
z/OS

MVS JCL User’s Guide

SA22-7598-02

���

z/OS

MVS JCL User’s Guide

SA22-7598-02

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
F-1.

Third Edition, October 2003

This is a major revision of SA22-7598-01.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1 Release 4 of z/OS.e (5655-G52), and to
all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:
 International Business Machines Corporation
 Department 55JA, Mail Station P384
 2455 South Road
 Poughkeepsie, NY 12601-5400
 United States of America

 FAX (United States & Canada): 1+845+432-9405
 FAX (Other Countries):
 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
 Internet e-mail: mhvrcfs@us.ibm.com
 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xi

Tables . xiii

About This Document . xv
Who Should Use This Book . xv
Where to Find More Information xv

Programs . xv
Hardware . xv

Accessing z/OS™ licensed documents on the Internet xvi
Using LookAt to look up message explanations xvi

Summary of Changes . xvii

Part 1. Introduction

Chapter 1. Introduction - Job Control Statements 1-1
JCL Statements . 1-1
JECL Statements . 1-2

Chapter 2. Introduction - Job Control Language (JCL) 2-1
Understanding JCL . 2-1

“Chez MVS” . 2-1
How This Relates to JCL . 2-1
Job Control Statements . 2-2
Required Control Statements 2-3

Exercise: Creating and Entering a Job 2-3
Before You Begin . 2-3
Step 1. Allocate a Data Set to Contain Your JCL 2-4
Step 2. Edit the JCL Data Set and Add the Necessary JCL 2-4
Step 3. Submit the JCL to the System as a Job 2-6
Step 4. View and Understand the Output from the Job 2-7
Step 5. Make Changes to Your JCL 2-8
Step 6. View and Understand Your Final Output 2-9

More Complex Jobs . 2-11
In-Stream and Cataloged Procedures 2-11
Input Streams . 2-12

Additional Information . 2-13
Installation Conventions Worksheet 2-13
Using ISPF to Allocate and Edit a Data Set 2-13
Using SDSF to View Held Output from a Job 2-15
Helpful Utilities . 2-17

Chapter 3. Job Control Tasks 3-1
Entering Jobs . 3-1
Processing Jobs . 3-2
Requesting Resources . 3-2
Task Charts . 3-2

Part 2. Tasks for Entering Jobs

Chapter 4. Entering Jobs - Identification 4-1

© Copyright IBM Corp. 1988, 2003 iii

Identification of Job . 4-1
Identification of Step . 4-2
Identification of Procedure . 4-2
Identification of INCLUDE Group 4-3
Identification of Account . 4-3

For Local Execution . 4-3
For Remote Execution . 4-4

Identification of Programmer . 4-4

Chapter 5. Entering Jobs - Execution 5-1
Execution of Program . 5-1
Execution of Procedure . 5-1
Execution when Restarting and with Checkpointing (non-APPC) 5-2

Restarting after Abnormal Termination 5-2
Restarting When the System Failed in a JES2 System 5-3
Restarting When the System Failed in a JES3 System 5-3

Deadline or Periodic Execution in a JES3 System 5-3
Use of Deadline Scheduling 5-4
Use of Periodic Scheduling 5-4

Execution when Dependent on Other Jobs in a JES3 System 5-4
Execution at Remote Node (non-APPC) 5-6

Considerations when Submitting a Remote Job 5-7

Chapter 6. Entering Jobs - Job Input Control 6-1
Job Input Control by Holding Job Entrance (Non-APPC) 6-1
Job Input Control by Holding Local Input Reader (Non-APPC) 6-2
Job Input Control by Copying Input Stream (Non-APPC) 6-2
Job Input Control from Remote Work Station 6-3

JES2 Remote Job Entry . 6-3
JES3 Remote Job Processing 6-4

Chapter 7. Entering Jobs - Communication 7-1
Communication from JCL to System (Non-APPC) 7-1
Communication from JCL to Operator (Non-APPC) 7-2
Communication from JCL to Programmer 7-2
Communication from JCL to Program 7-2

PARM Values for IBM-Supplied Programs 7-3
Communication from System to Operator 7-3

Messages during Volume Mounting 7-3
Messages When Job Exceeds Output Limit 7-3

Communication from System to Userid 7-5
Job Completion . 7-5
Print Completion . 7-5

Communication from Time Sharing Userid to a JES3 System 7-6
Communication from Functional Subsystem to Programmer 7-6
Communication through Job Log 7-6

Printing Job Log and Sysout Data Sets Together 7-7

Chapter 8. Entering Jobs - Protection 8-1
Protection through RACF . 8-1

Chapter 9. Entering Jobs - Resource Control 9-1
Resource Control of Program Library 9-1

System Library . 9-1
Private Library . 9-2
Temporary Library . 9-4

iv z/OS V1R4.0 MVS JCL User’s Guide

Resource Control of Procedure Library 9-4
Retrieving a Procedure Library 9-5
Updating a Procedure Library 9-5

Resource Control of INCLUDE Group 9-6
Retrieving an INCLUDE Group 9-6

Resource Control of Address Space 9-6
Types of Storage . 9-6
Requesting Amount and Type of Storage 9-7

Resource Control of the Processor 9-8
Selecting a Processor Using A Scheduling Environment 9-8
Selecting a Processor in JES2 9-9
Selecting a Processor in JES3 9-10

Resource Control of Spool Partitions in a JES3 System 9-11

Part 3. Tasks for Processing Jobs

Chapter 10. Processing Jobs - Processing Control 10-1
Processing Control by Conditional Execution 10-1

Bypassing or Executing Steps Based on the Evaluation of Previous Steps 10-1
Bypassing or Executing Steps Based on Return Codes 10-5

Processing Control by Cancelling a Job that Exceeds Output Limit 10-12
Limiting Output in an APPC Scheduling Environment 10-12
Limiting Output in a Non-APPC Scheduling Environment 10-12
Use in Testing . 10-13

Processing Control by Timing Execution 10-13
JOB and EXEC TIME Parameter 10-13
JES2 Time Parameters . 10-15
OS/390 UNIX System Services Considerations 10-15

Processing Control for Testing 10-15
Altering Usual Processing for Testing 10-15

Chapter 11. Processing Jobs - Performance Control 11-1
Performance Control by Job Class Assignment (Non-APPC) 11-1
Performance Control by Selection Priority (Non-APPC) 11-2

Priority for JES2 Jobs . 11-2
Priority for JES3 Jobs . 11-3
Priority Aging . 11-3

Performance Control by Performance Group (Non-APPC) 11-3
Performance Control by I/O-to-Processing Ratio (Non-APPC) 11-4

Part 4. Tasks for Requesting Data Set Resources

Chapter 12. Data Set Resources - Identification 12-1
Identification of Data Set . 12-1

Permanent Data Set . 12-1
Temporary Data Sets . 12-3
Copying the Data Set Name from an Earlier DD Statement 12-4
Concatenating Data Sets 12-5

Identification of In-Stream Data Set (Non-APPC) 12-5
Entering Data Through the Input Stream 12-5
In-Stream Data Sets in a JES3 System 12-6

Identification of Data Set on 3540 Diskette Input/Output Unit 12-6
Identification through Catalog 12-6

Using Private Catalogs . 12-7
Identification through Label . 12-7

Contents v

Identification by Location on Tape 12-9
Identification as TCAM Message Data Set 12-9
Identification as Data Set from or to Terminal (Non-APPC) 12-10

Chapter 13. Data Set Resources - Description 13-1
Description of Status . 13-1

Data Set Integrity Processing 13-2
Description of Data Attributes 13-4

In Data Control Block (DCB) 13-4
Migration and Backup (with SMS) 13-7

Chapter 14. Data Set Resources - Protection 14-1
Protection through RACF . 14-1

Protection with the PROTECT Parameter 14-1
Protection with the SECMODEL Parameter 14-2

Protection for ISO/ANSI/FIPS Version 3 Tapes 14-2
Protection by Passwords . 14-2
Protection of Access to BSAM or BDAM Data Sets 14-3

Chapter 15. Data Set Resources - Allocation 15-1
Allocation of Device . 15-2

Device Allocation for SMS-Managed Data Sets 15-2
Device Allocation for Non-SMS-Managed Data Sets 15-3
Device Allocation in a JES3 System 15-11

Allocation of Volume . 15-15
Volume Allocation for SMS-Managed Data Sets 15-16
Volume Allocation for Non-SMS-Managed Data Sets 15-17
Volume Allocation for Non-System-Managed Data Sets and Data Sets on

a System-Managed Tape Volume 15-17
Interactions Between Device and Volume Allocation 15-24

Relationship of the UNIT and VOLUME Parameters (Non-SMS-Managed
Data Sets) . 15-24

Relationship of the UNIT and VOLUME Parameters (SMS-Managed Data
Sets) . 15-28

Unit and Volume Affinity for Non-System-Managed Data Sets and Data
Sets on a System-Managed Tape Volume 15-29

Stacking Data Sets . 15-37
Examples of Data Set Stacking 15-38
Data Set Stacking and Tape Mount Management 15-40

Allocation of Direct Access Space 15-42
Requesting System Assigned Space 15-43
Requesting Specific Tracks 15-47

Allocation of Virtual I/O . 15-47
Backward References to VIO Data Sets 15-49

Allocation with Volume Premounting in a JES2 System 15-50
Dynamic Allocation . 15-50

Chapter 16. Data Set Resources - Processing Control 16-1
Processing Control by Suppressing Processing 16-1
Processing Control by Postponing Specification 16-2
Processing Control with Checkpointing 16-4
Processing Control by Subsystem 16-4

Requesting Subsystem . 16-4
Program Control Statements for a Subsystem 16-4

Processing Control by TCAM Job or Task 16-5

vi z/OS V1R4.0 MVS JCL User’s Guide

Chapter 17. Data Set Resources - End Processing 17-1
Unallocation End Processing 17-1
Disposition End Processing of Data Set 17-1

Disposition Controlled by DISP Parameter 17-1
Disposition Controlled by Time 17-10

Release of Unused Direct Access Space in End Processing 17-10
Disposition End Processing of Volume 17-11

Disposition of Removable Volumes 17-11
Volume Retention . 17-12

Part 5. Tasks for Requesting Sysout Data Set Resources

Chapter 18. Sysout Resources - Identification 18-1
Identification as a Sysout Data Set 18-1
Identification of Output Class 18-1
Identification of Data Set on 3540 Diskette Input/Output Unit 18-2

Chapter 19. Sysout Resources - Description 19-1
Description of Data Attributes 19-1

Chapter 20. Sysout Resources - Protection 20-1
Protection of Printed Output 20-1

Chapter 21. Sysout Resources - Performance Control 21-1
Performance Control by Queue Selection (non-APPC) 21-1

Chapter 22. Sysout Resources - Processing Control 22-1
Processing Control with Additional Parameters 22-1

Adding Parameters from OUTPUT JCL Statement 22-2
Adding Parameters from JES2 /*OUTPUT Statement 22-4
Adding Parameters from JES3 //*FORMAT Statement 22-4

Processing Control by Segmenting 22-4
Processing Control with Other Data Sets 22-4

Using Output Class . 22-4
Using Sysout Data Set Size in a JES3 System 22-5
Using Groups in a JES2 System 22-5

Processing Control by External Writer 22-6
Processing Control by Mode 22-7
Processing Control by Holding 22-7

Holding Using the DD Statement 22-7
Holding Using the OUTPUT JCL Statement 22-7

Processing Control by Suppressing Output 22-8
Using Dummy Status to Suppress Output 22-8
Using Class to Suppress Output in a JES2 System 22-9
Using the OUTPUT JCL Statement to Suppress Output in a JES2 System 22-9

Processing Control with Checkpointing 22-10
Processing Control by Print Services Facility 22-10

Identifying a Library to PSF 22-10

Chapter 23. Sysout Resources - End Processing 23-1
Unallocation End Processing 23-1

Chapter 24. Sysout Resources - Destination Control 24-1
Destination Control to Local or Remote Device or to Another Node 24-1

Multiple Destinations . 24-1
Controlling Output Destination in a JES2 Network 24-2

Contents vii

Controlling Output Destination in a JES3 Network 24-4
Destination Control to Another Processor in a JES3 System 24-5
Destination Control to Internal Reader 24-5
Destination Control to Terminal 24-7
Destination Control to Assist in Sysout Distribution 24-7

Chapter 25. Sysout Resources - Output Formatting 25-1
Output Formatting to Any Printer 25-1
Output Formatting to 3800 Printing Subsystem 25-2

Copy Modification . 25-3
Character Arrangements . 25-3

Output Formatting to 3211 Printer with Indexing Feature in a JES2 System 25-4
Output Formatting to Punch 25-4

Interpretation of Punched Cards 25-5
Output Formatting of Dumps on 3800 Printing Subsystem 25-5

Chapter 26. Sysout Resources - Output Limiting 26-1
Output Limiting . 26-1

Limiting Output in an APPC Scheduling Environment 26-1
Limiting Output in a Non-APPC Scheduling Environment 26-2
Actions when Limit Exceeded 26-2

Chapter 27. Sysout Resources - USERDATA OUTPUT JCL Keyword 27-1
References . 27-1
Examples . 27-1

Part 6. Examples

Chapter 28. Example - Assemble, Linkedit, and Go 28-1

Chapter 29. Example - Multiple Output 29-1

Chapter 30. Example - Obtaining Output in a JES2 System 30-1

Chapter 31. Example - Obtaining Output in a JES3 System 31-1

Chapter 32. Example - Identifying Data Sets to the System 32-1

Part 7. Appendixes

Appendix A. Indexed Sequential Data Sets A-1
Creating an Indexed Sequential Data Set A-1

Procedure when Allocation Error Occurs A-4
Area Arrangement of an Indexed Sequential Data Set A-4

Retrieving an Indexed Sequential Data Set A-5

Appendix B. Generation Data Sets B-1
Building a GDG Base Entry . B-2
Defining Attributes for SMS-Managed Generation Data Sets B-2

Creating an SMS-Managed Generation Data Set B-3
Disposition of SMS-Managed Generation Data Sets B-3
Defining Attributes for Non-SMS-Managed Generation Data Sets B-4
Creating a Non-SMS-Managed Generation Data Set B-5
Retrieving a Generation Data Set B-6
Deleting and Uncataloging Generation Data Sets B-9

viii z/OS V1R4.0 MVS JCL User’s Guide

Submitting a Job for Restart B-10

Appendix C. VSAM Data Sets C-1
VSAM Data Sets - With SMS C-1

Creating a VSAM Data Set - With SMS C-1
Retrieving an Existing VSAM Data Set - With SMS C-1
Migration Consideration for SMS C-1
DD Statement Parameters - With SMS C-1

VSAM Data Sets - Without SMS C-4
Creating a VSAM Data Set - Without SMS C-4
Retrieving an Existing VSAM Data Set - Without SMS C-4
DD Statement Parameters - Without SMS C-5

Appendix D. Data Sets with SMS D-1
SMS Constructs . D-1

Existing JCL . D-2
Default Unit . D-2

Specifying Constructs . D-2
Overriding Attributes Defined in the Data Class D-3
Overriding Attributes Defined in the Management Class D-3
Overriding Attributes Defined in the Storage Class D-3

Protecting Data Sets with RACF D-4
Modeling Data Set Attributes D-4

Appendix E. Accessibility . E-1
Using assistive technologies E-1
Keyboard navigation of the user interface E-1

Notices . F-1
Trademarks . F-2

Index . X-1

Contents ix

x z/OS V1R4.0 MVS JCL User’s Guide

Figures

2-1. JCL-Related Actions (User and MVS) . 2-2
2-2. Output from Job Invoking IEFBR14 Program 2-8
2-3. Output from Job Invoking SORT Program . 2-10

© Copyright IBM Corp. 1988, 2003 xi

xii z/OS V1R4.0 MVS JCL User’s Guide

Tables

1-1. MVS Job Control Language (JCL) Statements 1-1
1-2. Job Entry Control Language (JECL) Statements 1-2
2-1. In-Stream Procedure . 2-11
2-2. Cataloged Procedure: Member MYPROC in SYS1.PROCLIB 2-12
2-3. Job that Executes Cataloged Procedure MYPROC 2-12
2-4. Job Boundaries in a Three-Job Input Stream 2-12
2-5. Tasks and Utility Programs . 2-17
3-1. Tasks for Entering Jobs . 3-3
3-2. Tasks for Processing Jobs . 3-5
3-3. Tasks for Requesting Data Set Resources . 3-6
3-4. Tasks for Requesting Sysout Data Set Resources 3-8
4-1. Identification Task for Entering Jobs . 4-1
5-1. Execution Task for Entering Jobs . 5-1
6-1. Input Control Task for Entering Jobs . 6-1
7-1. Communication Task for Entering Jobs . 7-1
8-1. Protection Task for Entering Jobs . 8-1
9-1. Resource Control Task for Entering Jobs . 9-1
10-1. Processing Control Task for Processing Jobs 10-1
11-1. Performance Control Task for Processing Jobs 11-1
12-1. Identification Task for Requesting Data Set Resources 12-1
13-1. Description Task for Requesting Data Set Resources 13-1
13-2. Data Set Integrity Processing . 13-3
14-1. Protection Task for Requesting Data Set Resources 14-1
14-2. Processing with DD LABEL Subparameter IN or OUT 14-3
15-1. Allocation Task for Requesting Data Set Resources 15-1
15-2. Effect of Device Status on Allocation . 15-3
15-3. JES3 Job Setup (SETUP=JOB) . 15-13
15-4. JES3 High Watermark Setup (SETUP=HWS) 15-14
15-5. JES3 Explicit Setup (SETUP=ddname) . 15-15
15-6. Unit-Affinity Examples of Tape Library Requests 15-31
15-7. Unit and Volume Affinity (Non-SMS-Managed Data Sets) 15-33
15-8. IBM-Recommended Parameters for Data Set Stacking 15-37
16-1. Processing Control Task for Requesting Data Set Resources 16-1
17-1. End Processing Task for Requesting Data Set Resources 17-1
18-1. Identification Task for Requesting Sysout Data Set Resources 18-1
19-1. Description Task for Requesting Sysout Data Set Resources 19-1
20-1. Protection Task for Requesting Sysout Data Set Resources 20-1
21-1. Performance Control Task for Requesting Sysout Data Set Resources 21-1
22-1. Processing Control Task for Requesting Sysout Data Set Resources 22-1
23-1. End Processing Task for Requesting Sysout Data Set Resources 23-1
24-1. Destination Control Task for Requesting Sysout Data Set Resources 24-1
25-1. Output Formatting Task for Requesting Sysout Data Set Resources 25-1
26-1. Output Limiting Task for Requesting Sysout Data Set Resources 26-1
A-1. Area Arrangement of ISAM Data Sets . A-5
A-2. DD Parameters for Retrieving or Extending an ISAM Data Set A-7
C-1. With SMS, DD Parameters to Use when Processing VSAM Data Sets C-2
C-2. With SMS, DD Parameters to Avoid when Processing VSAM Data Sets C-3
C-3. Without SMS, DD Parameters to Use when Processing VSAM Data Sets C-5
C-4. Without SMS, DD Parameters to Avoid when Processing VSAM Data Sets C-6

© Copyright IBM Corp. 1988, 2003 xiii

xiv z/OS V1R4.0 MVS JCL User’s Guide

About This Document

This document describes the job control tasks needed to enter jobs into the
operating system, control the system’s processing of jobs, and request the
resources needed to run jobs. To perform the tasks, programmers code job control
statements. This book describes how to use these statements, which consist of:
v Job control language (JCL) statements
v Job entry subsystem 2 (JES2) control statements
v Job entry subsystem 3 (JES3) control statements

This book is designed as a user’s guide, to be used when deciding how to perform
job control tasks. It does not describe how to code the statements. For an
introduction to the statements and for coding information, see the companion book,
z/OS MVS JCL Reference, SA22-7597.

Who Should Use This Book
This book is for system and application programmers who enter programs into the
operating system. Those using this book should understand the concepts of job
management and data management.

Where to Find More Information
To have complete JCL information, you need the following book:
 z/OS MVS JCL Reference, SA22-7597

Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for all
products that are part of z/OS, see z/OS Information Roadmap. The following tables
list titles and order numbers for books related to other products.

Programs
 Short Title Used in This Book Title Order Number

ACF/TCAM Installation Reference Advanced Communications Function for TCAM, Version
2 Installation Reference

SC30-3133

ISPF/PDF Guide and Reference ISPF/PDF Guide and Reference V3.4 for MVS SC34-4258

PSF/MVS System Programming
Guide

PSF/MVS System Programming Guide S544-3672

PSF/MVS Application Programming
Guide

PSF/MVS Application Programming Guide S544-3673

Hardware
 Short Title Used in This Book Title Order Number

2821 Component Description IBM 2821 Control Unit Component Description GA24-3312

None IBM 3340 Disk/Storage - Fixed Head Feature User’s
Guide

GA26-1632

3540 Programmer’s Reference OS/VS2 IBM 3540 Programmer’s Reference GC24-5111

3800 Programmer’s Guide IBM 3800 Printing Subsystem Programmer’s Guide GC26-3846

© Copyright IBM Corp. 1988, 2003 xv

Short Title Used in This Book Title Order Number

Forms Design Reference Guide for
the 3800

Forms Design Reference Guide for the IBM 3800
Printing Subsystem

GA26-1633

Accessing z/OS™ licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

To print licensed documents, you can use the PDF format on either z/OS Licensed
Product Library CD-ROM or IBM Resource Link .

Using LookAt to look up message explanations
LookAt is an online facility that lets you look up explanations for most messages
you encounter, as well as for some system abends and codes. Using LookAt to find
information is faster than a conventional search because in most cases LookAt
goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/ or from anywhere in z/OS or
z/OS.e where you can access a TSO/E command line (for example, TSO/E prompt,
ISPF, z/OS UNIX System Services running OMVS).

The LookAt Web site also features a mobile edition of LookAt for devices such as
Pocket PCs, Palm OS, or Linux-based handhelds. So, if you have a handheld
device with wireless access and an Internet browser, you can now access LookAt
message information from almost anywhere.

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the LookAt Web site’s Download link.

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xvi z/OS V1R4.0 MVS JCL User’s Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Summary of Changes

Summary of Changes
for SA22-7598-02
z/OS Version 1 Release 4
as updated October, 2003

 The book contains information previously presented in SA22-7598-01, which
supports z/OS Version 1 Release 2.

The XMIT statement is now supported by JES2 - previously, it was supported only
by JES3.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of Changes
for SA22-7598-01
z/OS Version 1 Release 2

 The book contains information previously presented in SA22-7598-00, which
supports z/OS Version 1 Release 1.

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

You may notice changes in the style and structure of some content in this book —
for example, headings that use uppercase for the first letter of initial words only, and
procedures that have a different look and format. The changes are ongoing
improvements to the consistency and retrievability of information in our books.

Summary of Changes
for SA22-7598-00
z/OS Version 1 Release 1

 The book contains information also presented in OS/390 MVS JCL User’s Guide.

© Copyright IBM Corp. 1988, 2003 xvii

xviii z/OS V1R4.0 MVS JCL User’s Guide

Part 1. Introduction

For your program to execute on the computer and perform the work you designed it
to do, your program must be processed by your operating system. Your operating
system consists of a base control program (BCP) with a job entry subsystem (JES2
or JES3) and DFSMSdfp installed with it.

For the operating system to process a program, programmers must perform certain
job control tasks. These tasks are performed through the job control statements,
which are listed in the first chapter. The job control tasks and introductory
information about JCL are introduced in the second chapter. The charts in the third
chapter divide these tasks into detailed subtasks. The tasks are:
v Entering jobs
v Processing jobs
v Requesting resources

© Copyright IBM Corp. 1988, 2003

Part 1. Introduction

 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 1. Introduction - Job Control Statements

This chapter lists, in Table 1-1, all but one of the statements in the MVS Job Control
Language (JCL), and in Table 1-2 on page 1-2, all of the Job Entry Control
Language (JECL) statements for the JES2 and JES3 subsystems, together with the
purpose of each statement. (The PRINTDEV JCL statement, for use by the person
starting the Print Services Facility, is documented in the manual PSF for z/OS:
Customization.)

JCL Statements
 Table 1-1. MVS Job Control Language (JCL) Statements

Statement Name Purpose

// command JCL command Enters an MVS system operator
command through the input stream. The
command statement is used primarily by
the operator. Use the COMMAND
statement instead of the JCL command
statement.

// COMMAND command Specifies an MVS or JES command that
the system issues when the JCL is
converted. Use the COMMAND statement
instead of the JCL command statement.

//* comment comment Contains comments. The comment
statement is used primarily to document a
program and its resource requirements.

// CNTL control Marks the beginning of one or more
program control statements.

// DD data definition Identifies and describes a data set.

/* delimiter Indicates the end of data placed in the
input stream.

Note: A user can designate any two
characters to be the delimiter.

// ENDCNTL end control Marks the end of one or more program
control statements.

// EXEC execute Marks the beginning of a job step;
assigns a name to the step; identifies the
program or the cataloged or in-stream
procedure to be executed in this step.

// IF/THEN/ELSE/ENDIF IF/THEN/ELSE/ENDIF
statement construct

Specifies conditional execution of job
steps within a job.

// INCLUDE include Identifies a member of a partitioned data
set (PDS) or partitioned data set
extended (PDSE) that contains JCL
statements to be included in the job
stream.

// JCLLIB JCL library Identifies the libraries that the system will
search for:
v INCLUDE groups
v Procedures named in EXEC

statements.

© Copyright IBM Corp. 1988, 2003 1-1

Table 1-1. MVS Job Control Language (JCL) Statements (continued)

Statement Name Purpose

// JOB job Marks the beginning of a job; assigns a
name to the job.

// null Marks the end of a job.

// OUTPUT output JCL Specifies the processing options that the
job entry subsystem is to use for printing
a sysout data set.

// PEND procedure end Marks the end of an in-stream or
cataloged procedure.

// PROC procedure Marks the beginning of an in-stream
procedure and may mark the beginning of
a cataloged procedure; assigns default
values to parameters defined in the
procedure.

// SET set Defines and assigns initial values to
symbolic parameters used when
processing JCL statements. Changes or
nullifies the values assigned to symbolic
parameters.

// XMIT transmit Transmits input stream records from one
node to another.

JECL Statements
 Table 1-2. Job Entry Control Language (JECL) Statements

Statement Purpose

Job Entry Subsystem 2 (JES2) Control Statements

/*$command Enters JES2 operator commands through the input stream.

/*JOBPARM Specifies certain job-related parameters at input time.

/*MESSAGE Sends messages to the operator via the operator console.

/*NETACCT Specifies an account number for a network job.

/*NOTIFY Specifies the destination of notification messages.

/*OUTPUT Specifies processing options for sysout data set(s).

/*PRIORITY Assigns a job queue selection priority.

/*ROUTE Specifies the output destination or the execution node for the job.

/*SETUP Requests mounting of volumes needed for the job.

/*SIGNOFF Ends a remote job stream processing session.

/*SIGNON Begins a remote job stream processing session.

/*XEQ Specifies the execution node for a job.

/*XMIT Indicates a job or data stream to be transmitted to another JES2
node or eligible non-JES2 node.

Job Entry Subsystem 3 (JES3) Control Statements

//**command Enters JES3 operator commands, except *DUMP and *RETURN,
through the input stream.

//*DATASET Begins an input data set in the input stream.

//*ENDDATASET Ends the input data set that began with a //*DATASET statement.

Introduction - Statements

1-2 z/OS V1R4.0 MVS JCL User’s Guide

Table 1-2. Job Entry Control Language (JECL) Statements (continued)

Statement Purpose

//*ENDPROCESS Ends a series of //*PROCESS statements.

//*FORMAT Specifies the processing options for a sysout or JES3-managed
print or punch data set.

//*MAIN Defines selected processing parameters for a job.

//*NET Identifies relationships between predecessor and successor jobs
in a dependent job control net.

//*NETACCT Specifies an account number for a network job.

//*OPERATOR Sends messages to the operator.

//*PAUSE Halts the input reader.

//*PROCESS Identifies a nonstandard job.

//*ROUTE Specifies the execution node for the job.

/*SIGNOFF Ends a remote job stream processing session.

/*SIGNON Begins a remote job stream processing session.

Introduction - Statements

Chapter 1. Introduction - Job Control Statements 1-3

Introduction - Statements

1-4 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 2. Introduction - Job Control Language (JCL)

This chapter is divided into the following sections:

 Heading Description

“Understanding JCL” Explains the purpose of JCL and how it is used.

“Exercise: Creating and
Entering a Job” on page 2-3

Provides an example of JCL code that you can use as a
basis for your own jobs.

“More Complex Jobs” on
page 2-11

Explains how to create and use in-stream and cataloged
procedures and how to group more than one job into input
streams.

“Additional Information” on
page 2-13

Contains a worksheet for documenting installation
conventions; explains how to use ISPF to allocate and edit
a data set; explains how to use SDSF to view held output
from a job; and lists utilities that you can use with JCL to
accomplish various tasks.

Understanding JCL
To get your MVS system to do work for you, you must describe to the system the
work you want done and the resources you will need.

You use Job Control Language (JCL) to provide this information to MVS.

“Chez MVS”
One way of thinking about JCL is to compare it to a menu in a restaurant.

If you are a customer at a restaurant, you and the other customers don’t just walk
into the kitchen and start cooking your own dinners—that would defeat the very
purpose of going to a restaurant. Instead, from a menu describing all the restaurant
has to offer, you select items to make up an order, specifying which entrees you
want, which salad dressing you prefer, and any other special requests you have.
You then ask the waiter to take your order to the kitchen.

In the kitchen, a team of chefs divides up the work and the appropriate ingredients
in order to prepare each dish as quickly and efficiently as possible. While the meals
are being prepared, you and your friends can ignore what’s going on in the kitchen,
engaging instead in dinner conversation, catching up on the latest news. When the
waiter brings your meal out, you concentrate on your enjoyment of the meal.

How This Relates to JCL
Now imagine yourself back at the office using your MVS system, and think of JCL
as the menu. In the same way that you and the other diners select items from the
menu and place orders for the waiter to take to the team of chefs, you and other
MVS users use JCL to define work requests (called jobs), and use a job entry
subsystem (JES) to submit those jobs to MVS.

Using the information that you and the other users provide with JCL statements,
MVS allocates the resources needed to complete all of your jobs—just as the
kitchen chefs divided up the work to prepare the orders of all the customers.

© Copyright IBM Corp. 1988, 2003 2-1

And just as the chefs worked in the kitchen while you and the other diners devoted
your attention to what was going on at your tables, MVS completes the submitted
jobs in the background of the system, enabling you and the other users to
continue working on other activities in the foreground.

And just as the waiter conveys the results of the chefs’ work to you, JES presents
the output of the jobs to you.

Figure 2-1 shows an overview of the job-submission process. The user performs the
parts on the left side of the figure, and the system performs the parts on the right.
In this figure, MVS and JES comprise the “system”. Later in this introduction,
distinctions will be made between MVS and JES, and between the two versions of
JES (JES2 and JES3).

Job Control Statements
For every job that you submit, you need to tell MVS where to find the appropriate
input, how to process that input (that is, what program or programs to run), and
what to do with the resulting output.

You use JCL to convey this information to MVS through a set of statements known
as job control statements. JCL’s set of job control statements is quite large,
enabling you to provide a great deal of information to MVS.

Most jobs, however, can be run using a very small subset of these control
statements. Once you become familiar with the characteristics of the jobs you
typically run, you may find that you need to know the details of only some of the
control statements.

Create
the
JCL

Determine
the
Job

Submit
the
Job

User
views and
interprets

output

System
Messages

MVS does
the work

JES collects
the output

and information
about the Job

USER ACTIONS

JES
interprets
JCL and
passes it
to MVS

SYSTEM ACTIONS

Figure 2-1. JCL-Related Actions (User and MVS)

Introduction - Job Control Language (JCL)

2-2 z/OS V1R4.0 MVS JCL User’s Guide

Within each job, the control statements are grouped into job steps. A job step
consists of all the control statements needed to run one program. If a job needs to
run more than one program, the job would contain a different job step for each of
those programs.

Required Control Statements
Every job must contain a minimum of the following two types of control statements:

v A JOB statement, to mark the beginning of a job and assign a name to the job.
The JOB statement is also used to provide certain administrative information,
including security, accounting, and identification information. Every job has one
and only one JOB statement.

v An EXEC (execute) statement, to mark the beginning of a job step, to assign a
name to the step, and to identify the program or procedure to be executed in the
step. You can add various parameters to the EXEC statement to customize the
way the program executes. Every job has at least one EXEC statement.

In addition to the JOB and EXEC statements, most jobs usually also contain:

v One or more DD (data definition) statements, to identify and describe the input
and output data to be used in the step. The DD statement may be used to
request a previously-created data set, to define a new data set, to define a
temporary data set, or to define and specify the characteristics of the output.

Chapter 1 lists the complete set of job control statements.

Exercise: Creating and Entering a Job
The following exercise shows you how to group the basic set of control statements
into a job step within a job, how to submit your job, and how to understand the
resulting output.

Before You Begin
Before creating any job, you need to know the following:

v Installation conventions. Every job must include special accounting and
identifying information. However, the way this information is specified varies from
one MVS installation to another.

 In order to submit your JCL successfully, you need to find out the conventions
that are followed at your installation.

 A worksheet has been provided at the end of this chapter (see “Installation
Conventions Worksheet” on page 2-13) as a guide for documenting this
information. You may need to ask someone more familiar with your installation to
help you identify the conventions indicated in the worksheet.

v How to allocate and edit a data set. During the exercise, you will be entering
JCL statements into a data set so that you can subsequently modify and re-use
them as required. Therefore, you must know how to use ISPF panels (or an
equivalent technique) to allocate and edit the data set according to the specific
requirements of your MVS system. See “Using ISPF to Allocate and Edit a Data
Set” on page 2-13 for more information.

Notes:

1. It is a common programming practice to give any data set containing JCL a
name that ends in JCL, such as userid.SORT.JCL.

2. A data set that contains JCL must have a fixed-block format (RECFM=FB)
with a logical record length of 80 (LRECL=80).

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-3

v The job to be done and the resources needed. You need to determine what
work you plan to have MVS perform:
– What inputs (resources) you will need and where they are located
– What program you plan to use.
– Where the output, if any, should go. (When the job completes, you will either

dispose of the output or hold it for later printing or for viewing.)

The job for this exercise is to sort a simple file and list the contents
alphabetically. Decisions about inputs, outputs, and processing have already
been made for you so that when you reach “Step 2. Edit the JCL Data Set and
Add the Necessary JCL,” all you will have to do is to copy the example code
provided.

v How to view and understand held output. Running your job will produce three
types of held output:
– System messages (JES and MVS)
– Your JCL code with procedures expanded, overrides applied, and symbolics

resolved.
– Output as requested by the JCL code

Held output may be viewed, printed, or purged. “Using SDSF to View Held
Output from a Job” on page 2-15 explains how to use SDSF to view JCL output.

 In the example, “Step 4. View and Understand the Output from the Job” on page
2-7 and “Step 6. View and Understand Your Final Output” on page 2-9 show you
how the output from the exercise should look and explain what each part of the
output means.

Step 1. Allocate a Data Set to Contain Your JCL
Use ISPF (or equivalent function) to allocate a data set named userid.SORT.JCL
(where userid is your TSO user ID) with a fixed-block format (RECFM=FB) and a
logical record length of 80 (LRECL=80).

If you are not sure how to do this, see “Using ISPF to Allocate and Edit a Data Set”
on page 2-13.

Step 2. Edit the JCL Data Set and Add the Necessary JCL
Use ISPF (or equivalent function) to edit the data set that you just allocated.

Enter the following JCL statements into the data set. Note that all JCL statements
start with the special identifier //.

Introduction - Job Control Language (JCL)

2-4 z/OS V1R4.0 MVS JCL User’s Guide

In the JCL code above:

�1� Replace accounting_data with the appropriate security classification and
identification information, according to the information you filled in on
“Installation Conventions Worksheet” on page 2-13.

�2� Replace user_name with your name.

�3� NOTIFY= tells the system where to send “job complete” information.
&SYSUID tells the system to automatically insert your user ID here, so the
information will be sent to you.

�4� MSGCLASS= tells the system what to do with messages the system sends
you as it processes your job; for example, use a held output class to allow
reviewing the messages later. Replace message_class with the appropriate
message class value. Check your “Installation Conventions Worksheet” on
page 2-13. for the appropriate value.

�5� MSGLEVEL=(1,1) tells the system to reproduce this JCL code in the output,
and to include allocation messages.

�6� CLASS=n indicates the system resource requirements for the job. Check
your “Installation Conventions Worksheet” on page 2-13. for the appropriate
value.

�7� The EXEC statement invokes the program IEFBR14 and identifies the first
(and only) job step in this job. You are arbitrarily naming it STEP1. All of the
control statements that follow the EXEC statement (until the next EXEC
statement, if any) are part of this job step.

 IEFBR14 is the name of a program within your MVS system. It does not
actually process any data, but it enables you to run this job as a test to
verify the JCL statements, and to create the input data. Later in the
exercise you will replace IEFBR14 with the name of another program that
sorts data.

�8� SORTIN is the name you have given the DD statement that describes the
input data.

�9� NEPTUNE through JUPITER are the items to be sorted. This method of
providing data to the program is referred to as in-stream data, an alternative
to providing the input in a separate allocated data set.

�10� /* indicates the end of the input data stream.

//SORT JOB ’accounting_data’, �1�
// ’user_name’, �2�
// NOTIFY=&SYSUID, �3�
// MSGCLASS=message_class, �4�
// MSGLEVEL=(1,1), �5�
// CLASS=n, �6�
//STEP1 EXEC PGM=IEFBR14 �7�
//SORTIN DD * �8�
NEPTUNE �9�
PLUTO
EARTH
VENUS
MERCURY
MARS
URANUS
SATURN
JUPITER
/* �10�
//SORTOUT DD SYSOUT=* �11�
/* �12�

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-5

�11� SORTOUT is the name you have given the DD statement that describes
where the output from running the job will be placed. In this example,
SYSOUT=* specifies that the output data will be directed to the SYSOUT
device defined in the MSGCLASS statement.

�12� /* (optional) denotes the end of the job.

For detailed information on each of the JCL statements and syntax requirements,
refer to z/OS MVS JCL Reference.

Step 3. Submit the JCL to the System as a Job
When you have finished entering the JCL into the data set, submit the job by
entering the SUBMIT command from the ISPF EDIT command line, the TSO/E
command line, or following a READY mode message. Each of these methods is
shown below.

v ISPF EDIT command line:

 EDIT ---- userid.SORT.JCL -------------------------- LINE 00000000 COL 001 080
 COMMAND ===> SUBMIT SCROLL ===> CSR
********************************* TOP OF DATA ********************************
//userid JOB ’accounting data’,
 .
 .
 .

v TSO/E command line:

------------------------- TSO COMMAND PROCESSOR ----------------------------
ENTER TSO COMMAND OR CLIST BELOW:

===> SUBMIT ’userid.SORT.JCL’

ENTER SESSION MANAGER MODE ===> NO (YES or NO)

v After READY mode message:

 .
 .
 .
 READY
 SUBMIT ’userid.SORT.JCL’

Note: When entering the command from the TSO command line or after a
READY message, you must surround the data set name with single
quotation marks if you include your user ID. However, you can also enter
the command without specifying your user ID and without using single
quotation marks, as shown below:
SUBMIT SORT.JCL

When you do not specify the user ID and do not include single quotes, the
system automatically inserts your user ID before the data set name. (The
insertion of the user ID is for the duration of the current job; it is not a
permanent change to the data set name.)

After entering the command, you should receive the following message indicating
that your job was submitted successfully:

Introduction - Job Control Language (JCL)

2-6 z/OS V1R4.0 MVS JCL User’s Guide

v When submitted from the ISPF EDIT command line:

 EDIT ---- userid.SORT.JCL -------------------------- LINE 00000000 COL 001 080
 COMMAND ===> SUBMIT SCROLL ===> CSR
********************************* TOP OF DATA ********************************
//userid JOB ’accounting data’,
 .
 .
 .
JOB jobname(jobnumber) SUBMITTED

v When submitted from the TSO command line:

------------------------- TSO COMMAND PROCESSOR -----------
ENTER TSO COMMAND OR CLIST BELOW:

===> SUBMIT ’userid.SORT.JCL’

ENTER SESSION MANAGER MODE ===> NO (YES or NO)
JOB jobname(jobnumber) SUBMITTED

v When submitted after READY mode message:

 .
 .
 .
 READY
 SUBMIT ’userid.SORT.JCL’
 .
 .
 .
JOB jobname(jobnumber) SUBMITTED

 .
 .
 READY

When the job ends, you will receive a message indicating one of three conditions:
job successful, JCL error, or program abend. If the message indicates the error or
abend condition, review Steps 2 and 3 of this exercise to make sure that you
followed the instructions exactly, then re-submit the job.

If the job fails again, consult the appropriate manual as indicated below:
 If the message begins with HASP, the job was failed by JES2. For more

information, refer to z/OS JES2 Messages
 If the message begins with IAT, the job was failed by JES3. For more

information, refer to z/OS JES3 Messages.

Step 4. View and Understand the Output from the Job
Use your installation’s viewing facility (for example, SDSF) to view the output and
determine whether the job completed successfully. (If you do not know how to use
SDSF to view the output, see “Using SDSF to View Held Output from a Job” on
page 2-15.)

If the job is on hold in the held queue, consider printing it for a record of the job
activity.

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-7

Figure 2-2 contains an example of the held output for this exercise. Each part of
this output is explained below:
 �1� is installation-specific and may differ on your system.
 �2� contains JES messages about the job.
 �3� contains the JCL statements that resulted from the job.
 �4� condition code 0000 tells you that the program ran successfully. You receive

one condition code for each step in the job. If a condition code is non-zero, see
the documentation for the specific program you invoked.

 �5� contains the system output messages resulting from processing the job. For
more information on IEFBR14, see “Using IEFBR14 Program for Testing” on
page 10-16.

Step 5. Make Changes to Your JCL
When your job has run successfully, edit the data set containing the JCL and
change or add control statements as indicated below:

1 J E S 2 J O B L O G -- S Y S T E M A Q T S -- N O D E P L P S C
0 ----|
 15.21.28 JOB17653 IRR010I USERID userid IS ASSIGNED TO THIS JOB. |
 15.21.28 JOB17653 ICH70001I userid LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13, 1996 |
 15.21.28 JOB17653 $HASP373 SORT STARTED - INIT 9 - CLASS 5 - SYS AQTS |
 15.21.28 JOB17653 IEF403I SORT - STARTED - TIME=15.21.28 |
 15.21.28 JOB17653 - == |
 15.21.28 JOB17653 - REGION --- STEP TIMINGS --- ----PAGING COUNTS---- |--- �1�
 15.21.28 JOB17653 - STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP SERV PAGE SWAP VIO SWAPS |
 15.21.28 JOB17653 - STEP1 IEFBR14 00 4K 00:00:00.01 00:00:00.03 1 211 0 0 0 0 |
 15.21.28 JOB17653 IEF404I SORT - ENDED - TIME=15.21.28 |
 15.21.28 JOB17653 - == |
 15.21.28 JOB17653 - NAME-user_name TOTALS: CPU TIME= 00:00:00.01 ELAPSED TIME= 00:00:00.05 SERVICE UNITS= 21 |
 15.21.28 JOB17653 - == |
 15.21.28 JOB17653 $HASP395 SORT ENDED ----|
0------ JES2 JOB STATISTICS ------ ----|
- 13 OCT 1996 JOB EXECUTION DATE |
- 20 CARDS READ |
- 45 SYSOUT PRINT RECORDS |--- �2�
- 0 SYSOUT PUNCH RECORDS |
- 3 SYSOUT SPOOL KBYTES |
- 0.00 MINUTES EXECUTION TIME ----|
 1 //SORT JOB ’662282,D58,9211064,S=C’, JOB17653 ----|
 // ’user_name’, |
 // NOTIFY=userid, |
 // MSGCLASS=H, 00280009 |
 // MSGLEVEL=(1,1), 00430010 |--- �3�
 // CLASS=5 00430010 |
 2 //STEP1 EXEC PGM=IEFBR14 |
 3 //SORTIN DD * |
 4 //SORTOUT DD SYSOUT=* |
 5 //SYSIN DD * GENERATED STATEMENT ----|
 ICH70001I userid LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13, 1996 ----|
 IEF236I ALLOC. FOR SORT STEP1 |
 IEF237I JES2 ALLOCATED TO DATAIN |
 IEF237I JES2 ALLOCATED TO SYSIN |
 IEF142I SORT STEP1 - STEP WAS EXECUTED - COND CODE 0000 �4� |

 IEF285I userid.SORT.JOB17653.D0000101.? SYSIN |--- �5�
 IEF285I userid.SORT.JOB17653.D0000103.? SYSOUT |
 IEF285I userid.SORT.JOB17653.D0000102.? SYSIN |
 IEF373I STEP /STEP1 / START 1996286.1521 |
 IEF374I STEP /STEP1 / STOP 1996286.1521 CPU 0MIN 00.01SEC SRB 0MIN 00.00SEC VIRT 4K SYS 180K EXT 4K SYS 9424K |
 IEF375I JOB /SORT / START 1996286.1521 |
 IEF376I JOB /SORT / STOP 1996286.1521 CPU 0MIN 00.01SEC SRB 0MIN 00.00SEC ----|

Figure 2-2. Output from Job Invoking IEFBR14 Program

Introduction - Job Control Language (JCL)

2-8 z/OS V1R4.0 MVS JCL User’s Guide

�1� Replace the program name with the name of your sort program. In this job,
SORT will sort the input data identified by the SORTIN DD statement.

�2� Add the SYSIN control statement. SYSIN specifies how you want the sort to
be done. In this case, you are indicating that you want to sort the fields
from column 1 to column 75 as characters in ascending sequence.

�3� Add the SYSOUT control statement. SYSOUT specifies the data set to
which SORT will write its messages. A SYSOUT data set is a
system-handled output data set. This data set is placed temporarily on
direct access storage. Later, the system prints it or sends it to a specified
location.

 When you have finished entering the JCL into the data set, submit the job as you
did in “Step 3. Submit the JCL to the System as a Job” on page 2-6.

Step 6. View and Understand Your Final Output
View your output as you did in “Step 4. View and Understand the Output from the
Job” on page 2-7.

Figure 2-3 on page 2-10 shows an example of the held output for the completed
exercise. Each part of this output is explained below:

//SORT JOB ’accounting_data’,
// ’user_name’,
// NOTIFY=&SYSUID,
// MSGCLASS=H,
// MSGLEVEL=(1,1),
// CLASS=5
//STEP1 EXEC PGM=SORT �1�
//SYSIN DD *
 SORT FIELDS=(1,75,CH,A) �2�
/*
//SYSOUT DD SYSOUT=* �3�
//SORTIN DD *
NEPTUNE
PLUTO
EARTH
VENUS
MERCURY
MARS
URANUS
SATURN
JUPITER
/*
//SORTOUT DD SYSOUT=*
/*

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-9

�1� is installation-specific and may differ on your system.
 �2� contains JES messages about the job.
 �3� contains the JCL listing that resulted from the job.
 �4� contains the system messages resulting from processing the job.

1 J E S 2 J O B L O G -- S Y S T E M A Q T S -- N O D E P L P S C
0 ----|
 13.40.27 JOB06572 IRR010I USERID ’userid’ IS ASSIGNED TO THIS JOB. |
 13.40.27 JOB06572 ICH70001I ’userid’ LAST ACCESS AT 13:39:20 ON MONDAY, NOVEMBER 15, 1996 |
 13.40.27 JOB06572 $HASP373 SORT STARTED - INIT 9 - CLASS 5 - SYS AQTS |
 13.40.27 JOB06572 IEF403I SORT - STARTED - TIME=13.40.27 |
 13.40.28 JOB06572 - == |
 13.40.28 JOB06572 - REGION --- STEP TIMINGS --- ----PAGING COUNTS---- |--- �1�
 13.40.28 JOB06572 - STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP SERV PAGE SWAP VIO SWAPS |
 13.40.28 JOB06572 - STEP1 SORT 00 576K 00:00:00.03 00:00:00.15 20 1614 0 0 0 0 |
 13.40.28 JOB06572 IEF404I SORT - ENDED - TIME=13.40.28 |
 13.40.28 JOB06572 - == |
 13.40.28 JOB06572 - NAME-’user name’ TOTALS: CPU TIME= 00:00:00.03 ELAPSED TIME= 00:00:00.16 SERVICE UNITS= 1614 |
 13.40.28 JOB06572 - == |
 13.40.28 JOB06572 $HASP395 SORT ENDED ----|
0------ JES2 JOB STATISTICS ------ ----|
- 15 NOV 1996 JOB EXECUTION DATE |
- 25 CARDS READ |
- 81 SYSOUT PRINT RECORDS |--- �2�
- 0 SYSOUT PUNCH RECORDS |
- 4 SYSOUT SPOOL KBYTES |
- 0.00 MINUTES EXECUTION TIME ----|
 1 //SORT JOB ’accounting data’, JOB06572 ----|
 // ’userid’, |
 // NOTIFY=&SYSUID, |
 // MSGCLASS=H, |
 // MSGLEVEL=(1,1), |
 // CLASS=5 |--- �3�
 2 //STEP1 EXEC PGM=SORT |
 3 //SYSIN DD * |
 4 //SYSOUT DD SYSOUT=* |
 5 //SORTIN DD * |
 6 //SORTOUT DD SYSOUT=* |
 /* ----|
 ICH70001I ’userid’ LAST ACCESS AT 13:39:20 ON MONDAY, NOVEMBER 15, 1996 ----|
 IEF236I ALLOC. FOR SORT STEP1 |
 IEF237I JES2 ALLOCATED TO SYSIN |
 IEF237I JES2 ALLOCATED TO SYSOUT |
 IEF237I JES2 ALLOCATED TO SORTIN |
 IEF237I JES2 ALLOCATED TO SORTOUT |
 IEF142I SORT STEP1 - STEP WAS EXECUTED - COND CODE 0000 �5� |
 IEF285I userid.SORT.JOB06572.D0000101.? SYSIN |
 IEF285I userid.SORT.JOB06572.D0000103.? SYSOUT |
 IEF285I userid.SORT.JOB06572.D0000102.? SYSIN |
 IEF285I userid.SORT.JOB06572.D0000104.? SYSOUT |
 IEF373I STEP /STEP1 / START 1996319.1340 |
 IEF374I STEP /STEP1 / STOP 1996319.1340 CPU 0MIN 00.03SEC SRB 0MIN 00.00SEC VIRT 576K SYS 188K EXT 4096K SYS 9444K |
 IEF375I JOB /SORT / START 1996319.1340 |
 IEF376I JOB /SORT / STOP 1996319.1340 CPU 0MIN 00.03SEC SRB 0MIN 00.00SEC |
1ICE143I 0 BLOCKSET SORT TECHNIQUE SELECTED |--- �4�
 ICE000I 1 --- CONTROL STATEMENTS/MESSAGES ---- 5740-SM1 REL 12.0 ---- 13.40.28 NOV 15, 1996 -- |
0 SORT FIELDS=(1,75,CH,A) |
 ICE088I 1 SORT .STEP1 . , INPUT LRECL = 80, BLKSIZE = 80, TYPE = F |
 ICE093I 0 MAIN STORAGE = (MAX,4194304,4194304) |
 ICE156I 0 MAIN STORAGE ABOVE 16MB = (3624960,3624960) |
 ICE128I 0 OPTIONS: SIZE=4194304,MAXLIM=1048576,MINLIM=450560,EQUALS=N,LIST=Y,ERET=RC16 ,MSGDDN=SYSOUT |
 ICE129I 0 OPTIONS: VIO=N,RESDNT=ALL ,SMF=NO ,WRKSEC=Y,OUTSEC=Y,VERIFY=N,CHALT=N,DYNALOC=N ,ABCODE=MSG |
 ICE130I 0 OPTIONS: RESALL=4096,RESINV=0,SVC=109 ,CHECK=Y,WRKREL=Y,OUTREL=Y,CKPT=N,STIMER=Y,COBEXIT=COB1 |
 ICE131I 0 OPTIONS: TMAXLIM=4194304,ARESALL=0,ARESINV=0,OVERRGN=65536,EXCPVR=NONE ,CINV=Y,CFW=Y |
 ICE132I 0 OPTIONS: VLSHRT=N,ZDPRINT=N,IEXIT=N,TEXIT=N,LISTX=N,EFS=NONE ,EXITCK=S,PARMDDN=DFSPARM ,FSZEST=N |
 ICE133I 0 OPTIONS: HIPRMAX=OPTIMAL ,DSPSIZE=MAX |
 ICE084I 0 BSAM ACCESS METHOD USED FOR SORTOUT |
 ICE084I 0 BSAM ACCESS METHOD USED FOR SORTIN |
 ICE090I 0 OUTPUT LRECL = 80, BLKSIZE = 80, TYPE = F |
 ICE080I 0 IN MAIN STORAGE SORT |
 ICE055I 0 INSERT 0, DELETE 0 |
 ICE054I 0 RECORDS - IN: 9, OUT: 9 |
 ICE134I 0 NUMBER OF BYTES SORTED: 720 |
 ICE180I 0 HIPERSPACE STORAGE USED = 0K BYTES |
 ICE188I 0 DATA SPACE STORAGE USED = 0K BYTES |
 ICE052I 0 END OF DFSORT ----|
 EARTH ----|
 JUPITER |
 MARS |
 MERCURY |
 NEPTUNE |--- �6�
 PLUTO |
 SATURN |
 URANUS |
 VENUS ---|

Figure 2-3. Output from Job Invoking SORT Program

Introduction - Job Control Language (JCL)

2-10 z/OS V1R4.0 MVS JCL User’s Guide

�5� condition code 0000 tells you that the program ran successfully. You receive
one condition code for each step in the job. If a condition code is non-zero, see
the documentation for the specific program you invoked (in this case, SORT).

 �6� contains the output produced by the SORT program.

More Complex Jobs

In-Stream and Cataloged Procedures
As you gain more experience in submitting jobs, you will find that you often use the
same set of job control statements repeatedly with little or no change.

To save time and prevent errors, you can prepare sets of job control statements
that you can execute again and again. You can do this through the use of two types
of procedures: in-stream procedures and cataloged procedures.

In-Stream Procedures
An in-stream procedure is a named set of job control statements in a job that can
be re-executed within that job, simply by invoking the name of the procedure. This
enables you to execute the set of control statements more than one time in the
same job without having to repeat the statements.

Table 2-1 shows a job that contains an in-stream procedure. Its name is PTEST,
and it ends with a PEND statement.

 Table 2-1. In-Stream Procedure

 Job Control Statement Explanation
//JOB1 JOB CT1492,’JIM MOSER’ Starts job
//PTEST PROC Starts in-stream procedure
//PSTA EXEC PGM=CALC Identifies first step in procedure

//DDA DD DSNAME=D.E.F,DISP=OLD
//DDB DD DSNAME=DATA1,DISP=(MOD,PASS)
//DDOUT DD SYSOUT=*

Request 3 data sets for first procedure step

//PSTB EXEC PGM=PRNT Identifies second step in procedure

//DDC DD DSNAME=*.PSTA.DDB,DISP=OLD
//DDREP DD SYSOUT=A

Request 2 data sets for second procedure step

// PEND Ends in-stream procedure
//STEP1 EXEC PROC=PTEST First step in JOB1, executes procedure

//PSTA.IN DD *
 .
 (data)
 .
/*

Adds in-stream data to procedure step
PSTA

Note: The maximum number of in-stream procedures you can code in any job is
15.

Cataloged Procedures
A cataloged procedure, like an in-stream procedure, is a named set of job control
statements. However, these control statements are placed, or cataloged, in a
partitioned data set (PDS) or partitioned data set extended (PDSE) known as a
procedure library. This enables a cataloged procedure to be invoked by any job.

Cataloged procedures can be placed in the system procedure library
SYS1.PROCLIB or in any user-specified procedure library (for example JCLLIB).
For additional information on procedure libraries, refer to z/OS MVS JCL Reference.

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-11

Table 2-2 shows an example of a cataloged procedure named MYPROC. Table 2-3
shows an example of a job that executes MYPROC.

 Table 2-2. Cataloged Procedure: Member MYPROC in SYS1.PROCLIB

 Job Control Statement Explanation
//MYPROC PROC Starts cataloged procedure
//MY1 EXEC PGM=WORK1 Identifies first step in procedure
//MYDDA DD SYSOUT=A
//MYDDB DD SYSOUT=*

Request 2 data sets for first procedure step

//MY2 EXEC PGM=TEXT5 Identifies second step in procedure
//MYDDC DD DSNAME=F.G.H,DISP=OLD
//MYDDE DD SYSOUT=*

Request 2 data sets for second procedure step

// PEND Indicate end of procedure.

 Table 2-3. Job that Executes Cataloged Procedure MYPROC

 Job Control Statement Explanation
//JOB2 JOB ,’JACKIE DIGIAN’ Starts job
//STEPA EXEC PROC=MYPROC First step in JOB2, executes procedure
//MY2.MYDDC DD DISP=(OLD,DELETE) Modifies DD statement MYDDC in procedure step MY2

Note: Before cataloging any procedure, test it as an instream procedure first.

Input Streams
Just as you can group several steps into one job, you can group several jobs
together into one input stream. Any time jobs are placed in a series and entered
through one input device, the series is considered an input stream. The input device
can be a terminal, a magnetic tape device, or a direct access device.

Table 2-4 shows a data set containing an input stream of three jobs.

 Table 2-4. Job Boundaries in a Three-Job Input Stream

 Job Control Statement Explanation

Job 1 //JOB1 JOB AT45,’GARY PUCHKOFF’

//STEP1 EXEC PGM=A33
//DDA DD DSNAME=CATDS,DISP=OLD
//DDB DD SYSOUT=A

 First job

Job 2 //JOB2 JOB AT87,’JAN BUSKIRK’
//STEPA EXEC PGM=REP
//DD1 DD *
 .
 (data)
 .
//DD2 DD SYSOUT=C

 Second job

Job 3 //JOB3 JOB 1726,’MARK LAMAN’
//ST1 EXEC PGM=ADDER
//DDIN DD DATA
 .
 (data)
 .
/*
//DDOUT DD SYSOUT=A

 Third job

Introduction - Job Control Language (JCL)

2-12 z/OS V1R4.0 MVS JCL User’s Guide

Additional Information

Installation Conventions Worksheet
Using this worksheet, identify the conventions used at your MVS installation.
Documenting this information will help you create JCL data sets that your system
will accept. You may need to ask someone more familiar with your installation to
help you identify the conventions indicated in the worksheet.

 Convention Installation-Specific Attribute(s)

Job Entry Subsystem (JES2/JES3)

Data Set Editor

Security Requirements

Data Set Allocation

Volume Serial

Generic Unit

Space Units

Primary Quantity

Secondary Quantity

Directory Blocks

Record Format Fixed Block (RECFM=FB)

Logical Record Length 80 (LRECL=80)

Block Size
v 0 for Sequential Data Sets

v >0 for Partitioned Data Sets

Job Information and
Requirements

Accounting Data

Message Class

Input Processing Information

Output Processing
Information

Using ISPF to Allocate and Edit a Data Set
The following instructions explain how to use ISPF to allocate a data set, edit it, and
place your JCL control statements in it.

Note: ISPF screens may differ slightly from one MVS installation to another.

1. On the ISPF Primary Option menu, select the appropriate item to display the
Data Set Utility menu.

2. On the Data Set Utility menu, select Option A (allocate new data set) and enter
a data set name as shown in step 3 below, replacing userid with your own user
ID.

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-13

---------------------------- DATA SET UTILITY -----------------------------
OPTION == A

 A - Allocate new data set C - Catalog data set
 R - Rename entire data set U - Uncatalog data set
 D - Delete entire data set S - Data set information (short)
 blank - Data set information M - Enhanced data set allocation

ISPF LIBRARY:
 PROJECT ===>
 GROUP ===>
 TYPE ===>

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
 DATA SET NAME ===> ’userid.SORT.JCL’
 VOLUME SERIAL ===> (If not cataloged, required for option "C)

DATA SET PASSWORD ===> (If password protected)

3. On the Allocate New Data Set menu, fill in the fields indicated in the example
below, replacing volser, unit, and size with appropriate values according to the
information you filled in on “Installation Conventions Worksheet” on page 2-13.

---------------------- ALLOCATE NEW DATA SET --------------------------------
COMMAND ===>

DATA SET NAME: userid.SORT.JCL

 VOLUME SERIAL ===> volser (Blank for authorized default volume) *
 GENERIC UNIT ===> (Generic group name or unit address) *
 SPACE UNITS ===> unit (BLKS, TRKS, or CYLS)
 PRIMARY QUANTITY ===> 1 (In above units)
 SECONDARY QUANTITY ===> 1 (In above units)
 DIRECTORY BLOCKS ===> 0 (Zero for sequential data set)
 RECORD FORMAT ===> FB
 RECORD LENGTH ===> 80
 BLOCK SIZE ===> size
 EXPIRATION DATE ===> (YY/MM/DD, YYYY/MM/DD
 YY.DDD, YYYY.DDD in Julian form
 DDDD for retention period in days
 or blank)

 (* Only one of these fields may be specified)

4. Note that message “DATA SET ALLOCATED” indicates that the allocation has
been completed.

 ---------------------------- DATA SET UTILITY ----------- DATA SET ALLOCATED

5. Use ISPF to edit the allocated data set and enter the JCL control statements
into the data set.

Introduction - Job Control Language (JCL)

2-14 z/OS V1R4.0 MVS JCL User’s Guide

EDIT ---- userid.SORT.JCL ------------------------------------ COLUMNS 001 072
COMMAND ===> SCROLL ===> CSR
****** ***************************** TOP OF DATA ******************************
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’ ’
****** **************************** BOTTOM OF DATA ****************************

6. If you are currently working on the exercise for creating and entering a JCL job,
return to “Step 2. Edit the JCL Data Set and Add the Necessary JCL” on page
2-4 now.

Using SDSF to View Held Output from a Job
The following instructions explain how to use SDSF with a JES2 system to view the
output from your job.

Note: SDSF screens may differ slightly from one JES2 installation to another. If
you are using JES3, you can use (E)JES or a comparable tool to view the
output.

1. Display the SDSF Primary Option Menu and select Option H

V1R4M0 NZ06 ------------- SDSF PRIMARY OPTION MENU -------------------------
COMMAND INPUT ===> H SCROLL ===> PAGE

 Type an option or command and press Enter.

 DA - Display active users of the system
 I - Display jobs in the JES2 input queue
 O - Display jobs in the JES2 output queue
 H - Display jobs in the JES2 held output queue
 ST - Display status of jobs in the JES2 queues

 TUTOR - Short course on SDSF (ISPF only)
 END - Exit SDSF

 Licensed Materials - Property of IBM

 5665-488 (C) Copyright IBM Corp. 1981, 1993. All rights reserved.
 US Government Users Restricted Rights - Use, duplication or
 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

2. To view an individual data set:

a. On the SDSF Held Output Display All Classes panel, enter a question mark
(?) next to the job whose output data sets you want to view.

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-15

SDSF HELD OUTPUT DISPLAY ALL CLASSES 174 LINES LINE 1-2 (2)
COMMAND INPUT ===> SCROLL ===> PAGE
PREFIX=* DEST=(ALL) OWNER=userid
NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-P
? jobname JOB20482 userid 7 H HOLD LOCAL
87
 jobname JOB20517 userid 7 H HOLD LOCAL 87
 .
 .
 .

b. On the SDSF Job Data Set Display panel, enter the letter S next to the
name of the data set you want to display.

SDSF JOB DATA SET DISPLAY - JOB useridS (JOB20482) LINE 1-5 (5)
COMMAND INPUT ===> SCROLL ===>
PREFIX=* DEST=(ALL) OWNER=userid
NP DDNAME STEPNAME PROCSTEP DSID OWNER C DEST REC-CNT
S JESMSGLG JES2 2 userid H LOCAL 22
 JESJCL JES2 3 userid H LOCAL 6
 JESYSMSG JES2 4 userid H LOCAL 28
 SYSOUT SORT 103 userid H LOCAL 22
 SORTOUT SORT 104 userid H LOCAL 9

Note: On the above panel:
v JESMSGLG contains system messages.
v JESJCL contains JCL with procedures expanded, overrides

applied, and symbolics resolved.
v JESYSMSG contains MVS system messages.
v SYSOUT contains messages produced by the program (in this

case, SORT) executed in this job.
v SORTOUT contains the output produced by the program (in this

case, SORT) executed in this job.

c. The system displays the selected data set (in this case, JESMSGLG):

3. To view the entire output:

a. On the SDSF Held Output Display All Classes panel, enter the letter S next
to the job whose output you want to see.

SDSF HELD OUTPUT DISPLAY ALL CLASSES 174 LINES LINE 1-2 (2)
COMMAND INPUT ===> SCROLL ===> PAGE
PREFIX=* DEST=(ALL) OWNER=userid
NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-P
S jobname JOB20482 userid 7 H HOLD LOCAL 87
 jobname JOB20517 userid 7 H HOLD LOCAL 87
 .
 .
 .

b. You will be presented with one view of the entire output (as shown in
Figure 2-3 on page 2-10).

1 J E S 2 J O B L O G -- S Y S T E M A Q T S -- N O D E P L P S C
0
 15.21.28 JOB17653 IRR010I USERID userid IS ASSIGNED TO THIS JOB.
 15.21.28 JOB17653 ICH70001I userid LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13, 1993
 15.21.28 JOB17653 $HASP373 SORT STARTED - INIT 9 - CLASS 5 - SYS AQTS
 15.21.28 JOB17653 IEF403I SORT - STARTED - TIME=15.21.28
 15.21.28 JOB17653 - ==
 15.21.28 JOB17653 - REGION --- STEP TIMINGS --- ----PAGING COUNTS----
 15.21.28 JOB17653 - STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP SERV PAGE SWAP VIO SWAPS
 15.21.28 JOB17653 - STEP1 IEFBR14 00 4K 00:00:00.01 00:00:00.03 1 211 0 0 0 0
 15.21.28 JOB17653 IEF404I SORT - ENDED - TIME=15.21.28
 15.21.28 JOB17653 - ==
 15.21.28 JOB17653 - NAME-user_name TOTALS: CPU TIME= 00:00:00.01 ELAPSED TIME= 00:00:00.05 SERVICE UNITS=
211
 15.21.28 JOB17653 - ==
 15.21.28 JOB17653 $HASP395 SORT ENDED

Introduction - Job Control Language (JCL)

2-16 z/OS V1R4.0 MVS JCL User’s Guide

Helpful Utilities
Table 2-5 lists some common tasks that manage data sets, as well as utilities IBM
provides that you can use to perform the tasks. For additional information on these
utilities, see:

v ISPF/PDF Guide and Reference

v z/OS DFSMS Access Method Services for Catalogs

v z/OS DFSMSdfp Utilities

v z/OS TSO/E User’s Guide

Other utility programs may be available to perform these and other system tasks.

 Table 2-5. Tasks and Utility Programs

Task Utility Name

Allocate data sets v TSO/E ALLOCATE command
v ISPF/PDF Data Set Utility
v Access Method Services ALLOCATE

command
v JCL DD statement, DISP=NEW parameter

Delete data sets v TSO/E DELETE command
v ISPF/PDF Data Set Utility
v Access Method Services DELETE

command
v JCL DD statement, DISP=OLD,DELETE

parameter

Compare data sets IEBCOMPR (DFSMSdfp)

Copy data sets IEBCOPY (DFSMSdfp)

Delete records in data sets IEBUPDTE (DFSMSdfp)

Edit/print/punch data sets IEBPTPCH (DFSMSdfp)

Insert records into data sets IEBUPDTE (DFSMSdfp)

Merge data sets IEBCOPY (DFSMSdfp)

Modify data sets IEBUPDTE (DFSMSdfp)

Print data sets IEBPTPCH (DFSMSdfp)

Rename members/data sets IEBCOPY (DFSMSdfp)

Scratch data sets IEHPROGM (DFSMSdfp)

Introduction - Job Control Language (JCL)

Chapter 2. Introduction - Job Control Language (JCL) 2-17

Introduction - Job Control Language (JCL)

2-18 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 3. Job Control Tasks

For your program to execute on the computer and perform the work you designed it
to do, your program must be processed by your operating system.

Your operating system consists of an MVS base control program (BCP) with a job
entry subsystem (JES2 or JES3) and DFSMSdfp installed with it.

For the operating system to process a program, programmers must perform certain
job control tasks. These tasks are performed through the job control statements,
which consist of:
 JCL statements
 JES2 control statements
 JES3 control statements

Entering Jobs
Job Steps

You enter a program into the operating system as a job step. A job step consists of
the job control statements that request and control execution of a program and
request the resources needed to run the program. A job step is identified by an
EXEC statement. The job step can also contain data needed by the program. The
operating system distinguishes job control statements from data by the contents of
the records.

Jobs

A job is a collection of related job steps. A job is identified by a JOB statement.

Input Streams

Jobs placed in a series and entered through one input device form an input
stream. The operating system reads an input stream into the computer from an
input/output (I/O) device or an internal reader. The input device can be a card
reader, a magnetic tape device, a terminal, or a direct access device. An internal
reader is a buffer that is read from a program into the system as though it were an
input stream.

Cataloged and In-Stream Procedures

You often use the same set of job control statements repeatedly with little or no
change, for example, to compile, assemble, link-edit, and execute a program. To
save time and prevent errors, you can prepare sets of job control statements and
place, or catalog, them in a partitioned data set (PDS) or partitioned data set
extended (PDSE) known as a procedure library. The data set attributes of a
procedure library should match SYS1.PROCLIB (record length of 80 and record
format of FB). Such a set of job control statements in the system procedure library,
SYS1.PROCLIB (or an installation-defined procedure library), is called a cataloged
procedure.

To test a procedure before placing it in the catalog, place it in an input stream and
execute it; a procedure in an input stream is called an in-stream procedure. The
maximum number of in-stream procedures you can code in any job is 15.

© Copyright IBM Corp. 1988, 2003 3-1

Steps in a Job

A job can be simple or complex; it can consist of one step or of many steps that call
many in-stream and cataloged procedures. A job can consist of up to 255 job steps,
including all steps in any procedures that the job calls. Specification of a greater
number of steps produces a JCL error.

Processing Jobs
The operating system performs many job control tasks automatically. You can
influence the way your job is processed by the JCL and JES2 or JES3 parameters
you code. For example, the job entry subsystem selects jobs for execution, but you
can speed up or delay selection of your job by the parameters you code.

Requesting Resources
Data Set Resources

To execute a program, you must request the data sets needed to supply data to the
program and to receive output records from the program.

Sysout Data Set Resources

A sysout data set is a system-handled output data set. This data set is placed
temporarily on direct access storage. Later, at the convenience of the system, the
system prints it, punches it, or sends it to a specified location. Because sysout data
sets are processed by the system, the programmer can specify many parameters to
control that processing.

Task Charts
The following charts list the job control tasks, which are described in the z/OS MVS
JCL User’s Guide, in four groups:
v Entering jobs in Table 3-1 on page 3-3
v Processing jobs in Table 3-2 on page 3-5
v Requesting data set resources in Table 3-3 on page 3-6
v Requesting sysout data set resources in Table 3-4 on page 3-8

For each task, the charts list the parameters and statements that can be used to
perform it. In many cases, the same task can be performed using different
parameters on different statements. Where a parameter can appear on both a JOB
and EXEC statement, it applies to the entire job when coded on the JOB statement
but only to a step when coded on an EXEC statement.

The system is designed to enable users to perform many types of job control in
many ways. To allow this flexibility, only two job entry tasks are required:

v Identification: The job must be identified in the jobname field of a JOB
statement.

v Execution: The program or procedure to be executed must be named in a PGM
or PROC parameter on an EXEC statement.

