
ibm.com/redbooks

Front cover

ABCs of z/OS System S System
Programmingamming
Volume 3

Paul Rogers
Redelf Janssen

Rita Pleus
Valeria Sokal

DFSMS, data set basics

Storage management hardware
and software

System-managed storage,
ISMF

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

ABCs of z/OS System Programming Volume 3

November 2004

SG24-6983-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (November 2004)

This edition applies to Version 1, Release 4, of z/OS™ (5694-A01), to Version 1, Release 4, of z/OS.e™
(5655-G52), and to all subsequent releases and modifications until otherwise indicated in new editions.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author .x
Comments welcome. .x

Chapter 1. DFSMS introduction . 1
1.1 Introduction to DFSMS . 3
1.2 Data Facility Storage Management Subsystem . 4
1.3 DFSMSdfp component . 5
1.4 DFSMSdss component . 7
1.5 DFSMSrmm component . 9
1.6 DFSMShsm component . 11
1.7 DFSMStvs component . 13

Chapter 2. Data set basics . 15
2.1 Data sets . 17
2.2 Data set name rules . 18
2.3 DFSMSdfp data set organizations . 19
2.4 Types of VSAM data sets . 21
2.5 Non-VSAM data sets. 22
2.6 Extended-format data sets and objects. 23
2.7 z/OS UNIX files . 25
2.8 Data set organization (DSORG) . 27
2.9 Allocate a data set with ISPF 3.2 . 29
2.10 Logical record length (LRECL) . 30
2.11 Locating a data set . 32
2.12 Uncataloged and cataloged data sets. 34
2.13 Volume table of contents (VTOC) . 35
2.14 Data set control block (DSCB) . 36
2.15 VTOC index structure . 38
2.16 Initializing a volume (ICKDSF) . 40
2.17 Problem determination . 43

Chapter 3. Storage management hardware . 45
3.1 Overview of DASD types. 46
3.2 Traditional DASD capacity . 48
3.3 Large Volume Support . 49
3.4 Redundant array of independent disks (RAID) . 51
3.5 Seascape architecture . 53
3.6 Enterprise Storage Server (ESS) . 56
3.7 ESS universal access . 58
3.8 Operating systems supporting ESS . 59
3.9 ESS major components . 60
3.10 ESS host adapters . 61
3.11 FICON host adapters . 62
3.12 ESS disks . 64
© Copyright IBM Corp. 2004. All rights reserved. iii

3.13 Device adapters . 66
3.14 SSA loops . 68
3.15 RAID-10 . 70
3.16 Storage balancing with RAID-10 . 72
3.17 ESS performance features . 73
3.18 WLM controlling PAVs . 75
3.19 ESS copy services . 77
3.20 TotalStorage Expert product highlights . 80
3.21 Introduction to tape processing . 82
3.22 SL and NL format . 84
3.23 Tape capacity - tape mount management. 86
3.24 TotalStorage Enterprise Tape Drive 3592 Model J1A. 88
3.25 IBM TotalStorage Enterprise Automated Tape Library 3494 90
3.26 Introduction to Virtual Tape Server (VTS) . 92
3.27 IBM TotalStorage Peer-to-Peer VTS. 94
3.28 Storage area network (SAN) . 96

Chapter 4. Storage management software . 99
4.1 Overview of DFSMSdfp utilities. 100
4.2 IEBCOMPR (compare data set) program . 102
4.3 Comparing data sets . 104
4.4 IEBCOPY utility . 105
4.5 IEBCOPY copy operation . 107
4.6 IEBCOPY compress operation . 109
4.7 IEBGENER . 110
4.8 Adding members to a PDS using IEBGENER . 111
4.9 Copying data to tape . 112
4.10 IEHLIST. 113
4.11 IEHLIST LISTVTOC output . 114
4.12 IEHINITT . 115
4.13 IEFBR14 . 117
4.14 Access method services . 118
4.15 AMS functional commands . 121
4.16 AMS modal commands . 123
4.17 Data Collection Facility (DCOLLECT) . 124
4.18 Generation data groups (GDG). 125
4.19 Defining a generation data group . 127
4.20 Absolute generation and version numbers . 129
4.21 Relative generation numbers . 131
4.22 Access method . 133
4.23 Major DFSMS access methods. 134
4.24 Basic Partitioned Access Method (BPAM) . 135
4.25 PDS data organization . 136
4.26 Partitioned data set extended (PDSE) . 138
4.27 Sequential access methods . 140
4.28 Virtual Storage Access Method (VSAM) . 142
4.29 VSAM resource pool and buffering techniques. 143
4.30 System-managed buffering (SMB) . 145
4.31 VSAM terminology and concepts . 147
4.32 Control interval (CI) . 148
4.33 VSAM data set components . 150
4.34 Key sequenced data set (KSDS) . 152
4.35 Processing a KSDS data set . 153
iv ABCs of z/OS System Programming Volume 3

4.36 Relative record data set (RRDS). 155
4.37 Typical RRDS processing . 156
4.38 Linear data set (LDS) . 157
4.39 Data-in-virtual . 158
4.40 Data-in-virtual objects . 159
4.41 Mapping a linear data set . 160
4.42 Entry sequenced data set (ESDS) . 161
4.43 Typical ESDS processing . 162
4.44 DFSORT . 163
4.45 DFSMS Network File System . 165
4.46 DFSMS Optimizer . 167
4.47 DFSMSdss . 168
4.48 DFSMSdss: physical and logical processing . 169
4.49 DFSMSdss: logical processing . 170
4.50 DFSMSdss: physical processing. 172
4.51 DFSMSdss stand-alone services . 174
4.52 DFSMShsm. 175
4.53 Availability management . 176
4.54 Space management . 177
4.55 Storage device hierarchy . 179
4.56 HSM volume types . 180
4.57 Automatic space management . 182
4.58 Recall . 183
4.59 Removable media manager (DFSMSrmm). 184
4.60 Libraries and locations . 185
4.61 What DFSMSrmm can manage . 186
4.62 Managing libraries and storage locations . 188

Chapter 5. System-managed storage . 189
5.1 Storage management . 190
5.2 DFSMS and DFSMS environment . 191
5.3 Benefits of system-managed storage . 192
5.4 Establishing service level objectives . 195
5.5 Implementing SMS policies. 197
5.6 Monitoring SMS policies . 199
5.7 Assigning data to be system-managed . 200
5.8 Using data classes . 201
5.9 Using storage classes . 203
5.10 Using management classes . 205
5.11 Management class functions. 207
5.12 Using storage groups . 208
5.13 Using aggregate backup and recovery support (ABARS). 210
5.14 Automatic Class Selection (ACS) routines . 212
5.15 SMS configuration . 214
5.16 Implementing DFSMS . 216
5.17 Steps to activate a minimal SMS configuration. 217
5.18 Allocating SMS control data sets . 218
5.19 Defining the SMS base configuration . 220
5.20 Creating ACS routines . 223
5.21 DFSMS setup for z/OS . 225
5.22 Starting SMS . 227
5.23 Control SMS processing with operator commands . 229
5.24 Displaying the SMS configuration . 231
 Contents v

5.25 Managing data with minimal SMS configuration . 232
5.26 Device-independence space allocation. 234
5.27 Developing naming conventions . 236
5.28 Setting the low-level qualifier (LLQ) standards . 238
5.29 Establishing installation standards . 240
5.30 Planning and defining data classes. 241
5.31 Data class attributes . 242
5.32 Use data class ACS routine to enforce standards . 243
5.33 Simplifying JCL use. 244
5.34 Allocating a data set . 245
5.35 Creating a VSAM cluster . 247
5.36 Space allocation for a VSAM KSDS cluster . 248
5.37 Retention period and expiration date . 249
5.38 SMS PDSE support. 250
5.39 PDSE conversion . 252
5.40 DFSMS and program objects . 254
5.41 Selecting data sets to allocate as PDSEs . 257
5.42 Allocating new PDSEs . 258
5.43 Identifying PDSEs . 259
5.44 System-managed data types . 260
5.45 Data types that cannot be system-managed. 262
5.46 Introduction to ISMF . 264
5.47 ISMF product relationships . 265
5.48 What you can do with ISMF . 267
5.49 Accessing ISMF . 269
5.50 ISMF Profile option . 270
5.51 Navigating through ISMF . 271
5.52 Obtaining information about a panel field . 272
5.53 Data Set option . 273
5.54 Obtaining a data set list. 274
5.55 Volume Option . 275
5.56 Obtaining a volume list . 276
5.57 Management Class option . 277
5.58 Management Class List panel . 278
5.59 Data Class option . 279
5.60 Obtaining a data class listing . 280
5.61 Displaying data class information . 281
5.62 Storage Class option. 282
5.63 Storage Class List panel . 283
5.64 List option . 284
5.65 Removable Media Manager option . 285

Related publications . 287
IBM Redbooks . 287
Other publications . 287
How to get IBM Redbooks . 288
Help from IBM . 288
vi ABCs of z/OS System Programming Volume 3

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
AIX®
AS/400®
Common User Access®
CICS®
CICS/ESA®
CUA®
DB2®
DFS™
DFSMSdfp™
DFSMSdss™
DFSMShsm™
DFSMSrmm™
DFSORT™
Enterprise Storage Server®
ESCON®

FICON®
FlashCopy®
IBM®
IMS™
Infoprint®
Infospeed®
iSeries™
Language Environment®
Magstar®
MVS™
MVS/DFP™
OS/2®
OS/390®
OS/400®
Parallel Sysplex®
pSeries®
RACF®

RAMAC®
Redbooks™
Redbooks (logo)™
Redbooks (logo) ™
RMF™
RS/6000®
S/390®
Seascape®
Sequent®
Tivoli®
TotalStorage®
VTAM®
z/Architecture™
z/OS®
zSeries®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
viii ABCs of z/OS System Programming Volume 3

Preface

The ABCs of z/OS® System Programming is an eleven-volume collection that provides an
introduction to the z/OS operating system and the hardware architecture. Whether you are a
beginner or an experienced system programmer, the ABCs collection provides the
information that you need to start your research into z/OS and related subjects. If you would
like to become more familiar with z/OS in your current environment, or if you are evaluating
platforms to consolidate your e-business applications, the ABCs collection will serve as a
powerful technical tool.

Volume 3 provides an introduction to DFSMS, storage management hardware and software,
system-managed storage, and ISMF.

The contents of the other volumes are:

Volume 1: Introduction to z/OS and storage concepts, TSO/E, ISPF, JCL, SDSF, and z/OS
delivery and installation

Volume 2: z/OS implementation and daily maintenance, defining subsystems, JES2 and
JES3, LPA, LNKLST, authorized libraries, and catalogs

Volume 4: Communication Server, TCP/IP and VTAM®

Volume 5: Base and Parallel Sysplex®, system logger, global resource serialization, z/OS
system operations, and automatic restart management

Volume 6: RACF®, PKI, LDAP, cryptography, Kerberos and firewall technologies

Volume 7: Infoprint® Server, Language Environment®, and SMP/E

Volume 8: z/OS problem diagnosis

Volume 9: z/OS UNIX® System Services (USS)

Volume 10: Introduction to z/Architecture™, zSeries® processor design, zSeries connectivity,
LPAR concepts, and HCD.

Volume 11: WLM, RMF™, and performance management

The team that wrote this redbook
This IBM® Redbook was produced by a team of specialists from around the world working at
the International Technical Support Organization, Poughkeepsie Center.

Paul Rogers is a Consulting IT Specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM classes
worldwide on various aspects of z/OS JES3, and z/OS UNIX. Before joining the ITSO 16
years ago, Paul worked in the IBM Installation Support Center (ISC) in Greenford, England,
providing OS/390® and JES support for IBM EMEA and the Washington Systems Center in
Gaithersburg, Maryland.

Redelf Janßen is an IT Architect in IBM Global Services ITS in IBM Germany. He holds a
degree in Computer Science from University of Bremen and joined IBM Germany in 1988. His
© Copyright IBM Corp. 2004. All rights reserved. ix

areas of expertise include IBM zSeries, z/OS and availability management. He has written
Redbooks™ on OS/390 Releases 3, 4, and 10.

Rita Pleus is an IT Architect in IBM Global Services ITS in IBM Germany. She has 18 years
of IT experience in a variety of areas, including systems programming and operations
management. Before joining IBM in 2001, she worked for a German S/390® customer. Rita
holds a degree in Computer Science from the University of Applied Sciences in Dortmund.
Her areas of expertise include z/OS, its subsystems, and systems management.

Valeria Sokal is an MVS™ system programmer at an IBM customer. She has 15 years of
experience as a mainframe systems programmer.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
x ABCs of z/OS System Programming Volume 3

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. DFSMS introduction

This chapter gives a brief overview of the Data Facility Storage Management Subsystem
(DFSMS) and its primary functions in the z/OS operating system. DFSMS comprises a suite
of related data and storage management products for the z/OS system. DFSMS is now an
integral element of the z/OS operating system.

DFSMS is an operating environment that helps automate and centralize the management of
storage based on the policies that your installation defines for availability, performance,
space, and security.

The heart of DFSMS is the Storage Management Subsystem (SMS). Using SMS, the storage
administrator defines policies that automate the management of storage and hardware
devices. These policies describe data allocation characteristics, performance and availability
goals, backup and retention requirements, and storage requirements for the system.

DFSMS is an exclusive element of the z/OS operating system and is a software suite that
automatically manages data from creation to expiration. The following elements comprise
DFSMS:

� DFSMSdfp™, which is a base element of z/OS. DFSMSdfp is automatically included with
z/OS. DFSMSdfp performs the essential data, storage, and device management functions
of the system. DFSMSdfp and DFSMShsm™ provide disaster recovery functions such as
Advanced Copy Services and aggregate backup and recovery support (ABARS).

The other elements of DFSMS—DFSMSdss™, DFSMShsm, DFSMSrmm™, and
DFSMStvs—complement DFSMSdfp to provide a fully integrated approach to data and
storage management. In a system-managed storage environment, DFSMS automates
and centralizes storage management based on the policies that your installation defines
for availability, performance, space, and security. With the following optional features
enabled, you can take full advantage of all the functions that DFSMS offers:

� DFSMSdss, an optional feature of z/OS

� DFSMShsm, an optional feature of z/OS

� DFSMSrmm, an optional feature of z/OS

� DFSMStvs, an optional feature of z/OS

1

© Copyright IBM Corp. 2004. All rights reserved. 1

This book is organized into several chapters, where we discuss the following topics:

� Chapter 2, “Data set basics” on page 15

� Chapter 3, “Storage management hardware” on page 45

� Chapter 4, “Storage management software” on page 99

� Chapter 5, “System-managed storage” on page 189
2 ABCs of z/OS System Programming Volume 3

1.1 Introduction to DFSMS

Figure 1-1 Introduction to data management

Understanding DFSMS
Data management is the part of the operating system that organizes, identifies, stores,
catalogs, and retrieves all the data information (including programs) that your installation
uses.

DFSMSdfp helps you store and catalog information on DASD, optical, and tape devices so
that it can be quickly identified and retrieved from the system. DFSMSdfp provides access to
both record- and stream-oriented data in the z/OS environment.

Systems programmer
As a systems programmer, you can use DFSMS data management to:

� Allocate space on DASD and optical volumes

� Automatically locate cataloged data sets

� Control access to data

� Transfer data between the application program and the medium

� Mount magnetic tape volumes in the drive

Tape

DASD
Data Set

Systems Systems
programmerprogrammer

IBM 3494

Virtual Tape ServerVirtual Tape Server

Robot
dsname.f.data
Chapter 1. DFSMS introduction 3

1.2 Data Facility Storage Management Subsystem

Figure 1-2 Data Facility Storage Management Subsystem

DFSMS components
DFSMS is a set of products associated with z/OS that is responsible for data management.
DFSMS has five MVS data management functional components as an integrated single
software package:

DFSMSdfp Provides storage, data, program, and device management. It is comprised of
several components such as access methods, OPEN/CLOSE/EOV routines,
catalog management, DADSM (DASD space control), utilities, IDCAMS, SMS,
NFS, ISMF, and other functions.

DFSMSdss Provides data movement, copy, backup, and space management functions.

DFSMShsm Provides backup, recovery, migration, and space management functions. It
invokes DFSMSdss for certain of its functions.

DFSMSrmm Provides management functions for removable media such as tape cartridges
and optical media.

DFSMStvs Enables batch jobs and CICS® online transactions to update shared VSAM
data sets concurrently.

Network File System
The Network File System (NFS) is a distributed file system that enables users to access UNIX
files and directories that are located on remote computers as if they were local. NFS is
independent of machine types, operating systems, and network architectures.

DFSMS
storage
 hierarchy

IBM workstations

dss

tvs

dfp

rmm

hsm

zSeries Server

P690

NFS

NFS
4 ABCs of z/OS System Programming Volume 3

1.3 DFSMSdfp component

DFSMSdfp component
DFSMSdfp provides storage, data, program, and device management. It is comprised of
several components such as access methods, OPEN/CLOSE/EOV routines, catalog
management, DADSM (DASD space control), utilities, IDCAMS, SMS, NFS, ISMF, and other
functions.

Managing storage
The storage management subsystem (SMS) is a DFSMSdfp facility designed for automating
and centralizing storage management. SMS automatically assigns attributes to new data
when that data is created. SMS automatically controls system storage and assigns data to
the appropriate storage device. ISMF panels allow you to specify these data attributes.

For more information on ISMF, see “Introduction to ISMF” on page 264.

Managing data
DFSMSdfp organizes, identifies, stores, catalogs, shares, and retrieves all the data that your
installation uses. You can store data on DASD, magnetic tape volumes, or optical volumes.
Using data management, you can complete the following tasks:

� Allocate space on DASD and optical volumes
� Automatically locate cataloged data sets
� Control access to data
� Transfer data between the application program and the medium
� Mount magnetic tape volumes in the drive

DFSMSdfp provides the following functions:

Managing storage

Managing data

Using access methods, commands, and utilities

Managing devices

Tape mount management

Distributed data access

Advanced copy services

Object access method (OAM)
Chapter 1. DFSMS introduction 5

For more information, see “Establishing service level objectives” on page 195.

Using access methods, commands, and utilities
DFSMSdfp manages the organization and storage of data in the z/OS environment. You can
use access methods with macro instructions to organize and process a data set or object.
Access method services commands manage data sets, volumes, and catalogs. Utilities
perform tasks such as copying or moving data. You can use system commands to display
and set SMS configuration parameters, use DFSMSdfp callable services to write advanced
application programs, and use installation exits to customize DFSMS.

Managing devices with DFSMSdfp
You need to use the Hardware Configuration Definition (HCD) to define I/O devices to the
operating system, and to control these devices. DFSMS manages DASD, storage control
units, magnetic tape devices, optical devices, and printers. You can use DFSMS functions to
manage many different device types, but most functions apply specifically to one type or one
family of devices.

Tape mount management
Tape mount management is a methodology for improving tape usage and reducing tape
costs. This methodology involves intercepting selected tape data set allocations through the
SMS automatic class selection (ACS) routines and redirecting them to a direct access
storage device (DASD) buffer. Once on DASD, you can migrate these data sets to a single
tape or small set of tapes, thereby reducing the overhead associated with multiple tape
mounts.

Distributed data access with DFSMSdfp
In the distributed computing environment, applications must often access data residing on
different computers in a network. Often, the most effective data access services occur when
applications can access remote data as if it were local data.

Distributed FileManager/MVS is a DFSMSdfp client/server product that enables remote
clients in a network to access data on z/OS or OS/390 systems. Distributed
FileManager/MVS provides workstations with access to z/OS data. Users and applications on
heterogeneous client computers in your network can take advantage of system-managed
storage on z/OS, data sharing, and data security with RACF.

Advanced copy services
Advanced Copy Services includes remote and point-in-time copy functions that provide
backup and recovery of data. When used before a disaster occurs, Advanced Copy Services
provides rapid backup of critical data with minimal impact to business applications. If a
disaster occurs to your data center, Advanced Copy Services provides rapid recovery of
critical data.

Object access method
Object access method (OAM) provides storage, retrieval, and storage hierarchy management
for objects. OAM also manages storage and retrieval for tape volumes that are contained in
system-managed libraries.
6 ABCs of z/OS System Programming Volume 3

1.4 DFSMSdss component

DFSMSdss component
DFSMSdss is the primary data mover for DFSMS. DFSMSdss copies and moves data to help
manage storage, data, and space more efficiently. It can efficiently move multiple data sets
from old to new DASD. The data movement capability that is provided by DFSMSdss is useful
for many other operations, as well. You can use DFSMSdss to perform the following tasks.

Data movement and replication
DFSMSdss lets you move or copy data between volumes of like and unlike device types. If
you create a backup in DFSMSdss, you can copy a backup copy of data. DFSMSdss also
can produce multiple backup copies during a dump operation.

Space management
DFSMSdss can reduce or eliminate DASD free-space fragmentation.

Data backup and recovery
DFSMSdss provides you with host system backup and recovery functions at both the data set
and volume levels. It also includes a stand-alone restore program that you can run without a
host operating system.

Data set and volume conversion
DFSMSdss can convert your data sets and volumes to system-managed storage. It can also
return your data to a non-system-managed state as part of a recovery procedure.

DFSMSdss provides the following functions:

Data movement and replication

Space management

Data backup and recovery

Data set and volume conversion

Distributed data management

FlashCopy feature with Enterprise Storage Server
(ESS)

 SnapShot feature with RAMAC Virtual Array (RVA)

Concurrent copy
Chapter 1. DFSMS introduction 7

Distributed data management
DFSMSdss saves distributed data management (DDM) attributes that are associated with a
specific data set and preserves those attributes during copy and move operations.
DFSMSdss also offers the FlashCopy® feature with Enterprise Storage Server® (ESS) and
the SnapShot feature with RAMAC® Virtual Array (RVA). FlashCopy and SnapShot function
automatically, work much faster than traditional data movement methods, and are well-suited
for handling large amounts of data.

Concurrent copy
When it is used with supporting hardware, DFSMSdss also provides concurrent copy
capability. Concurrent copy lets you copy or back up data while that data is being used. The
user or application program determines when to start the processing, and the data is copied
as if no updates have occurred.
8 ABCs of z/OS System Programming Volume 3

1.5 DFSMSrmm component

DFSMSrmm component
DFSMSrmm manages your removable media resources, including tape cartridges and reels.
It provides the following functions.

Library management
You can create tape libraries, or collections of tape media associated with tape drives, to
balance the work of your tape drives and help the operators that use them. DFSMSrmm can
manage the following devices:

� A removable media library, which incorporates all other libraries, such as:

– System-managed manual tape libraries

– System-managed automated tape libraries; examples of automated tape libraries
include:

• IBM TotalStorage®

• Enterprise Automated Tape Library (3494)

• IBM TotalStorage

• Virtual Tape Servers (VTS)

� Non-system-managed or traditional tape libraries, including automated libraries such as a
library under Basic Tape Library Support (BTLS) control.

DFSMSdmm provides the following functions:

Library management

Shelf management

Volume management

Data set management
Chapter 1. DFSMS introduction 9

Shelf management
DFSMSrmm groups information about removable media by shelves into a central online
inventory, and keeps track of the volumes residing on those shelves. DFSMSrmm can
manage the shelf space that you define in your removable media library and in your storage
locations.

Volume management
DFSMSrmm manages the movement and retention of tape volumes throughout their life
cycle.

Data set management
DFSMSrmm records information about the data sets on tape volumes. DFSMSrmm uses the
data set information to validate volumes and to control the retention and movement of those
data sets.
10 ABCs of z/OS System Programming Volume 3

1.6 DFSMShsm component

DFSMShsm component
DFSMShsm complements DFSMSdss to provide the following functions.

Storage management
DFSMShsm provides automatic DASD storage management, thus relieving users from
manual storage management tasks.

Space management
DFSMShsm improves DASD space usage by keeping only active data on fast-access
storage devices. It automatically frees space on user volumes by deleting eligible data sets,
releasing overallocated space, and moving low-activity data to lower cost-per-byte devices,
even if the job did not request tape.

Tape mount management
DFSMShsm can write multiple output data sets to a single tape, making it a useful tool for
implementing tape mount management under SMS. When you redirect tape data set
allocations to DASD, DFSMShsm can move those data sets to tape, as a group, during
interval migration. This methodology greatly reduces the number of tape mounts on the
system. DFSMShsm uses a single-file format, which improves your tape usage and search
capabilities.

DFSMShsm provides the following functions:

Storage management

Space management

Tape mount management
Chapter 1. DFSMS introduction 11

Availability management
DFSMShsm backs up your data—automatically or by command—to ensure availability if
accidental loss of the data sets or physical loss of volumes should occur. DFSMShsm also
allows the storage administrator to copy backup and migration tapes, and to specify that
copies be made in parallel with the original. You can store the copies onsite as protection
from media damage, or offsite as protection from site damage. DFSMShsm also provides
disaster backup and recovery for user-defined groups of data sets (aggregates) so that you
can restore critical applications at the same location or at an offsite location.
12 ABCs of z/OS System Programming Volume 3

1.7 DFSMStvs component

DFSMStvs component
DFSMS Transactional VSAM Services (DFSMStvs) allows you to share VSAM data sets
across CICS, batch, and object-oriented applications on z/OS or distributed systems.
DFSMStvs enables concurrent shared updates of recoverable VSAM data sets by CICS
transactions and multiple batch applications. DFSMStvs enables 24-hour availability of CICS
and batch applications.

VSAM record-level sharing (RLS)
With VSAM RLS, multiple CICS systems can directly access a shared VSAM data set,
eliminating the need to ship functions between the application-owning regions and file-owning
regions. CICS provides the logging, commit, and backout functions for VSAM recoverable
data sets. VSAM RLS provides record-level serialization and cross-system caching. CICSVR
provides a forward recovery utility.

DFSMStvs is built on top of VSAM record-level sharing (RLS), which permits sharing of
recoverable VSAM data sets at the record level. Different applications often need to share
VSAM data sets. Sometimes the applications need only to read the data set. Sometimes an
application needs to update a data set while other applications are reading it. The most
complex case of sharing a VSAM data set is when multiple applications need to update the
data set and all require complete data integrity.

Transaction processing provides functions that coordinate work flow and the processing of
individual tasks for the same data sets. VSAM record-level sharing and DFSMStvs provide

Provide transactional recovery within VSAM

RLS allows batch sharing of recoverable data sets
for read

RLS provides locking and buffer coherency

CICS provides logging and two-phase commit
protocols

Transactional VSAM allows batch sharing of
recoverable data sets for update

Logging provided using the System Logger

Two-phase commit and backout using Recoverable
Resource Management Services (RRMS)
Chapter 1. DFSMS introduction 13

key functions that enable multiple batch update jobs to run concurrently with CICS access to
the same data sets, while maintaining integrity and recoverability.

Recoverable resource management services (RRMS)
RRMS is part of the operating system and comprises registration services, context services,
and recoverable resource services (RRS). RRMS provides the context and unit of recovery
management under which DFSMStvs participates as a recoverable resource manager.
14 ABCs of z/OS System Programming Volume 3

Chapter 2. Data set basics

A data set is a collection of logically related data, and it can be a source program, a library of
macros, or a file of data records used by a processing program. Data records are the basic
unit of information used by a processing program. By placing your data into volumes of
organized data sets, you can save and process the data. You can also print the contents of a
data set, or display the contents on a terminal.

You can store data on secondary storage devices, such as:

� A direct access storage device (DASD)

The term DASD applies to disks or to a mass storage medium on which a computer stores
data. A volume is a standard unit of secondary storage. You can store all types of data
sets on DASD.

