Normal PDSE Sharing in a Multiple-System Environment
	Specifying Extended PDSE Sharing in a Multiple-System Environment

	Modifying a Member of a PDSE
	Updating in Place
	With BSAM and BPAM
	With Overlapped Operations
	With QSAM

	Extending a PDSE Member
	Deleting a PDSE Member
	Renaming a PDSE Member

	Reading a PDSE Directory
	Concatenating PDSEs
	Sequential Concatenation
	Partitioned Concatenation

	Converting PDSs to PDSEs and Back
	PDSE to PDS Conversion
	Restrictions on Converting PDSEs

	Improving Performance
	Recovering Space in Fragmented PDSEs
	PDSE Address Spaces

	Chapter 28. Processing z/OS UNIX Files
	Accessing the z/OS UNIX File System
	Characteristics of UNIX Directories and Files
	Access Methods Used

	Using HFS Data Sets
	Creating HFS Data Sets
	Creating Additional Directories

	Creating z/OS UNIX Files
	Creating a UNIX File with BSAM or QSAM
	Record Processing Considerations
	Processing Restrictions

	Creating a UNIX File Using JCL
	JCL Parameters for UNIX Files
	Creating a Macro Library in a UNIX Directory

	Managing UNIX Files and Directories
	Specifying Security Settings for UNIX Files and Directories
	Permissions for UNIX Files and Directories
	RACF Authorization for UNIX Files

	Editing UNIX Files
	Using ISHELL to Manage UNIX Files and Directories
	Copying UNIX Files or Directories
	Copying a PDS to a UNIX Directory or a UNIX Directory to a PDS
	Using the OPUT Command to Copy Members from a PDS or PDSE to a UNIX File
	Using the OPUTX Command to Copy Members from a PDS or PDSE to a UNIX Directory or File
	Using the OCOPY Command to Copy a PDS, PDSE, or UNIX Member to Another Member
	Using the OGET Command to Copy a UNIX File to a z/OS Data Set
	Using the OGETX Command to Copy a UNIX Directory to a PDS or PDSE

	Services and Utilities for UNIX Files
	Services and Utilities Cannot be Used with UNIX Files
	z/OS UNIX Signals
	z/OS UNIX Fork Service
	SMF Records

	Reading UNIX Files Using BPAM
	Using Macros for UNIX Files
	BLDL—Constructing a Directory Entry List
	CHECK—Checking for I/O Completion
	CLOSE—to Close the DCB
	FIND—Positioning to the Starting Address of a File
	READ—Reading a UNIX File
	STOW DISC—Closing a UNIX File

	Concatenating UNIX Files and Directories
	Sequential Concatenation
	Partitioned Concatenation

	Chapter 29. Processing Generation Data Groups
	Data Set Organization of Generation Data Sets
	Absolute Generation and Version Numbers
	Relative Generation Number
	Programming Considerations for Multiple-Step Jobs
	Cataloging Generation Data Groups
	Submitting Multiple Jobs to Update a Generation Data Group

	Naming Generation Data Groups for ISO/ANSI Version 3 or Version 4 Labels
	Creating a New Generation
	Allocating a Generation Data Set
	Referring to a Cataloged Data Set
	Creating a Model DSCB
	Using DATACLAS and LIKE Keywords

	Passing a Generation Data Set
	Rolling In a Generation Data Set
	Controlling Expiration of a Rolled-Off Generation Data Set
	Creating an ISAM Data Set as Part of a Generation Data Group

	Retrieving a Generation Data Set
	Reclaiming Generation Data Sets
	Turning on GDS Reclaim Processing
	Turning off GDS Reclaim Processing

	Building a Generation Data Group Index

	Chapter 30. Using I/O Device Control Macros
	Using the CNTRL Macro to Control an I/O Device
	Using the PRTOV Macro to Test for Printer Overflow
	Using the SETPRT Macro to Set Up the Printer
	Using the BSP Macro to Backspace a Magnetic Tape or Direct Access Volume
	Using the NOTE Macro to Return the Relative Address of a Block
	Using the POINT Macro to Position to a Block
	Using the SYNCDEV Macro to Synchronize Data

	Chapter 31. Using Non-VSAM User-Written Exit Routines
	General Guidance
	Programming Considerations
	Status Information Following an Input/Output Operation
	Data Event Control Block
	Event Control Block

	EODAD End-of-Data-Set Exit Routine
	Register Contents
	Programming Considerations

	SYNAD Synchronous Error Routine Exit
	Register Contents
	Programming Considerations
	Queued Access Methods
	Basic Access Methods
	Returning from the SYNAD routine
	ISAM