Therefore, the following statements are the minimum needed to perform a job
control task:

Tasks

3-2 z/OS V1R4.0 MVS JCL User’s Guide

//jobname JOB
 // EXEC {PGM=program-name }
 {PROC=procedure-name}
 {procedure-name}

 Table 3-1. Tasks for Entering Jobs

TASKS FOR
ENTERING
JOBS

STATEMENTS AND PARAMETERS

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Identification

of job jobname field null statement (JES3
only)

of step stepname field

of procedure PROC PEND

of INCLUDE
group

 INCLUDE

of account accounting
information or
pano in JOB
JES2 accounting
information

ACCT /*NETACCT //*NETACCT

of programmer programmer’s
name and room
in JOB JES2
accounting
information
USER

 ROOM on
/*JOBPARM

PNAME, BLDG,
DEPT, ROOM,
and USERID on
//*NETACCT

Execution

of program PGM

of procedure PROC

when restarting
and with
checkpointing

RESTART RD RD SYSCHK DD RESTART on
/*JOBPARM

FAILURE and
JOURNAL on
//*MAIN

deadline or
periodic

 DEADLINE on
//*MAIN

when dependent
on other jobs

 //*NET

at remote node XMIT JCL /*ROUTE XEQ
/*XEQ /*XMIT

//*ROUTE XEQ

Job Input Control

by holding job
entrance

TYPRUN CLASS HOLD, UPDATE,
or CLASS on
//*MAIN //*NET

by holding local
input reader

 //*PAUSE

by copying input
stream (JES2
only)

TYPRUN CLASS

from remote work
station

 /*SIGNON
/*SIGNOFF

/*SIGNON
/*SIGNOFF

Communication

Tasks

Chapter 3. Job Control Tasks 3-3

Table 3-1. Tasks for Entering Jobs (continued)

TASKS FOR
ENTERING
JOBS

STATEMENTS AND PARAMETERS

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

from JCL to
system

 COMMAND
Command

/*$command //**command

from JCL to
operator

 /*MESSAGE //*OPERATOR

from JCL to
programmer

Comment field
unless no
parameter field

Comment field //*comment, also
comment field on all
statements but null

 Comment field
on
//*ENDPROCESS
and //*PAUSE

from JCL to
program

 PARM

from system to
operator

WARNING on
BYTES, CARDS,
LINES, and
PAGES

 FETCH on
//*MAIN
WARNING on
BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

from system to
userid -of job
completion -of
print completion

NOTIFY
NOTIFY on
OUTPUT JCL
statement

/*NOTIFY ACMAIN on
//*MAIN with JOB
NOTIFY

from TSO/E
userid to system

 USER on
//*MAIN

from functional
subsystem to
programmer

 PIMSG on OUTPUT
JCL

through job log MSGCLASS
MSGLEVEL log
in JOB JES2
accounting
information

 JESDS on OUTPUT
JCL

NOLOG on
/*JOBPARM

Protection

through RACF GROUP
PASSWORD
SECLABEL
USER

Resource Control

of program
library

 JOBLIB DD,
STEPLIB DD, DD
defining PDS or
PDSE member

of procedure
library

 JCLLIB PROCLIB on
/*JOBPARM

PROC and
UPDATE on
//*MAIN

of INCLUDE
group

 JCLLIB PROCLIB on
/*JOBPARM

PROC and
UPDATE on
//*MAIN

Tasks

3-4 z/OS V1R4.0 MVS JCL User’s Guide

Table 3-1. Tasks for Entering Jobs (continued)

TASKS FOR
ENTERING
JOBS

STATEMENTS AND PARAMETERS

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

of address space REGION
ADDRSPC

REGION
ADDRSPC

 LREGION on
//*MAIN

of processor SYSAFF on
/*JOBPARM

SYSTEM on
//*MAIN

of spool partition SPART and
TRKGRPS on
//*MAIN

 Table 3-2. Tasks for Processing Jobs

TASKS FOR
PROCESSING
JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Processing Control

by conditional
execution

COND

CANCEL on
BYTES, CARDS,
LINES, and
PAGES

COND IF/THEN/ELSE/
ENDIF statement
construct

CANCEL on
BYTES, CARDS,
LINES, and
PAGES on
/*JOBPARM

CANCEL on
BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

by timing
execution

TIME or time in
JOB JES2
accounting
information

TIME TIME on
/*JOBPARM

for testing:
1. by altering

usual
processing

2. by dumping
after error

TYPRUN CLASS
DUMP on
BYTES, CARDS,
LINES, and
PAGES

PGM=IEFBR14

PGM=JCLTEST
PGM=JSTTEST
(JES3 only)

SYSMDUMP DD
SYSUDUMP DD
SYSABEND DD

To format dump on
3800 Printing
Subsystem,
FCB=STD3 and
CHARS=DUMP
on dump DD

 //*PROCESS
//*ENDPROCESS
DUMP in
BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

Performance Control

by job class
assignment

CLASS CLASS on
//*MAIN

by selection
priority

PRTY /*PRIORITY

by performance
group
assignment

PERFORM PERFORM

by
I/O-to-processing
ratio

 IORATE on
//*MAIN

Tasks

Chapter 3. Job Control Tasks 3-5

Table 3-3. Tasks for Requesting Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Identification

of data set DSNAME UPDATE on
//*MAIN

of in-stream data
set

* or DATA SYSIN
DD DLM

 /* or xx delimiter //*DATASET
//*ENDDATASET

of data set on
3540 Diskette
Input/Output Unit

DSID

through catalog JOBCAT DD
STEPCAT DD

through label label-type on
LABEL

by location on
tape

data-set-
sequence-
number on
LABEL

as TCAM
message data
set

QNAME

from or to
terminal

TERM

Description

of status DISP

of data attributes
- by modeling

DCB
AMP
DATACLAS
KEYLEN
DSNTYPE
KEYOFF
LRECL
RECFM
RECORG

LIKE
REFDD

of data for
ISO/ANSI
Version 4 tapes

CCSID

of migration and
backup

MGMTCLAS

Protection

through RACF PROTECT
SECMODEL

Tasks

3-6 z/OS V1R4.0 MVS JCL User’s Guide

Table 3-3. Tasks for Requesting Data Set Resources (continued)

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

for
ISO/ANSI/FIPS
Version 3 tapes
and ISO/ANSI
Version 4 tapes

ACCODE

by passwords PASSWORD and
NOPWREAD on
LABEL

of access to
BSAM and
BDAM data sets

IN and OUT on
LABEL

Allocation

of device UNIT
STORCLAS

 CLASS on JOB
(JES3 only)

 SETUP and
CLASS on
//*MAIN

of tape or direct
access volume

VOLUME
STORCLAS

 EXPDTCHK and
RINGCHK on
//*MAIN

of direct access
space

SPACE AVGREC
DATACLAS

of virtual I/O UNIT
DSNAME=
temporary
data set

with deferred
volume mounting

DEFER on UNIT

with volume
pre-mounting

 /*SETUP

dynamic DYNAMNBR on
EXEC

Processing Control

by suppressing
processing

DUMMY
NULLFILE on
DSNAME

by postponing
specification

DDNAME

with
checkpointing

CHKPT
SYSCKEOV DD
SYSCHK DD

 RESTART on JOB
RD on EXEC

by subsystem SUBSYS CNTL CNTL ENDCNTL

by TCAM job or
task

QNAME

End Processing

unallocation FREE

Tasks

Chapter 3. Job Control Tasks 3-7

Table 3-3. Tasks for Requesting Data Set Resources (continued)

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

disposition of
data set

DISP

RETPD
EXPDT

 OUTDISP on
/*OUTPUT

release of
unused direct
access space

RLSE on SPACE

disposition of
volume

RETAIN and
PRIVATE on
VOLUME

 Table 3-4. Tasks for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Identification

as a sysout data
set

SYSOUT

name (last
qualifier)

DSNAME

of output class class on
SYSOUT

CLASS MSGCLASS on JOB
with SYSOUT=* or
CLASS=* and
SYSOUT=(,)

of data set on
3540 Diskette
Input/Output Unit

DSID

Description

of data attributes DCB

Protection

of printed output DPAGELBL
SYSAREA

Performance Control

by queue
selection

 PRTY

Processing Control

with additional
parameters

OUTPUT
code-name on
SYSOUT

DEFAULT

by segmenting SEGMENT

with other data
sets

class on
SYSOUT

THRESHLD
(JES3 only)
GROUPID (JES2
only)

Tasks

3-8 z/OS V1R4.0 MVS JCL User’s Guide

Table 3-4. Tasks for Requesting Sysout Data Set Resources (continued)

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

by external writer writer-name on
SYSOUT

WRITER

by mode PRMODE

by holding HOLD class on
SYSOUT

CLASS OUTDISP

by suppressing
output

DUMMY class on
SYSOUT

OUTDISP=PURGE
on OUTPUT

with
checkpointing

 CKPTLINE
CKPTPAGE
CKPTSEC

 CKPLNS and
CKPPGS on
/*OUTPUT

by Print Services
Facility (PSF)

 AFPSTATS
COLORMAP
COMSETUP
DUPLEX
FORMDEF
FORMLEN
INTRAY
OFFSETXB
OFFSETXF
OFFSETYB
OFFSETYF
OVERLAYB
OVERLAYF
PAGEDEF
PRTERROR
RESFMT
USERLIB

by Infoprint
Server

 FSSDATA

PORTNO
PRTOPTNS
PRTQUEUE

RETAINF
RETAINS
RETRYL
RETRYT

End Processing

unallocation FREE
SPIN

Destination Control

to local or remote
device or to
another node

DEST class on
SYSOUT

DEST
COMPACT

 /*ROUTE PRINT
/*ROUTE
PUNCH

ORG on //*MAIN

Tasks

Chapter 3. Job Control Tasks 3-9

2
2

Table 3-4. Tasks for Requesting Sysout Data Set Resources (continued)

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

to another
processor

 ACMAIN on
//*MAIN

to internal reader INTRDR as
writer-name on
SYSOUT

 /*EOF
/*DEL
/*PURGE
/*SCAN

to terminal TERM

to assist in
sysout
distribution

 ADDRESS
BUILDING
DEPT
NAME
ROOM
TITLE

 ROOM on
/*OUTPUT

Output Formatting

to any printer COPIES FCB
form-name on
SYSOUT UCS

COPIES
FCB
FORMS
LINECT
(JES2 only)
UCS
CONTROL

forms, copies, and
linect on JOB JES2
accounting
information

COPIES,
FORMS, and
LINECT on
/*JOBPARM
COPIES, FCB,
and FORMS on
/*OUTPUT

COPIES and
FORMS on
//*FORMAT PR

to an AFP printer
in addition to
most of printer
parameters

BURST
CHARS
FLASH
MODIFY
DCB=
OPTCD=J

BURST CHARS
FLASH MODIFY
TRC

 BURST on
/*JOBPARM

CHARS, FLASH,
and BURST on
/*OUTPUT

CHARS and
FLASH on
//*FORMAT PR

to 3211 Printer
with indexing
feature

 INDEX (JES2
LINDEX only)

to punch COPIES FCB
form-name on
SYSOUT
DCB=FUNC=I

COPIES
FCB
FORMS

of dumps on
3800 Printing
Subsystem

CHARS=DUMP
FCB=STD3

CHARS=DUMP
FCB=STD3

Output Limiting

 OUTLIM lines and cards
on JOB JES2
accounting
information

BYTES, CARDS,
LINES, and PAGES
on JOB

BYTES, CARDS,
LINES, and
PAGES on
/*JOBPARM

BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

USERDATA Specifications

Installation
specifications

 USERDATA

Tasks

3-10 z/OS V1R4.0 MVS JCL User’s Guide

Tasks

Chapter 3. Job Control Tasks 3-11

Tasks

3-12 z/OS V1R4.0 MVS JCL User’s Guide

Part 2. Tasks for Entering Jobs

This part describes how to enter jobs into the system. The tasks required to enter a
job are:
v Identification
v Execution

Other tasks can optionally be performed:
v Job input control
v Communication
v Protection
v Resource control

© Copyright IBM Corp. 1988, 2003

Part 2. Tasks for Entering Jobs

 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 4. Entering Jobs - Identification
 Table 4-1. Identification Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Identification

of job jobname field
null statement
(JES3 only)

of step stepname field

of procedure
PROC
PEND

of INCLUDE
group

 INCLUDE

of account accounting
information or
pano in JOB
JES2 accounting
information

ACCT /*NETACCT //*NETACCT

of programmer programmer’s-
name and room in
JOB JES2
accounting
information USER

 ROOM on
/*JOBPARM

PNAME, BLDG,
DEPT, ROOM,
and USERID on
//*NETACCT

Identification of Job
Each job must be identified in the jobname field of the JOB statement. This
identification is required and is coded:

 //jobname JOB

The next JOB statement or the end of the input stream identifies the end of a job. A
null statement can identify the end of a job or input stream.

Examples

//MYJOB JOB
 .
 .
//MCS167 JOB
 .
 .
//R#123 JOB
 .
 .
//@5AB JOB
 .
 .
//

This fifth statement is a null statement.

© Copyright IBM Corp. 1988, 2003 4-1

Identification of Step
A step name is required on only certain EXEC statements. In practice, name all
steps. The system uses the step name in messages. If you omit the step name, the
system leaves this field blank in messages, making it difficult to decide what step
caused each message. A step name is coded:

//stepname EXEC

Examples

//STEP1 EXEC PGM=A
 .
 .
//CHECK EXEC PROC=MHB15
 .
 .
//A$9 EXEC PGM=RPTWRT
 .
 .
//MYPROGRM EXEC PGM=CALC
 .

Identification of Procedure
For an in-stream procedure, identify the beginning with a PROC statement and the
end with a PEND statement. Code a name on the PROC statement. The name for
a TSO/E logon procedure should not be the same as the name of any subsystem.

For a cataloged procedure, PROC and PEND statements are optional. A PROC
statement does not identify a cataloged procedure; the procedure is called by its
member name or alias in the procedure library. However, use the PROC statement
to assign default values for all symbolic parameters in the procedure. Then, if the
calling EXEC statement or a SET statement does not assign a value to or nullify all
the symbolic parameters, the step will not fail.

Examples

For in-stream procedures:

//PAYROLL PROC
 .
 .
// PEND

//DESK3 PROC A=NEWYORK,F=3350,C=(OLD,CATLG,DELETE)
 .
 .
//ENDING PEND THIS STATEMENT ENDS IN-STREAM PROCEDURE DESK3.

For cataloged procedures:

// PROC UT=3800,FM=J287,DT=LOCAL

Entering Jobs - Identification

4-2 z/OS V1R4.0 MVS JCL User’s Guide

Identification of INCLUDE Group
An INCLUDE statement identifies a member of a PDS or PDSE that contains a set
of JCL statements. This set of JCL statements is called an INCLUDE group. The
system replaces the INCLUDE statement with the statements in the INCLUDE
group.

Example

The INCLUDE group INOUTDD contains:

//INOUT4 DD DSNAME=DS4,UNIT=3380,VOL=SER=111112,
// DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))
//INOUT5 DD DSNAME=DS5,UNIT=3380,VOL=SER=111113,
// DISP=SHR

The system executes the following job step:

//STEP2 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INOUT INCLUDE MEMBER=INOUTDD
//SYSUT3 DD UNIT=SYSDS,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDS,SPACE=(TRK,(1))
COPYOPER COPY OUTDD=INOUT1

After the system executes the step, the JCL stream appears as follows:

//STEP2 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INOUT4 DD DSNAME=DS4,UNIT=3380,VOL=SER=111112,
// DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))
//INOUT5 DD DSNAME=DS5,UNIT=3380,VOL=SER=111113,
// DISP=SHR
//SYSUT3 DD UNIT=SYSDS,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDS,SPACE=(TRK,(1))
COPYOPER COPY OUTDD=INOUT1

Identification of Account

For Local Execution
In JES initialization parameters, the installation specifies whether or not accounting
information is required in the accounting information parameter on the JOB
statement and/or the ACCT parameter on the EXEC statement. The installation
decides what accounting information is needed and the format for the information.

Examples

//J28 JOB (12A75,DEPTD58,921)
 .
 .
//XYZ JOB ’12A75,DEPTD58,921’

If a subparameter contains special characters:

//GHI JOB (12A75,’DEPT/D58’,921)
 .
 .
//JKL JOB ’12A75,DEPT/D58,921’

Entering Jobs - Identification

Chapter 4. Entering Jobs - Identification 4-3

If only an account number is coded:

//MNO JOB 12A75
 .
 .
//PQR JOB ’12A.75’

If the account number is omitted:

//STU JOB (,DEPTD58,921)

For Remote Execution
The JES2 /*NETACCT statement and the JES3 //*NETACCT statement supply
accounting information for jobs sent to remote nodes for execution.

Examples

For remote execution in a JES2 system:

/*NETACCT 27FD16

For remote execution in a JES3 system:

//*NETACCT PNAME=FKRUPA,ACCT=27FD16,BLDG=921,DEPT=D58,
 .
 .
//*NETACCT ROOM=2T13,USERID=DDFKPGMR

Identification of Programmer
In JES initialization parameters, the installation specifies if a programmer’s-name
parameter is required on the JOB statement. The installation decides what the
parameter must contain.

Examples

//ABC JOB ,L.GORDON
 .
 .
//DEF JOB ,’L GORDON’
 .
 .
//GHI JOB ,’SP/4 L. GORDON’
 .
 .
//JKL JOB ,’DEPT. 7202’

The USER parameter can be coded on the JOB statement to identify the person
submitting the job.

Example

//MNO JOB ACCT15,’DON PIZZUTO’,USER=ID32DBP

Entering Jobs - Identification

4-4 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 5. Entering Jobs - Execution
 Table 5-1. Execution Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Execution

of program PGM

of procedure PROC

when restarting
and with
checkpointing

RESTART
RD

RD SYSCHK DD RESTART on
/*JOBPARM

FAILURE and
JOURNAL on
//*MAIN

deadline or
periodic

 DEADLINE on
//*MAIN

when dependent
on other jobs

 //*NET

at remote node XMIT JCL
/*ROUTE XEQ
/*XEQ
/*XMIT

//*ROUTE XEQ

Execution of Program
All programs to be executed must reside in a library, which is a partitioned data set
(PDS) or partitioned data set extended (PDSE). The installation should maintain a
list of programs available in its libraries. Libraries are of three types:
v System libraries: such as SYS1.LINKLIB
v Private libraries: specified in a JOBLIB or STEPLIB DD statement
v Temporary libraries: created in a previous step of the job.

For information about libraries, see “Resource Control of Program Library” on page
9-1

Execute a program in a system or private library by coding:

//stepname EXEC PGM=program-name

Execute a program in a temporary library by coding:

//stepname EXEC PGM=*.stepname.ddname
//stepname EXEC PGM=*.stepname.procstepname.ddname

Examples

//ST1 EXEC PGM=MYPROG
//DSPROG DD DSNAME=PDS1(MEMP),DISP=SHR
//ST2 EXEC PGM=*.ST1.DSPROG

Execution of Procedure
A procedure to be executed must be a:

© Copyright IBM Corp. 1988, 2003 5-1

v In-stream procedure, located in the input stream before the EXEC statement that
calls it.

v Cataloged procedure, defined in the system procedure library concatenation
SYS1.PROCLIB, an installation-defined procedure library, or a private library.

Execute an in-stream or cataloged procedure by coding:

 //stepname EXEC PROC=procedure-name
 //stepname EXEC procedure-name

Examples

//ST1 EXEC PROC=PROCA
//STEP9 EXEC PROC=DAILY

Execution when Restarting and with Checkpointing (non-APPC)
In an APPC scheduling environment, job restart is not supported.

Restarting after Abnormal Termination
If a job terminates abnormally, the checkpoint/restart facilities allow you to restart
the job, as follows:

v Automatic step restart, that is, restart by the system from the beginning of a job
step.

v Automatic checkpoint restart, that is, restart by the system from a checkpoint
within a job step.

v Deferred step restart, that is, restart at a later time from the beginning of a job
step.

v Deferred checkpoint restart, that is, restart at a later time from a checkpoint
within a job step.

Restarts are controlled by:

v RD parameters on JOB and EXEC statements. (Restart is not supported for
started tasks; do not use the RD parameter on the JOB statement for a started
task.)

v Checkpoints, if written. Each time a CHKPT macro is executed, a checkpoint is
written.

v The job journal, which is only required for an automatic restart. In a JES3
system, the programmer can code a JOURNAL parameter on the JES3 //*MAIN
statement to control whether JES3 creates a journal for the job.

v In deferred restarts, a RESTART parameter on the JOB statement for the
restarting job and a SYSCHK DD statement to identify the data set containing the
checkpoint written in response to the CHKPT macro. (Restart is not supported for
started tasks; do not use the RESTART parameter on the JOB statement for a
started task.)

Use of Restart

Either form of restart saves having to execute the job from its beginning. If the job
is long, restarting can save a lot of time and computer resources.

For more information about restarting, see z/OS DFSMS Checkpoint/Restart.

Entering Jobs - Execution

5-2 z/OS V1R4.0 MVS JCL User’s Guide

Examples

//J1 JOB ,’B. MORRISON’,RD=RNC

//J2 JOB ,’H. MORRILL’
//S1 EXEC PGM=TESTING,RD=R
//S2 EXEC PGM=TESTED,RD=NC

Restarting When the System Failed in a JES2 System
JES2 requeues the job for execution if RESTART=Y is in the JES2 /*JOBPARM
statement, and all of the following conditions apply:

v The job was executing when the system failed.

v The operator reinitializes the system with a JES2 warm start.

v The job cannot restart from a step or a checkpoint.

Re-execution is from the beginning of the job.

If the job is registered with automatic restart management, automatic restart
management overrides RESTART=N, and queues the job for re-execution.

For more information about using automatic restart management, see z/OS MVS
Setting Up a Sysplex and z/OS MVS Programming: Sysplex Services Guide.

Example

//J3 JOB ,’J. BUSKIRK’
/*JOBPARM RESTART=Y
 .
 .

Restarting When the System Failed in a JES3 System
If the job was executing when the system failed, the FAILURE parameter on the
JES3 //*MAIN statement tells JES3 how to handle the job. The job can be restarted,
cancelled, held, or printed and then held for restart.

If the job is registered with automatic restart management, automatic restart
management overrides the value of the FAILURE= keyword, and queues the job for
re-execution.

For more information about using automatic restart management, see z/OS MVS
Setting Up a Sysplex and z/OS MVS Programming: Sysplex Services Guide.

Example

//J4 JOB ,’G. HILL’,RD=NC
//*MAIN FAILURE=RESTART
 .
 .

Deadline or Periodic Execution in a JES3 System
Use the DEADLINE parameter on the JES3 //*MAIN statement to execute your job
by a certain time or periodically every week, month, or year. As the deadline
approaches, JES3 increases the job’s priority until it is executed. The priority is
increased according to the installation-defined algorithm requested in the second
subparameter.

Entering Jobs - Execution

Chapter 5. Entering Jobs - Execution 5-3

Note: The term ’periodically’ means that you submit a job as many times as you
need it to process. For example, if you need a job to run once a month for
every month of the year, you would submit 12 jobs with a date for each
month. You could not submit a job once and have it process 12 times.

Use of Deadline Scheduling
The purpose of deadline scheduling is to help JES3 use available resources best.
For example, if you work first shift and submit a job at the end of the day, you do
not need output until the next morning. Specify 7 a.m. of the next day in the
DEADLINE parameter and assign the job a low priority. JES3 can schedule the job
any time during the night when the resources are available. But, if the job has not
been scheduled by several hours before 7 a.m., JES3 increases its priority. JES3
will increase the job’s priority periodically until it is selected for execution by 7 a.m.

Examples

 To execute a job by 7 a.m. on January 20, 1986, code:

 //*MAIN DEADLINE=(0700,B,012086)

The syntax changes slightly if you specify a date on or after the year 2000.

 To execute a job by 7 a.m. on January 20, 2000, code:

 //*MAIN DEADLINE=(0700,B,01/20/2000)

Use of Periodic Scheduling
The purpose of periodic scheduling is to run certain weekly, monthly, or yearly
programs automatically.

Examples

 To execute a job by 2 p.m. every Friday, code:

 //*MAIN DEADLINE=(1400,A,6,WEEKLY)

Execution when Dependent on Other Jobs in a JES3 System
Use dependent job control (DJC) when jobs must be executed in a specific order.
The group of jobs that depend on each other form a dependent job control (DJC)
network. To indicate to JES3 the relationship of jobs to each other in a DJC
network, code a JES3 //*NET statement in each job. Jobs in a network are of two
types:
v Predecessor jobs, which must be completed before another job.
v Successor jobs, which must not be executed until one or more jobs are

completed.

Using parameters on the //*NET statement, you can make execution of a job
depend on how a predecessor terminated: normally or abnormally. When a
predecessor job completes, a successor job:

v Can have the count of predecessor jobs it is waiting for decreased by one. When
the count reaches zero, the successor job is queued for execution.

v Can be flushed from the system. The successor job and all of its successors are
canceled, printed, and flushed from the system.

Entering Jobs - Execution

5-4 z/OS V1R4.0 MVS JCL User’s Guide

v Can be retained until the operator releases it. The successor job and all of its
successors are kept from being scheduled. The job is released only when its
immediate predecessor is resubmitted or the operator decreases the predecessor
job number.

External Dependencies

If your job depends on external events, you can specify a count of predecessor jobs
that is one greater than needed. The system will hold the job because the count
cannot reach zero. When the external event occurs, the operator can issue a
*MODIFY,N command to reduce the number so that the job will execute.

Testing a Network

To test a network without executing the programs, substitute the following for each
actual EXEC statement:

 //stepname EXEC PGM=IEFBR14

Example 1

To set up a DJC network, first draw a diagram of the dependencies:

 JOBA JOBB
 | |
 JOBC
 | |
 JOBD JOBE

Give the network a name: XMP1. This is the //*NET statement NETID parameter.

Then list each job and its predecessors and successors:

 jobname Predecessors Successors
 //*NET NHOLD //*NET RELEASE

 JOBA 0 JOBC
 JOBB 0 JOBC
 JOBC 2 JOBD, JOBE
 JOBD 1 none
 JOBE 1 none

Finally, code a //*NET statement to appear in each job:

//JOBA JOB ...
//*NET NETID=XMP1,RELEASE=(JOBC)
//S1 EXEC ...
 .
 .
//JOBB JOB ...
//*NET NETID=XMP1,RELEASE=(JOBC)
//SA EXEC ...
 .
 .
//JOBC JOB ...
//*NET NETID=XMP1,NHOLD=2,RELEASE=(JOBD,JOBE)
//S1 EXEC ...
 .
 .
//JOBD JOB ...

Entering Jobs - Execution

Chapter 5. Entering Jobs - Execution 5-5

//*NET NETID=XMP1,NHOLD=1
//SA EXEC ...
 .
 .
//JOBE JOB ...
//*NET NETID=XMP1,NHOLD=1
//S1 EXEC ...
 .

Example 2

This example shows two networks. JOB3 in network XMP3 depends on JOBC in
network XMP2.

 XMP2 XMP3

 JOBA JOBB JOB1
 | | |
 JOBC <--- JOB2
 | | |
 JOBD ---> JOB3

 jobname Predecessors Successors
 //*NET NHOLD //*NET RELEASE

 JOBA 0 JOBC
 JOBB 0 JOBC
 JOBC 2 JOB3
 JOBD 1 none

 JOB1 0 JOB2
 JOB2 1 JOB3
 JOB3 2 none

The //*NET statements for each job are:

 For JOBA: //*NET NETID=XMP2,RELEASE=(JOBC)
 For JOBB: //*NET NETID=XMP2,RELEASE=(JOBC)
 For JOBC: //*NET NETID=XMP2,NHOLD=2,NETREL=(XMP3,JOB3),RELEASE(JOBD)
 For JOBD: //*NET NETID=XMP2,NHOLD=1
 For JOB1: //*NET NETID=XMP3,RELEASE=(JOB2)
 For JOB2: //*NET NETID=XMP3,NHOLD=1,RELEASE=(JOB3)
 For JOB3: //*NET NETID=XMP3,NHOLD=2

Execution at Remote Node (non-APPC)
JES control statements and the XMIT statement have no function in an APPC
scheduling environment.

You can enter a job through your system to execute on another system by coding
one of the following statements. The job can be entered through an input reader, an
internal reader, a TSO/E terminal, or an RJE (remote job entry) or RJP (remote job
processing) terminal or work station.

When Entered through a JES2 System:
v And received by a JES2 system, code one of the following:

 //name XMIT DEST=node,DLM=xx
 /*ROUTE XEQ node
 /*XEQ node

v And received by a JES2 system or a JES3 system, code:

Entering Jobs - Execution

5-6 z/OS V1R4.0 MVS JCL User’s Guide

|

//name XMIT DEST=node,DLM=xx
 /*XMIT node

v And received by a VM system with an MVS system running as a guest, code one
of the following:
 //name XMIT DEST=node,DLM=xx
 /*ROUTE XEQ node.vmguestid
 /*XEQ node.vmguestid
 /*XMIT node.vmguestid

When Entered through a JES2 or JES3 System:

v And received by a system other than a VM system, code:
 //name XMIT DEST=node,DLM=xx

v And received by a VM system with another system running as a guest, code:
 //name XMIT DEST=node.vmuserid,DLM=xx

Use of XMIT JCL Statement with a JES system

When writing new JCL, IBM recomends using the XMIT JCL (//name XMIT form)
since this statement is not dependent on using a particular JES subsystem
(provided you do not need to use the SUBCHARS= operand, which is not
supported by JES2). In addition, the XMIT JCL is prefered because it allow
transmission of records that a //*ROUTE XEQ, /*ROUTE XEQ or a /*XEQ statement
does not allow.

For example, a JOB statement for the receiving node must immediately follow a
//*ROUTE XEQ statement. This requirement means that a //*ROUTE XEQ
statement cannot be used to transmit records beginning with $$ POWER control
statements to a VSE node; however, an XMIT JCL statement can transmit such
records.

Considerations when Submitting a Remote Job
When submitting a job for remote execution, find out the installation-determined
attributes of the executing system. Code these values in your JCL for the job.
 The content and format of the JOB statement: Code the executing system’s

parameters on the JOB statements that the executing system will process.
 The JES of the executing system: Code your JES control statements and JCL

parameters for the executing system’s JES.
 The content of SYS1.PROCLIB in the executing system: Call only

procedures available in the executing system.
 The data sets at the executing system: Use only data sets that are available

at the executing system, with the DD parameters that the executing system
requires.

 Installation-specific device names: Code only UNIT names used by the
executing system.

 The sysout classes at the executing system: Specify the executing system’s
sysout classes that have the attributes you need.

 The job classes at the executing system: Specify the executing system’s job
class that has the attributes you need.

Examples

//MYJOB JOB 27D15,’DON SMITH’
//TRANS XMIT DEST=FARSYS
//THEIRJOB JOB (DLD1,2E44),’POK LAB’

Entering Jobs - Execution

Chapter 5. Entering Jobs - Execution 5-7

|

|

|

|

|
|
|
|
|
|

//*MAIN JOURNAL=YES
//S1 EXEC PROC=RR23,A=3350,
// C=25,DP=OLD
/*

v Job MYJOB is processed by the submitting JES3 location

v XMIT TRANS sends the following job to FARSYS

v THEIRJOB is sent as JOB statement; processed by FARSYS

Entering Jobs - Execution

5-8 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 6. Entering Jobs - Job Input Control
 Table 6-1. Input Control Task for Entering Jobs

TASKS FOR
ENTERING
JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Job Input Control

by holding job
entrance

TYPRUN
CLASS

 HOLD, UPDATE,
or CLASS on
//*MAIN
//*NET

by holding local
input reader

 //*PAUSE

by copying input
stream (JES2
only)

TYPRUN
CLASS

from remote
work station

 /*SIGNON
/*SIGNOFF

/*SIGNON
/*SIGNOFF

Job Input Control by Holding Job Entrance (Non-APPC)
Certain situations require that execution of a job be delayed until some external
event has occurred. This topic describes job input control methods of achieving
such a delay. However, these methods are not supported in all environments:

v They are not supported in an APPC scheduling environment.

v The TYPRUN parameter is not supported for started tasks. If TYPRUN is
specified, the job will fail.

v The CLASS parameter is not supported for started tasks in a JES2 environment.
For started tasks in a JES3 environment, all class related attributes and functions
are ignored except device fencing, SPOOL partitioning, and track group
allocation. Refer to the z/OS JES3 Initialization and Tuning Guide for more
information about class attributes and functions.

If a job must wait for an external event before it can execute, use one of the
following to have JES hold the job until the system operator releases it or until an
event occurs:

In a JES2 system

v TYPRUN=HOLD or TYPRUN=JCLHOLD on the JOB statement. The operator
must release the job.

v A JOB statement CLASS that requests a job class defined during JES2
initialization as held. The operator must release the job.

In a JES3 system

v TYPRUN=HOLD or CLASS on the JOB statement or HOLD=YES or CLASS on
the //*MAIN statement. The operator must release the job.

v A job in a dependent job net; see “Execution when Dependent on Other Jobs in
a JES3 System” on page 5-4. JES3 releases the job when the other job(s)
complete execution, or the operator releases the job.

© Copyright IBM Corp. 1988, 2003 6-1

v UPDATE on the //*MAIN statement of another job, if this job would use the
procedure library being updated or any library concatenated to it. JES3 releases
the job when the updating job completes execution.

Use of Job Holding

You may need to delay execution of a job for several reasons. For example:

v If one job is updating a data set that another job must use.

v If the resources a job requires may not be available until an external event
occurs.

Note: You cannot depend on job priorities to control the order in which jobs
execute. The priority specified in the JOB statement PRTY parameter or in
the JES2 /*PRIORITY statement affects the selection order. It does not
guarantee that a job with a higher priority will complete execution before a
job with a lower priority is started.

Examples
//J1 JOB ,’J. COLE’,TYPRUN=HOLD
 .
//J2 JOB ACCT1734,’T. CURATOLO’,CLASS=H

//*MAIN HOLD=YES
//*MAIN UPDATE=DS3

Job Input Control by Holding Local Input Reader (Non-APPC)
The //**PAUSE statement is not supported in an APPC scheduling environment. If
you code //**PAUSE, the system will ignore it, and it will appear as a comment in
the job listing.

In a JES3 system, use a //**PAUSE statement to halt an input reader. JES3 issues
a message and waits for the operator to issue a *START command or for a remote
work station with console level 15 to send a start message.

Example
//**PAUSE
//FIRST JOB ,’D. SCHOFER’
 .
 .

Job Input Control by Copying Input Stream (Non-APPC)
This topic describes methods to copy an input job without executing any steps.
These methods are applicable only in a JES2 environment. They are not supported
in an APPC scheduling environment, and are not supported for started tasks.

In a JES2 system, code one of the following on the JOB statement to copy an input
job without executing any steps:

v TYPRUN=COPY

v A CLASS job class defined during JES2 initialization as containing jobs to be
copied without execution.

While copying the input stream, JES2 scans the JCL for syntax errors.

Entering Jobs - Job Input Control

6-2 z/OS V1R4.0 MVS JCL User’s Guide

In both cases, JES2 places the copy of the input stream in a sysout data set. The
sysout data set is in the class specified in the JOB statement MSGCLASS
parameter. Pick the MSGCLASS class to control how the copied input stream is to
be processed, as follows:

v By JES2 or by an external writer.

v Scheduled for immediate output or held because the message class is held. If
held, the sysout data set is available to the TSO/E OUTPUT command.

Examples
//CPYJ1 JOB 1589D10,’I. BUTLER’,TYPRUN=COPY
 .
//CPYJ2 JOB ,’D. BALLARD’,CLASS=P
 .

Job Input Control from Remote Work Station

JES2 Remote Job Entry
JES2 remote job entry (RJE) allows a remote work station to submit a job to a
distant system and have the job processed by the system’s JES2. Your installation’s
security product can control RJE stations. The output can be retained at the host
system, sent to the work station, or sent to another location. JES2 processes a
remote job as if it had been submitted locally. The remote station becomes a logical
extension of the computer system that processes its jobs.

JES2 supports two ways of communicating with RJE remote stations:

v Through systems network architecture synchronous data link control
(SNA/SDLC) protocol. SNA stations gain access to JES2 through VTAM.

v Through binary synchronous communication (BSC) protocol. Communication
between the local processor and a BSC RJE station uses a JES2 facility called
multi-leaving. Multi-leaving allows transmission of multiple print and punch
streams at the same time and allows JES2 to receive multiple console messages
and input streams.

For more information, see remote job entry in z/OS JES2 Initialization and Tuning
Guide and z/OS Communications Server: SNA Programming.

JES2 expects the remote station to be under the control of a remote operator. The
RJE stations can consist of two types of devices:

v Remote terminal, which does not have a processor. A remote terminal, for
example a 2780 or 2770, can be used to enter jobs into and receive data from
JES2.

v Remote work station, which has a processor. A processor, for example a
System/370 or System/390, executes a JES2-generated program that allows the
processor to send jobs to and receive data from JES2. The remote work station
may also include printers, card readers and punches, and a console.

Remote Job Entry Stations

During JES2 initialization, installations can configure remote lines as dedicated or
nondedicated. For nondedicated remote lines, use the following to notify JES2 that
you wish to begin and end a remote job stream processing session:

v For SNA remote work stations: the LOGON command to begin and either the
LOGOFF command or the JES2 /*SIGNOFF control statement to end.

Entering Jobs - Job Input Control

Chapter 6. Entering Jobs - Job Input Control 6-3

v For BSC remote work stations: the JES2 /*SIGNON control statement to begin
and the JES2 /*SIGNOFF control statement to end.

For a discussion of the LOGON and LOGOFF commands, refer to z/OS JES2
Initialization and Tuning Reference and z/OS Communications Server: SNA
Programming.

JES3 Remote Job Processing
JES3 remote job processing (RJP) allows a remote work station to submit a job
through a data link to a distant global processor and have the job processed by the
system’s JES3. The output can be retained at the host system, sent to the work
station, or sent to another location. JES3 processes a remote job as if it had been
submitted locally.

Devices attached to a processor by channels are local devices; devices attached
to a processor by a data link are remote devices.

JES3 supports two ways of communicating with RJP remote devices:

v Through systems network architecture synchronous data link control
(SNA/SDLC) protocol.

v Through binary synchronous communications (BSC) protocol.

Remote Work Stations

During JES3 initialization, installations can configure remote lines as dedicated or
nondedicated. For nondedicated remote lines, use the following to notify JES3 that
you wish to begin and end a remote job stream processing session:

v For SNA remote work stations: the LOGON command to begin and either the
LOGOFF command or the JES3 /*SIGNOFF control statement to end.

v For BSC remote work stations: the JES3 /*SIGNON control statement to begin
and the JES3 /*SIGNOFF control statement to end.

For a discussion of the LOGON and LOGOFF commands, refer to z/OS JES3
Initialization and Tuning Reference and z/OS Communications Server: SNA
Programming.

Entering Jobs - Job Input Control

6-4 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 7. Entering Jobs - Communication
 Table 7-1. Communication Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Communication

from JCL to
system

 COMMAND
Command

/*$command //**command

from JCL to
operator

 /*MESSAGE //*OPERATOR

from JCL to
programmer

Comment field
unless no
parameter field

Comment field //*comment, also
comment field on all
statements but null

 Comment field
on
//*ENDPROCESS
and //*PAUSE

from JCL to
program

 PARM

from system to
operator

WARNING on
BYTES, CARDS,
LINES, and
PAGES

 FETCH on
//*MAIN
WARNING on
BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

from system to
userid -of job
completion -of
print completion

NOTIFY NOTIFY on
OUTPUT JCL
statement

/*NOTIFY ACMAIN on
//*MAIN with
JOB NOTIFY

from TSO/E
userid to system

 USER on
//*MAIN

from functional
subsystem to
programmer

 PIMSG on OUTPUT
JCL

through job log MSGCLASS
MSGLEVEL log in
JOB JES2
accounting
information

 JESDS on OUTPUT
JCL

NOLOG on
/*JOBPARM

Communication from JCL to System (Non-APPC)
The statements described in this section are not supported in an APPC scheduling
environment.

Use the following to communicate from your JCL to the system:

v In a JES2 system,
– The JCL COMMAND statement to enter any MVS and JES commands that

can be issued from the operator’s console
– The JCL command statement to enter system operator commands
– The JES2 /*$command statement to enter JES2 commands.

v In a JES3 system,

© Copyright IBM Corp. 1988, 2003 7-1

– The JCL COMMAND statement to enter any MVS and JES commands that
can be issued from the operator’s console

– The JCL command statement to enter system operator commands
– The JES3 //**command statement to enter JES3 commands.

The system executes any in-stream command as soon as it is read. Therefore, the
command will not be synchronized with the execution of any job or step.

Examples
 In a JES2 system:
 /*$SI3-5

 // COMMAND ’CANCEL MYJOB,DUMP’

 In a JES3 system:
 //**START

Communication from JCL to Operator (Non-APPC)
Use a /*MESSAGE control statement in a JES2 system or a //*OPERATOR control
statement in a JES3 system to send a message to the operator when JES reads
the job from the input stream. Note that the message is not synchronized with the
execution of any job or step.

Examples
 In a JES2 system:
 /*MESSAGE JOB J67 IS HELD. CALL X65335 BEFORE RELEASING J67.

 In a JES3 system:
 //*OPERATOR JOB J67 IS HELD. CALL X65335 BEFORE RELEASING J67.

Communication from JCL to Programmer
To communicate from your JCL to programmers, use comments fields or JCL
//*comment statements. The comments appear in the job log output listing if the
JOB statement MSGLEVEL parameter requests that the statements be printed.

Use comments primarily to document your job and its resource requirements.

Examples
//* JOB J67 IS HELD UNTIL THE OPERATOR RELEASES IT.
//* THE OPERATOR SHOULD RELEASE J67 WHEN DISK 398
//* IS AVAILABLE.

Communication from JCL to Program
A processing program can require information that can vary from execution to
execution. For example, the assembler and the linkage editor require that the
programmer supply options and module attributes at execution. To provide
information to a program, code the PARM parameter on the EXEC statement that
executes the program.

To use the information, the processing program must contain instructions to retrieve
the information. Retrieval of the PARM information is detailed in z/OS MVS
Programming: Assembler Services Guide.

Examples

Entering Jobs - Communication

7-2 z/OS V1R4.0 MVS JCL User’s Guide

//FIRST EXEC PGM=IEV90,PARM=(OBJECT,NODECK,’LINECOUNT=50’)
//LATER EXEC PGM=HEWL,PARM=’XREF,LIST,LET’

PARM Values for IBM-Supplied Programs
Some IBM-supplied programs allow you to select options from a set of alternatives.
The PARM values are listed in the publication for the program. For many
IBM-supplied programs, default values can be assigned to PARM values during
system initialization. That is, the installation can select an alternative or assign a
fixed value. The system uses this default unless you specify another value in the
PARM parameter when you execute the IBM-supplied program.

The installation should maintain a list of default values assigned during system
initialization.

Communication from System to Operator
The system sends to the operator console messages deemed to be needed by the
operator.

Messages during Volume Mounting
In a JES3 system, the programmer can control the fetch messages that JES3
issues to the operator console for disk and tape volumes for a job. Code the
FETCH parameter of the JES3 //*MAIN statement to request one of the following:

v All fetch messages for all volumes to be mounted on JES3 setup devices.

v Fetch messages for volumes specified in DD statements that are named in the
SETUP parameter on the JES3 //*MAIN statement.

v Fetch messages for volumes on named DD statements.

v No fetch messages.

v No fetch messages for volumes on named DD statements.

Regardless of the FETCH parameter, JES3 sends all the fetch messages to the job
log.

Examples
//*MAIN FETCH=ALL
//*MAIN FETCH=NONE
//*MAIN FETCH=SETUP
//*MAIN FETCH=(DDA,INDS,DD7)
//*MAIN FETCH=/MYDS

Messages When Job Exceeds Output Limit
The system sends the operator a warning message when the output from a job
exceeds a specified limit. The way you request that the system send a warning
message when the limit is exceeded depends on the environment in which your job
is executing.

Messages When Output Limit Exceeded in an APPC Scheduling
Environment
In an APPC scheduling environment, the BYTES, CARDS, LINES, and PAGES
parameters of the JOB statement limit the job’s output. When you code the
WARNING subparameter with any of these parameters, the system sends the
operator a warning message when the output exceeds the limit you have specified.

Entering Jobs - Communication

Chapter 7. Entering Jobs - Communication 7-3

If you do not code an output limit on the JOB statement BYTES, CARDS, LINES, or
PAGES parameter, the system sends a warning message to the operator when a
job’s output exceeds the installation default limit specified at JES initialization.

Messages When Output Limit Exceeded in a Non-APPC
Scheduling Environment
In a non-APPC scheduling environment, you can request that the system send a
warning message when the limit is exceeded by using the JOB statement
parameters and installation defaults described in Messages When Output Limit
Exceeded in an APPC Scheduling Environment. In addition, you can code a
BYTES, CARDS, LINES, or PAGES parameter on a JES2 /*JOBPARM statement or
on a JES3 //*MAIN statement to limit output for a job.

When you code the WARNING subparameter on the //*MAIN statement, the system
sends a warning message to the operator when a job’s output exceeds the limit you
have specified.

When you code an output limit on the /*JOBPARM statement, the system sends a
warning message to the operator when:

v The job’s output exceeds the limit you have specified, and

v The warning option has been specified at JES2 initialization as the installation
default.

Defaults and Multiple Messages

If you do not code an output limit on the JOB statement, the system uses the limit
coded on the //*MAIN statement or the /*JOBPARM statement. If you do not code a
//*MAIN or a /*JOBPARM statement, the system uses the installation default limit
specified at JES initialization.

If you code multiple //*MAIN statements specifying output limits for a job, or you
code a limit and WARNING subparameter on the JOB statement as well as the
//*MAIN statement, the operator will receive multiple warning messages.

Use of Warning Messages
One use for the output limit is during program testing. The warning message tells
the operator that the program is producing more output than expected. Perhaps the
program is in an endless loop that contains instructions sending records to a printer
or punch. The operator can halt the program’s execution.

Examples

The following examples illustrate the use of the JCL JOB statement, in either an
APPC or non-APPC scheduling environment, to warn the operator when the output
for a job has exceeded a limit in any JES system:
//JOB1 JOB ACCT01,’D. PIKE’,BYTES=(50,WARNING)

//JOB2 JOB 1542,RWALLIN,CARDS=(120,WARNING)

//JOB3 JOB ,ZOBES,LINES=(200,WARNING)

//JOB4 JOB ACCT27,’S M SHAY’,PAGES=(,WARNING)

The following examples illustrate the use of the JES3 //*MAIN statement in a
non-APPC scheduling environment to warn the operator when output for a job has
exceeded a limit.

Entering Jobs - Communication

7-4 z/OS V1R4.0 MVS JCL User’s Guide

//*MAIN BYTES=(50,WARNING)
//*MAIN CARDS=(120,WARNING)
//*MAIN LINES=(200,WARNING)
//*MAIN PAGES=(,WARNING)

Communication from System to Userid
The NOTIFY parameter allows the system to notify a user of job or print completion.

Job Completion
When you execute a background or batch job, you can ask the system to notify
your time sharing userid or another userid when the job completes. Under TSO/E, a
background job is one that is entered from a terminal by a SUBMIT command or by
executing a step to run TSO/E in the background. For more information, see z/OS
TSO/E Command Reference. A batch job is one that is entered through an input
stream.

To request automatic notification, code in your JCL for the job one of the following:

v In a TSO/E background job in a JES2 or JES3 system, specify a userid (and
optionally a node) in the JOB statement NOTIFY parameter. If you specify a
node, the userid must be attached to that node. If you do not specify a node, the
userid must be attached to the node from which the job originated.

v In a TSO/E background job or a batch job in a JES2 system, specify a userid in
a JES2 /*NOTIFY statement and, if the userid is attached to another node, the
node.

v In a batch job in a JES3 system, specify a userid (and optionally a node) in the
JOB statement NOTIFY parameter and the processor for the userid in the
ACMAIN parameter of the JES3 //*MAIN statement.

Examples
 In a JES2 or JES3 system:
 //MYJOB JOB ,’I. BUTLER’,NOTIFY=DN62PSS
 //MYJOB JOB ,’I. BUTLER’,NOTIFY=FARNODE.DN62PSS

 In a JES2 system:
 /*NOTIFY DN62PSS4
 /*NOTIFY FARNODE.DN62PSS

 In a JES3 system:
 //MYJOB JOB ,’I. BUTLER’,NOTIFY=DN62PSS
 //*MAIN ACMAIN=2

Print Completion
You can receive notification that your output has completed printing by coding the
NOTIFY parameter on the OUTPUT JCL statement. NOTIFY allows you to send the
print completion message to up to 4 users. The message identifies the output that
has completed printing, and indicates whether the printing was successful.

Example
//OUT1 OUTPUT NOTIFY=(PLPSC.ARNOLD,SMYTHE)

Entering Jobs - Communication

Chapter 7. Entering Jobs - Communication 7-5

|
|
|

Communication from Time Sharing Userid to a JES3 System
In a JES3 system, the USER parameter on the JES3 //*MAIN statement identifies
the job with a TSO/E user. The job can be submitted through any input source,
other than the internal reader, provided the installation does not force job naming
conventions. USER allows the TSO/E userid to:
v Issue a TSO/E OUTPUT command to access sysout data sets from the job.
v Inquire about the status of the job or cancel it.

Example
//*MAIN USER=J63ET91

Communication from Functional Subsystem to Programmer
The programmer can control whether a functional subsystem prints its messages in
the output listing following the sysout data set it creates. For this control, code the
PIMSG parameter on the OUTPUT JCL statement.

Example
//ODS3 OUTPUT PAGEDEF=IMAG4,PIMSG=YES

Communication through Job Log
The system produces three system-managed data sets about a job. The system
managed-data sets consist of:

v The job log, which is a record of job-related information for the programmer. The
job log consists of:

– The job control statements in the input stream, that is, the JCL statements
and JES2 or JES3 statements.

– Cataloged procedure statements for any procedure a job step calls.

– Messages about job control statements.

v The job’s hard-copy log, which is a record of all message traffic for the job to and
from the operator console. These messages describe allocation of devices and
volumes, execution and termination of job steps and the job, and disposition of
data sets.

v System messages for the job.

The output class for the job log is set by the MSGCLASS parameter on the JOB
statement or, if a job-level OUTPUT JCL statement contains a JESDS parameter,
by the class that applies to the OUTPUT JCL statement. (Note: The MSGCLASS
parameter has no effect in an APPC scheduling environment. If you code
MSGCLASS, the system will check it for syntax and ignore it.) If no class is
specified, the system uses the default class based on the input source of the job;
the default is specified at JES initialization.

Printing of the job log is controlled by the following parameters:

v MSGLEVEL parameter of JOB statement.

v All parameters on an OUTPUT JCL statement that contains a JESDS parameter.

To prevent the job log from being printed, code one of the following:
v log subparameter in the JOB statement JES2 accounting information parameter
v NOLOG parameter on the JES2 /*JOBPARM statement

Entering Jobs - Communication

7-6 z/OS V1R4.0 MVS JCL User’s Guide

Example 1
//JOBC JOB ,’V. ST PIERRE’,MSGLEVEL=(1,1)
//SMDS OUTPUT JESDS=ALL,CLASS=D,COPIES=2,BURST=YES,

Example 2
//JOBF JOB (,,,,,,,N)
/*JOBPARM NOLOG

Example 3
//J1 JOB 1518,’SECT. E98’
//O1 OUTPUT JESDS=ALL
//O2 OUTPUT JESDS=ALL,WRITER=JCLOGGER
//S1 EXEC PGM=REPORT

This example requests that the three system-managed data sets be printed
normally and that a copy of each be routed to an external writer named
JCLOGGER.
//MYEX JOB ,’DEPT. 28H’,MSGCLASS=A
//SYSPROG OUTPUT JESDS=ALL,GROUPID=SYSPROG
//OPER OUTPUT JESDS=ALL,GROUPID=OPER
//USER OUTPUT JESDS=ALL,GROUPID=USER,DEFAULT=YES
//REMOTE OUTPUT JESDS=ALL,DEST=REMOTE,DEFAULT=YES
//S1 EXEC PGM=REPORT
//SYSPRINT DD SYSOUT=A

This example creates four different output groups. Group SYSPROG will contain a
copy of all three system-managed data sets. Group OPER will also contain a copy
of all three system-managed data sets. Group USER will contain a copy of all three
system-managed data sets plus a copy of the data set for DD statement
SYSPRINT: group USER is processed locally.

The system creates a fourth group with a system-generated group name. This
group contains a copy of the three system-managed data sets plus a copy of the
data set for DD statement SYSPRINT; this group is processed remotely at
destination REMOTE.

Printing Job Log and Sysout Data Sets Together
To print the job log and the sysout data sets from a job on the same output listing,
place them in the same output class. Specify one of the following:

v SYSOUT=* on the DD statement.

v CLASS=* on the OUTPUT JCL statement.

v The same output class in the DD SYSOUT parameter or OUTPUT JCL CLASS
parameter as specified in the JOB MSGCLASS parameter.

Or, use an OUTPUT JCL statement with a JESDS parameter to control printing of
the system-managed data sets. Note that care is needed in specifying the OUTPUT
JESDS statement and the sysout DD statement because:

v Any values on the sysout DD statement override those on the OUTPUT JCL
statement.

v The values on the OUTPUT JCL statement always apply to the system-managed
data sets.

Therefore, the output parameters used to process the system-managed output data
sets and sysout data sets can be different, even when the data sets all reference
the same OUTPUT JCL statement. For example, if the sysout DD statement

Entering Jobs - Communication

Chapter 7. Entering Jobs - Communication 7-7

specifies one output class and the JESDS statement specifies another output class,
the sysout data set and system-managed data sets are placed in different
subgroups and each is printed in its own output class.

Example 1
//J1 JOB DF16,MSGCLASS=B
//S1 EXEC PGM=ABC
//OUT DD SYSOUT=*

//J2 JOB ,’V. FOTI’,MSGCLASS=C
//S1 EXEC PGM=DEF
//OUT DD SYSOUT=C

//J3 JOB ,’G. ROY’,MSGCLASS=D
//S1 EXEC PGM=GHI
//OT1 OUTPUT CLASS=*
//DS1 DD SYSOUT=(,),OUTPUT=*.OT1

//J4 JOB ,’T. POLAKOWSKI’,MSGCLASS=E
//S1 EXEC PGM=JKL
//OT1 OUTPUT DEFAULT=YES,CLASS=E
//DS1 DD SYSOUT=(,)

Example 2
//SYSDS JOB ,’J. HIGGINS’, MSGCLASS=A
//OUT1 OUTPUT JESDS=ALL,GROUPID=JOINT,DEFAULT=YES
//STEP1 EXEC PGM=REPORT
//REQPRT DD SYSOUT=A

This example shows how to combine sysout data sets and system-managed output
data sets in one output group. The system prints sysout data set REQPRT and all
three system-managed data sets in the same group.

Entering Jobs - Communication

7-8 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 8. Entering Jobs - Protection
 Table 8-1. Protection Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Protection

through RACF
GROUP
PASSWORD
SECLABEL
USER

Protection through RACF
The z/OS Security Server, which includes RACF, is a program product that helps
installations achieve data security by controlling the access to data sets and the
security level for the execution of jobs. For more information about RACF, see
http://www.ibm.com/servers/eserver/zseries/racf/

For RACF protection, the user must supply a userid and a password to RACF. The
group name and security label for the job are optional. Depending on the
installation’s RACF options, the group name and security label can be supplied in
the USER, PASSWORD, GROUP, and SECLABEL parameters on the JOB
statement. For jobs submitted by a TSO/E user, these items can be obtained from
the TSO/E logon.

The security environment of started tasks is defined using a RACF class, not
through the USER, PASSWORD, GROUP, and SECLABEL parameters. If these
parameters are specified, the started task will fail.

In any RACF installation, the USER and the PASSWORD are required, and the
GROUP and the SECLABEL are optional parameters on JOB statements for the
following:

v Batch jobs submitted through an input stream, such as a card reader:

– if the job requires access to RACF-protected resources, or

– if the installation requires that all jobs have RACF identification.

v Jobs submitted by one RACF-defined user for another user. In this case, the JOB
statement must specify the other user’s userid and might need a password. The
group id and security label are optional.

v Jobs that execute at another network node that uses RACF protection.

Examples

 //MYJOB JOB D58,SUE,USER=D58STW,PASSWORD=41168X
 //YOURS JOB D58,DON,USER=DSCHOF,PASSWORD=404632,GROUP=D58DISK
 //RAJOB JOB D58,ALE,USER=D59AFG,PASSWORD=3316YX,SECLABEL=CONF

© Copyright IBM Corp. 1988, 2003 8-1

http://www.ibm.com/servers/eserver/zseries/racf/

Entering Jobs - Protection

8-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 9. Entering Jobs - Resource Control
 Table 9-1. Resource Control Task for Entering Jobs

TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Resource Control

of program library JOBLIB DD
STEPLIB DD
DD defining
member of PDS
or PDSE

of procedure
library

 JCLLIB PROCLIB on
/*JOBPARM

PROC and
UPDATE on
//*MAIN

of INCLUDE
group

 JCLLIB PROCLIB on
/*JOBPARM

PROC and
UPDATE on
//*MAIN

of address space REGION
ADDRSPC

REGION
ADDRSPC

 LREGION on
//*MAIN

of processor SCHENV SYSAFF on
/*JOBPARM

SYSTEM on
//*MAIN

of spool partition SPART and
TRKGRPS on
//*MAIN

Resource Control of Program Library
To be executed, a program must be in one of the following libraries:
 System library
 Private library
 Temporary library

A library is a partitioned data set (PDS) or a partitioned data set extended (PDSE)
on direct access storage. PDSs and PDSEs are divided into partitions, called
members. In a library, each member contains a program or part of a program.

For details on creating and deleting members in a PDS or PDSE, see z/OS
DFSMS: Using Data Sets.

System Library
Unless a job or step specifies a private library, the system searches for a program
in the system libraries when you code:
 //stepname EXEC PGM=program-name

The system looks in the libraries for a member with a name or alias that is the
same as the specified program-name. The most used system library is
SYS1.LINKLIB, which contains executable programs that have been processed by
the linkage editor.

© Copyright IBM Corp. 1988, 2003 9-1

If an earlier DD statement in the job defines the program as a member of a system
library, refer to that DD statement to execute the program:
 //stepname EXEC PGM=*.stepname.ddname

Private Library
Each executable, user-written program is a member of a private library. To tell the
system that a program is in a private library, code a DD statement defining that
library in one of the following ways:

v To define a private library to be used throughout a job, place a DD statement
with the ddname JOBLIB after the JOB statement and before the first EXEC
statement in the job.

v To define a library to be used in only one step, place a DD statement with the
ddname STEPLIB in the step.

To execute a program from a private library, code:
 //stepname EXEC PGM=program-name

When you code JOBLIB or STEPLIB, the system searches for the program to be
executed in the library defined by the JOBLIB or STEPLIB DD statement before
searching in the system libraries.

If an earlier DD statement in the job defines the program as a member of a private
library, refer to that DD statement to execute the program:
 //stepname EXEC PGM=*.stepname.ddname

Use of Private Libraries

Private libraries are particularly useful for programs used too seldom to be needed
in a system library. For example, programs that prepare quarterly sales tax reports
are good candidates for a private library.

Creating a Private Library

To create a private library, code a JOBLIB or STEPLIB DD statement and add one
or more members to it in the job. The JOBLIB library is more convenient than the
STEPLIB, because the JOBLIB is available to every step in the job in order to add
members or to execute already added members. The STEPLIB DD must be passed
or redefined in each step that uses it.

Adding Members to a Private Library

To add members to a library, code a DD statement that defines the library and
names the member to be added to the library.

Example of Creating and Adding to a Private Library
//EG JOB 5328,’MARGARET NONNSEN’
//JOBLIB DD DSNAME=GROUPLIB,DISP=(NEW,CATLG),
// UNIT=3350,VOL=SER=727104,
// SPACE=(CYL,(50,3,4))
//STEP1 EXEC PGM=FIND
//ADDPGMD DD DSNAME=GROUPLIB(RATE),DISP=MOD,
// VOL=REF=*.JOBLIB
//STEP2 EXEC PGM=RATE

Entering Jobs - Resource Control

9-2 z/OS V1R4.0 MVS JCL User’s Guide

In this example, the JOBLIB DD statement creates a library named GROUPLIB.
Program FIND in STEP1 adds the program RATE to the library. STEP2 calls the
program RATE.

In STEP1, the system looks for the program named FIND in SYS1.LINKLIB,
because the private library created on the JOBLIB DD statement does not actually
exist until a member is added to it. In STEP2, the system looks for the program
named RATE first in the JOBLIB library.

Retrieving an Existing Private Library

If several programs for a job are in the same private library, identify the library on a
JOBLIB DD statement. The library is available in every step of the job for which you
do not code a STEPLIB DD statement.

To make a library available to a single step, identify the library on a STEPLIB DD
statement. The STEPLIB library is available only to the step that contains the
STEPLIB DD statement, unless you pass the library and retrieve it in a subsequent
step.

The system searches for a program in the private library you identify. If a job
contains a JOBLIB DD statement and a step contains a STEPLIB DD statement,
the system searches for the step’s program first in the STEPLIB library and then in
the system libraries. The system ignores the JOBLIB library for that step.

For a step in a job using a JOBLIB library, if you want the system libraries searched
rather than the JOBLIB, code a STEPLIB DD statement that identifies a system
library:
 //STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

Example of Retrieving Job and Step Libraries
//MYJOB JOB MSGLEVEL=1
//JOBLIB DD DSNAME=LIB5.GRP4,DISP=SHR
//STEP1 EXEC PGM=FIND
//STEP2 EXEC PGM=GATHER
//STEPLIB DD DSNAME=ACCOUNTS,DISP=(SHR,KEEP),
// UNIT=3350,VOL=SER=727104

v In STEP1, the system searches the library named LIB5.GRP4, defined on the
JOBLIB DD statement, for the program named FIND.

v In STEP2, the system searches the library named ACCOUNTS, defined on the
STEPLIB DD statement, for the program named GATHER.

Concatenating Private Libraries

If a job uses programs from several libraries, you can concatenate these libraries to
a JOBLIB DD statement or a STEPLIB DD statement; all the libraries being
concatenated must be existing libraries. Omit the ddname from all the DD
statements for the libraries, except the first.

The system searches the libraries for the program in the same order as the DD
statements.

Example of Concatenated Libraries

Entering Jobs - Resource Control

Chapter 9. Entering Jobs - Resource Control 9-3

//JOBLIB DD DSNAME=D58.LIB12,DISP=(SHR,PASS)
// DD DSNAME=D90.BROWN,DISP=(SHR,PASS),
// UNIT=3330,VOL=SER=411731
// DD DSNAME=A03.EDUC,DISP=(SHR,PASS)

Temporary Library
Temporary libraries are partitioned data sets created to store a program until it is
used in a later step of the same job. A temporary library is created and deleted
within a job.

When testing a newly written program, a temporary library is particularly useful for
storing the load module from the linkage editor until it is executed by a later job
step. Because the module will not be needed by other jobs until it is fully tested, it
should not be stored in a system library.

While the system assigns the module a name in the temporary library, the name
cannot be predicted. Therefore, use the PGM parameter to identify the program by
location rather than by name. Code a backward reference to the DD statement that
defines the temporary library:
 //stepname EXEC PGM=*.stepname.ddname

Creating a Temporary Library

In the step that produces the program, code a DD statement that creates a
partitioned data set and place the program in it. A later step can then retrieve this
program. Alternatively, you can use the virtual I/O (VIO) facilities to define a
temporary library. See “Allocation of Virtual I/O” on page 15-47 for details.

Example
//STEP2 EXEC PGM=IEWL
 .
 .
 .
//SYSLMOD DD DSNAME=&&PARTDS(PROG),UNIT=3350,
// DISP=(NEW,PASS),SPACE=(1024,(50,20,1))
//STEP3 EXEC PGM=*.STEP2.SYSLMOD

STEP2 calls the program IEWL, which link edits object modules to form a load
module that can be executed. STEP2 places the module in the library defined in the
SYSLMOD DD statement.

STEP3 calls the program by naming the step that created the library and the DD
statement that defines the program as a member of a library. If STEP2 had called a
procedure and the DD statement named SYSLMOD was included in PROCSTEP3
of the procedure, you would code PGM=*.STEP2.PROCSTEP3.SYSLMOD.

Resource Control of Procedure Library
Procedure libraries are partitioned data sets consisting of members that contain
procedures or INCLUDE groups. For information about INCLUDE groups, see
“Resource Control of INCLUDE Group” on page 9-6.

To call and execute a procedure cataloged in a library, code:

 //stepname EXEC PROC=procedure-name

The name of the cataloged procedure is its member name or alias in the library.

Entering Jobs - Resource Control

9-4 z/OS V1R4.0 MVS JCL User’s Guide

Retrieving a Procedure Library
If a job does not specify a procedure library, the system retrieves all cataloged
procedures called by EXEC statements from the procedure libraries defined by the
installation for the job’s job class.

If a job’s cataloged procedures are contained in another procedure library, use the
following parameters to direct the system to that library. The parameters must
specify procedure libraries defined during JES initialization.

v Code a JCLLIB statement to tell the system to search system procedure libraries,
installation-defined procedure libraries, or private libraries. The system searches
the libraries in the order in which they are specified on JCLLIB.

v In a JES2 system, code a PROCLIB parameter on the JES2 /*JOBPARM
statement.

v In a JES3 system, code a PROC parameter on the JES3 //*MAIN statement.

Updating a Procedure Library
A procedure library may have a procedure added or updated with either batch or
foreground processing. Possible methods for updating a procedure library in batch
mode include using utility programs such as IEBUPDTE, IEBCOPY, or IEBGENER,
as well as using user application programs. Foreground updating can be done using
ISPF edit, ISPF copy, or their equivalents.

In JES3 environments, the UPDATE= parameter on the //*MAIN JECL statement is
the recommended way to notify the JES3 Global and any C/I FSS address spaces
running in the JES3 complex of procedure library updates.

To notify JES3 when updates are done in the batch mode, include a //*MAIN
UPDATE= JECL statement in the batch job doing the updating. See z/OS MVS JCL
Reference for information on the //*MAIN JECL statement.

Examples
//JOB1 JOB
//LIBS JCLLIB ORDER=(MYPRI.PROCS.JCL,SYS1.PROCLIB,INSTALL.JCL.PROCS)
//STEP1 EXEC PROC=STAT
 .
 .
 .

In a JES2 system:
//JOB87 JOB ,’S. WENDALL’
/*JOBPARM PROCLIB=PROC15
//S1 EXEC PROC=ALEG
//INDS DD *
 .
 (data)
 .
/*

In a JES3 system:
//JOB87 JOB ,’S. WENDALL’
//*MAIN PROC=15
//S1 EXEC PROC=ALEG
//INDS DD *
 .
 (data)
 .
/*

Entering Jobs - Resource Control

Chapter 9. Entering Jobs - Resource Control 9-5

In these examples, the system obtains the procedure ALEG from the procedure
library PROC15.

Resource Control of INCLUDE Group
An INCLUDE group is a member of a system library, installation-defined library, or
private library.

To imbed an INCLUDE group in the JCL stream at the point of the INCLUDE
statement, code:
 //name INCLUDE MEMBER=member-name

The system replaces the INCLUDE statement with the JCL statements contained in
the INCLUDE group.

Retrieving an INCLUDE Group
To tell the system to search system libraries, installation-defined libraries, or private
libraries for the member named on an INCLUDE statement, code:
 //name JCLLIB ORDER=library-name1,library-name2

Example
//IDLIB JCLLIB ORDER=(PRILIB.INCL.ONE,PRILIB.INC.TWO)
//INCGRP INCLUDE MEMBER=OUTSTMTS

Resource Control of Address Space

Types of Storage
In MVS, the storage available for a program is virtual storage or central storage
(also called real storage):

v Virtual storage is addressable space that appears to the user as central (real)
storage. Instructions and data are mapped from virtual storage into central
storage locations, where they are executed.

v Central (real) storage is the storage from which the processor can directly
obtain instructions and data and to which it can directly return results.

Virtual Storage

The virtual storage address space is 2 gigabytes. The address space contains the
commonly addressable system storage, the nucleus, and the private address space,
which includes the user’s region.

When a program is selected, the system brings it into virtual storage and divides it
into pages of 4K bytes. The system transfers the pages of a program into central
(real) storage for execution and out to auxiliary storage when not needed. Paging is
done automatically; to the programmer, the entire program appears to occupy
contiguous space in central storage at all times. Actually, not all pages of a program
are necessarily in central storage at one time. Also, the pages that are in central
storage do not necessarily occupy contiguous space.

Central (Real) Storage

Entering Jobs - Resource Control

9-6 z/OS V1R4.0 MVS JCL User’s Guide

Certain programs must have all their pages in contiguous central (real) storage
while they are executing. They cannot be paged. These programs must be put into
an area of virtual storage called the nonpageable dynamic area, whose virtual
addresses are identical to real addresses.

Such programs include:
v Programs that modify a channel program while it is active.
v Programs that are highly dependent on time.

Such programs are the only ones for which you should request central storage. To
request central storage, code ADDRSPC=REAL on the JOB or EXEC statement
and request the amount of central storage needed in a REGION parameter.

Requesting Amount and Type of Storage
The amount of space needed by a job or step can be specified in the REGION
parameter of the JOB or EXEC statement. If REGION is on the JOB statement,
each step of the job executes in the requested amount of space. If on the EXEC
statements in a job, each step executes in its own amount of space. Use the EXEC
statement REGION parameters when different steps need greatly different amounts
of space.

The REGION parameter differs depending on whether the program uses virtual or
central storage.

Region Size for Virtual Storage

When ADDRSPC=VIRT is coded or implied, the system establishes two values from
the REGION parameter or the installation-defined default. These values are:

v An upper boundary to limit region size for variable-length GETMAINs.

v A second limiting value set by the IBM- or installation-supplied routine IEALIMIT
or IEFUSI. The system uses this second value to limit:

– Fixed-length GETMAINs.

– Variable-length GETMAINs when the space remaining in the region is less
than the requested minimum.

 When the minimum requested length for a variable-length GETMAIN or the
amount requested for a fixed-length GETMAIN exceeds this second value, the
job or step abnormally terminates. See z/OS MVS Initialization and Tuning Guide
and z/OS MVS Programming: Assembler Services Guide.

The amount of space requested must include the following:

v Space for all programs to be executed.

v All additional space the programs request with GETMAIN macro instructions
during execution.

v Enough unallocated space for task termination.

Region Size for Central (Real) Storage

When ADDRSPC=REAL is coded, the system establishes one value from the
REGION parameter or the installation-defined default. The value is used as an
upper boundary to limit region size for all GETMAINs.

The minimum region size must be:

Entering Jobs - Resource Control

Chapter 9. Entering Jobs - Resource Control 9-7

v 8K if the program to be executed is reenterable and resides in an authorized
library.

v 12K for all other programs.

Note that this is the minimum region for successful execution, but not necessarily
the minimum region size for successful job completion. Programs executed in
central storage should perform as much clean-up as possible before terminating.

Example 1
//J28 JOB ,’F. GOLAZESKI’,CLASS=D
//S1 EXEC PGM=PROGREAL,REGION=20K,ADDRSPC=REAL
//DD1 DD DSNAME=A.B.C,DISP=OLD
//S2 EXEC PGM=PROGVIRT,REGION=75K,ADDRSPC=VIRT
//DD2 DD DSNAME=MYDS2,DISP=OLD

This example shows how to request storage for a program that must not be paged
and for a program that can be paged. Step S1 executes in central (real) storage,
without paging, while step S2 executes in virtual storage, with paging.

Example 2
//STEPA EXEC PROC=MYPROC8,REGION.FIRST=750K,
// REGION.SECOND=700K

This EXEC statement assigns space requests to two procedure steps, FIRST and
SECOND, of a procedure named MYPROC8.

OS/390 UNIX System Services Considerations

In OS/390 UNIX System Services, callable service BPX1SRL lets a program modify
its REGION size. Note that only superusers can increase their REGION size. See
z/OS UNIX System Services Programming: Assembler Callable Services Reference
for more information on the BPX1SRL callable service.

Requesting Amount of Logical Storage in a JES3 System
The LREGION parameter of the JES3 //*MAIN statement allows you to specify the
approximate size of the largest step’s working set in central (real) storage. JES3
uses the LREGION value to improve job scheduling. For more information, see
z/OS JES3 Initialization and Tuning Reference.

Use LREGION carefully. If the values selected for LREGION are too small, the job
may take longer to run.

Example
//*MAIN LREGION=100K

Resource Control of the Processor

Selecting a Processor Using A Scheduling Environment
You can specify the name of a WLM scheduling environment, using the SCHENV
parameter on the JOB statement. A scheduling environment is a list of resources
and their required settings. By associating a scheduling environment name with a
job, you ensure that the job will be scheduled only on a system that satisfies those
resource state requirements.

Entering Jobs - Resource Control

9-8 z/OS V1R4.0 MVS JCL User’s Guide

Scheduling environments differ from the JES2 SYSAFF parameter and JES3
SYSTEM parameter (presented in the next sections). A scheduling environment is
abstract and dynamic. It identifies the dependency that a job has to run on
particular systems without specifically naming the systems. Since a scheduling
environment can change state, the systems where a job is eligible to run can
change without modification to its JCL. The SYSAFF and SYSTEM parameters are
specific and static, since they list system names.

Also, the SYSAFF parameter controls where a job converts and executes, whereas
a scheduling environment controls only where a job executes. (The SYSTEM
parameter does not differ from a scheduling environment in this way — both control
only where a job executes.)

You can use scheduling environments and the SYSAFF or SYSTEM parameter
together. A job may be restricted to either SYS1 or SYS2, for instance, based on
the scheduling environment associated with that work. The SYSAFF or SYSTEM
parameter may then further restrict that work only to SYS1.

For more information about WLM scheduling environments, see z/OS MVS
Planning: Workload Management.

Example
//JOBA JOB 1,’STEVE HAMILTON’,SCHENV=DB2LATE

Selecting a Processor in JES2
In a JES2 multi-access spool configuration, jobs enter from local input streams,
from remote work stations, and from processors at other network nodes. If an
entering job does not specify a system, JES2 can assign the job to execute on any
system in the configuration.

In a multi-access spool configuration, a job can request execution on specific
systems. This request is made by coding:
 /*JOBPARM SYSAFF=cccc
 /*JOBPARM SYSAFF=(cccc,cccc,cccc)
 /*JOBPARM SYSAFF=*
 /*JOBPARM SYSAFF=ANY

A specified system processes the job’s JCL and executes the job. The output from
the job can be processed by any system in the multi-access spool configuration.

You should request a specific system when a job has special processing
requirements not available on all systems in the configuration. For example, an
emulation job might need to run on a particular system.