Each block of data on a DASD volume has a distinct location and a unique address, thus
making it possible to find any record without extensive searching. You can store and
retrieve records either directly or sequentially. Use DASD volumes for storing data and
executable programs, including the operating system itself, and for temporary working
storage. You can use one DASD volume for many different data sets, and reallocate or
reuse space on the volume.

� A magnetic tape volume

Only sequential data sets can be stored on magnetic tape. Mountable tape volumes can
reside in an automated tape library. For information about magnetic tape volumes, see
z/OS DFSMS: Using Magnetic Tapes, SC26-7412. You can also direct a sequential data
set to or from spool, a UNIX file, a TSO/E terminal, a unit record device, virtual I/O (VIO),
or a dummy data set.

The Storage Management Subsystem (SMS) is an operating environment that automates the
management of storage. Storage management uses the values provided at allocation time to
determine, for example, on which volume to place your data set, and how many tracks to
allocate for it. Storage management also manages tape data sets on mountable volumes that
reside in an automated tape library. With SMS, users can allocate data sets more easily.

The data sets allocated through SMS are called system-managed data sets or SMS-managed
data sets.

2

© Copyright IBM Corp. 2004. All rights reserved. 15

An access method defines the technique that is used to store and retrieve data. Access
methods have their own data set structures to organize data, macros to define and process
data sets, and utility programs to process data sets.

Access methods are identified primarily by the data set organization. For example, use the
basic sequential access method (BSAM) or queued sequential access method (QSAM) with
sequential data sets. However, there are times when an access method identified with one
organization can be used to process a data set organized in a different manner. For example,
a sequential data set (not extended-format data set) created using BSAM can be processed
by the basic direct access method (BDAM), and vice versa. Another example is UNIX files,
which you can process using BSAM, QSAM, basic partitioned access method (BPAM), or
virtual storage access method (VSAM).

This chapter describes some basics relating to data sets:

� Data set name rules

� Data set characteristics

� Locating a data set

� Volume table of contents (VTOC)

� Initializing a volume
16 ABCs of z/OS System Programming Volume 3

2.1 Data sets

Figure 2-1 Data sets

MVS data sets
An MVS data set is a collection of logically related data records stored on one volume or a set
of volumes. A data set can be, for example, a source program, a library of macros, or a file of
data records used by a processing program. You can print a data set or display it on a
terminal. The logical record is the basic unit of information used by a processing program.

Note: As an exception, the z/OS UNIX services component supports Hierarchical File
System (HFS) data sets, where the collection is of bytes and there is not the concept of
logically related data records.

Data can be stored on a direct access storage device (DASD), magnetic tape volume, or
optical media. As mentioned, the term DASD applies to disks or simulated equivalents of
disks. All types of data sets can be stored on DASD, but only sequential data sets can be
stored on magnetic tape. We discuss the types of data sets later.

The next visuals discuss the logical attributes of a data set which are specified at data set
allocation time in:

� DCB/ACB control blocks in the application program

� DD cards (explicitly, or through the Data Class (DC) option with DFSMS)

� In an ACS Data Class (DC) routine (overridden by a DD card)

After the allocation, such attributes are kept in catalogs and VTOCs.

VOLSER=VOLCAT

dataset.abc

dataset.def

dataset.ghi

Catalog Volume
Chapter 2. Data set basics 17

2.2 Data set name rules

Figure 2-2 Data set name rules

Data set naming conventions
Whenever you allocate a new data set, you (or MVS) must give the data set an unique name.
Usually, the data set name is given as the DSNAME keyword in JCL.

A data set name can be one name segment, or a series of joined name segments. Each
name segment represents a level of qualification. For example, the data set name
VERA.LUZ.DATA is composed of three name segments. The first name on the left is called
the high-level qualifier (HLQ), the last name on the right is the lowest-level qualifier (LLQ).

Each name segment (qualifier) is one to eight characters in length, the first of which must be
alphabetic (A to Z) or national (# @ $). The remaining seven characters are either alphabetic,
numeric (0-9), national, or a hyphen (-). The period (.) separates name segments from each
other.

Note: Including all name segments and periods, the length of the data set name must not
exceed 44 characters. Thus, a maximum of 22 name segments can make up a data set
name.

HARRY.FILE.EXAMPLE.DATA

1º 2º 3º 4º

HLQ LLQ
18 ABCs of z/OS System Programming Volume 3

2.3 DFSMSdfp data set organizations

Figure 2-3 DFSMSdfp data set types supported

DFSMSdfp data set types
The data organization that you choose depends on your applications and the operating
environment. z/OS allows you to use temporary data sets, and to use several ways to
organize files for data to be stored on permanent media, as described here.

VSAM data sets
VSAM data sets are formatted differently than non-VSAM data sets. Except for linear data
sets, VSAM data sets are collections of records, grouped into control intervals. The control
interval is a fixed area of storage space in which VSAM stores records. The control intervals
are grouped into contiguous areas of storage called control areas. To access VSAM data
sets, use the VSAM access method.

Non-VSAM data sets
Non-VSAM data sets are collections of fixed-length or variable-length records, grouped into
blocks. To access non-VSAM data sets, use BSAM, QSAM, or BPAM.

Extended-format data sets
You can allocate both sequential and VSAM data sets in extended format on a
system-managed DASD. The DASD is attached to a controller that supports Extended
Platform.

Data set types supported

VSAM data sets

Non-VSAM data sets

Extended-format data sets

Objects

z/OS UNIX files
Chapter 2. Data set basics 19

Objects
Objects are named streams of bytes that have no specific format or record orientation. Use
the object access method (OAM) to store, access, and manage object data. You can use any
type of data in an object because OAM does not recognize the content, format, or structure of
the data. For example, an object can be a scanned image of a document, an engineering
drawing, or a digital video. OAM objects are stored either on DASD in a DB2® database, or
on an optical drive, or on an optical or tape storage volume.

z/OS UNIX files
z/OS UNIX System Services (z/OS UNIX) enables z/OS to access UNIX files. UNIX
applications also can access z/OS data sets. You can use the hierarchical file system (HFS),
z/OS Network File System (z/OS NFS), zSeries File System (zFS), and temporary file system
(TFS) with z/OS UNIX. You can use the BSAM, QSAM, BPAM, and VSAM access methods
to access data in UNIX files and directories. z/OS UNIX files are byte-oriented, similar to
objects.
20 ABCs of z/OS System Programming Volume 3

2.4 Types of VSAM data sets

Figure 2-4 VSAM data set types

VSAM data sets
VSAM arranges records by an index key, by a relative byte address, or by a relative record
number. VSAM data sets are cataloged for easy retrieval.

Key-sequenced data set (KSDS)
A KSDS VSAM data set contains records in order by a key field and can be accessed by the
key or by a relative byte address. The key contains a unique value, such as an employee
number or part number.

Entry-sequenced data set (ESDS)
A ESDS VSAM data set contains records in the order in which they were entered and can
only be accessed by relative byte address. An ESDS is similar to a sequential data set.

Relative-record data set (RRDS)
A RRDS VSAM data set contains records in order by relative-record number and can only be
accessed by this number. Relative records can be fixed-length or variable-length.

Linear data set (LDS)
A LDS VSAM data set contains data that can be accessed as byte-addressable strings in
virtual storage. A linear data set does not have imbedded control information that other VSAM
data sets hold.

Types of VSAM data sets

Key-sequenced data set (KSDS)

Entry-sequenced data set (ESDS)

Relative-record data set (RRDS)

Linear data set (LDS)
Chapter 2. Data set basics 21

2.5 Non-VSAM data sets

Figure 2-5 Types of non-VSAM data sets

Non-VSAM data sets
Non-VSAM data sets are collections of fixed-length or variable-length records, grouped into
blocks, and these types of data sets are called MVS data sets. To access non-VSAM data
sets, use BSAM, QSAM, or BPAM. There are several types of non-VSAM data sets, as
explained here.

Sequential data set (PS)
Sequential data sets contain records that are stored in physical order. New records are
appended to the end of the data set. You can specify a sequential data set in extended
format.

Partitioned data set (PDS)
Partitioned data sets contain a directory of sequentially organized members, each of which
can contain a program or data. After opening the data set, you can retrieve any individual
member without searching the entire data set.

Partitioned data set extended (PDSE)
Partitioned data sets extended contain an indexed, expandable directory of sequentially
organized members, each of which can contain a program or data. You can use a PDSE
instead of a PDS. The main advantage of using a PDSE over a PDS is that a PDSE
automatically reuses space within the data set.

Types of non-VSAM data sets

Sequential data set (PS)

Partitioned data set (PDS)

Partitioned data set extended (PDSE)
22 ABCs of z/OS System Programming Volume 3

2.6 Extended-format data sets and objects

Figure 2-6 Types of extended-format data sets

Extended-format data sets
You can allocate both sequential and VSAM data sets in extended format on a
system-managed DASD. The DASD is attached to a controller that supports Extended
Platform. Extended-format VSAM data sets allow you to release partial space and to use
system-managed buffering for VSAM batch programs. You can select whether to use the
primary or secondary space amount when extending VSAM data sets to multiple volumes.

An extended-format data set supports the following formats:

� Compression, which reduces the space for storing data and improves I/O, caching, and
buffering performance.

� Data striping, which distributes data for one data set across multiple SMS-managed
DASD volumes, which improves I/O performance and reduces the batch window. For
example, a data set with 28 stripes is distributed across 28 volumes.

Large data sets with high I/O activity are the best candidates for striped data sets. Data
sets defined as extended-format sequential must be accessed using BSAM or QSAM, and
not EXCP or BDAM.

� Extended-addressability, which enables you to create a VSAM data set that is larger than
4 GB.

An extended-format data set supports the following
formats:

Compression

Data striping

Extended-addressability

Objects

Use object access method (OAM)

Storage administrator assigns objects
Chapter 2. Data set basics 23

Objects
Objects are named streams of bytes that have no specific format or record orientation. Use
the object access method (OAM) to store, access, and manage object data. The storage
administrator assigns objects to object storage groups and object backup storage groups.
The object storage groups direct the objects to specific DASD, optical, or tape devices,
depending on their performance requirements. You can have one primary copy of an object,
and up to two backup copies of an object.
24 ABCs of z/OS System Programming Volume 3

2.7 z/OS UNIX files

Figure 2-7 z/OS UNIX files

z/OS UNIX
z/OS UNIX System Services (z/OS UNIX) enables z/OS to access UNIX files. UNIX
applications also can access z/OS data sets. z/OS UNIX files are byte-oriented, similar to
objects. Following are the types of z/OS UNIX files.

Hierarchical file system (HFS)
You can define an HFS data set on the z/OS system. Each HFS data set contains a
hierarchical file system. Each hierarchical file system is structured like a tree with subtrees,
which consists of directories and all its related files. HFS data sets must reside on DASD
volumes.

z/OS Network File System (z/OS NFS)
z/OS NFS is a distributed file system that enables users to access UNIX files and directories
that are located on remote computers as if they were local. z/OS NFS is independent of
machine types, operating systems, and network architectures.

zSeries File System (zFS)
A zFS is a UNIX file system that supports one file system or multiple file systems in a linear
VSAM (LDS) data set.

Following are the types of z/OS UNIX files:

Hierarchical file system (HFS)

Network File System (NFS)

zSeries File System (zFS)

Temporary file system (TFS)
Chapter 2. Data set basics 25

Temporary file system (TFS)
A TFS is stored in memory and delivers high-speed I/O. A systems programmer can use a
TFS for storing temporary files.
26 ABCs of z/OS System Programming Volume 3

2.8 Data set organization (DSORG)

Figure 2-8 Data set organization (DSORG)

Data Set Organization (DSORG)
There are different types of data set organization used in z/OS. Each organization provides
specific benefits to the user. The two shown in Figure 2-8 are:

� PS is for sequential and extended format DSNTYPE.

� PO is the data set organization for both PDSEs and PDSs. DSNTYPE is used to
distinguish between PDSEs and PDSs.

Physical sequential (PS)
With this data set organization, the records can only be read or written in “physical sequential”
order. If we compare this with a PC file, this is a file in the main directory (C:\).

Sequential data sets can exist on DASD, tape, and optical devices.

Partitioned Organized (PO)
Partitioned data sets are similar in organization to a library and are often referred to this way.
A library contains normally a great number of “books”, and sorted directory entries are used to
locate them.

In PDS, or partitioned organized data set, the “books” are called members and to locate them,
they are pointed to by entries in a directory, as shown in Figure 2-8.

MEMBERS

DIRECTORY

Partitioned
organized

Physical
sequential

A
B C

BA

C
B

data set 1

data set 2

data set n
Chapter 2. Data set basics 27

The members are individual sequential data sets and can be read or written sequentially,
once they have been located via directory. It is almost the same idea as the directory and file
organization in a PC.

Partitioned data sets can only exist on DASD. Each member has a unique name, one to eight
characters in length, stored in a directory that is part of the data set. The records of a given
member are written or retrieved sequentially. See z/OS DFSMS Macro Instructions for Data
Sets, SC26-7408, for the macros used with partitioned data sets.

The main advantage of using a partitioned data set is that, without searching the entire data
set, you can retrieve any individual member after the data set is opened. For example, in a
program library (always a partitioned data set) each member is a separate program or
subroutine. The individual members can be added or deleted as required. When a member is
deleted, the member name is removed from the directory, but the space used by the member
cannot be reused until the data set is reorganized; that is, compressed using the IEBCOPY
utility (generally requested through an ISPF panel). See “IEBCOPY utility” on page 105 for
information about this topic.

Directory
The directory, a series of 256-byte records at the beginning of the data set, contains an entry
for each member. Each directory entry contains the member name and the starting location of
the member within the data set, as shown. Also, you can specify as many as 62 bytes of
information in the entry. The directory entries are arranged by name in alphanumeric collating
sequence. Each directory block contains a two-byte count field that specifies the number of
active bytes in a block (including the count field). Each block is preceded by a
hardware-defined key field containing the name of the last member entry in the block (that is,
the member name with the highest binary value).

Partitioned data set member entries vary in length, and are blocked into the member area.

BLKSIZE
If you do not specify a block size (BLKSIZE), the Open routine determines an optimum block
size for you. Therefore, you no longer need to perform calculations based on track length.
When you allocate space for your data set, you can specify the average record length in
kilobytes or megabytes by using the SPACE and AVGREC parameters, and have the system
use the block size it calculated for your data set.

PDSE
Another type of PO data set is the PDSE, which must be SMS-managed. See “Partitioned
data set extended (PDSE)” on page 138 for more information about this topic.

Refer to “Access method” on page 133 for more types and more information about data set
organization.
28 ABCs of z/OS System Programming Volume 3

2.9 Allocate a data set with ISPF 3.2

Figure 2-9 Allocating a data set with ISPF option 3.2

Allocating data sets
To process a data set, first allocate it (establish a link to it), then access the data using
macros for the access method that you have chosen. The allocation of a data set means
either or both of two things:

� To set aside (create) space for a new data set on a disk or tape
� To establish a logical link between a job step and any data set using JCL

Figure 2-9 shows the allocation of a data set using ISPF panel 3.2. Other ways to allocate a
data set are by using any of the following methods:

� Access method services

You can define data sets and establish catalogs by using a multifunction services program
called access method services. Use the ALLOCATE command to create the data set.

� ALLOCATE command

You can also issue the ALLOCATE command through TSO/E to define VSAM and
non-VSAM data sets.

� Using JCL

Any data set can be defined directly through JCL.
Chapter 2. Data set basics 29

2.10 Logical record length (LRECL)

Figure 2-10 Logical record length

Accessing a data set
After the data set has been allocated, it can be accessed (used). In Figure 2-9, the allocation
requested a LRECL=80, BLKSIZE=27920, and RECFM=FB.

Logical records and block sizes
A logical record (LRECL) is a unit of information about a unit of processing (for example, a
customer, an account, a payroll employee, and so on). It is the smallest amount of data to be
processed, and it is comprised of fields which contain information recognized by the
processing application.

Logical records, when located in DASD, tape, or optical devices, are grouped in physical
records named blocks (BLKSIZE). Each block of data on a DASD volume has a distinct
location and a unique address, thus making it possible to find any block without extensive
searching. Logical records can be stored and retrieved either directly or sequentially.

DASD volumes are used for storing data and executable programs (including the operating
system itself), and for temporary working storage. One DASD volume can be used for many
different data sets, and space on it can be reallocated and reused. The maximum length of a
logical record (LRECL) is limited by the physical size of the used media.

LRECL=80 BLKSIZE=27920

RECFM=FB

ROGERS.JCL.TEST

Data Set
80 80 80 80 80

80
30 ABCs of z/OS System Programming Volume 3

Record formats
Use the RECFM parameter to specify the format and characteristics of the logical records in a
new data set. RECFM specifies the characteristics of the records in the data set as
fixed-length (F), variable-length (V), ASCII variable-length (D), or undefined-length (U).

Blocked records are specified as FB, VB, or DB. Spanned records are specified as VS, VBS,
DS, or DBS. You can also specify the records as fixed-length standard by using FS or FBS.
You can request track overflow for records other than standard format by adding a T to the
RECFM parameter (for example, by coding FBT). Track overflow is ignored for PDSEs.
Chapter 2. Data set basics 31

2.11 Locating a data set

Figure 2-11 Locating a data set

Locating a data set
Before we describe the procedure used to find a data set, let's introduce terms used in this
document (they are explained in more detail later).

VTOC A sequential data set located in a DASD volume that describes
the contents of this volume.

User Catalogs (UCAT) A catalog of data sets used to locate in which DASD volume the
requested data set is stored; user data sets are cataloged in this
type of catalog.

Master Catalog (MCAT) This has the same structure as a user catalog, but points to
system data sets. It also contains information about the user
catalog location and any alias pointer.

Alias A special entry in the master catalog pointing to a user catalog
that coincides with the HLQ of a data set. It means that the data
set with this HLQ is cataloged in that user catalog. The alias is
used to find in which user catalog that data set location
information exists.

Locating a data set sequence
When the system tries to locate a data set for a request for an existing data set, the following
sequence takes place:

� The MCAT is searched; if found, verify if it is:

UCAT

FPITA.DATA
FPITA.FILE1
VERA.FILE1

TSO MCAT

ALIAS: FPITA
ALIAS:VERA
UCAT

FPITA.DATA

FPITA.DATA
VTOC

VOLDAT
32 ABCs of z/OS System Programming Volume 3

– A data set name, then pick up the volume specification and if the indicated device is
online, then check VTOC to locate the data set in the specified volume.

– An alias, that is, the HLQ of the data set name is equal to an alias entry pointing to an
UCAT. In this case, go to the referred UCAT.

� The UCAT is searched (if there is a match in the alias). If the data set name is found,
proceed as in an MCAT hit.

Finally, the requesting program can access the data set.

Note: It is not recommended that you use private catalogs. One reason for this
recommendation is because for SMS-managed data sets, SMS only accesses
SMS-managed data sets that are cataloged in a system catalog.
Chapter 2. Data set basics 33

2.12 Uncataloged and cataloged data sets

Figure 2-12 Cataloged and uncataloged data sets

Cataloged data sets
When the data set is cataloged, the system obtains unit and volume information from the
catalog. However, if the DD statement for a catalog data set contains
VOLUME=SER=serial-number, the system does not look in the catalog; in this case, you
must code the UNIT parameter.

Uncataloged data sets
When your data set is not cataloged you must know in advance its volume location and
specify it in your JCL. This can be done through the UNIT and VOL=SER, as shown in
Figure 2-12.

See z/OS MVS JCL Reference, SA22-7597, for information about UNIT and VOL
parameters.

Note: We strongly recommend that you do not have uncataloged data sets in your
installation because uncataloged data sets can cause problems with duplicate data and
possible incorrect data set processing.

Uncataloged reference
// DD DSN=PAY.D1

DISP=OLD
UNIT=3380
VOL=SER=MYVOL

Cataloged reference
// DD DSN=PAY.D2

DISP=OLD

PAY.D1

CATALOG

PAY.D2
34 ABCs of z/OS System Programming Volume 3

2.13 Volume table of contents (VTOC)

Figure 2-13 Volume table of contents (VTOC)

VTOC
The VTOC lists the data sets that reside on its volume, along with information about the
location and size of each data set, and other data set attributes.

The VTOC is a contiguous data set; that is, it resides in a single extent on the volume. It is
pointed at by the record in the first track of the volume, and starts after cylinder 0, track 0 and
before track 65,535.

A VTOC's address is located in the VOLVTOC field of the standard volume label. Data is
organized in physical blocks preceded by the highest record key in the block (that is, a
count-key-data format).

The VTOC has six types of control blocks; they are called data set control blocks (DSCB) and
they describe data set characteristics, free space, and other functions that we will see in the
next visuals.

There is a set of macros called the Common VTOC Access Facility (CVAF) that allows a
program to access VTOC information data.

A
B C

Data sets

VTOC

A

B

C

Chapter 2. Data set basics 35

2.14 Data set control block (DSCB)

Figure 2-14 Data set control block (DSCB)

DSCBs
The VTOC is composed of 140-byte (1) data set control blocks (DSCBs) that correspond
either to a data set or virtual storage access method (VSAM) data space currently residing on
the volume, or to contiguous, unassigned tracks on the volume.

DSCB is the name of the logical record within the VTOC. DSCBs describe data sets allocated
in that volume, and also describe the VTOC itself. The system automatically constructs a
DSCB when space is requested for a data set on a direct access volume. Each data set on a
DASD volume has one or more DSCBs to describe its characteristics. The DSCB appears in
the VTOC and, in addition to space allocation and other control information, contains
operating system data, device-dependent information, and data set characteristics. There are
seven kinds of DSCBs, each with different purpose and a different format number.

The first record in every VTOC is the VTOC DSCB (format-4). The record describes the
device, the volume the data set resides on, the volume attributes, and the size and contents
of the VTOC data set. The next DSCB in the VTOC data set is a free-space DSCB (format-5),
even if the free space is described by format-7 DSCBs. The third and subsequent DSCBs in
the VTOC can occur in any order.

Table 2-1 on page 37 describes the different types of DSCBs.

VTOC F4 F0 F1 F1 F1F4

DATA SET C

DATA SET B

DATA SET A
36 ABCs of z/OS System Programming Volume 3

Table 2-1 DSCBs that can be found in the VTOC

Type Name Function How many

0 Free VTOC
DSCB

 Describes an unused record in
the VTOC (contains 140 bytes of
binary zeros). To delete a DSCB
from the VTOC, a format-0 DSCB
is written over it.

One for every unused 140-byte record
on the VTOC. The DS4DSREC field of
the format-4 DSCB is a count of the
number of format-0 DSCBs on the
VTOC. This field is not maintained for
an indexed VTOC.

1 Identifier Describes the first three extents
of a data set or VSAM data
space.

One for every data set or data space on
the volume, except the VTOC.

2 Index Describes the indexes of an ISAM
data set.

One for each ISAM data set (for a
multivolume ISAM data set, a format-2
DSCB exists only on the first volume).

3 Extension Describes extents after the third
extent of a non-VSAM data set
or a VSAM data space.

One for each data set or VSAM data
space on the volume that has more than
three extents. There can be as many as
10 for a PDSE, HFS, extended format
data set, or a VSAM data set cataloged
in an integrated catalog facility catalog.
PDSEs, HFS, and extended format data
sets can have up to 123 extents. Each
component of a VSAM data set
cataloged in an integrated catalog
facility catalog can have up to 123
extents per volume. All other data sets
are restricted to 16 extents per volume.

4 VTOC Describes the extent and
contents of the VTOC, and
provides volume and device
characteristics. This DSCB
contains a flag indicating
whether the volume is
SMS-managed.

One on each volume.

5 Free space On a nonindexed VTOC,
describes the space on a volume
that has not been allocated to a
data set (available space). For an
indexed VTOC, a single empty
format-5 DSCB resides in the
VTOC; free space is described in
the index and DS4IVTOC is
normally on.

One for every 26 noncontiguous extents
of available space on the volume for a
nonindexed VTOC; for an indexed
VTOC, there is only one.

7 Free space
for certain
device

Only one field in the format-7
DSCB is an intended interface.
This field indicates whether the
DSCB is a format-7 DSCB. You
can reference that field as
DS1FMTID or DS5FMTID. A
character 7 indicates that the
DSCB is a format-7 DSCB, and
your program should not modify
it.
Chapter 2. Data set basics 37

2.15 VTOC index structure

Figure 2-15 VTOC index structure

VTOC index
A VTOC index decreases search time for DSCBs. If the system detects a logical or physical
error in a VTOC index, the system disables further access to the index from all systems that
might be sharing the volume. If a VTOC index becomes disabled, the VTOC remains usable
but with possibly degraded performance.

If a VTOC index becomes disabled, you can rebuild the index without taking the volume
offline to any system. All systems can continue to use that volume without interruption to
other applications, except for a brief pause during the index rebuild. After the system rebuilds
the VTOC index, it automatically reenables the index on each system that has access to it.

Device Support Facilities (ICKDSF)
Device Support Facilities (ICKDSF) initializes a VTOC index into 2048-byte physical blocks
named VTOC index records (VIRs). VIRs are used in several ways. A VTOC index contains
the following kinds of VIRs:

� VTOC index entry record (VIER) identifies the location of format-1 DSCBs and the
format-4 DSCB.

� VTOC pack space map (VPSM) identifies the free and allocated space on a volume.

� VTOC index map (VIXM) identifies the VIRs that have been allocated in the VTOC index.

� VTOC map of DSCBs (VMDS) identifies the DSCBs that have been allocated in the
VTOC.

FREE SPACE MAP

POINTERS TO VTOC
DATA SET ENTRIES

LIST OF EMPTY
VTOC ENTRIES

FREE SPACE

VTOC INDEX

VTOC

VVDS

DATA

FREE SPACE

VOLUME
LABEL
38 ABCs of z/OS System Programming Volume 3

VTOC format-1 DSCB
A format-1 DSCB in the VTOC contains the name and extent information of the VTOC index.
The name of the index must be 'SYS1.VTOCIX.xxxxxxxx', where 'xxxxxxxx' conforms to
standard data set naming conventions and is usually the serial number of the volume
containing the VTOC and its index. The name must be unique within the system to avoid
ENQ contention.

Creating the VTOC and VTOC index
To initialize a volume (preparing for I/O activity), use the Device Support Facilities (ICKDSF)
utility to initially build the VTOC. You can create a VTOC index at that time by using the
ICKDSF INIT command and specifying the INDEX keyword.

You may use ICKDSF to convert a non-indexed VTOC to an indexed VTOC by using the
BUILDIX command and specifying the IXVTOC keyword. The reverse operation can be
performed by using the BUILDIX command and specifying the OSVTOC keyword. For details
see Device Support Facilities User’s Guide and Reference Release 17, GC35-0033, and
refer to z/OS DFSMSdfp Advanced Services, SC26-7400, for more information on that topic.
Chapter 2. Data set basics 39

2.16 Initializing a volume (ICKDSF)

Figure 2-16 Initializing a volume

ICKDSF program
ICKDSF is a program you can use to perform functions needed for the initialization,
installation, use, and maintenance of DASD volumes. You can also use it to perform service
functions, error detection, and media maintenance.

On modern DASD devices, there is no reason to run error detection and media maintenance,
as these functions are supported internally by the controller. On the other hand, the concept
of an MVS volume is not mapped into a unique physical DASD Redundant Access of
Independent Disks (RAID) volume. Due to RAID, the MVS volume may be spread in several
small disks, as in the case of RVA virtualization or today’s ESS implementation. In the
following examples, do not take in consideration the commands ANALYZE and INSPECT if you
have a DASD more modern than a real 3390.