	DCB Exit List
	Register Contents for Exits from EXLST
	Serialization

	Allocation Retrieval List
	Programming Conventions
	Restrictions

	DCB ABEND Exit
	Recovery Requirements
	DCB Abend Installation Exit

	DCB OPEN Exit
	Calls to DCB OPEN Exit for Sequential Concatenation
	Installation DCB OPEN Exit

	Defer Nonstandard Input Trailer Label Exit List Entry
	Block Count Unequal Exit
	EOV Exit for Sequential Data Sets
	FCB Image Exit
	JFCB Exit
	JFCBE Exit
	Open/Close/EOV Standard User Label Exit
	Open/EOV Nonspecific Tape Volume Mount Exit
	Open/EOV Volume Security and Verification Exit
	QSAM Parallel Input Exit
	User Totaling for BSAM and QSAM

	Appendix A. Using Direct Access Labels
	Direct Access Storage Device Architecture
	Volume Label Group
	Data Set Control Block (DSCB)
	User Label Groups

	Appendix B. Using the Double-Byte Character Set (DBCS)
	DBCS Character Support
	Record Length When Using DBCS Characters
	Fixed-Length Records
	Variable-Length Records

	Appendix C. Processing Direct Data Sets
	Using the Basic Direct Access Method (BDAM)
	Processing a Direct Data Set Sequentially
	Organizing a Direct Data Set
	By Range of Keys
	By Number of Records
	With Indirect Addressing

	Creating a Direct Data Set
	Restrictions in Creating a Direct Data Set Using QSAM
	With Direct Addressing with Keys
	With BDAM to Allocate a VIO Data Set

	Referring to a Record
	Record Addressing
	Extended Search
	Exclusive Control for Updating
	Feedback Option

	Adding or Updating Records
	Format-F with Keys
	Format-F without Keys
	Format-V or Format-U with Keys
	Format-V or Format-U without Keys
	Tape-to-Disk Add—Direct Data Set
	Tape-to-Disk Update—Direct Data Set
	With User Labels

	Sharing DCBs

	Appendix D. Processing Indexed Sequential Data Sets
	Using the Basic Indexed Sequential Access Method (BISAM)
	Using the Queued Indexed Sequential Access Method (QISAM)
	Processing ISAM Data Sets
	Organizing Data Sets
	Prime Area
	Index Areas
	Track Index
	Cylinder Index
	Master Index

	Overflow Areas

	Creating an ISAM Data Set
	One-Step Method
	Full-Track-Index Write Option
	Multiple-Step Method
	Resume Load

	Allocating Space
	Prime Data Area
	Specifying a Separate Index Area
	Specifying an Independent Overflow Area
	Specifying a Prime Area and Overflow Area

	Calculating Space Requirements
	Step 1. Number of Tracks Required
	Step 2. Overflow Tracks Required
	Step 3. Index Entries Per Track
	Step 4. Determine Unused Space
	Step 5. Calculate Tracks for Prime Data Records
	Step 6. Cylinders Required
	Step 7. Space for Cylinder Indexes and Track Indexes
	Step 8. Space for Master Indexes
	Summary of Indexed Sequential Space Requirements Calculations

	Retrieving and Updating
	Sequential Retrieval and Update
	Direct Retrieval and Update
	Ensuring a Record is in Virtual Storage
	Updating Existing Records
	Sharing a BISAM DCB between Related Tasks
	Subtasking
	Direct Updating with Exclusive Control
	Direct Update with Variable-Length Records

	Adding Records
	Inserting New Records
	Adding New Records to the End of a Data Set

	Maintaining an Indexed Sequential Data Set
	Buffer Requirements
	Work Area Requirements
	Calculating the Size of the Work Area

	Space for the Highest-Level Index
	Device Control
	SETL—Specifying Start of Sequential Retrieval
	Retrieval of Deleted Records

	ESETL—Ending Sequential Retrieval

	Appendix E. Using ISAM Programs with VSAM Data Sets
	Upgrading ISAM Applications to VSAM
	How an ISAM Program Can Process a VSAM Data Set
	Conversion of an Indexed Sequential Data Set
	JCL for Processing with the ISAM Interface
	Restrictions on the Use of the ISAM Interface
	Example: Converting a Data Set
	Example: Issuing a SYNADAF Macro

	Appendix F. Converting Character Sets
	Coded Character Sets Sorted by CCSID
	Coded Character Sets Sorted by Default LOCALNAME
	CCSID Conversion Groups
	CCSID Decision Tables
	Tables for Default Conversion Codes
	Converting from EBCDIC to ASCII
	Converting from ASCII to EBCDIC

	Appendix G. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