You can provide a SCHENV default in a JES2 environment via a JOBCLASS(c)
specification.

For more information on the JES2 multi-access spool configuration, see z/OS JES2
Initialization and Tuning Guide.

Independent Mode

If the job needs to be processed by a system in independent mode, code:
 /*JOBPARM SYSAFF=(cccc,IND)
 /*JOBPARM SYSAFF=(,IND)
 /*JOBPARM SYSAFF=(ANY,IND)

Entering Jobs - Resource Control

Chapter 9. Entering Jobs - Resource Control 9-9

A specified system, provided it is operating in independent mode, processes the
job’s JCL and executes the job. The same system processes the job’s output.

Independent mode is useful for testing new components with selected jobs while in
a shared configuration.

Examples
/*JOBPARM SYSAFF=SYS2
/*JOBPARM SYSAFF=(S333,IND)
/*JOBPARM SYSAFF=(*,IND)

Selecting a Processor in JES3
JES3 automatically selects a processor for a job based on the resources that JES3
knows the job needs in order to execute. These resources are:

v Devices

v Volumes

v Data sets

v Processor features, such as an emulator, a nonstandard catalog, or a connection
to a particular system-managed device.

If a job must have resources that JES3 does not control or that JES3 cannot infer
from the job control statements, name the processor(s) that should or should not
execute the job by coding:
 //*MAIN SYSTEM=ANY
 //*MAIN SYSTEM=JGLOBAL
 //*MAIN SYSTEM=JLOCAL
 //*MAIN SYSTEM=(main-name,main-name,...)
 //*MAIN SYSTEM=/(main-name,main-name,...)

Relationship to Other Parameters

The requested processor must be consistent with other parameters specified in the
job control statements:

v CLASS parameter on the JOB statement or //*MAIN statement. A processor or
processors are defined for each valid job class during JES3 initialization. If the
SYSTEM parameter specifies a processor that does not execute jobs of the
specified class, JES3 abnormally terminates the job.

v DD statement UNIT parameter that specifies a device-number for a device that is
JES3-managed or jointly JES3/MVS managed. The specified device must be
attached to the requested processor. Also, because a specific device is
requested, the SYSTEM parameter is required.

v The TYPE parameter on the //*MAIN statement must specify the system running
on the requested processor.

v The processing requests made in JES3 //*PROCESS statements. Any dynamic
support programs called in //*PROCESS statements must be able to be executed
on the requested processor.

Examples
//*MAIN SYSTEM=(PRS1,PRS3)

Entering Jobs - Resource Control

9-10 z/OS V1R4.0 MVS JCL User’s Guide

Resource Control of Spool Partitions in a JES3 System
When JES3 reads a job, it initially places the job on a spool volume or volumes.
The spool volumes can be divided by the installation into groups, known as
partitions. During JES3 initialization, partitions are defined and associated with
output classes, job classes, and processors. See z/OS JES3 Initialization and
Tuning Guide for details.

During job processing, JES3 allocates spool data sets to a partition, as follows, in
override order:
1. The spool partition for the output class of the sysout data set.
2. The spool partition for the job’s class.
3. The spool partition for the processor executing the job.
4. The default spool partition.

You can use the //*MAIN statement to override the JES3 partition allocations,
except for allocation of partitions for sysout data sets and SYSIN data sets. A
sysout data set is always placed in the partition used for its output class; a SYSIN
data set is always placed in the default spool partition. Depending on how the
installation defines the partitions, you can make JES3 allocate all the spool data for
a job or all the spool data of a particular type, such as output, to a specified spool
partition. Thus, you can limit the number of spool volumes that JES3 uses for a
job’s spool data sets. To control the spool partition, code:
 //*MAIN SPART=partition-name

Example 1
//ONE JOB ,’PAT EGAN’
//*MAIN SYSTEM=SY2
//S1 EXEC PGM=ABC
//OUT1 DD SYSOUT=N
//OUT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as follows:
v PARTD is assigned to output class S.
v PARTC is assigned to processor SY2.
v PARTA is the default partition.
v No partition is assigned to output class N.

The job’s input spool data sets are allocated to the default spool partition, PARTA.

Because the job executes on processor SY2 and no partition is assigned for output
class N, the sysout data set OUT1 is allocated to partition PARTC.

Sysout data set OUT2 is allocated to PARTD.

Example 2
//TWO JOB ,’LEE BURKET’
//*MAIN CLASS=IMSBATCH,SYSTEM=SY2
//S1 EXEC PGM=DEF
//OUT1 DD SYSOUT=N
//OUT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as for job ONE, with
the following addition:
v PARTB is assigned to job class IMSBATCH.

Entering Jobs - Resource Control

Chapter 9. Entering Jobs - Resource Control 9-11

The sysout data set OUT1 is allocated to partition PARTB, the job class’s partition.
Note that the job class’s partition overrides the processor’s partition.

Example 3
//THREE JOB ,’T. POLAKOWSKI’
//*MAIN CLASS=IMSBATCH,SPART=PARTE,SYSTEM=SY2
//STEP1 EXEC PGM=GHI
//OUT DD SYSOUT=N
//OUT2 DD SYSOUT=S

During initialization, the installation assigned spool partitions as for job TWO.

The sysout data set OUT1 is allocated to partition PARTE, as specified in the
SPART parameter. Note that the SPART parameter overrides the processor’s
partition and the job class’s partition.

Entering Jobs - Resource Control

9-12 z/OS V1R4.0 MVS JCL User’s Guide

Part 3. Tasks for Processing Jobs

This part describes how to process jobs that have been entered into the system.
These tasks are all optional. They are:
v Processing control
v Performance control

© Copyright IBM Corp. 1988, 2003

Part 3. Tasks for Processing Jobs

 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 10. Processing Jobs - Processing Control
 Table 10-1. Processing Control Task for Processing Jobs

TASKS FOR
PROCESSING
JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3 Statements

JOB EXEC Other JCL

Processing Control

by conditional
execution

COND

CANCEL on
BYTES, CARDS,
LINES, and
PAGES

COND IF/THEN/ELSE/ENDIF
statement construct

CANCEL on
BYTES,
CARDS, LINES,
and PAGES on
/*JOBPARM

CANCEL on
BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

by timing
execution

TIME or time in
JOB JES2
accounting
information

TIME TIME on
/*JOBPARM

for testing:

1. by altering
usual
processing

2. by dumping
after error

TYPRUN
CLASS
DUMP on
BYTES, CARDS,
LINES, and
PAGES

PGM=IEFBR14

PGM=JCLTEST
PGM=JSTTEST
(JES3 only)

SYSMDUMP DD
SYSUDUMP DD
SYSABEND DD

To format dump on
3800 Printing
Subsystem,
FCB=STD3 and
CHARS=DUMP on
dump DD.

 //*PROCESS
//*ENDPROCESS
DUMP on
BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

Processing Control by Conditional Execution
You can conditionally execute steps in a job by using the IF/THEN/ELSE/ENDIF
statement construct or the COND parameter.

Bypassing or Executing Steps Based on the Evaluation of Previous
Steps

Depending on the results of a job step, you might need to bypass or execute later
steps. For instance, if a step terminates abnormally, you might want to execute an
error routine procedure; while if the step terminates normally, you want to continue
processing with the next step.

Using the IF/THEN/ELSE/ENDIF Statement Construct
You can conditionally execute job steps with the IF/THEN/ELSE/ENDIF statement
construct. Use this statement construct instead of the COND parameter to
conditionally execute job steps based on:
v Return codes
v Abend conditions
v System or user abend completion codes.

The IF/THEN/ELSE/ENDIF statement construct tests whether these conditions
occurred in the job, a step, or a procedure step prior to the IF/THEN/ELSE/ENDIF
statement construct.

© Copyright IBM Corp. 1988, 2003 10-1

You can code the IF/THEN/ELSE/ENDIF statement construct anywhere in the job
after the JOB statement. Code it as follows:

 //[name] IF (relational expression) THEN
 //STEPTRUE EXEC
 //[name] ELSE
 //STEPFALS EXEC
 // ENDIF

The relational expression consists of:
v Comparison operators
v Logical operators
v Not (¬) operators
v Relational expression keywords.

Comparison operators compare a relational expression keyword to a numeric value.
The comparison results in a true or false condition. Use the logical operators &
(AND) and | (OR) in complex relational expressions, to indicate that the system
evaluates the Boolean result of two or more relational expressions. The ¬ (NOT)
operator reverses the testing of the relational expression. Relational expression
keywords indicate that you are evaluating a return code, abend condition, or abend
completion code.

Either the THEN clause or ELSE clause must contain at least one EXEC statement.
The EXEC statement indicates a job step that the system executes based on its
evaluation of the relational expression. A THEN or ELSE clause that does not
contain an EXEC statement is a null clause.

You can nest IF/THEN/ELSE/ENDIF statement constructs up to 15 levels of nesting.

Uses of Return Code Tests
Certain IBM programs produce standard return codes. For example, a compiler or
linkage editor returns a code of 8 to indicate serious errors in the compiled or
link-edited program; the program may not execute correctly. Before executing a
newly compiled or link-edited program, test the return code from the compiler or
linkage editor; if it is 8, bypass execution of the program.

In user-written programs, assign a return code to signify a certain condition. For
example, STEP1 of a job reads accounts that subsequent steps process. STEP1
sets a return code of 10 if delinquent accounts are found. STEP3 processes only
delinquent accounts. Before STEP3 executes, test the return code from STEP1:
v If the return code from STEP1 is 10, indicating delinquent accounts, execute

STEP3.
v If the return code from STEP1 is not 10, bypass STEP3.

Code the IF/THEN/ELSE/ENDIF statement construct as follows:
 //RCTEST IF (STEP1.RC = 10) THEN
 //STEP3 EXEC
 //IFNOT ELSE
 // ENDIF
 //NEXTSTEP EXEC

Compatible Return Code Tests: The system applies the return code tests on the
IF/THEN/ELSE/ENDIF statement construct to the return code, if any, produced by a
job, step, or procedure step in the job. To take advantage of this statement
construct, the return codes for each step should have compatible meanings. For
example, the COBOL compiler and the linkage editor have compatible return codes:

Processing Jobs - Processing Control

10-2 z/OS V1R4.0 MVS JCL User’s Guide

4 Minor errors were found, but a compiled program or load module was
produced. Execution may be successful.

8 Major errors were found, but a compiled program or load module was
produced. Execution will probably not be successful.

12 Serious errors were found. A compiled program or load module was not
produced.

To continue processing in spite of small errors, code the return code test as follows:
 //NOTBAD IF (RC > 4) THEN
 //BADERR EXEC PGM=ERRRTN
 //NOGOOD ELSE
 //NEXTSTEP EXEC
 // ENDIF

When a previous job step has a return code greater than 4, step BADERR executes
an error routine procedure called ERRRTN. When the return code on all previous
job steps is less than or equal to 4, the ELSE statement allows processing to
continue with step NEXTSTEP.

Job and Step Level Evaluation Using the IF/THEN/ELSE/ENDIF
Statement Construct
The way you code the IF/THEN/ELSE/ENDIF statement construct determines
whether the statement construct tests all job steps, a single job step, or a procedure
step.

Job Level Evaluation: If you do not code a stepname, the IF/THEN/ELSE/ENDIF
statement construct evaluates the return code, abend condition, or run condition of
every previous step in the job. If the condition (return code, abend condition, or run
condition) is satisfied based on the steps in the job that have executed thus far, the
system executes the THEN clause.

Step Level Evaluation: To test a single step, code the stepname of the step you
want to test. To test a procedure step, code the stepname.procstepname of the
procedure step you want to test. If the step or procedure step that you are
evaluating did not execute, was cancelled or ended abnormally, the result of the
evaluation is false.

Relationship of the IF/THEN/ELSE/ENDIF Statement Construct to
the COND Parameter
When you specify both the IF/THEN/ELSE/ENDIF statement construct and the
COND parameter for a job step, the job step represented by the EXEC statement
will execute only when both the IF/THEN/ELSE/ENDIF statement construct and the
COND parameter evaluate to execute.

If a job abends and no abend condition was specified on the IF/THEN/ELSE/ENDIF
statement construct or the COND parameter, the default is that a job step will not
execute. When both the IF/THEN/ELSE/ENDIF statement construct and the COND
parameter are specified for a job step, the default is applied only when neither
specifies an abend condition.

The system evaluates a COND parameter on the first EXEC statement in a job as
false. However, you can use an IF statement before the first EXEC statement in a
job to bypass the step.

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-3

Step Execution After a Preceding Step Abnormally Terminates
Abnormal termination of a step usually causes the system to bypass subsequent
steps and to terminate the job. However, the IF/THEN/ELSE/ENDIF statement
construct lets you request execution of a step when a previous step terminates
abnormally.

Testing for an Abend Condition: When a job step abends, the system scans the
remaining steps for an IF/THEN/ELSE/ENDIF statement construct that tests for an
abend or abend completion code. If none is present, the system terminates the job.

Code one of the following to execute an error routine program after an abend:
 //IFBAD IF (ABEND) THEN
 //ERROR EXEC PGM=ERRRTN
 // ENDIF
 //NEXTSTEP EXEC

 or:

 //IFBAD IF (ABEND=TRUE) THEN
 //ERROR EXEC PGM=ERRRTN
 // ENDIF
 //NEXTSTEP EXEC

The system executes step ERROR only when one or more of the preceding steps
abnormally terminates.

Testing for an Abend Completion Code: To execute a step based on the
evaluation of an abend completion code, code:
 //IFABEND IF (ABENDCC=S0C4) THEN
 //ABNDSTEP EXEC PGM=CLEANUP
 // ENDIF
 //NEXTSTEP EXEC

The system executes the program CLEANUP when a previous step has the system
abend completion code 0C4.

Steps that Do Not Execute after A Preceding Step Abnormally
Terminates
Certain error conditions prevent the system from executing the THEN or ELSE
clauses of an IF/THEN/ELSE/ENDIF statement construct. When one of these error
condition occurs, the system does not execute the THEN or ELSE clause,
regardless of any tests on the IF statement. Such errors conditions occur when:
v Certain system completion codes are issued
v Job time expires
v A referenced data set is not complete
v The program does not have control.

For more information about errors that prevent execution regardless of IF statement
tests, see z/OS MVS JCL Reference.

Examples of IF/THEN/ELSE/ENDIF Statement Construct
Example 1: This example tests the return code for a step.
//RCTEST IF (STEP1.RC GT 20|STEP2.RC = 60) THEN
//STEP3 EXEC PGM=U
//ENDTEST ENDIF
//NEXTSTEP EXEC

The system executes STEP3 if
v The return code from STEP1 is greater than 20, or

Processing Jobs - Processing Control

10-4 z/OS V1R4.0 MVS JCL User’s Guide

v The return code from STEP2 equals 60.

If the evaluation of the relational expression is false, the system bypasses STEP3
and continues processing with step NEXTSTEP.

Example 2: This example tests for an abend condition in a procedure step.
//ABTEST IF (STEP4.LINK.ABEND=FALSE) THEN
//BADPROC ELSE
//CLEANUP EXEC PGM=ERRTN
//ENDTEST ENDIF
//NEXTSTEP EXEC

The relational expression tests that an abend did not occur in procedure LINK,
called by the EXEC statement in STEP4. If the relational expression is true, no
abend occurred. The null THEN statement passes control to step NEXTSTEP. If the
relational expression is false, an abend occurred. The ELSE clause passes control
to the program called ERRTN.

Example 3: This example tests for a user abend completion code in the job.
//CCTEST IF (ABENDCC = U0100) THEN
//GOAHEAD EXEC PGM=CONTINUE
//NOCC ELSE
//EXIT EXEC PGM=CLEANUP
// ENDIF

If any job step produced the user abend completion code 0100, the EXEC
statement GOAHEAD calls the procedure CONTINUE. If no steps produced the
completion code, the EXEC statement EXIT calls program CLEANUP.

Bypassing or Executing Steps Based on Return Codes
To indicate the results of its execution, a program can issue a return code. Using a
COND parameter, you can test the return code and, based on the test, either
bypass or execute a step.

The COND parameter can be specified on either a JOB or EXEC statement by
coding:
//jobname JOB acct,progname,COND=(code,operator)
//jobname JOB acct,progname,COND=((code,operator),(code,operator))

//stepname EXEC PGM=x,COND=(code,operator)
//stepname EXEC PGM=x,COND=(code,operator,stepname)
//stepname EXEC PROC=x,COND=((code,operator,stepname.procstepname))

//stepname EXEC PGM=x,COND=EVEN
//stepname EXEC PGM=x,COND=ONLY
//stepname EXEC PGM=x,COND=((code,operator),EVEN)
//stepname EXEC PGM=x,COND=((code,operator,stepname),ONLY)

If an EXEC statement COND parameter causes a step to be bypassed, only that
step is not executed; the following steps are executed or not, depending on their
COND parameters. If a JOB statement COND parameter causes a step to be
bypassed, the system bypasses all remaining job steps.

Bypassing a step because of an EXEC COND parameter is not the same as
abnormally terminating the step. Bypassing permits the following steps to be
executed; abnormally terminating causes all following steps to be bypassed, unless
they contain EVEN or ONLY in their EXEC COND parameters.

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-5

Uses of Return Code Tests
Certain IBM programs produce standard return codes. For example, a compiler or
linkage editor returns a code of 8 to indicate serious errors in the compiled or
link-edited program; the program may not execute correctly. Before executing a
newly compiled or link-edited program, test the return code from the compiler or
linkage editor; if it is 8, bypass execution of the program.

In user-written programs, assign a return code to signify a certain condition. For
example, STEP1 of a job reads accounts that subsequent steps process. STEP1
sets a return code of 10 if delinquent accounts are found. STEP3 processes only
delinquent accounts. Before STEP3 executes, test the return code from STEP1:

v If the return code from STEP1 is 10, indicating delinquent accounts, execute
STEP3.

v If the return code from STEP1 is not 10, bypass STEP3.

Relationship of the COND Parameters on JOB and EXEC
Statements
The effect of return code tests on the different statements is:

v The JOB statement COND parameter performs the same return code tests for
every step in a job. If a JOB statement return code test is satisfied, the job
terminates.

v An EXEC statement COND parameter performs return code tests for only its
step in a job. Using EXEC COND parameters, different tests can be performed
for each step. Thus, EXEC COND parameters are useful if the same return code
has different meanings in different job steps, or if you want to take different
actions according to which job step produced a return code.

 The system evaluates a COND parameter on the first EXEC statement in a job
as false. However, you can use an IF statement before the first EXEC statement
in a job to bypass the step.

v The JOB COND parameter, when EXEC statements also contain COND
parameters, performs the same return code tests for every step in the job.

– If the JOB statement return code test is satisfied, the job terminates. The job
terminates regardless of whether or not any EXEC statements contain COND
parameters and whether or not an EXEC return code test would be satisfied.

– If the JOB statement return code test is not satisfied, the system then checks
the COND parameter on the EXEC statement for the next step. If the EXEC
statement return code test is satisfied, the system bypasses that step and
begins processing of the following step, including return code testing.

The COND parameter on both the JOB and EXEC statements is useful to set
some conditions for all steps in the job and other conditions for particular steps.

v No COND parameters on JOB or EXEC statements means the system does
not perform any return code tests, but tries to execute each step in the job.

Step Execution after a Preceding Step Abnormally Terminates
Abnormal termination of a step usually causes the system to bypass subsequent
steps and to terminate the job. However, the EXEC statement COND parameter lets
you request execution of a step by coding:
 //stepname EXEC PGM=x,COND=EVEN
 The step is to be executed even if one or more of the preceding steps

abnormally terminates. That is, the step will always be executed, whether or not
a preceding step abnormally terminates.
 //stepname EXEC PGM=x,COND=ONLY

Processing Jobs - Processing Control

10-6 z/OS V1R4.0 MVS JCL User’s Guide

The step is to be executed only if one or more of the preceding steps
abnormally terminates. That is, the step will not be executed, unless a preceding
step abnormally terminates.

If a step abnormally terminates, the system scans the EXEC COND parameter for
the next step for an EVEN or ONLY subparameter. If neither is present, the system
bypasses the step. If EVEN or ONLY is specified, the system makes any requested
return code tests against the return codes from previous steps that executed and
did not abnormally terminate. The step is bypassed if any test is satisfied.
Otherwise, the step is executed.

Note: Certain error conditions prevent the system from executing a step,
regardless of any requests specified through the COND parameter. Other
considerations are also related to the use of the COND parameter. For
information on cautions when specifying COND parameters, see the
description of the COND parameter on the EXEC statement in z/OS MVS
JCL Reference.

Compatible Return Code Tests: The system applies the return code tests on the
JOB COND parameter against the return code, if any, produced by each step in the
job. To take advantage of this parameter, the return codes for each step should
have compatible meanings. For example, the COBOL compiler and the linkage
editor have compatible return codes:

4 Minor errors were found, but a compiled program or load module was
produced. Execution may be successful.

8 Major errors were found, but a compiled program or load module was
produced. Execution will probably not be successful.

12 Serious errors were found. A compiled program or load module was not
produced.

Code the return code as follows:
 COND=(4,LT) if you want to continue processing despite the minor errors. The

job terminates only if the return code of any step is greater than 4.
 COND=(4,LE) if you want to continue processing only if no errors occur. The job

terminates if the return code of any step is greater than or equal to 4.

Examples of JOB Statement Return Code Tests

Example 1:
//J1 JOB ,’LEE BURKET’,COND=((10,GT),(20,LT))

This example asks ‘Is 10 greater than the return code or is 20 less than the return
code?’. If either is true, the system skips all remaining job steps. If both are false
after each step executes, the system executes all job steps.

For example, if a step returns a code of 12, neither test is satisfied. The next step is
executed. However, if a step returns a code of 25, the first test is false, but the
second test is satisfied: 20 is less than 25. The system bypasses all remaining job
steps.

Example 2:
//J2 JOB ,’D WEISKOPF’,COND=((50,GE),(60,LT))

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-7

This example says ‘If 50 is greater than or equal to a return code, or 60 is less than
a return code, bypass the remaining job steps.’ In other words, the job continues as
long as the return codes are 51 through 60.

Example 3:
//J3 JOB ,’E. SASSMANN’,COND=(8,NE)

This example shows one return code test.

Example 4:
//J4 JOB COND=((5,GT),(8,EQ),(12,EQ),(17,EQ),(19,EQ),(21,EQ),(23,LE))

This example shows seven return code tests. The job continues only if the return
codes are: 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, or 22.

Examples of EXEC Statement Return Code Tests

Example 1:
//S3 EXEC PGM=U,COND=((20,GT,STEP1),(60,EQ,STEP2))

This example says ‘Bypass this step if 20 is greater than the return code STEP1
issues, or if STEP2 issues a return code of 60.’

Example 2:
//S4 EXEC PGM=V,COND=((20,GT,STEP1),(60,EQ))

This example says ‘Bypass this step if 20 is greater than the return code STEP1
issues, or if any preceding step issues a return code of 60’.

Example 3:
//T7 EXEC PGM=B15,COND=(10,LT)
//STEP8 EXEC PGM=MYPROG,COND=(15,NE,STEP5)

These examples show single return code tests.

Example 4:
//NEXT EXEC PGM=AFTERPRC,COND=(7,LT,STEP4.LINK)

This example says ‘Bypass this step if 7 is less than the return code issued by a
procedure step named LINK in the cataloged procedure called by the EXEC
statement named STEP4’.

Example 5:
//RCERROR EXEC PGM=ABEND,COND=(4,GE)

This example shows a single return code test. When you do not code a stepname,
the step RCERROR will execute only when the return codes of all previous steps
do not satisfy the test specified by COND.

Examples of EXEC COND Parameters with EVEN and ONLY

Example 1:
//S5 EXEC PGM=R,COND=EVEN
//R8 EXEC PGM=S,COND=((5,LT),EVEN)
//S6 EXEC PGM=T,COND=ONLY
//CX EXEC PGM=U,COND=((4,GE,STEP3),(8,EQ,STEP2),ONLY,(12,LT,BX))

Processing Jobs - Processing Control

10-8 z/OS V1R4.0 MVS JCL User’s Guide

Example 2:
//LATE EXEC PGM=CLEANUP,COND=EVEN

This example says ‘Execute program CLEANUP even if one or more of the
preceding steps abnormally terminated.’

Example 3:
//LATER EXEC PGM=SCRUB,COND=((10,LT,STEPA),(20,EQ),ONLY)

This example says ‘Execute this step only if one of the preceding steps terminated
abnormally; but bypass it if 10 is less than the return code STEPA issues or if any
of the steps that terminated normally issued a return code of 20’.

Example 4:
//LATEST EXEC PGM=FIX,COND=((10,LT,STEPA),(20,EQ),EVEN)

This example says ‘Bypass this step if 10 is less than the return code STEPA
issues, or if any of the preceding steps issues a return code of 20; otherwise
execute this step even if one of the preceding steps terminated abnormally’.

Example 5:
//EXG EXEC PGM=A1,COND=(EVEN,(4,GT,STEP3))
//EXH EXEC PGM=A2,COND=((8,GE,STEP1),(16,GE),ONLY)
//EXI EXEC PGM=A3,COND=((15,GT,STEP4),EVEN,(30,EQ,STEP7))

Examples of COND Return Code Testing in a Job
 Input Stream RC Tests Performed
//MYJOB JOB ,A.SMITH,COND=(10,LT)

//STEP1 EXEC PGM=A
.
.
.
.

6 Before STEP2:
1. Is 10 less than 6? No.
2. Is the return code 2 or 4? No.
Execute STEP2

//STEP2 EXEC PGM=B,COND=((2,EQ),(4,EQ))
.
.
.
.
.

2 Before STEP3:
1. Is 10 less than 2 or 6? No.
2. Did one or more of the preceding
steps terminate abnormally? No.
Bypass STEP3.

//STEP3 EXEC PGM=C,COND=ONLY
.
.
.
.
.

– Before STEP4:
1. Is 10 less than 2 or 6? No.
2. Is 5 greater than 6? No.
3. Is one of the preceding return codes
equal to 2? Yes. Bypass STEP4.

//STEP4 EXEC PGM=D,
// COND=((5,GT,STEP1),(2,EQ))
.
.

– Before STEP5:
1. Is 10 less than 2 or 6? No.
Execute STEP5.

//STEP5 EXEC PGM=E
.
.
.
.
.
.

9 Before STEP6:
1. Is 10 less than 9, 2, or 6? No.
2. Is 8 greater than 9? No.
3. Did one of the preceding steps
terminate abnormally? No.
Execute STEP6.

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-9

Input Stream RC Tests Performed
//STEP6 EXEC PGM=F,
// COND=((8,GT,STEP5),EVEN)
.
.
.
.
.
.

10 Before STEP7:
1. Is 10 less than 10, 9, 2, or 6? No.
2. Is 4 greater than return code of STEP4?
STEP4 was bypassed and did not produce a
return code so this test evaluates as FALSE.
Execute STEP7.

//STEP7 EXEC PGM=G,COND=(4,GT,STEP4)
.
.
.

12 Before STEP8:
1. Is 10 less than 12, 10, 9, 2, or 6? Yes.
Bypass STEP8 and STEP9.

//STEP8 EXEC PGM=H
.
.
.

–

//STEP9 EXEC PGM=I,COND=ONLY –
//ABC JOB 12345,COND=(5,EQ)

//STEP1 EXEC PGM=A
.
.
.
.

4 Before STEP2:
1. Is 5 equal to 4? No.
2. Is 7 less than 4? No.
Execute STEP2.

//STEP2 EXEC PGM=B,COND=(7,LT)
.
.
.
.
.

ABEND Before STEP3:
1. Is EVEN or ONLY specified in
STEP3? Yes.
2. Is 5 equal to 4? No.
3. Is 20 greater than 4? Yes.
Bypass STEP3.

//STEP3 EXEC PGM=C,
// COND=((20,GT,STEP1),EVEN)
.
.
.
.
.

– Before STEP4:
1. Is EVEN or ONLY specified in
STEP4? Yes.
2. Is 5 equal to 4? No.
3. Are any preceding return codes
equal to 3? No. Execute STEP4.

//STEP4 EXEC PGM=D,COND=((3,EQ),ONLY)
.
.
.

6 Before STEP5:
1. Is EVEN or ONLY specified in
STEP5? No. Bypass STEP5.

//STEP5 EXEC PGM=E,COND=(2,LT,STEP3)
.
.
.

– Before STEP6:
1. Is EVEN or ONLY specified in
STEP6? No. Bypass STEP6.

//STEP6 EXEC PGM=F
.
.
.
.
.
.
.

– Before STEP7:
1. Is EVEN or ONLY specified in
STEP7? Yes.
2. Is 5 equal to 6 or 4? No.
3. Is 6 equal to the return code of STEP5?
STEP5 was bypassed and did not produce a
return code so this test evaluates as FALSE.
Execute STEP7.

//STEP7 EXEC PGM=G,
// COND=((6,EQ,STEP5),ONLY)
.
.
.

5 Before STEP8:
1. Is 5 equal to 5, 6, or 4? Yes.
Bypass STEP8 and STEP9.

Processing Jobs - Processing Control

10-10 z/OS V1R4.0 MVS JCL User’s Guide

Input Stream RC Tests Performed
//STEP8 EXEC PGM=H,COND=EVEN
.
.
.

–

//STEP9 EXEC PGM=I –

Examples of COND Parameters in Procedures

Example 1:
//TEST EXEC PROC=PROC4,COND.STEP4=((7,LT,STEP1),
// (5,EQ),EVEN),COND.STEP6=((2,EQ),
// (10,GT,STEP4))

In this example, the EXEC statement that calls procedure PROC4 passes COND
parameters to two steps, STEP4 and STEP6,

Example 2:
//TEST EXEC PROC=MYPROC,COND=((7,LT,STEP1),(5,EQ))

This EXEC statement establishes a COND parameter for all steps in the called
procedure. It overrides any COND parameters in the procedure, if coded.

Example 3:
//PS3 EXEC PGM=ADD3,COND=(5,EQ,STEP2)

In this EXEC statement in a procedure, STEP2 in the COND parameter can be the
name of either a preceding step in the procedure or of a preceding step in the job.

Example 4:

 Your job contains

.
.
//TWO EXEC PROC=PRA
.
.
.

.

.
.
//THREE EXEC PROC=PRB,COND.SP3=(10,LT,TWO.EDIT)
.
.
.

.

Cataloged
Procedure
 PRA
.
//EDIT EXEC
.
.

Cataloged
Procedure
 PRB
.
//SP3 EXEC
.
.

 This example shows a procedure EXEC statement COND parameter that tests the
return code from a step in another procedure called by a previous step in this job.

1. Step TWO calls cataloged procedure PRA, which contains procedure step EDIT.
The system is to test the return code from EDIT.

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-11

2. Step THREE calls cataloged procedure PRB, which contains procedure step
SP3. Execution of SP3 should depend on the return code from EDIT.

3. The COND parameter in EXEC statement THREE directs the system to bypass
SP3 if 10 is less than the return code from procedure step EDIT.

The COND parameter could also have appeared on EXEC statement SP3:
//SP3 EXEC PGM=DEPEND,COND=(10,LT,TWO.EDIT)

To direct the system to bypass all steps in procedure PRB, code the COND
parameter without the SP3 qualifier, as follows:
//THREE EXEC PRB,COND=(10,LT,TWO.EDIT)

Examples of COND Parameters that Force Step Execution

//S1 EXEC PGM=A
.
.
.
//CLEANUP EXEC PGM=FIX,COND=(12,NE,S1)
 In this example, you force step CLEANUP to execute if step S1 executes but issues
a return code of 12 to indicate that data sets might contain invalid records. The
program FIX would clean up the invalid records.

Processing Control by Cancelling a Job that Exceeds Output Limit
You can control job execution by requesting cancellation of a job when its output
exceeds a specified limit. The way you specify the limit depends on the
environment in which your job is executing.

Limiting Output in an APPC Scheduling Environment
In an APPC scheduling environment, use the BYTES, CARDS, LINES, and PAGES
parameters of the JOB statement to limit the number of:
v Bytes to be spooled for the job
v Cards to be punched for the job
v Lines to be printed for the job
v Pages to be printed for the job.

When you code the CANCEL subparameter with any of these parameters, the
system cancels the job when the output exceeds the limit you have specified.

If you do not code a limit on the JOB statement BYTES, CARDS, LINES, or PAGES
parameter, the system cancels the job when its output exceeds the installation
default limit specified at JES initialization, and the JES cancel option has been
specified.

Limiting Output in a Non-APPC Scheduling Environment
In a non-APPC scheduling environment, you can specify an output limit using the
JOB statement parameters and installation defaults described in Limiting Output in
an APPC Scheduling Environment. In addition, you can code a BYTES, CARDS,
LINES, or PAGES parameter on a JES2 /*JOBPARM statement or a JES3 //*MAIN
statement. These parameters limit the number of:
v Bytes to be spooled for the job
v Cards to be punched for the job
v Lines to be printed for the job
v Pages to be printed for the job.

Processing Jobs - Processing Control

10-12 z/OS V1R4.0 MVS JCL User’s Guide

When you code the CANCEL subparameter on the //*MAIN statement, the system
cancels the job when its output exceeds the limit you have specified.

When you code an output limit on the /*JOBPARM statement, the system cancels
the job when:

v The job’s output exceeds the limit you have specified, and

v The cancel option has been specified at JES2 initialization as the installation
default.

If you do not code an output limit on the JOB statement, the system uses the limit
coded on the //*MAIN statement or the /*JOBPARM statement. If you do not code a
//*MAIN or a /*JOBPARM statement, the system uses the installation default limit
specified at JES initialization, and cancels the job if the JES cancel option has been
specified.

Use in Testing
One use for the output limit is during program testing. You can cancel a program
that is in an endless loop containing instructions that send records to a sysout data
set.

Examples:

The following examples illustrate the use of the JCL JOB statement, in either an
APPC or non-APPC scheduling environment, to warn the operator when the output
for a job has exceeded a limit in any JES system:
//JOB1 JOB ACCT01,’D. PIKE’,BYTES=(50,CANCEL)

//JOB2 JOB 1542,RWALLIN,CARDS=(120,CANCEL)

//JOB3 JOB ,ZOBES,LINES=(200,CANCEL)

//JOB4 JOB ACCT27,’S M SHAY’,PAGES=(,CANCEL)

The following examples illustrate the use of the JES3 //*MAIN statement in a
non-APPC scheduling environment to warn the operator when output for a job has
exceeded a limit.
//*MAIN BYTES=(50,CANCEL)
//*MAIN CARDS=(120,CANCEL)
//*MAIN LINES=(200,CANCEL)
//*MAIN PAGES=(,CANCEL)

Processing Control by Timing Execution
To control processing based on the processor time needed to execute a program,
code one of the following time parameters:
 //jobname JOB acct,progname,TIME=value
 //stepname EXEC PGM=x,TIME=value
 //jobname JOB (,,time)
 /*JOBPARM TIME=value

JOB and EXEC TIME Parameter
The TIME parameter on the JOB or EXEC statement specifies the maximum length
of time a job or step is to use the processor. Two benefits of the TIME parameter
are:

v The system prints the actual processor time used by the job or step in the
messages in the job log.

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-13

v When a job or step exceeds the amount of time coded on the TIME parameter,
the system abnormally terminates it or gives control to an installation exit routine
established through System Management Facilities (SMF). Thus, the TIME value
limits the processor time wasted by a looping program.

By coding TIME=1440 or TIME=NOLIMIT, the TIME parameter can instead be used
to give a job or step an unlimited amount of time. Specifically, the system allows a
step to remain in a continuous wait state for an unlimited time, rather than the time
limit established through SMF. However, if TIME=1440 is specified on the JOB
statement, any TIME values on an EXEC statement and any default TIME values
will be nullified. All steps within the job will have unlimited time, as with TIME=1440
or TIME=NOLIMIT.

To allow a job or step to use the maximum amount of time, code TIME=MAXIMUM.
Coding TIME=maximum allows the job or step to run for 357912 minutes.

Example 1:
//FIRST JOB ,’E.D. WILLIAMSON’,TIME=2
//STEP1 EXEC PGM=A,TIME=1
//STEP2 EXEC PGM=B,TIME=1

In this example, the job is allowed 2 minutes of execution time and each step is
allowed 1 minute. Should either step try to execute beyond 1 minute, the job will
terminate beginning with that step.

Example 2:
//SECOND JOB ,’M. CARLO’,TIME=3
//STEP1 EXEC PGM=C,TIME=2
//STEP2 EXEC PGM=D,TIME=2

In this example, the job is allowed 3 minutes of execution time. Each step is
allowed 2 minutes of execution time. Should either step try to execute beyond 2
minutes, the job will terminate beginning with that step. If STEP1 executes in 1.74
minutes and if STEP2 tries to execute beyond 1.26 minutes, the job will be
terminated because of the 3-minute time limit specified on the JOB statement.

Example 3:
//THIRD JOB ,’A. DOMENICK’,TIME=2
//STEP1 EXEC PGM=E,TIME=3

In this example, the job is allowed 2 minutes of execution time. Since the time
specified on the JOB statement is less than the time on the EXEC statement,
STEP1 is only allowed 2 minutes of execution time. If STEP1 attempts to execute
beyond 2 minutes, the job will terminate in that step.

Example 4:
//AAA EXEC PROC=PROC5,TIME=20

In this example, the EXEC statement sets a time limit for an entire procedure. This
specification overrides any TIME parameters in the procedure, if coded.

Example 5:
//AAA EXEC PROC=PROC5,TIME.ABC=20,TIME.DEF=(3,40)

In this example, the EXEC statement sets a time limit for two steps, ABC and DEF,
of the called cataloged procedure.

Processing Jobs - Processing Control

10-14 z/OS V1R4.0 MVS JCL User’s Guide

JES2 Time Parameters
In a JES2 system, you can code a time value in the JES2 format accounting
information parameter on the JOB statement or in a TIME parameter on the JES2
/*JOBPARM statement. If the job execution time exceeds this value, JES2 sends a
message to the operator.

Examples:
//J3 JOB (,,3)
/*JOBPARM TIME=3

Both of these statements specify that the job cannot use the processor for more
than 3 minutes.

OS/390 UNIX System Services Considerations
In OS/390 UNIX System Services, callable service BPX1SRL lets a program modify
its job time. See z/OS UNIX System Services Programming: Assembler Callable
Services Reference for more information on the BPX1SRL callable service.

Processing Control for Testing
You can test your JCL for errors by using one of the following methods.

Altering Usual Processing for Testing
These testing methods change the standard job processing to allow the system to
find errors.

Scanning JCL for Errors (Non-APPC)
The TYPRUN and CLASS parameters described in this section have no effect in an
APPC scheduling environment. If you code them, the system will check them for
syntax and ignore them.

Before using a new set of job control statements, you can ask the system to scan
them for syntax errors without executing any steps or allocating any devices. To do
this scanning, code:

v For a job in a JES2 or JES3 system:
 //jobname JOB acct,progname,TYPRUN=SCAN

v For a job in a JES2 system, where x is a class defined during JES2 initialization
to force job control statement scanning:
 //jobname JOB acct,progname,CLASS=x

v For a step in a JES3 system:
 //stepname EXEC PGM=JCLTEST
 //stepname EXEC PGM=JSTTEST

The system scans for:

v Invalid spelling of parameter keywords and some subparameter keywords.

v Invalid characters.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

v Invalid syntax on JCL statements in cataloged procedures invoked by any
scanned EXEC statements.

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-15

The system does not check for misplaced statements, for invalid syntax in JCL
subparameters, or for parameters and/or subparameters that are inappropriate
together.

Examples:
//JB16 JOB ,’M. CARLO’,TYPRUN=SCAN
//TG JOB RK988,SMITH,CLASS=S
//S1 EXEC PGM=JCLTEST
//S2 EXEC PGM=JSTTEST

Using IEFBR14 Program for Testing
IEFBR14 is a two-line program that clears register 15, thus passing a return code of
0, and then branches to the address in register 14, which returns control to the
system. If a step requests IEFBR14 instead of the program that the JCL actually
supports, the system does the following:
v Checks all the job control statements in the step for syntax.
v Allocates direct access space for data sets.
v Performs data set dispositions.

To test with IEFBR14, substitute IEFBR14 for the name of the program, as follows:
 //stepname EXEC PGM=IEFBR14,...

Considerations when Using IEFBR14: Although the system allocates space for
data sets, it does not initialize the data sets. Therefore, any attempt to read from
one of these data sets will produce unpredictable results. Also, IBM does not
recommend allocation of multi-volume data sets while executing IEFBR14.

If you created a data set when testing with IEFBR14, the data set’s status in the DD
DISP parameter is old when you execute the actual program.

Because IEFBR14 does not open any data sets, a DD DISP parameter of CATLG
does not make the system catalog a data set, if one of the following is true:

v The DD statement requested a nonspecific tape volume.

v The DD statement requested a tape volume with dual density options, but the
DCB DEN subparameter did not specify the density.

v The DD statement was allocated to a tape volume with dual recording mode
options, but you did not code the DCB TRTCH subparameter.

When executing IEFBR14, if a DD DISP parameter specifies CATLG or UNCATLG,
the system issues an operator message to mount the volume. If it is not necessary
to mount the volume, code DEFER on the UNIT parameter of the DD statement.

Examples:
For testing:
//STEP1 EXEC PGM=IEFBR14,COND=(8,LE),TIME=2

For executing after testing:
//STEP1 EXEC PGM=WKLYRPT,COND=(8,LE),TIME=2

Using Nonstandard Processing
In a JES3 system, you can use nonstandard job processing in testing. Standard job
processing consists of the following standard scheduler functions:
 Converter/interpreter service
 Main service
 Output service
 Purge service

Processing Jobs - Processing Control

10-16 z/OS V1R4.0 MVS JCL User’s Guide

A nonstandard job uses one or more special processing functions in place of or in
addition to the standard functions or skips one or more standard functions. Specify
nonstandard processing by following the JOB statement with a JES3 //*PROCESS
statement for each processing function to be performed.

End the //*PROCESS statements with a //*ENDPROCESS statement or a JCL
statement.

Example:
//TESTA JOB ,’E. HARMANTAS’
//*PROCESS CI
//STEP1 EXEC PGM=NEWPROG
//DD28 DD SYSOUT=A
//DD29 DD *
 .
 .
 (data)
 .
/*

This example asks for only the converter/interpreter service, CI. The
converter/interpreter scans the job’s syntax for errors. The program will not be
executed or the job’s output processed. However, the job will be purged from the
system.

Dumping after Error
To request that the system dump the storage occupied by a failing program and
other storage needed to debug the program, code one of the following:

v SYSABEND, SYSMDUMP, or SYSUDUMP DD statement in the step to be
dumped. The system produces the requested dump if the step terminates
abnormally or if the step starts to terminate abnormally, but the system recovery
procedures allow the step to terminate normally.

 If there are multiple failures in the same job step, only the last failure is reported.
Therefore, inspect the dump to gather information about any possible earlier
failures.

v DUMP in the BYTES, CARDS, LINES, or PAGES parameter of the JOB
statement. The system produces the dump requested by the dump DD statement
for the step if the system cancels the job because:

1. The job’s output exceeds the maximum specified on the BYTES, CARDS,
LINES, or PAGES parameter of the JOB statement, or

2. The job’s output exceeds the maximum output specified on the JES3 //*MAIN
statement, or the JES2 /*JOBPARM statement

3. The job’s output exceeds the maximum defined by the installation defaults
specified at initialization.

v DUMP in the BYTES, CARDS, LINES, or PAGES parameter on the JES3
//*MAIN statement in the job and a SYSABEND, SYSMDUMP, or SYSUDUMP
DD statement in the step to be dumped. The system produces the dump
requested by the dump DD statement if JES3 cancels the job because the job’s
output exceeds the BYTES, CARDS, LINES, or PAGES limit or, if no limits are
given, the installation default limit for the job class.

If the dump is to be printed directly on a 3800 Printing Subsystem, the SYSABEND
or SYSUDUMP DD statement can request a high-density dump by specifying:
v FCB=STD3 to produce dump output at 8 lines per inch.
v CHARS=DUMP to produce 204-character print lines.

Processing Jobs - Processing Control

Chapter 10. Processing Jobs - Processing Control 10-17

Example 1:
//S1 EXEC PGM=TESTING
//DS1 DD SYSOUT=C
//SYSABEND DD SYSOUT=A,FCB=STD3,CHARS=DUMP
//INDS DD *
 .
 .
 (data)
 .
/*

This example produces a high-density dump, if TESTING abnormally terminates.

Example 2:
//J3JB JOB ,’J.T. HIGGINS’,MSGCLASS=B
//*MAIN LINES=(50,DUMP)
//S1 EXEC PGM=OLDPROG
 .
 .
 .
//S2 EXEC PGM=NEWPROG
//SYSUDUMP DD SYSOUT=D
 .
 .
 .

If the first step exceeds 50,000 lines of output, JES3 cancels the job but does not
write a dump because the first step does not contain a dump DD statement. If the
combined output from S1 and S2 exceeds 50,000 lines, JES3 cancels the job and
writes a SYSUDUMP dump to the sysout data set for class D.

Example 3:
//JOB1 JOB ,’W. BAILEY’,MSGCLASS=B,BYTES=(30,DUMP)
//STEP1 EXEC PGM=TESTPGM
//SYSUDUMP DD SYSOUT=D
 .
 .
 .

If the first step exceeds 30,000 lines of output, the system cancels the job and
writes a SYSUDUMP dump to the sysout data set for class D.

Processing Jobs - Processing Control

10-18 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 11. Processing Jobs - Performance Control

The performance control described in this chapter is not supported in an APPC
scheduling environment, with the exception of the performance control described in
“Performance Control by Performance Group (Non-APPC)” on page 11-3.

 Table 11-1. Performance Control Task for Processing Jobs

TASKS FOR
PROCESSING
JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements JOB EXEC Other JCL

Performance Control

by job class
assignment

CLASS CLASS on
//*MAIN

by selection
priority

PRTY /*PRIORITY

by performance
group
assignment

PERFORM PERFORM

by
I/O-to-
processing ratio

 IORATE on
//*MAIN

Performance Control by Job Class Assignment (Non-APPC)
The performance control described in this topic is not supported in an APPC
scheduling environment.

The system can balance the mix of jobs being executed based on the class and
priority assigned to each job. An installation should assign classes and priorities so
that jobs that compete for the same resources do not execute simultaneously.

A JES2 installation can have up to 36 job classes; a JES3 installation can have up
to 255 job classes. Two additional classes are reserved for started tasks and time
sharing users. An installation determines what types of job to place in each class. In
general, jobs with the same characteristics should be in the same class.

For example, an installation could identify separate classes for the following job
types:
v I/O-bound jobs.
v Processor-bound jobs.
v Jobs being debugged.
v Jobs using a particular resource.

Using these example job classes, the installation can assign job classes so that:

v I/O-bound jobs will execute at the same time as processor-bound jobs. This
multiprogramming helps both types of jobs complete faster.

v All programs that use tape drives will be in the same class, if the installation
contains only a few tape drives.

v All programs that use a data base will be in the same class, if the data base
must be accessed serially.

© Copyright IBM Corp. 1988, 2003 11-1

The installation should maintain a list of job classes and the type of jobs to be
assigned to each class.

In a JES2 system, assign a job to a job class by coding:
 //jobname JOB acct,progname,CLASS=x

Note that in a JES2 environment the CLASS parameter is ignored for started tasks.

In a JES3 system, assign a job to a job class, which is part of a job class group, by
coding either of the following:
 //jobname JOB acct,progname,CLASS=x
 //*MAIN CLASS=x

Note that for started tasks in a JES3 environment all class related attributes and
functions are ignored except device fencing, SPOOL partitioning, and track group
allocation. Refer to the z/OS JES3 Initialization and Tuning Guide for more
information about class attributes and functions.

Examples
//MYJOB JOB ACCT24,BIRDSALL,CLASS=F
//*MAIN CLASS=H

Performance Control by Selection Priority (Non-APPC)
The performance control described in this topic is not supported in an APPC
scheduling environment.

Within a JES2 job class or a JES3 job class group, the system selects jobs for
execution in order by priority. The higher the priority number, the sooner the job is
selected. Jobs with the same priority are selected on a first-in first-out basis.

Priority for JES2 Jobs
In a JES2 system, there are a number of factors that determine the order in which a
particular job is selected for execution. Therefore, you cannot be assured that job
priority (based on the PRTY you assign a job) or the order of job submission will
guarantee that the jobs will execute in a particular order. If you need to submit jobs
in a specific order, contact your JES2 system programmer for advice based on how
your system honors such requests. (z/OS JES2 Initialization and Tuning Guide
provides JES2 system programmer procedures concerning job queuing and how to
control job execution sequence.)

If a priority is not specified, JES2 uses installation algorithms to calculate the job’s
priority based on the execution time and the estimated amount of output. The
operator can assign a different priority or you can code one of the following:
 //jobname JOB acct,progname,PRTY=x
 /*PRIORITY x

JES2 also uses the execution time and output amount to monitor job execution time
and output. If you do not code these estimates, JES2 assumes installation defaults.
If your job exceeds the coded or assumed estimates, JES2 issues warning
messages to the operator or cancels the job, with or without a dump.

Use of Priority

Processing Jobs - Performance Control

11-2 z/OS V1R4.0 MVS JCL User’s Guide

An installation can specify that jobs with shorter execution times and less output
should be assigned higher priorities. To make sure that programmers specify correct
times and output, the installation can instruct the operator to cancel jobs that
exceed the estimates.

Examples
//JOB10 JOB ,’FLO JONES’,PRTY=14
/*PRIORITY 14

Priority for JES3 Jobs
To assign a priority to your job, you can code the following:
 //jobname JOB acct,progname,PRTY=x

The operator can change a job’s priority; see z/OS JES3 Commands.

Example
//JOB10 JOB ,’FLO JONES’,PRTY=14

Priority Aging
JES2 increases the priority of a job as it waits to be executed in the system. JES2
keeps raising the job’s priority until it is executed.

JES3 increases a job’s priority based on the number of times the job is passed over
for selection. A job can be passed over because not enough devices are available
or because another job has a needed volume or data set or because not enough
storage is available.

The installation defines priority aging; you cannot specify it using JCL.

Performance Control by Performance Group (Non-APPC)
The performance control described in this topic is not supported in workload
management goal mode.

Performance groups determine how fast a job executes by controlling the rate at
which jobs in the group have access to the processor, the main storage, and the I/O
channels. The installation defines the performance groups. Most performance
groups designate good processing rates under light system workloads. However,
when the system workload is moderate or heavy, some performance groups have
much lower processing rates than others.

The installation should define performance groups to meet the response
requirements of the jobs to be executed. The installation should maintain a list of
these groups.

To associate a job or job step with a performance group, code:
 //jobname JOB acct,progname,PERFORM=n
 //stepname EXEC PGM=x,PERFORM=n

Note: The PERFORM parameter regulates how a job executes as contrasted with
the JES3 //*MAIN IORATE parameter, which regulates how a job is
scheduled.

Processing Jobs - Performance Control

Chapter 11. Processing Jobs - Performance Control 11-3

For more information on performance, see z/OS MVS Initialization and Tuning
Guide and z/OS JES2 Initialization and Tuning Guide or z/OS JES3 Initialization
and Tuning Guide.

Examples
//J71 JOB ,’ANTHONY B.’,PERFORM=52
//STEPC EXEC PGM=WHIT,PERFORM=4

Performance Control by I/O-to-Processing Ratio (Non-APPC)
The performance control described in this section is not supported in an APPC
scheduling environment.

To regulate how a job is scheduled by JES3, code an IORATE parameter:
 //*MAIN IORATE=xxx

The IORATE parameter indicates if the job contains a low, medium, or high number
of I/O instructions compared to the number of processing instructions. JES3 uses
this value to determine the mix of jobs assigned to a processor: using this
parameter, JES3 balances processor-bound processing with I/O-bound processing.
A correct balance improves throughput.

Examples
//*MAIN IORATE=HIGH
//*MAIN IORATE=LOW
//*MAIN IORATE=MED

Processing Jobs - Performance Control

11-4 z/OS V1R4.0 MVS JCL User’s Guide

Part 4. Tasks for Requesting Data Set Resources

This part describes how to create and access data sets. The task required to
request a data set is:

v Identification

Other tasks can optionally be performed:
v Description
v Protection
v Allocation
v Processing control
v End processing

© Copyright IBM Corp. 1988, 2003

Part 4. Tasks for Requesting Data Set Resources

 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 12. Data Set Resources - Identification
 Table 12-1. Identification Task for Requesting Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Identification

of data set DSNAME UPDATE on
//*MAIN

of in-stream data
set

* or DATA SYSIN
DD DLM

 /* or xx delimiter //*DATASET
//*ENDDATASET

of data set on
3540 Diskette
Input/Output Unit

DSID

through catalog JOBCAT DD
STEPCAT DD

through label label-type on
LABEL

by location on
tape

data-set-
sequence-
number on
LABEL

as TCAM
message data set

QNAME

from or to
terminal

TERM

Identification of Data Set
When creating a data set, assign a name to the data set in the DSNAME
parameter. The data set name is stored with the data set. When a later step or job
uses the data set, identify the data set in the DSNAME parameter; the system uses
the data set name to locate the data set on the volume.

How you code the DSNAME parameter depends on the type of data set and
whether it is permanent or temporary or it is copied from an earlier DD statement.

For information on allocation of data sets, refer to Chapter 15, “Data Set Resources
- Allocation,” on page 15-1

Permanent Data Set
Identify a permanent data set by coding:
 DSNAME=dsname

For a permanent data set
 DSNAME=dsname(member)

For a member of a permanent PDS or PDSE
 DSNAME=dsname(generation)

For a generation of a permanent generation data group
 DSNAME=dsname(area)

For an area of a permanent indexed sequential data set

© Copyright IBM Corp. 1988, 2003 12-1

To create a permanent data set, assign it a name in the DSNAME parameter and a
disposition of KEEP or CATLG in the DISP parameter. The DISP subparameter
makes it a permanent data set. To use the data set, specify the data set’s name in
the DSNAME parameter in a later step or job or a backward reference to the
creating DD statement in a later step in the same job.

Examples
//MYDS DD DSNAME=PLANA,DISP=(NEW,KEEP,DELETE),
// UNIT=3380,VOLUME=SER=167833,SPACE=(CYL,(10,5))

//DSC DD DSNAME=PLANB,DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=275566,SPACE=(TRK,(20,5))

//SMSDS DD DSNAME=DESIGNB.PGM,DATACLAS=DCLAS1,STORCLAS=SCLAS1,
// DISP=(NEW,KEEP)

//OLDDS DD DSNAME=EXIST,DISP=OLD

Members of a PDS or PDSE
A partitioned data set (PDS) and a partitioned data set extended (PDSE) consist of
sequential records in independent groups, which are called members; each member
is identified by a member name. To add a member to a PDS or a PDSE, or to
retrieve a member, specify the data set name followed by the member name in
parentheses.

Example (PDS)
//NEWA DD DSNAME=RPRT(WEEK1),DISP=(NEW,CATLG,DELETE),
// UNIT=3380,VOLUME=SER=236688,SPACE=(CYL,(20,5,20))

//ADD1 DD DSNAME=RPRT(WEEK2),DISP=OLD

Example (PDSE)
//SMSDS DD DSNAME=RPRT(WEEK1),DATACLAS=DCLAS1,STORCLAS=SCLAS1,
// DISP=(NEW,KEEP)

//ADDSMS DD DSNAME=RPRT(WEEK2),DISP=OLD

Generations of a Generation Data Group
A generation data group is a collection of chronologically related data sets that have
the same data set name. To add a generation to a generation data group or retrieve
a generation, specify the generation data group name followed by the generation
number. A zero is the current generation of the group, a negative number (for
example, -1) is an older generation, a positive number (for example, +1) is a new
generation that does not exist yet.

Examples
//NEWGDS DD DSNAME=GDS(0),DISP=(NEW,CATLG,DELETE),
// UNIT=3380,VOLUME=SER=334455,SPACE=(CYL,20)

//OLDGDS DD DSNAME=GDS(-1),DISP=OLD

//NEWER DD DSNAME=GDS(+1),DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=222333,SPACE=(TRK,15)

//ALLG DD DSNAME=GDS,DISP=OLD

//SMSGDG DD DSNAME=A.B.C(+1),DATACLAS=DGDG1,DISP=(NEW,KEEP)

Data Set Resources - Identification

12-2 z/OS V1R4.0 MVS JCL User’s Guide

Areas of an Indexed Sequential Data Set
An indexed sequential data set consists of three areas: index, prime, and overflow.
To create the data set, define each area by identifying the data set name followed
by the area name. The area name is INDEX, PRIME, or OVFLOW. To define the
data set on one DD statement, code DSNAME=dsname or
DSNAME=dsname(PRIME). To retrieve the data set, code only the data set name.

Examples
//NEWIS DD DSNAME=ISDS(INDEX),DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=222333,SPACE=(CYL,5)
// DD DSNAME=ISDS(PRIME),DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=222333,SPACE=(CYL,15)
// DD DSNAME=ISDS(OVFLOW),DISP=(NEW,CATLG,DELETE),
// UNIT=3350,VOLUME=SER=222333,SPACE=(CYL,10)

//OLDIS DD DSNAME=ISDS,DISP=OLD

Temporary Data Sets
A temporary data set is a data set that is created and deleted in the same job, and
is identified by coding one of the following:

 DSNAME=&&dsname
For a temporary data set

 DSNAME=&&dsname(member)
For a member of a temporary PDS or PDSE

 DSNAME=&&dsname(area)
For an area of a temporary indexed sequential data set

 No DSNAME parameter
For a temporary data set to be named by the system

Additionally, in a non-SMS environment only, the system treats any data set that is
created and deleted in the same job step as a temporary data set. For example, the
system treats a data set coded as:
DSN=A.REAL.DSN.NAME,DISP=(NEW,DELETE)

in a non-SMS environment as a temporary data set.

Only the job that creates a temporary data set has access to it to read and write
data and to scratch the data set.

SMS manages a temporary data set if (1) you specify a storage class (via the DD
STORCLAS parameter) or (2) an installation-written automatic class selection (ACS)
routine selects a storage class for the temporary data set.

The system generates a qualified name for the temporary data set. For details
about the format of the name the system generates, see the description of the
DSNAME parameter in z/OS MVS JCL Reference.

The time in the system-generated qualified name is the same for all temporary data
sets in a job. Therefore, if the same temporary data set name appears more than
once in a job, the system might create duplicate data set names. This would be a
JCL error, unless the data set is passed from one job step to another.

Data Set Resources - Identification

Chapter 12. Data Set Resources - Identification 12-3

If the DISP parameter for a temporary data set specifies KEEP or CATLG, the
system changes the disposition to PASS and deletes the data set at job termination.
However, the system does not change the disposition for a data set when all of the
following are true:
v The data set resides on tape
v The data set is new
v The data set is not named in a DSNAME parameter
v The status in the DISP parameter is OLD or SHR
v The UNIT parameter contains DEFER

In this case, the system deletes the data set at job termination but tells the operator
to keep the volume for the data set.

Examples
//TEMPDS1 DD DSNAME=&&MYDS,DISP=NEW,UNIT=3350,
// SPACE=(CYL,20)

//TEMPDS2 DD DSNAME=&&DSA,DISP=(NEW,PASS),UNIT=3380,
// SPACE=(TRK,15)

//TEMPSMS DD DSNAME=&&ABC,DATACLAS=DCLAS2,STORCLAS=TEMP1,DISP=NEW

Members of a Temporary PDS or PDSE
To add a member to a temporary partitioned data set (PDS or PDSE), or to retrieve
a member during the job, specify the data set’s temporary name and follow it with
the member name in parentheses.

Examples
//TEMPMEM DD DSNAME=&&DS1(MEM1),DISP=(NEW,PASS),
// UNIT=3380,SPACE=(CYL,(20,,2))

//GETMEM DD DSNAME=&&DS1(MEM1),DISP=OLD

Areas of a Temporary Indexed Sequential Data Set
To create a temporary indexed sequential data set and define any of its areas on a
DD statement, identify the data set’s temporary name followed by the area name.
To define the temporary data set on one DD statement, code DSNAME=&&dsname
or DSNAME=&&dsname(PRIME). To retrieve the temporary data set in the same
job, code DSNAME=&&dsname.

Examples
//TEMPIS DD DSNAME=&&ISDS(INDEX),DISP=(NEW,PASS),
// UNIT=3380,SPACE=(CYL,5)
// DD DSNAME=&&ISDS(PRIME),DISP=(NEW,PASS),
// UNIT=3380,SPACE=(CYL,20)
// DD DSNAME=&&ISDS(OVFLOW),DISP=(NEW,PASS),
// UNIT=3380,SPACE=(CYL,10)

//ANOTHER DD DSNAME=&&ISDS2,DISP=(NEW,PASS),UNIT=3350,
// SPACE=(CYL,10)

//OLDIS DD DSNAME=&&ISDS2,DISP=OLD

Copying the Data Set Name from an Earlier DD Statement
If a data set name is used several times in a job, copy it from the DD statement
that uses it first. It can be copied whether it is specified in the DSNAME parameter
or assigned by the system. Use copying to make changing data sets from job to job
easier and to eliminate having to assign names to temporary data sets. Copy a data
set name by coding:

Data Set Resources - Identification

12-4 z/OS V1R4.0 MVS JCL User’s Guide

//ddname DD DSNAME=*.ddname
 //ddname DD DSNAME=*.stepname.ddname
 //ddname DD DSNAME=*.stepname.procstepname.ddname

Example
//COPYDS DD DSNAME=*.MYDS

Concatenating Data Sets
You can logically connect or concatenate (link together) sequential or partitioned
data sets (PDSs or PDSEs) for the duration of a job step. To concatenate data sets,
omit the ddnames from all the DD statements except the first. The data sets are
processed in the same sequence as the DD statements defining them.

Example
//INPUT DD DSNAME=FGLIB,DISP=(OLD,PASS)
// DD DSNAME=GROUP2,DISP=SHR

Identification of In-Stream Data Set (Non-APPC)
In-stream data sets are not supported in an APPC scheduling environment. If
coded, the system will syntax-check and ignore the DD statement that identifies the
in-stream data set. Subsequent statements will be processed as JCL statements
and might cause errors. The system ignores a delimiter statement that follows the
in-stream data set.

Entering Data Through the Input Stream
Enter data through the input stream by coding one of the following:
 //ddname DD *
 //ddname DD DATA

A step can contain more than one in-stream data set. Use the DD DATA statement
when the data contains JCL statements.

If the statement that begins the data set contains a DLM parameter, end the
in-stream data set with a statement containing the two characters in the DLM
parameter. Otherwise, end the in-stream data set with either of the following
delimiters:
 /*
 Another JCL statement, if begun with a DD * statement

Naming an In-Stream Data Set

Code the DSNAME parameter on the DD * or DATA statement to assign the last
qualifier of the system-generated name to an in-stream data set.

Example 1
//DSIN DD *
 .
 .
 (data)
 .
//INSET DD DATA
 .
 .
 (data)
 .
/*

Data Set Resources - Identification

Chapter 12. Data Set Resources - Identification 12-5

//THIRD DD *,DLM=ED
 .
 .
 (data)
 .
ED

Example 2
//DDIN DD DATA,DSNAME=&&PAYIN1
 .
 .
 (data)
 .
/*

In-Stream Data Sets in a JES3 System
In a JES3 system, an in-stream data set can also begin with a //*DATASET
statement and end with a //*ENDDATASET statement. The //*DATASET statement
must start an in-stream data set that is used as input to a dynamic support program
(DSP).

Example
//J1 JOB 2233,’K.A. BRAND’
//S1 EXEC PGM=MYPROG
//*DATASET DDNAME=S1.MYDD4,J=YES
 .
 .
 data
 .
//*ENDDATASET

Identification of Data Set on 3540 Diskette Input/Output Unit
IBM 3540 diskette volumes can contain associated data sets. Associated data sets
are treated like in-stream data sets and are spooled in as SYSIN data sets. These
associated data sets are identified by coding a DSID parameter and, optionally, a
volume serial on a DD * or DD DATA statement in the input stream:
 //ddname DD *,DSID=xxxx,VOLUME=SER=yyyyyy

To merge associated data sets into the job input stream, the stream containing the
DD statements for the associated data sets must be processed by the diskette
reader program. JES2 and JES3 do not support the DSID parameter.

For more information on the 3540 diskette, see 3540 Programmer’s Reference.

Example
//ASSTDS DD DATA,DSID=3254,VOLUME=SER=778356

Identification through Catalog
A system or private catalog contains pointers to previously cataloged data sets. The
system uses these pointers to locate data sets when a DD statement requests an
old data set without UNIT or VOLUME parameters. For example:
 //ddname DD DSNAME=dsname,DISP=OLD

Allocation and Unallocation of Catalog Volume

Data Set Resources - Identification

12-6 z/OS V1R4.0 MVS JCL User’s Guide

When the DSNAME parameter requests a cataloged data set, the system mounts
the catalog volume, if it is not already mounted. From the catalog, the system
obtains the pointer to the requested data set. Later, if the device on which the
catalog is mounted is needed for another volume, the system demounts the catalog
volume. The system assigns the catalog to the job step and performs disposition
processing for the catalog volume when the job step ends.

In the following cases, the system does not mount the catalog volume during
disposition processing of a job’s data sets:

v The job abnormally terminates and data sets with an abnormal termination
disposition of CATLG or UNCATLG were passed by a job step but not received
by a later step.

v The system unallocates a step’s data sets during warm start.

Using Private Catalogs
Private catalogs are defined on JOBCAT DD or STEPCAT DD statements. To define
a private catalog, use access method services, as explained in z/OS DFSMS: Using
Data Sets. The system searches a private catalog before a system catalog when a
JOBCAT or STEPCAT DD statement appears in the job or step and a DD statement
does not specify unit and volume serial information for a data set. A JOBCAT
catalog applies to each step of a job in which a STEPCAT catalog is not specified.

With SMS, do not use a JOBCAT DD statement in a job that references an
SMS-managed data set and do not use a STEPCAT DD statement in a job step
that references an SMS-managed data set. SMS only accesses SMS-managed
data sets that are cataloged in a system catalog.

Note: In a JES3 system, a private catalog must be on a permanently resident
volume.

To locate a data set, the system searches catalogs in the following order:

1. Private catalog(s) specified in the current step in a STEPCAT DD statement and
statements concatenated to it.

2. If no private catalogs are specified for the job step, private catalogs specified in
the current job in a JOBCAT DD statement and statements concatenated to it.

3. A private catalog indicated by the first one to four qualifiers, if any, of the data
set name.

4. The system master catalog.

A private catalog can be either a VSAM user catalog or an integrated catalog facility
catalog.

Examples
//CATDS DD DSNAME=DS1,DISP=OLD
//ANOTH DD DSNAME=A.B.C,DISP=OLD
//JOBCAT DD DSNAME=PRIVCAT1,DISP=SHR
// DD DSNAME=CONCAT2,DISP=SHR
//STEPCAT DD DSNAME=PRIVCATS,DISP=SHR

Identification through Label
The system uses data set labels to:
v Identify volumes and the data sets they contain.
v Store data set attributes.

Data Set Resources - Identification

Chapter 12. Data Set Resources - Identification 12-7

A label is either standard or nonstandard. Standard labels can be processed by the
system; nonstandard labels must be processed by installation-written routines,
which the installation adds to the system.

Data sets on tape volumes usually have labels; these labels can be standard or
nonstandard. If labels are present, they precede each data set on the volume. Data
sets on direct access volumes always have labels; these labels must be standard.
Direct access labels are in the volume table of contents (VTOC) for the volume.

The label type subparameter tells the system the type of labels for the data set. The
label type is coded:
 //ddname DD LABEL=(,label)...

The label types are:

SL: IBM standard labels
SUL: both IBM standard and user labels

For data sets on direct access, only SL or SUL can be specified. For SL or
SUL, or when the label type subparameter is omitted because the data set has
IBM standard labels, the system ensures that the correct tape or direct access
volume is mounted.

AL: ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels
AUL: ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels, and ISO/ANSI
Version 1 or ISO/ANSI/FIPS Version 3 user labels

For AL or AUL, the system ensures that the correct tape volume is mounted;
the tape must have an ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 label.

NSL: nonstandard labels
For NSL, installation-provided nonstandard label processing routines must
ensure that the correct tape volume is mounted.

NL: no labels
BLP: bypasses label processing

For NL or BLP, the operator must ensure that the correct tape volume is
mounted. If you specify NL, the data set must not have any standard labels.

 Use of BLP: BLP is not a label type, but a request that the system bypass label
processing. Use this specification for a blank tape or for overwriting a
seven-track tape at a parity or density different than its current parity or density.

LTM: bypasses a leading tape mark on unlabeled tape

Label Type for Cataloged or Passed Data Sets

For cataloged and passed data sets, the system does not keep label type
information. Therefore, when referring to a cataloged or passed data set that has
other than standard labels, code the LABEL type subparameter.

Nonspecific Volume Request

The label type subparameter can be specified for a nonspecific tape volume
request, that is, a DD statement with no volume serial numbers. If the operator
mounts a tape volume with a different label type, the system requests that the
operator mount another volume. But, if the specified label type is NL or NSL for the
nonspecific volume request and the operator mounts a volume with standard labels,
the system uses the volume if both of the following are true:
1. The expiration date of the existing data set on the volume is passed.

Data Set Resources - Identification

12-8 z/OS V1R4.0 MVS JCL User’s Guide

2. The existing data set on the volume is not password protected.

If you specify SL on a nonspecific volume request, but the operator mounts a tape
volume that contains other than IBM standard labels, the system asks the operator
to identify the volume serial number and the volume’s new owner before writing the
IBM standard labels. If the tape volume has ISO/ANSI Version 1 or ISO/ANSI/FIPS
Version 3 labels, the system asks the operator for permission to destroy the labels.

Specific Volume Request

If you specify SL on a specific volume request, that is, a DD statement that
specifies volume serial numbers, but the volume does not contain IBM standard
labels:

v If the mounted volume contains labels, the system rejects the volume and asks
the operator to mount the specified tape volume.

v If the mounted volume is not labeled, the system asks the operator whether to
reject the volume or write standard labels on it.

Examples
//DSF DD DSNAME=ALLAB,LABEL=(,AL),UNIT=3420,
// VOLUME=SER=223344,DISP=(NEW,CATLG)

//DSJ DD DSNAME=CATDS,DISP=OLD,LABEL=(,SUL)

Identification by Location on Tape
When placing a data set on a tape volume that already contains one or more data
sets, specify where the data set is to be placed, that is, whether the data set is to
be second, third, fourth, etc., on the volume. Code the data set sequence number
to position the tape:
//ddname DD LABEL=(data-set-sequence-number,label),...
//ddname DD LABEL=data-set-sequence-number,...

Data-Set-Sequence-Number with BLP

If you specify BLP for the label type, the system treats anything between tapemarks
as a data set. Therefore, if the tape actually has labels, code the
data-set-sequence-number subparameter to position the tape properly; the
subparameter must reflect all labels and data sets that precede the desired data
set. z/OS DFSMS: Using Magnetic Tapes illustrates where tapemarks appear.

Examples
//DDEX1 DD DSNAME=TAPEDS3,DISP=(NEW,KEEP),UNIT=3420,
// LABEL=(3,SL),VOLUME=SER=666555

//DDEX2 DD DSNAME=TAPEDS4,DISP=(NEW,KEEP),UNIT=3420,
// LABEL=(8,BLP),VOLUME=SER=223344

Identification as TCAM Message Data Set
To identify a data set as containing telecommunications access method (TCAM)
messages, code the following:
 //ddname DD QNAME=procname
 //ddname DD QNAME=procname.tcamname

Data Set Resources - Identification

Chapter 12. Data Set Resources - Identification 12-9

The QNAME parameter refers to a TPROCESS macro instruction that defines a
destination queue for the messages. The parameter can also name a TCAM job to
process the messages.

Example
//EX1 DD QNAME=MACRO1.TJOB

Identification as Data Set from or to Terminal (Non-APPC)
The TERM parameter has no function in an APPC scheduling environment. If you
code TERM, the system will check it for syntax and ignore it.

In a job run in a TSO/E system, identify a data set as coming from or going to the
terminal in the JOB statement USER parameter by coding:
 //ddname DD TERM=TS

In a background or batch job, the system treats the TERM=TS parameter as a
SYSOUT=* parameter if no other parameters are coded.

Example
//MYTSODS DD TERM=TS

Data Set Resources - Identification

12-10 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 13. Data Set Resources - Description
 Table 13-1. Description Task for Requesting Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Description

of status DISP

of data attributes -
by modeling

DCB
AMP

DATACLAS
KEYLEN
DSNTYPE
KEYOFF
LRECL
RECFM
RECORG

LIKE
REFDD

of migration and
backup

MGMTCLAS

Description of Status
The process of securing control of data sets for a job is called data set integrity
processing. Data set integrity processing avoids conflict between two or more jobs
that request use of the same data set. For example, two jobs, one named READ
and another named MODIFY, both request data set FILE.

v READ wants only to read and copy certain records

v MODIFY deletes some records and changes other records

If both jobs use FILE concurrently, READ cannot be certain of the integrity of FILE
because MODIFY is changing records in the data set. MODIFY should have
exclusive control of the data set.

Indicate the type of control needed by coding the data set’s status:
 //ddname DD DISP=(NEW,...
 //ddname DD DISP=(OLD,...
 //ddname DD DISP=(MOD,...
 //ddname DD DISP=(SHR,...