Initializing a DASD volume
After you have completed the installation of a device, you must initialize and format the
volume so that it can be used by MVS. If the volume is SMS-managed, the
STORAGEGROUP option must be declared.

VTOC and VTOC index
The INIT and BUILDIX commands will build the VTOC index. The INIT command creates
space for the index during volume initialization in both operating system and stand-alone
versions of ICKDSF. The BUILDIX command, which requires that the host operating system
contains indexed VTOC programming support, builds VTOC indexes on volumes current in

//EXAMPLE JOB
//EXEC PGM=ICKDSF
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 INIT UNITADDRESS(0353) NOVERIFY -
 VOLID(VOL123)
/*
40 ABCs of z/OS System Programming Volume 3

use on the system. Both commands prepare the VTOC on the target volume to indexed
VTOC (IXVTOC) format.

INIT examples
Following are some examples of initializing volumes.

Initializing a volume for the first time in offline mode
In this example, a volume is initialized at the minimal level because neither the CHECK nor
VALIDATE parameter is specified. Because the volume is being initialized for the first time, it
must be mounted offline, and the volume serial number must be specified. Because the VTOC
parameter is not specified, the default volume table of contents size is the number of tracks in
a cylinder minus one. For a 3390, the default is cylinder 0, track 1 for 14 tracks.

Initializing a volume to be managed in a DFSMS environment
In the following example, a volume that is to be system-managed is initialized. The volume is
initialized in offline mode at the minimal level. The VTOC is placed at cylinder 2, track 1 and
occupies ten tracks. The VTOC is followed by the VTOC index. The STORAGEGROUP parameter
indicates the volume is to be managed in a DFSMS environment.

INIT UNIT(0353) NOVERIFY STORAGEGROUP -
 OWNERID(PAYROLL) VTOC(2,1,10) INDEX(2,11,5)

The following example performs an online minimal initialization, and as a result of the
command, an index to the VTOC is created:

ICKDSF stand-alone version
You can run the stand-alone version of ICKDSF under any IBM ̂zSeries or IBM
S/390 machine. To run the stand-alone version of ICKDSF, you IPL ICKDSF with a
stand-alone IPL tape that you create under z/OS.

Creating an ICKDSF stand-alone IPL tape using z/OS
For z/OS, the stand-alone code is in SYS1.SAMPLIB as ICKSADSF. You can load the
ICKDSF program from a file on tape. The following example can be used to copy the
stand-alone program to an unlabeled tape:

//EXAMPLE JOB
// EXEC PGM=ICKDSF
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
INIT UNITADDRESS(0353) NOVERIFY VOLID(VOL123) -

OWNERID(PAYROLL)
/*

// JOB
// EXEC PGM=ICKDSF
//XYZ987 DD UNIT=3390,DISP=OLD,VOL=SER=PAY456
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
INIT DDNAME(XYZ987) NOVERIFY INDEX(X'A',X'B',X'2')
/*
Chapter 2. Data set basics 41

Copy the stand-alone program to an unlabeled tape

For details on how to IPL the stand-alone version and to see examples of the commands,
refer to Device Support Facilities User’s Guide and Reference Release 17, GC35-0033.

//JOBNAME JOB JOB CARD PARAMETERS
//STEPNAME EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY,DCB=BLKSIZE=80
//SYSUT1 DD DSNAME=SYS1.SAMPLIB(ICKSADSF),UNIT=SYSDA,
// DISP=SHR,VOLUME=SER=XXXXXX
//SYSUT2 DD DSNAME=ICKDSF,UNIT=3480,LABEL=(,NL),
// DISP=(,KEEP),VOLUME=SER=YYYYYY,
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
42 ABCs of z/OS System Programming Volume 3

2.17 Problem determination

Figure 2-17 Problem determination using ICKDSF

Using ICKDSF
You can use ICKDSF to help determine if the origin of a problem is hardware or recording
media.

Data check
A data check is an error detected in the bit pattern read from the disk. When it is a media
problem, it is most likely caused by an imperfection on the disk surface.

Analyze
The ANALYZE command helps to detect and differentiate recording surface and drive-related
problems on a volume. It can also scan data to help detect possible media problems.

You can use the ANALYZE command to examine a device and the data on a volume, to help
determine the existence and nature of errors.

You use two parameters with the ANALYZE command:

� DRIVETEST tests the hardware device.

� SCAN reads data on a volume.

You can use the DRIVETEST parameter to ensure that device hardware can perform basic
operations, such as seeks, reads, and writes. DRIVETEST can impact your system
performance, but does not alter data.

Problem Area
ICKDSF Problem Determination

Functions:
Analyze
Inspect
Chapter 2. Data set basics 43

You can use ANALYZE SCAN to read data that currently exists on a volume. If ANALYZE SCAN
reads the data successfully the first time, no further rereading of the track takes place.

INSPECT command
The INSPECT command inspects a subset of a volume and can do the following:

� Check the surface of a track to determine if there is a defect

� Assign a skip to avoid a defect

� Assign an alternate track

� Reclaim a track that has been flagged defective

� Print a map of defective tracks on a volume

For more information about ICKDSF, refer to Device Support Facilities User’s Guide and
Reference Release 17, GC35-0033.

Note: Before using the INSPECT command, you should first make sure there are no
hardware problems. It is recommended that you issue ANALYZE DRIVETEST NOSCAN before
any INSPECT operation.
44 ABCs of z/OS System Programming Volume 3

Chapter 3. Storage management hardware

The use of DFSMS requires storage management hardware that includes both Direct Access
Storage Devices (DASD) and tape devices. In this chapter we provide an overview of both
storage device categories, as well as a brief introduction to RAID technology.

For many years DASD devices have been the most used storage devices on IBM ̂
zSeries systems and their predecessors, delivering the fast access to data and high
availability that customers have come to expect.

We cover the following types of DASD:

� Traditional DASD (such as 3380 and 3390)

� RAMAC Virtual Array (RVA)

� Enterprise Storage Server (ESS)

The era of tapes began before DASD was introduced. During that time, tapes were used as
the primary storage medium. Today customers use tapes for such purposes as backup,
archiving, or data transfer between companies.

We cover the following types of tape devices:

� Traditional tapes like 3480 and 3490

� IBM Magstar® 3590 and 3592

� Automated tape library (ATL) 3494

� Virtual tape server (VTS).

We also briefly explain the storage area network (SAN) concept.

3

© Copyright IBM Corp. 2004. All rights reserved. 45

3.1 Overview of DASD types

Figure 3-1 Overview of DASD types

Traditional DASD
In the era of traditional DASD, the hardware consisted of controllers like 3880 and 3990 which
contained the necessary functions to operate a storage subsystem. The controllers were
connected to S/390 systems via parallel or ESCON® channels. Behind a controller you had
several model groups of the 3390 which contained the disk drives. Based on the models,
these disk drives had different capacities per device. Within each model group, the different
models provide either four, eight, or twelve devices. All A-units come with four controllers,
providing a total of four paths to the 3990 Storage Control. At that time, you were not able to
change the characteristics of a given DASD device.

DASD based on RAID technology
With the introduction of the RAMAC Array in 1994, IBM first introduced storage subsystems
for S/390 systems based on RAID technology. We discuss the various RAID implementations
in “Redundant array of independent disks (RAID)” on page 51.

The more modern IBM DASD products such as RAMACs, RVA, and Enterprise Storage
Server (ESS), including DASD from other vendors, emulate IBM 3380 and 3390 volumes in
the geometry, capacity of track, and number of tracks per cylinder. This emulation makes all
the other entities think they are dealing with real 3380s or 3390s. Among these entities, we
have data processing people not working directly with storage, JCL, MVS commands, open
routines, access methods, IOS, channels. One advantage of this emulation is that it allows
DASD manufacturers to implement changes in the disks, including the geometry of tracks and
cylinders, without affecting the way those components interface with DASD. From an

Traditional DASD

3380 Models J, E, K

3390 Models 1, 2, 3, 9

DASD based on RAID technology

RAMAC Array

RAMAC Virtual Array (RVA)

Enterprise Storage Server (ESS)

Seascape architecture
46 ABCs of z/OS System Programming Volume 3

operating system point of view, device types will always will be 3390s, sometimes with much
bigger amount of cylinders, but a 3390.

ESS technology
The IBM TotalStorage Enterprise Storage Server (ESS) is IBM’s most powerful disk storage
server, developed using IBM Seascape® architecture. The ESS provides unmatched
functionality to the family of e-business servers, and also to non-IBM (that is, Intel®-based
and UNIX-based) families of servers. Across all of these environments, the ESS features
unique capabilities that allow it to meet the most demanding requirements of performance,
capacity, and data availability that the computing business may require. See “Enterprise
Storage Server (ESS)” on page 56 for more information about this topic.

Seascape architecture
The Seascape architecture is the key to the development of IBM’s storage products.
Seascape allows IBM to take the best of the technologies developed by the many IBM
laboratories and integrate them, producing flexible and upgradeable storage solutions. This
Seascape architecture design has allowed the IBM TotalStorage Enterprise Storage Server
to evolve from the initial E models to the succeeding F models, and to the later 800 models,
each featuring new, more powerful hardware and functional enhancements, and always
integrated under the same successful architecture with which the ESS was originally
conceived. Refer to “Seascape architecture” on page 53 for more information.

Note: In this publication, we use the terms disk or head disk assembly (HDA) for the real
devices, and the terms DASD volumes or DASD devices for the logical 3380/3390s.
Chapter 3. Storage management hardware 47

3.2 Traditional DASD capacity

Figure 3-2 Traditional DASD capacity

DASD capacity
Figure 3-2 shows various DASD device types. 3380 devices were used in the 1980s. Capacity
went from 885 to 2,655 cylinders per volume. When storage density increased, new device
types were introduced at the end of the 1980s. Those types were called 3390. Capacity per
volume ranged from 1,113 to 3,339 cylinders. A special device type model 3390-9 was
introduced, to store large amounts of data that needed very fast access. The track geometry
within one device category was (and is) always the same; this means that 3380 volumes have
47,476 bytes per track, and 3390 volumes have 56,664 bytes per track.

Table 3-1 lists further information about DASD capacity.

Table 3-1 DASD capacity

Physical
characteristics

3380-J 3380-E 3380-K 3390-1 3390-2 3390-3 3390-9

Data Cyl/Device 855 1770 2655 1113 2226 3339 10017

Track/Cyl 15 15 15 15 15 15 15

Bytes/Trk 47476 47476 47476 56664 56664 56664 56664

Bytes/Cylinder 712140 712140 712140 849960 849960 849960 849960

MB/Device 630 1260 1890 946 1892 2838 8514

D/T3390

Model 1

2226 Cyl

Model 2

3339 Cyl

Model 3

D/T3380

885 Cyl

Model J

1770 Cyl

Model E

2655 Cyl

Model K

Model 9

10017 Cyl
1113 Cyl
48 ABCs of z/OS System Programming Volume 3

3.3 Large Volume Support

Figure 3-3 Large volume support 3390-27

Large volume 3390-27
The IBM TotalStorage Enterprise Storage Server (ESS) initially supported custom volumes of
up to 10017 cylinders, the size of the largest standard volume, the 3390 model 9. This was
the limit set by the operating system software.The IBM TotalStorage ESSLarge Volume
Support (LVS) enhancement, announced in November 2001, has now increased the upper
limit to 32760 cylinders, approximately 27.8 GB. The enhancement is provided as a
combination of IBM TotalStorage ESS licensed internal code (LIC) changes and system
software changes, available for z/OS, OS/390, and z/VM.

Large Volume Support (LVS) is available on z/OS and OS/390 operating systems, and the
ICKDSF and DFSORT utilities.

Large Volume Support needs to be installed on all systems in a sysplex prior to sharing data
sets on large volumes. Shared system/application data sets cannot be placed on large
volumes until all system images in a sysplex have Large Volume Support installed.

LVS design considerations
Here are some considerations for large volume design:

� The S/390 I/O processor has an architectural device size limit of 32765 (xí7FFDí)
cylinders.

� The current software limit is 10017 cylinders.

A "large volume" is larger than a
3390-9

The largest possible volume has
32760 (3390) cylinders

That would be a "3390-27" if it
had its own device type

Almost 28 GB

32760 Cyl

3390-27
Chapter 3. Storage management hardware 49

� Records in sequential data sets are located using two-byte relative track addresses (TTR),
which imposes a limit of 64 K tracks per data set.

� Control blocks such as the Data Extent Block (DEB) and channel commands such as
SEEK use two bytes for cylinder and head addressing (CCHH) which imposes a limit of 64
K cylinders and tracks.
50 ABCs of z/OS System Programming Volume 3

3.4 Redundant array of independent disks (RAID)

Figure 3-4 Redundant array of independent disks (RAID)

RAID architecture
Redundant array of independent disks (RAID) is a direct access storage architecture where
data is recorded across multiple physical disks with parity separately recorded, so that no
loss of access to data results from the loss of any one disk in the array.

The RAID concept involves many small computer system interface (SCSI) disks replacing a
big one. The major RAID advantages are:

� Performance (due to parallelism)

� Cost (SCSI are commodities)

� zSeries compatibility

� Environment (space and energy)

However, RAID increased the chances of malfunction due to media and disk failures and the
fact that the logical device is now residing on many physical disks. The solution was
redundancy, which wastes space and causes performance problems as “write penalty” and
“free space reclamation”.

To address this performance issue, large caches are implemented.

Except for RAID-1, each manufacturer sets the number of disks in an array. An array is a set
of logically related disks, where a parity applies.

Raid-1 Primary Alternate

Data+ Parity

Record X

Record W
ABCDEF

TRSVAB

Record Y
#IJKLM
Parity

PPPPPP

Record B
PQRSTU
Record V
CDERST

Parity
PPPPPP
Record T
QRUBXA

Data+ Parity Data+ Parity Data+ ParityRaid-5

Raid- 3 Data
Data

Data Parity

Record X Record X

ABCDEF ABCDEF

1/3 Record X 1/3 Record X 1/3 Record X Parity bits

AB CD EF PP
Chapter 3. Storage management hardware 51

Various implementations certified by the RAID Architecture Board are:

RAID-1 This has just disk mirroring, like dual copy.

RAID-3 This has an array with one dedicated parity disk and just one I/O request at time,
with intra-record striping. It means that the written physical block is stripped and
each piece (together with the parity) is written in parallel in each disk of the array.
The access arms move together. It has a high data rate and a low I/O rate.

RAID-5 This has an array with one distributed parity (there is no dedicated disk for
parities). It does I/O requests in parallel with extra-record striping; that is, each
physical block is written in each disk. The access arms move independently. It
has strong caching to avoid write penalties; that is, four disk I/Os per write.
RAID-5 has a high I/O rate and a medium data rate. RAID-5 is used by the IBM
2105 controller with 8-disk arrays in the majority of configurations.

RAID-5 does the following:

� It reads data from an undamaged disk. This is just one, single disk I/O
operation.

� It reads data from a damaged disk, which implies (n-1) disk I/Os, to recreate
the lost data where n is the number of disks in the array.

� For every write to an undamaged disk, RAID-5 does four I/O operations in
order to store a correct parity block, this is called a write penalty. This penalty
can be relieved with strong caching and a slice triggered algorithm
(coalescing disks updates from cache into a single parallel I/O).

� For every write to a damaged disk, RAID-5 does n-1 reads and one parity
write.

RAID-6 This has an array with two distributed parity and I/O requests in parallel with
extra-record striping. Its access arms move independently (Reed/Salomon P-Q
parity). The write penalty is greater than RAID-5, with six I/Os per write.

RAID-6+ This is without write penalty (due to log-structured file, or LFS), and has
background free-space reclamation. The access arms all move together for
writes. It is used by the RVA controller.

RAID-10 RAID-10 has a new RAID architecture designed to give performance for striping
and has redundancy for mirroring. RAID-10 is optionally implemented in the IBM
2105.

Note: Data striping (stripe sequential physical blocks in different disks) is sometimes called
RAID-0, but it is not a real RAID because of no redundancy, that is, no parity bits.
52 ABCs of z/OS System Programming Volume 3

3.5 Seascape architecture

Figure 3-5 Seascape architecture

Seascape architecture
Seascape is a storage enterprise architecture that is ideally suited to provide storage server
solutions for the networked world. Seascape has three basic concepts:

� Powerful storage server
� Snap-in building blocks
� Universal data access

DFSMS provides device support for the IBM 2105 Enterprise Storage Server (ESS), a
high-end storage subsystem. The ESS is the newest storage subsystem succeeding the
3880, 3990, and 9340 subsystem families. Designed for mid-range and high-end
environments, the ESS gives you large capacity, high performance, continuous availability,
and storage expandability. You can read more about ESS in “Enterprise Storage Server
(ESS)” on page 56.

The ESS is also the first of the Seascape architecture storage products to attach directly to
IBM ̂zSeries and open-system platforms. The Seascape architecture products
come with integrated storage controllers. These integrated storage controllers allow the
attachment of physical storage devices that emulate 3390 Models 2, 3, and 9, or provide
3380 track-compatibility mode.

Powerful storage server

Snap-in building blocks

Universal data access

Storage sharing

Data copy sharing

Network

Direct channel

Shared storage transfer

True data sharing
Chapter 3. Storage management hardware 53

Powerful storage server
It has a storage system which is intelligent and independent, and which can be reached by
channels or via the network. This storage system is powered by a set of fast RISC
processors.

Snap-in building blocks
Each Seascape product is comprised of building blocks, such as:

� Scalable n-way RISC server, PCI-based; this provides the logic of the storage server.

� Memory cache from RISC processor memory.

� Channel attachments as FC-AL, SCSI, ESCON, FICON® and SSA.

� Network attachments, such as Ethernet, FDDI, TR, and ATM.

These attachments may also implement functions—a mix of network interfaces (to be
used as a remote and independent storage server) and channel interfaces (to be used as
a storage controller interface).

� Software building blocks, such as an AIX® subset, Java™ applications, and Tivoli®
Storage Manager. High level language (HLL) is more flexible than microcode, and is
easier to write and maintain.

� Storage adapters, for mixed storage devices technologies.

� Storage device building blocks, such as serial disk (7133), 3590 tape (Magstar), optical
(3995).

� Silos and robots (3494).

Universal data access
Universal data access allows a wide array of connectivity, such as z/OS, UNIX, Linux®,
OS/400®, WIN, and OS/2®, to common data. There are three types of universal access:

� Storage sharing

Physical storage (DASD or tape) is statically divided into fixed partitions available to a
given processor. It is not a software function. The subsystem controller knows which
processors own which storage partitions. In a sense, only capacity is shared, not data;
one server cannot access the data of the other server. It is required that the manual
reassignment of storage capacity between partitions be simple and nondisruptive.

The advantages are:

– Purchase higher quantities with greater discounts
– Only one type of storage to manage
– Static shifting of capacity as needed

The drawbacks are:

– Higher price for SCSI data
– Collocation at 20 meters of the SCSI servers
– No priority concept between z/OS and UNIX/NT I/O requests

� Data copy sharing

Data copy sharing is an interim data replication solution (waiting for a true data sharing)
done via data replication from one volume accessed by a platform to another volume
accessed by another platform. The replication can be done through software or hardware.

There are three ways to implement data copy sharing:

– Network: Via network data transfer as SNA or TCP/IP.
54 ABCs of z/OS System Programming Volume 3

However, this method has drawbacks such as CPU and network overhead; still slow
and expensive for massive data transfer.

– Direct channel: Direct data transfer between the processors involved using channel or
bus capabilities, referred to as bulk data transfer.

One example of this is IBM Infospeed®, wherein a /390 FTP (Press Data Mover, or
PDM) at 28 MB/sec extract utility program writes data at 28 MB/sec to a pipe
(Infospeed box) that is concurrently being read by UNIX and NT.

– Shared storage transfer: Writing an intermediate flat file by software into the storage
subsystem cache, that is read (and translated) by the receiving processor, so the
storage is shared.

� True data sharing

For data sharing between multiple platforms for read/write of a single copy that addresses
the complex issues of mixed data types, file structures, databases, and SCPs, there is no
available solution.
Chapter 3. Storage management hardware 55

3.6 Enterprise Storage Server (ESS)

Figure 3-6 Enterprise Storage Server model 800

Enterprise Storage Server (ESS)
The IBM Enterprise Storage Server (ESS) is a high performance, high-availability capacity
storage subsystem. It contains up two six-way RISC processors (668 MHZ) with up to 64 GB
cache and 2 GB of non-volatile storage (NVS) to protect from data loss along power outages.
Connectivity to zSeries is through up to 32 ESCON channels and up to 16 FICON channels.
For other platforms such as IBM ̂iSeries™, UNIX, or NT, the connectivity is through
up to 32 SCSI interfaces.

Cache
Cache is used to store both read and write data to improve ESS performance to the attached
host systems. There is the choice of 8, 16, 24, 32 or 64 GB of cache. This cache is divided
between the two clusters of the ESS, giving the clusters their own non-shared cache. The
ESS cache uses ECC (error checking and correcting) memory technology to enhance
reliability and error correction of the cache. ECC technology can detect single- and double-bit
errors and correct all single-bit errors. Memory scrubbing, a built-in hardware function, is also
performed and is a continuous background read of data from memory to check for correctable
errors. Correctable errors are corrected and rewritten to cache. To protect against loss of
data on a write operation, the ESS stores two copies of written data, one in cache and the
other in NVS.

Two 6-way RISC processors (668 MHZ)

4.8 GB/sec of aggregate bandwidth

Up to 32 ESCON / SCSI / mixed

Up to 16 FICON and FCP channels

Up to 64 GB of cache

2 GB of NVS cache

18.2 / 36.4 / 72.8 / 145.6 GB capacity disk options

Up to 55.9 TB capacity

8 x 160 MB/sec SSA loops

10,000 rpm and 15,000 rpm disk options

Connects to SAN

RAID-5 or RAID-10
56 ABCs of z/OS System Programming Volume 3

NVS cache
NVS is used to store a second copy of write data to ensure data integrity, should there be a
power failure or a cluster failure and the cache copy is lost. The NVS of cluster 1 is located in
cluster 2 and the NVS of cluster 2 is located in cluster 1. In this way, in the event of a cluster
failure, the write data for the failed cluster will be in the NVS of the surviving cluster. This write
data is then destaged at high priority to the disk arrays. At the same time, the surviving cluster
will start to use its own NVS for write data, ensuring that two copies of write data are still
maintained. This ensures that no data is lost even in the event of a component failure.

ESS Model 800
The ESS Model 800 has a 2 GB NVS. Each cluster has 1 GB of NVS, made up of four cards.
Each pair of NVS cards has its own battery-powered charger system that protects data even
if power is lost on the entire ESS for up to 72 hours. This model has the following
enhancements:

� Model 800 allows 4.8 GB/sec of aggregate bandwidth.

� In the disk interface the ESS has eight Serial Storage Architecture (SSA) loops, each one
with a rate of 160 MB/sec for accessing the disks. See “SSA loops” on page 68 for more
information about this topic.

� ESS implements RAID-5 or RAID-10 for availability and has eight disks in the majority of
the arrays. See “RAID-10” on page 70 for more information about this topic.

� Four sizes disks of 18.2, 36.4, 72.8, and 145.6 GB, which can be intermixed. The ESS
maximum capacity is over 55.9 TB with a second frame attached.

SCSI protocol
Although we do not cover other platforms in this publication, we provide here a brief overview
of the SCSI protocol. The SCSI adapter is a card in the host. It connects to a SCSI bus via an
SCSI port. There are two different types of SCSI supported by ESS:

� SCSI Fast Wide with 20 MB/sec

� Ultra SCSI Wide with 40 MB/sec

Comparing the terminology of ESCON and SCSI, we may say that:

� An ESCON channel translates into an SCSI adapter (both cards in the host)

� An ESCON port translates into an SCSI port (both connectors)

� An ESCON link translates into an SCSI bus (both cables)
Chapter 3. Storage management hardware 57

3.7 ESS universal access

Figure 3-7 ESS universal access

ESS universal access
ESS is a product designed to implement storage consolidation that puts all of your enterprise
data under the same cover. This consolidation is the first step in achieving server
consolidation—that is, to put all of your enterprise applications under the same z/OS cluster.

Thinking in Seascape terms about universal access, the ESS box implements storage
sharing with dynamic reallocation and data copy sharing using Infospeed.

Many of the ESS features are now available to non-zSeries platforms such as PPRC for NT
and UNIX, where the control is through a Web interface

In the software side, there is StorWatch, a range of products in UNIX/NT that does what
DFSMS and automation do for zSeries.

In “Operating systems supporting ESS” on page 59, you will see all the operating systems
able to access data in the ESS box in storage sharing mode (physical partition), that is, one
device accessed by just one heterogeneous operating system image.

Storage consolidation

Storage sharing solution
with dynamic reallocation

Data copy sharing through
infospeed

PPRC available for NT and
UNIX - Human control
through Web interface

StorWatch support
i/Series

z/Series

Windows NT

Unix

ESS
58 ABCs of z/OS System Programming Volume 3

3.8 Operating systems supporting ESS

Figure 3-8 Operating systems supporting ESS

Operating systems supporting ESS
ESS is supported by the open operating systems listed in Figure 3-8. The list contains those
systems able to access data in the ESS box at general availability time.

AIX 4.2.1 and above

OS/400 V3R1and above

HP UNIX 10.20 and above

Sun Solaris 2.5.1 and above

Windows NT Server 4.0 and above

Data General DG/UX 4.2 and above

Novell Netware 4.2 and above

Various Linux releases on several platforms

For an up-to-date list, check:

www.ibm.com/storage
Chapter 3. Storage management hardware 59

3.9 ESS major components

Figure 3-9 ESS major components

ESS Model 800 major components
Figure 3-9 shows an IBM TotalStorage Enterprise Storage Server Model 800 and its major
components. As you can see, the ESS base rack consists of two clusters, each with its own
power supplies, batteries, SSA device adapters, processors, cache and NVS, CD drive, hard
disk, floppy disk and network connections. Both clusters have access to any host adapter
card, even though they are physically spread across the clusters.

At the top of each cluster is an ESS cage. Each cage provides slots for up to 64 disk drives,
32 in front and 32 at the back.

This storage box has two enclosures:

� A base enclosure, with:

– Two 3-phase power supplies

– Up to 128 disk drives in two cages

– Feature #2110 for Expansion Enclosure attachment

– Host adapters, cluster processors, cache and NVS, and SSA device adapters

� An Expansion Enclosure, with:

– Two 3-phase power supplies

– Up to 256 disk drives in four cages for additional capacity

SMP Processors and
Cache

SSA Device Adapters

Host Adapters

Cages and disk drives

Main Power
Supplies

Batteries
60 ABCs of z/OS System Programming Volume 3

3.10 ESS host adapters

Figure 3-10 Host adapters

ESS host adapters
The ESS has four host adapter (HA) bays, two in each cluster. Each bay supports up to four
host adapter cards. Each of these host adapter cards can be for FICON, ESCON, SCSI, or
Fibre Channel server connection. Figure 3-10 lists the main characteristics of the ESS host
adapters.

Each host adapter can communicate with either cluster. To install a new host adapter card,
the bay must be powered off. For the highest path availability, it is important to spread the
host connections across all the adapter bays. For example, if you have four ESCON links to a
host, each connected to a different bay, then the loss of a bay for upgrade would only impact
one out of four of the connections to the server. The same would be valid for a host with
FICON connections to the ESS.