For exclusive use of a data set, code:

v NEW: the data set is being created in this job step.

v OLD: the data set existed before this job step.

v MOD: the system first assumes that the data set exists. For an existing
sequential data set, MOD causes the read/write mechanism to be positioned
after the last record in the data set. The read/write mechanism is positioned after
the last record each time the data set is opened for output.

 If the system cannot find volume information for the data set on the DD
statement, in the catalog, or passed with the data set from a previous step, the

© Copyright IBM Corp. 1988, 2003 13-1

system assumes that the data set is being created in this job step. For a new
data set, MOD causes the read/write mechanism to be positioned at the
beginning of the data set.

Note: For a new generation of a generation data group (GDG) data set (where
(+n) is greater than 0), VOLUME=REF or VOLUME=SER can be coded.

For shared use of a data set, code:

v SHR: the data set existed before this job step and can be read by other
concurrent jobs.

Exclusive Control of a Data Set

When a job has exclusive control of a data set, no other job can use that data set
until completion of the last step in the job that refers to the data set. A job should
have exclusive control of a data set in order to modify, add, or delete records.

In some cases, you may not need exclusive control of the entire data set. You can
request exclusive control of a block of records by coding the DCB, READ, WRITE,
and RELEX macro instructions. See z/OS DFSMS: Using Data Sets .

Shared Control of a Data Set

Several jobs can concurrently use a data set on a direct access device if they
request shared control of the data set. None of the jobs should change the data set
in any way.

If more than one step requests a shared data set, code SHR on every DD
statement that requests the data set, if it is to be used by concurrently executing
jobs.

Examples
 //DD1 DD DSNAME=PERMDS,DISP=OLD
 //DD2 DD DSNAME=&&TEMPDS,DISP=NEW
 //DD3 DD DSNAME=GENDS(+1),DISP=(NEW,CATLG)

Data Set Integrity Processing
The system performs data set integrity processing once for each job, for the
following types of data sets:

v Permanent data sets

v Non-virtual I/O (VIO) temporary data sets

v Data sets with alias names, created with the access method services DEFINE
command; see:
 z/OS DFSMS Access Method Services for Catalogs

v Members of generation data groups.

The system does not perform data set integrity processing for subsystem data
sets.

Data Set Integrity Processing for Permanent Data Sets

To secure control for all permanent data sets for the job, the system enqueues
each data set, marking the data set as requested by that job and noting the kind of

Data Set Resources - Description

13-2 z/OS V1R4.0 MVS JCL User’s Guide

control requested: shared or exclusive. The system assigns control of the data set
until completion of the last step in the job that refers to the data set.

A statement requesting exclusive control overrides any number of statements
requesting shared control. One of two methods can be used to request exclusive
control:

v DISP=NEW, DISP=MOD or DISP=OLD on a JCL DD statement.

v DISP=NEW, DISP=MOD or DISP=OLD on a dynamic allocation request,
including dynamic allocation requests that result from the use of certain utility
control statements.

For example, utility control statements that delete/scratch a data set will result in
exclusive use of that data set.

The job receives control of the data set if:

v Another job is not using the data set.

v Another job is using the data set but both the job requesting the data set and the
job using the data set request shared control and no exclusive requests are
pending.

The job does not receive control of a data set if:

v Another job is using the data set and that job has exclusive control.

v Another job is using the data set, with either exclusive or shared control, and this
job requests exclusive control.

v Another job is using the data set, with shared control, and yet another, earlier job
requests exclusive control.

If a job requests data sets that are not available, the system issues the message
‘JOB jjj WAITING FOR DATA SETS’ to the operator. The job waits until the required
data sets become available, unless the operator cancels the job.

When the system has secured control of all permanent data sets, it allocates and
unallocates resources for each step of the job. The job terminates after the system
has unallocated all resources for the last step in the job.

Data Set Integrity Processing for Other Data Sets

Non-VIO temporary data sets, data sets with alias names, and members of
generation data groups are reserved or enqueued for each step within the job. The
job receives control of the data set for that step in the same way as for permanent
data sets.

When each step terminates, the system releases control of any data sets that are
not used in any subsequent step of the job, except non-VIO temporary data sets,
data sets with alias names, or a member of a generation data group.

Summary of Data Set Integrity Processing
 Table 13-2. Data Set Integrity Processing

Data set is currently in use:

Data set is not
in use

Data set is previously requested
for:

Shared control
Exclusive
control Shared control

Exclusive
control

Permanent data set requested
for:

Data Set Resources - Description

Chapter 13. Data Set Resources - Description 13-3

Table 13-2. Data Set Integrity Processing (continued)

Data set is currently in use:

Data set is not
in use

Data set is previously requested
for:

Shared control
Exclusive
control Shared control

Exclusive
control

 Shared control Request granted Request granted
when data set
released

Request granted Request granted Request granted
when data set
released

 Exclusive control Request granted
when data set
released

Request granted
when data set
released

Request granted Request granted
when data set
released

Request granted
when data set
released

Non-VIO temporary data set
requested for:

 Shared control Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

 Exclusive control Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

GDG data set requested for:
 Shared control Request granted Fail or wait

dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted

 Exclusive control Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Data set with alias name
requested for:

 Shared control Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

 Exclusive control Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Request granted Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Fail or wait
dependent on
SDSN_WAIT
specification in
ALLOCxx

Description of Data Attributes
The system obtains information needed to read from and write to a data set from:

v The data control block (DCB).

v For a VSAM data set, from the access method control block (ACB).

v With SMS, from the data class of the data set.

v With SMS, from a model data set.

In Data Control Block (DCB)
The system obtains data control block information from the following sources, in
override order:

Data Set Resources - Description

13-4 z/OS V1R4.0 MVS JCL User’s Guide

v The DCB macro instruction, in assembler language programs, or file definition
statements or language-defined defaults in programs in other languages.

v The DCB subparameters on the DD statement.
 //ddname DD DCB=subparameter,...
 //ddname DD DCB=(subparameter,subparameter,...),...

v The data set label.

Therefore, the system ignores a value in a DCB subparameter on the DD statement
if the data control block already contains the value. The system ignores a value in
the data set label if the data control block already contains the value from the
program or a DD DCB subparameter.

Note: When concatenated data sets are involved, the DCB is completed based on
the type of data set and how the processing program uses the data set. See
z/OS DFSMS: Using Data Sets for more information.

DCB Values from Cataloged Data Sets

The DD statement DCB parameter can ask the system to copy certain values from
the data set label of a cataloged data set, by coding:
 //ddname DD DCB=dsname,...
 //ddname DD DCB=(dsname,subparameter,...)...

The system copies the DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN,
and RKP values from the label. If any of these values are coded in subparameters
following the dsname, the system uses the coded values.

DCB Values from Earlier DD Statements

The DD statement DCB parameter can ask the system to copy all subparameters
from the DCB parameter in an earlier DD statement, by coding a backward
reference to the earlier statement:
 //ddname DD DCB=*.ddname
 //ddname DD DCB=*.stepname.ddname
 //ddname DD DCB=*.stepname.procstepname.ddname

Examples
//S1 EXEC PGM=ANYA
//DD1 DD DSNAME=ABC,DCB=(RECFM=FB,LRECL=80,BLKSIZE=960),
// DISP=(NEW,CATLG,DELETE),UNIT=3380,VOLUME=223344,
// SPACE=(CYL,(30,10))
//S2 EXEC PGM=ANYB
//DD2 DD DSNAME=COPIER1,DCB=ABC
//S3 EXEC PGM=ANYC
//DD3 DD DSNAME=COPIER2,DCB=*.S1.DD1

In Access Method Control Block (ACB)
The system obtains access method control block information for VSAM data sets
from the following sources, in override order:

v The AMP subparameters on the DD statement.
 //ddname DD AMP=(subparameter),...
 //ddname DD AMP=(’subparameter,subparameter,...’),...

v With SMS, the DD statement parameters KEYLEN, KEYOFF, LRECL, and
RECORG.

v The ACB, EXLST, or GENCB macro instructions in assembler language
programs.

Data Set Resources - Description

Chapter 13. Data Set Resources - Description 13-5

v The catalog entry for the data set.

Therefore, the system ignores a value in a program macro instruction if the DD
AMP parameter supplies the value. The system ignores a value in the data set
catalog entry if the access method control block already contains the value from a
DD AMP subparameter or a macro instruction in the program.

Note: The override order for ACB values is different from the override order for
DCB values.

Examples
//DD4 DD DSNAME=ANYVSAM1,AMP=(’BUFND=4,BUFNI=4,STRNO=2’),
// DISP=(NEW,CATLG,DELETE),UNIT=3380,VOLUME=556677,
// SPACE=(TRK,(200,50))

In Data Class
With SMS, the system obtains information about the attributes of a data set from
the data class for the data set.

In many cases, the attributes defined in the data class selected by an
installation-written automatic class selection (ACS) routine are sufficient for the data
sets you create with DD statements.

However, you can specify the name of a data class on the DATACLAS parameter
for a new data set. (Note that an ACS routine can override the data class that you
specify.)

The storage administrator at your installation defines the names of data classes and
their data set attributes. To view a list of data class names and their attributes, use
the Interactive Storage Management Facility (ISMF).

You can also override individual data set attributes. Any data set attributes you
specify on the following parameters override the corresponding attributes in the data
class for the data set.
 RECORG (record organization) or RECFM (record format)
 LRECL (record length)
 KEYLEN (key length)
 KEYOFF (key offset)
 DSNTYPE (data set type, PDS or PDSE)
 AVGREC (record request and space quantity)
 SPACE (average record length, primary, secondary, and directory quantity)
 RETPD (retention period) or EXPDT (expiration date)
 VOLUME (volume-count)

Examples
//DD5 DD DSNAME=DESIGNA.PGM,DISP=(NEW,KEEP)
//DD6 DD DSNAME=DESIGNB.PGM,DATACLAS=PGM5,DISP=(NEW,KEEP)
//DD7 DD DSNAME=DESIGNC.PGM,DATACLAS=PGM5,LRECL=1024,DISP=(NEW,KEEP)

From Model Data Set
With SMS, use the LIKE or REFDD parameter to copy data set attributes from a
model data set:

v The LIKE parameter copies the attributes of an existing cataloged data set to the
new data set that you are defining on a DD statement.

Data Set Resources - Description

13-6 z/OS V1R4.0 MVS JCL User’s Guide

v The REFDD parameter copies the attributes of a data set that is defined in a
previous DD statement to the new data set that you are defining on a DD
statement.

Any data set attributes you specify on the DD statement that defines the new data
set override the corresponding attributes copied from the model data set.

Examples
//DDEX DD DSNAME=DESIGN.EXMP,DISP=OLD
//DD8 DD DSNAME=DESIGNE.PGM,LIKE=DESIGN.EXMP,DISP=(NEW,KEEP)
//DD9 DD DSNAME=DESIGNF.PGM,LIKE=DESIGN.EXMP,LRECL=1024,
// DISP=(NEW,KEEP)
//DD10 DD DSNAME=DESIGNG.PGM,DATACLAS=DCLAS10,DISP=(NEW,KEEP)
//DD11 DD DSNAME=DESIGNH.PGM,REFDD=*.DD10,LRECL=1024,
// DISP=(NEW,KEEP)

Migration and Backup (with SMS)
For an SMS-managed data set (one with a storage class assigned), the system
handles the migration and backup of the data set based on the attributes defined in
the management class for the data set.

In many cases, the attributes defined in the management class selected by an
installation-written automatic class selection (ACS) routine are sufficient for the data
sets you create with DD statements.

However, you can specify the name of a management class on the MGMTCLAS
parameter for a new SMS-managed data set. (Note that an ACS routine can
override the management class that you specify.)

The storage administrator at your installation defines the names of management
classes and their attributes. To view a list of management class names and their
attributes, use the Interactive Storage Management Facility (ISMF).

Note that you cannot override any of the attributes defined in the management
class for the data set.

Examples
//DD8 DD DSNAME=DESIGND.PGM,DISP=(NEW,KEEP)
//DD9 DD DSNAME=DESIGNE.PGM,MGMTCLAS=MCLASA,DISP=(NEW,KEEP)

Data Set Resources - Description

Chapter 13. Data Set Resources - Description 13-7

Data Set Resources - Description

13-8 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 14. Data Set Resources - Protection
 Table 14-1. Protection Task for Requesting Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Protection

through RACF PROTECT
SECMODEL

for
ISO/ANSI/FIPS
Version 3 tapes

ACCODE

by passwords PASSWORD and
NOPWREAD on
LABEL

of access to
BSAM and BDAM
data sets

IN and OUT on
LABEL

Protection through RACF
To ask for RACF protection, code:

 //ddname DD PROTECT=YES,...

or, with SMS:

 //ddname DD SECMODEL=profile-name,...

Protection with the PROTECT Parameter
Through the PROTECT parameter, RACF can protect the following:

v A data set on a direct access volume

v A data set on a tape volume with labels, that is:
 LABEL=(,SL)
 LABEL=(,SUL)
 LABEL=(,AL)
 LABEL=(,AUL)
 LABEL=(,NSL) if the installation provides support

v A tape volume with or without labels, that is:
 LABEL=(,SL)
 LABEL=(,SUL)
 LABEL=(,AL)
 LABEL=(,AUL)
 LABEL=(,NSL)
 LABEL=(,NL)
 LABEL=(,BLP)
 LABEL=(,LTM)

For more information, see z/OS Security Server RACF Security Administrator’s
Guide.

© Copyright IBM Corp. 1988, 2003 14-1

Examples

//TAPE2 DD DSNAME=NEWDS1,PROTECT=YES,DISP=(NEW,KEEP),
// VOLUME=(,,1,2,SER=(223344,556677)),
// UNIT=(3400-5,2),LABEL=(,SUL)

//DISKDS DD DSNAME=NEWDS2,PROTECT=YES,DISP=(NEW,CATLG,KEEP),
// VOLUME=SER=223344,UNIT=3380

Protection with the SECMODEL Parameter
With SMS, RACF can, through the SECMODEL parameter, protect a data set
created under SMS.

You specify the name of a RACF data set profile on the SECMODEL parameter
when you define a new data set. Use the SECMODEL parameter when you want to
use a specific data set profile for a new data set rather than using your user/group
default data set profile.

The data set profile contains information such as the name of the owner of the
profile, a list of RACF users or groups authorized to access the data set, the access
attempts that are logged, and other RACF-related information.

For more information, see z/OS Security Server RACF Security Administrator’s
Guide, and z/OS Security Server RACF Command Language Reference.

Example

//SMSDS DD DSNAME=NEWDS5.PGM,SECMODEL=(GROUP1.PROTA),DISP=(NEW,KEEP)

Protection for ISO/ANSI/FIPS Version 3 Tapes
To control access to an ISO/ANSI/FIPS Version 3 tape data set, code:

 //ddname DD ACCODE=access-code,...

The system must contain an installation-written file-access exit routine. This routine
verifies that the ACCODE parameter specifies the correct code for an existing data
set and, therefore, can use a data set.

Examples

//DD1 DD DSNAME=NEWDS,ACCODE=F,LABEL=(,AL),UNIT=3380,
// VOLUME=SER=998877,DISP=(NEW,CATLG,KEEP)

//DD2 DD DSNAME=OLDDS,ACCODE=J,LABEL=(,AL),UNIT=3380,
// VOLUME=SER=665544,DISP=OLD

Protection by Passwords
Use the PASSWORD subparameter of the LABEL parameter to specify a password
to be used for protecting a data set.

Note that SMS ignores the PASSWORD subparameter for SMS-managed data sets.

To protect a data set with a password, code:

Data Set Resources - Protection

14-2 z/OS V1R4.0 MVS JCL User’s Guide

//ddname DD LABEL=(data-set-sequence-number,label,PASSWORD)
 //ddname DD LABEL=(data-set-sequence-number,,PASSWORD)
 //ddname DD LABEL=(,,PASSWORD)

To use a password-protected data set, code:

 //ddname DD LABEL=(data-set-sequence-number,label,PASSWORD)
 //ddname DD LABEL=(data-set-sequence-number,,PASSWORD)
 //ddname DD LABEL=(,,PASSWORD)
 //ddname DD LABEL=(data-set-sequence-number,label,NOPWREAD)

These subparameters mean the following:

v PASSWORD: The data set cannot be read from, written to, or deleted by another
job or step unless the operator supplies the system with the correct password.

v NOPWREAD: The data set cannot be written to or deleted by another job or step
unless the operator supplies the system with the correct password. However, the
data set can be read without the password.

To protect a data set with a password, specify PASSWORD when the data set is
created. Password-protected data sets must have standard labels, either IBM
standard or ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels.

Examples

//EX1 DD DSNAME=ABC,DISP=(NEW,CATLG,DELETE),
// LABEL=(,SL,PASSWORD),UNIT=3400-5,VOLUME=223344

//EX2 DD DSANME=DEF,DISP=OLD,LABEL=(,SL,NOPWREAD)

Protection of Access to BSAM or BDAM Data Sets
The LABEL parameter can modify the data set processing through the IN and OUT
subparameters, as indicated in Table 14-2, if the assembler OPEN macro instruction
specifies the data set processing as:

v When using the basic sequential access method (BSAM): INOUT, OUTIN,
OUTINX, or EXTEND

v When using the basic direct access method (BDAM): UPDAT

The LABEL subparameters are coded:

 //ddname DD LABEL=(data-set-sequence-number,label,PASSWORD,IN)
 //ddname DD LABEL=(,label,PASSWORD,OUT)
 //ddname DD LABEL=(,,NOPWREAD,IN)
 //ddname DD LABEL=(,,,OUT)

 Table 14-2. Processing with DD LABEL Subparameter IN or OUT

OPEN Macro
Parameter

LABEL
Subparameter Program Processing of Data Set Required Password

INOUT (BSAM)
UPDAT (BDAM)

IN Read records (If the program tries to
write to the data set, the system
gives control to the error analysis
(SYNAD) routine.)

Read password, if data set protected
with PASSWORD; write password, if
data set protected with NOPWREAD

OUTIN (BSAM)
UPDAT (BDAM)

OUT Write records (If the program tries to
read the data set, the system gives
control to the error analysis (SYNAD)
routine.)

Write password, if data set protected
with PASSWORD or NOPWREAD

Data Set Resources - Protection

Chapter 14. Data Set Resources - Protection 14-3

Table 14-2. Processing with DD LABEL Subparameter IN or OUT (continued)

OPEN Macro
Parameter

LABEL
Subparameter Program Processing of Data Set Required Password

OUTINX (BSAM)
EXTEND (BSAM)

OUT Add records to end of data set (If the
program tries to read the data set,
the system gives control to the error
analysis (SYNAD) routine.)

Write password, if data set protected
with PASSWORD or NOPWREAD

 Other Uses of the LABEL IN Subparameter

You can also use the IN subparameter to avoid operator intervention when reading
a data set that has an unexpired expiration date.

Data Set Processing with LABEL OUT Subparameter

When the OPEN macro instruction specifies OUTINX or EXTEND and the DD
LABEL contains an OUT subparameter, the system adds records to the end of the
data set regardless of the DISP parameter of the DD statement.

Examples

//EX1 DD DSNAME=D.E.F,DISP=OLD,LABEL=(,,NOPWREAD,IN)
//EX2 DD DSNAME=EXIST,DISP=MOD,LABEL=(,,PASSWORD,OUT)

Data Set Resources - Protection

14-4 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 15. Data Set Resources - Allocation

Allocation is the process the system uses to map requests for data sets to available
devices and volumes. This chapter contains guidance information about the
allocation of data set resources. Table 15-1 shows the relationships between the
allocation of resources associated with data sets, such as devices and volumes,
and the appropriate JCL or JES statements and parameters.

 Table 15-1. Allocation Task for Requesting Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Allocation

of device UNIT
STORCLAS

CLASS on JOB
(JES3 only)

SETUP and
CLASS on
//*MAIN

of tape or direct
access volume

VOLUME
STORCLAS

EXPDTCHK and
RINGCHK on
//*MAIN

of direct access
space

SPACE
AVGREC
DATACLAS

of virtual I/O UNIT
DSNAME=
temporary data
set

with deferred
volume mounting

DEFER on UNIT

with volume
premounting

/*SETUP

dynamic DYNAMNBR on
EXEC

 This chapter includes the following topics related to the allocation of data set
resources.

v “Allocation of Device” on page 15-2

v “Allocation of Volume” on page 15-15

v “Interactions Between Device and Volume Allocation” on page 15-24

v “Stacking Data Sets” on page 15-37

v “Allocation of Direct Access Space” on page 15-42

v “Allocation of Virtual I/O” on page 15-47

v “Allocation with Volume Premounting in a JES2 System” on page 15-50

v “Dynamic Allocation” on page 15-50

Some of these topics include sections that describe the topic from the perspective
of whether the resource is SMS-managed or non-SMS-managed.

© Copyright IBM Corp. 1988, 2003 15-1

In this chapter, SMS-managed and system-managed are used interchangeably to
describe resources that the storage management subsystem (SMS) manages, and
with SMS indicates information that applies when SMS is installed and active.

Data sets on system-managed tape library volumes exhibit both system-managed
and non-system-managed characteristics. When necessary, data sets on a
system-managed tape volume are distinguished from system-managed DASD
data sets. Otherwise, the term system-managed data sets refers to both data
sets on a system-managed tape volume and system-managed DASD data sets.

Allocation of Device
The device that a data set resides on is determined as follows:

v For SMS-managed data sets, by the storage class for the new data set,
specified on the STORCLAS parameter of the DD statement or selected by the
installation-written automatic class selection (ACS) routine for the new data set.

v For non-SMS-managed data sets, by the UNIT parameter, specified on the DD
statement for the new data set, or, with SMS, by the SMS default unit, when the
UNIT parameter is not specified.

Device Allocation for SMS-Managed Data Sets
For an SMS-managed data set, SMS obtains information about the device to be
used for the data set based on the storage class assigned for the data set.

In many cases, the device used by the storage class that an ACS routine selects is
sufficient for the data sets you create with DD statements.

You can, however, specify the name of a storage class on the STORCLAS
parameter for a new SMS-managed data set. (Note that an ACS routine can
override the storage class that you specify.)

The storage administrator at your installation defines the names of storage classes
and their attributes. To view a list of storage class names and their attributes, use
Interactive Storage Management Facility (ISMF).

To let an ACS routine select a storage class for a new data set, omit the
STORCLAS parameter; for example:
 //DD5 DD DSNAME=DESIGNA.PGM,DISP=(NEW,KEEP)

To specify a specific storage class for a new data set, code the STORCLAS
parameter; for example:
 //DD6 DD DSNAME=DESIGNB.PGM,STORCLAS=STOR55,DISP=(NEW,KEEP)

The system catalogs new permanent system-managed DASD data sets at
allocation. The system catalogs data sets on a system-managed tape volume
during unallocation processing, according to DISP parameters on DD statements.

To retrieve an existing data set, you do not need to code the STORCLAS
parameter; for example:
 //DD7 DD DSNAME=DESIGNB.PGM,DISP=MOD

If you specify the UNIT parameter for an SMS-managed data set, the system
generally ignores the parameter. There are, however, several cases when the
system uses the information specified on the UNIT parameter:

Data Set Resources - Allocation

15-2 z/OS V1R4.0 MVS JCL User’s Guide

v For data sets on a system-managed tape volume, the system ignores the device
type, device number, and group name subparameters of the UNIT parameter but
honors all its other subparameters. For example, it uses the unit-count
subparameter to allocate the specified number of units.

v For system-managed DASD data sets, the system honors the unit-count
subparameter but ignores all other subparameters on the UNIT parameter. For
further information see the z/OS MVS JCL Reference manual.

Device Allocation for Non-SMS-Managed Data Sets
On the DD statement for a non-SMS-managed data set, code a UNIT parameter to
indicate the device on which the data set resides or is to be written.

With SMS, you do not need to code the UNIT parameter if your installation has
defined a system default unit to use for new data sets. Check with your storage
administrator.

The UNIT parameter can specify:

v A particular device:
 //ddname DD UNIT=device-number,...

v A type of device, such as a 3350 direct access device or a 1403 printer:
 //ddname DD UNIT=device-type,...

v A group of devices, such as DISK, to indicate all direct access devices in the
system:
 //ddname DD UNIT=group-name,...

The status of a device affects whether the system can allocate it or not. See
Table 15-2.

 Table 15-2. Effect of Device Status on Allocation

Status Device Type

Direct Access Tape Printer Punch Graphic Teleprocessing

Online Eligible for allocation

Offline Eligible for allocation when the operator brings the device online Eligible for
allocation when at
least one path to
the device is
online

Pending Unload Eligible for allocation when the
volume is specifically requested

Not applicable

Pending Offline Eligible for allocation when the
operator selects the device in
response to message IEF238D or
when the operator brings the device
online.

Eligible for allocation when the
operator selects the device in
response to message IEF238D or
when the operator brings the device
online.

Not applicable

Specifying Device Number
The device number is a 3-digit or 4-digit hexadecimal number assigned to the
device when it is installed. In JCL statements, always precede a 4-digit number with
a slash (/). A 3-digit number can be specified with or without a slash.

A 3-digit device number can be specified in two formats, where h is a hexadecimal
digit:

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-3

v 3-digit format: hhh or /hhh
v 4-digit format: /0hhh

Note that the slash before a 4-digit device number distinguishes it from a device
type, which is also 4 digits, but cannot contain a slash or be preceded by a slash.

For example, UNIT=/3490 is the device number for a specific device.

Do not specify a device by its number unless absolutely necessary. When you
specify a device number, the system can assign only that specific device.
Specifying a device number will delay a job if another job is using the device.

Specifying Device Type

Requesting a device type allows the system to assign any available device of that
type. For example, UNIT=3350 indicates that you want the system to assign any
available 3350 Direct Access Storage device. For more information on specifying
device types, see z/OS HCD Planning.

Specifying Group Name

During system initialization, the installation can define group names for a group of
devices. The devices in a group may or may not all be the same type. Requesting a
group name allows the system to assign any available device in the group. For
example, if the group named DISK includes 3350 and 3380 Direct Access Storage
devices, the system assigns an available 3350 or 3380 device when UNIT=DISK is
coded. If the group named 3350A includes three particular 3350 devices, the
system assigns one of these 3350 devices when UNIT=3350A is coded.

Groups with Several Types of Devices

If the group contains more than one type of device and the DD statement requests
more than one device, the system allocates devices of the same type from the
group. For example, if the group named TAPE includes both 3400-5 and 3400-6
devices and the DD statement specifies UNIT=(TAPE,2), the system assigns either
two 3400-5s or two 3400-6s. If the system does not have enough devices of one
type to satisfy the request, the system terminates the job.

If a group contains more than one type of device, do not code the group name
when requesting an existing data set or a specific volume. The system may assign
one type of device while the data set resides on another type. For example, if
SYSSQ contains all tape and direct access devices, do not code UNIT=SYSSQ for
an existing data set on tape; the system might assign a direct access device.

Groups with Devices with Special Features

This rule also applies if the data set resides on a 3348 Model 70F Data Module and
the group name includes 3340 drives with and without the Fixed Head Feature. The
3348 Model 70F must be assigned to a 3340 with the feature. For more information
on the Fixed Head Feature, see the IBM 3340 Disk/Storage - Fixed Head Feature
User’s Guide.

If a nonspecific volume request requires more than one tape device from a group
that contains both single and dual density tape drives, the system assigns the
devices so that the single density drive is the first one used. The default density is

Data Set Resources - Allocation

15-4 z/OS V1R4.0 MVS JCL User’s Guide

the density of the single density drive. The operator may be requested to mount the
volumes in a different order than assigned by the system.

Concurrent Allocation of Devices

Only direct access devices can be allocated to different jobs executing concurrently.
Teleprocessing equipment cannot be allocated more than once in the same job
step. If a printer, punch, teleprocessing equipment, or graphics device is designated
as a console, it cannot be allocated to a job.

Allocating a Teleprocessing Device With a Group Name

If you request that the system allocate one or more lines of a line group by using a
group name, the system attempts to allocate the lines within the line group, starting
with the lowest teleprocessing (TP) line address and continuing in ascending order.
If the first eligible line in the line group is already allocated, the system fails the
request to allocate from that line group.

Note: A group name is called an esoteric name in Hardware Configuration
Definition (HCD) terminology.

Definition of UNIT Parameters in System Initialization

The installation describes each device to the system during system initialization.
During this process, the installation defines the device types and group names to be
coded in the DD UNIT parameter.

The installation should maintain a list of the device types and group names. For
more information, see z/OS HCD Planning.

Specifying Device for Output Data Set (Non-SMS-Managed Data
Sets)
To print or punch a data set without using the job entry subsystem output service,
specify the printer or punch in the UNIT parameter on the DD statement for the
data set. The system allocates the device, if available, exclusively to the job; jobs
cannot share output devices. Data management routines write the output from the
program to the specified device.

Sending output through the job entry subsystem to a sysout data set is usually
more efficient. JES uses the printers and punches for many jobs without intermixing
output.

Allocation with Deferred Volume Mounting
A step can include a data set that the program might not use. To ask the system
not to mount the volume for the data set until the data set is opened, code:
 //ddname DD UNIT=(xxxx,,DEFER),...

Deferred mounting can save the operator time.

Example
//MYDS DD DSNAME=DATA5,UNIT=(TAPE,,DEFER)

Note: You can also use deferred mounting for SMS-managed data sets.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-5

Requesting More than One Unit for Non-System-Managed Data
Sets and Data Sets on a System-Managed Tape Volume
For faster processing, request several units for a multivolume data set or for a data
set that may require additional volumes. When each volume is on its own device,
step execution is not halted while the operator demounts and mounts volumes.

Always request several units when the data set resides on more than one
permanently resident or reserved volumes or may be extended to a new volume
during step execution. Permanently resident and reserved volumes cannot be
demounted in order to mount a new volume.

Request multiple units by:

v Coding the unit count subparameter:
 //ddname DD UNIT=(device,unit-count),...

v Requesting parallel mounting when the VOLUME parameter requests more than
one volume in the volume count parameter or in more than one serial number:
 //ddname DD UNIT=(device,P),VOLUME=(,,,volume-count)
 //ddname DD UNIT=(device,P),
 // VOLUME=SER=(serial-number,serial-number,...)

Number of Devices Allocated for Non-System-Managed Data Sets
and Data Sets on a System-Managed Tape Volume
The system assigns volumes and devices for a job step by calculating the following:
v The maximum number of volumes per DD statement
v The maximum number of devices per DD statement
v The number of devices for the step

Volumes Required per DD Statement
See “Volumes Required per DD Statement for Non-System-Managed Data Sets and
Data Sets on a System-Managed Tape Volume” on page 15-23.

Devices Required per DD Statement
The maximum number of tape devices or direct access devices required to satisfy
any DD statement is the unit count in the UNIT parameter except when volume
affinity is present. If volume affinity is present, the number of devices might be more
than the unit count in the UNIT parameter. For more information, see “Devices
Assigned per Step” on page 15-7.

However, if the UNIT parameter also specifies P, for parallel mount, the system
uses the greatest of the following numbers to determine how many devices and
volumes to allocate:
v Unit-count in the UNIT parameter
v Volume-count specified in the VOLUME parameter
v Number of serial numbers implicitly or explicitly specified
v With SMS, volume-count in the data class

The number of devices is affected by the DD statement parameters as follows:

DD Statement Specifies System Action

UNIT=AFF The system obtains the device requirements from
the referenced DD statement. All of the devices
used for the referenced DD statement are shared
with the referring statement’s data set.

Generation data group (GDG)
The system determines the number of devices
needed by totaling the devices needed for each

Data Set Resources - Allocation

15-6 z/OS V1R4.0 MVS JCL User’s Guide

generation data set. Each generation data set is
handled as a single request.

VSAM data set The system determines the number of devices
needed based on the device/volume configuration
of the data set. If the data set is on more than one
type of device, the system determines the total
number of devices required and allocates them.
The system may override the unit count or parallel
mounting, if specified.

Unit name that includes different device types
The system allocates devices of the same type.

Devices Assigned per Step
The number of devices assigned for a job step is not necessarily the sum of the
device requirements for each DD statement.

The following tend to reduce the total devices assigned for a step:

v A volume can be allocated to only one device. Therefore, when more than one
DD statement asks for the same volume, the system allocates the same volume
on the same device.

v Requests for direct access space on public and/or storage volumes can be
allocated to the same volume. Therefore, when more than one DD statement
requests such space, the system can allocate the same volume on the same
device.

v Requests for the same public tape volume are allocated to that volume.
Therefore, if a DD statement requests a public tape and specifies
VOLUME=REF, the system can allocate the same volume on the same device.

The following tend to increase the total devices assigned for a step:

v A permanently resident or reserved volume cannot be demounted. Therefore, the
system assigns a permanently resident or reserved volume to its own device, on
which it is mounted. The volume is assigned to its own device even if the DD
statements specify that the device was to be shared with other volumes.

v A direct access volume is requested by more than one DD statement in a step;
the volume is shared by the data sets. The system assigns that volume to a
device and does not assign any other volumes to that device, even if the DD
statements specify that the device was to be used for other volumes.

v The system allocates additional devices for a VSAM data set, if the data set
resides on more than one type of device.

v The system allocates a direct access device for a private catalog, if it is
associated with and/or used to retrieve volume information about a requested
data set.

v For a generation data group (GDG), the system may have to assign additional
devices to satisfy the device type needs for each generation data set in the
GDG.

v When DD statements request conflicting device assignments for a tape volume,
the system assigns the volume involved in the conflict its own device. For
example:
 //DD1 DD UNIT=2400,VOLUME=SER=(V1,V2)
 //DD2 DD UNIT=2400,VOLUME=SER=(V2,V3)

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-7

Volume serial V2 has conflicting device assignments. Therefore, the system
assigns the three volumes to three devices. If the DD2 had requested unit affinity,
UNIT=AFF=DD1, the system would have assigned only one device to all three
volumes.

Examples for Non-System-Managed Data Sets and Data Sets on
a System-Managed Tape Volume
Example 1
//TEST JOB 5675,’DEPT. 25’
//STEP1 EXEC PGM=A1
//D1 DD DSNAME=A01DD1,DISP=(,PASS),UNIT=3330,
// SPACE=(TRK,1),VOLUME=SER=333001
//STEP2 EXEC PGM=A2
//D2 DD DSNAME=LIB1,DISP=OLD,UNIT=3340,
// VOLUME=(PRIVATE,SER=123456)
//D3 DD DSNAME=ABC,DISP=(OLD,KEEP),UNIT=AFF=D2,
// VOLUME=SER=777777
//D4 DD DSNAME=TAPE,DISP=OLD,UNIT=(3420-5,P,DEFER),
// VOLUME=SER=(342001,342002,342003,342004,342005)
//D5 DD DSNAME=DISK,DISP=(SHR,KEEP),UNIT=(,P),
// VOLUME=SER=(333005,333008,333010)
//D6 DD UNIT=3340,VOLUME=REF=*.D2,SPACE=(TRK,(5,2))
//D7 DD UNIT=3340,VOLUME=REF=DISK,SPACE=(TRK,(10,5))

v D1 defines a new data set named A01DD1. It is to be on volume 333001, which
is mounted on a 3330 Disk Storage.

v D2 defines an old data set named LIB1, which resides on a private volume,
123456. The volume is mounted on a 3340 Direct Access Storage.

v D3 defines an old data set named ABC. This data set is to be kept after this step
terminates. ABC is on volume 777777. This volume is to be mounted on the
same 3340 device used for D2.

v D4 defines an old data set named TAPE. The data set is on the five volumes
identified in the VOLUME parameter. The DEFER subparameter indicates that
the five volumes are to be mounted only after the data set is opened. The P
subparameter requests parallel mounting; that is, all five volumes are to be
mounted at the same time on five different 3420-5 Magnetic Tape Units.

v D5 defines an old data named DISK. This data set can be shared by another job;
the program only reads it. The data set is to be kept after this step. The system
determines the number of devices to be allocated from the number of volume
serials requested: in this case, three.

v D6 is a temporary data set, which is indicated by omission of a DSNAME
parameter. The system, therefore, assumes a disposition of NEW,DELETE. The
system is to place the data set on the volume used for D2 in STEP2, that is,
volume 123456.

v D7 is also a temporary data set. The backward reference for volume information
is to the dsname DISK, which was defined in D5 in STEP2. The system is to
place this data set on the three volumes 333005, 333008, and 333010.

Example 2
//STEPA EXEC PGM=TESTA
//A1 DD UNIT=3400-5,VOLUME=SER=111111
//A2 DD UNIT=AFF=A1,VOLUME=SER=222222

The system assigns one unit for both volumes. Volume 111111 is mounted first;
222222 is mounted when A2 is opened. This processing is the same for both tape
and direct access.

Example 3

Data Set Resources - Allocation

15-8 z/OS V1R4.0 MVS JCL User’s Guide

//STEPB EXEC PGM=TESTB
//B1 DD UNIT=(3330,2),VOLUME=SER=(A,B)
//B2 DD UNIT=AFF=B1,VOLUME=SER=(C,D)

The system allocates two units to B1; volumes A and B are mounted. B2 gets
allocated to the same two units; volumes C and D are mounted when the data set
for B2 is opened.

Example 4
//STEPC EXEC PGM=TESTC
//C1 DD UNIT=(3330,2),VOLUME=SER=(A,B)
//C2 DD UNIT=AFF=C1,VOLUME=SER=(C,D)
//C3 DD UNIT=3330,VOLUME=SER=B

STEPC shows a direct access example of volume affinity for volume B. The system
allocates volumes A and C to share one unit and volumes B and D to two other
units.

Example 5
//STEPD EXEC PGM=TESTD
//D1 DD UNIT=(3330,2),VOLUME=SER=(E,F)
//D2 DD UNIT=AFF=D1,VOLUME=SER=(G,H)

STEPD is a direct access example. If volume E is currently mounted and is
permanently resident or reserved, the system allocates a separate unit for volume E
because it cannot be dismounted. The system allocates one unit for volume G and
a second unit to be shared by volumes F and H. Therefore, three volumes are
used, instead of two, because of the permanently resident or reserved attributes.

Example 6
//STEPE EXEC PGM=TESTE
//E1 DD UNIT=3400-5,VOLUME=SER=(111111,222222)
//E2 DD UNIT=AFF=E1,VOLUME=SER=(222222)

STEPE is a tape example. The system allocates two units: one for volume 111111
and the second for volume 222222. Note that only one data set can be open on a
tape volume at a time; to prevent an error when the data set for E2 is opened, the
data set for E1 must be closed before E2 is opened.

Example 7
//STEPF EXEC PGM=TESTF
//F1 DD UNIT=3330,VOLUME=SER=(ABCDEF,GHIJKL)
//F2 DD UNIT=AFF=F1,VOLUME=SER=(ABCDEF)

STEPF is a direct access example. The system ignores the volume affinity between
F1 and F2. Volume ABCDEF of both DD statements uses one unit while the other
volume, GHIJKL, uses a different unit.

Example 8
//STEPG EXEC PGM=TESTG
//G1 DD UNIT=3400-5,VOLUME=SER=111111
//G2 DD UNIT=AFF=G1,VOLUME=SER=111111
//G3 DD UNIT=AFF=G1,VOLUME=SER=222222

In STEPG, G2 and G3 request unit affinity to G1. The system allocates one unit to
be used for volume 111111 and volume 222222.

Example 9

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-9

//STEPH EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=INPUT.DATASET,DISP=SHR
//SYSUT2 DD DSN=OUTPUT.DATASET,DISP=(NEW,KEEP),LABEL=(1,SL),
// STORCLAS=LIBRARY,DATACLAS=PITTBRGH

STEPH copies an input data set to a new output data set on a system-managed
tape volume to be shipped offsite to Pittsburgh. The output data set is directed to a
system-managed tape library because of the storage class ″LIBRARY″.

Data class ″PITTBRGH″ defines the media type and recording format requirements
of the Pittsburgh data center. If either the media type or the recording-format
requirements of that center changes, the storage administrator modifies the
″PITTBRGH″ data class definition but does not have to modify JCL.

Example 10
//STEPI EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=INPUT.PAYROLL,DISP=SHR
//SYSUT2 DD DSN=OUTPUT.PAYROLL,DISP=(NEW,KEEP),LABEL=(1,SL),
// DATACLAS=PAYROLL

STEPI copies an input payroll data set to a data set on a system-managed tape
volume. The installation’s ACS routines must assign a storage class to DD SYSUT2
that directs the allocation to a system-managed tape library. The data class
″PAYROLL″ defines the media and record format required for payroll data. If either
the media type or recording format requirements for payroll data changes, the
storage administrator modifies the ″PAYROLL″ data class definition but does not
have to modify JCL.

Example 11
//STEPJ EXEC PGM=IEBCOPY
//ICOPY001 DD DISP=SHR,DSN=DASD.DS1
//OCOPY001 DD UNIT=(3490,,DEFER),DISP=(,KEEP),
// DSN=USERID.TEST1.ATL,VOL=(,RETAIN)
//ICOPY002 DD DISP=SHR,DSN=DASD.DS2
//OCOPY002 DD UNIT=AFF=OCOPY001,DISP=(,KEEP),LABEL=2,
// DSN=USERID.TEST2.ATL,VOL=(,RETAIN,REF=*.OCOPY001)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 COPY OUTDD=OCOPY001,INDD=ICOPY001
 COPY OUTDD=OCOPY002,INDD=ICOPY002
/*

This example shows data set stacking using VOL=REF. STEPJ stacks copies of
DASD data sets represented by ICOPY001 and ICOPY002 onto an output
system-managed tape volume defined by statements OCOPY001 and OCOPY002.
Because these data sets will be opened serially, only one system-managed tape
library device needs to be allocated.

The installation’s ACS routines must assign a storage class that directs the
allocation of DD OCOPY001 to a system-managed tape library (OCOPY002
assumes the library status of OCOPY001 by its volume reference). Because
OCOPY002 specifies unit affinity to DD OCOPY001, the system allocates only one
system-managed tape library device for these two DD statements.

Data Set Resources - Allocation

15-10 z/OS V1R4.0 MVS JCL User’s Guide

For more information about data set stacking, see “Stacking Data Sets” on page
15-37.

Example 12
//STEPK EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=INPUT.18TRACK.LIBRARY.DATASET,DISP=SHR,LABEL=(,,,IN)
//SYSUT2 DD DSN=OUTPUT.DATASET,DISP=(NEW,PASS),LABEL=(1,SL),
// STORCLAS=LIBRARY,DATACLAS=PITTBRGH

STEPK copies existing data set INPUT.18TRACK.LIBRARY.DATASET to new data
set OUTPUT.DATASET. Because the existing data set was recorded on an 18-track
format device, and will not be extended during the allocation of DD SYSUT1, the
system can use any device that can read an 18-track formatted volume for the
allocation.

If the IBM 3495 Tape Library Dataserver contains both 3480X devices (18-track
read/write) and 3490 devices (18-track and 36-track read, 36-track write), using
LABEL=(,,,IN) to allocate SYSUT1 means that either device can be allocated.

Device Allocation in a JES3 System
In a JES3 system, the devices and volumes for each data set are allocated by
JES3 or the system.

Device Management

Allocation of a device depends on whether it is managed by MVS, by JES3, or
jointly by JES3 and MVS. Device management is shown in the following chart.

 Management Devices

By MVS Any devices not defined to JES3 during JES3 initialization

Jointly by JES3 and MVS Direct access with permanently resident or reserved
volumes:
 By JES3 for specific volume requests or for private

volumes
 By MVS for nonspecific volume requests or for public or

storage volumes

By JES3 Direct access with removable volumes:
Tape devices
Printers
Punches
Graphic devices

 During JES3 initialization, the installation defines how each device is to be
managed. See z/OS JES3 Initialization and Tuning Guide.

Device Allocation

JES3 allocates JES3-managed devices and jointly-managed devices; JES3
performs all allocation before the job is initiated for execution. MVS allocates
MVS-managed devices and jointly-managed devices; MVS performs all allocation
when a step is being initiated for execution.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-11

For a JES3-managed device, you can change the way JES3 handles allocation by
coding:
 //*MAIN SETUP=JOB
 //*MAIN SETUP=HWS
 //*MAIN SETUP=THWS
 //*MAIN SETUP=DHWS
 //*MAIN SETUP=(stepname.ddname,...)
 //*MAIN SETUP=(stepname.procstepname.ddname,...)
 //*MAIN SETUP=/(stepname.ddname,...)
 //*MAIN SETUP=/(stepname.procstepname.ddname,...)

Effect of Job Class on Allocation

The CLASS parameter has no effect in an APPC scheduling environment. If you
code CLASS in that environment, the system will check the parameter for syntax
and ignore it. For started tasks in a JES3 environment all class related attributes
and functions are ignored except for device fencing, SPOOL partitioning, and track
group allocation. For more information about class attributes and functions, refer to
the z/OS JES3 Initialization and Tuning Guide.

The job class affects which devices can be allocated to the job. During JES3
initialization, the installation identifies the execution resources, including devices,
that can be assigned to each job class.

The job class is specified by coding one of the following; if neither is coded, the
system assigns the job to the installation-defined standard default class.
 //jobname JOB acct,progname,CLASS=jobclass
 //*MAIN CLASS=class-name

Catalog Use

For allocation, JES3 accesses the catalog at job setup time, whereas MVS
accesses the catalog at step initiation time. After job setup and before step
initiation, the catalog can be changed by, for example, an IBM utility, user utility, or
system routine. Because JES3 and MVS access the catalog at different times,
catalog changes can cause unpredictable results. Therefore, the installation should
not change the catalog while jobs are being scheduled.

Types of JES3 Setup
JES3 allocates devices in three different ways: job setup, high watermark setup,
and explicit setup. The type of setup to be used is specified during JES3
initialization, but can be changed for a job by parameters on the //*MAIN statement.

Job setup

For job setup, JES3 allocates all the JES3-managed and jointly-managed devices
required in the job before the job is initiated. JES3 mounts the initial volumes
necessary to run all steps before the job executes. To request job setup, code:
 //*MAIN SETUP=JOB

When volumes are no longer needed, they are demounted, if removable, and the
devices unallocated, that is, made available for use by another job. If you specify
the FREE=CLOSE DD parameter, JES3 unallocates the device when the data set is
closed.

If you are using the dequeue at demount facility (early volume release) for
multivolume data sets, JES3 unallocates volumes when they are demounted. For

Data Set Resources - Allocation

15-12 z/OS V1R4.0 MVS JCL User’s Guide

information on the dequeue at demount facility, see the TYPE=J OPEN macro
option inz/OS DFSMSdfp Advanced Services.

 Table 15-3. JES3 Job Setup (SETUP=JOB)

Devices and Volumes to be Allocated Tape Direct Access

Volumes on Devices Set Up Before
Execution

1 2 3 4 5 6 8 9 10 11 12

Job Steps

STEP 1
tape volume=1,2

 direct access volume=8,9

U U A A A A U U A A A

STEP 2
tape volume=2,3,4

 direct access volume=8

A U U U A A U A A A A

STEP 3
tape volume=4

 direct access volume=9,10,11

A N N U A A A U U U A

STEP 4
tape volume=1,5,6

 direct access volume=8,11,12

U N N N U U U N N U U

Total Devices Used by the Job for Setup 6 Tape 5 Direct Access

Legend

U The device is allocated and in use

A The device is allocated but not in use

N The device is no longer needed and can be unallocated.

 High Watermark Setup

For high watermark setup, JES3 reserves for a job the maximum number of devices
of each type needed for any one job step. JES3 premounts only some volumes
before the job executes. When you must use fewer devices for a job, high
watermark setup is better than job setup. To request high watermark setup, code:

v High watermark setup for tapes, direct access, graphics, printers, and punches:
 //*MAIN SETUP=HWS

v High watermark setup for tapes only, with job setup for direct access:
 //*MAIN SETUP=THWS

v High watermark setup for direct access, with job setup for tapes:

 //*MAIN SETUP=DHWS

When the last step that uses a device no longer needs it, JES3 unallocates it.

In Table 15-4 on page 15-14, volumes mounted after STEP1 are indicated by
placing the volume number in the box for the step in which it is allocated. For
example, Volume 3 is mounted at STEP2.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-13

Table 15-4. JES3 High Watermark Setup (SETUP=HWS)

Devices and Volumes to be Allocated Tape Direct Access

Volumes on Devices Set Up Before Execution 1 2 4 8 9 11

Job Steps

STEP 1
tape volume=1,2

 direct access volume=8,9

Volume 1 is mounted at STEP1 and then demounted until
needed in STEP4. Volume 8 is mounted for STEP1 and
STEP2 and then demounted until needed in STEP4.

U U A U U A

STEP 2
tape volume=2,3,4

 direct access volume=8

Volume 3 is mounted at STEP 2.

U
3

U U U A A

STEP 3
tape volume=4

 direct access volume=9,10,11

Volume 10 is mounted at STEP 3.

A A U U
10

U U

STEP 4
tape volume=1,5,6

 direct access volume=8,11,12

Volumes 1, 5, 6, 12, and 8 are mounted at STEP 4. Volumes
1 and 8 are mounted on any available device.

U
1

U
5

U
6

U
12

U
8

U

Total Devices Used by the Job for Setup 3 Tape 3 Direct Access

Legend

U The device is allocated and in use

A The device is allocated but not in use

N The device is no longer needed and can be unallocated.

 Explicit setup

Explicit setup is directed by the user. Explicit setup requires the same number of
devices as job setup. JES3 premounts volumes according to the instructions coded
in:
 //*MAIN SETUP=(stepname.ddname,...)
 //*MAIN SETUP=(stepname.procstepname.ddname,...)

To request that JES3 not explicitly set up certain volumes, code:

 //*MAIN SETUP=/(stepname.ddname,...)
 //*MAIN SETUP=/(stepname.procstepname.ddname,...)

The advantage of explicit setup over high watermark setup is that you can force
volumes to stay mounted on devices until they are no longer needed. The

Data Set Resources - Allocation

15-14 z/OS V1R4.0 MVS JCL User’s Guide

disadvantage is that JES3 does not unallocate devices early: JES3 allocates a
certain number of devices before job execution and does not unallocate any until
the job completes execution. In contrast, with job setup and high watermark setup,
JES3 can unallocate devices at the end of any step, if the devices are no longer
needed.

In the explicit setup shown in Table 15-5, four devices are allocated for both tape
and disk instead of the three allocated using high watermark setup. The volumes to
be explicitly mounted, for example, volumes 1 and 8, are not unallocated and then
remounted for the last step.

 Table 15-5. JES3 Explicit Setup (SETUP=ddname)

Devices and Volumes to be Allocated Tape Direct Access

Volumes on Devices Set Up Before Execution 1 2 3 4 8 9 10 11

Job Steps

STEP 1
tape volume=1,2

 direct access volume=8,9

U U A A U U A A

STEP 2
tape volume=2,3,4

 direct access volume=8

A U U U U A A A

STEP 3
tape volume=4

 direct access volume=9,10,11

A A A U A U U U

STEP 4
tape volume=1,5,6

 direct access volume=8,11,12

Volumes 5, 6, and 12 are mounted in STEP 4.

U A U
5

U
6

U A U
12

U

Total Devices Used by the Job for Setup 4 Tape 4 Direct Access

Legend

U The device is allocated and in use

A The device is allocated but not in use

N The device is no longer needed and can be unallocated.

 Altering JES3 Device Allocation

To keep JES3 from allocating devices before the first step and holding them until a
later step needs them, break a multiple-step job into several smaller jobs in a
dependent job net.

Allocation of Volume
The volume that a new data set resides on is determined as follows:

v For system-managed DASD data sets, either by the:

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-15

– Storage class for the new data set, specified on the STORCLAS parameter of
the DD statement or selected by an installation-written automatic class
selection (ACS) routine.

– VOLUME parameter, specified on the DD statement for the new data set if the
storage class is GUARANTEED_SPACE=YES.

v For data sets on a system-managed tape volume, either by the:
– Storage class for the new data set, specified on the STORCLAS parameter of

the DD statement or selected by an installation-written automatic class
selection (ACS) routine.

– VOLUME parameter, specified on the DD statement for the new data set.

v For non-system-managed data sets, by the VOLUME parameter, specified on
the DD statement for the new data set.

Volume Allocation for SMS-Managed Data Sets
For an SMS-managed data set, the system uses the storage class to select a
volume or volumes for the data set.

In many cases, you can allow an ACS routine to assign a storage class to the data
set and allow SMS to select the volume(s) based on the storage class.

You can, however, specify the name of a storage class on the STORCLAS
parameter for a new SMS-managed data set. (Note that an ACS routine can
override the storage class that you specify.)

The storage administrator at your installation defines the names of storage classes
and their attributes. To view a list of storage class names and their attributes, use
Interactive Storage Management Facility (ISMF).

To let an ACS routine select a storage class for a new data set, omit the
STORCLAS parameter; for example:
 //DD10 DD DSNAME=DESIGNF.PGM,DATACLAS=DCLAS10,DISP=(NEW,KEEP)

To specify a specific storage class for a new data set, code the STORCLAS
parameter; for example:
 //DD11 DD DSNAME=DESIGNG.PGM,DATACLAS=DCLAS12,STORCLAS=STOR55,
 // DISP=(NEW,KEEP)

The system catalogs new permanent system-managed DASD data sets at
allocation. The system catalogs data sets on a system-managed tape volume
during unallocation processing, according to DISP parameters on DD statements.

To retrieve an existing data set, you do not need to code the STORCLAS
parameter; for example:
 //DD12 DD DSNAME=DESIGNG.PGM,DISP=MOD

References to SMS-Managed Data Sets
If you specify VOLUME=REF and refer to an SMS-managed data set, SMS
manages the new data set using the same storage class as the referenced data
set.

Specific Volume Requests for System-Managed DASD Data Sets
You can specify one or more volume serial numbers on the VOLUME parameter if
the storage administrator has specified GUARANTEED_SPACE=YES in the storage
class. In this case, SMS uses the volumes you explicitly specify. If it cannot, the
allocation fails. The allocation fails, for example, if not enough space exists on the

Data Set Resources - Allocation

15-16 z/OS V1R4.0 MVS JCL User’s Guide

volumes you specify or if the volumes you specify are not in the list of volumes
defined in the storage class, either specified in your JCL or selected by the ACS
routines.

For example:
 //DD14 DD DSNAME=DESIGNH.PGM,DATACLAS=DCLAS14,STORCLAS=STOR55,
 // DISP=(NEW,KEEP),VOLUME=SER=(223344,334455)

If the storage administrator has not specified GUARANTEED_SPACE=YES in the
storage class, the system ignores any volume serial numbers you specify for new
system-managed DASD data sets.

A system-managed DASD data set can reside on a maximum of 59 volumes.

Nonspecific Volume Requests for System-Managed Data Sets
Omit the VOLUME parameter to make a nonspecific volume request for a new
system-managed data set. SMS selects the volume to be used for the data set.

Multivolume Data Sets for System-Managed DASD Data Sets
The system creates a preallocated multivolume data set for system-managed DASD
if the storage class has GUARANTEED_SPACE=YES and one of the following:
v The data class has a volume count greater than one
v You specify two or more volume serial numbers
v You specify a volume count greater than one on the VOLUME parameter.

If you choose specific volume serial numbers, the system uses these volumes;
otherwise, the system selects the volumes.

Note: All tape volumes in a multivolume data set must reside in the same
system-managed tape library and in the same storage group.

Volume Allocation for Non-SMS-Managed Data Sets
Data sets on direct access and magnetic tape reside on or are written on volumes.
The volumes may be permanently mounted on the device or may need to be
mounted by the operator. To tell the system the volume on which an existing data
set resides, make a specific volume request. To tell the system the volume on
which to write a new data set, make a specific or nonspecific volume request.

Volume Allocation for Non-System-Managed Data Sets and Data Sets
on a System-Managed Tape Volume

With SMS, the storage administrator can specify a system default unit. If there is a
system default unit, the system uses the volumes associated with the default unit,
and you do not need to code the VOLUME parameter.

Volume Attributes

The system assigns volumes two attributes:

v Use attributes, which control how volumes are allocated, are:

– Private: The volume can be allocated only when its volume serial number is
explicitly or implicitly specified.

– Public: The volume is eligible for allocation to temporary data sets defined
with a nonspecific volume request and without a PRIVATE subparameter in
the VOLUME parameter.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-17

– Storage: The volume is eligible for allocation to both temporary and
permanent data sets defined with a nonspecific volume request and without a
PRIVATE subparameter in the VOLUME parameter. Storage volumes usually
contain permanent data sets, but can be used for temporary data sets.

v Mount attributes, which control how or whether volumes can be demounted
after being unallocated, are:

– Permanently resident: The volume, which can only be direct access, cannot
be demounted. Volumes that are always permanently resident are all volumes
that cannot be physically demounted, the IPL volume, and the volume
containing system data sets. Permanently resident volumes have any use
attribute.

– Reserved: The volume remains mounted until the operator issues an
UNLOAD command. Volumes that should be reserved are volumes that are
used frequently by many jobs. Reserved, direct access volumes can have any
use attribute; reserved, tape volumes can be only private or public.

– Removable: The volume is neither permanently resident nor reserved.
Removable volumes can be demounted after their last use in a job.
Removable volumes can be only private or public.

For more information on attributes, see z/OS MVS Initialization and Tuning Guide.

Specific Volume Requests for Non-System-Managed Data Sets
and Data Sets on a System-Managed Tape Volume
Make a specific volume request by coding:
 //ddname DD VOLUME=SER=serial-number

 //ddname DD VOLUME=REF=dsname
 //ddname DD VOLUME=REF=*.ddname

 //ddname DD DSNAME=passed data set
 //ddname DD DSNAME=cataloged data set

For passed or cataloged data sets, the system obtains the volume serial numbers
from the passed data set information or from the catalog. In these cases, do not
code a SER or REF subparameter in a VOLUME parameter; other VOLUME
subparameters can be coded.

How the System Satisfies Specific Volume Requests

In the following cases, the system satisfies a request for a specific volume with a
volume that is already mounted:

v The requested volume is permanently resident or reserved. The system assigns
the volume regardless of whether public or private use was requested; the
volume retains its original use attribute of public or private.

v The requested volume is a removable direct access volume that can be shared
and is being used by a concurrently executing step. If the request would make
the volume unable to be shared, the system assigns the volume only after all
other steps using it terminate.

v The requested volume is a removable direct access volume that is mounted but
not allocated. The volume is assigned a use attribute of private if the VOLUME
parameter specifies PRIVATE; otherwise, the volume is for public use.

v The requested volume is a scratch tape volume that is mounted but not
allocated. The tape is assigned a private attribute if the request is for a
permanent data set or if the VOLUME parameter specifies PRIVATE; otherwise,
the volume is for public use.

Data Set Resources - Allocation

15-18 z/OS V1R4.0 MVS JCL User’s Guide

Note: You cannot make a specific request for a volume that resides in a
system-managed tape library and is in the scratch category.

Nonspecific Volume Requests for Non-System-Managed Data
Sets and Data Sets on a System-Managed Tape Volume
Make a nonspecific volume request for a new data set that can be assigned to any
volume or volumes. To make a nonspecific volume request, either:
v Omit the VOLUME parameter.
v Code a VOLUME parameter but omit a SER or REF subparameter.

How the System Satisfies Nonspecific Volume Requests

The system satisfies a request for a nonspecific volume as follows:

Request for private volume for temporary or permanent data set
For removable direct access or tape, the system always asks the operator to
mount a volume. The operator should mount a volume containing only unused
space so that the owner can control all the space on the volume. Once
mounted, the volume is assigned the attribute of private.

 For permanently resident direct access, the use of PRIVATE on non-specific
requests is not recommended. Operator intervention will be required to allow
the system to allocate such a request to a private volume.

Request for public volume for temporary data set
For direct access, the system assigns a public or storage volume that is already
mounted or, if no space is available, the system asks the operator to mount a
removable volume. If the system selects a mounted, public volume, it remains
public. If the operator mounts a volume, it is designated a public volume.

 For non-system-managed tape volumes, the system assigns any available,
mounted, tape volume; if none is available, the system asks the operator to
mount a tape volume. Once mounted, the volume is assigned the use attribute
of public.

 Assigning an available, mounted volume could result in the loss of user data.
However, if the tape volumes are labeled and the LABEL parameter specifies
the label type, loss of data is usually prevented because the system checks the
first record of the tape when opening the data set.

 For system-managed tape volumes, the system requests that a tape volume
be mounted. Once mounted, the volume is assigned the use attribute of public.

Request for public volume for permanent data set
For direct access, the system assigns a storage volume, if one is mounted.
Otherwise, the system treats the request as a nonspecific volume request for a
private volume, which can be satisfied only by a mountable volume on an
available offline device.

 For tape volume, the system treats the request as a nonspecific volume request
for a private volume.

Private Volumes for Non-System-Managed Data Sets and Data
Sets on a System-Managed Tape Volume
The system assigns a removable volume a use attribute of private if any one of the
following is true:

v The VOLUME parameter contains the PRIVATE subparameter.

v The DD statement requests a specific volume.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-19

v The DD statement requests a permanent data set; that is, the data set does not
have a system-generated data set name and the DISP parameter does not
specify DELETE.

To make a direct access volume private, code:
 //ddname DD VOLUME=PRIVATE
 //ddname DD VOLUME=SER=xxxxxx
 //ddname DD VOLUME=REF=*.ddname
 //ddname DD DSNAME=permanentds,DISP=(,KEEP)
 //ddname DD DSNAME=permanentds,DISP=(,CATLG)

To make a tape volume private, specify or obtain the volume serial number;
because the request is for a specific volume, the system automatically makes the
tape volume private.

Using Private Volumes

To use a private volume, you must give the system the serial number; the DD
statement must specify the serial number or obtain it from the catalog or a from a
previous DD statement through a VOLUME=REF parameter.

The system cannot assign a nonspecific volume request to an online
permanently-resident or already mounted private volume. Therefore, if you request
a private volume, you will be the only one using that volume, unless another job
makes a specific volume request for that volume.

Public Volumes for Non-System-Managed Data Sets and Data
Sets on a System-Managed Tape Volume
The system assigns a removable volume a use attribute of public when all of the
following are true:

v The VOLUME parameter does not contain a PRIVATE subparameter.

v The DD statement does not request a specific volume.

v The DD statement requests a temporary data set; that is, no name is specified
for the data set name or the disposition is DISP=(NEW,DELETE) or a DISP
parameter is omitted to imply a new data set to be deleted.

Volume Affinity for Non-System-Managed Data Sets and Data
Sets on a System-Managed Tape Volume
Data sets on the same volume have volume affinity. Volume affinity influences the
allocation of devices. A request for volume affinity with another data set can make
the system modify a request for a specific number of units in the unit count
subparameter of the UNIT parameter.

“Stacking Data Sets” on page 15-37 provides more information on stacking data
sets on the same volume or set of volumes as well as recommendations on which
method of volume affinity (explicit versus implicit) you should use.

Explicit Volume Affinity

To request that a new data set be assigned to the same volume(s) as another data
set, code:
 //ddname DD VOLUME=REF=dsname
 //ddname DD VOLUME=REF=*.ddname
 //ddname DD VOLUME=REF=*.stepname.ddname
 //ddname DD VOLUME=REF=*.stepname.procstepname.ddname
 //ddname DD VOLUME=REF=*.procstepname.ddname

Data Set Resources - Allocation

15-20 z/OS V1R4.0 MVS JCL User’s Guide

Use the first form to reference a cataloged or passed data set. Use the other forms
to reference a DD statement earlier in the job.

Implicit Volume Affinity

To request volume affinity implicitly, specify the serial number(s) of the volume(s)
containing another data set.

Multivolume Data Sets for Non-System-Managed Data Sets and
Data Sets on a System-Managed Tape Volume

Number of Volumes

When creating or extending a data set, request the maximum number of volumes
that might be required. For non-system-managed data sets, indicate the number in
the volume-count specified in the VOLUME parameter, or by the number of serial
numbers implicitly or explicitly specified. For data sets on a system-managed tape
volume, indicate the number in one of the following ways:

v In the volume-count specified in the VOLUME parameter

v By the number of serial numbers implicitly or explicitly specified

v By specifying a data class that contains the appropriate volume-count definition.

For a multi-volume data set on tape volumes that are system-managed, all volumes
must reside in the same system-managed tape library. These volumes must also be
part of the same SMS storage group.

For a multi-volume data set on tape volumes that are non-system-managed, all
volumes must not be in any system-managed tape library.

If you make a specific volume request for more volumes than units, the system
automatically indicates that the volumes allocated to the same unit cannot be
shared.

If you request multiple direct access volumes in a JES3 system, they must be either
all mountable or all permanently mounted; a mixture is not allowed.

Parallel Mounting

For some jobs, all requested volumes must be mounted before the data set can be
used. For these jobs, request as many units as volumes or request parallel
mounting by coding P in the UNIT parameter.

Processing Order

When reading or adding to an existing multivolume data set, you can tell the system
to begin processing with other than the first volume by coding:
//ddname DD VOLUME=(,,volume-sequence-number),...

Data Sets that Span Libraries

Allocation is able to support volumes created in different tape libraries (see Note 1
at the end of this topic) by treating a single DD statement as though it represents a
concatenation of DD statements. The system treats an OPTCD=B request as a
concatenation of all volumes explicitly coded on the DD statement, in the sequence
in which they are coded. (This can affect the meaning of system messages in the

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-21

|
|
|

job output listing.) See the description of OPTCD=B in z/OS MVS JCL Reference
and also see Note 2 at the end of this topic.

In this situation, the volumes must be the same recording technology but can have
different media types. When allocation processing encounters a DD statement for
an existing multi-volume tape data set whose volumes reside in a tape library, and
that DD statement has DCB=OPTCD=B and the volume serial numbers are
explicitly coded, allocation processes that statement as though there were additional
DD statements, each containing one of the volume serial numbers from the original
DD statement. Allocation processing concatenates these DD statements in the order
the volume serial numbers were specified on the original DD statement, each
having unit affinity with the first DD statement.

For example, assume that data set OPTCDB has five volume serial numbers
specified and that data sets A and B are not OPTCD=B data sets. To concatenate
A, all volumes of OPTCDB, and B, you could code:
//DD4 DD DSN=A,DISP=SHR
// DD DSN=DAYS,DISP=SHR,DCB=OPTCD=B,VOLUME=SER=(793284,227996,
// 382021,427635,946565),UNIT=AFF=DD4
// DD DSN=B,DISP=SHR,UNIT=AFF=DD4

Because of the OPTCD=B request, allocation treats DD4 as though you had coded
the following JCL statements, and assigns the following relative position numbers:
//DD4 DD DSN=A,DISP=SHR +000
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(793284) +001
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(227996),UNIT=AFF=DD4 +002
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(382021),UNIT=AFF=DD4 +003
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(427635),UNIT=AFF=DD4 +004
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(946565),UNIT=AFF=DD4 +005
// DD DSN=B,DISP=SHR,UNIT=AFF=DD4 +006

The generated DD statements will automatically have unit affinity to each other
even if UNIT=AFF is not coded. So, if you coded
//DD5 DD DSN=A,DISP=SHR
// DD DSN=DAYS,DISP=SHR,DCB=OPTCD=B,VOLUME=SER=(793284,227996,
// 382021,427635,946565),UNIT=LIBRARY2
// DD DSN=B,DISP=SHR

the system treats DD5 as though you had coded the following JCL, and it assigns
these relative position numbers:
//DD5 DD DSN=A,DISP=SHR +000
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(793284),UNIT=LIBRARY2 +001
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(227996),UNIT=AFF=(DD5+001) +002
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(382021),UNIT=AFF=(DD5+001) +003
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(427635),UNIT=AFF=(DD5+001) +004
// DD DSN=DAYS,DISP=SHR,VOLUME=SER=(946565),UNIT=AFF=(DD5+001) +005
// DD DSN=B,DISP=SHR +006

The second and subsequent volumes of the OPTCD=B data set have unit affinity to
the first volume of the OPTCD=B data set. (Any error message would use the
relative position based on each included volume serial number rather than the
position you explicitly specified.) Only messages that include a relative position of
+006 refer to data set B.

Of course, it is not actually possible to code UNIT=AFF=(DD5+001), but the system
treats the DD statements as though that is what you had coded.

Data Set Resources - Allocation

15-22 z/OS V1R4.0 MVS JCL User’s Guide

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

Notes:

1. Allocation will perform this same processing regardless of whether the volumes
reside in the same tape library or different tape libraries. However, all of the
volumes MUST be in the same storage group, as must any other volumes in the
concatenation.

2. If a data set is being turned into a concatenation, OPTC generates the
concatenation to allow this to occur. If the application is turning on the “unlike
concatenation bit”, causing a multivolume data set to be treated as three
separate data sets, then there is this restriction: If you have a variable blocked
spanned (VBS) data set that spans volumes in such a way that one segment is
at the end of one volume and the next segment is at the beginning of the next
volume, and you attempt to treat these segments as separate data sets, QSAM
cannot guarantee the integrity of the data. QSAM may not be able to put all of
the segments together, and will abend. The effect will depend on the data and
whether or not the segments are assigned to different volumes. With OPTCD=B,
″unlike concatenation″ causes the system to treat each segment as a separate
data set.

Volumes Required per DD Statement for Non-System-Managed
Data Sets and Data Sets on a System-Managed Tape Volume
The maximum number of tape volumes or direct access volumes required to satisfy
any DD statement is the greater of:

v volume-count specified in the VOLUME parameter:
 //ddname DD VOLUME=(,,,volume-count),...

v number of serial numbers implicitly or explicitly specified

The number of serial numbers implicitly or explicitly specified is:

v The number of volume serials in the VOLUME=SER subparameter:
 //ddname DD VOLUME=SER=(serial-number,serial-number,...),...

v The number of volume serials obtained through VOLUME=REF, if coded:

 //ddname DD VOLUME=REF=dsname
 //ddname DD VOLUME=REF=*.ddname

v The number of volume serials obtained from passed data set information, if the
DD statement is receiving a passed data set from a prior step. The receiving DD
statement must not specify VOLUME=SER or VOLUME=REF; if it does, the
system obtains the number from the VOLUME parameter.

v The number of volume serials obtained from the catalog, if the DD statement
requests an existing, cataloged data set. The DD statement must not specify
VOLUME=SER or VOLUME=REF; if it does, the system obtains the number from
the VOLUME parameter. Also, the data set must not be passed from a prior step.

v The number of volume serials minus the volume sequence number plus one, if
the DD statement requests an existing data set and specifies a volume sequence
number. For example, if the DD statement specifies eight volume serial numbers
and a volume sequence number of four, the system uses five volume serials: 8 -
4 + 1 = 5. The first three volume serials are not used; the first volume that the
system allocates is the fourth volume.

v The number of volume serials implied by the unit count in the UNIT parameter, if
(1) the unit count is higher than the calculated number of volume serials or (2)
the DD statement makes a nonspecific volume request for a new data set on
direct access for public use.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-23

|
|

When the volume count or unit count require more volumes than the number
specified in VOLUME=SER or obtained from VOLUME=REF, passed data set
information, or the catalog, the system assumes that the requests are for
nonspecific volumes.

Examples

For examples of volume allocation, see “Examples for Non-System-Managed Data
Sets and Data Sets on a System-Managed Tape Volume” on page 15-8.

Interactions Between Device and Volume Allocation
Device and volume allocation do not occur in isolation. The device and volume
actually allocated to a data set depend on many factors, including such
considerations as whether the data set is SMS-managed or non-SMS-managed,
whether the data set is cataloged, or whether there is affinity between volumes or
data sets. These relationships can be complex. The following sections provide
considerations to help you decide how to code these parameters to ensure you are
using the resources you want to use.

Relationship of the UNIT and VOLUME Parameters (Non-SMS-Managed
Data Sets)

The system can obtain device information from sources other than the UNIT
parameter:
v from the catalog for cataloged data sets
v from a passed data set
v from an earlier DD statement
v from another request for the volume in the same step
v system defaults

Cataloged Data Sets

When the data set is cataloged, the system obtains unit and volume information
from the catalog. However, if the DD statement for a cataloged data set contains
VOLUME=SER=serial-number, the system does not look in the catalog; in this case,
you must code the UNIT parameter.

Volume References to Cataloged Data Sets

If a data set is to use the same volumes as a cataloged data set, code
VOLUME=REF to refer to the cataloged data set. The system obtains unit and
volume information from the catalog and places the data set on the same volumes.

Overridden Procedure DD Statements

When a step calls a cataloged or in-stream procedure, an overriding DD statement
in the calling step statement can specify a cataloged data set in its DSNAME
parameter. If so, the overriding DD statement should nullify the UNIT and VOLUME
parameters; if it does not nullify them, the system uses the UNIT and VOLUME
parameters on the overridden DD statement and does not search the catalog.

Passed Data Sets

When receiving a data set passed from a previous step, omit the UNIT and
VOLUME parameters. The system obtains unit and volume information from the

Data Set Resources - Allocation

15-24 z/OS V1R4.0 MVS JCL User’s Guide

passing step. However, if the receiving DD statement contains
VOLUME=SER=serial-number, code the UNIT parameter also.

Earlier DD Statement

If a data set uses the volumes used for a data set in an earlier step, code a
VOLUME=REF parameter to refer to the earlier DD statement. The system obtains
the unit and volume information from the earlier DD statement. Therefore, you can
omit the UNIT parameter. However, to make the system assign more devices or to
influence device allocation, code the UNIT parameter. The system uses the coded
UNIT parameter, if it requests a subset of the unit type in the referenced DD
statement. Otherwise, the system ignores it.

Another Request for the Volume in the Same Step

A volume/unit association may be established during device allocation such that any
other request for the volume within the same step will receive the same unit,
regardless of the UNIT parameter coded, or the unit default if no UNIT parameter is
coded.

In the following example, assume that VOL=SER=NOTSYS is not included in the
SYSDA group name, and that the SMS Control Data Set contains a default UNIT of
3380.
//DD1 DD DSN=dsname1,DISP=(CATLG,DELETE),
// DCB=(DSORG=PS,RECFM=FB,LRECL=80),
// UNIT=SYSDA,VOL=SER=NOTSYS,SPACE=(80,(1,5).RLSE),AVREC=K
/*
//DD2 DD DSN=dsname2,DISP=(CATLG,DELETE),
// DCB=(DSORG=PS,RECFM=FB,LRECL=80),
// VOL=SER=NOTSYS,SPACE=(80,(1,5).RLSE),AVREC=K
/*

Allocation will initially be unable to allocate DD1 (since NOTSYS is not within
SYSDA), so it will temporarily skip it and go on to DD2. For DD2, since no UNIT is
specified, Allocation will pick up the default UNIT of 3380, and successfully allocate
DD2. It will then go back to DD1, and, recognizing the volume affinity now
established with DD2, will ignore the specified UNIT=SYSDA and successfully
allocate DD1 to the same 3380 unit.

System Defaults

With SMS, the storage administrator can specify a system default unit. If you create
a new data set (specifying DISP=NEW or DISP=MOD) on a system with a system
default unit, you can omit the UNIT parameter. SMS supplies the default unit.

There is also a system default for unit affinity processing. This default unit, identified
as the unit-affinity-ignored unit name, is specified on UNITAFF in the ALLOCxx
PARMLIB member and applies under certain conditions when unit affinity is ignored.
See ALLOCxx in z/OS MVS Initialization and Tuning Reference for more information
about the default unit-affinity-ignored unit name. Example 5 on page 15-36 shows
an example of when this default is used.

It is important to understand how the system uses a group name for the UNIT
parameter of a data set that has a disposition of CATALOG or PASS.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-25

v When you specify a group name as the UNIT parameter of a new data set
request that you want to catalog, the system stores the generic device type unit
information for that data set in the catalog. The system does not retain the group
name you originally specify.

v When you specify a group name as the UNIT parameter of a new data set that is
to be passed, the system keeps the generic device type unit information for that
passed data set. The system does not retain the group name you originally
specify.

The following example shows how the system uses unit information it retrieves
when it processes subsequent references to a data set that originally specified a
group name. Assume this environment for the example:

32 - 3480 tape drives:
v 16 - 3480 tape drives at addresses 3C0-3CF are defined with a group name of

TAPE.
v 16 - 3480 tape drives at addresses 4C0-4CF are defined, but are not part of the

group named TAPE.

EXAMPLE A

The JCL to create a data set specifies the group name of TAPE as the UNIT
parameter:
 //DD1 DD DSN=A.B,UNIT=TAPE,DISP=(NEW,CATLG)
 or
 //DD1 DD DSN=A.B,UNIT=TAPE,DISP=(NEW,PASS)

Data set A.B will be allocated to a 3480 tape device that resides at addresses
3C0-3CF.

When a subsequent allocation references data set A.B, the original
specification of UNIT=TAPE is no longer available. Subsequent allocations that
do not specify a UNIT parameter, such as
 //DD2 DD DSN=A.B,DISP=SHR

will cause data set A.B to be allocated to any 3480 tape drive (that is,
addresses 3C0-3CF or 4C0-4CF), because a device type of 3480 is in the
catalog.

Note: If the tape containing the data set that was passed from a previous step is
still mounted, the system will preferentially leave it on that same drive.

If you desire to have the tape mounted on one of the tape drives defined only to
group name TAPE, you must request this by specifying a unit override:
 //DD2 DD DSN=A.B,DISP=SHR,UNIT=TAPE

This will cause the system to consider allocating only the tape drives defined as
part of the group name TAPE (3C0-3CF). That is because TAPE is a proper subset
of the device information retrieved from the catalog.

Note, however, that if the UNIT parameter specified is not a proper subset of the
cataloged (or passed) device type, the system ignores the unit override and
allocates the data set to any device matching the retrieved device type information.
The following example illustrates this; it shows the effects of unit override when the

Data Set Resources - Allocation

15-26 z/OS V1R4.0 MVS JCL User’s Guide

UNIT parameter does not specify a proper subset of the device information in the
catalog (or for a passed data set). In this example, assume the following
environment:

32 - 3480 tape drives:
v 16 - 3480 tape drives at addresses 3C0-3CF are defined for the group name of

TAPE.
v 16 - 3480 tape drives at addresses 4C0-4CF are defined, but are not part of the

group name TAPE.

32 - 3490 tape drives:
v 16 - 3490 tape drives at addresses 3D0-3DF are also defined for the group name

of TAPE.
v 16 - 3490 tape drives at addresses 4D0-4DF are defined, but are also not part of

the group name TAPE.

EXAMPLE B

The JCL to create a data set specifies a group name of TAPE as the UNIT
parameter:
 //DD1 DD DSN=C.D,UNIT=TAPE,DISP=(NEW,CATLG)
 or
 //DD1 DD DSN=C.D,UNIT=TAPE,DISP=(NEW,PASS)

Data set C.D will be allocated to a 3480 or 3490 device that resides at
addresses 3C0-3CF or 3D0-3DF.

When a subsequent allocation references data set C.D, the original
specification of UNIT=TAPE is no longer available. Subsequent allocations that
do not specify a UNIT parameter, such as
 //DD2 DD DSN=C.D,DISP=SHR

will cause data set C.D to be allocated to any 3480 tape drive (that is,
3C0-3CF or 4C0-4CF) if the data set was originally created on a 3480, or to
any 3490 tape drive (that is, 3D0-3DF or 4D0-4DF) if the data set was
originally created on a 3490.

Note: If the tape containing the data set that was passed from a previous step is
still mounted, the system will preferentially leave it on that same drive.

It is not possible using unit overrides to specify that the tape be mounted on one of
the tape drives defined only to the group named TAPE. This is because the
retrieved device type information will have only one device type (3480 or 3490),
whereas two device types (3480 and 3490) are defined to the group named TAPE,
so TAPE is not a proper subset of the one device type that is retrieved.

In Example B, a unit override of TAPE will be ignored and the data set on the DD2
statement will be allocated to any device matching the cataloged (or passed) device
type. That is, if the cataloged (or passed) device type was 3480, the data set will be
allocated to 3C0-3CF or 4C0-4CF; if the cataloged (or passed) device type was
3490, the data set will be allocated to 3D0-3DF or 4D0-4DF.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-27

Note: It is possible for installations to influence device selection for
non-SMS-managed tape requests through the Tape Device Selection call
(SSI function code 78). See ″Using the Subsystem Interface″ for more
information.

Relationship of the UNIT and VOLUME Parameters (SMS-Managed Data
Sets)

The system can obtain device eligibility information from:
v the catalog for cataloged tape data sets
v a passed data set
v an earlier DD statement
v a previous request for the volume
v the tape configuration database

Cataloged Data Sets

When a tape data set is cataloged, the system obtains device eligibility and volume
information from the catalog. If the DD statement for a cataloged tape data set
contains a volume serial number that is not in the SMS configuration, the system
does not use the catalog; instead, it obtains device eligibility from the tape
configuration data base.

For data sets with no volume serial specified, the system always searches the
catalog when a data set is OLD (or MOD treated as OLD). For data sets with a
non-SMS volume serial specified, the system assumes the data set is
non-SMS-managed and resides on that volume, and it does not search the catalog.
For data sets with an SMS volume serial number specified (whether it is a real
volume or a non-existent volume that is in a DUMMY storage group), the system
always searches the catalog; SMS controls volume selection, and the data set
might not be on the volume that is specified.

Volume References to Cataloged Data Sets

For tape, if a data set is to use the same volume(s) as a cataloged data set, code
VOLUME=REF to refer to the cataloged data set. The system obtains unit and
volume information from the catalog and places the data set on the same
volume(s). For DASD, storage class and volume information are retrieved from the
catalog. The data sets share the same storage class but can be in different storage
groups as long as the storage groups are of compatible types (such as POOL or
VIO).

Overridden Procedure DD Statements

When a step calls a cataloged or in-stream procedure, an overriding DD statement
in the calling step statement can specify a cataloged data set in its DSNAME
parameter. If so, the overriding DD statement should nullify the VOLUME
parameter; otherwise, the system uses the VOLUME parameter on the overridden
DD statement and does not search the catalog.

Passed Data Sets

When receiving a data set passed from a previous step, omit the VOLUME
parameter. The system obtains volume information from the passing step.

Earlier DD Statement

Data Set Resources - Allocation

15-28 z/OS V1R4.0 MVS JCL User’s Guide

For NEW data sets, if VOL=REF references a non-SMS-managed data set, the
ACS routines are given control. The ACS routines can either allow the non-SMS
allocation or fail it, but they cannot make the new data set SMS-managed. For
NEW data sets, if VOL=REF references an SMS-managed data set, then:

v For tape, the storage group and the volume must be the same as the referenced
data set.

v For DASD, the storage class must be the same as the referenced data set, but
the storage groups can be different as long as they are compatible, such as
POOL and VIO.

For OLD data sets, if VOL=REF references a non-SMS-managed data set, the
system assumes the data set is non-SMS-managed and on the same volume as
the referenced data set. If VOL=REF references an SMS-managed data set, the
system searches the catalog because the referencing data set might not be on the
same volume as the referenced data set.

Previous Request for the Volume

A volume/unit association can be established during device allocation so that any
subsequent request for the volume within the same step will receive the same unit.

Unit and Volume Affinity for Non-System-Managed Data Sets and Data
Sets on a System-Managed Tape Volume

When two or more volumes are assigned the same device, the volumes are said to
have unit affinity within the same job step allocation. Unit affinity implies deferred
mounting for all except one of the volumes.

The following definitions apply to unit affinity:
v A referencing DD is the DD that specifies the UNIT=AFF keyword.
v A referenced DD is the DD pointed to by a referencing DD.
v A primary DD is the first DD in a unit affinity chain.
v A unit affinity chain is the set of DDs that share the same primary DD.

In the following example, DD2 is a referencing DD; DD1 is its referenced DD. DD3
is also a referencing DD; DD2 is its referenced DD. DD1 is the primary DD for the
unit affinity chain that consists of the DD1, DD2, and DD3.
//ST1 EXEC
//DD1 DD DSN=A,DISP=(,CATLG),UNIT=3480
//DD2 DD DSN=B,DISP=(,CATLG),UNIT=AFF=DD1
//DD3 DD DSN=C,DISP=(,CATLG),UNIT=AFF=DD2

A related concept is volume affinity. When two or more data sets share one or more
volumes, the data sets have volume affinity. See “Stacking Data Sets” on page
15-37 for additional information on stacking data sets on one or more volumes.

Explicit Unit Affinity

To reduce the number of devices for a step, code UNIT=AFF to request that an
existing data set be assigned to the same device(s) assigned for an earlier DD
statement in the same step. Code:
//ddname DD UNIT=AFF=ddname,...

Note: Do not specify UNIT=AFF for a NEW (or MOD treated as NEW) data set that
references a non-SMS-managed DASD data set; the allocation will fail.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-29

For concatenated data sets, code the following to assign the data sets to the same
device:
 //DD1 DD DSNAME=dataset1,...
 // DD DSNAME=dataset2,UNIT=AFF=DD1,...
 // DD DSNAME=dataset3,UNIT=AFF=DD1,...

When you use explicit unit affinity, it is recommended that you use UNIT=AFF to
reference the previous DD in the unit affinity chain, rather than the primary DD. That
is, code:
 //DD1 DD DSNAME=dataset1,...
 //DD2 DD DSNAME=dataset2,UNIT=AFF=DD1,...
 //DD3 DD DSNAME=dataset3,UNIT=AFF=DD2,...
 //DD4 DD DSNAME=dataset3,UNIT=AFF=DD3,...

rather than:
 //DD1 DD DSNAME=dataset1,...
 //DD2 DD DSNAME=dataset2,UNIT=AFF=DD1,...
 //DD3 DD DSNAME=dataset3,UNIT=AFF=DD1,...
 //DD4 DD DSNAME=dataset3,UNIT=AFF=DD1,...

Always referencing the previous DD means that, if any condition causes the system
to ignore unit affinity for one of the DDs in the chain, any subsequent DDs in the
chain will still be allocated to a single unit, rather than to different units.

Implied Unit Affinity

Implied unit affinity exists among the volumes for one data set when the DD
statement requests more volumes than devices.

Attention: If all of the following conditions are present, the data set on the
referencing DD statement, which requests unit affinity, is written over by the data
set on the referenced DD statement:

v The referenced DD statement makes a nonspecific volume request.

v The data set on the referencing DD statement is opened before the referenced
data set.

v The tape is not unloaded before the referenced data set is opened and the
LABEL parameter does not request positioning of the tape to check tape labels.
A tape device allocated to more than one data set is not unloaded when it is
dynamically unallocated, or when it is closed and FREE=CLOSE is specified.

Unit Affinity Processing for Data Sets on a System-Managed Tape Volume

Table 15-6 on page 15-31 contains examples that apply unit-affinity principles to
data sets requested on system-managed tape volumes. The system verifies that the
primary (referenced) DD statement has a device pool that is a proper subset of the
secondary (referencing) DD statement. Therefore, the system honors unit-affinity
requests only when each device type to which the primary DD statement is eligible
is also contained in the device pool of the secondary DD statement.

The column headings have the following meanings:

Request Indicates either primary (referenced) DD statement or secondary
(referencing) DD statement.

Library Eligibility
Indicates the libraries to which the DD statement is eligible.

Data Set Resources - Allocation

15-30 z/OS V1R4.0 MVS JCL User’s Guide

Device Type Eligibility
Indicates the device types to which the DD statement is eligible.

Action Taken Whether the affinity request is honored or ignored. If the request is
honored, whether the library or device type eligibility is reduced.

Final Eligibility
The resulting library or device type eligibility used to allocate
devices.

 Table 15-6. Unit-Affinity Examples of Tape Library Requests

Requestor Library Eligibility
Device Type
Eligibility Action Taken Final Eligibility

Libraries and device pools of requestors are identical

Primary LIB1 3490 Honor LIB1, 3490

Secondary LIB1 3490

Libraries of primary requestor are proper subset of secondary

Primary LIB1 3490 Honor and Reduce LIB1, 3490

Secondary LIB1, LIB2 3490

Device pool of primary requestor is proper subset of secondary

Primary LIB1 3490 Honor and Reduce LIB1 and 3490

Secondary LIB1 3490, 3480X

Libraries of primary requestor are completely different from secondary

Primary LIB1 3490 Ignore LIB1, 3490

Secondary LIB2 3490 LIB2, 3490

Device pool of primary requestor is completely different from secondary

Primary LIB1 3490 Ignore LIB1, 3490

Secondary LIB1 3480X LIB1, 3480X

Libraries of primary requestor are not proper subset of secondary

Primary LIB1, LIB2 3490 Ignore LIB1, LIB2, 3490

Secondary LIB1 3490 LIB1, 3490

Device pool of primary requestor is not proper subset of secondary

Primary LIB1 3490, 3480X Ignore LIB1, 3490, 3480X

Secondary LIB1 3480X LIB1, 3480X

Device pools identical; both are non-library requestors

Primary Non-library request 3490 Honor 3490

Secondary Non-library request 3490

Device pool of primary requestor is proper subset of secondary; both are non-library requestors

Primary Non-library request 3490 Honor and Reduce 3490

Secondary Non-library request 3490, 3480X

Device pool of primary requestor is not proper subset of secondary; both are non-library requestors

Primary Non-library request 3490, 3480X Ignore 3490, 3480X

Secondary Non-library request 3490 3490

Primary is library requestor but secondary is non-library requestor

Primary LIB1 3490 Ignore LIB1, 3490

Secondary Non-library request 3490 3490

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-31

Note: 3480X is the device type for the 3490 model tape drives and 3490 is the
device type for the 3490E model tape drives.

Device Eligibility

Non-system-managed data sets are eligible to a device when they can be allocated
to that device type. The data sets on a system-managed tape volume are eligible to
a device when they can be allocated to that device type, and when both the volume
and the device reside in the same system-managed tape library. The catalog
contains information about the types of devices to which a data set is eligible only if
the data set is cataloged.

For the system to honor a request for unit affinity, the referenced DD must be
eligible to the same devices as the referencing DD statement. In addition, the
devices to which the referenced DD statement is eligible must either be a subset of,
or the same as, the devices to which the referencing DD is eligible. In all other
cases, the system ignores unit affinity, but the allocation will succeed.

These rules are illustrated by the following example, in which:

v TAPEX is eligible to a 3480X or a 3480.

v DS3480 is cataloged as eligible to a 3480. The unit name 3480 has two generic
names associated with it: 3480 and 3480X.

v DS3480X is cataloged as eligible to a 3480X.

v DS3480X2 is cataloged as eligible to a 3480X.
//DD1 DD UNIT=TAPEX
//DD2 DD DSN=DS3480,UNIT=AFF=DD1
//DD3 DD DSN=DS3480X,UNIT=AFF=DD2
//DD4 DD DSN=DS3480X2,UNIT=AFF=DD1

If you do not request volume affinity, or the request for volume affinity does not
break the unit affinity (see “Interaction of Unit and Volume Affinity Requests” on
page 15-33), the following unit affinities will result:

v DD1 and DD2 can have unit affinity, because DD1 and DD2 are both eligible to a
3480 and a 3480X.

v DD4 can have unit affinity to DD3, because DD3 and DD4 are both eligible to a
3480X.

v Neither DD3 nor DD4 can have unit affinity to DD1, because neither is eligible to
a 3480. Thus, the system ignores unit affinity for DD3 or DD4; DD3 and DD4 are
not eligible for the same devices as DD1.

Exception to Device Eligibility

The system will not honor unit affinity when all of the following conditions are met:
v The referenced DD is eligible to a 3480X device
v The referencing DD is eligible to both a 3480 and a 3480X device
v The system was initialized to attempt to allocate a 3480 before a 3480X.

The exception is illustrated by the following example, in which:

v The system has been initialized to attempt to allocate a 3480 device before
allocating a 3480X device.

v DS3480 is cataloged as eligible to a 3480. The unit name 3480 has two generic
names associated with it: 3480 and 3480X.

Data Set Resources - Allocation

15-32 z/OS V1R4.0 MVS JCL User’s Guide

//DD1 DD UNIT=3480X
//DD2 DD DSN=DS3480,UNIT=AFF=DD1

In this example, the system does not honor the request for unit affinity; each DD
statement is allocated to a separate device.

Interaction of Unit and Volume Affinity Requests
Unit affinity, volume affinity, and/or unit and volume affinity can exist in the same
step and on the same DD statement.

If both unit and volume affinity are requested in the same step, sometimes only one
affinity can be honored. Table 15-7 indicates how the system honors unit and
volume affinity requests for either tape or direct access devices.

 Table 15-7. Unit and Volume Affinity (Non-SMS-Managed Data Sets)

Relationship of Unit and Volume Affinity
Requests Tape Direct Access

All unit and volume affinity requests
unrelated
Example for Tape:
//DD1 DD VOLUME=SER=A,UNIT=3490
//DD2 DD VOLUME=SER=B,UNIT=AFF=DD1
//DD3 DD VOLUME=SER=(C,D),UNIT=3490
//DD4 DD VOLUME=SER=C,UNIT=3490
Example for Direct Access:
//DD1 DD VOLUME=SER=A,UNIT=3340
//DD2 DD VOLUME=SER=B,UNIT=AFF=DD1
//DD3 DD VOLUME=SER=C,UNIT=3340
//DD4 DD VOLUME=SER=C,UNIT=3340
1. Unit affinity is explicitly requested between

DD1 and DD2.
2. Volume affinity is implicitly requested

between DD3 and DD4.

The system honors all unit and volume affinity requests.

The system assigns DD2 to the
same unit as DD1. The system
uses the same unit for volume C
for both DD3 and DD4. The
system will allocate a total of 3
devices for this series of
requests.

The system assigns DD2 to the
same unit as DD1. The system
uses the same unit for volume C
for both DD3 and DD4. The
system will allocate a total of 2
devices for this series of
requests.

All unit and volume affinity requests related
Example for Tape:
//DD1 DD VOLUME=SER=(A,D),UNIT=3490
//DD2 DD VOLUME=SER=(A,B),
// UNIT=AFF=DD1
Example for Direct Access:
//DD1 DD VOLUME=SER=(A,D),UNIT=3340
//DD2 DD VOLUME=SER=(A,B),
// UNIT=AFF=DD1
1. DD1 implies unit affinity because both

volumes use the same unit.
2. Unit affinity is explicitly requested between

DD1 and DD2.
3. Volume affinity is implicitly requested

between DD1 and DD2, because both
request volume A.

The system honors all unit
affinity requests and ignores all
volume affinity requests.
Results: all volumes use the
same unit.

The system honors all volume
affinities contained in the unit
affinity request; these volumes
use the same unit. The other
volumes in the unit affinity
request use a different unit.

The system assigns DD2 to the
same unit as DD1.

The system assigns volume A
for DD2 to the same 3340 as
volume A for DD1. Volumes D
and B use the other 3340.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-33

Table 15-7. Unit and Volume Affinity (Non-SMS-Managed Data Sets) (continued)

Relationship of Unit and Volume Affinity
Requests Tape Direct Access

Some unit and volume affinities related,
some unrelated
Example for Tape:
//DD1 DD VOLUME=SER=A,UNIT=3490
//DD2 DD VOLUME=SER=B,UNIT=AFF=DD1
//DD3 DD VOLUME=SER=B,UNIT=AFF=DD2
Example for Direct Access:
//DD1 DD VOLUME=SER=A,UNIT=3340
//DD2 DD VOLUME=SER=B,UNIT=AFF=DD1
//DD3 DD VOLUME=SER=B,UNIT=3340
1. Unit affinity is explicitly requested between

DD1 and DD2.
2. Volume affinity is implicitly requested

between DD2 and DD3.

The system honors all volume affinities contained in the unit affinity
request; these volumes use the same unit. The other volumes in
the unit affinity request use a different unit.

The system assigns DD2 to the
same unit as DD1. Volume B (in
DD2 and DD3) is a 3490
volume. Thus, DD1, DD2, and
DD3 use one 3490.

The system assigns volume B
for DD2 and DD3 to one 3340.
Volume A for DD1 uses another
3340.

 Permanently Resident or Reserved Volumes

If a DD statement requests a volume that is a permanently-resident or reserved
volume, the system must allocate the device on which the volume is mounted,
regardless of any affinities requested.

UNIT=AFF when Requesting Extended Data Sets in a JES3 System

In a multiple-step job in a JES3 system, if a data set is extended in an early job
step to additional volumes, MVS allocates the additional devices needed. JES3 is
unaware of the additional devices. If a later step requests the data set, code
UNIT=AFF=ddname so that the system allocates the original and additional devices
for the data set.

Affinity for Multivolume Data Sets
For multivolume data sets, request volume affinity if you request unit affinity. Code:
//ddname DD UNIT=AFF=ddname,VOLUME=REF=*.ddname,...

If you code only volume affinity for a multivolume data set, the following can
happen:

v The system assigns the requested volumes and allocates them to a device.
Thus, the device is to be shared by all the DD statements requesting volume
affinity.

v The system asks the operator to mount the first volume for the referenced DD
statement on the allocated device.

v At the end of the first volume, the system asks the operator to demount the first
volume and mount the second volume.

v If the data set is reopened, the system asks the operator to remount the first
volume on a device not used for the volume affinity request.

v When the system processes the referring DD statement, it asks the operator to
mount the first volume on the device assigned to the volume affinity request. The
job now enters a wait because the system has requested the first volume on two
different devices.

Data Set Resources - Allocation

15-34 z/OS V1R4.0 MVS JCL User’s Guide

Device Use for Data Sets on a System-Managed Tape Volume
Unit affinity requests are honored if each tape volume associated with the DD
statements resides in the same system-managed tape library. Otherwise, such
volumes cannot share the same device, and UNIT=AFF (unit affinity) requests are
ignored. For example:
//STEP 1 EXEC PGM=...
//DD1 DD DSN=SAM,VOL=SER=TAPEA
//DD2 DD DSN=SAM,VOL=SER=TAPEB,UNIT=AFF=DD1

If neither volume TAPEA nor volume TAPEB resides in a system-managed tape
library or if both TAPEA and TAPEB reside in the same system-managed tape
library, then DD1 and DD2 will share one device; only one device is allocated to job
step STEP1. Otherwise, DD1 and DD2 require separate devices; two devices are
allocated to job step STEP1.

To control the number of devices allocated, consider the relationship of DD
statements and volumes before moving existing volumes into a system-managed
tape library and when choosing a system-managed tape library to create data sets
that will be referenced in a UNIT=AFF statement. DD statements that specify unit
affinity might require more devices after associated volumes are moved into a
system-managed tape library.

Examples of When the System Ignores Unit Affinity
The following examples show cases when the system ignores the request for unit
affinity but allocates the data sets. These are cases where the user specified the
UNIT=AFF keyword to limit the number of devices the job requires, but the volumes
required are on different device types and thus require separate units.

For example, if your installation uses tape mount management (TMM) methodology,
it is possible the ACS routines will redirect some, but not necessarily all, of the DDs
in a unit affinity chain to SMS-managed DASD. This redirection can cause a mix of
different device categories (such as SMS-managed tape, SMS-managed DASD,
non-SMS-managed tape, non-SMS-managed DASD) within a unit affinity chain, as
shown in Examples 1 and 5.

When the system ignores unit affinity, message IEF278I indicates that unit affinity
was ignored and provides a reason code.

Example 1
//DD1 DD DSNAME=P,DISP=NEW,UNIT=3480
//* (P is redirected to SMSD, an SMS-managed DASD volume)
//DD2 DD DSNAME=Q,DISP=NEW,UNIT=AFF=DD1
//* (Q is redirected to SMST, an SMS-managed TAPE volume)

In this example, the ACS routines have redirected data set P from
non-SMS-managed tape to SMSD, an SMS-managed DASD volume; the ACS
routines have also redirected data set Q from non-SMS-managed tape to SMST, an
SMS-managed tape volume. DD2 requests unit affinity with DD1, but the system
ignores the request because the redirection resulted in inconsistent device
categories.

The system issues message IEF278I with reason code 1, indicating that one of the
DDs is an SMS-managed request and the other is not.

Example 2
//DD1 DD DSNAME=PAYROLL,DISP=OLD

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-35

PAYROLL is a generation data group (GDG). DD1 is a GDG ALL request. The
system treats a GDG ALL request like a concatenation of all the PAYROLL data
sets in the catalog (most recent first). All subsequent generations have unit affinity
to the first.

The following example shows the JCL the system creates for the GDG ALL request
for the PAYROLL data set; the catalog contains 4 entries, one on tape and three on
DASD.
//DD1 DD DSNAME=PAYROLL(0),DISP=OLD,UNIT=3480,
// VOLUME=SER=TAPE01
// DD DSNAME=PAYROLL(-1),DISP=OLD
// VOLUME=SER=DISK03,UNIT=AFF=DD1
// DD DSNAME=PAYROLL(-2),DISP=OLD,
// VOLUME=SER=DISK02,UNIT=AFF=DD1
// DD DSNAME=PAYROLL(-3),DISP=OLD,
// VOLUME=SER=DISK01,UNIT=AFF=DD1

The system ignores unit affinity. PAYROLL(0) is a tape and cannot share a unit with
the other data sets, which reside on DASD. Because the DASD volumes are
non-removable, the system allocates a separate volume to PAYROLL(-1), to
PAYROLL(-2), and to PAYROLL(-3).

The system issues message IEF278I with a reason code of 2, indicating that the
DDs requested incompatible generics.

Example 3
//DD1 DD DSNAME=P,DISP=OLD
//* (P is cataloged on TEST1 in tape Library TL1)
//* (Tape Library TL1 is eligible to 3480 devices)
//DD2 DD DSNAME=Q,DISP=OLD,UNIT=AFF=DD1
//* (Q is cataloged on TEST2 in tape Library TL2)
//* (Tape Library TL2 is eligible to 3490 devices)

The system ignores the unit affinity request. P is cataloged on volume TEST1,
which resides in the TL1 tape library, and Q is cataloged on volume TEST2, which
resides in the TL2 tape library.

The system issues IEF278I with a reason code of 3, indicating that the DDs
requested incompatible tape libraries.

Example 4
//DD1 DD DSNAME=R,DISP=OLD
//* (R is cataloged on T2, a 3480 tape)
//DD2 DD DSNAME=S,DISP=OLD,UNIT=AFF=DD1
//* (S is cataloged on T3, a 3480X tape)

The system ignores the unit affinity request. DD1 is a 3480 tape volume, but DD2
needs a 3480X tape volume, which is not compatible with 3480.

The system issues message IEF278I with a reason code of 4, indicating that
devices associated with the referenced DD (DD1) are not a subset of the devices
associated with the referencing DD (DD2).

Example 5
//S1 EXEC ...
//DD1 DD DSNAME=W,DISP=(,CATALG),UNIT=3480,VOL=SER=TAPE01
//* (W is redirected to SD2, an SMS-managed DASD volume)
//S2 EXEC ...

Data Set Resources - Allocation

15-36 z/OS V1R4.0 MVS JCL User’s Guide

//DD1 DD DSNAME=W,DISP=OLD
//* (W is cataloged on SD2, an SMS-managed DASD volume)
//DD2 DD DSNAME=X,DISP=NEW,UNIT=AFF=DD1
//* (X is non-SMS-managed after ACS routine processing)

In this example, the ACS routines have redirected data set W from
non-SMS-managed tape to SD2, an SMS-managed DASD volume; the ACS
routines have not redirected data set X. The system cannot honor the unit affinity
request for DD2 in step S2 because the redirection resulted in inconsistent device
categories. Therefore, the system allocates data set X as a non-SMS-managed
data set on the default unit-affinity-ignored unit (named on UNITAFF in the
ALLOCxx parmlib member).

The system issues message IEF278I with a reason code of 5, indicating that the
referencing request (DD2) is a non-SMS-managed data set and the referenced
request (DD1) is an SMS-managed data set.

Stacking Data Sets
When two or more data sets are placed on the same tape volume or set of tape
volumes, the data sets are said to be stacked. Use data set stacking to increase
the efficiency of tape media use and to decrease the number of tape volumes
needed by allocation. Data set stacking is also useful when you send data offsite;
you can group related data sets together on a reduced number of tape volumes.

A data set collection is the collection of data sets you intend to allocate on the
same tape volume or set of tape volumes as a result of data set stacking. You can
stack data sets on a single volume (that is, a data set resides on one volume but
shares that volume with at least one other data set). You can also stack data sets
on multiple volumes (that is, a data set spans two or more volumes and shares at
least one of those volumes with one or more data sets or portions of data sets).

You request data set stacking specifying the data set sequence number on the
LABEL parameter in combination with either the volume reference (VOL=REF) or
volume serial (VOL=SER) parameters. You can request data set stacking within the
same step, across steps within the same job, or across jobs.

Use the following table to determine the JCL parameters needed to request data set
stacking. This table shows which parameter (VOL=SER or VOL=REF) IBM
recommends that you use when you want to request data set stacking. For
example, to request that multiple data sets in different steps of a job be stacked on
the same tape volume, you need to specify VOL=REF by data set name to the
previous data set placed on the tape.

Because it is not possible to use relative GDG names in the VOL=REF
subparameter, IBM recommends using the technique shown in Example 2 to stack
relative generation data sets on the same tape volume.

 Table 15-8. IBM-Recommended Parameters for Data Set Stacking

Volume Set Same Step Different Step, Same Job Different Job

Single Volume, Multiple
Data Sets

VOL=REF to previous data
set on the tape

VOL=REF by data set
name to previous data set

VOL=REF by data set
name to previous data set

Multiple Volumes, Multiple
Data Sets

VOL=SER with last volume
serial of the previous data
set as the first volume serial
in the list

VOL=REF by data set
name to previous data set

VOL=REF by data set
name to previous data set

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-37

The following JCL shows an example of data set stacking:
// JOB ...
//S1 EXEC ...
//D1 DD DSN=A,DISP=(NEW,CATLG),VOL=SER=VOL1,
// UNIT=TAPE,LABEL=(1,SL)
//D2 DD DSN=B,DISP=(NEW,CATLG),VOL=REF=*.D1
// UNIT=TAPE,LABEL=(2,SL)

This JCL stacks two data sets on a single volume within the same step. In this
example, VOL=REF is used to stack both data set A and data set B on the same
tape volume, VOL1. Data sets A and B make up the data set collection.

Examples of Data Set Stacking
The following additional JCL examples request data set stacking; these examples
follow the IBM recommendations for specifying data set stacking.

Example 1

This example shows stacking multiple data sets on a single volume within the same
job step.
//ST1 EXEC ...
//DD1 DD DSNAME=W,DISP=OLD (where W is on volume SMST)
//DD2 DD DSNAME=X,DISP=NEW,VOLUME=REF=*.DD1,
// LABEL=(2,SL)
//DD3 DD DSNAME=Y,DISP=NEW,VOLUME=REF=*.DD1,
// LABEL=(3,SL)

In this example, VOL=REF is used to stack data sets W, X, and Y on the same
tape volume, SMST. Data sets W, X, and Y make up the data set collection.

Example 2

This example shows stacking relative generations of a GDG on a single volume
within the same job step. (This technique is an acceptable way to avoid the
restriction that prohibits using relative GDG names in the VOL=REF subparameter,
for example, VOL=REF=MYDSA(0), and still achieve the same effect.)
//STACKGDG JOB . . .
//STEP01 EXEC . . .
//DD1 DD DSN=MYDSA(0),DISP=SHR (where MYDSA(0) is on volumeTAPE01)
//DD2 DD DSN=MYDSB(+1),DISP=(,CATLG),
// UNIT=3490,VOL=REF=*.DD1,LABEL=(2)
//DD3 DD DSN=MYDSC(+1),DISP=(,CATLG),
// UNIT=3490,VOL=REF=*.DD1,LABEL=(3)

In this example VOL=REF is used to stack relative generation data sets MYDSA(0),
MYDSB(1), and MYDSC(1) on the same tape volume, TAPE01. Data sets
MYDSA(0), MYDSB(1), and MYDSC(1) make up the data set collection.

Example 3

This example shows stacking multiple data sets on a single volume across steps
within a job.

Data Set Resources - Allocation

15-38 z/OS V1R4.0 MVS JCL User’s Guide

//JOB1 JOB ...
//ST1 EXEC ...
//DD1 DD DSN=A,DISP=(NEW,CATLG),UNIT=TAPE
//ST2 EXEC ...
//DD2 DD DSN=B,DISP=NEW,LABEL=(2,SL),
// VOLUME=REF=A,UNIT=TAPE

In this example, VOL=REF by data set name is used to stack data sets A and B on
the same tape volume. Because DD1 does not specify VOL=SER, DD1 represents
a non-specific tape request, so the system assigns an available tape volume or, if
none is available, asks the operator to mount a tape volume. DD2 places data set B
on the same volume as data set A. Data sets A and B make up the data set
collection.

Example 4

This example shows stacking multiple data sets on a single volume across jobs.
//JOB1 JOB ...
//ST1 EXEC ...
//DD1 DD DSN=A,DISP=(NEW,CATLG)

//JOB2 JOB ...
//ST2 EXEC ...
//DD2 DD DSN=B,DISP=NEW,LABEL=(2,SL),
// VOLUME=REF=A,UNIT=TAPE

In this example, VOL=REF by data set name is used to stack data sets A and B on
the same tape volume. Because DD1 on JOB1 does not specify VOL=SER, DD1
represents a non-specific tape request, so the system assigns an available tape
volume or asks the operator to mount a tape volume, if none is available. DD2
places data set B on the same volume as data set A. Data sets A and B make up
the data set collection.

Example 5

This example shows stacking multiple data sets on multiple volumes within the
same step.
//ST1 EXEC ...
//DD1 DD DSNAME=W,DISP=NEW,
// VOLUME=SER=(ONE,TWO,THREE)
//DD2 DD DSNAME=X,DISP=NEW,
// VOLUME=SER=(THREE,FOUR),
// LABEL=(2,SL)
//DD3 DD DSNAME=Y,DISP=NEW,VOLUME=SER=(FOUR,FIVE),
// LABEL=(3,SL)

In this example, specifying VOL=SER to refer to the last volume of the previous DD
is used to stack data sets W, X, and Y on the same set of tape volumes. Data sets
W, X, and Y make up the data set collection.

Example 6

This example shows stacking multiple data sets on a multiple volumes within the
same step. Data set W is an existing, multivolume data set on volumes V1 and V2.
//ST1 EXEC ...
//DD1 DD DSNAME=W,DISP=OLD (W is on volumes V1 and V2)
//DD2 DD DSNAME=X,DISP=NEW,
// VOLUME=SER=(V2,V3),

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-39

// LABEL=(2,SL)
//DD3 DD DSNAME=Y,DISP=NEW,
// VOLUME=SER=(V3,V4),
// LABEL=(3,SL)

In this example, specifying VOL=SER to refer to the last volume of the previous DD
is used to stack data sets W, X, and Y on the same tape volumes. Data sets W, X,
and Y make up the data set collection.

Example 7

This example shows stacking multiple data sets on multiple volumes across steps in
the same job.
//JOB1 JOB ...
//ST1 EXEC ...
//DD1 DD DSN=A,DISP=(NEW,CATLG),UNIT=TAPE,
// VOLUME=SER=(ONE,TWO,THREE)
//ST2 EXEC ...
//DD2 DD DSN=B,DISP=NEW,LABEL=(2,SL),
// VOLUME=REF=A,UNIT=TAPE

In this example, specifying VOL=REF by data set name is used to stack data sets A
and B on the same tape volume, THREE. Data sets A and B make up the data set
collection.

Example 8

This example shows stacking multiple data sets on multiple volumes across jobs.
//JOB1 JOB ...
//ST1 EXEC ...
//DD1 DD DSN=A,DISP=(NEW,CATLG),UNIT=TAPE,
// VOLUME=SER=(ONE,TWO,THREE))

//JOB2 JOB ...
//ST2 EXEC ...
//DD2 DD DSN=B,DISP=NEW,LABEL=(2,SL),
// VOLUME=REF=A,UNIT=TAPE

In this example, specifying VOL=REF by data set name is used to stack data sets A
and B on the same tape volume (THREE, in this case). Data sets A and B make up
the data set collection.

Data Set Stacking and Tape Mount Management
If you are a system programmer or storage administrator and your installation plans
to take advantage of tape mount management (TMM) methodology, you need to
understand its effect on existing practices. Using TMM can improve the
effectiveness of tape device use because you can redirect certain types of tape
data sets to DASD.

Based on your analysis of the output from the Volume Mount Analyzer, you might
identify data sets that would appear to be good candidates for redirection from tape
to DASD. If, however, your installation has jobs that use data set stacking, you
need to make sure that either all of the data sets in a data set collection are
redirected or that none of the data sets in a data set collection are redirected.
Otherwise, there might be more than one device category for the data sets in the
collection, a problem that could cause allocation or open failures.

The term device category refers to types of devices. The categories are:

Data Set Resources - Allocation

15-40 z/OS V1R4.0 MVS JCL User’s Guide

v SMS DASD
v SMS Tape
v Non-SMS-managed DASD
v Non-SMS-managed tape

You can request data set stacking with either VOL=SER or VOL=REF. With
VOL=SER, the system can detect data set stacking and check for consistent device
categories only within a step. To request data set stacking across steps or across
jobs, you must use VOL=REF.

When you specify VOL=SER to request data set stacking within a step, the system
checks for mixed device categories. If the system finds mixed device categories
within a data set collection, it invokes the ACS routines to try to resolve the device
category conflict. If the ACS routines do not direct the data sets to a consistent
device category, the allocation fails with message IGD23101I. Note: The system
does not include existing SMS-managed data sets in a data set collection because
catalog information might reflect a redirection. See Example 3.

z/OS DFSMS: Implementing System-Managed Storage provides more information
about ACS routine handling and detection of data set stacking.

When you specify VOL=REF to request data set stacking across steps or jobs, the
system can pass information about the volume references to the ACS routines. With
this information, the ACS routines can direct requests for data sets within a data set
collection to the same device category.

If your installation is using TMM and runs jobs that request data set stacking, you
need to understand that, because ACS routines might redirect data sets from tape
to DASD, certain JCL combinations might not produce the results you expect. Thus:

v IBM recommends that you use VOL=REF to request data set stacking across
steps or jobs

While you might find that specifying VOL=SER to request data set stacking across
steps or jobs does work sometimes, it might not always produce the results you
expect. To avoid problems, use VOL=REF.

If you are using or planning to use TMM and want to use data set stacking,
eliminate requests for data set stacking like the ones shown in the following
examples. (For examples that show recommended methods of requesting data set
stacking, see “Examples of Data Set Stacking” on page 15-38.)

Example 1
//JOB1 JOB
//STEP1 EXEC
//DD1 DD DSNAME=W,DISP=(NEW,CATLG),
// VOLUME=SER=MINE,UNIT=3490
//STEP2 EXEC
//DD2 DD DSNAME=X,DISP=NEW,VOLUME=SER=MINE,
// LABEL=(2,SL),UNIT=3490

This example uses VOL=SER to request data set stacking across steps.

If you replace VOL=SER in DD2 with VOL=REF=W, the ACS routines will have the
information they need to allocate data set X to a consistent device category even if
data set W is redirected to DASD.

Example 2

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-41

//JOB1 JOB
//DD1 DD DSNAME=W,DISP=(NEW,CATLG),
// VOLUME=SER=MINE,UNIT=3490

//JOB2 JOB
//DD2 DD DSNAME=X,DISP=NEW,VOLUME=SER=MINE,
// LABEL=(2,SL),UNIT=3490

This example uses VOL=SER to request data set stacking across jobs.

If you replace VOL=SER in DD2 with VOL=REF=W, the ACS routines will have the
information they need to allocate data set X to a consistent device category.

Example 3

This example uses VOL=SER to request data set stacking across jobs.
//JOB1 JOB
//STEP1 EXEC
//DD1 DD DSNAME=W,DISP=(NEW,CATLG),UNIT=3490,
// VOL=SER=TAPE01,LABEL=(1,SL)

In JOB1, the ACS routines redirect data set W to SMS-managed DASD. Data set W
becomes SMS-managed.
//JOB2 JOB
//STEP2 EXEC
//DD1 DD DSNAME=W,DISP=OLD
//DD2 DD DSNAME=X,DISP=NEW,VOL=SER=TAPE01,
// LABEL=(2,SL),UNIT=3490
//DD3 DD DSNAME=Y,DISP=NEW,VOL=SER=TAPE01,
// LABEL=(3,SL),UNIT=3490

In JOB2, data set W, after its redirection, is an existing SMS-managed data set.
The system does not include data set W in the data set collection. The system does
detect data set stacking between DD2 and DD3; data set X and Y make up the
data set collection.

If you replace VOL=SER in DD2 with VOL=REF=W and VOL=SER in DD3 with
VOL=REF=X, the ACS routines will have the information they need to allocate data
sets X and Y to a consistent device category with data set W.

Allocation of Direct Access Space
You must request space for every non-VSAM or non-SMS-managed data set being
created on a direct access volume. To tell the system how much space is needed
and let the system assign the tracks, code:

//ddname DD SPACE=(TRK,(primary-qty,second-qty,directory or index)),...
//ddname DD SPACE=(CYL,(primary-qty,second-qty,directory or index)),...
//ddname DD SPACE=(blklgth,(primary-qty,second-qty,directory or index)),...

To tell the system the specific tracks to assign to the data set, code:
//ddname DD SPACE=(ABSTR,(primary-qty,address,directory or index)),...

With SMS, you can request space or override the space allocation defined in the
data class for the data set. In this case, code:
//ddname DD SPACE=(reclgth,(primary-qty,second-qty,directory)),
 AVGREC=value,...

Data Set Resources - Allocation

15-42 z/OS V1R4.0 MVS JCL User’s Guide

Also with SMS, you can code the DATACLAS parameter (or let an ACS routine
select a data class) to specify space allocation, for example:
 //ddname DD DATACLAS=dataclass-name,...

Requesting System Assigned Space
Letting the system assign the specific tracks is easiest and most frequently used.
Specify only how the space is to be measured—in tracks, cylinders, blocks, or
records—and how many of those tracks, cylinders, blocks, or records are required.

Requests for Blocks (blklgth)

Without SMS, it is easiest to specify an average block length: the system allocates
the least number of tracks required to contain the number of blocks specified.
Specifying block length also maintains device independence; you can change the
device type in the UNIT parameter without altering the space request or you can
code in the UNIT parameter a group name that includes different direct access
devices.

When you request space in terms of average block length or average record length,
the system allocates tracks to contain the request. However, if you code ROUND as
the last subparameter in the SPACE parameter, the system allocates the smallest
number of cylinders needed to contain the request.

The system allocates DASD space in whole tracks. The number of tracks required
depends on how the records are blocked. The system will use one of the following
as the block length to compute the number of tracks to allocate, in the order
indicated:
1. 4096, if the data set is a PDSE
2. The blocksize from the DCB parameter, if specified
3. The system determined blocksize, if available
4. A default value of 4096.

Requests for Tracks or Cylinders (TRK or CYL)

You can specify TRK or CYL. You will need to compute the number of tracks or
cylinders required. Consider such variables as the device type, track capacity,
tracks per cylinder, cylinders per volume, data length (blocksize), key length, and
device overhead. These variables and examples of estimating space requirements
for partitioned and indexed sequential data sets are described in z/OS DFSMS:
Using Data Sets.

Cylinder allocation (and therefore ROUND used with average block or average
record) allows faster input/output of sequential data sets than does track allocation.

Requests for Records (reclgth)

With SMS, specify an average record length in bytes, as well as the primary,
secondary, and directory quantity on the SPACE parameter, to request space or to
override the space allocation in the data class of the data set.

You must also specify the AVGREC parameter with the SPACE parameter in order
to specify a record request and indicate whether the primary and secondary
quantity represents units, thousands, or millions of records.

How the System Satisfies the Primary Space Request
Space on One Volume

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-43

Enough space must be available on one volume to satisfy the primary request. If
not, the system terminates the job or searches another volume, depending on the
type of volume request made:
 Specific volume request: If the first volume specified does not have enough

space available, the job is terminated. When extending a multivolume data set, if
enough space is not available to satisfy the secondary allocation on the second
volume specified, the job is terminated.

 Nonspecific volume request: If the first volume chosen by the system does
not have enough space available, the system chooses another volume and
continues to search for space, asking for volumes to be mounted if necessary.
The system continues to search for space until it finds a volume with enough
space, exhausts all eligible volumes, or the operator cancels the job.

Note: For a new indexed sequential data set, if the first volume chosen by the
system does not contain enough space for the request, the system does not
try to find space on another volume, if the request is as follows:

v A request for multiple volumes or units.

v A request is for the second, third, or subsequent DD statement used to
define the data set.

Extents

The system tries to allocate the primary and secondary quantity in contiguous
tracks or cylinders. If contiguous space is not available, the system satisfies the
request with up to five noncontiguous extents (blocks) of space.

Multivolume Data Sets

When creating a multivolume data set, the primary quantity cannot specify more
space than is available on the first volume. If the primary quantity requests all of the
available space on the first volume, the secondary quantity requests space on the
subsequent volumes.

Primary Requests in Blocks

If you request space in terms of average block length, the system will compute and
allocate the smallest number of tracks (or cylinders if ROUND is specified) to
contain the number of blocks specified in primary-qty. blklgth will be used as the
block length in this computation, with the exception of the value zero. If a blklgth of
zero is specified for the first subparameter, the system uses one of the following as
the block length to compute the number of tracks to allocate, in the order indicated:
1. The blocksize from the DCB parameter, if specified
2. The system determined blocksize, if available
3. A default value of 4096.

System Assigned Space Requests with User Labels

If user labels are specified, LABEL=(,SUL), the system allocates up to four
noncontiguous extents of space. The system allocates, separately from the primary
quantity, one track for user labels. This one track is considered an extent.

How the System Satisfies the Secondary Space Request
For many data sets, the primary quantity does not need to be big enough for the
entire data set. Code a secondary quantity to be used only if the data set exceeds
its originally allocated space. The system tries to obtain the secondary space
contiguous to the last extent of space allocated to the data set. But, if you specify

Data Set Resources - Allocation

15-44 z/OS V1R4.0 MVS JCL User’s Guide

the secondary quantity in cylinders, in blocks, or in records with the ROUND
subparameter, then the secondary space allocated to the data set starts at the
beginning of a cylinder.

Note: BDAM data sets cannot be extended.

Volume for Secondary Space for NEW or MOD Data Set

For data sets whose disposition is NEW or MOD, the system allocates this space
on the same volume as the primary quantity until one of the following occurs:

v The volume does not have enough space available for the secondary quantity.

v 16 extents, less the number of extents for the primary quantity and user label
space, have been allocated to the partitioned data set (PDS).

v 123 extents, less the number of extents for the primary quantity and user label
space, have been allocated to the partitioned data set extended (PDSE).

Then, the system allocates the secondary quantity on another volume only if the DD
statement requested more than one volume in the VOLUME parameter or, for a
specific volume request, requested more volumes than devices (which implies unit
affinity).

If the DD statement makes a nonspecific volume request and the system could
possibly allocate a permanently resident volume, code PRIVATE in the VOLUME
parameter.

Volume for Secondary Space for OLD Data Set

When allocating a secondary quantity for a data set whose status is OLD, that is,
an existing data set being written over or a preallocated data set, the system
checks for a next volume. If a next volume exists, the system looks for a secondary
quantity already allocated in it. If the system finds a secondary quantity, the system
uses that space. If the system finds no space already allocated, the system
allocates the secondary quantity on that next volume. If a next volume does not
exist, the system allocates the secondary space on the current volume.

Secondary Request Only for Current Execution

A secondary quantity can be requested when creating a data set or when retrieving
an existing data set, whether or not you coded a secondary quantity in the original
request. A secondary request for an existing data set is in effect only for the
duration of the job step and overrides an original request, if one was made.

Secondary Requests in Blocks

If you request space in terms of average block length, the system allocates the
least number of tracks required to contain the request.

Directory Space for Partitioned Data Sets
To create a partitioned data set (PDS), request a primary quantity large enough to
include space for a directory. A directory is an index used by the system to locate
members in the partitioned data set. It consists of 256-byte records, each containing
directory entries. There is one directory entry for each member. The third quantity in
the SPACE parameter must specify how many records the directory is to contain.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-45

The directory is written at the beginning of the primary space. It must fit in the first
extent of the data set. Request enough directory space to allow for growth of the
data set. You cannot lengthen the directory once the data set is created. If the
directory runs out of space, you must recreate the data set.

With SMS, you can specify the number of records for the directory on the SPACE
parameter without specifying any other subparameters. For example:

 //DD12 DD DSNAME=PDS.EXMP,DATACLAS=DCLAS12,SPACE=(,(,,20)),
 // DISP=(NEW,KEEP)

For a complete description of the directory, including details on member entries to
enable you to compute how many records to request, see z/OS DFSMS: Using
Data Sets.

Directory Space for Partitioned Data Sets Extended

The size of a PDSE grows dynamically. If you specify directory size on the SPACE
parameter, SMS uses the size you specify only if you later convert the PDSE to a
PDS.

System Assigned Space Requests for Indexed Sequential Data
Sets
For an indexed sequential (ISAM) data set, space must be requested in cylinders.
(Note that SMS does not manage ISAM data sets.)

If you are creating an indexed sequential data set that occupies more than one
cylinder and you are not defining the index on a separate DD statement, request
index space as the third quantity in the SPACE parameter. The system determines
if the third quantity is for a directory or an index from the DCB parameter on the DD
statement: DCB=DSORG=IS or DCB=DSORG=ISU must be specified when
defining an indexed sequential data set. The system adds the index quantity to the
primary quantity when allocating space.

Example 1
//ALLO JOB (3416,354),STONER,MSGLEVEL=1,MSGCLASS=C
//STEP1 EXEC PGM=TESTSYS0
//DD1 DD UNIT=3350,DISP=(,PASS),SPACE=(TRK,(10,5))
//DD2 DD UNIT=3330,DISP=(,PASS),SPACE=(TRK,(10,5))
//SYSABEND DD SYSOUT=L
//STEP2 EXEC PGM=TESTSYS0
//DD3 DD DSNAME=*.STEP1.DD1,DISP=(OLD,DELETE,DELETE)
//DD4 DD VOLUME=REF=*.STEP1.DD2,SPACE=(TRK,(3,1)),UNIT=3330
//SYSABEND DD SYSOUT=L

The first step requests space for two temporary data sets. The second step refers
to these data sets for volume information. The space requested for DD1 and DD2 in
STEP1 is 10 primary and 5 secondary tracks and for DD4 in STEP2 3 primary and
1 secondary tracks.

Example 2
//SMSALLO JOB (3444,355),SCHOER,MSGLEVEL=1,MSGCLASS=C
//STEP5 EXEC PGM=TESTSYS0
//DD6 DD DSNAME=HIJK.PGM,DATACLAS=DCLAS1,SPACE=(128,(5,2)),
// AVGREC=K,DISP=(NEW,KEEP)

Data Set Resources - Allocation

15-46 z/OS V1R4.0 MVS JCL User’s Guide

The space requested in DD6 for the new data set overrides the space allocation in
the data class for the data set. The space requested is an average record length of
128 bytes, a primary quantity of 5K (5,120) records, and a secondary quantity of 2K
(2,048) records.

Requesting Specific Tracks
Requesting that the system allocate specified tracks to a data set (by using the
ABSTR subparameter) is the most stringent request for space. If any of the
requested tracks on the volume are occupied, the space cannot be allocated and
the job is terminated.

Do not code ABSTR for SMS-managed data sets.

Certain uses of certain devices can require that specific tracks be requested. For
example, specific tracks must be allocated to position a data set under the fixed
heads of a 3348 Model 70F Data Module (cylinders 1-5).

Specific Track Requests with User Labels

If user labels are specified, LABEL=(,SUL), the user labels are placed on a user
label track. This track is the first in the space requested.

Specific Track Requests for Indexed Sequential Data Sets
If defining an indexed sequential data set, the number of tracks for the index,
primary, or overflow areas must be equal to an integral number of cylinders and on
a cylinder boundary. All of the DD statements defining the indexed sequential data
sets must request specific tracks.

Example
//DDEX DD SPACE=(ABSTR,(5,1)),...

This example allocates 5 tracks for a data set: beginning at the second track on a
volume.

Allocation of Virtual I/O
Temporary data sets can be handled by a facility called virtual input/output (VIO).
VIO data sets reside in the paging space; but, to the problem program and the
access method, the data sets appear to reside on a direct access storage device.

You cannot use VIO for permanent data sets, indexed sequential data sets, VSAM
data sets, or partitioned data sets extended (PDSEs).

VIO provides two advantages:

v VIO speeds reading or writing of a data set. All reading and writing operations
are done at the speed of main storage access rather than at the speed of I/O to
a device.

v The virtual data set does not occupy space in the user’s private area. Thus,
unlike a large data area in a program, a virtual data set does not use up program
space.

Only the job that creates a VIO data set has access to it to read and write data and
to scratch the data set.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-47

SMS manages a VIO data set if (1) you specify a storage class for the data set with
the STORCLAS parameter or (2) an installation-written automatic class selection
(ACS) routine selects a storage class for the data set. An SMS-managed VIO data
set requires that the assigned storage class supports VIO data sets. Check with
your storage administrator.

Requesting VIO

To request a VIO data set, code a DD statement as follows:

v You may code or omit the DSNAME parameter. If coded, it must specify a
temporary data set:
 DSNAME=&&dsname
 DSNAME=&&dsname(member)

v You may code or omit the DISP parameter. If coded, it must specify:
 DISP=(NEW,DELETE)
 DISP=(NEW,PASS)
 DISP=(,PASS)

v Code a UNIT parameter for non-SMS-managed data sets. UNIT must specify a
VIO unit name. During system initialization the installation must define new
and/or existing unit names as VIO; the installation should maintain a list of the
VIO unit names.

 The unit count subparameter is ignored, if coded.

v You may code or omit the VOLUME parameter. If you code it, do not specify
volume serial numbers.

v You may code or omit the SPACE parameter. If coded, the parameter can
request up to the size of the simulated volume. The system will allocate as the
primary quantity plus 15 secondary quantities an entire simulated volume.

 If the requested primary quantity is larger than 65,535 tracks, the job will fail. If
the primary request is met, but the primary quantity plus 15 times the secondary
quantity is greater than 65,535 tracks, the system allocates 65,535 tracks. When
allocating by average block length for a VIO data set, the secondary request is
computed using the average block length specified in the SPACE parameter.

 If you omit the SPACE parameter, the system uses a default value: 4 primary
and 24 secondary blocks, with an average block length of 8192. If the VIO data
set is directed to SMS and space values are specified for the data class chosen
by the ACS routines, the data class values will take effect rather than the
allocation defaults.

v You may code or omit the DCB parameter. If you code it, do not specify IS or
ISU in the DSORG subparameter.

The system will allocate a VIO data set request to actual direct access storage if
the DD statement contains unacceptable parameters; however, if the primary
quantity is too big, the system terminates the job.

Example 1
//EX1 DD UNIT=VIO
//EX2 DD DSNAME=&&TEMPDS,UNIT=SYSDA
//EX3 DD DSNAME=&&TEMPDS(MEM1),UNIT=VIRT3
//EX4 DD DSNAME=&&MYDS,UNIT=VIO,SPACE=(360,(5,30)),
// DISP=(,PASS),DCB=(RECFM=FB,LRECL=80,BLKSIZE=360)

In these examples, the system assigned during system initialization the group
names VIO, SYSDA, and VIRT3 as eligible for VIO processing.

Data Set Resources - Allocation

15-48 z/OS V1R4.0 MVS JCL User’s Guide

|
|
|

Example 2
//EXSMS DD DSNAME=&&TEMP,STORCLAS=SCLASVIO

In the example, EXSMS defines an SMS-managed VIO data set because the
storage administrator has defined storage class SCLASVIO with support for VIO.

Backward References to VIO Data Sets
If a DD statement defines a temporary data set and refers in a VOLUME=REF
parameter to a DD statement for a VIO data set, the system assigns the data set to
external page storage as a VIO data set.

If a DD statement requests unit affinity to a VIO data set but does not define a
temporary data set, the system allocates the data set to the VIO unit but does not
assign it VIO status.

The examples assume that the installation defined during system initialization the
group name SYSDA and the device type name 3330 as eligible for VIO processing.
Except where noted, all of the following DD statements cause allocation of VIO data
sets.

Example 1
//DD1 DD UNIT=SYSDA

Example 2
//DD2 DD UNIT=3330

Example 3
//DD3 DD DSNAME=&&A,DISP=(NEW),SPACE=(CYL,(30,10)),UNIT=SYSDA

Example 4
//DD1 DD UNIT=SYSDA
//DD2 DD VOLUME=REF=*.DD1

Example 5
//DDA DD UNIT=SYSDA
//DDB DD VOLUME=REF=*.DDA,UNIT=3330

Example 6
//DD1 DD UNIT=SYSDA
//DD2 DD DSNAME=NONTEMP,DISP=(,KEEP),
// VOLUME=REF=*.DD1,SPACE=(CYL,10)

In this example, the data set defined in DD1 is assigned to external page storage
for VIO processing. Because DD2 defines a permanent data set, the system
assigns it to direct access storage.

Example 7
//DD1 DD UNIT=SYSDA
//DD2 DD DSNAME=&&TEMP,VOLUME=SER=665431,
// SPACE=(CYL,10),UNIT=AFF=DD1

In this example, the data set defined in DD1 is assigned to external page storage
for VIO processing. Because DD2 specifies a volume serial number, the system
assigns it to direct access storage.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-49

Example 8
//REGJOB JOB 3344,’DEPT. 28’
//ASM EXEC PGM=IFOX00
 .
 .
//ASM.SYSGO DD DSNAME=&&OBJ,UNIT=VIO,DISP=(NEW,PASS)
//LKED EXEC PGM=IEWL
//SYSLIN DD DSNAME=&&OBJ,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&LOAD(A),DISP=(NEW,PASS),UNIT=VIO,
// DCB=DSORG=PO,SPACE=(TRK,(5,5,1))
 .
 .
//GO EXEC PGM=*.LKED.SYSLMOD

VIO data sets are passed in the same way as conventional data sets. This example
shows the DD statements for VIO data sets in a job whose steps compile and link
edit a program and then execute that program. The three VIO data sets are defined
in the statements ASM.SYSGO, SYSLIN, and SYSLMOD.

Note: The SPACE parameter must appear on the //SYSLMOD DD statement to
make sure that directory space is allocated.

Allocation with Volume Premounting in a JES2 System
In a JES2 system, to identify volumes that the operator must mount before the job
is executed, code:
 /*SETUP serial-number,...

When the job enters the system, JES2 issues a message to the operator console to
ask the operator to mount the identified volumes. JES2 places the job on hold until
the operator mounts the volumes, then releases the job.

Example
/*SETUP 223344,556677,889900

Note: IBM recommends that you do not use the /*SETUP control statement to
specify volumes in an IBM 3495 Tape Library Dataserver. This statement
causes the job to be unnecessarily held until released by the operator.

Dynamic Allocation
Dynamic allocation allows a job to acquire resources as they are needed and
release them immediately after use. The resources are a ddname-data set
combination with its volumes and devices.

One reason to use dynamic allocation is that you may not know all of the device
requirements for a job before execution. Another reason is that it allows the system
to use resources more efficiently; that is, the system can acquire resources just
before their use and release them immediately after use.

To tell the system the number of resources to be held in anticipation of reuse, code:
 //stepname EXEC PGM=x,DYNAMNBR=n

The system uses the sum of this number and the number of DD statements in the
step to establish a control limit for tracking resources that it is holding in anticipation
of reuse.

Data Set Resources - Allocation

15-50 z/OS V1R4.0 MVS JCL User’s Guide

For more information on dynamic allocation, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Example
//PROS JOB 1585,SALLYJ,CLASS=A,PERFORM=70
//STEP1 EXEC PGM=TEST,DYNAMNBR=4,PARM=(P3,123,MT5)
//OUT1 DD SYSOUT=C,FREE=CLOSE
//OUT2 DD SYSOUT=A
//SYSIN DD *
 .
 .
 data
 .
/*

v The JOB statement specifies that this job will be processed in class A and in
performance group 70.

v The control limit is the sum of the number of DD statements coded and the
value coded in the DYNAMNBR parameter:
 3 DD statements + 4 = 7

 If this control limit is reached and another dynamic allocation is requested, the
request is not honored unless resources can be unallocated so that the control
limit is not exceeded.

v When OUT1 is closed, it is immediately ready for printing.

Data Set Resources - Allocation

Chapter 15. Data Set Resources - Allocation 15-51

Data Set Resources - Allocation

15-52 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 16. Data Set Resources - Processing Control
 Table 16-1. Processing Control Task for Requesting Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Processing Control

by suppressing
processing

DUMMY
NULLFILE
on DSNAME

by postponing
specification

DDNAME

with checkpointing CHKPT
SYSCKEOV DD

by subsystem SUBSYS
CNTL

 CNTL
ENDCNTL

by TCAM job or
task

QNAME

Processing Control by Suppressing Processing
To suppress processing of a data set, assign it a dummy status by coding either of
the following:
 //ddname DD DUMMY,...
 //ddname DD DSNAME=NULLFILE,...

The system ignores all parameters other than DUMMY or DSNAME=NULLFILE and
DCB. The DCB parameter must be coded if you would code it for normal I/O
operations. For example, when an OPEN routine requires a BLKSIZE specification
to obtain buffers and BLKSIZE is not specified in the DCB macro instruction, code
this information in the DD DCB parameter.

Effect of Dummy Data Set

For a dummy data set, the system bypasses all input/output operations, does not
allocate devices or storage to the data set, and does not perform disposition
processing.

Requests to Read or Write a Dummy Data Set

When the program asks to read a dummy data set, an end-of-data-set exit is taken
immediately. When the program writes to the dummy data set, the request is
recognized but no data is transmitted. VSAM supports dummy data sets for both
read and write processing. BSAM and QSAM support requests to write to a dummy
data set. If any other access method is used, the job is terminated.

Use of Dummy Data Sets

When testing a program, you can suppress writing of an output data set by defining
it as a dummy data set. This would forestall printing a data set until you are sure it
contains meaningful output.

© Copyright IBM Corp. 1988, 2003 16-1

To save processing time, you might not want a data set to be processed every time
the job is executed. For example, you might want to skip reading a data set that is
used only once a week.

Nullifying a Dummy Data Set

When the data set is to be processed, replace the DD statement that specified the
dummy data set with a DD statement containing the parameters required to define
the data set. When a procedure DD statement specifies a dummy data set, nullify it
by coding the DSNAME parameter on the overriding DD statement and assigning a
data set name other than NULLFILE.

Examples
//EXA DD DUMMY,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// UNIT=3211
//EXB DD DSNAME=NULLFILE,UNIT=DISK,VOLUME=SER=165789,
// DISP=OLD
//EXC DD DUMMY,DISP=OLD

Processing Control by Postponing Specification
To postpone specification of a data set, reference a later DD statement by coding:
 //ddname DD DDNAME=ddname

How the System Postpones Data Set Definition

When the system encounters a DD statement with a DDNAME parameter, it saves
the ddname and, temporarily, the name in the DDNAME parameter; the system
uses the DDNAME name to relate the statement to a later DD statement. When the
system finds a statement whose ddname has been temporarily saved, it does the
following:

v It uses the parameters on the statement with the matching ddname to define the
data set.

v It associates these parameters with the name of the statement that contained the
DDNAME parameter.

v It stops saving the name from the DDNAME parameter.

References to the Data Set

The system associates the ddname of the statement that contains the DDNAME
parameter with the data set definition. The system does not use the ddname of the
later statement that actually defines the data set. Therefore, any references to the
data set, before or after the data set is defined, must refer to the DD statement that
contains the DDNAME parameter, not the referenced DD statement that defines the
data set.

Concatenating DD Statements when DDNAME is Specified

To concatenate data sets to a data set defined with a DDNAME parameter, the
unnamed DD statements must follow the DD statement that contains the DDNAME
parameter, not the referenced DD statement that defines the data set.

Use of Postponing Specification

Data Set Resources - Processing Control

16-2 z/OS V1R4.0 MVS JCL User’s Guide

Use the DDNAME parameter in cataloged procedures to postpone defining an
in-stream data set until a job step calls the procedure. Procedures cannot contain
DD statements that define in-stream data sets and cannot contain in-stream data.

Use the DDNAME parameter in a job step that calls a procedure to postpone
defining in-stream data until the last overriding DD statement for a procedure step.
Overriding DD statements must appear in the same order as the DD statements in
the procedure and any in-stream data sets must appear last in a calling step.

Example 1
//XYZ DD DDNAME=PHOB
 .
 .
 .
//PHOB DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=3400-5

From DD statement XYZ, the system saves XYZ and, temporarily, PHOB. Until the
system encounters the ddname PHOB, it treats the data set for XYZ as a dummy
data set.

When the system reads DD statement PHOB, it uses the DSNAME, DISP, and
UNIT values to define the data set named NIN. The system also associates this
information with DD statement XYZ. The system stops saving ddname PHOB. The
data set is now defined as if you had coded:
//XYZ DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=3400-5

Example 2
//DD1 DD DDNAME=LATER
 .
 .
 .
//LATER DD DSN=SET12,DISP=(NEW,KEEP),UNIT=3350,
// VOLUME=SER=46231,SPACE=(TRK,(20,5))
 .
 .
 .
//DD12 DD DSN=SET13,DISP=(NEW,KEEP),VOLUME=REF=*.DD1,
// SPACE=(TRK,(40,5))

DD1 postpones defining the data set until the system encounters DD statement
LATER. DD12 must do a backward reference to DD1 because the system
associates the data set information with the DD statement that contains the
DDNAME parameter.

Example 3
//DDA DD DDNAME=DEF
// DD DSN=A.B.C,DISP=OLD
// DD DSN=SEVC,DISP=OLD,UNIT=3350,VOL=SER=52226
 .
 .
 .
//DEF DD *
 data
/*

This example shows correct concatenation when a DDNAME parameter is coded.

Data Set Resources - Processing Control

Chapter 16. Data Set Resources - Processing Control 16-3

Processing Control with Checkpointing
To write a checkpoint when the system reaches an end of volume while processing
a multivolume input or output data set, code:
 //ddname DD CHKPT=EOV,...

The system writes checkpoints for all volumes but the last. The data set must be a
multivolume QSAM or BSAM data set. Checkpoints are not written for
single-volume QSAM or BSAM data sets or for ISAM, BDAM, BPAM, or VSAM data
sets.

The system writes the checkpoints in a SYSCKEOV data set. A SYSCKEOV DD
statement must be specified in a step with a DD statement that contains CHKPT
and again when the step is restarted from a checkpoint written in the data set.

Examples
//S1 EXEC PGM=A,RD=R
//D1 DD DSNAME=OUT1,UNIT=(DISK,3),DISP=(NEW,CATLG),
// SPACE=(400,(50,10),VOLUME=(PRIVATE,,,3),CHKPT=EOV
//SYSCKEOV DD DSNAME=CK1,UNIT=3350,DISP=(MOD,KEEP),
// SPACE=(CYL,30,,CONTIG)

Processing Control by Subsystem

Requesting Subsystem
To ask a subsystem to process a data set and to specify parameters for the
subsystem, code:
 //ddname DD SUBSYS=subsystem-name,...
 //ddname DD SUBSYS=(subsystem-name,subparameter,...),...

The subsystem processes the subparameters according to its own rules.

When you specify the SUBSYS parameter, the subsystem may alter the
significance of certain DD statement parameters. For details, see the documentation
for the subsystem.

If you specify the DUMMY parameter, MVS invokes the subsystem to check the
syntax of subsystem subparameters. If the syntax is acceptable, MVS assigns a
dummy status to the data set and processes the request as a dummy request.

If you request unit affinity to a subsystem data set, MVS substitutes SYSALLDA as
the UNIT parameter specification.

Example
//EXSUB DD DSNAME=MYSET,DISP=OLD,SUBSYS=(PRO3,34,92)

Program Control Statements for a Subsystem
To specify control information for a subsystem, code:
 //stepname EXEC PGM=x
 //label CNTL
 .
 .
 (program control statements)

Data Set Resources - Processing Control

16-4 z/OS V1R4.0 MVS JCL User’s Guide

.
 // ENDCNTL
 //ddname DD SUBSYS=subsystem-name,CNTL=*.label

Program control statements supply control information for the subsystem.

Example
//S1 EXEC PGM=REPT
//ABC CNTL
//PGC PRINTDEV BUFNO=2-,PIMSG=YES
// ENDCNTL
//DD1 DD SUBSYS=XYZ,CNTL=*.ABC

(For information about the PSF PRINTDEV JCL statement, see the manual PSF for
z/OS: Customization.)

Processing Control by TCAM Job or Task
To define a data set of telecommunications access method (TCAM) messages and
to ask a TCAM job or started task to process the data set, code:
 //ddname DD QNAME=procname,...
 //ddname DD QNAME=procname.tcamname,...

For more information, see ACF/TCAM Installation Reference

Examples
//DSA DD QNAME=MES34.TJOB,DCB=(RECFM=FB,LRECL=80,BLKSIZE=320)
//DSB DD QNAME=MES78.TJOB

Data Set Resources - Processing Control

Chapter 16. Data Set Resources - Processing Control 16-5

Data Set Resources - Processing Control

16-6 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 17. Data Set Resources - End Processing
 Table 17-1. End Processing Task for Requesting Data Set Resources

TASKS FOR
REQUESTING
DATA SET
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

End Processing

unallocation FREE

disposition of data
set

DISP RETPD
EXPDT

release of unused
direct access
space

RLSE on SPACE

disposition of
volume

RETAIN and
PRIVATE on
VOLUME

 Data sets on system-managed tape library volumes exhibit both system-managed
and non-system-managed characteristics. When necessary, data sets on a
system-managed tape volume are distinguished from system-managed DASD
data sets. Otherwise, the term system-managed data sets refers to both data
sets on a system-managed tape volume and system-managed DASD data sets.

Unallocation End Processing
The system unallocates data sets and their associated volume and devices at the
end of a job step or at the end of the job.

Dynamic Unallocation

To unallocate a data set while a step is still executing, code:

 //ddname DD FREE=CLOSE,...

Use FREE=CLOSE to allow the system to reallocate a volume or device that is
used frequently in the system.

Example
//DD1 DD DSNAME=DS6,DISP=OLD,UNIT=TAPE,VOLUME=SER=111111,FREE=CLOSE

Disposition End Processing of Data Set
Disposition end processing of a data set is controlled by either the DISP parameter
or by time, expressed as a retention period (RETPD) or an expiration date
(EXPDT).

Disposition Controlled by DISP Parameter
The system processes a data set after its use depending on how the step
terminates:

v Normal termination disposition: To delete, keep, pass, catalog, or uncatalog
the data set when the step terminates normally, code:

© Copyright IBM Corp. 1988, 2003 17-1

//ddname DD DISP=(,DELETE),...
 //ddname DD DISP=(,KEEP),...
 //ddname DD DISP=(,CATLG),...
 //ddname DD DISP=(,UNCATLG),...
 //ddname DD DISP=(,PASS),...

v Abnormal termination or conditional disposition: To delete, keep, catalog, or
uncatalog the data set if the step terminates abnormally, code:
 //ddname DD DISP=(,,DELETE),...
 //ddname DD DISP=(,,KEEP),...
 //ddname DD DISP=(,,CATLG),...
 //ddname DD DISP=(,,UNCATLG),...