Similar considerations apply for servers connecting to the ESS by means of SCSI or fibre
channel links. For open system servers, the Subsystem Device Driver (SDD) program that
comes standard with the ESS can be installed on the connecting host servers to provide
multiple paths or connections to handle errors (path failover) and balance the I/O load to the
ESS.

The ESS connects to a large number of different servers, operating systems, host adapters,
and SAN fabrics. A complete and current list is available at the following Web site:

http://www.storage.ibm.com/hardsoft/products/ess/supserver.htm

 Adapters can be intermixed
Any combination of host
adapter cards up to a
maximum of 16

Host adapter bays
4 bays
4 host adapters per bay

ESCON host adapters
Up to 32 ESCON links
2 ESCON links per host adapter

2 Gb FICON host adapters
Up to 16 FICON links
1 FICON link per host adapter
Auto speed detection - 1 Gb or 2 Gb

SCSI host adapters
Up to 32 SCSI bus connections
2 SCSI ports per host adapter

2 Gb Fibre Channel host adapters
Up to 16 Fibre Channel links
1 Fibre Channel port per host adapter
Auto speed detection - 1 Gb or 2 Gb
Chapter 3. Storage management hardware 61

http://www.storage.ibm.com/hardsoft/products/ess/supserver.htm

3.11 FICON host adapters

Figure 3-11 FICON host adapter

FICON host adapters
FICON (Fiber Connection) is based on the standard Fibre Channel architecture, and
therefore shares the attributes associated with Fibre Channel. This includes the common
FC-0, FC-1, and FC-2 architectural layers, the 100 MBps bidirectional (full-duplex) data
transfer rate, and the point-to-point distance capability of 10 kilometers. The ESCON
protocols have been mapped to the FC-4 layer, the Upper Level Protocol (ULP) layer, of the
Fibre Channel architecture. All this provides a full-compatibility interface with previous S/390
software and puts the zSeries servers in the Fibre Channel industry standard.

FICON versus ESCON
FICON goes beyond ESCON limits:

� Addressing limit, from 1024 device addresses per channel to up to 16,384 (maximum of
4096 devices supported within one ESS).

� Up to 256 control unit logical paths per port.

� FICON channel to ESS allows multiple concurrent I/O connections (the ESCON channel
supports only one I/O connection at one time).

� Greater channel and link bandwidth: FICON has up to 10 times the link bandwidth of
ESCON (1 Gbps full-duplex, compared to 200 MBps half duplex). FICON has up to more
than four times the effective channel bandwidth.

� FICON path consolidation using switched point-to-point topology.

FICON
zSeries

 FICON host adapters
Up to 16 FICON host adapters
One port with an LC connector type
per adapter (2 Gigabit Link)
Long wave or short wave
Up to 200 MB/sec full duplex
Up to 10 km distance with long wave
and 300 m with short wave
Each host adapter communicates
with both clusters
Each FICON channel link can
address all 16 ESS CU images

 Logical paths
256 CU logical paths per FICON port
4096 logical paths per ESS

 Addresses
16,384 device addresses per channel

 FICON distances
10 km distance (without repeaters)
100 km distance (with extenders)
62 ABCs of z/OS System Programming Volume 3

� Greater unrepeated fiber link distances (from 3 km for ESCON to up to 10 km, or 20 km
with an RPQ, for FICON).

These characteristics allow simpler and more powerful configurations. The ESS supports up
to 16 host adapters, which allows for a maximum of 16 Fibre Channel/FICON ports per
machine, as shown in Figure 3-11 on page 62.

Each Fibre Channel/FICON host adapter provides one port with an LC connector type. The
adapter is a 2 Gb card and provides a nominal 200 MBps full-duplex data rate. The adapter
will auto-negotiate between 1 Gb and 2 Gb, depending upon the speed of the connection at
the other end of the link. For example, from the ESS to a switch/director, the FICON adapter
can negotiate to 2 Gb if the switch/director also has 2 Gb support. The switch/director to host
link can then negotiate at 1 Gb.

Host adapter cards
There are two types of host adapter cards you can select: long wave (feature 3024), and
short wave (feature 3025). With long-wave laser, you can connect nodes at distances of up to
10 km (without repeaters). With short-wave laser, you can connect distances of up to 300 m.
These distances can be extended using switches/directors.
Chapter 3. Storage management hardware 63

3.12 ESS disks

Figure 3-12 ESS disks

ESS disks
With a number of disk drive sizes and speeds available, including intermix support, the ESS
provides a great number of capacity configuration options.

The maximum number of disk drives supported within the IBM TotalStorage Enterprise
Storage Server Model 800 is 384—with 128 disk drives in the base enclosure and 256 disk
drives in the expansion rack. When configured with 145.6 GB disk drives, this gives a total
physical disk capacity of approximately 55.9 TB (see Table 3-2 on page 65 for more details).

Disk drives
The minimum available configuration of the ESS Model 800 is 582 GB. This capacity can be
configured with 32 disk drives of 18.2 GB contained in four eight-packs, using one ESS cage.
All incremental upgrades are ordered and installed in pairs of eight-packs; thus the minimum
capacity increment is a pair of similar eight-packs of either 18.2 GB, 36.4 GB, 72.8 GB, or
145.6 GB capacity.

The ESS is designed to deliver substantial protection against data corruption, not just relying
on the RAID implementation alone. The disk drives installed in the ESS are the latest
state-of-the-art magneto resistive head technology disk drives that support advanced disk
functions such as disk error correction codes (ECC), Metadata checks, disk scrubbing and
predictive failure analysis.

Eight-packs
Set of 8 similar capacity/rpm disk drives packed
together
Installed in the ESS cages
Initial minimum configuration is 4 eight-packs
Upgrades are available increments of 2 eight-packs
Maximum of 48 eight-packs per ESS with expansion

Disk drives
18.2 GB 15,000 rpm or 10,000 rpm
36.4 GB 15,000 rpm or 10,000 rpm
72.8 GB 10,000 rpm
145.6 GB 10,000 rpm

Eight-pack conversions
Capacity and/or RPMs
64 ABCs of z/OS System Programming Volume 3

Eight-pack conversions
The ESS eight-pack is the basic unit of capacity within the ESS base and expansion racks.
As mentioned before, these eight-packs are ordered and installed in pairs. Each eight-pack
can be configured as a RAID 5 rank (6+P+S or 7+P) or as a RAID 10 rank (3+3+2S or 4+4).

The IBM TotalStorage ESS Specialist will configure the eight-packs on a loop with spare
DDMs as required. Configurations that include drive size intermixing may result in the
creation of additional DDM spares on a loop as compared to non-intermixed configurations.
Currently there is the choice of four different new-generation disk drive capacities for use
within an eight-pack:

� 18.2 GB/15,000 rpm disks
� 36.4 GB/15,000 rpm disks
� 72.8 GB/10,000 rpm disks
� 145.6 GB/10,000 rpm disks

Also available is the option to install eight-packs with:

� 18.2 GB/10,000 rpm disks or
� 36.4 GB/10,000 rpm disks

The eight disk drives assembled in each eight-pack are all of the same capacity. Each disk
drive uses the 40 MBps SSA interface on each of the four connections to the loop.

It is possible to mix eight-packs of different capacity disks and speeds (rpm) within an ESS,
as described in the following sections.

Table 3-2 should be used as a guide for determining the capacity of a given eight-pack. This
table shows the capacities of the disk eight-packs when configured as RAID ranks. These
capacities are the effective capacities available for user data.

Table 3-2 Disk eight-pack effective capacity chart (gigabytes)

Disk
Size

Physical
Capacity

(raw
capacity)

Effective usable capacity (2)

RAID 10 RAID 5 (3)

3 + 3 + 2S
Array (4)

4 + 4
Array (5)

6+P+S
Array (6)

7 + P
Array (7)

18.2 145.6 52.50 70.00 105.20 122.74

36.4 291.2 105.12 140.16 210.45 245.53

72.8 582.4 210.39 280.52 420.92 491.08

145.6 1,164.8 420.78 561.04 841.84 982.16
Chapter 3. Storage management hardware 65

3.13 Device adapters

Figure 3-13 Device adapters

ESS device adapters
Device adapters (DA) provide the connection between the clusters and the disk drives The
ESS Model 800 implements faster Serial Storage Architecture (SSA) device adapters than its
predecessor models.

The ESS Storage Server Model 800 uses the latest SSA160 technology in its device adapters
(DA). With SSA 160, each of the four links operates at 40 MBps, giving a total nominal
bandwidth of 160 MBps for each of the two connections to the loop. This amounts to a total of
320 MBps across each loop. Also, each device adapter card supports two independent SSA
loops, giving a total bandwidth of 320 MBps per adapter card. There are eight adapter cards,
giving a total nominal bandwidth capability of 2,560 MBps. Refer to “SSA loops” on page 68
for more information about this topic.

SSA loops
One adapter from each pair of adapters is installed in each cluster as shown in Figure 3-13.
The SSA loops are between adapter pairs, which means that all the disks can be accessed by
both clusters. During the configuration process, each RAID array is configured by the IBM
TotalStorage ESS Specialist to be normally accessed by only one of the clusters. Should a
cluster failure occur, the remaining cluster can take over all the disk drives on the loop.

RAID 5 and RAID 10
RAID 5 and RAID 10 are managed by the SSA device adapters. RAID 10 is explained in
detail in “RAID-10” on page 70. Each loop supports up to 48 disk drives, and each adapter

 SSA 160 Device Adapters
4 DA pairs per subsystem
4 x 40 MB/sec loop data rate
2 loops per device adapter pair

 Up to 48 disk drives per loop
Mix of RAID 5 and RAID 10 eight-packs
Each RAID 5 array is 8 disk drives:

6+P+S or
7+P

Each RAID 10 array is 8 disk drives:
3+3+2S or
4+4

Mix of different capacity disk drives
2 spares per loop per disk capacity
Same rpm for same capacity disks

DA DA

B BB BA SA A

B BS BA AA A

D DD DC CC C

D DD DC CC C

3 41 23 S1 2

3' 4'1' 2 '3' S1' 2'

48 disks
1/2/3/4 1'/2'/3'/4': representation of RAID 10 rank drives

S : representation of spare drive

A/B/C/D : representation of RAID 5 rank drives (user data and distributed parity)
66 ABCs of z/OS System Programming Volume 3

pair supports up to 96 disk drives. There are four adapter pairs supporting up to 384 disk
drives in total. Figure 3-13 shows a logical representation of a single loop with 48 disk drives
(RAID ranks are actually split across two eight-packs for optimum performance). You can see
there are six RAID arrays: four RAID 5 designated A to D, and two RAID 10 (one 3+3+2 spare
and one 4+4).

Disk drives per loop
Each loop supports up to 48 disk drives, and each adapter pair supports up to 96 disk drives.
There are four adapter pairs supporting up to 384 disk drives in total.

Figure 3-13 on page 66 shows a logical representation of a single loop with 48 disk drives
(RAID ranks are actually split across two eight-packs for optimum performance). In the figure
you can see there are six RAID arrays: four RAID 5 designated A to D, and two RAID 10 (one
3+3+2 spare and one 4+4).
Chapter 3. Storage management hardware 67

3.14 SSA loops

Figure 3-14 SSA loops

SSA operation
SSA is a high performance, serial connection technology for disk drives. SSA is a full-duplex
loop-based architecture, with two physical read paths and two physical write paths to every
disk attached to the loop. Data is sent from the adapter card to the first disk on the loop and
then passed around the loop by the disks until it arrives at the target disk. Unlike bus-based
designs, which reserve the whole bus for data transfer, SSA only uses the part of the loop
between adjacent disks for data transfer. This means that many simultaneous data transfers
can take place on an SSA loop, and it is one of the main reasons that SSA performs so much
better than SCSI. This simultaneous transfer capability is known as “spatial release”.

Each read or write path on the loop operates at 40 MB/s, providing a total loop bandwidth of
160 MB/s.

Loop availability
The loop is a self-configuring, self-repairing design that allows genuine hot-plugging. If the
loop breaks for any reason, then the adapter card will automatically reconfigure the loop into
two single loops. In the ESS, the most likely scenario for a broken loop is if the actual disk
drive interface electronics should fail. If this should happen, the adapter card will dynamically
reconfigure the loop into two single loops, effectively isolating the failed disk. If the disk were
part of a RAID array, the adapter card would automatically regenerate the missing disk using
the remaining data and parity disks to the spare disk. Once the failed disk has been replaced,
the loop will automatically be reconfigured into full duplex operation, and the replaced disk will
become a new spare.

SSA operation
4 links per loop

2 read and 2 write simultaneously
in each direction
40 MB/sec on each link

Loop availability
Loop reconfigures itself
dynamically

Spatial reuse
Up to 8 simultaneous operations
to local group of disks
(domains) per loop

DA

read

read
write

write

read

DA

write

DA DA
68 ABCs of z/OS System Programming Volume 3

Spatial reuse
Spatial reuse allows domains to be set up on the loop. A domain means that one or more
groups of disks belong to one of the two adapter cards, as is the case during normal
operation. The benefit of this is that each adapter card can talk to its domains (or disk groups)
using only part of the loop. The use of domains allows each adapter card to operate at
maximum capability because it is not limited by I/O operations from the other adapter.
Theoretically, each adapter card could drive its domains at 160 MB/s, giving 320 MB/s
throughput on a single loop! The benefit of domains may reduce slightly over time, due to disk
failures causing the groups to become intermixed, but the main benefits of spatial reuse will
still apply.

If a cluster should fail, the remaining cluster device adapter will own all the domains on the
loop, thus allowing full data access to continue.
Chapter 3. Storage management hardware 69

3.15 RAID-10

Figure 3-15 RAID-10

RAID-10
RAID-10 is also known as RAID 0+1, because it is a combination of RAID 0 (striping) and
RAID 1 (mirroring). The striping optimizes the performance by striping volumes across
several disk drives (in the ESS Model 800 implementation, three or four DDMs). RAID 1 is the
protection against a disk failure by having a mirrored copy of each disk. By combining the
two, RAID 10 provides data protection with I/O performance.

Array
A disk array is a group of disk drive modules (DDMs) that are arranged in a relationship, for
example, a RAID 5 or a RAID 10 array. For the ESS, the arrays are built upon the disks of the
disk eight-packs.

Disk eight-pack
The physical storage capacity of the ESS is materialized by means of the disk eight-packs.
These are sets of eight DDMs that are installed in pairs in the ESS. Two disk eight-packs
provide for two disk groups —four DDMs from each disk eight-pack. These disk groups can
be configured as either RAID-5 or RAID-10 ranks.

Spare disks
The ESS requires that a loop have a minimum of two spare disks to enable sparing to occur.
The sparing function of the ESS is automatically initiated whenever a DDM failure is detected
on a loop and enables regeneration of data from the failed DDM onto a hot spare DDM.

Eight-pack 2

Eight-pack 1

Eight-pack pair 1

Eight-pack 4

Eight-pack 3

Eight-pack pair 2

2' 3' 4'1' 1' 2' 3' 4'

1 2 3 4
Data Data Data Data

Data Data Data Data Data Data Data

1 2 3 4
Data Data DataData

Data

2' 3'1' 1' 2' 3' 4'

1 2 3 4
Data Data Data Data

Data Data Data Data Data Data

1 2 3
Data Data Data

Data

Spare

S

Spare

S

RAID-10 configurations:

First RAID-10 rank
configured in the loop will be:
3 + 3 + 2S

Additional RAID-10 ranks
configured in the loop will be
4 + 4

For a loop with an intermixed
capacity, the ESS will assign
two spares for each capacity.
This means there will be one
3+3+2S array per capacity
70 ABCs of z/OS System Programming Volume 3

A hot DDM spare pool consisting of two drives, created with one 3+3+2S array (RAID 10), is
created for each drive size on an SSA loop. Therefore, if only one drive size is installed on a
loop, only two spares are required. The hot sparing function is managed at the SSA loop
level. SSA will spare to a larger capacity DDM on the loop in the very uncommon situation
that no spares are available on the loop for a given capacity.

Figure 3-15 on page 70 shows the following:

1. In eight-pack pair 1, the array consists of three data drives mirrored to three copy drives.
The remaining two drives are used as spares.

2. In eight-pack pair 2, the array consists of four data drives mirrored to four copy drives.
Chapter 3. Storage management hardware 71

3.16 Storage balancing with RAID-10

Figure 3-16 Storage balancing with RAID-10

Logical Storage Subsystem (LSS)
The Logical Storage Subsystem (or Logical Subsystem) is a logical structure that is internal to
the ESS. It is a logical construct that groups up to 256 logical volumes (logical volumes are
defined during the logical configuration procedure) of the same disk format (CKD or FB), and
it is identified by the ESS with a unique ID. Although the LSS relates directly to the logical
control unit (LCU) concept of the ESCON and FICON architectures, it does not directly relate
to SCSI and FCP addressing.

ESS storage balancing
For performance reasons you should try to allocate storage on the ESS equally balanced
across both clusters and among the SSA loops. One way to accomplish this is to assign two
arrays (one from loop A and one from loop B) to each Logical Subsystem. To achieve this you
can follow this procedure when configuring RAID-10 ranks:

1. Configure the first array for LSS 0/loop A. This will be a 3 + 3 + 2S array.

2. Configure the first array for LSS 1/loop B. This will also be a 3 + 3 + 2S array.

3. Configure the second array for LSS1/loop A. This will now be a 4 + 4.

4. Configure the second array for LSS 0/loop B. This will also now be a 4 + 4.

Figure 3-16 on page 72 illustrates the results of this configuration procedure.

Loop B

LSS 1

Loop A Loop A

Loop B

3 + 3 + 2S

3 + 3 + 2S

4 + 4

4 + 4

Cluster 2Cluster 1

4) RAID 10 array

1) RAID 10 array

2) RAID 10 array

3) RAID 10 array

LSS 0
SSA 11SSA 01
72 ABCs of z/OS System Programming Volume 3

3.17 ESS performance features

Figure 3-17 ESS performance features

Parallel access volumes (PAV) and multiple allegiance
Traditional S/390 architecture does not allow more than one I/O operation to the same S/390
device, because such devices can only handle, physically, one I/O operation at time.
However, in modern DASD subsystems like ESS, the device (such as a 3390) is only a
logical view. The contents of this logical device are spread in HDA RAID arrays and in
caches. Therefore, it is technically possible to have more than one I/O operation towards the
same logical device.

Changes are made in z/OS (in IOS code), in channel subsystem (SAP), and in ESS in order
to allow more than one I/O operation on the same logical device. This is called parallel I/O,
and has two flavors:

� Parallel Access Volume (PAV), when the concurrent I/Os originate from the same z/OS
image

� Multiple Allegiance, when the concurrent I/Os originate from different z/OS images

However, this concurrency can be achieved as long as no data accessed by one channel
program can be altered through the actions of another channel program.

To implement PAV, the IOS introduces the concept of alias addresses. Instead of one UCB
per logical volume, an MVS host can now use several UCBs for the same logical volume.
Apart from the conventional Base UCB, alias UCBs can be defined and used by z/OS to issue
I/Os in parallel to the same logical volume device.

Parallel Access Volumes (PAV)

Multiple allegiance

Priority I/O queuing

Custom volumes

Improved caching algorithms

FICON host adapters

Enhanced CCWs

ESSz/OS
Chapter 3. Storage management hardware 73

I/O priority queueing
Prior to ESS, IOS kept the UCB I/O pending requests in a queue named IOSQ. The priority
order of the I/O request in this queue—when the z/OS image is in goal mode—is controlled
by WLM, depending on the transaction owning the I/O request. There was no concept of
priority queueing within the internal queues of the I/O control units; instead, the queue regime
was FIFO.

With ESS, it is possible to have this queue concept internally; I/O Priority Queueing in ESS
has the following properties:

� I/O can be queued with the ESS in priority order.
� WLM sets the I/O priority when running in goal mode.
� There is I/O priority for systems in a sysplex.
� Each system gets a fair share.

Custom volumes
Custom volumes provides the possibility of defining small size 3390 or 3380 volumes. This
causes less contention on a volume. Custom volumes is designed for high activity data sets.
Careful size planning is required.

Improved caching algorithms
With its effective caching algorithms, IBM TotalStorage Enterprise Storage Server Model 800
is able to minimize wasted cache space and reduce disk drive utilization, thereby reducing its
back-end traffic. The ESS Model 800 has a maximum cache size of 64 GB, and the NVS
standard size is 2 GB.

The ESS manages its cache in 4 KB segments, so for small data blocks (4 KB and 8 KB are
common database block sizes), minimum cache is wasted. In contrast, large cache segments
could exhaust cache capacity while filling up with small random reads. Thus the ESS, having
smaller cache segments, is able to avoid wasting cache space for situations of small record
sizes that are common in interactive applications.

This efficient cache management, together with the ESS Model 800 powerful back-end
implementation that integrates new (optional) 15,000 rpm drives, enhanced SSA device
adapters, and twice the bandwidth (as compared to previous models) to access the larger
NVS (2 GB) and the larger cache option (64 GB), all integrate to give greater throughput while
sustaining cache speed response times.

FICON host adapters
FICON extends the IBM TotalStorage Enterprise Storage Server Model 800’s ability to deliver
bandwidth potential to the volumes needing it, when they need it.

Performance enhanced channel command words (CCWs)
For the z/OS environments, the ESS supports channel command words (CCWs) that reduce
the characteristic overhead associated to the previous (3990) CCW chains. Basically, with
these CCWs, the ESS can read or write more data with fewer CCWs. CCW chains using the
old CCWs are converted to the new CCWs whenever possible. The cooperation of z/OS
software and the ESS provides the best benefits for the application’s performance. In other
words, in ESS there is less overhead associated with CCW chains by combining tasks into
fewer CCWs, introducing Read Track Data and Write Track Data CCWs. They allow reading
and writing more data with fewer CCWs. It will be used by z/OS to reduce ESCON protocol
for multiple record transfer chains. Measurements on 4 KB records using an EXCP channel
program showed a 15 percent reduction in channel overhead for the Read Track Data CCW.
74 ABCs of z/OS System Programming Volume 3

3.18 WLM controlling PAVs

Figure 3-18 WLM controlling PAVs

Workload Manager (WLM)
In the zSeries Parallel Sysplex environments, the z/OS Workload Manager (WLM) controls
where work is run and optimizes the throughput and performance of the total system. The
ESS provides the WLM with more sophisticated ways to control the I/O across the sysplex.
These functions include parallel access to both single-system and shared volumes, and the
ability to prioritize the I/O based upon WLM goals. The combination of these features
significantly improves performance in a wide variety of workload environments.

Parallel Access Volume (PAV)
Parallel Access Volume is one of the original features that the IBM TotalStorage Enterprise
Storage Server brings specifically for z/OS and OS/390 operating systems, helping the
zSeries running applications to concurrently share the same logical volumes.

The ability to do multiple I/O requests to the same volume nearly eliminates IOS queue time
(IOSQ), one of the major components in z/OS response time. Traditionally, access to highly
active volumes has involved manual tuning, splitting data across multiple volumes, and more.
With PAV and the Workload Manager, you can almost forget about manual performance
tuning. WLM manages PAVs across all members of a sysplex, too. The ESS, in conjunction
with z/OS, has the ability to meet the performance requirements on its own.

Alias assignment
It will not always be easy to predict which volumes should have an alias address assigned,
and how many. Your software can automatically manage the aliases according to your goals.

WLMs exchange performance information

Goals not met because of IOSQ?

Who can donate an alias?

WLM
IOSQ on 100?

zSeries

ESS Model 800

WLM WLM WLM

Dynamic PAVs Dynamic PAVs

IOSQ on 100? IOSQ on 100? IOSQ on 100?

Base Alias Alias
100 to 100 to 100

Alias Base
110to 110

Alias
to 110

zSeries zSerieszSeries
Chapter 3. Storage management hardware 75

z/OS can exploit automatic PAV tuning if you are using WLM in goal mode. z/OS recognizes
the aliases that are initially assigned to a base during the Nucleus Initialization Program (NIP)
phase. WLM can dynamically tune the assignment of alias addresses. WLM monitors the
device performance and is able to dynamically reassign alias addresses from one base to
another if predefined goals for a workload are not met. WLM instructs IOS to reassign an
alias.

WLM goal mode management in a sysplex
WLM keeps track of the devices utilized by the different workloads, accumulates this
information over time, and broadcasts it to the other systems in the same sysplex. If WLM
determines that any workload is not meeting its goal due to IOSQ time, WLM attempts to find
an alias device that can be reallocated to help this workload achieve its goal

Through WLM, there are two mechanisms to tune the alias assignment:

� The first mechanism is goal based. This logic attempts to give additional aliases to a
PAV-device that is experiencing IOS queue delays and is impacting a service class period
that is missing its goal. To give additional aliases to the receiver device, a donor device
must be found with a less important service class period. A bitmap is maintained with each
PAV-device that indicates the service classes using the device.

� The second mechanism is to move aliases to high contention PAV-devices from low
contention PAV-devices. High contention devices will be identified by having a significant
amount of IOSQ. This tuning is based on efficiency rather than directly helping a workload
to meet its goal.
76 ABCs of z/OS System Programming Volume 3

3.19 ESS copy services

Figure 3-19 ESS copy services

DFSMS copy services
DFSMS provides Advanced Copy Services that include a hardware and software solution to
help you manage and protect your data. These solutions help ensure that your data remains
available 24 hours a day, seven days a week. Advanced Copy Services provide solutions to
disaster recovery, data migration, and data duplication. Many of these functions run on the
IBM TotalStorage Enterprise Storage Server (ESS). With DFSMS, you can perform the
following data management functions:

� Use remote copy to prepare for disaster recovery
� Move your PPRC data more easily

Remote copy provides two options that enable you to maintain a current copy of your data at
a remote site. These two options are used for disaster recovery and workload migration:

� Extended remote copy (XRC)
� Peer-to-peer remote copy (PPRC)

There are two types of copy:

� To copy, an instantaneous copy where all the late updates in the primary are not copied. It
is used for fast backups and data replication in general. The examples in ESS are
Concurrent Copy and Flash Copy.

� Mirroring, a never-ending copy where all the updates are mirrored as fast as possible. It is
used for disaster recovery and planned outages. The example in ESS are Enhanced
PPRC service and XRC.

TotalStorage

local point-in-time copy

Sidefile

Concurrent
 Copy

DATA
MOVER

FlashCopy

local point-in-time copy

PPRC-XD

non-synchronous remote copy

over continental distances

PPRC

synchronous remote copy up to 103 Km

DATA
MOVER

XRC

asynchronous remote copy

over unlimited distances
TotalStorage
Chapter 3. Storage management hardware 77

Peer-to-peer remote copy (PPRC)
PPRC is a hardware solution which provides rapid and accurate disaster recovery as well as
a solution to workload movement and device migration. Updates made on the primary DASD
volumes are synchronously shadowed to the secondary DASD volumes. The local storage
subsystem and the remote storage subsystem are connected through a communications link
called a PPRC path. You can use one of the following protocols to copy data using PPRC:

� ESCON
� Fibre Channel Protocol

PPRC provides a synchronous volume copy across ESS controllers. The copy is done from
one controller (the one having the primary logical device) to the other (having the secondary
logical device). It is synchronous because the task doing the I/O receives the CPU back with
the guarantee that the copy was executed. There is a performance penalty for distances
longer than 10 km. PPRC is used for disaster recovery, device migration, and workload
migration; for example, it enables you to switch to a recovery system in the event of a disaster
in an application system.