You should consider coding an abnormal termination disposition every time you
create or use a data set. This disposition can be used to keep data sets after a
program fails, when they might be needed to determine the cause of the failure.
This disposition can also be used to delete data sets in case of program failure,
thereby restoring the system environment to what it was before the error. Then the
failing job can be rerun without an intervening clean-up job.

Effect of Abnormal Termination During Execution

When a step abnormally terminates but is not automatically restarted, its data sets
are disposed of as specified by the abnormal termination disposition. If an abnormal
termination disposition is not specified, the normal termination disposition is
processed.

Effect of Abnormal Termination During Allocation

If a job step fails during step allocation, the system disposes of the data sets as
follows:
v Deletes a data set being created in the step.
v Keeps a data set that existed before the step.

Effect When No Abnormal Termination Disposition is Coded

If a DD statement in an abnormally terminating step requests a data set that was
cataloged or kept in an earlier step and if the statement does not specify an
abnormal termination disposition, the system uses the disposition specified in the
earlier step.

Effect of Device Type on Disposition

The system handles disposition differently for data sets on direct access and on
tape. A direct access volume contains a volume table of contents (VTOC). A VTOC
describes the non-VSAM data sets and available space on the volume.

Deleting a Data Set
Specifying DELETE requests that the data set’s space on the volume be released
at termination of the step:

v If the data set is on a public tape volume, the tape is rewound. The volume is
available for use by other job steps.

v If the data set is on a private tape volume, the tape is rewound and unloaded.
The system issues a KEEP message.

v If the data set is on a private direct access volume, the description of the data
set is removed from the VTOC. The space on the volume is available to other
data sets.

Data Set Resources - End Processing

17-2 z/OS V1R4.0 MVS JCL User’s Guide

Note: If you delete the only remaining data set on a system-managed tape volume,
the system does mark the volume as scratch at job or step termination. The
storage administrator controls the return of a volume to scratch status.

Unexpired Expiration Date: In one case, however, a data set on a direct access
volume is not deleted: If a data set previously existed and has an unexpired
expiration date, an abnormal termination disposition of DELETE does not delete the
data set if the step abnormally terminates.

Cataloged Data Sets: If you are deleting a cataloged non-VSAM data set, the
entry for the data set in the system catalog is removed when the system obtains the
volume serial number from the catalog. When the volume serial number is coded or
referenced on the DD statement, the data is deleted but its entry remains in the
catalog.

If an error occurs while the system is deleting a cataloged data set, its entry
remains in the catalog. The data set itself is or is not deleted, depending on when
the error occurs.

To delete an entry from an integrated catalog facility catalog, use the DELETE
command as described in z/OS DFSMS: Using Data Sets. Using the DELETE
command makes the space occupied by the data set available for reallocation. To
delete catalog entries for data sets that are not cataloged in an integrated catalog
facility catalog, use the UNCATLG statement of IEHPROGM as described in z/OS
DFSMSdfp Utilities.

Temporary Data Sets: DELETE is the only valid abnormal termination disposition
for a temporary data set. If you specify a disposition other than DELETE, the
system assumes DELETE.

TSO/E Background Data Sets: In a step running TSO/E, the system replaces a
DD statement disposition of DELETE with a disposition of KEEP. This prevents an
attempt to delete a data set that has been unallocated by the TSO/E FREE
command.

Keeping a Data Set
Specifying KEEP instructs the system to keep a data set intact until a later step or
job requests that the data set be deleted or cataloged or until after an expiration
date or retention period, if specified.

For data sets on direct access, the entry in the VTOC describing the data set and
the data set itself are kept. For data sets on tape, the volume is rewound and
unloaded, and a KEEP message is issued to the operator.

Note: If you specify KEEP for a temporary data set, the system changes the
disposition to PASS. See “Passing a Data Set” on page 17-5 for more
information about how the system handles passed data sets.

Cataloging a Data Set
Catalog a non-VSAM or non-system-managed data set, or data sets on a
system-managed tape volume, by specifying CATLG as the disposition. (The
system automatically catalogs VSAM and system-managed DASD data sets when
they are allocated.)

For a new data set, the system keeps the data set and creates an entry pointing to
it in one of the following:

Data Set Resources - End Processing

Chapter 17. Data Set Resources - End Processing 17-3

v The system-determined catalog, if the step or job does not specify a private
catalog.

v The private catalog specified in a STEPCAT DD statement in the step.

 With SMS, do not use the STEPCAT DD statement in a job step that references
an SMS-managed data set.

v The private catalog specified in a JOBCAT DD statement in the job, if the step
does not contain a STEPCAT DD statement.

 With SMS, do not use the JOBCAT DD statement in a job that references an
SMS-managed data set.

For an old data set, the system keeps the data set, and does the following
depending on the parameters on the DD statement.

v If UNIT and VOLUME=SER are not coded, the system updates the catalog that
is used to locate the data set.

v If UNIT and VOLUME=SER are coded, the system creates a new catalog entry in
the applicable system master or private catalog, even if the data set is already
cataloged.

A private catalog can be either a VSAM user catalog or an integrated catalog facility
catalog.

Use of Cataloging: Cataloging allows you to keep track of the location of data
sets. Cataloging also simplifies retrieving a data set: code only the DSNAME
parameter and OLD, SHR, or MOD in the DISP parameter and omit volume and
device information.

CATLG for a Cataloged Data Set: Specify a disposition of CATLG for an already
cataloged data set when adding to the data set if it may need another volume. The
system updates the catalog entry to include the volume serial numbers of any
additional volumes if the data set was specified as follows:
v DISP=(MOD,CATLG)
v No volume serial numbers were coded or referenced on the DD statement

Generation Data Sets: A collection of cataloged data sets that are kept in
chronological order is a generation data group (GDG). The entire GDG is stored
under a single data set name; each data set within the group, called a generation
data set, is associated with a generation number that indicates how far removed the
data set is from the original generation. When creating a new generation data set,
code a disposition of CATLG.

When the System Does Not Catalog a Data Set: The system does not catalog a
data set if the data set is not opened by the problem program and one of the
following is true:

v The DD statement made a nonspecific request for a tape volume.

v The DD statement requested a tape volume for a tape device with dual density
options but did not specify the density in the DEN subparameter of the DCB
parameter.

Job Termination Due to Inability to Catalog a Data Set: The system terminates
the job when the installation option specifies that the job is to be terminated if,
during data set disposition processing of a batch unallocated data set, the system is
unable to:

v Catalog a new data set for which a disposition of CATLG was specified

Data Set Resources - End Processing

17-4 z/OS V1R4.0 MVS JCL User’s Guide

v Catalog an old uncataloged data set for which a disposition of CATLG was
specified

v Recatalog an old cataloged data set for which the volume list was extended and
a disposition of CATLG, KEEP, or PASS was specified

v Roll an SMS-managed generation data set into the GDG base.

The installation options do not apply if, by specifying FREE=CLOSE, the data set is
unallocated when closed.

Uncataloging a Data Set
To remove from the catalog the entry describing a non-VSAM or
non-system-managed data set, or a data set on a system-managed volume, code
UNCATLG as the disposition. Specifying UNCATLG does not delete the data set;
only the reference in the catalog is removed. If you request the data set in a later
job or step, the DD statement must specify volume information. Note that you
cannot use JCL to uncatalog system-managed DASD data sets.

Passing a Data Set
If more than one step in a job needs the same data set, each DD statement for the
data set can pass it to a later step. A data set can be passed only within a job. A
data set cannot be passed and received within the same step.

To Pass: To pass a data set, code PASS as the normal termination disposition;
PASS cannot be the abnormal termination disposition. Code PASS each time the
data set is needed until the last use in the job. In the last DD statement for the data
set, assign it a final disposition.

To Receive: To receive a passed data set, specify in the DD statement the data
set name without specifying a volume serial number or volume reference.

Data sets with identical names, whether or not the names refer to the same data
set, can be passed within the same job. If you receive a data set with a disposition
of DELETE, then data sets with identical names are received in the same order in
which they are passed. If you receive a data set with a disposition of PASS, then
subsequent steps that attempt to receive a data set with that name will experience
unpredictable results, including possible loss of data.

Do not try to receive a passed data set more times than it is passed.

When a passed data set is received, the passed data set information is no longer
available to later DD statements in the receiving step or later steps. Therefore, a
VOLUME=REF parameter that refers to the passed data set must appear on a DD
statement before the receiving DD statement. For example:
 //JEX JOB ACCT27,’GALE RUCINSKI’
 //S1 EXEC PGM=A
 //DA DD DSNAME=MYDATA,DISP=(NEW,PASS),
 // SPACE=(800,15),UNIT=DISK
 //S2 EXEC PGM=B
 //DB DD DSNAME=REPT,DISP=(NEW,PASS),
 // SPACE=(800,15),UNIT=DISK,VOLUME=REF=MYDATA
 //DC DD DSNAME=*.S1.DA,DISP=SHR
 /*

For SMS permanent data sets, the restrictions on receiving passed data sets do not
apply. All SMS-managed permanent data sets are cataloged, and can be located
using the normal catalog search.

Data Set Resources - End Processing

Chapter 17. Data Set Resources - End Processing 17-5

In a JES3 system, if the data set was extended to additional volumes, code
UNIT=AFF=ddname in the DD statement that receives the data set. This makes
JES3 aware of the additional device needed for the extended data set.

When Passing Step Abnormally Terminates: If a step that passes a data set
abnormally terminates during execution, the passed data set is passed. Thus, a
following step that is executed because of a COND=EVEN or COND=ONLY can
receive and process the passed data set. If the passed data set remains unreceived
at the end of the job, the system performs the abnormal termination disposition, if
specified, for the passed data set.

Disposition Processing of Unreceived Passed Data Sets: If a passed data set
is never received by a later step, at the end of the job the system processes the
data set as an unreceived, passed data set. This can result in unintentionally
deleting the data set, even if it had been cataloged during the job, as the following
example shows.

EXAMPLE:

Data set “dsname,” which does not exist at the start of a job but is created
and cataloged during the job, will be uncataloged and deleted if it is passed
and not received:
 //Step1 EXEC PGM=pgmname1
 //DD1 DD DSN=dsname,DISP=(NEW,CATLG,DELETE)
 //*
 //Step2 EXEC PGM=pgmname2
 //DD2 DD DSN=dsname,DISP=(OLD,PASS,DELETE)
 //*
 //Step3 EXEC PGM=pgmname3
 //Step4 EXEC PGM=pgmname4
 //DD4 DD DSN=dsname,DISP=(OLD,PASS,DELETE)

Data set “dsname” is cataloged when Step1 ends. After Step2 ends, “dsname”
is still cataloged. If Step3 terminates abnormally, “dsname” will be deleted
during end of job processing, because it had been passed by Step2 and not
received by a following step, AND the abnormal disposition for Step2 was
DELETE.

To avoid that situation, do not specify PASS for a cataloged data set—no
matter whether it had been created in a prior job or in a prior step of this job.
The correct JCL is:
 //Step1 EXEC PGM=pgmname1
 //DD1 DD DSN=dsname,DISP=(NEW,CATLG,DELETE)
 //*
 //Step2 EXEC PGM=pgmname2
 //DD2 DD DSN=dsname,DISP=(OLD,KEEP,DELETE)
 //*
 //Step3 EXEC PGM=pgmname3
 //Step4 EXEC PGM=pgmname4
 //DD4 DD DSN=dsname,DISP=(OLD,KEEP,DELETE)

At Abnormal Termination when Abnormal Termination Disposition is
Specified: If a job step abnormally terminates, unreceived data sets that specified
an abnormal termination disposition when passed are processed according to the
specifications in their abnormal termination dispositions.

Data Set Resources - End Processing

17-6 z/OS V1R4.0 MVS JCL User’s Guide

For example, you code DISP=(,PASS,CATLG) for a new data set. If this step, or a
later step before the receiving step, abnormally terminates during execution, the
system tries to catalog the data set as instructed by the abnormal termination
disposition of CATLG.

Non-system-managed data sets and data sets on a system-managed tape volume
are not processed as specified in their abnormal termination dispositions. If the
abnormal termination disposition requires an update to a private catalog and:

1. CATLG is specified for a data set that has a first-level qualifier of a catalog
name or alias, the system does not catalog the data set.

2. UNCATLG or DELETE of a cataloged data set is specified for a data set that
has a first-level qualifier of a catalog name or alias, the system does not
uncatalog the data set.

3. CATLG is specified for a data set that does not have a qualifier or has a
qualifier that is not a catalog name, the system catalogs the data set in the
master catalog.

4. UNCATLG or DELETE of a cataloged data set is specified for a data set that
does not have a qualifier or has a qualifier that is not a catalog name, the
system tries to uncatalog the data set from the master catalog.

At Abnormal Termination when No Abnormal Termination Disposition is
Specified: If no job step abnormally terminates before it begins execution, the
system deletes all unreceived passed data sets that specified (NEW,PASS) and that
did not specify an abnormal termination disposition; the system keeps all others.
The system deletes those data sets even if they have unexpired expiration dates or
retention periods.

When Abnormal Termination Occurs Before Execution: If a step abnormally
terminates before it actually begins execution, for example, during allocation of
devices and volumes or direct access space, the system ignores the disposition on
the DD statement. The system keeps existing data sets and deletes new data sets.

Deletion at End of Job: If unreceived passed data sets are deleted at the end of
a job, the system performs dynamic allocation to allocate a device and volume for
deletion. Depending on the JOB statement MSGLEVEL parameter or the installation
defaults, the system issues allocation messages for these data sets.

In a Procedure That is Called Multiple Times: A problem can occur when the
same data set is passed more times than it is received in a procedure that is called
more than once in a job. This is illustrated by the following example:
Cataloged procedure MYPROC:

 //STEP1 EXEC PGM=IEFBR14
 //DD1 DD DSNAME=&A,DISP=(NEW,PASS),
 // SPACE=(TRK,(1,1)),UNIT=SYSDA
 //DD2 DD DSNAME=*.DD1,DISP=(OLD,PASS),
 // VOL=REF=*.DD1
 //STEP2 EXEC PGM=IEFBR14
 //DD3 DD DSNAME=&A,DISP=(OLD,DELETE)

Input stream:

 //JOBEX JOB
 //S1 EXEC PROC=MYPROC
 //S2 EXEC PROC=MYPROC

Data Set Resources - End Processing

Chapter 17. Data Set Resources - End Processing 17-7

DD1 and DD2 pass data set &A. DD3 receives data set &A. After the procedure
has been executed, one entry for data set &A remains unreceived.

When the procedure is called a second time, DD3 receives data set &A from the
first execution of the procedure. This can result in incorrect data or an abnormal
termination. If data set &A is not received twice in the job, data set &A is processed
as an unreceived passed data set at the end of the job.

Default Disposition Processing
If you omit the DISP parameter or one of its subparameters, the system supplies
default values.

If the data set status is omitted, the system assumes NEW. If the second or third
subparameter is omitted, the system determines how to handle the data set
according to the status of the data set:

v Data sets that existed before the job are automatically kept. The system treats a
data set as existing when the status is OLD, SHR, or MOD with volume
information.

v Data sets created in the job are automatically deleted. The system treats a data
set as newly created when the status is NEW, omitted, or MOD without volume
information.

Bypassing Disposition Processing
If you define a data set as a dummy data set, the system ignores the DISP
parameter, if coded, and does not perform disposition processing.

Disposition Processing of Data Sets that Do Not Exist
When you code a status subparameter of OLD, SHR, or MOD on a DD statement
for a data set that does not exist, processing proceeds based on whether you have
supplied VOLUME and UNIT information on the DD statement.

When VOLUME and UNIT Are Coded: When you code VOLUME and UNIT on
the DD statement, a JCL error will occur if the problem program attempts to open
the data set. Otherwise, the data set disposition depends on the DISP normal
termination disposition:

v When the normal termination disposition is KEEP, the job log will show that the
data set was kept.

v When the normal termination disposition is CATLG, and a catalog entry exists for
the data set name, you will receive an error message stating that the data set
was not recataloged.

 When no catalog entry exists for the data set name, and you have provided the
unit information, volume serial, and, for tape data sets, recording mode or
density, the system will catalog the data set. For tape data sets, without proper
density or recording mode information (when density and recording mode are
required), you will receive an error message that the data set was not cataloged.

v When the normal termination disposition is UNCATLG, and a catalog entry exists
for the data set name, the system will uncatalog the data set.

 When no catalog entry exists for the data set name, you will receive an error
message stating that the data set was not uncataloged.

v When the normal termination disposition is PASS, the system passes the data
set.

v When the normal termination disposition is DELETE, the job log will show that
the system did not delete the data set. However, this does not affect the job step
condition code or produce a JCL error.

Data Set Resources - End Processing

17-8 z/OS V1R4.0 MVS JCL User’s Guide

When VOLUME and UNIT Are Not Coded: When you do not code VOLUME and
UNIT on the DD statement, and the data set is not cataloged, you will receive a
JCL error. If the data set is cataloged, and the problem program attempts to open
the data set, you will receive a JCL error. If the data set is cataloged and the
problem program does not attempt to open the data set, the disposition depends on
the DISP normal termination disposition.

v When you code a normal termination disposition of KEEP, CATLG, UNCATLG,
or PASS, the data set disposition is the same for each of these subparameters
as described in “When VOLUME and UNIT Are Coded” on page 17-8.

v When you code a normal termination disposition of DELETE, the system will
uncatalog the data set. The job log will show that the data set was not deleted.

Example 1
//DISPJ JOB 158765,’SECT. 27’
//S1 EXEC PGM=IEFBR14
//D1 DD DSN=ABC,DISP=(SHR,KEEP)
//D2 DD DSN=SYSA,DISP=(OLD,DELETE,UNCATLG)
//D3 DD DSN=SYSB,UNIT=3350,VOL=SER=335001,
// SPACE=(CYL,(4,2,1)),DISP=(NEW,CATLG,KEEP)
//D4 DD DSN=&&SYS1,DISP=(MOD,PASS),UNIT=3350,
// VOL=SER=335004,SPACE=(TRK,(15,5,1))
//S2 EXEC PGM=IEFBR14
//D5 DD DSN=&&SYS1,DISP=(MOD,DELETE),UNIT=3350,
// VOL=SER=335004,SPACE=(TRK,(15,5,1))

1. D1 requests a data set that already exists and can be shared with other jobs. It
is to be kept on the volume at the end of step S1.

2. D2 requests a data set that already exists and cannot be shared with other jobs.
It is to be deleted at the end of S1, but is to be kept and uncataloged if S1
abnormally terminates.

3. D3 defines a new data set that is to be assigned to volume 335001 on a 3350
Direct Access Storage device. The data set is to be kept on the volume and
cataloged if S1 terminates normally, but is to be kept and not cataloged if S1
terminates abnormally.

4. D4 defines a temporary data set that is to be created in this job step. It is to be
assigned to volume 335004 on a 3350 and allocated 15 primary tracks, five
secondary tracks, and one directory record. This data set is to be passed for
use in a later step in this job.

5. D5 requests the temporary data set passed by D4 of S1. When S2 completes,
the data set is to be deleted.

Example 2
//PASS JOB ,’BILL H.’
//S1 EXEC PGM=IEFBR14
//DD1 DD DSN=A,DISP=(NEW,PASS),VOL=SER=335000,
// UNIT=3350,SPACE=(TRK,1)
//DD2 DD DSN=A,DISP=(OLD,PASS),VOL=REF=*.DD1
//DD3 DD DSN=B,DISP=(OLD,PASS),VOL=SER=335000,UNIT=3350
//DD4 DD DSN=B,DISP=(OLD,PASS),VOL=SER=335001,UNIT=3350
//S2 EXEC PGM=IEFBR14
//DD5 DD DSN=A,DISP=OLD
//DD6 DD DSN=A,DISP=OLD
//DD7 DD DSN=B,DISP=OLD
//DD8 DD DSN=B,DISP=(OLD,PASS)
//S3 EXEC PGM=IEFBR14
//DD9 DD DSN=B,DISP=OLD

1. DD1 and DD2 pass the same data set. DD5 and DD6 receive that same data
set.

Data Set Resources - End Processing

Chapter 17. Data Set Resources - End Processing 17-9

2. DD3 and DD4 pass different data sets of the same name. DD7 receives the
data set passed by DD3; DD8 receives the data set passed by DD4. DD8
continues to pass the data set originally passed by DD4.

3. DD9 receives the data set passed by DD8.

Disposition Controlled by Time
When you create a data set, tell the system how long to keep it by coding a
retention period or an expiration date.

Use the RETPD or EXPDT DD parameter:
 //ddname DD RETPD=nnnn,...
 //ddname DD EXPDT=yyddd,...
 or
 //ddname DD EXPDT=yyyy/ddd,...

As long as the time period has not expired, the system will not delete or write over
a data set on direct access space. This is true even if a DD statement specifies a
disposition of DELETE (other than DISP=(NEW,DELETE)) for the data set. The data
set is eligible for deletion once the expiration date or retention period has been
reached.

When the expiration date of a data set is the current date, the data set is
considered expired. The system will delete it or write over it if requested in a DD
statement.

Deleting before Expiration Date or Retention Period

If it is necessary to delete a data set before the expiration date or retention period,
do one of the following:

v For data sets cataloged in a VSAM catalog, use the DELETE command; this
makes the space occupied by the data set available for reallocation. See z/OS
DFSMS Access Method Services for Catalogs.

v For data sets cataloged in a non-VSAM catalog, delete the catalog entry with the
IEHPROGM utility as described in z/OS DFSMSdfp Utilities.

v For the data set control block, use a SCRATCH macro with the OVRD
parameter; this makes the space occupied by that data set available for
reallocation. See z/OS DFSMSdfp Advanced Services.

Examples
//D3 DD DSNAME=DSDEF,DISP=(NEW,KEEP),UNIT=3350,
// VOLUME=SER=668888,SPACE=(TRK,(1,1)),EXPDT=2006/032
//D4 DD DSNAME=DSFS.PGM,DATACLAS=DCLAS2,DISP=(NEW,KEEP),
// EXPDT=2006/032

Release of Unused Direct Access Space in End Processing
To request that the system release direct access space that was allocated to an
output data set but was not used, code:
 //ddname DD SPACE=(TRK,(quantity),RLSE),...
 //ddname DD SPACE=(CYL,(quantity),RLSE),...
 //ddname DD SPACE=(blklgth,(quantity),RLSE),...

The system releases space only if the data set is open for output and the last
operation was a write. The system does not release space if the step terminates
abnormally. The system ignores a request to release unused space if:

Data Set Resources - End Processing

17-10 z/OS V1R4.0 MVS JCL User’s Guide

v Another job is sharing the data set.

v Another task in the same job is processing an OPEN, CLOSE, EOV, or FEOV
request for the data set.

v Another data control block is open for the data set.

v The CLOSE macro instruction contains TYPE=T.

Example
//DD3 DD DSNAME=DEPTDS,DISP=(NEW,KEEP),UNIT=DISK,
// SPACE=(CYL,20,RLSE)

Disposition End Processing of Volume
Disposition of the tape or direct access volume containing a data set is controlled
by coding:
 //ddname DD VOLUME=(PRIVATE,RETAIN,...),...
 //ddname DD VOLUME=(PRIVATE,...),...
 //ddname DD VOLUME=(,RETAIN,...),...

RETAIN Support

RETAIN can be specified only for tape.

In a JES3 system, RETAIN is supported only by MVS. If coded on a DD statement
for a data set on an MVS-managed tape device, the system designates the volume
as retained. If coded on a DD statement for a data set on a JES3-managed tape
device, JES3 ignores the RETAIN parameter when issuing KEEP/RETAIN
messages and when performing unallocation at the end of the job. However, if
RETAIN is coded for a data set on a JES3-managed tape device and the tape
volume is to be shared with a later step, JES3 designates the volume as retained.

Disposition of Removable Volumes
If a removable direct access or tape volume is designated as private, the system
asks the operator to demount the volume at the end of the step and place it in the
installation library.

If a removable direct access or tape volume is designated as public, the system
keeps it mounted for other uses, unless the device is needed for another allocation.

Tape Volumes in JES2

When disposing of tape volumes, a JES2 system marks them as follows:

v Keep (K): The volume is to be placed in the installation tape library. K is the
designation for a private tape volume.

v Scratch (D): The volume can be used whenever a DD statement makes a
nonspecific request for a tape volume. D is the designation for a public tape
volume.

Examples
Volumes treated as private, demounted, and kept:

//EX1 DD DSNAME=A,DISP=(NEW,KEEP),VOLUME=PRIVATE,UNIT=TAPE
//EX2 DD DSNAME=B,DISP=OLD,VOLUME=SER=223344,UNIT=DISK
//EX3 DD DSNAME=H,DISP=OLD

Data Set Resources - End Processing

Chapter 17. Data Set Resources - End Processing 17-11

Volumes treated as public and kept mounted for other uses:

//EX4 DD DSNAME=D,UNIT=TAPE
//EX5 DD DSNAME=&&TEMP,UNIT=DISK

Volume Retention
The system designates a tape volume as retained (R) if the volume contains one of
the following:

v A passed data set

v A data set requested by a DD statement with RETAIN in the VOLUME
parameter.

Retained Private Tape Volume

If RETAIN is coded or the data set is passed, the system designates the volume as
R, does not demount the mounted volume, and does not rewind the tape when the
data set is closed or at the end of the step.

Retained Public Tape Volume

If RETAIN is coded or the data set is passed, the system designates the volume as
R, but asks the operator to demount it and keep it near for possible use later.

Use of Retained Volumes

In a multiple step job, if there is a period when a volume is not in use, you can
specify RETAIN to try to keep the volume mounted. If the volume remains mounted,
the operator does not have to demount and remount it, and the job does not have
to wait until the volume is remounted.

Demounting of Passed or Retained Volumes

Even if you specify RETAIN or a disposition of PASS, the operator can still unload
the volume or, if the device is needed for another step in the same or another job,
the system can allocate the device and demount the volume. Either can occur when
the device on which the volume is mounted is not allocated to the job step that
specified RETAIN or, for unlabeled tapes, when the volume requires verification.

Example
//EXDD DD DSNAME=TAPEDS,DISP=(NEW,CATLG,DELETE),UNIT=3420,
// VOLUME=(PRIVATE,RETAIN)

Note: CLOSE options may cause RETAIN to be overridden. See the discussion of
the CLOSE macro in z/OS DFSMS Macro Instructions for Data Sets.

Data Set Resources - End Processing

17-12 z/OS V1R4.0 MVS JCL User’s Guide

Part 5. Tasks for Requesting Sysout Data Set Resources

This part describes how to create system output (sysout) data sets, which are
output data sets processed by JES2 or JES3. The task required to request a sysout
data set is:

v Identification

Other tasks can optionally be performed:
v Description
v Protection
v Performance control
v Processing control
v End processing
v Output destination
v Output formatting
v Output limiting

Processing Output: The two ways to process output data sets are:

v Define a sysout data set and how it is to be processed and allow the job entry
subsystem to process it. JES writes the data set to a spool device. Then JES or
an external writer prints or punches it on a local or remote printer or punch, or
JES transmits it to a remote output device or node.

v Define an output data set and specify in the DD statement UNIT parameter the
device on which the output should be written. The system allocates the device
exclusively to the job. Data management routines write the output from the
program to the specified device.

This part describes how sysout data sets are defined and processed.

© Copyright IBM Corp. 1988, 2003

Part 5. Tasks for Requesting Sysout Data Set Resources

 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 18. Sysout Resources - Identification
 Table 18-1. Identification Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Identification

as a sysout data
set

SYSOUT

name (last
qualifier)

DSNAME

of output class class on SYSOUT CLASS MSGCLASS on
JOB with
SYSOUT=* or
CLASS=* and
SYSOUT=(,)

of data set on
3540 Diskette
Input/Output Unit

DSID

Identification as a Sysout Data Set
To define an output data set as a sysout data set, code:

 //ddname DD SYSOUT=class
 //ddname DD SYSOUT=(class,writer-name,form-name)
 //ddname DD SYSOUT=(class,writer-name,code-name)
 //ddname DD SYSOUT=*
 //ddname DD SYSOUT=(,)

Note that SMS does not manage sysout data sets.

Naming a Sysout Data Set

To assign the last qualifier of the system-generated name for a sysout data set,
code the DSNAME parameter with the SYSOUT parameter.

Examples

//EX1 DD SYSOUT=B,DSNAME=&&PRTREC
//EX2 DD SYSOUT=(A,,FM23)
//EX3 DD SYSOUT=(F,,CD3),DSNAME=&&PAYOUT
//EX4 DD SYSOUT=*

//EX5 OUTPUT CLASS=E
//EX6 DD SYSOUT=(,),OUTPUT=*.EX5

Identification of Output Class
The installation sets up output classes during JES2 or JES3 initialization. Each
class is assigned processing characteristics and is printed or punched on certain
devices. The output class for a sysout data set is identified by coding one of the
following:

© Copyright IBM Corp. 1988, 2003 18-1

//ddname DD SYSOUT=class

 //jobname JOB acct,progname,MSGCLASS=class
 //stepname EXEC PGM=x
 //ddname DD SYSOUT=*
 //name OUTPUT CLASS=class
 //ddname DD SYSOUT=(,),OUTPUT=*.name

For example, the installation could define output class W to contain low-priority
output; class Y to contain output to be printed on a special form, so that the JCL
would not need to request the form; and class J to be reserved for high-volume
output.

To print the sysout data set and messages from the job on the same output listing,
see “Printing Job Log and Sysout Data Sets Together” on page 7-7.

Examples

//X1 DD SYSOUT=A

//JOBA JOB ,’I. BUTLER’,MSGCLASS=B
//ST1 EXEC PGM=ANY
//X2 DD SYSOUT=*
//OUTA OUTPUT CLASS=C
//X3 DD SYSOUT=(,),OUTPUT=*.OUTA

Identification of Data Set on 3540 Diskette Input/Output Unit
Data sets are written on 3540 diskette volumes by coding:

 //ddname DD SYSOUT=(class,diskette-writer),DSID=id
 //ddname DD SYSOUT=(class,diskette-writer),DSID=(id,V)

A system command, from the operator or in the input stream, must start the diskette
writer before the DD statement is processed.

For more information on the 3540 diskette, see 3540 Programmer’s Reference. For
information on external writers, see z/OS JES2 Initialization and Tuning Guide or
z/OS JES3 Initialization and Tuning Guide.

Example

//EX7 DD SYSOUT=(W,WRT3540),DSID=MYDS5

Sysout Resources - Identification

18-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 19. Sysout Resources - Description
 Table 19-1. Description Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Description

of data attributes DCB

Description of Data Attributes
Your application program may require the coding of the DCB parameter on the DD
statement. And, it might operate differently if the DCB parameter is coded.

If you specify an external writer on the SYSOUT parameter, the external writer may
require the DCB parameter on the DD statement that was used to create the data
set.

Consult the documentation for your application program or the external writer, if
appropriate, for further information about DCB subparameters that may be required
or recommended.

Example

//OUT3 DD SYSOUT=(H,WRTPGM),DCB=(RECFM=FB,LRECL=133,BLKSIZE=532)

© Copyright IBM Corp. 1988, 2003 19-1

Sysout Resources - Description

19-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 20. Sysout Resources - Protection
 Table 20-1. Protection Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Protection

of printed output DPAGELBL
SYSAREA

Protection of Printed Output
To add security protection to the printed output of sysout data sets, code the
following parameters on the OUTPUT JCL statement:

 //name OUTPUT DPAGELBL=YES,SYSAREA=YES

Use DPAGELBL=YES to indicate that the system should print the security label on
each page of printed output. Use SYSAREA=YES to indicate that the system
should reserve an area for the security label on each page of printed output.

The security label represents a security level and categories defined to the
Resource Access Control Facility (RACF) by the security administrator at your
installation. Use the DPAGELBL and SYSAREA parameters on an OUTPUT JCL
statement as instructed by your security administrator.

Example

//JOBB JOB 1,’JIM WOOSTER’,SECLABEL=CONF

//PSRPT OUTPUT DPAGELBL=YES,SYSAREA=YES,FORMS=TSEC

© Copyright IBM Corp. 1988, 2003 20-1

Sysout Resources - Protection

20-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 21. Sysout Resources - Performance Control
 Table 21-1. Performance Control Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Performance Control

by queue
selection

 PRTY

Performance Control by Queue Selection (non-APPC)
The PRTY parameter has no effect in an APPC scheduling environment. If you
code PRTY, the system will check it for syntax and ignore it.

You can specify the priority at which the sysout data set enters the output queue by
coding:

 //name OUTPUT PRTY=nnn

Use the priority to increase a sysout data set’s priority so it will be printed sooner
than it otherwise might have been.

Ignoring Priority

The installation can instruct the system to ignore a priority specified on an OUTPUT
JCL statement.

Example

//OUTA OUTPUT PRTY=255
//MYDS DD SYSOUT=F,OUTPUT=*.OUTA

This example requests the highest priority possible.

© Copyright IBM Corp. 1988, 2003 21-1

Part 5. Tasks for Requesting Sysout Data Set Resources

21-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 22. Sysout Resources - Processing Control
 Table 22-1. Processing Control Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Processing Control

with additional
parameters

OUTPUT
code-name on
SYSOUT

DEFAULT

by segmenting SEGMENT

with other data
sets

class on SYSOUT THRESHLD
(JES3 only)
GROUPID
(JES2 only)

by external writer writer-name on
SYSOUT

WRITER

by mode PRMODE

by holding HOLD class on
SYSOUT

CLASS
OUTDISP

by suppressing
output

DUMMY class on
SYSOUT

OUTDISP=
PURGE on
OUTPUT

with checkpointing CKPTLINE
CKPTPAGE
CKPTSEC

by Print Services
Facility (PSF)

 AFPSTATS
COLORMAP
COMSETUP
DUPLEX
FORMDEF
FORMLEN
INTRAY
OFFSETXB
OFFSETXF
OFFSETYB
OFFSETYF
PAGEDEF
PRTERROR
RESFMT
USERLIB

by Infoprint
Server

PORTNO

Processing Control with Additional Parameters
To control how a sysout data set is processed, specify parameters on the DD
statement with the SYSOUT parameter. Code the following statements to supply
additional parameters:

© Copyright IBM Corp. 1988, 2003 22-1

By explicit reference to earlier OUTPUT JCL statement:
 //name OUTPUT parameters
 //ddname DD SYSOUT=class,OUTPUT=*.name,parameters

 By implicit reference to earlier default OUTPUT JCL statement:
 //name OUTPUT DEFAULT=YES,parameters
 //ddname DD SYSOUT=class,parameters

Adding Parameters from OUTPUT JCL Statement
JES combines the parameters from the sysout DD statement and one OUTPUT
JCL to write the sysout data set. If a parameter appears on both statements, JES
uses the parameter from the DD statement.

Note that if an OUTPUT JCL statement contains both JESDS and CLASS
parameters, this CLASS will override the MSGCLASS parameter on the JOB
statement for the specified JES data sets.

Multiple References

A sysout DD statement can reference more than one OUTPUT JCL statement. For
each reference to an OUTPUT JCL statement, JES processes the sysout data set
using the parameters of the DD statement combined with the parameters from one
of the OUTPUT JCL statements.

Example 1
//JOB1 JOB ,’DEPT. 25’
//OUT1 OUTPUT COPIES=8,DEST=FRANCE
//OUT2 OUTPUT COPIES=2,FORMS=A,DEFAULT=YES
//STEP1 EXEC PGM=DEMENT
//OUT3 OUTPUT DEFAULT=YES,COPIES=5,DEST=REMULAC
//INPUT DD DSN=RHINO
//MFK1 DD SYSOUT=A
//MFK2 DD SYSOUT=B,OUTPUT=*.OUT1

This example shows an explicit reference to an OUTPUT JCL statement. Note that
with an explicit reference, all default OUTPUT JCL statements are ignored.

v The system processes the output from DD statement MFK1 using the options on
the OUTPUT statement OUT3 (1) because MFK1 does not contain an OUTPUT
parameter and (2) because OUT3 contains DEFAULT=YES and is in the same
step as MFK1. MFK1 cannot implicitly reference the job-level default statement
OUT2 because of step-level default statement OUT3. If STEP1 had not
contained OUT3, MFK1 would have referenced statement OUT2.

v The system processes the output from DD statement MFK2 according to the
processing options on the job-level OUTPUT JCL statement OUT1 because DD
statement MFK2 explicitly references OUT1 using the OUTPUT parameter. Note
that the system ignores the processing options on all default OUTPUT JCL
statements (OUT2 and OUT3).

Example 2
//EXAMP JOB MSGCLASS=A
//OUT1 OUTPUT DEFAULT=YES,DEST=COMPLEX7,FORMS=BILLING,
// CHARS=(AOA,AOB),COPIES=2
//OUT2 OUTPUT DEFAULT=YES,DEST=COMPLEX1
//STEP1 EXEC PGM=ORDERS
//R1 DD SYSOUT=A
//R2 DD SYSOUT=A
//STEP2 EXEC PGM=BILLING
//OUT3 OUTPUT DEFAULT=YES,DEST=COMPLEX3

Sysout Resources - Processing Control

22-2 z/OS V1R4.0 MVS JCL User’s Guide

//B1 DD SYSOUT=A
//B2 DD SYSOUT=A,OUTPUT=(*.OUT3,*.OUT2)
//STEP3 EXEC PGM=REPORTS
//OUT4 OUTPUT FORMS=SHORT,DEST=COMPLEX1
//RP1 DD SYSOUT=A
//RP2 DD SYSOUT=A,OUTPUT=(*.STEP2.OUT3,*.OUT1)
//

This example shows how the position of the OUTPUT JCL statement affects the
processing of the sysout data sets.

In STEP1, the system processes DD statements R1 and R2 using the processing
options specified on job-level OUTPUT JCL statements OUT1 and OUT2 because
v DEFAULT=YES is specified on OUTPUT JCL statements OUT1 and OUT2, and
v there is no OUTPUT JCL statement with DEFAULT=YES within STEP1.
v The OUTPUT parameter is not specified on DD statements R1 and R2.

In STEP2, the system processes DD statement B1 using the processing options
specified on OUTPUT JCL statement OUT3 because:

v DEFAULT=YES is specified on OUTPUT JCL statement OUT3 and OUTPUT JCL
statement OUT3 is within the job step STEP2.

v The OUTPUT parameter is not specified on DD statement B1.

v OUTPUT JCL statement OUT3 is within STEP2; therefore, the system ignores
the DEFAULT=YES specification on job-level OUTPUT JCL statements OUT1
and OUT2 when processing DD statement B1.

In STEP2, the system processes DD statement B2 using the processing options
specified on OUTPUT JCL statements OUT3 and OUT2 because:

v Both of the OUTPUT JCL statements are explicitly referenced from the SYSOUT
statement. Explicitly-referenced OUTPUT JCL statements can be in any previous
procedure or step, before the DD statement in the current step, or at the
job-level.

v Note that default OUTPUT JCL statement OUT1 is ignored when processing the
data set defined by DD statement B2 because B2 explicitly references OUTPUT
JCL statements OUT3 and OUT2.

In STEP3, the system processes DD statement RP1 using the output processing
options specified on the job-level OUTPUT JCL statements OUT1 and OUT2
because:

v DEFAULT=YES is specified on OUTPUT JCL statements OUT1 and OUT2, and

v no OUTPUT JCL statement with DEFAULT=YES is coded within STEP3.

v The OUTPUT parameter is not specified on DD statement RP1.

Note: In STEP3, OUTPUT JCL statement OUT4 is not used at all because it does
not have DEFAULT=YES coded, and no DD statement explicitly references
OUT4.

In STEP3, DD statement RP2 is processed using OUTPUT statements OUT3 and
OUT1. You can explicitly reference an OUTPUT JCL statement in another step if
you use a fully qualified reference, such as the reference to OUTPUT statement
OUT3 used on DD statement RP2.

You may explicitly reference an OUTPUT JCL statement with DEFAULT=YES
coded, such as the reference to OUT1 from DD statement RP2. The system

Sysout Resources - Processing Control

Chapter 22. Sysout Resources - Processing Control 22-3

ignores the DEFAULT parameter and uses the remaining processing options
according to the normal rules that apply when coding explicit references.

Example 3
//STEP1 EXEC PGM=MFK
//OUT1 OUTPUT COPIES=6,DEST=NY,FORMS=BILLS
//OUT2 OUTPUT COPIES=2,DEST=KY,FORMS=LOG
//REF1 DD SYSOUT=A,OUTPUT=(*.OUT1,*.OUT2)

In the example, two sets of output are created from DD statement REF1. One of
the sets will go to NY and have six copies printed on the form defined as BILLS.
The other set will go to KY and have two copies printed on the form defined as
LOG.

Adding Parameters from JES2 /*OUTPUT Statement
JES2 can combine the parameters from the sysout DD statement and a referenced
/*OUTPUT statement to write the sysout data set.

Because the OUTPUT JCL statement provides greater output processing
capabilities, an installation should consider changing its /*OUTPUT statements to
OUTPUT JCL statements.

Be careful when doing the change. Before the change, the third subparameter in
the DD SYSOUT parameter references a JES2 /*OUTPUT statement. But, if the DD
statement references an OUTPUT JCL statement, the system interprets the third
subparameter as the name of forms to be used in processing the sysout data set.

Adding Parameters from JES3 //*FORMAT Statement
A JES3 //*FORMAT statement can explicitly reference a sysout DD statement to
make JES3 combine the parameters from the sysout DD statement and the
//*FORMAT statement to write the sysout data set.

Because the OUTPUT JCL statement provides greater output processing
capabilities, an installation should consider changing its //*FORMAT statements to
OUTPUT JCL statements.

Processing Control by Segmenting
To control the size of a sysout data set segment, code the SEGMENT parameter on
a sysout DD statement. SEGMENT is supported in JES2 systems only.

When you code SEGMENT, you determine the number of logical line-mode pages
to be written to a sysout data set. This allows you to print part of the output while a
job is still executing, or to use multiple printers to print multiple segments.
 //DD1 DD SYSOUT=A,SEGMENT=200

In this example, when the system writes 200 pages to a sysout data set, the
segment is spun and a new segment is allocated.

Processing Control with Other Data Sets

Using Output Class
JES prints on the same output listing the output from all sysout data sets for a job if
the class, forms, FCB, UCS, and DEST parameters are the same and if an external

Sysout Resources - Processing Control

22-4 z/OS V1R4.0 MVS JCL User’s Guide

writer is not specified. The installation can choose to print all sysout data sets that
specify the same output class as the JOB statement MSGCLASS parameter on the
same listing, even though the forms, FCB, UCS, and sometimes the DEST
parameters are different.

Example 1
//DD1 DD SYSOUT=(C,,FM34)
//DD2 DD SYSOUT=(C,,FM34)

The sysout data sets for DD1 and DD2 are written on the same output listing.

Example 2
//JEX JOB ,’M. BIRDSALL’,MSGCLASS=D
//ST1 EXEC PGM=WKRPT
//DDA DD SYSOUT=*
//DDB DD SYSOUT=D

The sysout data sets for DDA and DDB are written on the same output listing as
the job log.

Using Sysout Data Set Size in a JES3 System
To control whether all the sysout data sets in one class from a job are printed
together or as separate units of work, code one of the following groups:
 //name OUTPUT THRESHLD=limit
 //ddname1 DD SYSOUT=class,OUTPUT=*.name
 //ddname2 DD SYSOUT=class,OUTPUT=*.name

 //name OUTPUT DEFAULT=YES,CLASS=class,THRESHLD=limit
 //ddname1 DD SYSOUT=(,)
 //ddname2 DD SYSOUT=(,)

JES3 calculates the size of the sysout data set(s) as the number of records
multiplied by the number of copies requested. When the size exceeds the
THRESHLD value, JES3 creates a new unit of work on a data set boundary, and
queues it for printing.

Use of THRESHLD

If a sysout data set or all the sysout data sets in the same class from a job are
large, or large numbers of copies are requested, the THRESHLD limit can be used
to print copies simultaneously by different printers.

Examples
//OUTA OUTPUT THRESHLD=10000
//MYDS1 DD SYSOUT=C,OUTPUT=*.OUTA,COPIES=5
//GRDS DD SYSOUT=C,OUTPUT=*.OUTA,COPIES=3

//OUTB OUTPUT DEFAULT=YES,CLASS=C,THRESHLD=10000
//MYDS1 DD SYSOUT=(,),COPIES=5
//GRDS DD SYSOUT=(,),COPIES=3

Using Groups in a JES2 System
In JES2 systems, you can group sysout data sets together by coding:
 //name OUTPUT GROUPID=output-group

Sysout data sets in the same group are processed together in the same location
and time.

Sysout Resources - Processing Control

Chapter 22. Sysout Resources - Processing Control 22-5

Subgroups

You can always group sysout data sets with similar processing characteristics. But,
you cannot group sysout data sets with different output classes, destinations,
processing modes (PRMODE), writer names, or groupids. If you use GROUPID to
group dissimilar data set, the system breaks down the group into subgroups of
sysout data sets with identical classes, destinations, processing modes, writer
names, and groupids.

Demand Setup Groups

The installation controls whether a group can contain sysout data sets with different
printer setup requirements, such as forms. Such groups are called demand setup
groups. If demand setup grouping is not permitted, data sets with different setup
requirements are placed in different subgroups.

Example
//TEST1 JOB MSGCLASS=B
//OUT1 OUTPUT GROUPID=GRP10,UCS=PN,DEST=RT6,DEFAULT=YES
//STEP1 EXEC PGM=REPORT
//RP1 DD SYSOUT=A
//RP2 DD SYSOUT=B
//RP3 DD SYSOUT=A

In this example, two subgroups are created for the three sysout data sets because
of the different output classes. One subgroup contains data sets RP1 and RP3; the
other contains RP2.

Processing Control by External Writer
To request that a sysout data set be processed by an IBM-supplied or user-written
external writer, rather than the installation’s JES, code one of the following:
 //ddname DD SYSOUT=(class,writer-name)

 //name OUTPUT WRITER=writer-name
 //ddname DD SYSOUT=class,OUTPUT=*.name

 //name OUTPUT DEFAULT=YES,WRITER=writer-name
 //ddname DD SYSOUT=class

For an external writer, the operator determines which sysout data sets are selected.
This can cause certain data sets to be printed on the same listing even though all
of the forms, FCB, UCS, and DEST parameters are not the same. The operator
must start the external writer for a sysout data set to be printed or punched.

For more information on external writers, see z/OS JES2 Initialization and Tuning
Guide or z/OS JES3 Initialization and Tuning Guide.

Examples
//DS1 DD SYSOUT=(H,MYWRIT)

//OTA OUTPUT WRITER=MYWRIT
//DS1 DD SYSOUT=H,OUTPUT=*.OTA

//OTB OUTPUT DEFAULT=YES,WRITER=MYWRIT
//DS1 DD SYSOUT=H

Sysout Resources - Processing Control

22-6 z/OS V1R4.0 MVS JCL User’s Guide

Processing Control by Mode
To request the correct process mode for a sysout data set, code one of the
following:
 //name OUTPUT PRMODE=LINE
 //name OUTPUT PRMODE=PAGE
 //name OUTPUT PRMODE=process-mode

JES schedules the sysout data set to a printer that can operate in the specified
mode.

Examples
//OTS OUTPUT PRMODE=PAGE
//ABC DD SYSOUT=F,OUTPUT=*.OTS

JES schedules data set ABC to a 3800 Printing Subsystem Model 3, which can
print in page mode. Output class F must handle processing for a 3800 model 3.

Processing Control by Holding
Some of the reasons for holding a data set are:

v To make it available for inspection from a time-sharing terminal.

v If it is very large, to prevent it from monopolizing an output device until smaller
data sets are written.

v If it requires special forms, to delay its printing or punching until the operator can
supply the forms.

Holding Using the DD Statement
To hold a sysout data set on the JES spool and delay its printing or punching, code
one of the following:
 //ddname DD SYSOUT=class,HOLD=YES

 Or where the specified class is designated
 as a held class during JES initialization:

 //ddname DD SYSOUT=class

 //name OUTPUT CLASS=class
 //ddname DD SYSOUT=(,),OUTPUT=*.name

 //name OUTPUT DEFAULT=YES,CLASS=class
 //ddname DD SYSOUT=(,)

The HOLD parameter overrides any disposition specified on the OUTDISP
parameter.

Holding Using the OUTPUT JCL Statement
Use the OUTDISP parameter with JES2 only.

You can code a sysout data set disposition that is based on the success of the job.
The OUTDISP parameter of the OUTPUT JCL statement allows you to specify a
normal sysout disposition and an abnormal sysout disposition. Note that the
OUTDISP abnormal sysout disposition is not supported in an APPC scheduling
environment. The system uses the normal disposition when the job completes

Sysout Resources - Processing Control

Chapter 22. Sysout Resources - Processing Control 22-7

successfully. It uses the abnormal disposition when the job does not complete
successfully, due to a JCL error, an abend, or job termination resulting from a
condition code.

For example, the following statement will cause the system to hold a sysout data
set when the job completes normally or abnormally.
 //HELDDS OUTPUT OUTDISP=(HOLD,HOLD)

Coding OUTDISP=(HOLD,HOLD) is equivalent to coding HOLD=YES on the DD
statement.

The OUTDISP parameter allows you to specify the following dispositions for a
sysout data set:

v HOLD allows the system to hold a sysout data set. When the user or operator
releases the data set, the system prints and then purges it.

v WRITE allows you to print a sysout data set and purge it after it is printed.

v KEEP allows you to print and keep the sysout data set. After it is printed, the
disposition changes to LEAVE.

v LEAVE allows the system to hold a sysout data set until the user or operator
releases it. When the sysout data set is released, the disposition changes to
KEEP.

v PURGE allows you to delete a sysout data set without printing it.

Releasing Held Data Set
When a data set is to be held, JES places the sysout data set on a hold queue until
the operator releases it. The system issues no message to tell the operator that the
data set is being held. Therefore, when the data set can be processed, ask the
operator to release it or release it from a TSO/E userid with a TSO/E OUTPUT
command. See z/OS TSO/E Command Reference for information on TSO/E
commands.

Examples
//DD1 DD SYSOUT=C,HOLD=YES

//DD2 DD SYSOUT=J

//OT1 OUTPUT CLASS=J
//DD3 DD SYSOUT=(,),OUTPUT=*.OT1

//OT2 OUTPUT DEFAULT=YES,CLASS=J
//DD4 DD SYSOUT=(,)

In all these examples, the installation defined class J as a held class during JES
initialization.

Processing Control by Suppressing Output

Using Dummy Status to Suppress Output
If you want to suppress processing of a sysout data set, assign it a dummy status
by coding:
 //ddname DD DUMMY,SYSOUT=class,...

Effect of Dummy Sysout Data Set

Sysout Resources - Processing Control

22-8 z/OS V1R4.0 MVS JCL User’s Guide

When DUMMY is coded, the system ignores the SYSOUT parameter and bypasses
all output operations to the spool. The sysout data set is not printed or punched.

Use of a Dummy Sysout Data Set

Defining a sysout data set as a dummy data set is useful when testing a program;
you do not want data sets printed until you are sure they contain meaningful output.

Nullifying a Dummy Sysout Data Set

When the sysout data set is to be processed, remove the DUMMY parameter from
the sysout DD statement.

Examples
//EXA DD DUMMY,SYSOUT=A
//EXB DD DUMMY,SYSOUT=(B,WRT),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

Using Class to Suppress Output in a JES2 System
To suppress the printing or punching of a sysout data set in a JES2 system, code
one of the following:
 //ddname DD SYSOUT=class

 //name OUTPUT CLASS=class
 //ddname DD SYSOUT=(,),OUTPUT=*.name

 //name OUTPUT DEFAULT=YES,CLASS=class
 //ddname DD SYSOUT=(,)

During JES2 initialization, the installation must specify that the requested class
contains data sets that are deleted before being printed or punched.

Use of Output Suppression

Use this technique to suppress the output of started tasks.

Examples
//DD2 DD SYSOUT=S

//OT1 OUTPUT CLASS=S
//DD3 DD SYSOUT=(,),OUTPUT=*.OT1

//OT2 OUTPUT DEFAULT=YES,CLASS=S
//DD4 DD SYSOUT=(,)

In all these examples, the installation defined class S as an output suppression
class.

Using the OUTPUT JCL Statement to Suppress Output in a JES2
System

By coding the PURGE subparameter of the OUTDISP parameter, you can keep a
sysout data set from printing.

Example
//NOPRT OUTPUT OUTDISP=(PURGE,PURGE)

Sysout Resources - Processing Control

Chapter 22. Sysout Resources - Processing Control 22-9

Processing Control with Checkpointing
To write a checkpoint while JES is processing a sysout data set, code one of the
following:
 //name OUTPUT CKPTLINE=number,CKPTPAGE=number
 //ddname DD SYSOUT=class
 .
 .
 //name OUTPUT CKPTSEC=number
 //ddname DD SYSOUT=class

Example 1
//J2 JOB ,MHB
//S1 EXEC PGM=ABC
//OT2 OUTPUT CKPTLINE=60,CKPTPAGE=40
//DDB DD SYSOUT=C

JES writes a checkpoint every 40 logical pages. A logical page contains 60 lines.

Example 2
//J2 JOB ,MHB
//S1 EXEC PGM=DEF
//OT2 OUTPUT CKPTSEC=60
//DDB DD SYSOUT=D

JES writes a checkpoint every 60 seconds.

Processing Control by Print Services Facility
To control how the Print Services Facility (PSF) prints a sysout data set on a
page-mode printer (such as a 3800 Printing Subsystem Model 3), code:
 //name OUTPUT FORMDEF=membername,PAGEDEF=membername
 //ddname DD SYSOUT=class,OUTPUT=*.name

The FORMDEF and PAGEDEF parameters identify members in the library named
in the cataloged procedure used to initialize the PSF, or in a library specified on the
USERLIB parameter of the OUTPUT JCL statement. These members contain
statements that specify how the PSF is to process the sysout data set.

Examples
//OTPSF OUTPUT FORMDEF=FSBILL,PAGEDEF=PSLONG
//MYPNT DD SYSOUT=N,OUTPUT=*.OTPSF

To control how PSF prints a sysout data set on a microfilm device, code:
 //name OUTPUT COMSETUP=H1SETUP

The COMSETUP parameter specifies the name of a microfile setup resource that
contains setup information for the functional subsystem (FSS) microfilm devices.

Identifying a Library to PSF
The USERLIB parameter of the OUTPUT JCL statement identifies a library
containing AFP resources to PSF. Libraries specified on USERLIB are concatenated
to system libraries, and PSF checks them before the system libraries for the
requested resources.

Sysout Resources - Processing Control

22-10 z/OS V1R4.0 MVS JCL User’s Guide

Use of User Libraries
USERLIB allows you to maintain copies of AFP resources that are not accessible to
all users. This enables you to:

v Maintain copies of secure resources, such as signatures, in private data sets

v Keep resources that are being tested in a private data set during the testing
period

v Personalize and maintain your own library.

The USERLIB parameter is supported for deferred-printing mode. It is not supported
for direct-printing mode.

Considerations for Library Data Sets
PSF dynamically allocates libraries that you specify on the USERLIB parameter.
The library is allocated to the PSF address space, with a shared data set
disposition. After processing the sysout data set, PSF dynamically unallocates the
library. When planning to use the USERLIB parameter, take into account the
dynamic allocation system constraints on performance.

Requirements

The following are requirements for the libraries.

v If RACF is installed on your system, the job submitter must have RACF read
access to the libraries specified on USERLIB.

v The libraries must be cataloged in a catalog available to PSF/MVS.

v The libraries must be accessible to PSF during its processing of the sysout data
set. Note that the time of processing might be days after job submission, and
processing might occur on a node other than that which submitted the job.

See PSF/MVS Application Programming Guide for more information on USERLIB.

Sysout Resources - Processing Control

Chapter 22. Sysout Resources - Processing Control 22-11

Part 5. Tasks for Requesting Sysout Data Set Resources

22-12 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 23. Sysout Resources - End Processing
 Table 23-1. End Processing Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

End processing

unallocation
FREE
SPIN

Unallocation End Processing
Normally JES2 or JES3 schedules all sysout data sets from a job for printing or
punching when all the system-managed data sets are processed at the end of the
job.

Spinning Data Sets

Sysout data sets can be scheduled for printing or punching when the data set is
closed before the job completes execution. Code:

 //ddname DD SYSOUT=class,FREE=CLOSE

These data sets are called spin data sets.

If the step continues processing after the close, the sysout data set may be printed
concurrently with the last of the step’s execution.

Use of Spinning

Use FREE=CLOSE to let JES begin printing or punching a sysout data set before a
long job step is finished.

Example

//STEP1 EXEC PGM=VERYLONG
//SHORT DD SYSOUT=C,FREE=CLOSE

To make a sysout data set available for printing immediately, code SPIN=UNALLOC
on the sysout DD statement, and dynamically unallocate the data set. Dynamic
unallocation can be explicit or through FREE=CLOSE.

© Copyright IBM Corp. 1988, 2003 23-1

Part 5. Tasks for Requesting Sysout Data Set Resources

23-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 24. Sysout Resources - Destination Control
 Table 24-1. Destination Control Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Destination Control

to local or remote
device or to
another node

DEST
class on
SYSOUT

DEST
COMPACT

 /*ROUTE PRINT
/*ROUTE
PUNCH

ORG on //*MAIN

to another
processor

 ACMAIN on
//*MAIN

to internal reader INTRDR as
writer-name on
SYSOUT

/*EOF
/*DEL
/*PURGE
/*SCAN

to terminal TERM

to assist in sysout
distribution

ADDRESS
BUILDING
DEPT
NAME
ROOM
TITLE

 DEST on
/*OUTPUT

Destination Control to Local or Remote Device or to Another Node
To send a sysout data set to a local or remote device or to another node, code one
of the following:

 //ddname DD SYSOUT=class,DEST=destination

 //name OUTPUT DEST=destination,COMPACT=compaction-table-name
 //ddname DD SYSOUT=class,OUTPUT=*.name

 In a JES2 system:
 /*ROUTE PRINT destination
 //ddname DD SYSOUT=class

 /*ROUTE PUNCH destination
 //ddname DD SYSOUT=class

 In a JES3 system, to send to group, node, or remote work station:
 //jobname JOB acct,progname
 //*MAIN ORG=group-or-node.remote
 //stepname EXEC PGM=x
 //ddname DD SYSOUT=class

Multiple Destinations
For example, to print a report in Chicago, New York, Paris, and Los Angeles, code
and reference four OUTPUT JCL statements. Specify a different destination on
each; you can code only one destination on each OUTPUT JCL statement.

© Copyright IBM Corp. 1988, 2003 24-1

By referencing OUTPUT JCL statements, you can specify 128 different destinations
for a single sysout data set. In addition, you can use each OUTPUT JCL statement
to specify processing options for each destination.

Keep in mind that, if a JCL syntax error occurs, the system will ignore the OUTPUT
JCL statement and the output will not reach its destination.

Controlling Output Destination in a JES2 Network
In a network, you can route sysout data sets from any node or work station to any
node or work station.

Unless overridden by the operator or directed by a destination parameter, a sysout
data set is printed or punched at the submitting location. To route a sysout data set
to another location, use the following:

WRITER parameter on OUTPUT JCL statement
Specifies an external writer for the sysout data set being defined.

WRITER-NAME subparameter on DD SYSOUT statement
Specifies an external writer for the sysout data set being defined.

Note: The WRITER-NAME subparameter on a DD statement overrides an
OUTPUT JCL WRITER parameter.

Electronic Mail and External Writer Processing
Processing for the WRITER ID parameter and USERID parameter for sysout
data sets is different with version 4 JES2. Destination userids are not external
writer IDs. Processes which select output based on WRITER ID (such as
external writer programs) will use the value specified on the WRITER ID
parameter when selecting sysout. Processes which select output based on
DESTINATION USERID (such as TSO/E RECEIVE) will use the value specified
on the DEST parameter when selecting sysout.

v A TSO/E user can issue the TSO/E command RECEIVE and obtain
electronic mail if:
– Sysout userid matches TSO/E userid and the sysout WRITER ID is not

specified.
– Sysout userid and sysout WRITER ID match TSO/E userid
– Sysout userid Matches TSO/E userid and sysout WRITER ID does not

match his TSO/E userid.

v A TSO/E user cannot issue the TSO/E command RECEIVE and obtain
electronic mail if:
– Sysout WRITER ID matches TSO/E userid and sysout userid does not

match his TSO/E userid.
– Sysout WRITER ID matches TSO/E userid and sysout userid is not

specified.

v An external writer program can process sysout if:
– Sysout WRITER ID matches external writer program name and sysout

userid is not specified.
– Sysout WRITER ID and sysout userid match external writer program

name.
– Sysout WRITER ID matches external writer program name and TSO/E

userid does not.

v An external writer program cannot process sysout if:
– Sysout WRITER ID is not specified and external writer program name

matches sysout userid.

Sysout Resources - Destination Control

24-2 z/OS V1R4.0 MVS JCL User’s Guide

– Sysout WRITER ID is specified and does not match external writer
program name and sysout userid matches external writer program name.

Networking Considerations
On destination node for output received by NJE (including spool offload):

v If both external writer and destination userid are specified, and both are
identical, JES2 will blank out the WRITER ID field during network processing.
In this case, a TSO/E user can issue a RECEIVE command and process the
sysout as electronic mail. An external writer program cannot process the
sysout.

v If both external writer and destination userid are specified, and both are
different, the destination userid and the WRITER ID are processed as
specified in the JCL. Either a TSO/E destination userid or an external writer
program can process the sysout.

v If destination userid only is specified, external WRITER ID is not filled in. A
TSO/E user can do a RECEIVE command if his userid matches the
destination userid. An external writer program cannot process the sysout.
– TSO/E user ‘CARNEY’ can receive - userid matches WRITER ID

//CHRISBX JOB...............
//CLW OUTPUT DEST=DB2.CARNEY
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=(A,CARNEY),OUTPUT=(*.CLW)

 The $LJ,ALL command will show this as:

 DEST=CARNEY
 W=CARNEY

– TSO/E user ‘MWAI’ cannot receive - TSO/E userid does not match sysout
userid (even though WRITER ID does):

//EGGBERTX JOB.............
//TJW OUTPUT DEST=PLPSC.EGGBERT
//STEP1 EXEC PGM=.......
//SYSPRINT DD SYSOUT=(A,MWAI),OUTPUT=(*.TJW)

 The $LJ,ALL command will show this as:

 DEST=EGGBERT
 W=MWAI

– TSO/E user ‘BERNER’ can receive - TSO/E userid matches in an NJE
sysout case - job executes on non-local node:

//BERNERX JOB.............
//ROUTE XEQ SNJMAS3
//DXP OUTPUT DEST=PLPSC.BERNER
//STEP1 EXEC PGM=.......
//SYSPRINT DD SYSOUT=(A,BERNER),OUTPUT=(*.DXP)

 The $LJ,ALL command will show this as:

 DEST=BERNER
 W=(none)

Note: External WRITER ID is discarded in NJE sysout processing.

DEST parameter on DD SYSOUT statement
Specifies the destination for the sysout data set being defined.

Sysout Resources - Destination Control

Chapter 24. Sysout Resources - Destination Control 24-3

class subparameter in SYSOUT parameter on DD statement
Specifies the destination for the sysout data set being defined. During JES2
initialization, a destination must have been defined for the requested class.

DEST parameter on OUTPUT JCL statement
Specifies the destination for all referencing sysout data sets.

DEST parameter on /*ROUTE PRINT or PUNCH statement
Specifies the destination of a job’s sysout data sets for any node or any remote
work station. All sysout data sets that have no specific destination go to the
destination in the /*ROUTE statement.

Note: If you send a job to execute and the job has a ROUTE PRINT RMTnnn
statement or a ROUTE PRINT Unnnn statement, JES2 returns the
output to RMTnnn or Unnnn at the node of origin. For JES2 to print the
output at RMTnnn at the executing node, code DEST=NnnnRmmm on
an OUTPUT JCL statement or sysout DD statement.

Default Output Destination
If the destination for a data set is stated specifically on the /*OUTPUT control
statement, or the JCL OUTPUT or DD statements, the specified destination is
used. However, data sets routed to a remote terminal cannot be controlled by
the remote operator. Such data sets are owned by the location specified as the
default for the job.

 For data sets with no destination specified, the default destination is determined
by the device from which the job entered the system.

 In the case of an internal reader, the DEST parameter for the internal reader
allocation determines the default destination. If the DEST parameter is not
specified, the default destination for the output is the location at which the job
was originally submitted. For example, a job submitted on NODEA can be
routed to NODEB for execution; however, the output is returned to NODEA
unless the DEST parameter was specified as NODEB or some other location.

Examples

 //DDFAR1 DD SYSOUT=E,DEST=NYC

 //DDFAR2 DD SYSOUT=F

 //OTFAR OUTPUT DEST=NYC,COMPACT=TABCM
 //DD1 DD SYSOUT=E,OUTPUT=*.OTFAR

 /*ROUTE PRINT NYC
 //DD3 DD SYSOUT=E

 /*ROUTE PUNCH NYC
 //DD4 DD SYSOUT=P

For the second example, output class F must be defined during JES2 initialization
as having a destination, for example, a node in Los Angeles.

Controlling Output Destination in a JES3 Network
In a network, you can route sysout data sets from any node or work station to any
node or work station.

A sysout data set is printed or punched at the submitting location unless:

v The job was submitted from TSO and routed to the NJE network for execution.
Unless overridden by the //*MAIN ORG parameter or directed by a destination

Sysout Resources - Destination Control

24-4 z/OS V1R4.0 MVS JCL User’s Guide

parameter, the sysout data set will be routed to the node from which the job was
submitted and the destination ANYLOCAL.

v The sysout data set destination was changed by the ORG parameter on the
MAIN statement, or by a destination parameter.

To route a sysout data set to another location, use the following:

DEST parameter on DD SYSOUT Statement
Specifies the destination for the sysout data set being defined.

DEST parameter on OUTPUT JCL Statement
Specifies the destination for all referencing sysout data sets.

ORG parameter on //*MAIN Statement
Specifies an origin group, network node, or remote work station for the job’s
sysout data sets.

Output Destination when Remote Job Processing in JES3

For jobs from remote work stations submitted through remote job processing (RJP),
the sysout data sets are returned to the originating work station unless another
destination is requested in a //*MAIN statement with an ORG parameter, OUTPUT
JCL statement, or DD statement.

Examples

//DDFAR DD SYSOUT=E,DEST=NYC

//OTFAR OUTPUT DEST=NYC,COMPACT=TABCM
//DD1 DD SYSOUT=E,OUTPUT=*.OTFAR

//JEX3 JOB ,’MAIL A60’
//*MAIN ORG=NYC
//S3 EXEC PGM=GHI
//DD4 DD SYSOUT=E

Destination Control to Another Processor in a JES3 System
To direct all of a job’s sysout data sets to a TSO/E userid on another processor,
code:

 //*MAIN ACMAIN=processor-id,USER=userid

Example

//J1 JOB ,MHB
//*MAIN ACMAIN=2,USER=D17MHB
//S1 EXEC PGM=PROG67
//DDA DD SYSOUT=G

Destination Control to Internal Reader
To make a sysout data set from a job step be a new job, direct the data set to the
internal reader. The input to the internal reader must be the JCL statements to run
the later job. Code:

 //ddname DD SYSOUT=(class,INTRDR)

Sysout Resources - Destination Control

Chapter 24. Sysout Resources - Destination Control 24-5

INTRDR is an IBM-reserved name identifying the internal reader. The system
places the output records for the internal reader into a buffer in your address space.
When this buffer is full, JES places the contents on the spool; later, JES retrieves
the new job from the spool.

Message Class for Internal Reader Job

The output class in the SYSOUT parameter becomes the default message class for
the job going into the internal reader, unless you code the MSGCLASS parameter
on the JOB statement.

Limiting Records to Internal Reader

Use the OUTLIM parameter on the DD statement to limit the number of logical
records written to the internal reader.

Sending Internal Reader Buffer Directly to JES

Instead of waiting for the buffer in your address space to fill up, send the contents
of the internal reader buffer directly to JES by coding as the last record in the job:

/*EOF
This control statement delimits the job in the data set and makes it eligible for
immediate processing.

/*DEL
This control statement cancels the job in the data set and schedules it for
immediate output processing. The output consists of any JCL submitted,
followed by a message indicating that the job was deleted before execution.

/*PURGE
For JES2 only, this control statement cancels the job in the data set and
schedules it for purge processing; no output is produced for the job.

/*SCAN
For JES2 only, this control statement requests that JES2 only scan the job in
the data set for JCL errors. The job is not to be executed.

References

For more information on the internal reader, see z/OS MVS Programming:
Assembler Services Guide.

Example

//JOBA JOB D58JTH,HIGGIE
//GENER EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A,DEST=NODE1
//SYSUT2 DD SYSOUT=(M,INTRDR)
//SYSUT1 DD DATA
//JOBB JOB D58JTH,HIGGIE,MSGLEVEL=(1,1)
//REPORTA EXEC PGM=SUMMARY
//OUTDD1 DD SYSOUT=*
//INPUT DD DSN=REPRTSUM,DISP=OLD
//JOBC JOB D58JTH,HIGGIE,MSGLEVEL=(1,1)
//REPORTB EXEC PGM=SUMMARY
//OUTDD2 DD SYSOUT=A,DEST=NODE2
//INPUT DD DSN=REPRTDAT,DISP=OLD
/*EOF

Sysout Resources - Destination Control

24-6 z/OS V1R4.0 MVS JCL User’s Guide

v JOBA executes program IEBGENER.

v Program IEBGENER reads JOBB and JOBC from in-stream data set SYSUT1
and writes them to sysout data set SYSUT2, which is submitted to the internal
reader.

v The message class for JOBB and JOBC is M, the SYSOUT class specified on
DD statement SYSUT2.

v The message class for sysout data set OUTDD1 is M because SYSOUT=* is
coded.

v The /*EOF statement specifies that the preceding jobs are to be sent immediately
to JES for input processing.

Destination Control to Terminal
To indicate that a sysout data set is going to a terminal for a TSO/E user, code:

 //ddname DD TERM=TS

In a batch job, TERM=TS is treated as though SYSOUT=* were coded. For an
output data set in a foreground job, TERM=TS specifies that the data set is to be
sent to the TSO/E userid.

Example

//DD1 DD TERM=TS

Destination Control to Assist in Sysout Distribution
The following OUTPUT JCL parameters print the specified values on the separator
pages of output for a sysout data set. An installation can use this information to
assist in sysout distribution.

 //OUTDS OUTPUT ADDRESS=delivery-address,BUILDING=building-id,
 // DEPT=department,NAME=preferred-name,ROOM=room,TITLE=report-title

The system prints the values for each parameter on sections of the separator pages
reserved for each parameter.

Sysout Resources - Destination Control

Chapter 24. Sysout Resources - Destination Control 24-7

Part 5. Tasks for Requesting Sysout Data Set Resources

24-8 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 25. Sysout Resources - Output Formatting
 Table 25-1. Output Formatting Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Output formatting

to any printer COPIES
FCB
form-name
on SYSOUT

UCS

COPIES
FCB
FORMS
LINECT
(JES2 only)
UCS
CONTROL

forms, copies, and
linect on JOB JES2
accounting
information

COPIES,
FORMS, and
LINECT on
/*JOBPARM

to 3800 Printing
Subsystem in
addition to most
of printer
parameters

BURST
CHARS
FLASH
MODIFY
DCB=OPTCD=J

BURST
CHARS
FLASH
MODIFY
TRC

 BURST on
/*JOBPARM

to 3211 Printer
with indexing
feature

 INDEX (JES2
LINDEX only)

to punch COPIES
FCB
form-name
on SYSOUT
DCB=FUNC=I

COPIES
FCB
FORMS

of dumps on 3800
Printing
Subsystem

CHARS=DUMP
FCB=STD3

CHARS=DUMP
FCB=STD3

Output Formatting to Any Printer
To control the formatting of a printed sysout data set, code combinations of the
following:

 In a JES2 or JES3 system:
 //ddname DD SYSOUT=(class,writer-name,form-name),COPIES=number,
 // FCB=fcb-name,UCS=character-set-code

 //name OUTPUT CONTROL=spacing,COPIES=number,FCB=fcb-name,
 // FORMS=form-name,UCS=character-set-code

 In a JES2 system:
 //name OUTPUT LINECT=number

 //jobname JOB (,,,,,forms,copies,,linect)

 /*JOBPARM COPIES=number,FORMS=form-name,LINECT=number

Most of the formatting parameters can be coded on several statements. If coded
more than once for a sysout data set, JES selects one parameter according to
override rules and uses it.

© Copyright IBM Corp. 1988, 2003 25-1

Parameters coded on the JOB statement or /*JOBPARM statement apply to all the
sysout data sets in the job.

3203 Printer Model 5 in a JES2 System

JES2 treats the 3203 Model 5 the same as a 3211 Printer with the following
exceptions:

v The universal character sets, specified in UCS parameters, for the 3203 Model 5
are the same as for the 1403 printer.

v The 3203 Model 5 does not support indexing; therefore, INDEX and LINDEX
parameters are ignored.

v The installation cannot explicitly identify the 3203 Model 5 printer to JES2 during
JES2 initialization. MVS passes the 3203 Model 5 identification to JES2 through
the unit control block (UCB).