You can issue the CQUERY command to query the status of one volume of a PPRC volume pair
or to collect information about a volume in the simplex state. The CQUERY command is
modified and enabled to report on the status of S/390-attached CKD devices.

See z/OS DFSMS Advanced Copy Services, SC35-0428, for further information about the
PPRC service and the CQUERY command.

Peer-to-peer remote copy extended distance (PPRC-XD)
When you enable the PPRC extended distance feature (PPRC-XD), the primary and recovery
storage control sites can be separated by long distances. Updates made to a PPRC primary
volume are sent to a secondary volume asynchronously, thus requiring less bandwidth.

If you are trying to decide whether to use synchronous or asynchronous PPRC, consider the
differences between the two modes:

� When you use synchronous PPRC, no data loss occurs between the last update at the
primary system and the recovery site, but it increases the impact to applications and uses
more resources for copying data.

� Asynchronous PPRC using the extended distance feature reduces impact to applications
that write to primary volumes and uses less resources for copying data, but data might be
lost if a disaster occurs. To use PPRC-XD as a disaster recovery solution, customers
need to periodically synchronize the recovery volumes with the primary site and make
backups to other DASD volumes or tapes.

PPRC Extended Distance (PPRC-XD) is a non-synchronous version of PPRC. This means
that host updates to the source volume are not delayed by waiting for the update to be
confirmed in the secondary volume. It also means that the sequence of updates on the
secondary volume is not guaranteed to be the same as on the primary volume.

PPRC-XD is an excellent solution for:

� Remote data copy
� Remote data migration
� Offsite backup
� Transmission of inactive database logs

Note: Fibre Channel Protocol is supported only on ESS Model 800 with the appropriate
licensed internal code (LIC) level and the PPRC Version 2 feature enabled.
78 ABCs of z/OS System Programming Volume 3

� Application disaster recovery solutions based on periodic Point-in-Time (PiT) copies of the
data, if the application tolerates short interruptions (application quiesce).

PPRC-XD can operate at very long distances (such as continental distances), well beyond
the 103 km supported for PPRC synchronous transmissions—and with minimal impact on the
application. The distance is limited only by the network and channel extender technology
capabilities.

Extended remote copy (XRC)
XRC combines hardware and software to provide continuous data availability in a disaster
recovery or workload movement environment. XRC provides an asynchronous remote copy
solution for both system-managed and non-system-managed data to a second, remote
location.

XRC relies on the IBM TotalStorage Enterprise Storage Server, IBM 3990, RAMAC Storage
Subsystems, and DFSMSdfp. The 9393 RAMAC Virtual Array (RVA) does not support XRC
for source volume capability.

XRC relies on the system data mover, which is part of DFSMSdfp. The system data mover is
a high-speed data movement program that efficiently and reliably moves large amounts of
data between storage devices. XRC is a continuous copy operation, and it is capable of
operating over long distances (with channel extenders). It runs unattended, without
involvement from the application users. If an unrecoverable error occurs at your primary site,
the only data that is lost is data that is in transit between the time when the primary system
fails and the recovery at the recovery site.

You can implement XRC with one or two systems. Let us suppose that you have two
systems: an application system at one location, and a recovery system at another. With these
two systems in place, XRC can automatically update your data on the remote disk storage
subsystem as you make changes to it on your application system. You can use the XRC
suspend/resume service for planned outages. You can still use this standard XRC service on
systems attached to the ESS if these systems are installed with the toleration or transparency
support.

Coupled Extended Remote Copy (CXRC) allows XRC sessions to be coupled together to
guarantee that all volumes are consistent across all coupled XRC sessions. CXRC can
manage thousands of volumes. IBM TotalStorage XRC Performance Monitor provides the
ability to monitor and evaluate the performance of a running XRC configuration.

Concurrent copy
Concurrent copy is an extended function that enables data center operations staff to generate
a copy or a dump of data while applications are updating that data. Concurrent copy delivers
a copy of the data, in a consistent form, as it existed before the updates took place.

FlashCopy service
FlashCopy is a point-in-time copy services function that can quickly copy data from a source
location to a target location. FlashCopy enables you to make copies of a set of tracks, with
the copies immediately available for read or write access. This set of tracks can consist of an
entire volume, a data set, or just a selected set of tracks. The primary objective of FlashCopy
is to create a copy of a source volume on the target volume. This copy is called a
point-in-time copy. Access to the point-in-time copy of the data on the source volume is
through reading the data from the target volume. The actual point-in-time data that is read
from the target volume might or might not be physically stored on the target volume. The ESS
FlashCopy service is compatible with the existing provided by DFSMSdss. Therefore, you
can invoke the FlashCopy service on the ESS with DFSMSdss.
Chapter 3. Storage management hardware 79

3.20 TotalStorage Expert product highlights

Figure 3-20 TotalStorage Expert

TotalStorage Expert
TotalStorage Expert is an innovative software tool that gives administrators powerful, yet
flexible storage asset, capacity, and performance management capabilities to centrally
manage Enterprise Storage Servers located anywhere in the enterprise.

IBM TotalStorage Expert has two available features:

� The ESS feature, which supports ESS

� The ETL feature, which supports Enterprise tape library products

The two features are licensed separately. There are also upgrade features for users of
StorWatch Expert V1 with either the ESS or the ETL feature, or both, who want to migrate to
TotalStorage Expert V2.1.1.

TotalStorage Expert is designed to augment commonly used IBM performance tools such as
Resource Management Facility (RMF), DFSMS Optimizer, AIX Performance Toolkit and
similar host-based performance monitors. While these tools provide performance statistics
from the host system’s perspective, TotalStorage Expert provides statistics from the ESS and
ETL system perspective.

By complementing other performance tools, TotalStorage Expert provides a more
comprehensive view of performance; it gathers and presents information that provides a
complete management solution for storage monitoring and administration.

VTS
Peer-To-Peer

VTS

ESS

z/OS

AS/400

UNIX

Windows/NT3494 Library
Manager

Expert
Win 2000 SE

AIX

Netscape or IE

ESCON
FICON
80 ABCs of z/OS System Programming Volume 3

TotalStorage Expert helps storage administrators by increasing the productivity of storage
resources.

The ESS is ideal for businesses with multiple heterogeneous servers including zSeries,
UNIX, Windows® NT, Windows 2000, Novell NetWare, HP/UX, Sun Solaris, and AS/400®
servers.

With Version 2.1.1, the TotalStorage ESS Expert is packaged with the TotalStorage ETL
Expert. The ETL Expert provides performance, asset, and capacity management for IBM’s
three ETL solutions:

� IBM TotalStorage Enterprise Automated Tape Library, described in “IBM TotalStorage
Enterprise Automated Tape Library 3494” on page 90

� IBM TotalStorage Virtual Tape Server, described in “Introduction to Virtual Tape Server
(VTS)” on page 92

� IBM TotalStorage Peer-to-Peer Virtual Tapeserver, described in “IBM TotalStorage
Peer-to-Peer VTS” on page 94

Both tools can run on the same server, share a common database, efficiently monitor storage
resources from any location within the enterprise, and provide a similar look and feel through
a Web browser user interface. Together they provide a complete solution that helps optimize
the potential of IBM disk and tape subsystems.
Chapter 3. Storage management hardware 81

3.21 Introduction to tape processing

Figure 3-21 Introduction to tape processing

Tape volumes
Tape refer to volumes that can be physically moved. You can only store sequential data sets
on tape. Tape volumes can be sent to a safe, or to other data processing centers.

Internal labels are used to identify magnetic tape volumes and the data sets on those
volumes. You can process tape volumes with:

� IBM standard labels

� Labels that follow standards published by:

– International Organization for Standardization (ISO)

– American National Standards Institute (ANSI)

– Federal Information Processing Standard (FIPS)

� Nonstandard labels

� No labels

IBM standard tape labels consist of volume labels and groups of data set labels. The volume
label, identifying the volume and its owner, is the first record on the tape. The data set label,

Note: Your installation can install a bypass for any type of label processing; however, the
use of labels is recommended as a basis for efficient control of your data.
82 ABCs of z/OS System Programming Volume 3

identifying the data set and describing its contents, precedes and follows each data set on the
volume:

� The data set labels that precede the data set are called header labels.

� The data set labels that follow the data set are called trailer labels. They are almost
identical to the header labels.

� The data set label groups can include standard user labels at your option.

Usually, the formats of ISO and ANSI labels, which are defined by the respective
organizations, are similar to the formats of IBM standard labels.

Nonstandard tape labels can have any format and are processed by routines you provide.
Unlabeled tapes contain only data sets and tape marks.
Chapter 3. Storage management hardware 83

3.22 SL and NL format

Figure 3-22 SL and NL format

Using tape with JCL
In the job control statements, you must provide a data definition (DD) statement for each data
set to be processed. The LABEL parameter of the DD statement is used to describe the data
set's labels.

Other parameters of the DD statement identify the data set, give volume and unit information
and volume disposition, and describe the data set's physical attributes. You can use a data
class to specify all of your data set's attributes (such as record length and record format), but
not data set name and disposition. Specify the name of the data class using the JCL keyword
DATACLAS. If you do not specify a data class, the automatic class selection (ACS) routines
assign a data class based on the defaults defined by your storage administrator.

An example of allocating a tape data set using DATACLAS in the DD statement of the JCL
statements follows. In this example, TAPE01 is the name of the data class.

//NEW DD DSN=DATASET.NAME,UNIT=TAPE,DISP=(,CATLG,DELETE),DATACLAS=TAPE01,LABEL=(1,SL)

Describing the labels
You specify the type of labels by coding one of the following subparameters of the LABEL
parameter as shown in Table 3-3 on page 85.

IBM Standard
Volume
Label

IBM Standard
Data Set
Header
Label

TM Data Set TM

IBM Standard
Data Set
Trailer
Label

TM TM

/ /

/ /
IBM
Standard
Labels

TM

/ /

Data Set

/ /

TM
Unlabeled
Tapes

TM= Tapemark
84 ABCs of z/OS System Programming Volume 3

Table 3-3 Types of labels

Code Meaning

SL IBM Standard Label

AL ISO/ANSI/FIPS labels

SUL Both IBM and user header or trailer labels

AUL Both ISO/ANSI/FIPS and user header or trailer labels

NSL Nonstandard labels

NL No labels, but the existence of a previous label is verified

BLP Bypass label processing. The data is treated in the same manner as if NL had been
specified, except that the system does not check for an existing volume label. The user is
responsible for the positioning. If your installation does not allow BLP, the data is treated
exactly as if NL had been specified. Your job can use BLP only if the Job Entry Subsystem
(JES) through Job class, RACF through TAPEVOL class, or DFSMSrmm(*) allow it.

LTM Bypass a leading tape mark. If encountered, on unlabeled tapes from VSE.

Note: If you do not specify the label type, the operating system assumes that the data set
has IBM standard labels.
Chapter 3. Storage management hardware 85

3.23 Tape capacity - tape mount management

Figure 3-23 Tape capacity

Tape capacity
The capacity of a tape depends on the device type that is recording it. 3480 and 3490 tapes
are physically the same cartridges. The IBM 3590 and 3592 high performance cartridge tape
is not compatible with the 3480, 3490, or 3490E drives. 3490 units can read 3480 cartridges,
but cannot record as a 3480, and 3480 units cannot read or write as a 3490.

Tape mount management
Using DFSMS and tape mount management can help you reduce the number of both tape
mounts and tape volumes that your installation requires. The volume mount analyzer reviews
your tape mounts and creates reports that provide you with information you need to
effectively implement the tape mount management methodology recommended by IBM.

Tape mount management allows you to efficiently fill a tape cartridge to its capacity and gain
full benefit from improved data recording capability (IDRC) compaction, 3490E Enhanced
Capability Magnetic Tape Subsystem, 36-track enhanced recording format, and Enhanced
Capacity Cartridge System Tape. By filling your tape cartridges, you reduce your tape mounts
and even the number of tape volumes you need.

With an effective tape cartridge capacity of 2.4 GB using 3490E and the Enhanced Capacity
Cartridge System Tape, DFSMS can intercept all but extremely large data sets and manage
them with tape mount management. By implementing tape mount management with DFSMS,
you might reduce your tape mounts by 60 to 70% with little or no additional hardware

3480=200 Mb

3490=800 Mb

3590=10,000 Mb

3592=300,000 Mb
86 ABCs of z/OS System Programming Volume 3

required. Therefore, the resulting tape environment would be able to fully exploit integrated
cartridge loaders (ICL), IDRC, and 3490E.

Tape mount management also improves job throughput because jobs are no longer queued
up on tape drives. Approximately 70% of all tape data sets queued up on drives are less than
10 MB. With tape mount management, these data sets reside on DASD while in use. This
frees up the tape drives for other allocations.

Tape mount management recommends that you use DFSMShsm (TM) to do interval
migration to SMS storage groups. You can use ACS routines to redirect your tape data sets
to a tape mount management DASD buffer storage group. DFSMShsm scans this buffer on a
regular basis and migrates the data sets to migration level 1 DASD or migration level 2 tape
as soon as possible, based on the management class and storage group specifications.

Table 3-4 lists all IBM tape capacities supported since 1952.

Table 3-4 Tape capacity of various IBM products

For further information about tape processing, see z/OS DFSMS Using Magnetic Tapes,
SC26-7412.

Year Product Capacity (Mb) Transfer Rate (KB/S)

1952 IBM 726 1.4 7.5

1953 IBM 727 5.8 15

1957 IBM 729 23 90

1965 IBM 2401 46 180

1968 IBM 2420 46 320

1973 IBM 3420 180 1,250

1984 IBM 3480 200 3,000

1989 IBM 3490 200 4,500

1991 IBM 3490E 400 9,000

1992 IBM 3490E 800 9,000

1995 IBM 3590 Magstar 10,000 (uncompacted) 9,000 (uncompacted)

1999 IBM 3590E Magstar 20,000 (uncompacted) 14,000

2000 IBM 3590E Magstar
XL Cartridge

20,000/40,000
(dependent on
Model B or E)

14,000

2003 IBM 3592
TotalStorage
Enterprise Tape Drive

300,000 (for high
capacity requirements)
or
60,000 (for fast data
access requirements)

40,000

Note: z/OS supports tape devices starting from D/T 3420.
Chapter 3. Storage management hardware 87

3.24 TotalStorage Enterprise Tape Drive 3592 Model J1A

Figure 3-24 TotalStorage Enterprise Tape Drive 3592 Model J1A

IBM 3592 tape drive
The IBM 3592 tape drive is the fourth generation of high capacity and high performance tape
systems. It was announced in September 2003 and connects to IBM ̂zSeries
systems via the TotalStorage Enterprise Tape Controller 3592 Model J70 using ESCON or
FICON links. The 3592 system is the successor of the IBM Magstar 3590 family of tape drives
and controller types.

The IBM 3592 tape drive can be used as a standalone solution or as an automated solution
within a 3494 tape library.

Enterprise class tape drive
The native rate for data transfer increases up to 40 MB/sec compared to 14 MB/sec in a 3590
Magstar. The uncompressed amount of data which fits on a single cartridge increases to 300
GB and will be used for scenarios where high capacity is needed. The tape drive has a
second option, where you can store a maximum of 60 GB per tape. This option is used
whenever fast access to tape data is needed.

Dual ported 2 Gbps fiber channel interface
This tape drive generation connects to the tape controller 3592 Model J70 via fiber channel.
SCSI connection, as it used in 3590 configuration, is no longer supported. However, if you
connect a 3590 Magstar tape drive to a 3592 controller, SCSI connection is possible.

The IBM 3592 is an "Enterprise Class" tape drive
Data rate 40 MB/s (without compression)
Capacity 300 GB per cartridge (without
compression)
60 GB format to provide fast access to data

Dual ported 2 Gbps Fiber Channel interface
Autonegotiates (1 or 2 Gbps, Fabric or loop
support)
Options may be hard-set at drive

Drive designed for automation solutions
Small form factor
Cartridge similar form factor to 3590 and 3490

Improved environmentals
88 ABCs of z/OS System Programming Volume 3

Drive designed for automation solutions
The drive has a smaller form factor. Thus, you can integrate more drives into an automated
tape library. The cartridges have a similar form factor to the 3590 and 3490 cartridge, so they
fit into the same slots in a 3494 automated tape library.

Improved environmentals
By using a smaller form factor than 3590 Magstar drives, you can put two 3592 drives in place
of one 3590 drive in the 3494. In a standalone solution you can put a maximum of 12 drives
into one 19-inch rack, managed by one controller.
Chapter 3. Storage management hardware 89

3.25 IBM TotalStorage Enterprise Automated Tape Library 3494

Figure 3-25 3494 tape library

IBM 3494 tape library
Tape storage media can provide low-cost data storage for sequential files, inactive data, and
vital records. Because of the continued growth in tape use, tape automation has been seen
as a way of addressing an increasing number of challenges. Various solutions that provide
tape automation are available, including:

� The Automatic Cartridge Loader on IBM 3480 and 3490E tape subsystems, which
provides quick scratch (a volume with no valued data, used for output) mount.

� The Automated Cartridge Facility on the Magstar 3590 tape subsystem, which, working
with application software, can provide a 10-cartridge mini-tape library.

� The IBM 3494, an automated tape library dataserver), is a device consisting of robotics
components, cartridge storage areas (or shelves), tape subsystems, and controlling
hardware and software, together with the set of tape volumes that reside in the library and
can be mounted on the library tape drives.

� The Magstar Virtual Tape Server (VTS), which provides “volume stacking” capability and
exploits the capacity and bandwidth of Magstar 3590 technology.

3494 models and features
IBM 3494 offers a wide range of models and features:

� Up to 96 tape drives
90 ABCs of z/OS System Programming Volume 3

� Support through the Library Control Unit for attachment of up to 15 additional frames
including the Magstar VTS, for a total of 16 frames, not including the High Availability unit

� Cartridge storage capacity of 291 to 6145 tape cartridges

� Data storage capacity of up to 1.84 PB (Petabytes) of uncompacted data and 5.52 PB of
compacted data (at a compression rate of 3:1)

� Support of the High Availability unit that provides a high level of availability for tape
automation.

� Support of the IBM Total Storage Virtual Tape Server

� Support of the IBM Total Storage Peer-to-Peer VTS

� Support for the following tape drives:

– IBM 3490E Model F1A tape drive
– IBM 3490E Model CxA tape drives
– IBM Magstar 3590 Model B1A tape drives
– IBM Magstar 3590 Model E1A tape drives
– IBM Magstar 3590 Model H1A tape drives
– IBM TotalStorage Enterprise Tape Drive 3592 Model J1A

� Attachment to and sharing by multiple host systems, such as IBM ̂zSeries,
iSeries, pSeries®, S/390, RS/6000®, AS/400, HP, and Sun processors

� Data paths through FICON, fibre channels, SCSI-2, ESCON, and parallel channels
depending on the tape subsystem installed

� Library management commands through RS-232, a local area network (LAN), and
parallel, ESCON and FICON channels
Chapter 3. Storage management hardware 91

3.26 Introduction to Virtual Tape Server (VTS)

Figure 3-26 Introduction to VTS

VTS introduction
The IBM Magstar Virtual Tape Server (VTS), integrated with the IBM Tape Library
Dataservers (3494), delivers an increased level of storage capability to the traditional storage
products hierarchy. The host software sees VTS as a 3490 Enhanced Capability (3490E)
Tape Subsystem with associated standard (CST) or Enhanced Capacity Cartridge System
Tapes (ECCST). This virtualization of both the tape devices and the storage media to the host
allows for transparent utilization of the capabilities of the IBM 3590 tape technology.

Along with introducing the IBM Magstar VTS, IBM introduced new views of volumes and
devices because of the different knowledge about volumes and devices in the host system
and the hardware. Using a VTS subsystem, the host application writes tape data to virtual
devices. The volumes created by the hosts are called Virtual Volumes and are physically
stored in a tape volume cache that is built from RAID DASD.

VTS models
These are the IBM 3590 drives you can choose:

� For the Model B10 VTS, four, five or six 3590-B1A/E1A/H1A can be associated with VTS

� For the Model B20 VTS, six to twelve 3590-B1A/E1A/H1A can be associated with VTS

VTS models:
Model B10 VTS
Model B20 VTS
Peer-to-Peer (PtP) VTS (up to twenty-four 3590
tape drives)

VTS design (single VTS)
32, 64, 128 or 256 3490E virtual devices
Tape volume cache:

Analogous to DASD cache
Data access through the cache
Dynamic space management
Cache hits eliminate tape mounts

Up to twelve 3590 tape drives (the real 3590 volume
contains up to 250,000 virtual volumes per VTS)
Stacked 3590 tape volumes managed by the 3494
92 ABCs of z/OS System Programming Volume 3

Each ESCON channel in the VTS is capable of supporting 64 logical paths, providing up to
1024 logical paths for Model B20 VTS with sixteen ESCON channels, and 256 logical paths
for Model B10 VTS with four ESCON channels. Each logical path can address any of the 32,
64, 128, or 256 virtual devices in the Model B20 VTS.

Each FICON channel in the VTS can support up to 128 logical paths, providing up to 1024
logical paths for the Model B20 VTS with eight FICON channels. With a Model B10 VTS, 512
logical paths can be provided with four FICON channels. As with ESCON, each logical path
can address any of the 32, 64, 128, or 256 virtual devices in the Model B20 VTS.

Tape volume cache
The IBM TotalStorage Peer-to-Peer Virtual Tape Server appears to the host processor as a
single automated tape library with 64, 128, or 256 virtual tape drives and up to 250,000 virtual
volumes. The configuration of this system has up to 3.5 TB of Tape Volume Cache native
(10.4 TB with 3:1 compression), up to 24 IBM TotalStorage 3590 tape drives, and up to 16
host ESCON or FICON channels.

Through tape volume cache management policies, the VTS management software moves
host-created volumes from the tape volume cache to a Magstar cartridge managed by the
VTS subsystem. When a virtual volume is moved from the tape volume cache to tape, it
becomes a logical volume.

VTS design
VTS looks like an automatic tape library with thirty-two 3490E drives and 50,000 volumes in
37 square feet. Its major components are:

� Magstar 3590 (three or six tape drives) with two ESCON channels
� Magstar 3494 Tape Library
� Fault-tolerant RAID-1 disks (36 Gb or 72 Gb)
� RISC Processor

VTS functions
VTS provides the following functions:

� Thirty-two 3490E virtual devices.

� Tape volume cache (implemented in a RAID-1 disk) which contains virtual volumes. At
close time, the virtual volume is copied to logical volumes in the 3590 tape volumes:

– Analogous to DASD cache
– Data access through the cache
– Dynamic space management
– Cache hits eliminate tape mounts

� Up to six 3590 tape drives; the real 3590 volume contains logical volumes. Installation
sees up to 50,000 volumes.

� Stacked 3590 tape volumes managed by the 3494. It fills the tape cartridge up to 100%.
Putting multiple virtual volumes into a stacked volume, VTS uses all of the available space
on the cartridge. VTS uses IBM 3590 cartridges when stacking volumes

VTS is expected to provide a ratio of 59:1 in volume reduction, with dramatic savings in all
tape hardware (drives, controllers, and robots).

Note: Intermixing FICON and SCSI interfaces is not supported.
Chapter 3. Storage management hardware 93

3.27 IBM TotalStorage Peer-to-Peer VTS

Figure 3-27 IBM TotalStorage Peer-to-Peer VTS

Peer-to-Peer VTS
IBM TotalStorage Peer-to-Peer Virtual Tape Server, an extension of IBM TotalStorage Virtual
Tape Server, is specifically designed to enhance data availability. It accomplishes this by
providing dual volume copy, remote functionality, and automatic recovery and switchover
capabilities. With a design that reduces single points of failure (including the physical media
where logical volumes are stored), IBM TotalStorage Peer-to-Peer Virtual Tape Server
improves system reliability and availability, as well as data access. To help protect current
hardware investments, existing IBM TotalStorage Virtual Tape Servers can be upgraded for
use in this new configuration.

IBM TotalStorage Peer-to-Peer Virtual Tape Server consists of new models and features of
the 3494 Tape Library that are used to join two separate Virtual Tape Servers into a single,
interconnected system. The two virtual tape systems can be located at the same site or at
different sites that are geographically remote. This provides a remote copy capability for
remote vaulting applications.

IBM TotalStorage Peer-to-Peer Virtual Tape Server appears to the host IBM ̂
zSeries processor as a single automated tape library with 64, 128, or 256 virtual tape drives
and up to 500,000 virtual volumes. The configuration of this system has up to 3.5 TB of Tape
Volume Cache native (10.4 TB with 3:1 compression), up to 24 IBM TotalStorage 3590 tape
drives, and up to 16 host ESCON or FICON channels.

In addition to the 3494 VTS components B10, B18 and B20, the Peer-to-Peer VTS consists of
the following components:

Master VTS
I/O VTS

Distributed LibraryVirtual Tape Controllers

ESCON/FICON

Composite Library
I/O VTS

Distributed Library
UI Library

FIC
O

N
/ESC

O
N

to zSeries

CX1

VTC

CX1

VTC
94 ABCs of z/OS System Programming Volume 3

� The 3494 virtual tape controller model VTC

The VTC in the Virtual Tape Frame 3494 Model CX1 provides interconnection between
two VTSs with the Peer-to-Peer Copy features, and provides two host attachments for the
PtP VTS. There must be four (for the Model B10 or B18) or eight (for the Model B20 or
B18) VTCs in a PtP VTS configuration. Each VTC is an independently operating,
distributed node within the PtP VTS, which continues to operate during scheduled or
unscheduled service of another VTC.

� The 3494 auxiliary tape frame model CX1

The Model CX1 provides the housing and power for two or four 3494 virtual tape
controllers. Each Model CX1 can be configured with two or four Model VTCs. There are
two power control compartments, each with its own power cord, to allow connection to two
power sources.

Peer-to-Peer copy features
Special features installed on 3494 Models B10, B18 and B20 in a Peer-to-Peer configuration
provide automatic copies of virtual volumes. These features can be installed on existing VTS
systems to upgrade them to a Peer-to-Peer VTS.

VTS advanced functions
As with a stand-alone VTS, the Peer-to-Peer VTS has the option to install some additional
features and enhancements to existing features. These new features are:

� Outboard policy management - Outboard policy management enables the storage
administrator to manage SMS data classes, storage classes, management classes and
storage groups at the library manager or the 3494 specialist.

� Physical volume pooling - With outboard policy management enabled, you are able to
assign logical volumes to selected storage groups. Storage groups point to primary
storage pools. These pool assignments are stored in the library manager database. When
a logical volume is copied to tape, it is written to a stacked volume that is assigned to a
storage pool as defined by the storage group constructs at the library manager.

� Tape volume dual copy - With advanced policy management, storage administrators have
the facility to selectively create dual copies of logical volumes within a VTS. This function
is also available in the Peer-to-Peer environment. At the site or location where the second
distributed library is located, logical volumes can also be duplexed, in which case you
could have two or four copies of your data.

� Peer-to-Peer copy control

There are two types of copy operations:

– Immediate - which creates a copy of the logical volume in the companion connected
virtual tape server prior to completion of a rewind/unload command. This mode
provides the highest level of data protection.

– Deferred - which creates a copy of the logical volume in the companion connected
virtual tape server as activity permits after receiving a rewind/unload command. This
mode provides protection that is superior to most currently available backup schemes.