For further information on UCS and UCB, see z/OS DFSMSdfp Advanced Services.

Example 1

//DD1 DD SYSOUT=(A,FMS3),COPIES=5,
// FCB=IMG7,UCS=AN

//OTA OUTPUT CONTROL=DOUBLE,COPIES=5,FCB=IMG7,
// FORMS=FMS3,UCS=AN

Use these parameters in any system.

Example 2

//OTB OUTPUT LINECT=60

//J1 JOB (,,,,,FMS3,5,,60)

/*JOBPARM COPIES=5,FORMS=FMS3,LINECT=60

Use these parameters only in a JES2 system.

Output Formatting to 3800 Printing Subsystem
To control the formatting of a sysout data set printed on a 3800 Printing Subsystem,
code combinations of the following parameters and statements, in addition to the
parameters used for printing on any printer.

 In any system:
 //ddname DD SYSOUT=class,BURST=value,CHARS=table-name,
 // COPIES=(,(group-value)),FLASH=overlay-name,
 // MODIFY=(module-name,trc),DCB=OPTCD=J

 //name OUTPUT BURST=value,CHARS=table-name,
 // COPIES=(,(group-value)),FLASH=overlay-name,
 // MODIFY=(module-name,trc),TRC=value

 In a JES2 system:
 /*JOBPARM BURST=value

Most of the formatting parameters can be coded on several statements. If coded
more than once for a sysout data set, JES selects one parameter according to
override rules and uses it.

Sysout Resources - Output Formatting

25-2 z/OS V1R4.0 MVS JCL User’s Guide

The BURST parameter coded on the /*JOBPARM statement applies to all sysout
data sets printed on 3800 printers in the job.

Copy Modification
For sysout data sets printed on a 3800, you can modify selected copies of output
by specifying a copy modification module name in the MODIFY parameter. Copy
modification allows printing predefined data on all pages of a copy or copies of the
data set.

For example, you may want to vary column headings or explanatory remarks on
different copies of the same printed page. Or, you may want to personalize copies
with the recipient’s name, address, and other information. Or, you may want to print
blanks or certain characters, such as asterisks, to suppress the printing of variable
data on particular copies of a page.

The predefined data is created as a copy modification module and stored in
SYS1.IMAGELIB using the IEBIMAGE utility program. For information on using
IEBIMAGE, see z/OS DFSMSdfp Utilities.

Copy modification is done with other printers by using short or spot carbons in the
forms set.

Character Arrangements
Specify in the CHARS parameter character-arrangement tables to be used when
printing on a 3800.

For the names of tables for the 3800, see the 3800 Programmer’s Guide. The
installation should maintain a list of the names of available tables.

Modifying Character-Arrangement Tables

Using the IEBIMAGE utility program, the installation can modify or construct
character-arrangement tables and graphic character modification modules to
substitute characters or use installation-designed characters.

Dynamically Selecting Character-Arrangement Tables

To select a character-arrangement table for each logical record in the sysout data
set, the second character of each logical record must contain a trc character and
you must code either of the following:
v TRC in the OUTPUT JCL statement
v OPTCD=J in the DD statement DCB parameter

For details on using the OPTCD subparameter, see the 3800 Programmer’s Guide.

When Data Set Printed on 3800 or Other Printers

You can code a UCS parameter even though a CHARS parameters is also coded;
do this if the output might be printed on a 3800 or some other printer. If a printer
other than the 3800 is used, the system uses the UCS parameter and ignores the
CHARS parameter.

If UCS is coded and CHARS is not, and the sysout data set is printed on a 3800,
the system uses the UCS value as the default value for the missing CHARS
parameter.

Sysout Resources - Output Formatting

Chapter 25. Sysout Resources - Output Formatting 25-3

Example 1

//DD8 DD SYSOUT=B,BURST=YES,CHARS=(GS10,GU12),
// COPIES=(,(5)),FLASH=BILL,MODIFY=(IMG9,1)

//OT4 OUTPUT BURST=YES,CHARS=(GS10,GU12),COPIES=(,(5)),
// FLASH=BILL,MODIFY=(IMG9,1)

Use these parameters in any system.

Example 2

/*JOBPARM BURST=Y

Use this statement only in a JES2 system.

Output Formatting to 3211 Printer with Indexing Feature in a JES2
System

To request that output printed by JES2 on a 3211 Printer with the indexing feature
be shifted from the normal page margins, code:

 To indent left margin:
 //name OUTPUT INDEX=number

 To move right margin:
 //name OUTPUT LINDEX=number

JES2 ignores these parameters if the output is printed on a device other than a
3211. To send a sysout data set to a 3211, specify the output class set aside by the
installation for printing on a 3211.

Example 1

//OT10 OUTPUT INDEX=6
//DD3 DD CLASS=W,OUTPUT=*.OT10

This example indents the left margin 5 spaces.

Example 2

//OT11 OUTPUT LINDEX=9
//DD3 DD CLASS=W,OUTPUT=*.OT11

This example moves the right margin in 8 spaces from the usual location.

Output Formatting to Punch
To format punched output from sysout data sets, code:

 //ddname DD SYSOUT=(class,form-name),COPIES=number,
 // FCB=fcb-name,DCB=FUNC=I

 //name OUTPUT COPIES=number,FCB=fcb-name,FORMS=form-name

Sysout Resources - Output Formatting

25-4 z/OS V1R4.0 MVS JCL User’s Guide

Interpretation of Punched Cards
Cards punched by a 3525 Card Punch are interpreted if JES processes the sysout
data set and if the following is coded:

 //ddname DD SYSOUT=class,DCB=FUNC=I

If the data set is punched on a different card punch, JES ignores the FUNC=I
subparameter.

The installation can define a special output class for 3525 output.

Card interpretation by an external writer is an operator-specified function.

Interpretation in a JES3 System

Punched output may or may not be interpreted depending on the
installation-defined standard for the output class.

Examples

//DD17 DD SYSOUT=(Q,PUN6),COPIES=5,
// FCB=IMG4,DCB=FUNC=I

//OT3 OUTPUT COPIES=5,FCB=IMG4,FORMS=PUN6
//DD18 DD SYSOUT=Q,OUTPUT=*.OT3,DCB=FUNC=I

Output Formatting of Dumps on 3800 Printing Subsystem
You can request a high-density dump on the 3800 through two parameters on the
DD statement for the dump data set or on an OUTPUT JCL statement referenced
by the dump DD statement:
v FCB=STD3. This parameter produces dump output at 8 lines per inch.
v CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same
statement or one on each statement.

Examples

//SYSABEND DD SYSOUT=J,FCB=STD3,CHARS=DUMP

//DUMPOT OUTPUT FCB=STD3,CHARS=DUMP
//SYSABEND DD SYSOUT=J,OUTPUT=*.DUMPOT

Sysout Resources - Output Formatting

Chapter 25. Sysout Resources - Output Formatting 25-5

Sysout Resources - Output Formatting

25-6 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 26. Sysout Resources - Output Limiting
 Table 26-1. Output Limiting Task for Requesting Sysout Data Set Resources

TASKS FOR
REQUESTING
SYSOUT
RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2
Statements

JES3
Statements DD OUTPUT JCL Other JCL

Output Limiting

 OUTLIM
lines and cards
on JOB
JES2 accounting
information

BYTES, CARDS,
LINES, and
PAGES on JOB

BYTES, CARDS,
LINES, and
PAGES on
/*JOBPARM

BYTES, CARDS,
LINES, and
PAGES on
//*MAIN

Output Limiting
To limit the number of logical records in a sysout data set, specify a maximum
number of records to be written to a sysout data set or to all sysout data sets in a
job.

By establishing a limit, you avoid printing a useless, huge listing if your program
enters an endless loop that contains a write instruction to a sysout data set. After
reaching the limit, the system abnormally terminates the step, or sends a warning
message to the operator.

Limiting Output in an APPC Scheduling Environment
To limit the output for a job in an APPC scheduling environment, use the DD
statement OUTLIM parameter or the JOB statement BYTES, CARDS, LINES, and
PAGES parameters.

The DD OUTLIM parameter limits the number of logical records in a single sysout
data set, or in an internal reader data set. Code the DD statement as follows:

 //ddname DD SYSOUT=class,OUTLIM=number

Use the JOB statement BYTES, CARDS, LINES, or PAGES parameter to limit the
number of logical records written to all sysout data sets in a job. Code the job
statement as follows:

 //JOB1 JOB accounting-info,programmer,BYTES=(number)

 //JOB2 JOB accounting-info,programmer,CARDS=(number)

 //JOB3 JOB accounting-info,programmer,LINES=(number)

 //JOB4 JOB accounting-info,programmer,PAGES=(number)

In an APPC scheduling environment, you cannot use JES control statements to limit
output. If you code a JES2 control statement in an APPC scheduling environment, it
will cause a JCL error. If you code a JES3 control statement, the system will ignore
it and the statement will appear as a comment in the job listing.

© Copyright IBM Corp. 1988, 2003 26-1

Limiting Output in a Non-APPC Scheduling Environment
Valid parameters in a non-APPC scheduling environment include the DD OUTLIM
parameter and the JOB statement BYTES, CARDS, LINES, and PAGES
parameters described in “Limiting Output in an APPC Scheduling Environment” on
page 26-1. In addition, you can code JES control statements to limit the output for
your job.

 For all sysout data sets in a job in a JES2 system:
 //jobname JOB (,,,lines,cards),...
 /*JOBPARM BYTES=number
 /*JOBPARM CARDS=number
 /*JOBPARM LINES=number
 /*JOBPARM PAGES=number

 For all sysout data sets in a job in a JES3 system:
 //*MAIN BYTES=number
 //*MAIN CARDS=number
 //*MAIN LINES=number
 //*MAIN PAGES=number

The system limits output based on the limit specified on the JOB statement. If you
do not code a JOB statement limit, the system uses the limit specified on the
//*MAIN or /*JOBPARM statements. If you do not code a limit on the JOB,
/*JOBPARM, or //*MAIN statements, the system uses the installation default limit,
specified at JES initialization.

Actions when Limit Exceeded
On the JOB statement parameters and the JES3 //*MAIN statement, you can
indicate the action that the system is to take when the output limit is exceeded.
 WARNING: The system issues a warning message to the operator.
 CANCEL: The system terminates the job.
 DUMP: The system terminates the job and dumps the step being executed

when the limit was exceeded.

Example 1

//DD1 DD SYSOUT=T,OUTLIM=3000

Use this example in any system.

Example 2

//JOBA JOB (,,,4,2000),’T. KATZ’

/*JOBPARM BYTES=40

/*JOBPARM CARDS=2000

/*JOBPARM LINES=4

/*JOBPARM PAGE=400

Use these examples in a JES2 system.

Example 3

//*MAIN BYTES=(40,WARNING)

Sysout Resources - Output Limiting

26-2 z/OS V1R4.0 MVS JCL User’s Guide

//*MAIN CARDS=(20,CANCEL)

//*MAIN LINES=(4,DUMP)

//*MAIN PAGES=(400,WARNING)

Use these examples in a JES3 system.

Example 4

//JOB1 JOB BYTES=(40,WARNING)

//JOB2 JOB CARDS=(20,CANCEL)

//JOB3 JOB LINES=(4,DUMP)

//JOB4 JOB PAGES=(400,WARNING)

Use these examples in any system.

Sysout Resources - Output Limiting

Chapter 26. Sysout Resources - Output Limiting 26-3

Part 5. Tasks for Requesting Sysout Data Set Resources

26-4 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 27. Sysout Resources - USERDATA OUTPUT JCL
Keyword

The information provided on the user-oriented keyword, USERDATA, is defined and
used by the installation. The installation can use certain JES or PSF installations
exits to access the keyword specification.

References
Refer to the following manuals for additional information on potential uses for the
USERDATA keyword.

v z/OS JES2 Installation Exits and z/OS JES2 Macros, section “Choosing Which
Exits to Implement” lists JES2 installation exits 1, 15 and 23 as pertaining to
SYSOUT separator page processing.

v z/OS JES3 Customization, section “Installation Exits Listed by JES3 Function”
lists JES3 installation exits 20, 21, 23 and 45 as pertaining to SYSOUT separator
page processing.

v PSF/MVS System Programming Guide , lists PSF installation exits 1, 2 and 3 as
pertaining to SYSOUT separator page processing.

Examples
Example 1

//OUTUSER1 OUTPUT USERDATA=’My Own Installation Sub-Title’,
// TITLE=’My Own SYSOUT Title’
//DD1 DD SYSOUT=A,OUTPUT=*.OUTUSER1

In this example, the SYSOUT data set DD1 refers to the OUTPUT JCL statement
named OUTUSER1. If the installation intended to print the USERDATA value on the
SYSOUT data set separator page, and if the installation coded the necessary
changes to the JES and PSF SYSOUT data set separator page exits, the TITLE
value enclosed within the apostrophes (My Own SYSOUT Title) would be printed on
the SYSOUT data set separator page. In addition, the USERDATA value enclosed
within the apostrophes (My Own Installation Sub-Title) would be printed on the
SYSOUT data set separator page.

Example 2

//OUTUSER2 OUTPUT USERDATA=’LOCALDEV=Option1’
//DD2 DD SYSOUT=A,OUTPUT=*.OUTUSER2

In this example, the SYSOUT data set DD2 refers to the OUTPUT JCL statement
named OUTUSER2. If the installation defined its own keyword (LOCALDEV) and
the valid values for the keyword, and if the installation made the necessary changes
to the appropriate JES and PSF exits, the installation would have to parse the
USERDATA value to determine if the installation keyword and value were specified.
The LOCALDEV keyword value of Option1 could then be used by the installation.

© Copyright IBM Corp. 1988, 2003 27-1

27-2 z/OS V1R4.0 MVS JCL User’s Guide

Part 6. Examples

This part contains examples of sets of job control statements. Some are for useful
processing and some show particular techniques. For examples of the job control
statements needed to use utilities, see z/OS DFSMSdfp Utilities.

© Copyright IBM Corp. 1988, 2003

Part 6. Examples

 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 28. Example - Assemble, Linkedit, and Go

Example 1

The following example uses the COND parameter to conditionally execute job
steps.

//USUAL JOB A2317P,’MAE BIRDSALL’
//ASM EXEC PGM=IEV90,REGION=256K, EXECUTES ASSEMBLER
// PARM=(OBJECT,NODECK,’LINECOUNT=50’)
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=3509 PRINT THE ASSEMBLY LISTING
//SYSPUNCH DD SYSOUT=B PUNCH THE ASSEMBLY LISTING
//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR THE MACRO LIBRARY
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
// SPACE=(CYL,(10,1))
//SYSLIN DD DSNAME=&&OBJECT,UNIT=SYSDA, THE OUTPUT OBJECT MODULE
// SPACE=(TRK,(10,2)),DCB=BLKSIZE=3120,DISP=(,PASS)
//SYSIN DD * IN-STREAM SOURCE CODE
 .
 .
 code
 .
/*
//LKED EXEC PGM=HEWL, EXECUTES LINKAGE EDITOR
// PARM=’XREF,LIST,LET’,COND=(8,LE,ASM)
//SYSPRINT DD SYSOUT=* LINKEDIT MAP PRINTOUT
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE) INPUT OBJECT MODULE
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
// SPACE=(CYL,(10,1))
//SYSLMOD DD DSNAME=&&LOADMOD,UNIT=SYSDA, THE OUTPUT LOAD MODULE
// DISP=(MOD,PASS),SPACE=(1024,(50,20,1))
//GO EXEC PGM=*.LKED.SYSLMOD,TIME=(,30), EXECUTES THE PROGRAM
// COND=((8,LE,ASM),(8,LE,LKED))
//SYSUDUMP DD SYSOUT=* IF FAILS, DUMP LISTING
//SYSPRINT DD SYSOUT=*, OUTPUT LISTING
// DCB=(RECFM=FBA,LRECL=121)
//OUTPUT DD SYSOUT=A, PROGRAM DATA OUTPUT
// DCB=(LRECL=100,BLKSIZE=3000,RECFM=FBA)
//INPUT DD * PROGRAM DATA INPUT
 .
 .
 data
 .
/*
//

This example shows JCL that can be used to:

v Assemble object code entered in the input stream: the step named ASM.

v Link edit the object module, if the assembly did not result in a return code of 8 or
higher: the step named LKED.

v Execute the link edited module, if neither the assembly nor the linkage editing
resulted in a return code of 8 or higher: the step named GO.

Example 2

The following example of Assemble, Linkedit, and Go uses the
IF/THEN/ELSE/ENDIF statement construct to conditionally execute job steps.

//USUAL JOB A2317P,’MAE BIRDSALL’
//ASM EXEC PGM=IEV90,REGION=256K, EXECUTES ASSEMBLER

© Copyright IBM Corp. 1988, 2003 28-1

// PARM=(OBJECT,NODECK,’LINECOUNT=50’)
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=3509 PRINT THE ASSEMBLY LISTING
//SYSPUNCH DD SYSOUT=B PUNCH THE ASSEMBLY LISTING
//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR THE MACRO LIBRARY
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
// SPACE=(CYL,(10,1))
//SYSLIN DD DSNAME=&&OBJECT,UNIT=SYSDA, THE OUTPUT OBJECT MODULE
// SPACE=(TRK,(10,2)),DCB=BLKSIZE=3120,DISP=(,PASS)
//SYSIN DD * IN-STREAM SOURCE CODE
 .
 .
 code
 .
/*
//RC1OK IF (ASM.RC LT 8) THEN EVALUATES RC FROM STEP ASM
//LKED EXEC PGM=HEWL, EXECUTES LINKAGE EDITOR
// PARM=’XREF,LIST,LET’
//SYSPRINT DD SYSOUT=* LINKEDIT MAP PRINTOUT
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE) INPUT OBJECT MODULE
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
// SPACE=(CYL,(10,1))
//SYSLMOD DD DSNAME=&&LOADMOD,UNIT=SYSDA, THE OUTPUT LOAD MODULE
// DISP=(MOD,PASS),SPACE=(1024,(50,20,1))
//RC2OK IF (LKED.RC LT 8) THEN
//GO EXEC PGM=*.LKED.SYSLMOD,TIME=(,30), EXECUTES PROGRAM
//SYSUDUMP DD SYSOUT=* IF FAILS, DUMP LISTING
//SYSPRINT DD SYSOUT=*, OUTPUT LISTING
// DCB=(RECFM=FBA,LRECL=121)
//OUTPUT DD SYSOUT=A, PROGRAM DATA OUTPUT
// DCB=(LRECL=100,BLKSIZE=3000,RECFM=FBA)
//INPUT DD * PROGRAM DATA INPUT
 .
 .
 data
 .
/*
//ENDRC2 ENDIF
//ENDRC1 ENDIF
//

This example shows JCL that can be used to:

v Assemble object code entered in the input stream: the step named ASM.

v Link edit the object module, if the assembly resulted in a return code of lower
than 8: the step named LKED.

v Nest IF/THEN/ELSE/ENDIF statement constructs

v Execute the link edited module, if the assembly and the linkage editing resulted
in a return code of lower than 8: the step named GO.

Example - Assemble, Linkedit, and Go

28-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 29. Example - Multiple Output

//EXAMP JOB MSGCLASS=A
//OUT1 OUTPUT DEFAULT=YES,DEST=COMPLEX7,FORMS=BILLING,
// CHARS=(AOA,AOB),COPIES=2
//OUT2 OUTPUT DEFAULT=YES,DEST=COMPLEX3
//OUT3 OUTPUT DEST=COMPLEX1
//STEP1 EXEC PGM=ORDERS
//OUT4 OUTPUT DEFAULT=YES,DEST=COMPLEX9
//R1 DD SYSOUT=A,OUTPUT=*.OUT3
//R2 DD SYSOUT=A
//STEP2 EXEC PGM=BILLING
//B1 DD SYSOUT=A
//B2 DD SYSOUT=A
 This job requests that the system produce nine sets of output: eight sets of job
output and one set for the system-managed output data set.

Set 1
In STEP1, DD statement R1 explicitly references OUTPUT JCL statement
OUT3. Therefore, the system produces one set of output at COMPLEX1 for DD
statement R1 combined with OUTPUT JCL statement OUT3.

Set 2
In STEP1, DD statement R2 implicitly references OUTPUT JCL statement
OUT4 for both of the following reasons:
v DD statement R2 does not contain an OUTPUT parameter.
v STEP1 contains an OUTPUT JCL statement with DEFAULT=YES.

 Therefore, the system produces one set of output at COMPLEX9 for DD
statement R2 combined with OUTPUT JCL statement OUT4.

Sets 3 through 8
In STEP2, DD statements B1 and B2 implicitly reference OUTPUT JCL
statements OUT1 and OUT2 for all of the following reasons:
v DD statements B1 and B2 do not contain OUTPUT parameters.
v STEP2 does not contain an OUTPUT JCL statement with DEFAULT=YES.
v DEFAULT=YES is specified on OUTPUT JCL statements OUT1 and OUT2.

 Therefore, the system produces three sets of output each for DD statements B1
and B2:
 Sets 3 and 4 at COMPLEX7 for DD statement B1 combined with OUTPUT

JCL statement OUT1.
 Set 5 at COMPLEX3 for DD statement B1 combined with OUTPUT JCL

statement OUT2.
 Sets 6 and 7 at COMPLEX7 for DD statement B2 combined with OUTPUT

JCL statement OUT1.
 Set 8 at COMPLEX3 for DD statement B2 combined with OUTPUT JCL

statement OUT2.

Set 9
The system-managed output data set is processed locally because of the
MSGCLASS parameter on the JOB statement.

© Copyright IBM Corp. 1988, 2003 29-1

Example - Multiple Output

29-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 30. Example - Obtaining Output in a JES2 System

/*PRIORITY 5
//OUTJOB JOB BAKER,PERFORM=100,MSGCLASS=J
/*SETUP SCHLIB
/*JOBPARM COPIES=2,LINECT=20,ROOM=223,FORMS=GRN1
//OUT1 OUTPUT JESDS=ALL
//OUT2 OUTPUT DEST=PRINTER8,FCB=STD3,FORMS=2PRT,UCS=TN
//STEP1 EXEC PGM=TESTSYSO
//DD1 DD DSN=DATA,DISP=OLD,UNIT=3350,VOL=SER=SCHLIB
//DD2 DD DSN=&&TEMP,UNIT=3350,DISP=(NEW,DELETE),
 SPACE=(TRK,(10,5))
//DD3 DD SYSOUT=A,OUTPUT=*.OUT2
//DD4 DD SYSOUT=(A,,GRPH)
//DD5 DD SYSOUT=L,OUTPUT=*.OUT1,DEST=HDQ
 This example shows the use of JES2 and JCL statements to obtain output.

1. The job will be selected at priority level 5.

2. The job will run in performance group 100; the meaning of 100 is defined by the
installation. All system messages are to be written to output class J.

3. The JOBPARM statement indicates that:

a. Two copies of the entire job-related output will be printed.

b. No more than 20 lines per page will be printed (LINECT=20). You can
override this LINECT parameter by coding the LINECT parameter on the
OUTPUT JCL statement.

c. The programmer’s room number is 233. This appears on the separator page
and is used for distributing output.

d. Forms name GRN1 is the name of the form to be used by all data sets
unless a specific form is defined on a DD, JES2 /*OUTPUT, or JCL
OUTPUT statement.

4. The OUTPUT JCL statement OUT2 indicates that:

a. The destination for the output is PRINTER8. PRINTER8 does not
necessarily have to be defined as a printer, it can be defined as any output
device.

b. If the printer has the forms control buffer feature, STD3 must be the name of
a member of SYS1.IMAGELIB. STD3 defines the special forms control
buffer image to be used for processing any data set that has *.OUT2 coded
in the SYSOUT parameter.

c. Forms name 2PRT is the name of the form JES2 uses for printing any data
sets that have *.OUT2 coded in the SYSOUT parameter (for example, DD3).

d. TN is the train or UCS used in output processing.

5. The SETUP statement indicates that volume SCHLIB should be mounted before
this job begins processing.

6. SYSOUT data sets (except DD3 and DD4) are printed on the form called
GRN1. The DD4 SYSOUT data set is printed on the form called GRPH; the
DD3 SYSOUT data set is printed on the form called 2PRT because the code
name subparameter of DD3 contains the value *.OUT2 (referring to the
OUTPUT JCL statement).

7. The output data set from DD5 and the accompanying data sets will be sent to
HDQ.

© Copyright IBM Corp. 1988, 2003 30-1

Example - Obtaining Output in a JES2 System

30-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 31. Example - Obtaining Output in a JES3 System

//OUTJOB JOB BAKER,PERFORM=100,MSGCLASS=J
//*FORMAT PR,DDNAME=,COPIES=2,FORMS=GRN1
//*FORMAT PR,DDNAME=DD3,DEST=PRINTER8,CARRIAGE=STD3,
//*FORMS=2PRT,TRAIN=TN
//STEP1 EXEC PGM=TESTSYSO
//DD1 DD DSN=DATA,UNIT=3350,VOL=SER=SCHLIB,
// DISP=(OLD,KEEP),SPACE=(TRK,(5,2))
//DD2 DD DSN=&TEMP,UNIT=3350,DISP=(NEW,DELETE),
// SPACE=(TRK,(10,5))
//DD3 DD SYSOUT=(A)
//DD4 DD SYSOUT=(A,,GRPH)
//DD5 DD SYSOUT=L
 This example shows some of the JES3 and JCL statements that can be used to
obtain output.

1. All system messages are to be written to output class J.

2. The first //*FORMAT statement indicates that:

a. All print data sets (according to class) that do not have //*FORMAT
statements will be printed according to the parameters on this statement
unless the output class defines specific processing characteristics because
DDNAME is coded without a name (DDNAME=,) and applies to all output
data sets for the job.

b. JES3 uses the form named GRN1 and prints two copies of all data sets
unless a specific form or number of copies is defined on a DD statement or
for a class by the installation.

3. The second //*FORMAT statement indicates that:

a. The destination for the output is a printer that has an installation-defined
name of PRINTER8.

b. If PRINTER8 has the forms control buffer feature, STD3 must be the name
of a member of SYS1.IMAGELIB. STD3 defines the special forms control
buffer image or carriage tape to be used for processing the job.

c. Forms name 2PRT is the name of the forms for DD3.

d. TN means test printing on a 1403, 3211, or 3203-5 printer.

© Copyright IBM Corp. 1988, 2003 31-1

Example - Obtaining Output in a JES3 System

31-2 z/OS V1R4.0 MVS JCL User’s Guide

Chapter 32. Example - Identifying Data Sets to the System

/*PRIORITY 8
//DATASETS JOB FREEMAN,MSGLEVEL=1
//STEP1 EXEC PGM=IEFBR14
//D1 DD DSN=ABC,DISP=(NEW,CATLG),UNIT=3350,
// VOL=SER=333001,SPACE=(CYL,(12,1,1),CONTIG)
//D2 DD DSN=&&NAME,UNIT=3330,SPACE=(TRK,(10,1))
//D3 DD DSN=SYSLIB,DISP=(OLD,KEEP)
//D4 DD *
 .
 .
 .
 data
 .
 .
 .
/*

1. This job runs in priority 8, the meaning of which is defined by the installation.

2. The job statement specifies that system messages and JCL statements are to
be printed (MSGLEVEL=1).

3. D1 catalogs a newly created data set. The space request is for 12 primary
cylinders, 1 secondary, 1 directory, and the space is to be contiguous.

4. D2 creates a temporary data set on a 3330. The space request is for 10 primary
tracks and 1 secondary.

5. D3 defines an old cataloged data set.

6. D4 defines a SYSIN data set. This will be followed by data in the input stream.

© Copyright IBM Corp. 1988, 2003 32-1

Part 6. Examples

32-2 z/OS V1R4.0 MVS JCL User’s Guide

Part 7. Appendixes

© Copyright IBM Corp. 1988, 2003

z/OS V1R4.0 MVS JCL User’s Guide

Appendix A. Indexed Sequential Data Sets

Note that SMS does not manage ISAM data sets.

Indexed sequential (ISAM) data sets are created and retrieved using special
subsets of DD statement parameters and subparameters. Each data set can occupy
up to three different areas:

v Index area: This area contains master and cylinder indexes associated with the
data set. It exists for any indexed sequential data set that has a prime area
occupying more than one cylinder.

v Prime area: This area contains data and related track indexes. It exists for all
indexed sequential data sets.

v Overflow area: This area contains overflow from the prime area when new data
is added. It is optional.

Volumes for ISAM Data Sets

Indexed sequential data sets must reside on direct access volumes. The data set
can reside on more than one volume and the volumes may, in some cases, be on
different types of devices. If the volumes have indexed volume tables of contents
(VTOCs), the ISAM index area must reside on the first volume.

Creating an Indexed Sequential Data Set
One to three DD statements are used to define a new indexed sequential data set;
each statement defines a different area.

Three DD statements
Define the areas in the following order:
1. Index area
2. Prime area
3. Overflow area

Two DD statements
Define the areas in the following order:
1. Index area
2. Prime area

 Or
1. Prime area and, optionally, index area
2. Overflow area

One DD statement
The statement defines the prime area and, optionally, the index area.

When more than one DD statement is used to define the data set, assign a ddname
only to the first DD statement; the name field of the other statements must be
blank.

The only DD statement parameters that can be coded when defining a new indexed
sequential data set are:

 AVGREC LABEL RETPD
DCB LIKE SECMODEL
DISP LRECL SPACE

© Copyright IBM Corp. 1988, 2003 A-1

DSNAME RECFM UNIT
EXPDT REFDD VOLUME

 DSNAME Parameter

The DSNAME parameter is required on any DD statement that defines a new
temporary or permanent indexed sequential data set. Code:
 //ddname DD DSNAME=name(INDEX)
 // DD DSNAME=name(PRIME)
 // DD DSNAME=name(OVFLOW)

If you are using only one DD statement, code either:
 //ddname DD DSNAME=name(PRIME)

 //ddname DD DSNAME=name

When you reuse previously allocated space to create an indexed sequential data
set, the DSNAME parameter must contain the name of the old data set to be
overlaid.

UNIT Parameter

The UNIT parameter is required on any DD statement that defines a new indexed
sequential data set, unless VOLUME=REF=reference is coded. You must request a
direct access device in the UNIT parameter. Do not code DEFER.

If the prime and index areas are defined on separate DD statements, request the
same number of direct access devices for the prime area as volumes specified in
the VOLUME parameter. Request only one direct access volume for an index area
and one for an overflow area.

A DD statements for the index area or overflow area can request a device type
different than the type requested on the other statements.

VOLUME Parameter

The VOLUME parameter is required if you want an area of the data set written on a
specific volume or the prime area requires the use of more than one volume. If the
prime area and index area are defined on the same statement, you cannot request
more than one volume on the DD statement. Either supply the volume serial
number(s) in the VOLUME parameter or code VOLUME=REF=reference. In all
cases, you can specify PRIVATE in the VOLUME parameter.

Note:

v If a nonspecific volume request is used when creating a new indexed sequential
data set and its DSNAME already exists on a volume eligible for allocation, the
job will fail if the system places the new data set on that volume. However, if the
old data set with the duplicate name is on a volume other than the one selected
for the new data set, the new data set is not affected and will be added to the
volume. You can correct job failures caused by duplicate names by scratching
the old data set or by renaming the new data set, then resubmitting the job.

v The system fails to allocate space for a new indexed sequential data set with a
nonspecific volume request when none of the volumes eligible for allocation
contain enough space.

Appendix A. ISAM

A-2 z/OS V1R4.0 MVS JCL User’s Guide

v If the first volume selected by allocation to satisfy a request for a new indexed
sequential data set does not contain enough space to satisfy the request, the
system does not try to find another volume with enough space if either of these
conditions is met:
– The request is for multiple volumes or units
– The request uses more than one DD statement to define the data set.

LABEL Parameter

The LABEL parameter is needed only to specify a retention period, EXPDT or
RETPD, or password protection, PASSWORD.

DCB Parameter

You must code the DCB parameter on every DD statement that defines an indexed
sequential data set. At minimum, the DCB parameter must contain DSORG=IS or
DSORG=ISU. Other DCB subparameters can be coded to complete the data
control block, if the processing program does not complete it.

When more than one DD statement is used to define the data set, code all the DCB
subparameters on the first DD statement. On the other DD statements, refer to the
DCB parameter on the first statement by coding:
 DCB=*.ddname

When reusing previously allocated space and recreating an indexed sequential data
set, desired changes in the DCB parameter must be coded on the DD statement.
Although you are creating a new data set, some DCB subparameters cannot be
changed if you want to use the space the old data set used. The DCB
subparameters you can change are:

 BFALN DSORG NCP RECFM
BLKSIZE KEYLEN NTM RKP
CYLOFL LRECL OPTCD

 DISP Parameter

If you are creating a new data set and not reusing preallocated space, the DISP
parameter is needed only if you want to:

Keep the data set DISP=(,KEEP)

Catalog the data set DISP=(,CATLG)

Pass the data set DISP=(,PASS)

If you are reusing previously allocated space and recreating an indexed sequential
data set, code DISP=OLD. The newly created data set will overlay the old one.

In order to catalog the data set by coding DISP=(,CATLG) or to pass the data set
by coding DISP=(,PASS), you must define the data set on only one DD statement.
If you define the data set on more than one DD statement and the volumes
containing the data set are on the same device type, use the access method
services DEFINE command to catalog the data set. For details, refer to
 z/OS DFSMS Access Method Services for Catalogs,

SPACE Parameter

Appendix A. ISAM

Appendix A. Indexed Sequential Data Sets A-3

The SPACE parameter is required on any DD statement that defines a new indexed
sequential data set. Either ask the system to assign the space or request specific
tracks. If you use more than one DD statement to define the data set, each DD
statement must request space in the same way.

System Assignment of Space

You must request the primary quantity in cylinders, CYL. When the DD statement
that defines the prime area requests more than one volume, each volume is
assigned the number of cylinders requested in the SPACE parameter.

The index subparameter is used to indicate how many cylinders are required for an
index. When you use one DD statement to define the prime and index areas and
you want to explicitly state the size of the index, code the index subparameter.

You can code the CONTIG subparameter in the SPACE parameter. However, if you
code CONTIG on one of the statements, you must code it on all of them.

You cannot request a secondary quantity for an indexed sequential data set. Also,
you cannot code the subparameters RLSE, MXIG, ALX, and ROUND.

Specific Track Request

The number of tracks requested must be equal to one or more whole cylinders. The
address of the beginning track must be the first track of a cylinder other than the
first cylinder on the volume. When the DD statement that defines the prime area
requests more than one volume, space is allocated for the prime area beginning at
the specified address and continuing through the volume and onto the next volume
until the request is satisfied. This can be done only if the volume table of contents
of the second and all succeeding volumes is contained in the first cylinder of each
volume.

Use the index subparameter to indicate how many tracks the index requires. The
number of tracks specified must be equal to one or more cylinders. When you use
one DD statement to define the prime and index areas and you want to state the
size of the index, code the index subparameter.

Procedure when Allocation Error Occurs
If a new indexed sequential data set is to reside on more than one volume and an
error occurs during volume allocation, do the following before resubmitting the job:
Use the IEHPROGM utility program to scratch the data set labels on any of the
volumes to which the data set was successfully allocated. This utility program is
described in z/OS DFSMSdfp Utilities.

Area Arrangement of an Indexed Sequential Data Set
When creating an indexed sequential data set, the arrangement of the areas is
based on:
v The number of DD statements used to define the data set
v What area each DD statement defines

The system uses an additional criterion when the index area is not defined on a
separate DD statement: Is an index size coded in the SPACE parameter on the DD
statement that defines the prime area?

Appendix A. ISAM

A-4 z/OS V1R4.0 MVS JCL User’s Guide

Table A-1 illustrates the different arrangements that can result based on these
criteria. In addition, it indicates what restrictions apply on the number and types of
devices that can be requested.

 Table A-1. Area Arrangement of ISAM Data Sets

Criteria Restrictions on Resulting

Number of DD
statements

Area defined on DD
statement

Index size coded? Device Types and
Number of Devices
Requested

Arrangement of Areas

3 INDEX PRIME OVFLOW - None Separate index, prime,
and overflow areas.

2 INDEX PRIME - None Separate index and
prime areas.1

2 PRIME OVFLOW No None Separate prime and
overflow areas. An index
area is at the end of the
overflow area.

2 PRIME OVFLOW Yes The statement for the
prime area cannot
request more than
one device.

Separate prime and
overflow areas. An index
area is embedded in the
prime area.

1 PRIME No None Prime area with index
area at its end.2

1 PRIME Yes The statement cannot
request more than
one device.

Prime area with
embedded index area.2

1 If both areas are on volumes on the same device type and if one of the cylinders allocated for the index
area is only partially filled, the system establishes the overflow area in the unused portion of that cylinder.

2 If the index area occupies at least one cylinder and if the unused portion of the index area is less than one
cylinder, the unused portion is established as an overflow area. For a one-cylinder data set, no overflow
area is established.

Retrieving an Indexed Sequential Data Set
If all areas of an existing indexed sequential data set are on volumes of the same
device type, you can retrieve the entire data set with one DD statement. If the index
or overflow is on a volume of a different device type, use two DD statements. If the
index and overflow are on volumes of different device types, use three DD
statements to retrieve the data set. The DD statements are coded in the following
order:
1. Index area
2. Prime area
3. Overflow area

The only DD statement parameters that you may code when retrieving an indexed
sequential data set are:

 DSNAME
UNIT
VOLUME
DCB
DISP

Appendix A. ISAM

Appendix A. Indexed Sequential Data Sets A-5

DSNAME Parameter

The DSNAME parameter is always required. Identify the data set by its name. Do
not code INDEX, PRIME, or OVFLOW. If the data set was passed from a previous
step, identify it by a backward reference.

UNIT Parameter

The UNIT parameter must be coded, unless the data set resides on one volume
and was passed. Specify in the UNIT parameter the device type and the unit-count,
if more than one device is required.

If the data set is on more than one volume but the volumes are for the same device
type, you need only one DD statement to retrieve the data set. Request one device
per volume in the UNIT parameter.

If the areas are on different types of devices, code a DD statement for each
different device type.

Another way to request a device is to code UNIT=AFF=ddname, where the
referenced DD statement requests direct access.

VOLUME Parameter

The VOLUME parameter must be coded, unless the data set is on one volume and
was passed from a previous step. Identify in the VOLUME parameter the serial
numbers of the volumes on which the data set resides. Code the serial numbers in
the same order that they were coded on the DD statements used to create the data
set.

DCB Parameter

The DCB parameter must always contain DSORG=IS or DSORG=ISU. Do not code
other DCB subparameters if the data set is passed from a previous step or is
cataloged. However, you can code other DCB subparameters to complete the data
control block, if it is not completed in the processing program.

DISP Parameter

The DISP parameter must always be coded. The first subparameter of the DISP
parameter must be SHR or OLD.

When you are updating an existing indexed sequential data set, code DISP=OLD. If
you specify DISP=SHR, the data set will not open correctly.

Optionally, you can specify a disposition in the second subparameter.

Appendix A. ISAM

A-6 z/OS V1R4.0 MVS JCL User’s Guide

Table A-2. DD Parameters for Retrieving or Extending an ISAM Data Set

Area Parameter Comments

INDEX (coded only if index area
 is not on same device type
 as prime area)

First DD statement

DSNAME Required. Code the same name as in the
second DD statement.

DISP Required. Code the same value as in the
second DD statement.

UNIT Required

VOLUME Required

DCB Required

PRIME; or

PRIME with overflow; or

PRIME with overflow and index

Second or only DD statement

DSNAME Required

DISP Required. Specifies whether data set is being
retrieved or updated.

UNIT Required, unless passed data set is being
retrieved and all three areas are on one volume.

VOLUME Same requirement as UNIT. If coded, list
volumes in the order in which they were defined.

DCB Required

OVFLOW (coded only if overflow

 area is not on same device type

 as prime area)

Third DD statement

DSNAME Required. Code the same value as in the
second DD statement.

DISP Required. Code the same value as in the
second DD statement.

UNIT Required

VOLUME Required

DCB Required

 Example 1
//ISAMJOB JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=INCLUDE
//DD1 DD DSNAME=DATASET1(INDEX),DISP=(NEW,KEEP),UNIT=3330,
// VOLUME=SER=777777,SPACE=(CYL,(10),,CONTIG),
// DCB=(DSORG=IS,RECFM=F,LRECL=80,RKP=1,KEYLEN=8)
// DD DSNAME=DATASET1(PRIME),DISP=(NEW,KEEP),UNIT=3330,
// VOLUME=REF=*.DD1,SPACE=(CYL,(25),,CONTIG),DCB=*.DD1
// DD DSNAME=DATASET1(OVFLOW),DISP=(NEW,KEEP),UNIT=3330,
// VOLUME=REF=*.DD1,SPACE=(CYL,(25),,CONTIG),DCB=*.DD1

This example creates an indexed sequential data set on one 3330 volume.

Example 2
//RETRISAM JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=RETRIEVE
//DDISAM DD DSNAME=DATASET1,DCB=DSORG=IS,UNIT=3330,DISP=OLD,
// VOLUME=SER=777777

This example job shows the DD statements needed to retrieve the indexed
sequential data set created in the first example.

Example 3
//ISAMJOB JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=IEFISAM
//DDISAM DD DSNAME=DATASET2(INDEX),DISP=(NEW,KEEP),UNIT=3330,
// VOLUME=SER=888888,SPACE=(CYL,10,,CONTIG),DCB=(DSORG=IS,

Appendix A. ISAM

Appendix A. Indexed Sequential Data Sets A-7

// RECFM=F,LRECL=80,RKP=1,KEYLEN=8)
// DD DSNAME=DATASET2(PRIME),DISP=(,KEEP),UNIT=3350,
// VOLUME=SER=999999,SPACE=(CYL,10,,CONTIG),DCB=*.DDISAM
// DD DSNAME=DATASET2(OVFLOW),DISP=(,KEEP),UNIT=3350,
// VOLUME=SER=AAAAAA,SPACE=(CYL,10,,CONTIG),DCB=*.DDISAM

This job creates an indexed sequential data set on one 3330 and two 3350
volumes.

Example 4
//RERISAM JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=IEFISAM
//DDISAM DD DSNAME=DATASET2,DCB=DSORG=IS,DISP=OLD,UNIT=3330,
// VOLUME=SER=888888
// DD DSNAME=DATASET2,DCB=DSORG=IS,DISP=OLD,UNIT=(3350,2),
// VOLUME=SER=(999999,AAAAAA)

This job shows the DD statements needed to retrieve the indexed sequential data
set created in the previous example.

Example 5
//CATISAM JOB ,,MSGLEVEL=(1,1),PERFORM=25
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE NONVSAM (NAME(DATASET2) DEVT(3330 3350 3350) -
 VOL(888888 999999 AAAAAA))
/*

This job catalogs a data set previously created on 3330 and 3350 volumes. (See
the third example, jobname ISAMJOB.)

Appendix A. ISAM

A-8 z/OS V1R4.0 MVS JCL User’s Guide

Appendix B. Generation Data Sets

A generation data set is one of a collection of successive, historically related,
cataloged data sets, known as a generation data group (GDG). The system keeps
track of each data set in a generation data group as it is created, so that new data
sets can be chronologically ordered and old ones easily retrieved.

This appendix describes both SMS-managed and non-SMS-managed generation
data sets.

Note: A VSAM data set cannot be a generation data set.

To create or retrieve a generation data set, follow the generation data group name
in the DD statement DSNAME parameter with a relative generation number. When
you catalog the generation data set, the operating system uses that number to
construct a four-digit absolute generation number and a two-digit version number,
resulting in a number of the form G0000V00 to represent that generation. The
G0000V00 number must be unique within the GDG so that the system can sort the
data sets into the correct chronological sequence unambiguously.

WARNING: IBM strongly recommends that you specify a new generation by a
relative generation number (and allow the system to compute the G0000V00
number). This avoids the possibility of creating a generation number that exceeds
9000 for any data set in the GDG, which might cause an ambiguity regarding the
correct chronological order. This could happen, for example, if you specified a
fully-qualified name and used the first two digits of the number to represent the
year. If, however, you must specify a fully-qualified G0000V00 name, you should
include a DD statement for the GDG base name, to provide data set integrity on
that base.

 For information about generation numbers, see z/OS DFSMS: Using Data Sets.

Relative Generation Numbers

When creating a generation data set, the relative generation number tells the
system whether this is the first data set being added during the job, the second, the
third, etc. When retrieving a generation data set, the relative generation number
tells the system how many data sets have been added to the group since this data
set was added.

The first time you use a relative generation number for a generation data group
within a job, the system establishes the relationship between the relative generation
number and the absolute generation number. The system maintains this relationship
throughout the job.

For example, if you create a generation data set with a relative generation number
of (+1), the system recognizes any subsequent reference to (+1) throughout the job
as having the same absolute generation number.

Relative generation numbers are obtained from the catalog as it existed:

v For JES2, at the beginning of the first step that specifies the generation data set
by relative generation number.

© Copyright IBM Corp. 1988, 2003 B-1

Note: In a shared DASD environment, if two or more jobs running on different
systems simultaneously create new generations of the same data set, one
of the jobs could fail with a JCL error.

v For JES3, when the job is set up, and again by the system at the beginning of
the first step that specifies the generation data set by relative generation number.
If the most recent data set is not the same at both times, the results are
unpredictable.

Types of SMS-Managed Data Sets in a GDG

An SMS-managed generation data group (GDG) can consist of cataloged
sequential and direct data sets residing on direct access volumes. Generation data
sets in a GDG can have like or unlike data set attributes and data set organizations.
If a GDG is created on an SMS-managed volume, any dependencies on a model
data set label in order to allocate a new generation data set should be removed. A
GDG can contain both SMS-managed and non-SMS-managed generation data
sets.

Types of Non-SMS-Managed Data Sets in a GDG

A non-SMS-managed generation data group (GDG) can consist of cataloged
sequential and direct data sets residing on tape volumes, direct access volumes, or
both. Generation data sets in a GDG can have like or unlike DCB attributes and
data set organizations.

Retrieval of GDG Data Sets

All of the generations of a generation data group can be retrieved together as a
single data set. The retrieval order is last-in-first-out.

Building a GDG Base Entry
Before creating the first generation data set, build a generation data group base
entry in a VSAM, or integrated catalog facility catalog. This base entry must provide
for as many generation data sets, up to 255, as you would like to have in the GDG.
The system uses the base to keep track of the chronological order of the generation
data sets.

Use the access method services DEFINE command to build generation data group
bases in an integrated catalog facility catalog. This command is described in z/OS
DFSMS Access Method Services for Catalogs.

Defining Attributes for SMS-Managed Generation Data Sets
Data Class and Storage Class

Another requirement (in addition to a GDG base entry) for an SMS-managed GDG
is a storage class for a new generation data set. The system uses the attributes
defined in the data class and storage class when you create a new generation data
set.

Note: Rather than using a data class to specify data set allocation attributes, you
can specify the LIKE or the REFDD parameter.

You can let the installation-written automatic class selection (ACS) routines select a
data class and storage class for a new generation data set, or you can specify the

Appendix B. GDG

B-2 z/OS V1R4.0 MVS JCL User’s Guide

DATACLAS and STORCLAS parameters on the DD statement. Also, you can
specify those DD parameters that override attributes in the data class and storage
class (such as RECORG, LRECL, SPACE, and so on). See the DATACLAS and
STORCLAS DD parameters in z/OS MVS JCL Reference.

Creating an SMS-Managed Generation Data Set
When creating a new SMS-managed generation data set, always code the
DSNAME and DISP parameters and optionally, code the DATACLAS and
STORCLAS parameters.

DSNAME Parameter

In the DSNAME parameter, code the name of the GDG followed by a number, +1 to
+255, in parentheses. If this is the first data set being added to a GDG in the job,
code +1 in parentheses. Each time in the job you add a data set to the same GDG,
increase the number by one.

When referring to this data set in a subsequent job step, code the relative
generation number used to create it on the DSNAME parameter. You cannot refer
to this data set in the step in which it was created. At the end of the job, the system
updates the relative generation numbers of all generations in the group to reflect
the additions.

Note: If the relative generation number makes the absolute generation number
exceed G9999Vyy, wraparound occurs. In an integrated catalog facility
catalog, if you create a new generation data set with a relative generation
number, such as (+1), and an absolute generation number of G9999Vyy
exists in the GDG base, the wraparound generates number G0001Vyy. (For
information about absolute generation numbers and version numbers, in the
form GxxxxVyy, see z/OS DFSMS: Using Data Sets.)

DATACLAS and STORCLAS Parameters

If the ACS routines do not select the needed data class or storage class, code the
DATACLAS or STORCLAS parameters (and any DD parameters needed to override
attributes in the data class or storage class).

Disposition of SMS-Managed Generation Data Sets
New SMS-managed generation data sets are cataloged in a deferred roll-in status
when created. This means that they are temporarily cataloged by their GxxxxVyy
number but an entry is not made in the GDG base at this time. Then at step
termination, the generations are processed depending on their normal termination
disposition as described in the following paragraphs. (For information about
absolute generation numbers and version numbers, in the form GxxxxVyy, see z/OS
DFSMS: Using Data Sets.)

DISP Parameter

Assign new generation data sets a status of NEW and a normal termination
disposition of CATLG, KEEP, DELETE, or PASS.

DISP=(NEW,CATLG)

Appendix B. GDG

Appendix B. Generation Data Sets B-3

At step termination, the deferred generation data set is rolled into the GDG base.
This means that the temporary catalog entry is removed and an entry is made in
the GDG base.

DISP=(NEW,KEEP)

At step and job termination, the deferred generation data set remains in a deferred
roll-in state. This means that the temporary catalog entry is not removed and an
entry is not made in the GDG base.

DISP=(NEW,DELETE)

At step termination, the deferred generation data set is scratched and uncataloged.

DISP=(NEW,PASS)

At job termination, the deferred generation data set is scratched and uncataloged.

Note: If you create a new generation data set and a deferred generation data set
exists with the same GxxxxVyy number, the number and its associated
space are reused.

Defining Attributes for Non-SMS-Managed Generation Data Sets
Another requirement (in addition to a GDG base entry) for a GDG is a data set
label. The system uses this label to refer to DCB attributes and the EXPDT value
when you create a new generation data set.

DCB attributes can be supplied in one of the following ways:

1. Create a model data set label on the volume on which the index resides (the
volume containing the GDG base)

2. Refer to a cataloged data set to use its attributes

3. Specify LIKE= or REFDD= to use attributes from the DD statement or specify
DATACLAS to use attributes specified for the data class

Attributes can be supplied before you catalog a generation, when you catalog it, or
at both times, as follows:

1. Create a model data set label on the volume on which your index resides. You
can provide initial DCB attributes when you create your model; however, you
need not provide any attributes at this time. Because only the attributes in the
data set label are used, the model data set can be allocated with
SPACE=(TRK,0) to conserve direct access space. (For an indexed sequential
data set, a space request greater than 0 is required.) Initial or overriding
attributes can be supplied when you create and catalog a generation.

 To create a model data set label, include the following DD statement in the job
step that builds the index or in any other job step that precedes the step in
which you create and catalog your generation.
 //name DD DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,0),
 // UNIT=yyyy,VOLUME=SER=xxxxxx,
 // DCB=(applicable subparameters)

 The DSNAME is the common name by which each generation is identified;
therefore, the model data set label cannot be cataloged. The GDG base is an
entity that resides in the catalog. xxxxxx is the serial number of the volume
containing the catalog where the GDG base resides. The applicable DCB

Appendix B. GDG

B-4 z/OS V1R4.0 MVS JCL User’s Guide

subparameters for a model data set label are DSORG, OPTCD, BLKSIZE,
LRECL, KEYLEN, and RKP. If no DCB subparameters are wanted initially, you
need not code the DCB parameter.

2. You do not need to create a model data set label if either of the following is
true:

a. You can refer to a cataloged data set with attributes identical to those you
want or to an existing model data set label for which you can supply
overriding attributes.

b. The DCB attributes are supplied by the specified or selected data class.

 To refer to a cataloged data set for the use of its attributes, specify
DCB=dsname on the DD statement that creates and catalogs your generation.

 To refer to an existing model, specify DCB=(modeldscbname,attributes) on the
DD statement that creates and catalogs your generation. With SMS, specify
LIKE=modeldsname or REFDD=*.ddname, *.stepname.ddname, or
*.stepname.procstepname.ddname to refer to an earlier DD statement that
identifies the model data set name. For more information, see “Modeling Data
Set Attributes” on page D-4.

 To specify a data class, code DATACLAS=dataclass on the DD statement
(although system ACS routines might override the value you code) or use the
system default. For more information about data class, see “Specifying
Constructs” on page D-2.

Creating a Non-SMS-Managed Generation Data Set
When creating a new non-SMS-managed generation data set, always code the
DSNAME, DISP, and UNIT parameters and optionally, code the VOLUME, SPACE,
LABEL, and DCB parameters.

DSNAME Parameter

In the DSNAME parameter, code the name of the GDG followed by a number, +1 to
+255, in parentheses. If this is the first data set being added to a GDG in the job,
code +1 in parentheses. Each time in the job you add a data set to the same GDG,
increase the number by one.

When referring to this data set in a subsequent job step, code the relative
generation number used to create it on the DSNAME parameter. You cannot refer
to this data set in the step in which it was created. At the end of the job, the system
updates the relative generation numbers of all generations in the group to reflect
the additions.

Note: If the relative generation number makes the absolute generation number
exceed G9999Vyy, wraparound occurs. In an integrated catalog facility
catalog, if you create a new generation data set with a relative generation
number, such as (+1), and an absolute generation number of G9999Vyy
exists in the GDG base, the wraparound generates number G0001Vyy.

(For information about absolute generation numbers and version numbers, in the
form GxxxxVyy, see z/OS DFSMS: Using Data Sets.)

DISP Parameter

Appendix B. GDG

Appendix B. Generation Data Sets B-5

Assign new generation data sets a status of new and a disposition of catalog:
DISP=(NEW,CATLG).

UNIT Parameter

The UNIT parameter is required for a new generation data set unless
VOLUME=REF=reference is coded. In the UNIT parameter, identify the type of
device wanted.

VOLUME Parameter

Assign a volume in the VOLUME parameter, or omit the VOLUME parameter and
let the system assign the volume. The VOLUME parameter can request a private
volume, PRIVATE, and more than one volume in the volume count.

SPACE Parameter

Code the SPACE parameter when the generation data set is to reside on a direct
access volume.

LABEL Parameter

You can specify label type; password protection, PASSWORD; and a retention
period, EXPDT or RETPD, in the LABEL parameter. If the data set is to reside on a
tape volume and is not the first data set on the volume, specify a data set
sequence number.

DCB Parameter

If you use a model data set label from the same GDG and if the label contains all
the attributes for this generation data set, omit the DCB parameter. If all the
attributes are not contained in the label or if you want to override certain attributes,
code DCB=(list of attributes).

If you use a model data set label from a different GDG and if the label contains all
the attributes for this generation data set, code DCB=dsname. If some attributes are
missing from the label or if you want to override some attributes, code
DCB=(dsname,list of attributes).

If a model data set label does not exist, you must use the label for a cataloged data
set. Code DCB=dsname. If some attributes are missing from the label, or if you
want to override some attributes, code DCB=(dsname,list of attributes).

Retrieving a Generation Data Set
To retrieve an SMS-managed generation data set, always code the DSNAME and
DISP parameters.

To retrieve a non-SMS-managed generation data set, always code the DSNAME
and DISP parameters. Optional parameters are the UNIT, VOLUME, LABEL, and
DCB.

DSNAME Parameter

Appendix B. GDG

B-6 z/OS V1R4.0 MVS JCL User’s Guide

For both SMS-managed and non-SMS-managed data sets, use the DSNAME
parameter to retrieve a single generation data set or all of the generation data sets
in the GDG.

Retrieving a Single Generation Data Set

To retrieve a single generation data set, code in the DSNAME parameter the name
of the generation data group followed by a relative generation number in
parentheses. The number indicates which generation data set is to be retrieved. To
retrieve the most recent data set, code a zero.

To retrieve data sets created before the most recent data set, code a minus value,
-1 to -255. The value of nnn indicates the relation of the desired data set to the
most current data set: (-1) refers to the data set created immediately before the
most recent data set; (-2) refers to the data set created before the data set
identified by (-1).

For example:

 PAYROLL Name of the GDG
DSNAME=PAYROLL(0) This week’s generation data set
DSNAME=PAYROLL(-1) Last week’s generation data set
DSNAME=PAYROLL(-2) Generation data set of two weeks ago

 Relative generation numbers are maintained by the system only when generation
data sets are specified using relative generation numbers.

Note: Refer to generation data sets in a deferred roll-in state by their relative
number, such as (+1), within the job that creates it. Refer to generation data
sets in a deferred roll-in state by their absolute generation number
(GxxxxVyy) in subsequent jobs. For more information on how to refer to
GDG data sets in a deferred roll-in state, see z/OS DFSMS: Using Data
Sets.

Note: When retrieving a generation data set within a started task, and the
generation data set is cataloged in a private catalog coding a relative
generation number produces unpredictable results.

Retrieving All Generation Data Sets

To retrieve all generations of a GDG as a single data set, specify the GDG name
without a generation number in the DSNAME parameter; this is called a GDG ALL
request. For example:

DSNAME=PAYROLL For all generations

To use a GDG ALL request, the DCB attributes and data set organization of all
generations must be identical.

The system treats a GDG ALL request as a concatenation of all existing data sets
in the GDG, starting with the most recent data set and ending with the oldest, which
can affect the meaning of system messages in the job output listing.

For example, assume that data set GDGDS has two generations and that data sets
A and B are not generation data sets. To concatenate A, all generations of GDGDS,
and B, you would code the following JCL:

Appendix B. GDG

Appendix B. Generation Data Sets B-7

//DD1 DD DSN=A,DISP=SHR
// DD DSN=GDGDS,DISP=SHR,UNIT=AFF=DD1
// DD DSN=B,DISP=SHR,UNIT=AFF=DD1

Because of the GDG ALL request, the system treats DD1 as if you had coded the
following statements, and assigns the following relative position numbers:
//DD1 DD DSN=A,DISP=SHR +000
// DD DSN=GDGDS(0),DISP=SHR,UNIT=AFF=DD1 +001
// DD DSN=GDGDS(-1),DISP=SHR,UNIT=AFF=DD1 +002
// DD DSN=B,DISP=SHR,UNIT=AFF=DD1 +003

The generated DD statements will automatically have unit affinity to each other
even if you did not code UNIT=AFF:
//DD2 DD DSN=A,DISP=SHR
// DD DSN=GDGDS,DISP=SHR
// DD DSN=B,DISP=SHR

The system treats DD2 as though you had coded the following JCL statements, and
assigns the following relative position numbers:
//DD2 DD DSN=A,DISP=SHR +000
// DD DSN=GDGDS(0),DISP=SHR +001
// DD DSN=GDGDS(-1),DISP=SHR,UNIT=AFF=(DD2+001) +002
// DD DSN=B,DISP=SHR +003

Of course, it is not actually possible to code UNIT=AFF=(DD2+001), but the system
internally is able to treat the DD statements as though that is what you had coded.

Any error message uses the relative position based on each generation included,
not the position you explicitly specified. For example, an error message that
includes a relative position of +002 refers to GDGDS(-1), not data set B.

All older generations have unit affinity to the newest data set.

For a GDG on tape, when you use a GDG ALL request and specify parallel
mounting in the UNIT parameter, the system mounts all volumes of only the first
generation.

For a GDG on direct access, when you use a GDG ALL request and specify parallel
mounting in the UNIT parameter, the system mounts all volumes of all generations.

DISP Parameter

For both SMS-managed and non-SMS-managed data sets, always code the DISP
parameter. The first subparameter of the DISP parameter must be OLD, SHR, or
MOD. If you code MOD for a generation data set and the specified relative
generation does not exist in the catalog, the system changes the status to NEW.

A normal termination disposition is optional when retrieving a generation data set
but is required in a GDG ALL request. Do not code PASS in a GDG ALL request.

UNIT Parameter

For non-SMS-managed data sets, code the unit-count subparameter in the UNIT
parameter when you want more than one device assigned to the data set. Or, if the
data set resides on more than one volume and you want as many devices as there
are volumes, code P in the UNIT parameter.

Appendix B. GDG

B-8 z/OS V1R4.0 MVS JCL User’s Guide

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

VOLUME Parameter

For non-SMS-managed data sets, use the VOLUME parameter to request a private
volume, PRIVATE, and to indicate that more volumes might be required, volume
count. For an old generation data set, do not specify either a volume serial number
or a volume reference to another data set or to an earlier DD statement.

LABEL Parameter

For non-SMS-managed data sets, code the LABEL parameter when the data set is
on tape and has other than standard labels. If the data set is not the first data set
on the volume, specify the data set sequence number. If the data set sequence
number is coded for a GDG ALL request, it is ignored; the data set sequence
number is obtained from the catalog.

DCB Parameter

For non-SMS-managed data sets, code DCB=(list of attributes) when the data set
has other than standard labels and DCB information is required to complete the
data control block. Do not code DCB=dsname.

Deleting and Uncataloging Generation Data Sets
Note that uncataloging is not supported for SMS-managed data sets.

In a multiple-step job, catalog or uncatalog generation data sets using the DD DISP
parameter. Do not use the IEHPROGM utility program or a user program. Because
system routines access the catalog during job execution, they are unaware of the
functions performed by IEHPROGM or a user program; you might get unpredictable
results.

If a DD statement in a multiple-step job tries to delete or uncatalog any generation
data set except the oldest in a GDG, catalog management can lose orientation
within the data group. This could cause the deletion, uncataloging, or retrieval of the
wrong data set when you later refer to a specific generation. Therefore, if you
delete a generation data set in a multiple-step job, do not refer to any older
generations in later job steps.

When you delete a generation data group in a multiple-step job, remember that the
first time you use a relative generation number for a generation data group within a
job, the system establishes the relationship between the relative generation number
and the absolute generation number. The system maintains this relationship
throughout the job.

The following examples illustrate how the system maintains this relationship when
deleting a generation data group:

Assume the following generation data sets already exist with absolute generation
numbers: G0006V00, G0007V00, and G0008V00.

Issue the following JCL:
//STEP1 EXEC
//DD1 DD DISP=OLD,DSN=A.B.C(-1)
//STEP2 EXEC
//DD2 DD DISP=(OLD,DELETE),DSN=A.B.C
//STEP3 EXEC
//DD3 DD DISP=(NEW,CATLG),DSN=A.B.C(+1)

Appendix B. GDG

Appendix B. Generation Data Sets B-9

In the above example, the absolute generation number referenced by relative
generation number in STEP1 (DD1) is G0007V00. The system establishes the
relative/absolute relationship that it will maintain throughout the job. In STEP2, all
generation data sets are to be deleted, which occurs at STEP2 termination. In
STEP3, the system assigns the absolute generation number G0009V00 to the new
generation data set created (DD3).

In the following example, the JCL is set up to delete all generation data sets at the
beginning of the job.
//STEP1 EXEC
//DD1 DD DISP=(OLD,DELETE),DSN=A.B.C
//STEP2 EXEC
//DD2 DD DISP=(NEW,CATLG),DSN=A.B.C(+1)
//STEP3 EXEC
//DD3 DD DISP=(NEW,CATLG),DSN=A.B.C(+2)

In this second example, the system establishes the relative/absolute relationship in
STEP2, the first time that a relative generation number is used in the job. The
system then assigns absolute generation number G0001V00 to the data set
referenced in DD2 and absolute generation number G0002V00 to the data set
referenced in DD3.

Submitting a Job for Restart
Certain rules apply when you refer to generation data sets in a job submitted for
restart using the RESTART parameter on the JOB statement.

For Step Restart

To refer to generation data sets that were created and cataloged in steps before the
restart step, use their present relative generation numbers. For example, if the last
generation data set created and cataloged was assigned a generation number of
+2, it would be referred to as 0 in the restart step and in steps following the restart
step. In this case, the generation data set assigned number of +1 when created
would be referred to as -1.

For Checkpoint Restart

If generation data sets created in the restart step were kept instead of cataloged,
that is, DISP=(NEW,CATLG,KEEP), you can, during checkpoint restart, refer to
these data sets and generation data sets created and cataloged in steps before the
restart step by the same relative generation numbers that were used to create
them.

For Deferred Checkpoint Restart

The system does not use the catalog to obtain the volume serial numbers for a
GDG. Therefore, if you changed the volume serial numbers in the catalog between
the original submission of the job and the restart, you must code volume serial
numbers.

Example 1

For SMS-managed data sets:

Appendix B. GDG

B-10 z/OS V1R4.0 MVS JCL User’s Guide

//STEPA EXEC PGM=PROCESS
//DD1 DD DSNAME=A.B.C(+1),DISP=(NEW,CATLG)
//DD2 DD DSNAME=A.B.C(+2),DISP=(NEW,CATLG)
//DD3 DD DSNAME=A.B.C(+3),DISP=(NEW,CATLG)

This step shows the DD statements used to add three SMS-managed data sets to a
GDG.

The installation-written automatic class selection (ACS) routines are used to select
a data class and storage class for the data sets.

Example 2

For SMS-managed data sets:
//JWC JOB ,’J. GRIFFIN-KEENE’
//STEP1 EXEC PGM=REPORT9
//DDA DD DSNAME=A.B.C(-2),DISP=OLD
//DDB DD DSNAME=A.B.C(-1),DISP=OLD
//DDC DD DSNAME=A.B.C(0),DISP=OLD

This job shows the DD statements needed to retrieve the SMS-managed generation
data sets created in the first example, when the GDG contains no other generation
data sets.

Example 3

For non-SMS-managed data sets:
//STEPA EXEC PGM=PROCESS
//DD1 DD DSNAME=A.B.C(+1),DISP=(NEW,CATLG),UNIT=3400-6,
// VOL=SER=13846,LABEL=(,SUL)
//DD2 DD DSNAME=A.B.C(+2),DISP=(NEW,CATLG),UNIT=3330,
// VOL=SER=10311,SPACE=(480,(150,20))
//DD3 DD DSNAME=A.B.C(+3),DISP=(NEW,CATLG),UNIT=3350,
// VOL=SER=28929,SPACE=(480,(150,20)),
// DCB=(LRECL=120,BLKSIZE=480)

This step shows the DD statements used to add three non-SMS-managed data sets
to a GDG.

DD1 and DD2 do not include the DCB parameter because a model data set label
exists on the same volume as the GDG index and has the same name as the GDG:
A.B.C. Because the DCB parameter is coded on the third DD statement, the
attributes LRECL and BLKSIZE override the attributes included in the model data
set label.

Example 4

For non-SMS-managed data sets:
//JWC JOB ,’J. GRIFFIN-KEENE’
//STEP1 EXEC PGM=REPORT9
//DDA DD DSNAME=A.B.C(-2),DISP=OLD,LABEL=(,SUL)
//DDB DD DSNAME=A.B.C(-1),DISP=OLD
//DDC DD DSNAME=A.B.C(0),DISP=OLD

This job shows the DD statements needed to retrieve the non-SMS-managed
generation data sets created in the third example, when the GDG contains no other
generation data sets.

Example 5

Appendix B. GDG

Appendix B. Generation Data Sets B-11

For SMS-managed data sets:
//J1 JOB ACCT34,’DEPT.17’
//S11 EXEC PGM=P1
//A DD DSNAME=GDGDS(+1),DISP=(NEW,CATLG),STORCLAS=...
//S12 EXEC PGM=P2
//B DD DSNAME=GDGDS(+2),DISP=(NEW,CATLG),STORCLAS=...
//S13 EXEC PGM=P3
//C DD DSNAME=GDGDS(+1),DISP=OLD
 .
 .
//J2 JOB ACCT34,’DEPT.17’
//S21 EXEC PGM=P4
//D DD DSNAME=GDGDS,DISP=OLD
//S22 EXEC PGM=P5
//E DD DSNAME=GDGDS(0),DISP=OLD
//S23 EXEC PGM=P6
//F DD DSNAME=GDGDS(+1),DISP=(NEW,CATLG),STORCLAS=...
//S24 EXEC PGM=P7
//G DD DSNAME=GDGDS(+2),DISP=(NEW,CATLG),STORCLAS=...
//S25 EXEC PGM=P8
//H DD DSNAME=GDGDS(+1),DISP=OLD
//S26 EXEC PGM=P9
//J DD DSNAME=GDGDS(+2),DISP=OLD
//S27 EXEC PGM=P10
//K DD DSNAME=GDGDS(0),DISP=OLD
//S28 EXEC PGM=P11
//L DD DSNAME=GDGDS(-1),DISP=OLD
//S29 EXEC PGM=P12
//M DD DSNAME=GDGDS,DISP=OLD
 .
 .

These two jobs show the creation and retrieval of generation data sets.
 DD statement A - create 1st generation (cataloged at allocation, rolled in at end

of step).
 DD statement B - create 2nd generation (cataloged at allocation, rolled in at end

of step).
 DD statement C - reference 1st generation.
 At the end of job J1, generation 1 and 2 have been cataloged.

 DD statement D - reference all generations (1st and 2nd).
 DD statement E - reference 2nd generation.
 DD statement F - create 3rd generation (cataloged at allocation, rolled in at end

of step).
 DD statement G - create 4th generation (cataloged at allocation, rolled in at end

of step).
 DD statement H - reference 3rd generation.
 DD statement J - reference 4th generation.
 DD statement K - reference 2nd generation.
 DD statement L - reference 1st generation.
 DD statement M - reference all generations (1st through 4th).
 At the end of job J2, generation 3 and 4 have been cataloged.

Example 6

For non-SMS-managed data sets:
//J1 JOB ACCT34,’DEPT.17’
//S11 EXEC PGM=P1
//A DD DSNAME=GDGDS(+1),DISP=(,CATLG),UNIT=...
//S12 EXEC PGM=P2
//B DD DSNAME=GDGDS(+2),DISP=(,CATLG),UNIT=...

Appendix B. GDG

B-12 z/OS V1R4.0 MVS JCL User’s Guide

//S13 EXEC PGM=P3
//C DD DSNAME=GDGDS(+1),DISP=OLD
 .
 .
//J2 JOB ACCT34,’DEPT.17’
//S21 EXEC PGM=P4
//D DD DSNAME=GDGDS,DISP=OLD
//S22 EXEC PGM=P5
//E DD DSNAME=GDGDS(0),DISP=OLD
//S23 EXEC PGM=P6
//F DD DSNAME=GDGDS(+1),DISP=(,CATLG),UNIT=...
//S24 EXEC PGM=P7
//G DD DSNAME=GDGDS(+2),DISP=(,CATLG),UNIT=...
//S25 EXEC PGM=P8
//H DD DSNAME=GDGDS(+1),DISP=OLD
//S26 EXEC PGM=P9
//J DD DSNAME=GDGDS(+2),DISP=OLD
//S27 EXEC PGM=P10
//K DD DSNAME=GDGDS(0),DISP=OLD
//S28 EXEC PGM=P11
//L DD DSNAME=GDGDS(-1),DISP=OLD
//S29 EXEC PGM=P12
//M DD DSNAME=GDGDS,DISP=OLD
 .
 .

These two jobs show the creation and retrieval of generation data sets.
 DD statement A - create 1st generation (and catalog at end of step).
 DD statement B - create 2nd generation (and catalog at end of step).
 DD statement C - reference 1st generation.
 At the end of job J1, generation 1 and 2 have been cataloged.

 DD statement D - reference all generations (1st and 2nd).
 DD statement E - reference 2nd generation.
 DD statement F - create 3rd generation (and catalog at end of step).
 DD statement G - create 4th generation (and catalog at end of step).
 DD statement H - reference 3rd generation.
 DD statement J - reference 4th generation.
 DD statement K - reference 2nd generation.
 DD statement L - reference 1st generation.
 DD statement M - reference all generations (1st through 4th).
 At the end of job J2, generation 3 and 4 have been cataloged.

Appendix B. GDG

Appendix B. Generation Data Sets B-13

Appendix B. GDG

B-14 z/OS V1R4.0 MVS JCL User’s Guide

Appendix C. VSAM Data Sets

Virtual storage access method (VSAM) can be used for data sets on direct access
storage. Because VSAM is different from the other access methods, certain DD
parameters and subparameters are different for VSAM data sets.

This appendix has two main topics:

v VSAM Data Sets - With SMS. Use this topic if SMS is installed and active, see
topic C-1.

v VSAM Data Sets - Without SMS. Use this topic if SMS is not installed or is not
active, see topic C-4.

VSAM Data Sets - With SMS

Creating a VSAM Data Set - With SMS
To create a permanent VSAM data set, either (1) use access method services
commands or (2) use the DD statement with the RECORG parameter or with a data
class that contains RECORG. You can also create temporary VSAM data sets.

See Appendix D, “Data Sets with SMS” for information about SMS.

To create a VSAM data set, code a DD statement in the form:
 //ddname DD DSNAME=dsname,RECORG=record-organization,
 // DISP=(NEW,...)...

If a data class contains RECORG, code the DD statement as:
 //ddname DD DSNAME=dsname,DATACLAS=data-class-name,
 // DISP=(NEW,...)...

The system catalogs a permanent VSAM data set when the data set is allocated.