� Tape volume cache management - prior to the introduction of these features, there was no
way to influence cache residency. As a result, all data written to the TVC was premigrated
using a first-in, first-out (FIFO) method. With the introduction of this function, you now
have the ability to influence the time that virtual volumes reside in the TVC.
Chapter 3. Storage management hardware 95

3.28 Storage area network (SAN)

Figure 3-28 Storage area network (SAN)

Storage area network
The Storage Network Industry Association (SNIA) defines SAN as a network whose primary
purpose is the transfer of data between computer systems and storage elements. A SAN
consists of a communication infrastructure, which provides physical connections, and a
management layer, which organizes the connections, storage elements, and computer
systems so that data transfer is secure and robust. The term SAN is usually (but not
necessarily) identified with block I/O services rather than file access services. It can also be a
storage system consisting of storage elements, storage devices, computer systems, and/or
appliances, plus all control software, communicating over a network.

SANs today are usually built using fibre channel technology, but the concept of a SAN is
independent of the underlying type of network.

The major potential benefits of a SAN can be categorized as:

� Access

Benefits include longer distances between processors and storage, higher availability, and
improved performance (because I/O traffic is offloaded from a LAN to a dedicated
network, and because fibre channel is generally faster than most LAN media). Also, a
larger number of processors can be connected to the same storage device, compared to
typical built-in device attachment facilities.

LAN

switches & directors

ESS

Any Server to
Any Storage

TotalStorage

ESCON
FICON

Fibre Channel
SAN
96 ABCs of z/OS System Programming Volume 3

� Consolidation

Another benefit is replacement of multiple independent storage devices by fewer devices
that support capacity sharing—this is also called disk and tape pooling. SANs provide the
ultimate in scalability, because software can allow multiple SAN devices to appear as a
single pool of storage accessible to all processors on the SAN. Storage on a SAN can be
managed from a single point of control. Controls over which hosts can see which storage
(called zoning and LUN masking) can be implemented.

� Protection

LAN-free backups occur over the SAN rather than the (slower) LAN, and server-free
backups can let disk storage “write itself” directly to tape without processor overhead.

There are different SAN topologies on the base of fibre channel networks:

� Point-to-Point

With a SAN, a simple link is used to provide high-speed interconnection between two
nodes.

� Arbitrated loop

The fibre channel arbitrated loop offers relatively high bandwidth and connectivity at a low
cost. In order for a node to transfer data, it must first arbitrate to win control of the loop.
Once the node has control, it is free to establish a virtual point-to-point connection with
another node on the loop. After this point-to-point (virtual) connection is established, the
two nodes consume all of the loop’s bandwidth until the data transfer operation is
complete. Once the transfer is complete, any node on the loop can then arbitrate to win
control of the loop.

� Switched

Fibre channel switches function in a manner similar to traditional network switches to
provide increased bandwidth, scalable performance, an increased number of devices,
and, in some cases, increased redundancy.

Multiple switches can be connected to form a switch fabric capable of supporting a large
number of host servers and storage subsystems. When switches are connected, each
switch’s configuration information has to be copied into all the other participating switches.
This is called cascading.

FICON and SAN
From a zSeries perspective, FICON is the protocol which is used in a SAN environment. A
FICON infrastructure may be point-to-point or switched, using ESCON directors with FICON
bridge cards or FICON directors to provide connections between channels and control units.
FICON uses fibre channel transport protocols, and so uses the same physical fiber.

Today zSeries has 2 Gbps link data rate support. The 2 Gbps links are for native FICON,
FICON CTC, cascaded directors and fibre channels—FCP channels—on the FICON Express
cards on z800, z900, and z990 only.
Chapter 3. Storage management hardware 97

98 ABCs of z/OS System Programming Volume 3

Chapter 4. Storage management software

DFSMS is an exclusive element of the z/OS operating system and automatically manages
data from creation to expiration. In this chapter we present the following:

� The DFSMS utility programs to assist you in organizing and maintaining data

� The major DFSMS access methods

� The data set organizations

� An overview of the elements that comprise the DFSMS,:

– DFSMSdfp, a base element of z/OS

– DFSMSdss, an optional feature of z/OS

– DFSMShsm, an optional feature of z/OS

– DFSMSrmm, an optional feature of z/OS

– DFSMStvs, an optional feature of z/OS

– z/OS DFSORT™

4

© Copyright IBM Corp. 2004. All rights reserved. 99

4.1 Overview of DFSMSdfp utilities

Figure 4-1 DFSMSdfp utilities

DFSMSdfp utilities
Utilities are programs which perform commonly needed functions. DFSMS provides utility
programs to assist you in organizing and maintaining data. There are system and data set
utility programs that are controlled by JCL, and utility control statements.

The base JCL and some utility control statements necessary to use these utilities are
provided in the major discussion of each utility program in this chapter. For more details and
to help you find the program that performs the function you need, see “Guide to Utility
Program Functions” in topic 1.1 of z/OS DFSMSdfp Utilities, SC26-7414.

System utility programs
System utility programs are used to list or change information related to data sets and
volumes, such as data set names, catalog entries, and volume labels. Most functions that
system utility programs can perform are performed more efficiently with other programs, such
as IDCAMS, ISMF, or DFSMSrmm.

Table 4-1 on page 101 lists and describes system utilities.

Note: Programs that provide functions which are better performed by newer applications
(such as ISMF or DFSMSrmm or DFSMSdss) are marked with an asterisk (*) in the table.

IEBCOMPR: Compare records in SEQ/PDS(E)
IEBCOPY: Copy/Merge/Compr./Manage PDS(E)
IEBDG: Create test data set
IEBEDIT: Selectively copy Job steps
IEBGENER (ICEGENER): Convert SEQ to PDS
IEBPTPCH: Print a SEQ/PDS(E)
IEBUPDTE: Modify SEQ/PDS(E)
IEHLIST: List data sets
IEHINITT: Write standard labels on tape volumes
IEHMOVE: Move or copy data
IEHPROGM: Build, maintain system control data
IFHSTATR: Select, format, write info about tape
errors
100 ABCs of z/OS System Programming Volume 3

Table 4-1 System utility programs

Data set utility programs
You can use data set utility programs to reorganize, change, or compare data at the data set
or record level. These programs are controlled by JCL statements and utility control
statements.

These utilities allow you to manipulate partitioned, sequential or indexed sequential data sets,
or partitioned data sets extended (PDSEs), which are provided as input to the programs. You
can manipulate data ranging from fields within a logical record to entire data sets. The data
set utilities included in this topic cannot be used with VSAM data sets. You use the IDCAMS
utility to manipulate VSAM data set; refer to “Invoking the IDCAMS utility program” on
page 119.

Table 4-2 lists data set utility programs and their use. Programs that provide functions which
are better performed by newer applications such as ISMF or DFSMSrmm or DFSMSdss are
marked with an asterisk (*) in the table.

Table 4-2 Data set utility programs

The next figures show examples of using utility programs.

System utility Alternate program Purpose

*IEHINITT DFSMSrmm EDGINERS Write standard labels on tape volumes.

IEHLIST ISMF, PDF 3.4 List system control data.

*IEHMOVE DFSMSdss, IEBCOPY Move or copy collections of data.

IEHPROGM Access Method Services,
PDF 3.2

Build and maintain system control data.

*IFHSTATR DFSMSrmm, EREP Select, format, and write information about tape
errors from the IFASMFDP tape.

Data set utility Use

*IEBCOMPR, SuperC, (PDF 3.12) Compare records in sequential or partitioned data sets, or
PDSEs.

IEBCOPY Copy, compress, or merge partitioned data sets or PDSEs; add
RLD count information to load modules; select or exclude
specified members in a copy operation; rename or replace
selected members of partitioned data sets or PDSEs.

IEBDG Create a test data set consisting of patterned data.

IEBEDIT Selectively copy job steps and their associated JOB
statements.

IEBGENER or ICEGENER Copy records from a sequential data set, or convert a data set
from sequential organization to partitioned organization.

*IEBIMAGE or AMS REPRO Modify, print, or link modules for use with the IBM 3800 Printing
Subsystem, the IBM 3262 Model 5, or the 4284 printer.

*IEBISAM Unload, load, copy, or print an ISAM data set.

IEBPTPCH or PDF 3.1 or 3.6 Print or punch records in a sequential or partitioned data set.

IEBUPDTE Incorporate changes to sequential or partitioned data sets, or
PDSEs.
Chapter 4. Storage management software 101

4.2 IEBCOMPR (compare data set) program

Figure 4-2 IEBCOMPR utility example

IEBCOMPR utility
IEBCOMPR is a data set utility used to compare two sequential data sets, two partitioned
data sets, or two PDSEs at the logical record level, to verify a backup copy. Fixed, variable, or
undefined records from blocked or unblocked data sets or members can also be compared.
However, you should not use IEBCOMPR to compare load modules.

Two sequential data sets are considered equal (that is, are considered to be identical) if:

� The data sets contain the same number of records, and

� Corresponding records and keys are identical

Two partitioned data sets or two PDSEs are considered equal if:

� Corresponding members contain the same number of records

� Note lists are in the same position within corresponding members

� Corresponding records and keys are identical

� Corresponding directory user data fields are identical

If all these conditions are not met for a specific type of data set, those data sets are
considered unequal. If records are unequal, the record and block numbers, the names of the
DD statements that define the data sets, and the unequal records are listed in a message
data set. Ten successive unequal comparisons stop the job step, unless you provide a
routine for handling error conditions.

//STEPA EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=FPITA.DATA1,
 DISP=(OLD,KEEP)
//SYSUT2 DD DSNAME=FPITA.DATA2,
 DISP=(OLD,KEEP)

//SYSIN DD DUMMY
102 ABCs of z/OS System Programming Volume 3

A partitioned data set or partitioned data set extended (PDSE) can be compared only if all
names in one or both directories have counterpart entries in the other directory. The
comparison is made on members identified by these entries and corresponding user data.

An example of the IEBCOMPR utility is shown in Figure 4-3 on page 104 and Figure 4-2 on
page 102.

Note: Load module partitioned data sets that reside on different types of devices should
not be compared. Under most circumstances, the data sets will not compare as equal.

Recommendation: Use the SuperC utility instead of IEBCOMPR. SuperC is part of
ISPF/PDF and the High Level Assembler Toolkit Feature. SuperC can be processed in the
foreground as well as in batch, and its report is more useful.
Chapter 4. Storage management software 103

4.3 Comparing data sets

Figure 4-3 Comparing data sets examples

Examples of comparing data sets
As mentioned, partitioned data sets or PDSEs can be compared only if all the names in one
or both of the directories have counterpart entries in the other directory. The comparison is
made on members that are identified by these entries and corresponding user data.

Example 1
Figure 4-3 shows the directories of two partitioned data sets. Directory 2 contains
corresponding entries for all the names in Directory 1; therefore, the data sets can be
compared.

Example 2
Figure 4-3 shows the directories of two partitioned data sets. Each directory contains a name
that has no corresponding entry in the other directory; therefore, the data sets cannot be
compared, and the job step will be ended.

Note: Load module partitioned data sets that reside on different types of devices should
not be compared. Under most circumstances, the data sets will not compare as equal.

Directory 1
ABCDGL

Directory 2
ABCDEFG

HIJKL

Directory 1
ABCFHIJ

Directory 2
ABFGHIJ

Example 1

Example 2
104 ABCs of z/OS System Programming Volume 3

4.4 IEBCOPY utility

Figure 4-4 IEBCOPY utility example

IEBCOPY utility example
IEBCOPY is a data set utility used to copy or merge members between one or more
partitioned data sets, or partitioned data sets extended (PDSE), in full or in part. You can also
use IEBCOPY to create a backup of a partitioned data set into a sequential data set (called
an unload data set or PDSU), and to copy members from the backup into a partitioned data
set.

IEBCOPY is used to:

� Make a copy of a partitioned data set or PDSE

� Merge partitioned data sets (except when unloading)

� Create a sequential form of a partitioned data set or PDSE for a backup or transport

� Reload one or more members from a PDSU into a partitioned data set or PDSE

� Select specific members of a partitioned data set or PDSE to be copied, loaded, or
unloaded

� Replace members of a partitioned data set or PDSE

� Rename selected members of a partitioned data set or PDSE

� Exclude members from a data set to be copied, unloaded, or loaded (except on
COPYGRP)

� Compress a partitioned data set in place

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//OUT1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
// DISP=(OLD,KEEP)
//IN6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111115,
// DISP=OLD
//IN5 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111116,
// DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *
COPYOPER COPY OUTDD=OUT1
 INDD=IN5,IN6
 SELECT MEMBER=((B,,R),A)
Chapter 4. Storage management software 105

� Upgrade an OS format load module for faster loading by MVS program fetch

� Copy and re-block load modules

� Convert load modules in a partitioned data set to program objects in a PDSE when
copying a partitioned data set to a PDSE

� Convert a partitioned data set to a PDSE, or a PDSE to a partitioned data set

� Copy—to or from a PDSE data set— a member and its aliases together as a group
(COPYGRP)

In addition, IEBCOPY automatically lists the number of unused directory blocks and the
number of unused tracks available for member records in the output partitioned data set.
106 ABCs of z/OS System Programming Volume 3

4.5 IEBCOPY copy operation

Figure 4-5 IEBCOPY copy operation

Copy control command example
In Figure 4-5, two input partitioned data sets (data set5 and data set6) are copied to an
existing output partitioned data set (data set1). In addition, all members on data set6 are
copied; members on the output data set that have the same names as the copied members
are replaced. After data set6 is processed, the output data set (data set1) is compressed in
place. Figure 4-5 shows the input and output data sets before and after copy processing. The
compress process is shown in Figure 4-7 on page 109. Figure 4-6 on page 107 shows the job
that is used to copy and compress partitioned data sets.

Figure 4-6 IEBOPY with copy and compress

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INOUT1 DD DSNAME=data set1,UNIT=disk,VOL=SER=111112,DISP=(OLD,KEEP)
//IN5 DD DSNAME=data set5,UNIT=disk,VOL=SER=111114,DISP=OLD
//IN6 DD DSNAME=data set6,UNIT=disk,VOL=SER=111115,
// DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *

COPYOPER COPY OUTDD=INOUT1,INDD=(IN5,(IN6,R),INOUT1)
/*

Before Copy

Data set5 Data set1

Directory
ABCDF

Member F

A

Unused

B
D

C

After Copy
Before Compress

Data set1

Directory
ABF

Member F

A

Unused

B

Available

Data Set 6

BCD
Member B

D
C

Available

Directory

Directory
 AC
Unsued
Member C
Unused

A
Available
Chapter 4. Storage management software 107

The control statement is discussed below:

� INOUT1 DD defines a partitioned data set (data set1), which contains three members (A,
B, and F).

� IN5 DD defines a partitioned data set (data set5), which contains two members (A and C).

� IN6 DD defines a partitioned data set (data set6), which contains three members (B, C,
and D).

� SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is allocated for each
on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream. The data set
contains a COPY statement.

� COPY indicates the start of the copy operation. The OUTDD operand specifies data set1
as the output data set.

Processing occurs as follows:

1. Member A is not copied from data set5 into data set1 because it already exists on data
set1 and the replace option was not specified for data set5.

2. Member C is copied from data set5 to data set1, occupying the first available space.

3. All members are copied from data set6 to data set1, immediately following the last
member. Members B and C are copied even though the output data set already contains
members with the same names because the replace option is specified on the data set
level.
108 ABCs of z/OS System Programming Volume 3

4.6 IEBCOPY compress operation

Figure 4-7 IEBCOPY compress operation

IEBCOPY compress operation
The pointers in the data set1 directory are changed to point to the new members B and C.
Thus, the space occupied by the old members B and C is unused. The members currently on
data set1 are compressed in place, thereby eliminating embedded unused space.

Directory
 ABCDF

Member F

A

Unused

B
D

C

Directory
 ABCDF

Member F

A

B

D

C
Available

Data set1

After Copy,and
Before Compress

Data set1

After Copy,and
After Compress

Compress
Chapter 4. Storage management software 109

4.7 IEBGENER

Figure 4-8 IEBGENER

Using IEBGENER
You can use IEBGENER to:

� Create a backup copy of a sequential data set, a member of a partitioned data set, or
PDSE.

� Produce a partitioned data set or PDSE, or a member of a partitioned data set or PDSE,
from a sequential data set.

� Expand an existing partitioned data set or PDSE by creating partitioned members and
merging them into the existing data set.

� Produce an edited sequential or partitioned data set or PDSE.

� Manipulate data sets containing double-byte character set data.

� Print sequential data sets or members of partitioned data sets or PDSEs.

� Re-block or change the logical record length of a data set.

Note: If you have the DFSORT product installed, you should be using ICEGENER as an
alternative to IEBGENER when making an unedited copy of a data set or member. It may
already be installed in your system under the name IEBGENER. It generally gives better
performance.

//DISKTOTP JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=disk,DISP=SHR
//SYSUT2 DD DSNAME=OUTPUT,UNIT=CART,DISP=(NEW,KEEP),),
// VOLUME=SER=APSG90,UNIT=3490,LABEL=(1,SL),
// DCB=*.SYSUT1
//SYSIN DD *
110 ABCs of z/OS System Programming Volume 3

4.8 Adding members to a PDS using IEBGENER

Figure 4-9 Adding members to a PDS using IEBGENER

Adding members to a PDS
You can use IEBGENER to add members to a partitioned data set or PDSE. IEBGENER
creates the members from sequential input and adds them to the data set. The merge
operation—the ordering of the partitioned directory—is automatically performed by the
program.

Figure 4-9 shows how sequential input is converted into members that are merged into an
existing partitioned data set or PDSE. The list on the left side of the figure shows the
sequential input that is to be merged with the partitioned data set or PDSE shown in the
middle of the figure. Utility control statements are used to divide the sequential data set into
record groups and to provide a member name for each record group. The right side of the
figure shows the expanded partitioned data set or PDSE.

Note that members B, D, and F from the sequential data set were placed in available space,
and that they are sequentially ordered in the partitioned directory.

Directory
ACEGBDF

Member A

C

E
G
B

F

D

Utility Control Statements
define record groups
name members

Sequencial Input

Member B

LASTREC
Member D

LASTREC
Member F

Expanded
Data Set

Existing
Data Set

Directory
A C E G A

Available

C

E

G

Chapter 4. Storage management software 111

4.9 Copying data to tape

Figure 4-10 Copying data to tape

Copying data to tape example
You can use IEBGENER to copy data to tape. Figure 4-11 copies the data set MY.DATA to an
SL cartridge. The data set name on tape is MY.DATA.OUTPUT.

Figure 4-11 Copying data to tape with IEBGENER

For further information about IEBGENER, refer to z/OS DFSMSdfp Utilities, SC26-7414.

//DISKTOTP JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=MY.DATA,DISP=SHR
//SYSUT2 DD DSNAME=MY.DATA.OUTPUT,UNIT=3490,DISP=(,KEEP),
// VOLUME=SER=IBM001,LABEL=(1,SL)
//SYSIN DD *

MY.DATA
IEBGENER
112 ABCs of z/OS System Programming Volume 3

4.10 IEHLIST

Figure 4-12 IEHLIST

Using IEHLIST
IEHLIST is a system utility used to list entries in a CVOL, entries in the directory of one or
more partitioned data sets or PDSEs, or entries in an indexed or non-indexed volume table of
contents. Any number of listings can be requested in a single execution of the program.

IEHLIST lists all CVOL (SYSCTLG data set) entries that are part of the structure of a fully
qualified data set name.

IEHLIST can list up to 10 partitioned data set or PDSE directories at a time.

The directory of a partitioned data set is composed of variable-length records blocked into
256-byte blocks. Each directory block can contain one or more entries that reflect member or
alias names and other attributes of the partitioned members. IEHLIST can list these blocks in
edited and unedited format.

The directory of a PDSE, when listed, will have the same format as the directory of a
partitioned data set.

Note: IEHLIST will not list integrated catalog facility or VSAM catalogs. To list integrated
catalog facility or VSAM catalogs, use access method services. For more information, see
z/OS DFSMS Access Method Services for Catalogs, SC26-7394.

//VTOCLIST JOB ...
//STEP1 EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=3390,
 VOLUME=SER=TOTTSB,DISP=SHR
//SYSIN DD *
 LISTVTOC VOL=3390=APSG90,
 INDEXDSN=SYS1.VTOCIX.TOTTSB
 /*
Chapter 4. Storage management software 113

4.11 IEHLIST LISTVTOC output

Figure 4-13 IEHLIST LISTVTOC output

Obtaining the VTOC listing
Running the job shown in Figure 4-12 on page 113 produces a SYSOUT very similar to that
shown in Figure 4-13.

If you include the keyword FORMAT in the LISTVTOC parameter, you will have more detailed
information about the DASD and about the data sets, and you can also specify the DSNAME
that you want to request information about.

Note: This information is at the DASD volume level, and does not have any interaction with
the catalog.
114 ABCs of z/OS System Programming Volume 3

4.12 IEHINITT

Figure 4-14 IEHINITT

IEHINITT utility
IEHINITT is a system utility used to place IBM volume label sets (no data set labels) written in
EBCDIC (BCD for 7-track), or ISO/ANSI/FIPS volume label sets written in ASCII (American
Standard Code for Information Interchange) onto any number of magnetic tapes mounted on
one or more tape units.

To further protect against overwriting the wrong tape, IEHINITT asks the operator to verify
each tape mount.

Note: Because IEHINITT can overwrite previously labeled tapes regardless of expiration
date and security protection, IBM recommends that the security administrator use
PROGRAM protection with the following sequence of RACF commands:

RDEFINE PROGRAM IEHINITT ADDMEM(‘SYS1.LINKLIB’//NODPADCHK) UACC NONE

PERMIT IEHINITT CLASS(PROGRAM) ID(users or group who should have access)
ACCESS(READ)

SETROPTS WHEN(PROGRAM) REFRESH [omit REFRESH if you do not have this option
active previous]

IEHINITT should be moved into an authorized password-protected private library, and
deleted from SYS1.LINKLIB.

Initializing Tape Cartridges

Create tape label - (EBCDIC or ASCII)

Consider placement in an authorized library
//LABEL JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL1 DD DCB=DEN=2,UNIT=(tape,1,DEFER)
//LABEL2 DD DCB=DEN=3,UNIT=(tape,1,DEFER)
//SYSIN DD *
LABEL1 INITT SER=TAPE1
LABEL2 INITT SER=001234,NUMBTAPE=2
/*

DFSMSrmm EDGINERS the newer alternative
Chapter 4. Storage management software 115

In the example, two groups of serial numbers, (001234, 001235, 001236, and 001334,
001335, 001336) are placed on six tape volumes. The labels are written in EBCDIC at
800 bits per inch. Each volume labeled is mounted, when it is required, on a single 9-track
tape unit.

Figure 4-15 IEHINITT example to write EBCDIC labels in different densities

In Figure 4-16, serial numbers 001234, 001244, 001254, 001264, 001274, and so forth are
placed on eight tape volumes. The labels are written in EBCDIC at 800 bits per inch. Each
volume labeled is mounted, when it is required, on one of four 9-track tape units.

Figure 4-16 IEHINITT Place serial number on eight tape volumes

DFSMSrmm EDGINERS utility
The EDGINERS utility program verifies that the volume is mounted before writing a volume
label on a labeled, unlabeled, or blank tape. EDGINERS checks security and volume
ownership, and provides auditing. DFSMSrmm must know that the volume needs to be
labelled. If the labelled volume is undefined, then DFSMSrmm defines it to DFSMSrmm and
can create RACF volume security protection.

Detailed procedures for using the program are described in z/OS DFSMSrmm
Implementation and Customization Guide, SC26-7405.

//LABEL3 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL DD DCB=DEN=2,UNIT=(tape,1,DEFER)
//SYSIN DD *
LABEL INITT SER=001234,NUMTAPE=3
LABEL INITT SER=001334,NUMBTAPE=3
/*

//LABEL4 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL DD DCB=DEN=2,UNIT=(tape,4,DEFER)
//SYSIN DD *
LABEL INITT SER=001234
LABEL INITT SER=001244
LABEL INITT SER=001254
LABEL INITT SER=001264
LABEL INITT SER=001274
LABEL INITT SER=001284
LABEL INITT SER=001294
LABEL INITT SER=001304
/*

Note: DFSMSrmm is an optional priced feature of DFSMS. That means that EDGINERS
can only be used when DFSMSrmm is licensed. If DFSMSrmm is licensed, IBM
recommends that you use EDGINERS for tape initialization instead of using IEHINITT.
116 ABCs of z/OS System Programming Volume 3

4.13 IEFBR14

Figure 4-17 IEFBR14

IEFBR14 uses
IEFBR14 is not a utility program. It is a two-line program that clears register 15, thus passing
a return code of 0. It then branches to the address in register 14, which returns control to the
system. So in other words—this program is dummy program. It can be used in a step to force
MVS (specifically, the initiator) to process the JCL code and execute functions such as the
following:

� Checking all job control statements in the step for syntax

� Allocating direct access space for data sets

� Performing data set dispositions

Note: Although the system allocates space for data sets, it does not initialize the new data
sets. Therefore, any attempt to read from one of these new data sets in a subsequent step
may produce unpredictable results. Also, IBM does not recommend allocation of
multi-volume data sets while executing IEFBR14.

//DATASETS JOB FREEMAN,MSGLEVEL=1
//STEP1 EXEC PGM=IEFBR14
//D1 DD DSN=ABC,
// DISP=(NEW,CATLG),UNIT=3390,

// VOL=SER=333001,

// SPACE=(CYL,(12,1,1),)
Chapter 4. Storage management software 117

4.14 Access method services

Figure 4-18 Access method services

Access method services
Access method services is a utility you can use to establish and maintain catalogs and data
sets (VSAM and non-VSAM).

There are two types of access method services commands:

Functional commands Used to request the actual work (for example, defining a data set or
listing a catalog).

Modal commands Allow the conditional execution of functional commands (it looks
like a language). Time Sharing Option (TSO) users can use
functional commands only. For more information about modal
commands, refer to z/OS DFSMS Access Method Services for
Catalogs, SC26-7394.

The Storage Management Subsystem (SMS) automates many access method services
commands and their parameters. The automatic class selection (ACS) routines (established
by your storage administrator) and the associated SMS classes eliminate the need to use
many access method services command parameters. The SMS environment is discussed in
greater detail in “System-managed storage” on page 189.

IDCAMS

DEFINE CATALOG
ENTRIES

CREATES A
BACKUP OF A BCS

DETERMINE
STRUCTURAL

ERRORS

LIST CATALOG
ENTRIES DISCONNECT A

CATALOG FROM
MCAT

DELETE ENTRIES PRINT CATALOG
RECORDS

CREATE A NEW
CATALOG
118 ABCs of z/OS System Programming Volume 3

Invoking the IDCAMS utility program
When you want to use an access method services function, enter a command and specify its
parameters. Your request is decoded one command at a time; the appropriate functional
routines perform all services required by that command.

You can call the access method services program in the following ways:

� As a job or jobstep

� From a TSO session

� From within your own program

You can run the IDCAMS program (the execution part of access method services) and
include the command and its parameters as input to the program. You can also call the
IDCAMS program from within another program and pass the command and its parameters to
the IDCAMS program.

Time Sharing Option (TSO) users can run access method services functional commands
from a TSO session as though they were TSO commands.

For more information, refer to “Invoking Access Method Services from Your Program” in topic
D.0, in z/OS DFSMS Access Method Services for Catalogs, SC26-7394.

As a job or jobstep
You can use (JCL) statements to call access method services. PGM=IDCAMS identifies the
access method services program, as shown in Figure 4-19.

Figure 4-19 JCL statements to call IDCAMS

From a Time Sharing Option (TSO) session
You can use TSO with VSAM and access method services to:

� Run access method services commands

� Run a program to call access method services

Each time you enter an access method services command as a TSO command, TSO builds
the appropriate interface information and calls access method services.

You can enter one command at a time. Access method services processes the command
completely before TSO lets you continue processing. Except for ALLOCATE, all the access
method services functional commands are supported in a TSO environment.

For more information, refer to z/OS DFSMS Access Method Services for Catalogs,
SC26-7394.

//YOURJOB JOB YOUR INSTALLATION'S JOB=ACCOUNTING DATA
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

 access method services commands and their parameters

/*
Chapter 4. Storage management software 119

From within your own program
You can also call the IDCAMS program from within another program and pass the command
and its parameters to the IDCAMS program
120 ABCs of z/OS System Programming Volume 3

4.15 AMS functional commands

Figure 4-20 Functional commands

IDCAMS functional commands
Table 4-3 lists and describes the utilization of the functional commands.

Table 4-3 Functional commands

Command Functions

ALLOCATE Allocates Virtual Storage Access Method (VSAM) and non-VSAM
data sets.

ALTER Alters attributes of data sets, catalogs, tape library entries, and tape
volume entries that have already been defined.

BLDINDEX Builds alternate indexes for existing data sets.

CREATE Creates tape library entries and tape volume entries.

DCOLLECT Collects data set, volume usage, and migration utility information.

DEFINE ALIAS Defines an alternate name for an user catalog or a non-VSAM data
set.

DEFINE
ALTERNATEINDEX

Defines an alternate index for a KSDS or ESDS VSAM data set.

DEFINE CLUSTER Creates KSDS, ESDS, RRDS, VRRDS and linear VSAM data sets.

DEFINE CLUSTER: creates /catalog VSAM data
sets

DEFINE GENERATIONDATAGROUP: catalog
GDG data sets

DEFINE PAGESPACE: creates/catalog page data
sets

EXPORT: export VSAM DS, AI or ICF

IMPORT: import VSAM DS, AI or ICF

LISTCAT: list catalog entries

REPRO: copy VSAM, non-VSAM and catalogs

VERIFY: corrects mismatches between catalogs
and data sets
Chapter 4. Storage management software 121

For a complete description of all AMS commands, refer to z/OS DFSMS Access Method
Services for Catalogs, SC26-7394.

DEFINE
GENERATIONDATAGROU
P

Defines a catalog entry for a generation data group.

DEFINE NONVSAM Defines a catalog entry for a non-VSAM data set.

DEFINE PAGESPACE Defines an entry for a page space data set.

DEFINE PATH Defines a path directly over a base cluster or over an alternate index
and its related base cluster.

DEFINE USERCATALOG Defines a user catalog.

DELETE Deletes catalogs, VSAM data sets, and non-VSAM data sets.

DIAGNOSE Scans an integrated catalog facility basic catalog structure (BCS) or a
VSAM volume data set (VVDS) to validate the data structures and
detect structure errors.

EXAMINE Analyzes and reports the structural consistency of either an index or
data component of a key-sequence data set cluster.

EXPORT Disconnects user catalogs, and exports VSAM data sets and
integrated catalog facility catalogs.

EXPORT DISCONNECT Disconnects a user catalog.

IMPORT Connects user catalogs, and imports VSAM data sets and integrated
catalog facility catalogs.

IMPORT CONNECT Connects a user catalog or a volume catalog.

LISTCAT Lists catalog entries.

PRINT Used to print VSAM data sets, non-VSAM data sets, and catalogs.

REPRO Performs the following functions:

Copies VSAM and non-VSAM data sets, user catalogs, master
catalogs, and volume catalogs.

Splits integrated catalog facility catalog entries between two catalogs.

Merges integrated catalog facility catalog entries into another
integrated catalog facility user or master catalog.

Merges tape library catalog entries from one volume catalog into
another volume catalog.

SHCDS Lists SMSVSAM recovery related to online applications and spheres
accessed in record-level subscriber (RLS) mode.

VERIFY Causes a catalog to correctly reflect the end of a data set after an error
occurred while closing a VSAM data set. The error might have caused
the catalog to be incorrect.

Command Functions
122 ABCs of z/OS System Programming Volume 3

4.16 AMS modal commands

Figure 4-21 AMS modal commands

Conditional execution of functional AMS commands
The access method services modal commands are used for the conditional execution of
functional commands. Time Sharing Option (TSO) users can use functional commands only.

Note: Figure 4-21 contains a list and brief descriptions of the AMS modal commands.
These commands cannot be used when access method services is run in TSO. See z/OS
DFSMS Access Method Services for Catalogs, SC26-7394, for a complete description of
the AMS modal commands.

IF-THEN-ELSE command sequence controls
command execution on the basis of conditional
codes

NULL command specifies no action be taken

DO-END command sequence specifies more than
one functional access method services command
and its parameters

SET command resets condition codes

CANCEL command terminates processing of the
current job step

PARM command specifies diagnostic aids and
printed output options.
Chapter 4. Storage management software 123

4.17 Data Collection Facility (DCOLLECT)

Figure 4-22 Data Collection Facility

DCOLLECT command
DCOLLECT is an IDCAMS command. An installation may use this command to collect
information related to:

� Active data set storage
� VSAM association name
� Volume usage
� DFSMShsm backup and migration storage
� DFSMShsm DASD and tape capacity planning

Data is gathered from the VTOC, VVDS, and DFSMShsm control data set for both managed
and non-managed storage. ISMF provides the option to build the JCL necessary to execute
DCOLLECT.

The output of DCOLLECT is a sequential data set. Installation can generate reports from the
collected data relating to space management, capacity planning, and cost accounting using:

� Tivoli Decision Support for OS/390, that provides support for DCOLLECT data by including a
starter set of log, summary, and parameter tables and views. It also includes a report
dialog with a variety of predefined reports. For more information see Tivoli Decision
Support for OS/390 System Performance Feature Reference Volume I, SH19-6819.

� DB2 can also be used to hold DCOLLECT data. Data resides in a relational database
structure, and can be presented to users in a table format.

� User-written applications can manipulate the DCOLLECT sequential output data set to
generate reports.

Active data sets
Capacity planning

VSAM data sets
Inactive data

SMS configuration
information

Migrated data sets
Backed-up data sets
124 ABCs of z/OS System Programming Volume 3

4.18 Generation data groups (GDG)

Figure 4-23 Generation data groups (GDG)

Generation data groups
You can catalog successive updates or generations of related data sets. They are called
generation data groups (GDG). Each data set within a GDG is called a generation data set or
generation. Within a GDG, the generations can have like or unlike DCB attributes and data
set organizations. If the attributes and organizations of all generations in a group are
identical, the generations can be retrieved together as a single data set.

Generation data sets can be sequential, direct, or indexed sequential (an old and less-used
data set organization, replaced by VSAM KSDS). They cannot be partitioned, HFS, or VSAM.
The same GDG may contain SMS and non-SMS data sets.

There are advantages to grouping related data sets. For example, the catalog management
routines can refer to the information in a special index called a generation index in the
catalog. Thus:

� All of the data sets in the group can be referred to by a common name.

� The operating system is able to keep the generations in chronological order.

� Outdated or obsolete generations can be automatically deleted by the operating system.

Another advantage is the ability to reference to a new generation using the same JCL.

Generation data sets have sequentially ordered absolute and relative names that represent
their age. The catalog management routines use the absolute generation name. Older data
sets have smaller absolute numbers. The relative name is a signed integer used to refer to

ABC.G0001V00

ABC.G0001V01

ABC.G0001V02
Latest Version of
the Data Set

Oldest Version of
the Data Set
Chapter 4. Storage management software 125

the latest (0) generation, the next to latest (-1) generation, and so forth. For example, a data
set name LAB.PAYROLL(0) refers to the most recent data set of the group;
LAB.PAYROLL(-1) refers to the second most recent data set; and so forth. The relative
number can also be used to catalog a new generation (+1).

If you create a generation data set with a relative generation number of (+1), the system
recognizes any subsequent reference to (+1) throughout the job as having the same absolute
generation number.

A GDG base is allocated in an integrated catalog facility or VSAM catalog before the
generation data sets are cataloged. Each GDG is represented by a GDG base entry. Use the
AMS DEFINE command to allocate the GDG base.

The model DSCB must exist on the GDG catalog volume.

You should only use the low-level qualifier GxxxxVyy, structure name, where xxxx and yy are
numbers, in the names of generation data sets (to be seen later). You can define a data set
with GxxxxVyy as the low-level qualifier of non-generation data sets only if a generation data
group with the same base name does not exist. However, we recommend that you restrict
GxxxxVyy qualifiers to generation data sets, to avoid confusing generation data sets with
other types of non-VSAM data sets.
126 ABCs of z/OS System Programming Volume 3

4.19 Defining a generation data group

Figure 4-24 Defining a GDG

Defining a generation data group
The DEFINE GENERATIONDATAGROUP command creates a catalog entry for a generation data
group (GDG).

Figure 4-25 shows the JCL to define a GDG.

Figure 4-25 JCL to define a GDG catalog entry

The DEFINE GENERATIONDATAGROUP command defines a GDG base catalog entry GDG01.

//DEFGDG1 JOB ...
//STEP1 EXEC PGM=IDCAMS
//GDGMOD DD DSNAME=GDG01,DISP=(,KEEP),
// SPACE=(TRK,(0)),UNIT=DISK,VOL=SER=VSER03,
// DCB=(RECFM=FB,BLKSIZE=2000,LRECL=100)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DEFINE GENERATIONDATAGROUP -
(NAME(GDG01) -
NOEMPTY -
NOSCRATCH -
LIMIT(255))
/*

//DEFGDG1 JOB ...
//STEP1 EXEC PGM=IDCAMS
//GDGMOD DD DSNAME=GDG01,DISP=(,KEEP),
// SPACE=(TRK,(0)),UNIT=DISK,VOL=SER=VSER03,
// DCB=(RECFM=FB,BLKSIZE=2000,LRECL=100)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE GENERATIONDATAGROUP -
 (NAME(GDG01) -
 EMPTY -
 NOSCRATCH -

 LIMIT(255))
A

B C

A

B

C

GDG01
} VTOC

Modal DSCB
Chapter 4. Storage management software 127

Its parameters are:

� NAME specifies the name of the GDG, GDG01. Each GDS in the group will have the name
GDG01.GxxxxVyy, where xxxx is the generation number and yy is the version number.

� NOEMPTY specifies that only the oldest generation data set is to be uncataloged when the
maximum is reached (recommended).

� EMPTY specifies that all data sets in the group are to be uncataloged by VSAM when the
group reaches the maximum number of data sets (as specified by the LIMIT parameter)
and one more GDS is added to the group.

� NOSCRATCH specifies that when a data set is uncataloged, its DSCB is not to be removed
from its volume's VTOC. Therefore, even if a data set is uncataloged, its records can be
accessed when it is allocated to a job step with the appropriate JCL DD statement.

� LIMIT specifies that the maximum number of GDG data sets in the group is 255. This
parameter is required.

Figure 4-26 shows a generation data set is defined within the GDG by using JCL statements.

Figure 4-26 JCL to define a generation data set

The job DEFGDG2 allocates space and catalogs a GDG data set in the newly-defined GDG.
The job control statement GDGDD1 DD specifies the GDG data set in the GDG.

//DEFGDG2 JOB ...
//STEP1 EXEC PGM=IEFBR14
//GDGDD1 DD DSNAME=GDG01(+1),DISP=(NEW,CATLG),
// SPACE=(TRK,(10,5)),VOL=SER=VSER03,
// UNIT=DISK
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
/*
128 ABCs of z/OS System Programming Volume 3

4.20 Absolute generation and version numbers

Figure 4-27 Absolute generation and version numbers

Identifying an specific generation of a GDG
An absolute generation and version number is used to identify a specific generation of a
generation data group. A same generation data set may have different versions, which are
maintained by your installation. The version number allows you to perform normal data set
operations without disrupting the management of the generation data group. For example, if
you want to update the second generation in a three-generation group, replace generation 2,
version 0, with generation 2, version 1. Only one version is kept for each generation.

The generation and version number are in the form GxxxxVyy, where xxxx is an unsigned
four-digit decimal generation number (0001 through 9999) and yy is an unsigned two-digit
decimal version number (00 through 99). For example:

� A.B.C.G0001V00 is generation data set 1, version 0, in generation data group A.B.C.

� A.B.C.G0009V01 is generation data set 9, version 1, in generation data group A.B.C.

The number of generations and versions is limited by the number of digits in the absolute
generation name; that is, there can be 9,999 generations. Each generation can have 100
versions. The system automatically maintains the generation number.

The number of generations kept depends on the size of the generation index. For example, if
the size of the generation index allows ten entries (parameter LIMIT in AMS DEFINE), the ten
latest generations can be maintained in the generation data group (parameter NOEMPTY in
AMS DEFINE).

Generation Data Set 1, Version 0,
in generation data group A.B.CA.B.C.G0001V00

A.B.C.G0009V01 Generation Data Set 9, Version 1,
in generation data group A.B.C
Chapter 4. Storage management software 129

You can catalog a generation using either absolute or relative numbers. When a generation is
cataloged, a generation and version number is placed as a low-level entry in the generation
data group. To catalog a version number other than V00, you must use an absolute
generation and version number.
130 ABCs of z/OS System Programming Volume 3

4.21 Relative generation numbers

Figure 4-28 Relative generation numbers

Relative generation numbers
As an alternative to using absolute generation and version numbers when cataloging or
referring to a generation, you can use a relative generation number. To specify a relative
number, use the generation data group name followed by a negative integer, a positive
integer, or a zero (0), enclosed in parentheses; for example, A.B.C(-1). A.B.C(+1), or
A.B.C(0).

The value of the specified integer tells the operating system what generation number to
assign to a new generation data set, or it tells the system the location of an entry representing
a previously cataloged old generation data set.

When you use a relative generation number to catalog a generation, the operating system
assigns an absolute generation number and a version number of V00 to represent that
generation. The absolute generation number assigned depends on the number last assigned
and the value of the relative generation number that you are now specifying. For example, if
in a previous job generation, A.B.C.G0006V00 was the last generation cataloged, and you
specify A.B.C(+1), the generation now cataloged is assigned the number G0007V00.

Though any positive relative generation number can be used, a number greater than 1 can
cause absolute generation numbers to be skipped for a new generation data set. For
example, if you have a single step job and the generation being cataloged is a +2, one
generation number is skipped. However, in a multiple step job, one step might have a +1 and
a second step a +2, in which case no numbers are skipped.

A.B.C.G0005V00 = A.B.C(-1)

A.B.C.G0007V00 = A.B.C(+1)

A.B.C.G0006V00 = A.B.C(0)
READ/UPDATE OLD GDS

DEFINE NEW GDS
Chapter 4. Storage management software 131

The mapping between relative and absolute numbers is kept until the end of the job.

Rolled in and rolled off
When a generation data group contains its maximum number of active generation data sets,
defined in the LIMIT parameter, and a new generation data set is rolled in at end-of-job step,
the oldest generation data set is rolled off and is no longer active. If a generation data group
is defined using DEFINE GENERATIONDATAGROUP EMPTY and is at its limit, then when a new
generation data set is rolled in, all the currently active generation data sets are rolled off.

The parameters you specify on the DEFINE GENERATIONDATAGROUP command determines what
happens to rolled-off generation data sets. For example, if you specify the SCRATCH
parameter, the generation data set is scratched when it is rolled off. If you specify the
NOSCRATCH parameter, the rolled-off generation data set is recataloged as rolled off and is
disassociated with its generation data group.

Generation data sets can be in a deferred roll-in state if the job never reached end-of-step or
if they were allocated as DISP=(NEW,KEEP) and the data set is not system-managed.
Generation data sets in a deferred roll-in state can be referred to by their absolute generation
numbers. You can use the access method service command ALTER ROLLIN to roll in these
generation data sets.

For further information about Generation Data Groups, refer to z/OS DFSMS: Using Data
Sets, SC26-7410.
132 ABCs of z/OS System Programming Volume 3

4.22 Access method

Figure 4-29 Access method functions

Access method functions
An access method is a friendly interface between programs and their data. It is in charge of
interfacing with Input Output Supervisor (IOS), and the z/OS code which starts the I/O
operation. An access method makes the physical organization of data transparent to you in
the following ways:

� By managing data buffers
� Synchronizing your task and the I/O operation (Wait/Post mechanism)
� Writing the channel program
� Optimizing the performance characteristics of the control unit (such as caching and data

striping)
� Compressing and decompressing I/O data
� Executing software error recovery

An access method defines the technique by which the data is stored and retrieved. DFSMS
access methods have their own data set structures for organizing data, macros to define and
process data sets, and utility programs to process data sets.

Access methods are identified primarily by the data set organization to which they apply. For
example, you can use the basic sequential access method (BSAM) with sequential data sets.
However, there are times when an access method identified with one organization can be
used to process a data set organized in a different manner. For example, a sequential data
set (not extended format data set) created using BSAM can be processed by the basic direct
access method (BDAM), and vice versa.

Performs bufferization

Synchronizes between your task and the I/O
operation (Wait/Post mechanism)

Writes the channel program

Optimizes the performance caracteristics of the
control unit (such as caching, data stripe)

Compress and uncompress I/O data

Executes software error recovery
Chapter 4. Storage management software 133

4.23 Major DFSMS access methods

Figure 4-30 Major DFSMS access methods

Basic Direct Access Method (BDAM)
BDAM arranges records in any sequence your program indicates, and retrieves records by
actual or relative address. If you do not know the exact location of a record, you can specify a
point in the data set where a search for the record is to begin. Data sets organized this way
are called direct data sets.

Object Access Method (OAM)
OAM processes very large named byte streams (objects) that have no record boundary or
other internal orientation. These objects can be recorded in a DB2 data base or on an optical
storage volume. For information on OAM, see z/OS DFSMS Object Access Method
Application Programmer’s Reference, SC35-0425, and z/OS DFSMS Object Access Method
Planning, Installation, and Storage Administration Guide for Object Support, SC35-0426.

Note: IBM does not recommended using BDAM because it tends to require using
device-dependent code. In addition, using keys is much less efficient than in the virtual
sequential access method (VSAM). BDAM is supported by DFSMS only to enable
compatibility with other IBM operating systems. For more information, refer to Appendix C,
“Processing Direct Data Sets” in z/OS DFSMS: Using Data Sets, SC26-7410.

The major DFSMS access methods:

Basic Direct Access Method (BDAM)

Object Access Method (OAM)

Basic Partitioned Access Method (BPAM)

Basic Direct Access Method (BDAM)

Basic Sequential Access Method (BSAM)

Queued Sequential Access Method (QSAM)

Virtual Storage Access Method (VSAM)
134 ABCs of z/OS System Programming Volume 3

4.24 Basic Partitioned Access Method (BPAM)

Figure 4-31 BPAM to access PDS and PDSE

BPAM to access PDS and PDSE
Basic Partitioned Access Method (BPAM) arranges records as members of a partitioned data
set (PDS) or a partitioned data set extended (PDSE) on DASD. You can view each member
like a sequential data set. A partitioned data set or PDSE includes a directory that relates
member names to locations within the data set. The directory is used to retrieve individual
members. For program libraries (load modules and program objects), the directory contains
program attributes required to load and rebind the member.

BPAM allows access to partitioned data sets

A partitioned data set includes a directory that
relates member names to locations within the data
set, the directory is used to retrieve individual
members

A member is accessed by BPAM as a sequential
file

The contents of a member can be:

Data

Programs

Tables (as ISPF)

Procedures (as JCL)

There are two types: PDS and PDSE
Chapter 4. Storage management software 135

4.25 PDS data organization

Figure 4-32 PDS data organization

Partitioned data set (PDS)
PDS is an old MVS data organization that offers such useful features as:

� Easier management

Grouping of related data sets under a single name makes MVS data management easier.
Files stored as members of a PDS can be processed either individually or all the members
can be processed as a unit.

� Space savings

Small members fit in just one DASD track.

� Good usability

Members of a PDS can be used as sequential data sets, and they can be concatenated to
sequential data sets. They are also easy to create with JCL, or ISPF, and they are easy to
manipulate with ISPF utilities or TSO commands.

However, there are a few requirements for improvement regarding PDS organization:

� There is no mechanism to reuse the area that contained a deleted or rewritten member.

This unused space must be reclaimed by the use of the IEBCOPY utility function called
compression.

� Directory size is not expandable, causing an overflow exposure.

Advantages of the PDS organization:

Easier management: Processed by member or a whole.
Members can be concatenated and processed as
sequential files

Space savings: small members fit in one DASD track

Good usability: Easily accessed via JCL, ISPF, TSO

Required Improvements for the PDS organization:

When a member is deleted the space is released. No need
to compress

Expandable directory size

Improved directory and member integrity

Better performance for directory search

Improving sharing facilities
136 ABCs of z/OS System Programming Volume 3

The area for members may grow using secondary allocations. This is not true for the
directory.

� A PDS has no mechanism to prevent a directory from being overwritten if a program
mistakenly opens it for sequential output.

If this happens, the directory is destroyed and all the members are lost.

Also, PDS DCB attributes can be easily changed by mistake. If you add a member whose
DCB characteristics differ from those of the other members, you will change the DCB
attributes of the entire PDS, and all the old members will become unusable.

� Better directory search time.

Entries in the directory are physically ordered by the collating sequence of the names in
the members they are pointing to. Any inclusion may cause the full rearrange of the
entries.

There is also no index to the directory entries. The search is sequential using a CKD
format. If the directory is big, the I/O operation takes more time.

� Improved sharing facilities.

To update a member of a PDS, you need exclusive access to the entire data set.

All these improvements require almost total compatibility at the program level and the user
level with the old PDS.
Chapter 4. Storage management software 137

4.26 Partitioned data set extended (PDSE)

Figure 4-33 PDSE structure

PDSE advantages
Figure 4-33 describes the PDSE structure. The advantages of PDSE when compared with
PDS are:

� Space is reclaimed without a compress. PDSE automatically reuses space, without
needing an IEBCOPY compress. A list of available space is kept in the directory. When a
PDSE member is updated or replaced, it is written in the first available space. This is
either at the end of the data set, or in a space in the middle of the data set marked for
reuse.

This space need not be contiguous. The objective of the space reuse algorithm is not to
extend the data set unnecessarily.

� The directory can grow dynamically as the data set expands. Logically, a PDSE directory
looks the same as a PDS directory. It consists of a series of directory records in a block.
Physically, it is a set of pages at the front of the data set, plus additional pages interleaved
with member pages. Five directory pages are initially created at the same time as the data
set.

New directory pages are added, interleaved with the member pages, as new directory
entries are required. A PDSE always occupies at least five pages of storage.

The directory is like a KSDS index structure (KSDS is covered in “Key sequenced data set
(KSDS)” on page 152), making a search much faster. It cannot be overwritten by being
opened for sequential output.

Comprised of a directory and members allocated in
preformated equal-size 4 KB pages

A member may not be stored in contiguous pages

The directory has an index structure and is physically mixed
with the members

Must be an SMS-managed data set

Directory is buffered in data space, members in a
hiperspace ESO (both managed by SYSBMAS AS) for
performance

Cross-system locks guarantee integrity when sharing
PDSEs among MVSs (nanaged by SMXC AS)

Member may contain data, load modules (called program
objects, tables)
138 ABCs of z/OS System Programming Volume 3

� If you try to add a member with DCB characteristics that differ from the rest of the
members, you will get an error.

� You can open a PDSE member for output or update, without locking the entire data set.
The sharing control is at member level, not the data set level.

Restriction: You cannot use a PDSE for certain system data sets that are opened in the
IPL/NIP time frame.
Chapter 4. Storage management software 139

4.27 Sequential access methods

Figure 4-34 Sequential access methods

BSAM and QSAM
There are two sequential access methods, Basic Sequential Access Method (BSAM) and
Queued Sequential Access Method (QSAM). Both methods access data organized in a
physical sequential manner; the physical records (containing logical records) are stored
sequentially in the order in which they are entered.

A special type of this organization is the extended format data set. Extended format data sets
have a different internal storage format from a sequential data set that is not extended (fixed
block with a 32-byte suffix). This storage format gives extended format data sets additional
usability and availability characteristics:

� They can be allocated in the compressed format (can be referred to as a compressed
format data set). A compressed format data set is a type of extended format data set that
has an internal storage format that allows for data compression.

� They allow data striping, that is, a multivolume sequential file where data may be
accessed in parallel.

� They are able to recover from padding error situations.

Extended format data sets must be SMS-managed and must reside on DASD. You cannot
use an extended format data set for certain system data sets.

Another type of this organization is the Hierarchical File System. HFS files are
POSIX-conforming files that reside in an HFS data set. They are byte-oriented rather than

Sequential access data organization

Physical sequential

Extended format

Compressed data sets

Data striped data sets

Hierarchical File System (HFS)

These organizations are accessed by the
sequential access methods:

Queued Access Method (QSAM)

Basic Access Method (BSAM)

POSIX S/390 UNIX System Services calls
140 ABCs of z/OS System Programming Volume 3

record-oriented, as are MVS files. They are identified and accessed by specifying the path
leading to them. Programs can access the information in HFS files through z/OS UNIX
system calls, such as open(pathname), read(file descriptor), and write(file descriptor).

Programs can also access the information in HFS files through the MVS BSAM, QSAM, and
VSAM (Virtual Storage Access Method) access methods. When using BSAM or QSAM, an
HFS file is simulated as a multi-volume sequential data set. When using VSAM, an HFS file is
simulated as an ESDS. HFS data sets are:

� Supported by standard DADSM create, rename, and scratch

� Supported by DFSMShsm for dump/restore and migrate/recall if DFSMSdss is used as
the data mover

� Not supported by IEBCOPY or the DFSMSdss COPY function

The differences between QSAM and BSAM are:

� QSAM de-blocks logical records and does look-ahead reads (anticipates reads). In BSAM,
these tasks are performed by the calling program.

� QSAM synchronizes the task with I/O operation (places the task in wait along the I/O
operation). In BSAM, this tasks is performed by the calling program (macro CHECK).
Chapter 4. Storage management software 141

4.28 Virtual Storage Access Method (VSAM)

Figure 4-35 Virtual Storage Access Method

VSAM
VSAM is an access method service used to organize data and maintain information about the
data in a catalog.

There are two major parts of VSAM:

� Catalog management - the catalog contains information about the data sets.

� Record management - VSAM can be used to organize records into four types of data sets:

– Key-sequenced (KSDS)

– Entry-sequenced (ESDS)

– Linear (LDS)

– Relative record with fixed or variable length (RRDS)

The primary difference among these types of data sets is the way in which their records are
stored and accessed. VSAM arranges records by an index key, by relative byte address, or
by relative record number. Data organized by VSAM is cataloged for easy retrieval and is
stored in one of four types of data sets.

CATALOG

VSAM DATA SETS

Catalog
Management

Record
Management

VSAM Data set types:
KSDS
ESDS
LDS
RRDS

Fixed Length
Variable Length
142 ABCs of z/OS System Programming Volume 3

4.29 VSAM resource pool and buffering techniques

Figure 4-36 VSAM resource pool

VSAM resource pool
VSAM resource pool is a set of VSAM I/O control blocks plus a buffer pool. A buffer pool is a
collection of same-sized I/O buffers plus control information describing the occupancy of such
buffers. The objective of a buffer pool is to avoid I/O operations and consequently to improve
performance.