Retrieving an Existing VSAM Data Set - With SMS
To retrieve an existing VSAM data set, code a DD statement in the form:
 //ddname DD DSNAME=dsname,DISP=OLD
 //ddname DD DSNAME=dsname,DISP=SHR

You can pass VSAM data sets within a job. (Note that the system replaces PASS
with KEEP for old permanent VSAM data sets. When you refer to the data set later
in the job, the system obtains data set information from the catalog.)

Migration Consideration for SMS
If you have existing JCL that allocates a VSAM data set with DISP=(OLD,DELETE),
note that without SMS, the system ignores DELETE and keeps the data set.
However, with SMS, DELETE is valid and the system deletes the data set.

DD Statement Parameters - With SMS
The DD statement parameters that you should use for VSAM data sets are shown
in Table C-1 on page C-2. You can also use other DD parameters, if needed, to
override attributes in the data class (such as KEYLEN and KEYOFF). Parameters
that should not be used or should be used only with caution are explained in
Table C-2 on page C-3.

© Copyright IBM Corp. 1988, 2003 C-1

Table C-1. With SMS, DD Parameters to Use when Processing VSAM Data Sets

Parameter Subparameter Comment

AMP This parameter has subparameters for:

1. Overriding operands specified with the ACB, EXLST, or the
GENCB macro instructions

2. Supplying operands missing from the ACB or GENCB macro
instruction

3. Indicating checkpoint/restart options

4. Indicating options when using ISAM macro instructions to
process a key-sequenced data set

5. Indicating that the data set is a VSAM data set when the DD
statement specifies unit and volume information or DUMMY

6. Indicating that VSAM is to supply storage dumps of the ACBs
that identify the DD statement

DATACLAS data-class-name No special considerations for VSAM data sets, except that the
record organization (RECORG) should specify a VSAM data set.

DDNAME ddname No special considerations for VSAM data sets.

DISP all subparameters All DISP subparameters can be used for VSAM data sets except
UNCATLG, which is ignored (KEEP is implied if UNCATLG is
coded).

DSNAME dsname VSAM uses the dsname. An area-name (area-name), generation
number (generation), or member name (member) is ignored if coded
with dsname.

All temporary
dsnames

You can code a temporary dsname for a VSAM data set.

All backward DD
references of the form
*.ddname

You can code backward references to VSAM data sets on the
REFDD parameter.

DUMMY No special considerations for VSAM, except that an attempt to read
results in an end-of-data condition, and an attempt to write results in
a return code that indicates the write was successful. If specified,
AMP=AMORG must also be specified.

DYNAM No special considerations for VSAM data sets.

FREE No special considerations for VSAM data sets.

MGMTCLAS mgmt-class-name No special considerations for VSAM data sets.

RECORG KS Specifies a key-sequenced data set.

ES Specifies an entry-sequenced data set.

RR Specifies a relative record data set.

LS Specifies a linear space data set.

RECORG overrides the record organization in the data class.

SECMODEL No special considerations for VSAM data sets.

SPACE No special considerations for VSAM data sets.

STORCLAS storage-class-name No special considerations for VSAM data sets. If a storage class is
assigned, the VSAM data set is managed by SMS.

Appendix C. VSAM

C-2 z/OS V1R4.0 MVS JCL User’s Guide

Table C-1. With SMS, DD Parameters to Use when Processing VSAM Data Sets (continued)

Parameter Subparameter Comment

UNIT device number Must be the device number of a valid device for VSAM (2305, 3330,
3340, 3344, 3350, 3375, 3380, 3390, or 9345). If not, OPEN will fail.

type Must be a type supported by VSAM (2305, 3330, 3340, 3350, 3375,
3380, 3390, or 9345). If not, OPEN will fail.

group Must be a group supported by VSAM. If not, OPEN will fail.

p System must have enough units to mount all of the volumes
specified. If sufficient units are available, UNIT=P can improve
performance by avoiding the mounting and demounting of volumes.
For multivolume data sets defined in integrated catalog facility
catalogs, UNIT=(,P) must be specified because all primary volumes
must be mounted in parallel.

unit count If the number of devices requested is greater than the number of
volumes on which the data set resides, the extra devices are
allocated anyway. If a key-sequenced data set and its index reside
on unlike devices, the extra devices are allocated evenly between
the unlike device types. If the number of devices requested is less
than the number of volumes on which the data set resides but
greater than the minimum number required to gain access to the
data set, the devices over the minimum are allocated evenly
between unlike device types. If devices beyond the count specified
are in use by another task but can be shared and have mounted on
them volumes containing parts of the data set to be processed, they
will also be allocated to this data set.

DEFER No special considerations for VSAM.

Note: MVS/ESA SP 5.2 does not support multiple exposure devices, such as the 2305, 3350P, and 3351P.

VOLUME PRIVATE

SER

No special considerations for VSAM.

The volume serial number(s) used in the access method services
DEFINE command for the data set must match the volume serial
numbers in the VOLUME=SER specification when the data set is
defined. After a VSAM data set is defined, the volume serial
number(s) need not be specified on a DD statement to retrieve the
data set. If, however, VOLUME=SER and UNIT=type are specified,
only those volumes specifically named are initially mounted. Other
volumes may be mounted when needed, if at least one of the units
allocated to the data set cannot be shared or the unit count is equal
to the total number of volumes allocated to the data set. A unit
cannot be shared when the unit count is less than the number of
volume serial numbers specified or when DEFER is specified.

If VOLUME=SER is specified and the data set is cataloged in a user
catalog, the user catalog should be defined as a JOBCAT or a
STEPCAT for the current step.

 Table C-2. With SMS, DD Parameters to Avoid when Processing VSAM Data Sets

Parameter Subparameter Comment

BURST Not applicable.

CHARS Not applicable.

CHKPT VSAM ignores CHKPT.

COPIES Not applicable.

DATA Not applicable.

Appendix C. VSAM

Appendix C. VSAM Data Sets C-3

Table C-2. With SMS, DD Parameters to Avoid when Processing VSAM Data Sets (continued)

Parameter Subparameter Comment

DCB All Not applicable.

DEST Specify DEST only with the SYSOUT parameter.

DLM Not applicable.

FCB Not applicable.

FLASH Not applicable.

LABEL BLP, NL, NSL Not applicable

IN Not applicable

OUT Not applicable

NOPWREAD The password-protection bit is set for all VSAM data sets,
regardless of the PASSWORD/NOPWREAD specification in the
LABEL parameter.

PASSWORD The password-protection bit is set for all VSAM data sets,
regardless of the PASSWORD/NOPWREAD specification in the
LABEL parameter.

SL, SUL Although these parameters apply to direct-access storage devices,
SL is always used for VSAM, whether you specify SL, SUL, or
neither.

MODIFY Not applicable.

SYSOUT If SYSOUT is coded with a mutually exclusive parameter (for
example, DISP), the job step is terminated with an error message.

UCS All Not applicable.

UNIT AFF Use this subparameter carefully. If the cluster components, the data
and its index, reside on unlike devices, the results of UNIT=AFF are
unpredictable.

VOLUME REF Use this subparameter carefully. If the referenced volumes are not a
subset of those contained in the catalog record for the data set, the
results are unpredictable.

vol-seq-number Results are unpredictable.

volume-count Not applicable because this subparameter gives the number of
nonspecific volumes. All VSAM volumes must be specifically
defined.

* Not applicable.

VSAM Data Sets - Without SMS

Creating a VSAM Data Set - Without SMS
Use access method services commands to create a VSAM data set. You cannot
use a DD statement.

Retrieving an Existing VSAM Data Set - Without SMS
To request a cataloged VSAM data set, code a DD statement in the form:
 //ddname DD DSNAME=dsname,DISP=OLD
 //ddname DD DSNAME=dsname,DISP=SHR

Note: VSAM data sets cannot be passed within a job.

Appendix C. VSAM

C-4 z/OS V1R4.0 MVS JCL User’s Guide

DD Statement Parameters - Without SMS
DD statement parameters that can be used without modification are explained in
Table C-3. Parameters that should not be used or should be used only with caution
are explained in Table C-4 on page C-6.

VSAM has one DD statement parameter of its own, AMP. The AMP parameter takes
effect when the data set defined by the DD statement is opened.

 Table C-3. Without SMS, DD Parameters to Use when Processing VSAM Data Sets

Parameter Subparameter Comment

AMP This parameter has subparameters for:

1. Overriding operands specified with the ACB, EXLST, or the
GENCB macro instructions

2. Supplying operands missing from the ACB or GENCB macro
instruction

3. Indicating checkpoint/restart options

4. Indicating options when using ISAM macro instructions to
process a key-sequenced data set

5. Indicating that the data set is a VSAM data set when the DD
statement specifies unit and volume information or DUMMY

6. Indicating that VSAM is to supply storage dumps of the ACBs
that identify the DD statement

DDNAME ddname No special considerations for VSAM.

DISP SHR Indicates that you are willing to share the data set with other jobs.
This subparameter alone, however, does not guarantee that sharing
will take place. See z/OS DFSMS: Using Data Sets for a full
description of data-set sharing.

OLD No special considerations for VSAM.

DSNAME dsname Names the VSAM cluster to which the data set belongs.

DUMMY No special considerations for VSAM, except that an attempt to read
results in an end-of-data condition, and an attempt to write results in
a return code that indicates the write was successful. If specified,
AMP=AMORG must also be specified.

DYNAM No special considerations for VSAM.

FREE No special considerations for VSAM.

PROTECT No special considerations for VSAM.

Appendix C. VSAM

Appendix C. VSAM Data Sets C-5

Table C-3. Without SMS, DD Parameters to Use when Processing VSAM Data Sets (continued)

Parameter Subparameter Comment

UNIT device number Must be the device number of a valid device for VSAM (2305,
3330, 3340, 3344, 3350, 3375, 3380, 3390, or 9345). If not, OPEN
will fail

type Must be a type supported by VSAM (2305, 3330, 3340, 3350,
3375, 3380, 3390, or 9345). If not, OPEN will fail.

group Must be a group supported by VSAM. If not, OPEN will fail.

p System must have enough units to mount all of the volumes
specified. If sufficient units are available, UNIT=P can improve
performance by avoiding the mounting and demounting of volumes.
For multivolume data sets defined in integrated catalog facility
catalogs, UNIT=(,P) must be specified because all primary volumes
must be mounted in parallel.

unit count If the number of devices requested is greater than the number of
volumes on which the data set resides, the extra devices are
allocated anyway. If a key-sequenced data set and its index reside
on unlike devices, the extra devices are allocated evenly between
the unlike device types. If the number of devices requested is less
than the number of volumes on which the data set resides but
greater than the minimum number required to gain access to the
data set, the devices over the minimum are allocated evenly
between unlike device types. If devices beyond the count specified
are in use by another task but can be shared and have mounted on
them volumes containing parts of the data set to be processed, they
will also be allocated to this data set.

DEFER No special considerations for VSAM.

Note: MVS/ESA SP 5.2 does not support multiple exposure devices, such as the 2305, 3350P, and 3351P.

VOLUME PRIVATE

SER

No special considerations for VSAM.

The volume serial number(s) used in the access method services
DEFINE command for the data set must match the volume serial
numbers in the VOLUME=SER specification when the data set is
defined. After a VSAM data set is defined, the volume serial
number(s) need not be specified on a DD statement to retrieve the
data set. If, however, VOLUME=SER and UNIT=type are specified,
only those volumes specifically named are initially mounted. Other
volumes may be mounted when needed, if at least one of the units
allocated to the data set cannot be shared or the unit count is equal
to the total number of volumes allocated to the data set. A unit
cannot be shared when the unit count is less than the number of
volume serial numbers specified or when DEFER is specified.

If VOLUME=SER is specified and the data set is cataloged in a user
catalog, the user catalog should be defined as a JOBCAT or a
STEPCAT for the current step.

 Table C-4. Without SMS, DD Parameters to Avoid when Processing VSAM Data Sets

Parameter Subparameter Comment

BURST Not applicable.

CHARS Not applicable.

CHKPT VSAM ignores CHKPT.

COPIES Not applicable.

Appendix C. VSAM

C-6 z/OS V1R4.0 MVS JCL User’s Guide

Table C-4. Without SMS, DD Parameters to Avoid when Processing VSAM Data Sets (continued)

Parameter Subparameter Comment

DATA Not applicable.

DCB All Not applicable.

DEST Specify DEST only with the SYSOUT parameter.

DISP CATLG VSAM data sets are cataloged and uncataloged as a result of an
access method services command; if CATLG is coded, a message
is issued, but the data set is not cataloged.

DELETE VSAM data sets are deleted as a result of an access method
services command; if DELETE is coded, a message is issued, but
the data set is not deleted.

MOD For VSAM data sets, MOD is treated as if OLD were specified,
except for processing with an ISAM program, in which case MOD
indicates resume load.

KEEP Because KEEP is implied for VSAM data sets, it need not be coded.

NEW VSAM data spaces are initially allocated as a result of the access
method services DEFINE command. If NEW is specified, the system
allocates space, but it is never used by VSAM. Moreover, an access
method services request for space may fail if the DISP=NEW
acquisition of space causes too little space to remain available.

UNCATLG VSAM data sets are cataloged and uncataloged as a result of
access method services commands; if UNCATLG is coded, a
message is issued, but the data set is not uncataloged.

PASS Not applicable. However, because there is no error checking, coding
PASS for a key-sequenced data set whose index resides on a like
device does not result in an error. If a VSAM data set and its index
reside on unlike devices, the results are unpredictable. In either
case, the data set is not passed.

DLM Not applicable.

DSNAME dsname(area-name)
dsname(generation)
dsname(member)

VSAM uses the dsname. An area-name, generation number, or
member name is ignored, if coded with the dsname.

All temporary
dsnames

Do not code a temporary dsname for a VSAM data set.

All backward DD
references of the form
*ddname

Do not code backward references to VSAM data sets. If the object
referred to is a cluster and the data set and index reside on unlike
devices, the results of a backward DD reference are unpredictable.

FCB Not applicable.

FLASH Not applicable.

Appendix C. VSAM

Appendix C. VSAM Data Sets C-7

Table C-4. Without SMS, DD Parameters to Avoid when Processing VSAM Data Sets (continued)

Parameter Subparameter Comment

LABEL BLP, NL, NSL Not applicable.

IN Not applicable.

OUT Not applicable.

NOPWREAD The password-protection bit is set for all VSAM data sets,
regardless of the PASSWORD/NOPWREAD specification in the
LABEL parameter.

PASSWORD The password-protection bit is set for all VSAM data sets,
regardless of the PASSWORD/NOPWREAD specification in the
LABEL parameter.

SL,SUL Although these parameters apply to direct-access storage devices,
SL is always used for VSAM, whether you specify SL, SUL, or
neither.

MODIFY Not applicable.

SPACE VSAM data spaces are initially allocated as a result of the access
method services DEFINE command. If SPACE is specified, the
system allocates space, but it is never used by VSAM. Moreover, an
access method services request for space may fail as a result of the
SPACE acquisition of space.

SYSOUT If SYSOUT is coded with a mutually exclusive parameter (for
example, DISP), the job step is terminated with an error message.

UCS All Not applicable.

UNIT AFF Use this subparameter carefully. If the cluster components, the data
and its index, reside on unlike devices, the results of UNIT=AFF are
unpredictable.

VOLUME REF Use this subparameter carefully. If the referenced volumes are not a
subset of those contained in the catalog record for the data set, the
results are unpredictable.

vol-seq-number Results are unpredictable.

volume-count Not applicable because this subparameter gives the number of
nonspecific volumes. All VSAM volumes must be specifically
defined.

* Not applicable.

Appendix C. VSAM

C-8 z/OS V1R4.0 MVS JCL User’s Guide

Appendix D. Data Sets with SMS

This appendix briefly summarizes information about defining data sets with SMS
from this book and z/OS MVS JCL Reference.

SMS, when installed and active, manages data sets and allows you to more easily
define new data sets via DD statements. The storage administrator at your
installation determines the data sets that are to be managed by SMS.

SMS can manage the following types of data sets:
v Physical sequential data sets
v Partitioned data sets (PDSs and PDSEs)
v VSAM data sets
v GDG data sets
v Temporary data sets
v VIO data sets

SMS does not manage the following types of data sets:
v Tape data sets
v ISAM data sets
v Sysout data sets (SYSOUT parameter)
v Subsystem data sets (SUBSYS parameter)
v TSO/E data sets coming from or going to a terminal
v TCAM message data sets
v Data sets on mass storage (MSS) volumes
v In-stream data sets

If the data set is to be managed through SMS, you cannot enclose the data set
name in apostrophes on the DSNAME parameter on the DD statement. However,
the following exception applies: You can enclose the data set name on the
DSNAME parameter in apostrophes if the data set is to be assigned to, or already
resides on, an SMS-managed mountable tape volume. This exception applies only
if DFSMS/MVS 1.1 or later is installed.

Note: In this book, “with SMS” indicates information that applies when SMS is
installed and active; “without SMS” indicates SMS is not installed or is not
active.

SMS Constructs
With SMS, a new data set can have one or more of the following three constructs:

v Data class - contains the data set attributes related to the allocation of the data
set.

v Management class - contains the data set attributes related to the migration and
backup of the data set. A management class can only be assigned to a data set
that also has a storage class assigned.

v Storage class - contains the data set attributes related to the storage occupied by
the data set.

 A data set that has a storage class assigned is defined as an
“SMS-managed data set”.

The storage administrator at your installation writes the automatic class selection
(ACS) routines that SMS uses to assign the constructs to a new data set.

© Copyright IBM Corp. 1988, 2003 D-1

For example, with SMS

You can code the DDNAME, DSNAME, and DISP parameters to define a new data
set:

 //SMSDS0 DD DSNAME=MYDS0.PGM,DISP=(NEW,KEEP)

and retrieve the data set with:

 //SMSDSR DD DSNAME=MYDS0.PGM,DISP=MOD

In the example, installation-written ACS routines (possibly based on the data set
name and information from your JOB, EXEC, and DD statements) can select a data
class, management class, and storage class appropriate for the data set. You code
only the ddname, dsname, and disposition of the data set. The constructs selected
by the ACS routines contain all the other attributes needed to manage the data set.

Without SMS

You would have needed to code the data set attributes on the DCB, SPACE, UNIT,
and VOLUME parameters; for example:

 //SMSDS0 DD DSNAME=MYDS0.PGM,VOLUME=SER=SYS084,
 // UNIT=SYSDA,SPACE=(TRK,(10,5)),DISP=(NEW,CATLG),
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

Existing JCL
Generally, your existing JCL will continue to execute correctly. SMS allows the
installation to benefit from the data class, management class, and storage class
constructs without changing existing JCL. The installation-written ACS routines can
be designed to filter existing parameters on the DD statement and select
appropriate constructs for the data set.

Default Unit
Also with SMS, for a non-SMS-managed data set, if your storage administrator has
set a system default unit under SMS, you do not need to specify UNIT. Check with
your storage administrator.

Specifying Constructs
In many cases, the constructs selected by the installation-written ACS routines are
sufficient for your data sets.

However, when defining a new data set, you can select a data class, management
class, or storage class by coding one or more of the following DD parameters:
v DATACLAS - specifies the data class
v MGMTCLAS - specifies the management class
v STORCLAS - specifies the storage class

The storage administrator has defined the names of the classes you can specify.
You can view the names and attributes defined in each of the named classes by
using ISMF. See z/OS DFSMS: Using the Interactive Storage Management Facility
for information on how to use ISMF.

Appendix D. Data Sets with SMS

D-2 z/OS V1R4.0 MVS JCL User’s Guide

For example, you can select the data class named DCLAS01 for a new data set
with:

 //SMSDS1 DD DSNAME=MYDS1.PGM,DATACLAS=DCLAS01,DISP=(NEW,KEEP)

In the example, SMS uses the attributes in the data class named DCLAS01 to
manage the data set. The installation-written ACS routines can select the
management class and storage class.

Note that an ACS routine can override the data class, management class, or
storage class that you specify.

Overriding Attributes Defined in the Data Class
For a new data set, you can, if needed, override the data class attributes defined in
the data class for the data set by coding one or more of the following DD
parameters:
 RECORG (record organization) or RECFM (record format)
 LRECL (record length)
 KEYLEN (key length)
 KEYOFF (key offset)
 DSNTYPE (type, PDS or PDSE)
 AVGREC (record request and space quantity)
 SPACE (average record length, primary, secondary, and directory quantity)
 RETPD (retention period) or EXPDT (expiration date)
 VOLUME (volume-count)

For example:

 //SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
 // LRECL=256,EXPDT=1996/033

In the example, the logical record length of 256 and the expiration date of February
2, 1996, override the corresponding attributes defined in the data class for the data
set.

With SMS, you can associate a data class with any new data set, (whether or not it
is system-managed). If you do not specify one or more of the DD parameters listed
earlier (RECORG, RECFM, LRECL, KEYLEN, and so forth), the system uses the
defined data class attributes.

For an existing system-managed DASD data set, note that you cannot use the
volume-count subparameter to override the current volume count. (If you use the
subparameter, the system ignores your specification and uses the current volume
count.)

Overriding Attributes Defined in the Management Class
There are no attributes in the management class that you can specify via JCL. The
storage administrator at your installation controls the migration and backup of
SMS-managed data sets.

Overriding Attributes Defined in the Storage Class
You can specify volume serial numbers on the VOLUME parameter if the storage
administrator has specified GUARANTEED_SPACE=YES in the storage class for
the data set.

Appendix D. Data Sets with SMS

Appendix D. Data Sets with SMS D-3

For example:

 //SMSDS4 DD DSNAME=MYDS4.PGM,STORCLAS=SCLAS04,DISP=(NEW,KEEP),
 // VOLUME=SER=(222333,333444)

In the example, the data set will reside on volume serials 222333 and 333444.

Protecting Data Sets with RACF
In many cases, your RACF user/group default data set profile is sufficient for the
data sets you create.

However, you can override the default profile by coding the SECMODEL parameter.
On the SECMODEL parameter, specify the name of an existing RACF data set
profile.

For example:

 //SMSDS5 DD DSNAME=MYDS5.PGM,SECMODEL=(GROUP1.PGM),DISP=(NEW,KEEP)

Modeling Data Set Attributes
For a new data set, use the LIKE or REFDD parameter to copy to the new data set
the attributes of an existing cataloged data set or a previously defined data set.

For example:

 //SMSDS6 DD DSNAME=MYDS6.PGM,LIKE=MYDSCAT.PGM,DISP=(NEW,KEEP)
 or
 //SMSDS7 DD DSNAME=MYDS7.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP)
 //SMSDS8 DD DSNAME=MYDS8.PGM,REFDD=*.SMSDS7,DISP=(NEW,KEEP),
 // LRECL=1024

For both LIKE and REFDD, you can override data class attributes obtained from the
referenced data set by coding those DD parameters that can be used to override
attributes in these classes.

Appendix D. Data Sets with SMS

D-4 z/OS V1R4.0 MVS JCL User’s Guide

Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2003 E-1

E-2 z/OS V1R4.0 MVS JCL User’s Guide

Notices

This information was developed for products and services offered in the USA.

IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2003 F-1

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AFP
v DB2
v DFSMSdfp
v DFSMS/MVS
v DFSORT
v IBM
v IBMLink
v IP PrintWay
v MVS/ESA
v MVS/SP
v OpenEdition
v OS/390
v Print Services Facility
v RACF
v Resource Link
v RETAIN
v SecureWay
v System/370
v System/390
v VTAM
v zSeries
v z/OS

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

F-2 z/OS V1R4.0 MVS JCL User’s Guide

Index

Special characters
//*DATASET control statement

use 12-6
//*ENDDATASET control statement

use 12-6
//*ENDPROCESS control statement

use 10-16
//*OPERATOR control statement

use 7-2
//*PROCESS control statement

use 10-16
when requesting processor 9-10

/*DEL control statement
use 24-6

/*EOF control statement
use 24-6

/*MESSAGE control statement
use 7-2

/*NOTIFY control statement
use 7-5

/*PRIORITY control statement
use 11-2

/*PURGE control statement
use 24-6

/*ROUTE control statement
use 24-1

/*SCAN control statement
use 24-6

/*SETUP control statement
use 15-50

/*SIGNOFF control statement
use 6-4

/*SIGNON control statement
use 6-4

*
use in identifying in-stream data set 12-5

Numerics
3203 Printer Model 5

for printing sysout data set 25-2
3211 Printer

for printing sysout data set 25-4
3450 Diskette Input/Output Unit

identifying output data set 18-2
input data set 12-6

3800 Printing Subsystem
for printing high-density dump 25-5
for printing sysout data set 22-10, 25-2

A
abnormal termination

See termination
ACB (access method control block)

values for data set processing 13-5

access method control block
See ACB

accessibility E-1
ACCODE parameter

use 14-2
accounting information

to identify account 4-3
ACMAIN parameter

use 7-5
ACS routine

data set attribute description 13-6
use 13-7, 15-2, 15-16, B-2, B-3, D-1, D-2
with temporary data set 12-3

affinity
for multivolume data set 15-34
unit 15-29

explicit 15-29
implied 15-30
to subsystem data set 16-4
when requesting extended data set 15-34

unit and volume chart 15-33
unit and volume interaction 15-33
volume 15-20, 15-29

explicit 15-20
implicit 15-21

aging
See priority

allocation
chart 15-1
description 15-1, 16-1
dynamic 15-50

example 15-51
interaction 15-24
of device 15-2

affected by device status 15-3
concurrent 15-5
example 15-8
in JES3 system 15-11
number allocated 15-6
requesting more than one 15-6

of direct access space 15-42
example 15-46, 15-47

of tape or direct access volume 15-15
example 15-8
for indexed sequential data set if error

occurs A-4
of virtual I/O 15-47

example 15-48, 15-49
with deferred volume mounting 15-5

example 15-5
with volume premounting 15-50

example 15-50
AMP parameter

use 13-5, C-5

© Copyright IBM Corp. 1988, 2003 X-1

automatic class selection routine
See ACS routine

automatic priority group
See APG

average record
See AVGREC parameter

AVGREC parameter
use 13-6, 15-42, 15-43, D-3

B
base control program

See BCP
BCP (base control program)

in relation to JCL statement 3-1
binary synchronous communication

See BSC
BSC (binary synchronous communication)

use 6-3, 6-4
BURST parameter

use 25-2
BYTES parameter

to limit job’s output 7-3
in APPC scheduling environment 7-3, 10-12
in non-APPC scheduling environment 7-4, 10-12

use 10-17, 26-1

C
CANCEL subparameter

to cancel job that exceeds output limit 10-12
use 26-2

CARDS parameter
to limit job’s output 7-3

in APPC scheduling environment 7-3, 10-12
in non-APPC scheduling environment 7-4, 10-12

use 10-17, 26-1
cards subparameter

use 26-1
catalog

in JES3 allocation 15-12
private

of data set 12-6
system

of data set 12-6
volume for

allocation and unallocation 12-6
cataloged procedure

See procedure
cataloging

data set
not performed as requested 17-4
request 17-3
unsuccessful 17-4
use 17-4
when cataloged data set updated 17-4

character-arrangement table
dynamic selection 25-3
modifying 25-3
specification 25-3

CHARS parameter
use 25-2, 25-5

checkpointing
job execution 5-2
multivolume data set 16-4
submitting a job for restart B-10
sysout data set 22-10

CHKPT macro
restart control 5-2

CHKPT parameter
use 16-4

CHNSIZE parameter
use 24-1

CKPTLINE parameter
use 22-10

CKPTPAGE parameter
use 22-10

CKPTSEC parameter
use 22-10

class
job

description 11-1
for copying job 6-2
in holding job 6-1
to control performance 11-1

output
assigning data set 18-1
printing 22-5
use 22-4

CLASS parameter
for copying job 6-2
in holding job 6-1
to suppress sysout output 22-9
use 7-7, 10-15, 11-2, 18-1, 22-7
when requesting processor 9-10

CNTL parameter
use 16-4

CNTL statement
use 16-4

code
See return code

command statement
use 7-1

COMMAND statement
use 7-1

comment
use 7-2

communication
chart 7-1
description 7-1, 7-8
from functional subsystem to programmer 7-6

example 7-6
from JCL to operator 7-2

example 7-2
from JCL to program 7-2

example 7-3
from JCL to programmer 7-2

example 7-2
from JCL to system 7-1

example 7-2
from system to operator 7-3

X-2 z/OS V1R4.0 MVS JCL User’s Guide

communication (continued)
example 7-3, 7-4

from system to TSO/E userid 7-5
example 7-5

from TSO/E userid to system 7-6
example 7-6

through job log 7-6
example 7-7, 7-8

COMPACT parameter
use 24-1

concatenation
data set 12-5

COND parameter
example 10-7
relationship of JOB and EXEC statement COND

parameter 10-6
to force step execution 10-6
use 10-5

constructs
with SMS

description D-1
control

data set 13-1
CONTROL parameter

use 25-1
COPIES parameter

use 25-1, 25-2, 25-4
copies subparameter

use 25-1
copy

input stream 6-2
of data set name 12-4

D
data class

See also DATACLAS parameter
description D-1
overriding attribute D-3

data control block
See DCB

DATA parameter
use in identifying in-stream data set 12-5

data set
cataloged

deleting 17-3
generation data set 17-4
placing in catalog 17-3
removing from catalog 17-5
specifying CATLG disposition 17-4
unit and volume information 15-24, 15-28
volume reference 15-24, 15-28

concatenation 12-5
dummy

effect 16-1
nullification 16-2
to suppress sysout output 22-8
use 16-1

exclusive use 13-2
held

release 22-8

data set (continued)
held (continued)

request 22-7
multivolume 15-17, 15-21

allocation consideration 15-17, 15-21
checkpointing 16-4
requesting space 15-44

passed
demounting volume 17-12
effect on volume retention 17-12
unit and volume information 15-24, 15-28

permanent 12-1
postponed definition 16-2

concatenation 16-2
reference 16-2
use 16-2

requesting resource 3-2
securing control 13-1
shared use 13-2
stacking 15-37
sysout

grouping 22-5
size 22-5

system-managed
description 7-6

temporary 12-3
deleting 17-3
use of VIO 15-47

with SMS D-1
data-set-sequence-number

use 12-9
DATACLAS parameter

use 13-6, B-2, B-3, D-2
DATASET JES3 statement

See //*DATASET
DCB (data control block)

values for data set processing 13-4
values for sysout data set processing 19-1
values from cataloged data set 13-5
values from earlier DD statement 13-5

DCB parameter
use 13-4, 19-1, 25-2, 25-3, 25-4, A-3, A-6, B-6, B-9

DDNAME parameter
use 16-2, D-2

deadline
execution by 5-3

DEADLINE parameter
in deadline scheduling 5-3
in periodic scheduling 5-3

deallocation
See unallocation

default unit D-2
DEFER subparameter

use 15-5
deferred volume mounting

specification 15-5
DEFINE command B-2
DEL JES2 statement

See /*DEL
deletion

not performed when data set uncataloged 17-5

Index X-3

deletion (continued)
of cataloged data set 17-3
of data set with unexpired expiration date 17-3
of generation data set B-9
of temporary data set 17-3
request 17-2

delimiter statement
use 12-5

dependency
before step execution

external 5-5
dependent job control

See DJC
dependent job net

testing 5-5
use 5-4

description task for requesting data set resources
chart 13-1
description 13-1, 14-1
of data attribute 13-4
of data attributes

example 13-5, 13-6, 13-7
of status 13-1

example 13-2
description task for requesting sysout resources

chart 19-1
description 19-1
of data attribute 19-1

example 19-1
DEST parameter

use 24-1
destination

default 24-4
multiple 24-1

destination control task for requesting sysout resources
chart 24-1
description 24-1, 24-7
to another processor 24-5

example 24-5
to assist in sysout distribution 24-7
to internal reader 24-5

example 24-6
to local or remote device or to another node 24-1

example 24-4, 24-5
in JES2 network 24-2
in JES3 network 24-4

to terminal 24-7
example 24-7

device
allocation 15-2
management in JES3 system 15-11
number allocated 15-6
specifying as destination for sysout data set 24-1

DFSMSdfp
with SMS-managed data set D-1

directory
of PDS 9-1

disability E-1
DISP parameter

use 12-6, 13-1, 17-1, A-3, A-6, B-3, B-5, B-8, B-9,
D-2

DISP parameter (continued)
when data set is cataloged 12-6

DJC (dependent job control)
use 5-4

DLM parameter
use 12-5

documentation
job and its resource requirement 7-2

documents, licensed xvi
DPAGELBL parameter

use 20-1
DSID parameter

use 12-6, 18-2
DSNAME parameter

use 12-1, 12-5, 15-18, 18-1, A-2, A-6, B-3, B-5, B-6,
D-2

DSNTYPE parameter
use 13-6, D-3

DUMMY parameter
use 16-1, 22-8
with SUBSYS parameter 16-4

dump
after error 10-17
format 25-5
high-density 10-18

DUMP subparameter
use 26-2

dynamic
allocation 15-50
unallocation 17-1

DYNAMNBR parameter
use 15-50

E
end processing task for requesting data set resource

chart 17-1
description 17-1, 17-12
disposition of data set 17-1

bypassing 17-8
cataloging 17-3
default 17-8
deleting 17-2
effect of device type 17-2
example 17-9, 17-10
keeping 17-3
passing 17-5
uncataloging 17-5
when no abnormal termination disposition

coded 17-2
disposition of volume 17-11

example 17-11, 17-12
of removable volume 17-11

release of unused direct access space 17-10
example 17-11

unallocation 17-1
example 17-1

end processing task for requesting sysout resource
chart 23-1
description 23-1
unallocating 23-1

X-4 z/OS V1R4.0 MVS JCL User’s Guide

end processing task for requesting sysout resource
(continued)

example 23-1
ENDDATASET JES3 statement

See //*ENDDATASET
ENDPROCESS JES3 statement

See //*ENDPROCESS
entering jobs

task in job control 2-4
EOF JES2 statement

See /*EOF
error

scanning JCL 10-15
EVEN subparameter

example 10-12
to force step execution 10-6

event
external

holding job 6-1
execution

at remote node 5-6
considerations for 5-7
example 5-7

chart 5-1
deadline or periodic 5-3

example 5-4
use 5-4

description 5-1, 6-1
of procedure 5-1

example 5-2
of program 5-1

example 5-1
when dependent on other job 5-4
when dependent on other jobs

example 5-5
when restarting and with checkpointing 5-2

example 5-3
EXPDT parameter

use 13-6, 17-10
expiration date

for data set
deleting prior to date 17-10
effect on disposition 17-10
request 17-10
when unexpired 17-3

extent
in allocation of direct access space 15-44

external writer
See writer

F
FAILURE parameter

in restart 5-3
FCB parameter

use 25-1, 25-4, 25-5
FETCH parameter

use 7-3
FLASH parameter

use 25-2

FORMDEF parameter
use 22-10

FORMS parameter
use 25-4

forms subparameter
use 25-1

FREE parameter
use 17-1, 23-1

G
GDG (generation data group)

building base entry B-2
cataloging data set 17-4
data set label B-4
defining attribute B-4
identifying 12-2
type of data set B-2

generation data group
See GDG

generation data set
creating B-3, B-5
deleting and uncataloging B-9
description B-1, C-1
example B-10
retrieving B-2, B-6
rules when submitting job for restart B-10

graphic character modification modules
modifying 25-3

GROUP parameter
use 8-1

GROUPID parameter
use 22-5

grouping
sysout data sets

demand setup 22-6
request 22-5
subgroup 22-6

guaranteed space D-3
with system-managed DASD data set 15-16

H
hard-copy log

description 7-6
high-density dumps

request 25-5
HOLD parameter

in holding job 6-1
use 22-7

holding
job entrance 6-1
of sysout data set 22-7
releasing 22-8
use 22-7

I
I/O-to-processing ratio

use 11-4

Index X-5

identification task for entering jobs
chart 4-1
description 4-1, 5-1
of account 4-3

example for local execution 4-3
example for remote execution 4-4
for local execution 4-3
for remote execution 4-4

of job 4-1
example 4-1

of procedure 4-2, 4-3
example 4-2

of programmer 4-4
example 4-4

of step 4-2
example 4-2

identification task for requesting data set resources
as TCAM message data set 12-9

example 12-10
by location on tape 12-9

example 12-9
chart 12-1
description 12-1, 13-1
from or to terminal 12-10

example 12-10
of data set 12-1

example for generation data set 12-2
example for indexed sequential data set 12-3,

12-4
example for partitioned data set 12-2, 12-4
example for permanent data set 12-2
example for temporary data set 12-4
example when copying data set name 12-5

of data set on 3450 Diskette Input/Output Unit 12-6
example 12-6

of in-stream data set 12-5
example 12-5, 12-6

through catalog 12-6
example 12-7

through label 12-7
example 12-9

identification, task for requesting sysout resources
as a sysout data set 18-1

example 18-1
chart 18-1
description 18-1, 19-1
of data set on 3450 Diskette Input/Output Unit 18-2

example 18-2
of output class 18-1

example 18-2
IEBIMAGE utility program

use for character-arrangement table 25-3
use in updating SYS1.IMAGELIB 25-3

IEBUPDTE utility program
use 9-5

IEFBR14 program
considerations when using 10-16
description 10-16
use in testing 10-16

IEHPROGM utility program
use B-9

IF/THEN/ELSE/ENDIF statement construct
example 10-4
level of evaluation

job level 10-3
step level 10-3

to force step execution 10-4
use 10-1
with COND parameter 10-3

IN subparameter
use 14-3, 14-4

in-stream
See input stream

in-stream procedures
See procedure

INCLUDE group
specifying library containing 9-6

INCLUDE statement
example 4-3
use 4-3

independent mode
processor

requesting 9-9
index area

description A-1
identifying 12-3, 12-4

INDEX parameter
use 12-3, 25-4

indexed sequential data set
area arrangement A-4
creating A-1
description A-1, A-8
example A-7
identifying 12-3, 12-4
parameters for retrieval or extension A-6
retrieving A-5
specific track request 15-47
system assigned space request 15-46
when allocation error occurs A-4

indexing
of sysout data set margin 25-4

input control task for entering jobs
by copying input stream 6-2

example 6-3
by holding job entrance 6-1

example 6-2
use 6-2

by holding local input reader 6-2
example 6-2

chart 6-1
description 6-1, 6-4
from remote work station 6-3

input stream
definition 2-12
description 3-1
device 2-12
example 2-12
identification of data set 12-5

integrity processing
chart 13-3
definition 13-1
for other than permanent data set 13-3

X-6 z/OS V1R4.0 MVS JCL User’s Guide

integrity processing (continued)
for permanent data set 13-2
of data set 13-2

Interactive Storage Management Facility (ISMF)
See ISMF

interpretation
punched sysout data set

request 25-5
INTRDR subparameter

use 24-5
invalid syntax

scanning for 10-15
IORATE parameter

use 11-4
ISMF (Interactive Storage Management Facility)

use 13-6, 13-7, 15-2, 15-16, D-2

J
JCLLIB statement

specifying library 9-6
for INCLUDE group 9-6

JCLTEST subparameter
use 10-15

JESDS parameter
use 7-6, 7-7

job
background

defining 7-5
batch

defining 7-5
control 2-1
description 3-1
entering 2-4, 3-1
example 2-4
jobstep example 2-4
predecessor 5-4
processing 3-2
requesting resource 2-3
successor 5-4
termination

when data set cannot be cataloged 17-4
job input control

See input control task for entering jobs
job log

description 7-6
execution time messages in log 10-13
for communication from JCL to programmer 7-2
output class 7-6
printing 7-6

with sysout data set 7-7
JOBCAT catalog

use 12-7
JOBLIB

See library, private
jobname

to identify job 4-1
JOURNAL parameter

in restart 5-2
JSTTEST subparameter

use 10-15

K
keeping

data set
request 17-3
when data set uncataloged 17-5

disposition
for tape volume 17-11

key length
See KEYLEN parameter

key offset
See KEYOFF parameter

keyboard E-1
KEYLEN parameter

use 13-6, D-3
KEYOFF parameter

use 13-6, D-3

L
label

data set
for cataloged or passed data set 12-8
for nonspecific volume request 12-8
for specific volume request 12-9
use 12-7

LABEL parameter
use 12-7, 17-10, A-3, B-6, B-9

library
defining 9-1
private 5-1, 9-1

adding 9-2
concatenating 9-3
creating 9-2
JOBLIB statement 5-1, 9-1
retrieval 9-3
STEPLIB statement 5-1, 9-1
use 9-2

procedure 9-4
updating 9-5
use for procedure 3-1

residence for executable program 5-1
SYS1.IMAGELIB

use 22-10
use in copy modification 25-3

system 5-1, 9-1
SYS1.LINKLIB 5-1, 9-1
use 9-1

temporary 5-1, 9-1
creating 9-4
use 9-4

licensed documents xvi
LIKE parameter

use 13-6, B-2, D-4
limit

sysout output
request 26-1
use 26-1
when exceeded 26-2

LINDEX parameter
use 25-4

Index X-7

LINECT parameter
use 25-1

linect subparameter
use 25-1

LINES parameter
to limit job’s output 7-3

in APPC scheduling environment 7-3, 10-12
in non-APPC scheduling environment 7-4, 10-12

use 10-17, 26-1
lines subparameter

use 26-1
location

of data set on tape 12-9
log

See also hard-copy log
See job log

log subparameter
use 7-7

LOGOFF command
use 6-4

LOGON command
use 6-4

LookAt message retrieval tool xvi
loop

program
stopping execution 10-13

LRECL parameter
use 13-6, D-3

LREGION parameter
use 9-8

M
management class

See also MGMTCLAS parameter
description D-1
overriding attribute D-3

member
in PDS 9-1

message
during volume mounting 7-3
from system for job 7-6
when job exceeds output limit 7-3

MESSAGE JES2 statement
See /*MESSAGE

message retrieval tool, LookAt xvi
MGMTCLAS parameter

use 13-7, D-2
migration and backup D-3

description 13-7
with SMS 13-7

mode
process

requesting for sysout data set 22-7
model

data set attributes
summary for SMS-managed data set D-4
with SMS 13-6

modification
for sysout data set 25-3

MODIFY parameter
use 25-2

mount
volume

deferred 15-5
message control 7-3
premounting 15-50

MSGCLASS parameter
controlling copied input stream 6-2
use 7-6, 7-7, 18-1, 22-4, 24-6

MSGLEVEL parameter
use 7-6

use in controlling job log listing 7-2

N
naming

data set 12-1
temporary data set 12-3

net
See dependent job net

node
See remote node

NOLOG parameter
use 7-7

NOPWREAD subparameter
use 14-2

Notices F-1
notification

of TSO/E userid 7-5
NOTIFY JES2 statement

See /*NOTIFY
NOTIFY parameter

use 7-5
null statement

example 4-1
to identify job end 4-1

NULLFILE subparameter
use 16-1

nullification
of dummy data set 16-2
of dummy status for sysout data set 22-9

O
ONLY subparameter

example 10-12
to force step execution 10-6

operating system
content 3-1

OPERATOR JES3 statement
See //*OPERATOR

ORG parameter
use 24-1

OUT subparameter
processing with 14-4
use 14-3

OUTDISP parameter
of OUTPUT JCL statement

to hold a sysout data set 22-7
to suppress output 22-9

X-8 z/OS V1R4.0 MVS JCL User’s Guide

OUTLIM parameter
use 24-6, 26-1

output formatting
chart 25-1
description 25-1, 26-1
of dump on 3800 Printing Subsystem 25-5
of dumps on 3800 Printing Subsystem

example 25-5
to 3211 Printer with indexing feature 25-4

example 25-4
to 3800 Printing Subsystem 25-2

example 25-3
to any printer 25-1

example 25-2
to punch 25-4

example 25-5
OUTPUT JCL statement

adding parameter 22-2
changing //*FORMAT statement 22-4
changing /*OUTPUT statement 22-4
references to multiple statements 22-2
use 22-1

output limiting
chart 26-1
description 26-1, 26-3
example 26-2
in a non-APPC scheduling environment 26-2
in an APPC scheduling environment 26-1
messages when limit exceeded 7-3
request 26-1
terminating job when limit exceeded 10-12
use 26-1
when exceeded 26-2

OUTPUT parameter
use 22-1

overflow area
description A-1
identifying 12-3, 12-4

OVFLOW subparameter
use 12-3

P
PAGEDEF parameter

use 22-10
PAGES parameter

to limit job’s output 7-3
in APPC scheduling environment 7-3, 10-12
in non-APPC scheduling environment 7-4, 10-12

use 10-17, 26-1
parallel mounting

of volumes
to request more than one device 15-6

PARM parameter
use in communicating from JCL to program 7-2
values for IBM-supplied program 7-3

partition
See spool partitions

partitioned data set
See PDS

pass
data set

demounting of volume 17-12
disposition when data set unreceived 17-6
effect on volume retention 17-12
receiving passed data set 17-5
requesting 17-5
when step abnormally terminates during

execution 17-6
PASSWORD parameter

use 8-1, 14-2
passwords

in protecting data set 14-2
PDS (partitioned data set)

identifying 12-2, 12-4
member 12-2, 12-4
use as library 9-1

PDSE (partitioned data set extended)
member 12-2, 12-4

PEND statement
to identify procedure end 4-2

PERFORM parameter
use 11-3

performance control task for processing jobs
by I/O-to-processing ratio 11-4

example 11-4
by job class assignment

by job class assignment 11-1
example 11-2

by performance group assignment 11-3
example 11-4

by selection priority 11-2
example 11-3

chart 11-1
description 11-1, 0-5

performance control task for requesting sysout
resources

by queue selection 21-1
example 21-1

chart 21-1
description 21-1

performance group
use 11-3

periodic
execution 5-3

PIMSG parameter
use 7-6

postponing
specification of data set 16-2

prime area
description A-1
identifying 12-3, 12-4

PRIME subparameter
use 12-3

print
controlling format 25-1
protecting printed output 20-1

Index X-9

print (continued)
sysout data set

on same listing 22-5
scheduling 23-1
simultaneously on different printer 22-5

Print Services Facility
See PSF

printed output
protection 20-1

priority
aging 11-3
not useful in controlling execution order 6-2
selection 11-2

for sysout data set 21-1
ignoring 21-1
use 11-2

PRIORITY JES2 statement
See /*PRIORITY

PROC parameter
to execute procedure 5-1
use 9-5

PROC statement
to identify procedure 4-2

procedure
cataloged and in-stream

description 3-1
execution 5-1
overriding DD statement 15-24, 15-28
testing 3-1

in private library 9-5
PROCESS JES3 statement

See //*PROCESS
processing

nonstandard
definition 10-16
use in testing 10-16

processing control task for processing jobs
by conditional execution 10-1, 10-12

example when return codes tested 10-7
in APPC scheduling environment 10-13
in non-APPC scheduling environment 10-13

by timing execution 10-13
example 10-14, 10-15

chart 10-1
description 10-1, 10-18
for testing 10-15

by altering usual processing 10-15
by dumping after error 10-17
example when dumping 10-18
example when scanning JCL 10-16
example when using IEFBR14 10-16
example when using nonstandard

processing 10-17
processing control task for requesting data set

resources
by postponing specification 16-2

example 16-3
by subsystem 16-4

example 16-4, 16-5
by suppressing processing 16-1

example 16-2

processing control task for requesting data set
resources (continued)

by TCAM job or task 16-5
example 16-5

chart 16-1
description 16-1, 17-1
with checkpointing 16-4

example 16-4
processing control task for requesting sysout resources

by checkpointing 22-10
by external writer 22-6

example 22-6
by holding 22-7

example 22-8
by mode 22-7

example 22-7
by PSF 22-10

example 22-10
by segmenting 22-4
by suppressing output 22-8

example 22-9
chart 22-1
description 22-1, 22-11
with additional parameter 22-1
with additional parameters

example 22-2
with checkpointing

example 22-10
with other data set 22-4
with other data sets

example 22-5, 22-6
processor

as output destination 24-5
selecting in JES2 9-9
selecting in JES3 9-10
selecting using a scheduling environment 9-8

PROCLIB parameter
use 9-5

programmer’s name
to identify 4-4

PROTECT parameter
use 14-1

protection task for entering jobs
chart 8-1
description 8-1, 9-1
through RACF 8-1

example 8-1
protection task for requesting data set resources

by password 14-2
by passwords

example 14-3
chart 14-1
description 14-1, 15-1
for ISO/ANSI/FIPS Version 3 tape 14-2
for ISO/ANSI/FIPS Version 3 tapes

example 14-2
for SMS-managed data sets

description 14-2
summary D-4

of access to BSAM and BDAM data set 14-3

X-10 z/OS V1R4.0 MVS JCL User’s Guide

protection task for requesting data set resources
(continued)

of access to BSAM and BDAM data sets
chart 14-3
example 14-4

through RACF 14-1
example 14-2

protection task for requesting sysout data set resources
chart 20-1
description 20-1
example 20-1
with RACF 20-1

PRTY parameter
use 11-2, 21-1

PSF (Print Services Facility)
control 22-10

punch
sysout data set

formatting 25-4
interpretation 25-5
scheduling 23-1

PURGE JES2 statement
See /*PURGE

Q
QNAME parameter

use 12-9, 16-5

R
RACF (Resource Access Control Facility)

data set protection 14-1
protecting printed output 20-1
protection through 8-1
with in-stream data set 12-5
with sysout data set 18-1

RD parameter
in restart 5-2

reader
input

holding 6-2
internal

as output destination 24-5
description 3-1
limiting record 24-6
message class 24-6
sending directly to JES 24-6

receive
passed data set

requesting 17-5
RECFM parameter

use 13-6, D-3
record organization

See RECORG parameter
RECORG parameter

use 13-6, D-3
REFDD parameter

use 13-7, B-2, D-4

reference DD statement
See REFDD parameter

relative generation numbers
definition B-1

release
held sysout data set

requesting 22-8
remote job entry

See RJE
remote job processing

See RJP
remote node

execution 5-6
specifying as destination for sysout data set 24-1

remote terminal
use 6-3

remote work station
use 6-3

requesting resources 3-6
for data set 2-3
task in job control 2-3
tasks 3-6

task chart 3-6
Resource Access Control Facility

See RACF
resource control task for entering jobs

chart 9-1
description 9-1, 9-12
of address space 9-6

example 9-8
of INCLUDE group 9-6
of procedure library 9-4

example 9-5
of processor 9-8

example 9-10
of program library 9-1

creating and adding example 9-2
example of concatenating 9-4
example of retrieving 9-3
example of temporary 9-4

of spool partition 9-11
example 9-11

restart
after abnormal termination 5-2
after JES2 system failure 5-3
after JES3 system failure 5-3
automatic checkpoint 5-2
automatic step 5-2
deferred checkpoint 5-2
deferred step 5-2
use 5-2
when job contains generation data set B-10

RESTART parameter
in restart 5-2, 5-3

RETAIN subparameter
use 17-11, 17-12

retention
of tape volume

demounting of volume 17-12
requesting 17-12
use 17-12

Index X-11

RETPD parameter
use 13-6, 17-10

return code
compatible test 10-2, 10-7

with COND parameter 10-7
with IF/THEN/ELSE/ENDIF statement

construct 10-2
example 10-7
testing 10-2, 10-6

with COND parameter 10-6
with IF/THEN/ELSE/ENDIF statement

construct 10-2
RJE (remote job entry)

use 5-6, 6-3
RJP (remote job processing)

output destination 24-5
use 5-6, 6-4

ROUTE JES2 statement
See /*ROUTE

S
SCAN JES2 statement

See /*SCAN
scanning

syntax for error 6-2, 10-15
scheduling environment 9-8
SCHENV parameter

of JOB statement 9-8
example 9-9
use 9-8

scratch disposition
for tape volume 17-11

SECLABEL parameter
use 8-1

SECMODEL parameter
use 14-2, D-4

security model
See SECMODEL parameter

SEGMENT parameter
of DD statement

use 22-4
setup

of devices
altering 15-15
explicit 15-14
high watermark 15-13
in JES3 system 15-12
job 15-12

SETUP JES2 statement
See /*SETUP

SETUP parameter
mount messages for volume 7-3
use 15-11

shortcut keys E-1

SIGNOFF JES statement
See /*SIGNOFF

SIGNON JES statement
See /*SIGNON

SMF (System Management Facilities)
to establish exit routine when execution time

exceeded 10-13
SMS (Storage Management Subsystem)

description D-1
SMS-managed data set

attribute description 13-6
construct D-1
creating a generation data set B-3
definition D-1
generation data set B-1, B-2
migration and backup 13-7, D-3
modeling attribute 13-6
multivolume data set 15-17
protection 14-2, D-4
retrieving a generation data set B-6
space allocation 15-42
specifying expiration date 17-10
specifying retention period 17-10
specifying volume serial 15-16
unit allocation 15-2
volume allocation 15-16
with DATACLAS DD parameter 13-6
with DD VOLUME=REF subparameter 15-16
with VIO data set 15-48

specifying directory record 15-46
with private catalog 12-7
with temporary data set 12-3
with VSAM data set C-1

SNA/SDLC (systems network architecture synchronous
data link control)

use 6-3, 6-4
space

allocation
primary 15-43
secondary 15-44, 15-45

releasing when unused 17-10
request

block 15-43
cylinder 15-43
for indexed sequential data set 15-46
for PDS directory 15-45
record 15-43
specific track 15-47
system assignment 15-43
track 15-43
with user label 15-44, 15-47

SPACE parameter
use 13-6, 15-42, 17-10, A-3, B-6, D-3

SPART parameter
use 9-11

spinning off
sysout data set

request 23-1
use 23-1

spool partitions
controlling allocation 9-11

X-12 z/OS V1R4.0 MVS JCL User’s Guide

stacking, data set 15-37
station

See remote work station
status

of data set
specifying 13-1

of device
affect on allocation 15-3

step
description 3-1
maximum number 3-2

STEPCAT catalog
use 12-7

STEPLIB
See library, private

stepname
to identify step 4-2

storage
administrator D-1
central 9-6

region size 9-7
class

overriding attribute D-3
summary D-1

logical 9-8
real 9-6

region size 9-7
requesting 9-7
virtual 9-6

region size 9-7
storage class

See STORCLAS parameter
Storage Management Subsystem (SMS)

See SMS
STORCLAS parameter

use 15-2, 15-16, B-2, B-3, D-2
with temporary data set 12-3

SUBSYS parameter
use 16-4

subsystem
printing message 7-6
program control statement 16-4
request 16-4

suppression
of sysout output

request 22-8
using OUTPUT JCL statement 22-9
with started task 22-9

synchronous data link control
See SNA/SDLC

syntax
scanning

for error 6-2, 10-15
SYS1.LINKLIB

See library, system
SYS1.PROCLIB

See catalog
SYS1.PROCLIB system procedure library

use for procedure 3-1
SYSABEND statement

use 10-17

SYSAFF parameter
use 9-9

SYSAREA parameter
use 20-1

SYSCHK DD statement
in restart 5-2

SYSCKEOV DD statement
use 16-4

SYSMDUMP statement
use 10-17

sysout data set
printing with job log 7-7

SYSOUT parameter
use 7-7, 18-1

System Management Facilities
See SMF

SYSTEM parameter
use 9-10

system-generated qualified name
for temporary data set 12-3

systems network architecture
See SNA/SDLC

SYSUDUMP statement
use 10-17

T
task

chart 3-2
description 3-1
for entering jobs

chart 3-3
for processing jobs

chart 3-5
for requesting sysout data set resources

chart 3-8
TCAM (telecommunications access method)

message data set 12-9
processing of TCAM message data set 16-5

telecommunications access method
See TCAM

temporary data set 12-3
TERM parameter

use 12-10, 24-7
terminal

See also remote terminal
as output destination 24-7
identifying data set 12-10

termination
abnormal

data set disposition 17-1
disposition of unreceived passed data set 17-6
effect on disposition 17-2
effect on passing of data set 17-6
execution time exceeded 10-13
forcing execution of later step 10-4, 10-6
output limit exceeded 10-12

normal
data set disposition 17-1

restarting 5-2
when system cannot catalog data set 17-4

Index X-13

THRESHLD parameter
use 22-5

time parameter
use 10-15

TIME parameter
use 10-13, 10-15

time sharing option
See TSO

TRC parameter
use 25-2, 25-3

TSO/E (time sharing option) userid
as output destination 24-5
notifying when job complete 7-5
RACF protection parameters from logon 8-1

TYPE parameter
when requesting processor 9-10

TYPRUN parameter
copying job 6-2
holding job 6-1
use 10-15

U
UCS parameter

use 25-1, 25-3
unallocation

of data set, volume, and device 17-1
sysout data set 23-1

uncatalog
data set

generation data set B-9
request 17-5

unit
See device

UNIT parameter
definition during system initialization 15-5
for output data set 15-5
relationship to VOLUME parameter 15-24, 15-28
use 15-2, A-2, A-6, B-6, B-8
when requesting processor 9-10

unreceived data set
at abnormal termination 17-6
at end of job 17-7
disposition 17-6

UPDATE parameter
in holding job 6-2
use 9-5

USER parameter
use 8-1
use in identifying job with TSO/E userid 7-6

V
VIO (virtual input/output)

backward reference 15-49
use 15-47

virtual input/output
See VIO

virtual storage access method
See VSAM

volume
attribute

affect on device allocation 15-34
assigning 15-19, 15-20
definition 15-17
permanently resident 15-18
private 15-17
public 15-17
removable 15-18
reserved 15-18
retention 17-12
storage 15-18

VOLUME parameter
referencing in earlier DD statement 15-25, 15-28
relationship to UNIT parameter 15-24, 15-28
use 13-6, 15-16, 15-17, 15-18, 15-19, A-2, A-6, B-6,

B-9, D-3
volume requests

nonspecific 15-17, 15-19
allocation 15-19
label type 12-8

number per DD statement 15-23
specific 15-18

allocation 15-18
label type 12-9

VSAM (virtual storage access method)
data set

creating C-1, C-4
description C-1, D-1
parameter C-1
parameters C-5
parameters to avoid C-6, C-7, C-8
retrieving C-1, C-4

W
WARNING subparameter

to send warning message when job exceeds output
limit 7-3, 7-4

use 26-2
work station

See remote work station
writer

external
for processing sysout data set 22-6
request 22-6

WRITER parameter
use 22-6

X
XMIT JCL statement 5-7

with JES3 5-7

X-14 z/OS V1R4.0 MVS JCL User’s Guide

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS JCL User’s Guide

 Publication No. SA22-7598-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7598-02

SA22-7598-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SA22-7598-02

	Contents
	Figures
	Tables
	About This Document
	Who Should Use This Book
	Where to Find More Information
	Programs
	Hardware

	Accessing z/OS™ licensed documents on the Internet
	Using LookAt to look up message explanations

	Summary of Changes
	Part 1. Introduction
	Chapter 1. Introduction - Job Control Statements
	JCL Statements
	JECL Statements

	Chapter 2. Introduction - Job Control Language (JCL)
	Understanding JCL
	“Chez MVS”
	How This Relates to JCL
	Job Control Statements
	Required Control Statements

	Exercise: Creating and Entering a Job
	Before You Begin
	Step 1. Allocate a Data Set to Contain Your JCL
	Step 2. Edit the JCL Data Set and Add the Necessary JCL
	Step 3. Submit the JCL to the System as a Job
	Step 4. View and Understand the Output from the Job
	Step 5. Make Changes to Your JCL
	Step 6. View and Understand Your Final Output

	More Complex Jobs
	In-Stream and Cataloged Procedures
	In-Stream Procedures
	Cataloged Procedures

	Input Streams

	Additional Information
	Installation Conventions Worksheet
	Using ISPF to Allocate and Edit a Data Set
	Using SDSF to View Held Output from a Job
	Helpful Utilities

	Chapter 3. Job Control Tasks
	Entering Jobs
	Processing Jobs
	Requesting Resources
	Task Charts

	Part 2. Tasks for Entering Jobs
	Chapter 4. Entering Jobs - Identification
	Identification of Job
	Identification of Step
	Identification of Procedure
	Identification of INCLUDE Group
	Identification of Account
	For Local Execution
	For Remote Execution

	Identification of Programmer

	Chapter 5. Entering Jobs - Execution
	Execution of Program
	Execution of Procedure
	Execution when Restarting and with Checkpointing (non-APPC)
	Restarting after Abnormal Termination
	Restarting When the System Failed in a JES2 System
	Restarting When the System Failed in a JES3 System

	Deadline or Periodic Execution in a JES3 System
	Use of Deadline Scheduling
	Use of Periodic Scheduling

	Execution when Dependent on Other Jobs in a JES3 System
	Execution at Remote Node (non-APPC)
	Considerations when Submitting a Remote Job

	Chapter 6. Entering Jobs - Job Input Control
	Job Input Control by Holding Job Entrance (Non-APPC)
	Job Input Control by Holding Local Input Reader (Non-APPC)
	Job Input Control by Copying Input Stream (Non-APPC)
	Job Input Control from Remote Work Station
	JES2 Remote Job Entry
	JES3 Remote Job Processing

	Chapter 7. Entering Jobs - Communication
	Communication from JCL to System (Non-APPC)
	Communication from JCL to Operator (Non-APPC)
	Communication from JCL to Programmer
	Communication from JCL to Program
	PARM Values for IBM-Supplied Programs

	Communication from System to Operator
	Messages during Volume Mounting
	Messages When Job Exceeds Output Limit
	Messages When Output Limit Exceeded in an APPC Scheduling Environment
	Messages When Output Limit Exceeded in a Non-APPC Scheduling Environment
	Use of Warning Messages

	Communication from System to Userid
	Job Completion
	Print Completion

	Communication from Time Sharing Userid to a JES3 System
	Communication from Functional Subsystem to Programmer
	Communication through Job Log
	Printing Job Log and Sysout Data Sets Together

	Chapter 8. Entering Jobs - Protection
	Protection through RACF

	Chapter 9. Entering Jobs - Resource Control
	Resource Control of Program Library
	System Library
	Private Library
	Temporary Library

	Resource Control of Procedure Library
	Retrieving a Procedure Library
	Updating a Procedure Library

	Resource Control of INCLUDE Group
	Retrieving an INCLUDE Group

	Resource Control of Address Space
	Types of Storage
	Requesting Amount and Type of Storage
	Requesting Amount of Logical Storage in a JES3 System

	Resource Control of the Processor
	Selecting a Processor Using A Scheduling Environment
	Selecting a Processor in JES2
	Selecting a Processor in JES3

	Resource Control of Spool Partitions in a JES3 System

	Part 3. Tasks for Processing Jobs
	Chapter 10. Processing Jobs - Processing Control
	Processing Control by Conditional Execution
	Bypassing or Executing Steps Based on the Evaluation of Previous Steps
	Using the IF/THEN/ELSE/ENDIF Statement Construct
	Uses of Return Code Tests
	Job and Step Level Evaluation Using the IF/THEN/ELSE/ENDIF Statement Construct
	Relationship of the IF/THEN/ELSE/ENDIF Statement Construct to the COND Parameter
	Step Execution After a Preceding Step Abnormally Terminates
	Steps that Do Not Execute after A Preceding Step Abnormally Terminates
	Examples of IF/THEN/ELSE/ENDIF Statement Construct

	Bypassing or Executing Steps Based on Return Codes
	Uses of Return Code Tests
	Relationship of the COND Parameters on JOB and EXEC Statements
	Step Execution after a Preceding Step Abnormally Terminates
	Examples of JOB Statement Return Code Tests
	Examples of EXEC Statement Return Code Tests
	Examples of EXEC COND Parameters with EVEN and ONLY
	Examples of COND Return Code Testing in a Job
	Examples of COND Parameters in Procedures
	Examples of COND Parameters that Force Step Execution

	Processing Control by Cancelling a Job that Exceeds Output Limit
	Limiting Output in an APPC Scheduling Environment
	Limiting Output in a Non-APPC Scheduling Environment
	Use in Testing

	Processing Control by Timing Execution
	JOB and EXEC TIME Parameter
	JES2 Time Parameters
	OS/390 UNIX System Services Considerations

	Processing Control for Testing
	Altering Usual Processing for Testing
	Scanning JCL for Errors (Non-APPC)
	Using IEFBR14 Program for Testing
	Using Nonstandard Processing
	Dumping after Error

	Chapter 11. Processing Jobs - Performance Control
	Performance Control by Job Class Assignment (Non-APPC)
	Performance Control by Selection Priority (Non-APPC)
	Priority for JES2 Jobs
	Priority for JES3 Jobs
	Priority Aging

	Performance Control by Performance Group (Non-APPC)
	Performance Control by I/O-to-Processing Ratio (Non-APPC)

	Part 4. Tasks for Requesting Data Set Resources
	Chapter 12. Data Set Resources - Identification
	Identification of Data Set
	Permanent Data Set
	Members of a PDS or PDSE
	Generations of a Generation Data Group
	Areas of an Indexed Sequential Data Set

	Temporary Data Sets
	Members of a Temporary PDS or PDSE
	Areas of a Temporary Indexed Sequential Data Set

	Copying the Data Set Name from an Earlier DD Statement
	Concatenating Data Sets

	Identification of In-Stream Data Set (Non-APPC)
	Entering Data Through the Input Stream
	In-Stream Data Sets in a JES3 System

	Identification of Data Set on 3540 Diskette Input/Output Unit
	Identification through Catalog
	Using Private Catalogs

	Identification through Label
	Identification by Location on Tape
	Identification as TCAM Message Data Set
	Identification as Data Set from or to Terminal (Non-APPC)

	Chapter 13. Data Set Resources - Description
	Description of Status
	Data Set Integrity Processing
	Summary of Data Set Integrity Processing

	Description of Data Attributes
	In Data Control Block (DCB)
	In Access Method Control Block (ACB)
	In Data Class
	From Model Data Set

	Migration and Backup (with SMS)

	Chapter 14. Data Set Resources - Protection
	Protection through RACF
	Protection with the PROTECT Parameter
	Protection with the SECMODEL Parameter

	Protection for ISO/ANSI/FIPS Version 3 Tapes
	Protection by Passwords
	Protection of Access to BSAM or BDAM Data Sets

	Chapter 15. Data Set Resources - Allocation
	Allocation of Device
	Device Allocation for SMS-Managed Data Sets
	Device Allocation for Non-SMS-Managed Data Sets
	Specifying Device Number
	Specifying Device for Output Data Set (Non-SMS-Managed Data Sets)
	Allocation with Deferred Volume Mounting
	Requesting More than One Unit for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Number of Devices Allocated for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Volumes Required per DD Statement
	Devices Required per DD Statement
	Devices Assigned per Step
	Examples for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume

	Device Allocation in a JES3 System
	Types of JES3 Setup

	Allocation of Volume
	Volume Allocation for SMS-Managed Data Sets
	References to SMS-Managed Data Sets
	Specific Volume Requests for System-Managed DASD Data Sets
	Nonspecific Volume Requests for System-Managed Data Sets
	Multivolume Data Sets for System-Managed DASD Data Sets

	Volume Allocation for Non-SMS-Managed Data Sets
	Volume Allocation for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Specific Volume Requests for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Nonspecific Volume Requests for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Private Volumes for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Public Volumes for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Volume Affinity for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Multivolume Data Sets for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Volumes Required per DD Statement for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume

	Interactions Between Device and Volume Allocation
	Relationship of the UNIT and VOLUME Parameters (Non-SMS-Managed Data Sets)
	Relationship of the UNIT and VOLUME Parameters (SMS-Managed Data Sets)
	Unit and Volume Affinity for Non-System-Managed Data Sets and Data Sets on a System-Managed Tape Volume
	Interaction of Unit and Volume Affinity Requests
	Affinity for Multivolume Data Sets
	Device Use for Data Sets on a System-Managed Tape Volume
	Examples of When the System Ignores Unit Affinity

	Stacking Data Sets
	Examples of Data Set Stacking
	Data Set Stacking and Tape Mount Management

	Allocation of Direct Access Space
	Requesting System Assigned Space
	How the System Satisfies the Primary Space Request
	How the System Satisfies the Secondary Space Request
	Directory Space for Partitioned Data Sets
	System Assigned Space Requests for Indexed Sequential Data Sets

	Requesting Specific Tracks
	Specific Track Requests for Indexed Sequential Data Sets

	Allocation of Virtual I/O
	Backward References to VIO Data Sets

	Allocation with Volume Premounting in a JES2 System
	Dynamic Allocation

	Chapter 16. Data Set Resources - Processing Control
	Processing Control by Suppressing Processing
	Processing Control by Postponing Specification
	Processing Control with Checkpointing
	Processing Control by Subsystem
	Requesting Subsystem
	Program Control Statements for a Subsystem

	Processing Control by TCAM Job or Task

	Chapter 17. Data Set Resources - End Processing
	Unallocation End Processing
	Disposition End Processing of Data Set
	Disposition Controlled by DISP Parameter
	Deleting a Data Set
	Keeping a Data Set
	Cataloging a Data Set
	Uncataloging a Data Set
	Passing a Data Set
	Default Disposition Processing
	Bypassing Disposition Processing
	Disposition Processing of Data Sets that Do Not Exist

	Disposition Controlled by Time

	Release of Unused Direct Access Space in End Processing
	Disposition End Processing of Volume
	Disposition of Removable Volumes
	Volume Retention

	Part 5. Tasks for Requesting Sysout Data Set Resources
	Chapter 18. Sysout Resources - Identification
	Identification as a Sysout Data Set
	Identification of Output Class
	Identification of Data Set on 3540 Diskette Input/Output Unit

	Chapter 19. Sysout Resources - Description
	Description of Data Attributes

	Chapter 20. Sysout Resources - Protection
	Protection of Printed Output

	Chapter 21. Sysout Resources - Performance Control
	Performance Control by Queue Selection (non-APPC)

	Chapter 22. Sysout Resources - Processing Control
	Processing Control with Additional Parameters
	Adding Parameters from OUTPUT JCL Statement
	Adding Parameters from JES2 /*OUTPUT Statement
	Adding Parameters from JES3 //*FORMAT Statement

	Processing Control by Segmenting
	Processing Control with Other Data Sets
	Using Output Class
	Using Sysout Data Set Size in a JES3 System
	Using Groups in a JES2 System

	Processing Control by External Writer
	Processing Control by Mode
	Processing Control by Holding
	Holding Using the DD Statement
	Holding Using the OUTPUT JCL Statement
	Releasing Held Data Set

	Processing Control by Suppressing Output
	Using Dummy Status to Suppress Output
	Using Class to Suppress Output in a JES2 System
	Using the OUTPUT JCL Statement to Suppress Output in a JES2 System

	Processing Control with Checkpointing
	Processing Control by Print Services Facility
	Identifying a Library to PSF
	Use of User Libraries
	Considerations for Library Data Sets

	Chapter 23. Sysout Resources - End Processing
	Unallocation End Processing

	Chapter 24. Sysout Resources - Destination Control
	Destination Control to Local or Remote Device or to Another Node
	Multiple Destinations
	Controlling Output Destination in a JES2 Network
	Controlling Output Destination in a JES3 Network

	Destination Control to Another Processor in a JES3 System
	Destination Control to Internal Reader
	Destination Control to Terminal
	Destination Control to Assist in Sysout Distribution

	Chapter 25. Sysout Resources - Output Formatting
	Output Formatting to Any Printer
	Output Formatting to 3800 Printing Subsystem
	Copy Modification
	Character Arrangements

	Output Formatting to 3211 Printer with Indexing Feature in a JES2 System
	Output Formatting to Punch
	Interpretation of Punched Cards

	Output Formatting of Dumps on 3800 Printing Subsystem

	Chapter 26. Sysout Resources - Output Limiting
	Output Limiting
	Limiting Output in an APPC Scheduling Environment
	Limiting Output in a Non-APPC Scheduling Environment
	Actions when Limit Exceeded

	Chapter 27. Sysout Resources - USERDATA OUTPUT JCL Keyword
	References
	Examples

	Part 6. Examples
	Chapter 28. Example - Assemble, Linkedit, and Go
	Chapter 29. Example - Multiple Output
	Chapter 30. Example - Obtaining Output in a JES2 System
	Chapter 31. Example - Obtaining Output in a JES3 System
	Chapter 32. Example - Identifying Data Sets to the System
	Part 7. Appendixes
	Appendix A. Indexed Sequential Data Sets
	Creating an Indexed Sequential Data Set
	Procedure when Allocation Error Occurs
	Area Arrangement of an Indexed Sequential Data Set

	Retrieving an Indexed Sequential Data Set

	Appendix B. Generation Data Sets
	Building a GDG Base Entry
	Defining Attributes for SMS-Managed Generation Data Sets
	Creating an SMS-Managed Generation Data Set
	Disposition of SMS-Managed Generation Data Sets
	Defining Attributes for Non-SMS-Managed Generation Data Sets
	Creating a Non-SMS-Managed Generation Data Set
	Retrieving a Generation Data Set
	Deleting and Uncataloging Generation Data Sets
	Submitting a Job for Restart

	Appendix C. VSAM Data Sets
	VSAM Data Sets - With SMS
	Creating a VSAM Data Set - With SMS
	Retrieving an Existing VSAM Data Set - With SMS
	Migration Consideration for SMS
	DD Statement Parameters - With SMS

	VSAM Data Sets - Without SMS
	Creating a VSAM Data Set - Without SMS
	Retrieving an Existing VSAM Data Set - Without SMS
	DD Statement Parameters - Without SMS

	Appendix D. Data Sets with SMS
	SMS Constructs
	Existing JCL
	Default Unit

	Specifying Constructs
	Overriding Attributes Defined in the Data Class
	Overriding Attributes Defined in the Management Class
	Overriding Attributes Defined in the Storage Class

	Protecting Data Sets with RACF
	Modeling Data Set Attributes

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