For more efficient use of virtual storage, buffer pools can be shared among data sets (except
linear data sets), using globally or locally shared buffer pools. There are three types of
resource pools, depending on the type of the associated buffer pool. These options are
declared in the ACB macro of the VSAM data set (MACRF keyword) and are described in the
following section.

Non-shared resource (NSR)
An NSR resource pool has the following characteristics:

� Implicitly constructed at data set open time.

� Not shared among VSAM data sets.

� Located in the private area.

� For sequential reads, VSAM uses the read-ahead function: when the application finishes
processing half the buffers, VSAM schedules an I/O operation for that half of the buffers.

VSAM resource pool is formed by:

I/O control blocks

Buffer pool (set of equal-sized buffers)

VSAM resource pool can be shared by VSAM
sphere data sets, improving the effectiveness of
these buffers

Three types of VSAM resource pools:

Non-shared resource (NSR)

Local shared resource (LSR)

Global shared resource (GSR)
Chapter 4. Storage management software 143

This continues until a CA boundary is encountered; the application must wait until the last
I/O to the CA is done before proceeding to the next CA. The I/O operations are always
scheduled within CA boundaries.

� For sequential writes, VSAM postpones the writes to DASD until half the buffers are filled
by the application. Then VSAM schedules an I/O operation to write that half of the buffers
to DASD. The I/O operations are always scheduled within CA boundaries.

� Buffers are not revisited.

� There is dynamic addition of strings. Strings are like cursors; each string represents a
position in the data set for the requested record.

NSR is the VSAM default and it is used by high level languages (HLL). As buffers are
managed via a sequential algorithm, NSR is not the best choice for random processing. For
applications using NSR, consider using system-managed buffering (SMB); see
“System-managed buffering (SMB)” on page 145.

Local shared resource (LSR)
An LSR resource pool is suitable for random processing. The LSR has the following
characteristics:

� Shared among VSAM data sets accessed by tasks in the same address space.

� Located in the private area and ESO hiperspace. With hiperspace, VSAM buffers are
located in expanded storage to improve the processing of VSAM data sets.

� Explicitly constructed via macro BLDVRP, before the OPEN.

� Buffers are managed via the last recently used (LRU) algorithm.

� Buffers are revisited.

Global shared resource (GSR)
GSR is similar to the LSR buffering technique. GSR differs from LSR in the following ways:

� The buffer pool is shared among VSAM data sets accessed by tasks in multiple address
spaces in the same z/OS image.

� Buffers are located in CSA.

� The code using this must be in the supervisor state.

� Buffers cannot use hiperspace.

� The separate index resource pools are not supported for GSR.

GSR has many disadvantages, so you should consider the use of VSAM RLS instead.
144 ABCs of z/OS System Programming Volume 3

4.30 System-managed buffering (SMB)

Figure 4-37 System-managed buffering

System-managed buffering (SMB)
SMB is a feature of DFSMSdfp and was introduced in DFSMS V1R4. SMB enables VSAM to:

� Determine the optimum number of index and data buffers
� Change the buffer management declared in the application program, in the ACB MACRF

parameter, from NSR to LSR.

Usually SMB allocates many more buffers than without SMB. Performance improvements
can be dramatic with random access (particularly when few buffers were available). The use
of SMB is transparent from the point of view of the application; no application changes are
needed.

SMB available to a data set when all the following conditions are met:

� SMS-managed data set
� Extended format VSAM data sets:

– Data set name type EXT in the data class
� Application opens the data set for NSR processing

SMB is invoked or disabled through one of the following methods:

1. Record Access Bias data class field
2. ACCBIAS subparameter of AMP in the JCL DD statement. JCL information takes

precedence over data class information.

Only for SMS-managed extended format data sets

RECORD_ACCESS_BIAS in DATACLASS

ACCBIAS subparameter of AMP, in JCL DD
statement

Only for applications using NSR buffering
management

For SYSTEM, VSAM decisions based on MACRF
parameter of ACB

Optimum number of index and data buffers

For random access, VSAM changes buffering
management technique from NSR to LSR
Chapter 4. Storage management software 145

If all of the required conditions are met, SMB is invoked when SYSTEM or an SMB
processing technique is used in the fields described. SMB is disabled when USER is entered
instead (USER is the default). Since JCL information takes precedence over data class
information, installations can enable or disable SMB for some executions.

The SMB processing techniques are:

DO SMB optimizes for totally random record access. When this technique is used,
VSAM changes the buffering management from NSR to LSR.

DW The majority is direct access to records, with some sequential.
SO Totally sequential access.
SW The majority is sequential access, with some direct access to records.

When SYSTEM is used in JCL or in the data class, SMB chooses the processing technique
based on the MACRF parameter of the ACB.

For more information about the use of SMB, refer to VSAM Demystified, SG24-6105.
146 ABCs of z/OS System Programming Volume 3

4.31 VSAM terminology and concepts

Figure 4-38 VSAM terminology and concepts

Logical record
A logical record is a unit of information used to store data in a VSAM data set. The logical
record is designed by the application programmer from the business model. The application
program, through a GET, requests that a specific logical record be moved from the I/O device
to memory in order to be processed. Through a PUT, the specific logical record is moved
from memory to an I/O device. A logical record can be of a fixed size or a variable size,
depending on the business requirements.

The logical record is divided into fields by the application program, such as the name of the
item, code, and so on. One or more contiguous fields can be defined as a key field to VSAM,
and an specific logical record can be retrieved directly by its key value.

Physical record
A physical record is device-dependent. VSAM calculates the physical record size at the time
the data set is defined. All physical records have the same length. A physical record is also
referred to as a physical block or simply a block.

Logical record
Key field

Physical record
Control interval

Record definition field
Control interval definition field

Control area
Components

Data component
Index component

Index set
Sequence set

Cluster
Alternate Index
Sphere
Chapter 4. Storage management software 147

4.32 Control interval (CI)

Figure 4-39 Control interval format

Control interval (CI)
Control interval is a VSAM-unique concept. A CI is formed by one or several physical
records (usually just one). It is the fundamental building block of every VSAM file. A CI is a
contiguous area of direct access storage that VSAM uses to store data records and control
information that describes the records. A CI is the unit of information that VSAM transfers
between the storage device and the processor during one I/O operation. Whenever a record
is retrieved from direct access storage, the entire CI containing the record is read into a
VSAM I/O buffer in virtual storage. The desired record is transferred from the VSAM buffer to
a user-defined buffer or work area.

Based on the CI size, VSAM calculates the best size of the physical block in order to better
use the 3390/3380 logical track. The CI size can be from 512 bytes to 32 KB. A CI consists of:

� Logical records stored from the beginning to the end of the CI
� Free space, for data records to be inserted into or lengthened
� Control information, which is made up of two types of fields:

– One control interval definition field (CIDF) per CI. CIDF is a 4-byte field. CIDF contains
information about the amount and location of free space.

– Several record definition fields (RDF) describing the logical records. RDF is a 3-byte
field and describes the length of records. For fixed length records there are two RDFs,
one with the length, and other with how many with the same length.

The size of CIs can vary from one file to another, but all the CIs within the data component of
a particular data set must be of the same length. The CI components and properties may

4 bytes

LR = Logical record
RDF = Record definition field
CIDF = Control interval definition field

Control Interval Format

LRn

Control information fields

LR1 LR2 LRn
R
D
Fn

R
D
F2

R
D
F1

C
I
D
F

FREE SPACE

3 bytes

Contigous records of
the same size

LRn
LR1
100

bytes

R
D
F4

R
D
F2

R
D
F1

C
I
D
F

FREE
SPACE

LR1
100

bytes

LR2
100

bytes

LR3
100

bytes

LR3
100

bytes

LR4
150

bytes

LR5
100

bytes

R
D
F3
148 ABCs of z/OS System Programming Volume 3

vary, depending on the data set organization. For example, an LDS does not contain CIDFs
and RDFs in its CI. All of the bytes in the LDS CI are data bytes.

Spanned records
Spanned records are logical records that are larger than the CI size. They are needed when
the application requires very long logical records. To have spanned records, the file must be
defined with the SPANNED attribute at the time it is created. Spanned records are allowed to
extend across or “span” control interval boundaries. The RDFs describe whether the record is
spanned or not.

A spanned record always begins on a control interval boundary, and fills one or more control
intervals within a single control area. A spanned record does not share the CI with any other
records; in other words, the free space at the end of the last segment is not filled with the next
record. This free space is only used to extend the spanned record.

Control area (CA)
Control area is also a VSAM unique concept. A CA is formed by two or more CIs put together
into fixed-length contiguous areas of direct access storage. A VSAM data set is composed of
one or more CAs. In most cases, a CA is the size of a 3390/3380 cylinder. The minimum size
of a CA is one track. The CA size is implicitly defined when you specify the size of a data set
at data set definition.

CAs are needed to implement the concept of splits. The size of a VSAM file is always a
multiple of the CA size and VSAM files are extended in units of CAs. A spanned record
cannot be larger than a CA.

Splits
CI splits and CA splits occur as a result of data record insertions (or increasing the length of
an already existing record) in KSDS and VRRDS organizations. If a record is to be inserted
(in key sequence) and there is not enough free space in the CI, the CI is split. Approximately
half the records in the CI are transferred to a free CI provided in the CA, and the record to be
inserted is placed in the original CI.

If there are no free CIs in the CA and a record is to be inserted, a CA split occurs. Half the CIs
are sent to the first available CA at end of the data component. This movement creates free
CIs in the original CA, then the record to be inserted causes a CI split.
Chapter 4. Storage management software 149

4.33 VSAM data set components

Figure 4-40 VSAM data set components

VSAM data set components
A component is an individual part of a VSAM data set. Each component has a name, an entry
in the catalog and an entry in the VTOC. There are two types of components, the data
component and the index component. Some VSAM organizations have only the data
component.

Data component
The data component is the part of a VSAM data set, alternate index, or catalog that contains
the data records. All VSAM data set organizations have the data component.

Index component
The index component is a collection of records containing data keys and pointers (relative
byte address, or RBA). The data keys are taken from a fixed defined field in each data logical
record. The keys in the index logical records are compressed (rear and front). The RBA
pointers are compacted. Only KSDS and VRRDS VSAM data set organizations have the
index component.

Using the index, VSAM is able to retrieve a logical record from the data component when a
request is made for a record with a certain key. A VSAM index can consist of more than one
level (balanced tree). Each level contains pointers to the next lower level. Because there are
random and sequential types of access, VSAM divides the index component into two parts:
the sequence set, and the index set. Let’s look at these in more detail now.

Control
 Interval

2 5 7

8 9

12 13 14

15 16 19

22 23 26

31 35 38

H
D
R

7 11 14 21 30 38

HDR 38 67

Control Area
Control Area Control Area

39 41 43

44 45 46

51 53 54

55 56 57

58 61 62

65 66 67

 68 69

72 73 74

76 77 78

79 80 85

86 89

93 94 95

H
D
R

43 50 54 57 64 67
H
D
R

 71 75 78 85 92 95 Sequence
Set

Index
Component

Data
Component

HDR 95 348

HDR 67 348

Index
Set

H
D
R

Record key

Logical Records
150 ABCs of z/OS System Programming Volume 3

Sequence set
The sequence set is the lowest level of index, and it directly points (through an RBA) to the
data CI in the CA. Each index record:

� Occupies one index CI
� Maps one CA in the data component
� Contains pointers and high key information for each data CI
� Contains horizontal pointers from one sequence set CI to the next higher keyed sequence

set CI. These horizontal pointers are needed because the possibility of splits, which make
the physical sequence different from the logical collating sequence by key.

Index set
The records in all levels of the index above the sequence set are called the index set. An entry
in an index set record consists of the highest possible key in an index record in the next lower
level, and a pointer to the beginning of that index record. The highest level of the index
always contains a single index CI.

The structure of VSAM prime indexes is built to create a single index record at the lowest
level of the index. If there is more than one sequence-set level record, VSAM automatically
builds another index level.

Cluster
A cluster is the combination of the data component (data set) and the index component (data
set) for a KSDS. The cluster provides a way to treat index and data components as a single
component with its own name.

Alternate index (AIX)
Alternate index allows logical records of a KSDS or ESDS to be accessed sequentially and
directly by more than one key field. The cluster which the AIX is built on is called the base
cluster. Alternate indexes eliminate the need to store the same data in different sequences in
multiple data sets for the purposes of various applications. Each alternate index is a KSDS
cluster consisting of an index component and a data component.

Any field in the base cluster record can be used as an alternate key. It may also overlap the
primary key (in a KSDS), or any other alternate key. The same base cluster may have several
alternate indexes varying the alternate key. There may be more than one primary key value
per the same alternate key value. For example, the primary key might be an employee
number and the alternate key might be the department name; obviously, the same
department name may have several employee numbers.

The records in the AIX data component contain the alternate key value and all the primary
keys corresponding to the alternate key value (pointers to data in the base cluster). The
primary keys in the logical record are in ascending sequence within an alternate index value.

The AIX data set is created with the DEFINE ALTERNATEINDEX command, then it is populated
via the BLDINDEX command. Before a base cluster can be accessed through an alternate
index, a path must be defined. A path provides a way to gain access to the base data through
a specific alternate index. To define a path, use the DEFINE PATH command. The utility to
issue this command is discussed in “Access method services” on page 118.

Sphere
A sphere is a VSAM cluster and its associated data sets. These data sets are alternate
indexes of the cluster.
Chapter 4. Storage management software 151

4.34 Key sequenced data set (KSDS)

Figure 4-41 Key sequenced data set (KSDS)

VSAM KSDS data sets
In a KSDS, logical records are placed in the data set in ascending collating sequence by key.
The key contains a unique value, which determines the record's collating position in the data
set. The key must be in the same position in each record.

The key data must be contiguous and each key must be unique. After it is specified, the value
of the key cannot be altered, but the entire record may be deleted.

When a new record is added to the data set, it is inserted in its collating sequence by key.

A KSDS has a data and an index component. The index component keeps track of the used
keys and is used by VSAM to retrieve quickly a record from the data component when a
request is made for a record with a certain key.

A KSDS can have fixed or variable length records.

A KSDS can be accessed in sequential mode, direct mode, or skip sequential mode
(meaning that you process sequentially, but skip some portions of the data set).

VSAM.KSDS
VSAM.KSDS.DATA
VSAM.KSDS.INDEX

Cluster component

Data component
Index component
152 ABCs of z/OS System Programming Volume 3

4.35 Processing a KSDS data set

Figure 4-42 Processing an indexed VSAM data set: direct access

Processing a KSDS data set
A KSDS has an index that relates key values to the relative locations in the data set. This
index is called the prime index. It has two uses:

� Locate the collating position when inserting records
� Locate records for retrieval

When initially loading a KSDS data set, records must be presented to VSAM in key
sequence. The index for a key-sequenced data set is built automatically by VSAM as the data
set is loaded with records.

When a data CI is completely loaded with logical records, free space, and control information,
VSAM makes an entry in the index. The entry consists of the highest possible key in the data
control interval and a pointer to the beginning of that control interval.

When accessing records sequentially, VSAM refers only to the sequence set. It uses a
horizontal pointer to get from one sequence set record to the next record in collating
sequence.

Request for data direct access
When accessing records directly, VSAM follows vertical pointers from the highest level of the
index down to the sequence set to find vertical pointers to the requested logical record.
Figure 4-42 shows how VSAM searches the index when an application issues a GET for a
logical record with key value 23.

2 5 7

8 9

12 13 14

15 16 19

22 23 30

31 35 38

H
D
R

7 11 14 21 30 38

HDR 38 67

39 41 43

44 45 46

51 53 54

55 56 57

58 61 62

65 66 67

 68 69

72 73 74

76 77 78

79 80 85

86 89

93 94 95

H
D
R

43 50 54 57 64 67
H
D
R

 71 75 78 85 92 95 Sequence
Set

Index
Component

Data
Component

HDR 95 348

HDR 67 348

Index
Set

H
D
R

Application
Logical
record

Application: GET record with key = 23
Chapter 4. Storage management software 153

The sequence is as follows:

1. VSAM scans the index record in the highest level of the index set for a key that is greater
or equal to 23.

2. The entry 67 points to an index record in the next lower level. In this index record, VSAM
scans for an entry for a key that is higher or equal to 23.

3. The entry 38 points to the sequence set that maps the CA holding the CI containing the
logical record,

4. VSAM scans the sequence set record with highest key 38, searching for a key that is
greater or equal to 23.

5. The entry 30 points to the data component CI that holds the desired record.

6. VSAM searches the CI for the record with key 23. VSAM finds the logical record and gives
it to the application program.

If VSAM does not find a record with the desired key, the application receives a return code
indicating that the record was not found.
154 ABCs of z/OS System Programming Volume 3

4.36 Relative record data set (RRDS)

Figure 4-43 Relative record data set

Relative record data set
A relative record data set (RRDS) consists of a number of preformed, fixed-length slots. Each
slot has a unique relative record number, and the slots are sequenced by ascending relative
record number. Each (fixed length) record occupies a slot, and it is stored and retrieved by
the relative record number of that slot. The position of a data record is fixed; its relative record
number cannot change.

An RRDS has a data component only.

Random load of an RRDS requires a user program.

SLOT 39

SLOT 21 SLOT 22 SLOT 23 SLOT 24 SLOT 25

SLOT 26 SLOT 27 SLOT 28 SLOT 29 SLOT30

SLOT 32SLOT 31 SLOT 33 SLOT 34 SLOT 35

SLOT 36 SLOT 38 SLOT 40SLOT 41

CI 0

CI 3

CI 1

CI 2

CI 3

CI 2

CI 1

CI 0

DATA
 CA

SLOT 1 SLOT 2 SLOT 3 SLOT 4 SLOT 5

SLOT 6 SLOT 7 SLOT 8 SLOT 9 SLOT10

SLOT 12SLOT 11 SLOT 13 SLOT 14 SLOT15

SLOT 16 SLOT 18 SLOT 19 SLOT 20SLOT 17

DATA
 CA
Chapter 4. Storage management software 155

4.37 Typical RRDS processing

Figure 4-44 Typical RRDS processing

Processing RRDS data sets
The application program inputs the relative record number of the target record. VSAM is able
to find its location very quickly by using a formula that takes into consideration the geometry
of the DASD device. The relative number is always used as a search argument. For an
RRDS, three types of processing are supported:

� Sequential processing.

� Skip-sequential processing.

� Direct processing; in this case, the randomization routine is supported by the application
program.

SLOT 1 SLOT 2 SLOT 3 SLOT 4 SLOT 5

SLOT 6 SLOT 7 SLOT 8 SLOT 9 SLOT10

SLOT 12SLOT 11 SLOT 13 SLOT 14 SLOT15

SLOT 16 SLOT 18 SLOT 19 SLOT 20SLOT 17

SLOT 39

SLOT 21 SLOT 22 SLOT 23 SLOT 24 SLOT 25

SLOT 26 SLOT 27 SLOT 28 SLOT 29 SLOT30

SLOT 32SLOT 31 SLOT 33 SLOT 34 SLOT 35

SLOT 36 SLOT 38 SLOT 40SLOT 41

Control Area 1

Control Area 2

Application Program

GET RECORD 26
156 ABCs of z/OS System Programming Volume 3

4.38 Linear data set (LDS)

Figure 4-45 Linear data set (LDS)

Linear data set (LDS)
A linear data set is a VSAM data set with a CI size of 4096 bytes. An LDS has no imbedded
control information in its CI, that is, no record definition fields (RDFs) and no control interval
definition fields (CIDFs). Therefore, all LDS bytes are data bytes. Logical records must be
blocked and deblocked by the application program—but logical records do not exist from the
point of view of VSAM.

IDCAMS is used to define a linear data set. An LDS has only a data component. An LDS data
set is just a physical sequential VSAM data set comprised of 4 KB blocks, but with a
revolutionary buffer technique called data-in-virtual (DIV).

DATA
 CA

DATADATA

DATA

DATA

DATA

CI
CI
CI
CI

DATA
 CA

DATADATA

DATA

DATA

DATA

CI
CI
CI
CI
Chapter 4. Storage management software 157

4.39 Data-in-virtual

Figure 4-46 Data-in-virtual (DIV)

Data-in-virtual (DIV)
Data-in-virtual (DIV) is an optional and unique buffer technique used for LDS data sets.
Application programs can use DIV to map a data set (or a portion of a data set) into an
address space, a data space, or a hiperspace. An LDS cluster is sometimes referred to as a
DIV object.

Data is read into central storage via the paging algorithms only when that block is actually
referenced. During RSM page-steal processing, only changed pages are written to auxiliary
storage. Unchanged pages are discarded since they can be retrieved again from the
permanent data set.

DIV is designed to improve the performance of applications that process large files
non-sequentially and process them with significant locality of reference. It reduces the
number of I/O operations that are traditionally associated with data retrieval. Likely
candidates are large arrays or table files.

ENABLE USERS TO:
MAP DATA SET TO
VIRTUAL STORAGE

ACCESS DATA BY
 EXPLOITING
PAGING ALGORITHMS

AS/DS/HS
158 ABCs of z/OS System Programming Volume 3

4.40 Data-in-virtual objects

Figure 4-47 Data-in-virtual objects

Data-in-virtual objects
A linear data set is a VSAM data set with a control interval size of 4096 bytes to 32,768 bytes
in increments of 4096 bytes. A linear data set does not have imbedded control information. All
linear data set bytes are data bytes. Only integrated catalog facility catalogs can support a
linear data set.

A linear data set is processed as an entry-sequenced data set, with certain restrictions.
Because a linear data set does not contain control information (CIDFs and RDFs), it cannot
be accessed as if it contained individual records. You can access a linear data set with the
DIV macro. If using DIV to access the data set, the control interval size must be 4096;
otherwise, the data set will not be processed.

For information on how to use data-in-virtual (DIV), see z/OS MVS Programming: Assembler
Services Guide, SA22-7605.

When a linear data set is accessed with the DIV macro, it is referred to as the data-in-virtual
object or the data object.

IDCAMS:
DEFINE CLUSTER

LDS

DATA OBJECT
CREATE

DIV

ACCESS
Chapter 4. Storage management software 159

4.41 Mapping a linear data set

Figure 4-48 Mapping a linear data set

Mapping a linear data set
To establish a map from a linear data set to a window (a program-provided area in multiples
of 4 KB on a 4 KB boundary), the program issues:

� DIV IDENTIFY to introduce (allocate) a linear data set to data-in-virtual services.

� DIV ACCESS to cause a VSAM open for the data set and indicate access mode
(read/update).

� DIV MAP to enable the viewing of the data object by establishing an association between
a program-provided area and the data object. The area may be in an address space, data
space, or hiperspace.

No actual I/O is done until the program references the data in the window. The reference will
result in a page fault which causes data-in-virtual services to read the data from the linear
data set into the window.

DIV SAVE can be used to write out changes to the data object. DIV RESET can be used to
discard changes made in the window since the last SAVE operation.

AS/DS/HS

WINDOW
LDS

BLOCK3
BLOCK4
BLOCK5 SPAN

OFFSET
160 ABCs of z/OS System Programming Volume 3

4.42 Entry sequenced data set (ESDS)

Figure 4-49 Entry sequenced data set (ESDS)

Entry sequenced data set (ESDS)
An ESDS is comparable to a sequential data set. It contains fixed or variable-length records.
Records are sequenced by the order of their entry in the data set, rather than by a key field in
the logical record. All new records are placed at the end of the data set. An ESDS has only a
data component.

Records can be accessed sequentially or by relative byte address (RBA). When a record is
loaded or added, VSAM indicates its relative byte address (RBA). The RBA is the offset of
this logical record from the beginning of the data set. The first record in a data set has an RBA
of 0; the second record has an RBA equal to the length of the first record, and so on. The
RBA of a logical record depends only on the record's position in the sequence of records. The
RBA is always expressed as a full-word binary integer.

Although an entry-sequenced data set does not contain an index component, alternate
indexes are allowed. You can build an alternate index to keep track of these RBAs.

Record 1 Record 2 Record 3 Record 4 Unused Space

Record 5 Record 6 Record 7 Record 8 Unused Space

Record 9 Record 10 Unused Space

Unused Space

RBA 0

CI 1

CI 2

RBA 4096
CI 3

RBA 8192
CI 4

RBA 12288
Chapter 4. Storage management software 161

4.43 Typical ESDS processing

Figure 4-50 Typical ESDS processing (ESDS)

Typical ESDS processing
For an ESDS, two types of processing are supported:

� Sequential access (the most common)

� Direct (or random) access requires the program to give the RBA of the record

Skip sequential is not allowed.

Existing records can never be deleted. If the application wants to delete a record, it must flag
that record as inactive. As far as VSAM is concerned, the record is not deleted. Records can
be updated, but without length change.

R15 R16 R17

R1 R2 R3

R4 R5

R6 R7 R8

R9 R10 R11

Aplication Program

GET NEXT
162 ABCs of z/OS System Programming Volume 3

4.44 DFSORT

Figure 4-51 DFSORT

DFSORT
The DFSORT licensed program is a high performance data arranger for z/OS users. With
DFSORT, you can sort, merge, and copy data sets using EBCDIC, S/390 decimal or binary
keys.

DFSORT merges data sets by combining two or more files of sorted records to form a single
data set of sorted records.

You can use DFSORT to do simple tasks such as alphabetizing a list of names, or you can
use it to aid complex tasks such as taking inventory or running a billing system. You can also
use DFSORT's record-level editing capability to perform data management tasks.

For most of the processing done by DFSORT, the whole data set is affected. However, some
forms of DFSORT processing involve only certain individual records in that data set.

While sorting, merging, or copying data sets, you can also:

� Select a subset of records from an input data set. You can include or omit records that
meet specified criteria. For example, when sorting an input data set containing records of
course books from many different school departments, you can sort the books for only one
department.

� Reformat records, add or delete fields, and insert blanks, constants, or binary zeros. For
example, you can create an output data set that contains only certain fields from the input
data set arranged differently.

Marcelo
Carolina
Ana
Cassio
Dovi
Miriam
Enete
Sugahara

Source Data Set

Ana
Carolina
Cassio
Dovi
Enete
Marcelo
Miriam
Sugahara

Sugahara
Miriam
Marcelo
Enete
Dovi
Cassio
Carolina
Ana

 Ascending order Descending order

SORT SORT
Chapter 4. Storage management software 163

� Sum the values in selected records while sorting or merging (but not while copying). In the
example of a data set containing records of course books, you can use DFSORT to add
up the dollar amounts of books for one school department.

� Create multiple output data sets and reports from a single pass over an input data set. For
example, you can create a different output data set for the records of each department.

� Sort, merge, include, or omit records according to the collating rules defined in a selected
local.

� Alter the collating sequence when sorting or merging records (but not while copying). For
example, you can have the lowercase letters collate after the uppercase letters.

� Sort, merge, or copy Japanese data if the IBM Double Byte Character Set Ordering
Support (DBCS Ordering, the 5665-360 Licensed Program, Release 2.0 or an equivalent
product) is used with DFSORT to process the records.

DFSORT has utilities such as ICETOOL, which is a multipurpose DFSORT utility that uses
the capabilities of DFSORT to perform multiple operations on one or more data sets in a
single step.

For articles, online books, news, tips, techniques, examples, and more, visit the z/OS
DFSORT home page:

http://www.storage.ibm.com/software/sort/mvs

For further information about DFSORT, refer to z/OS DFSORT: Getting Started, SC26-7527,
and other DFSORT books.
164 ABCs of z/OS System Programming Volume 3

http://www.storage.ibm.com/software/sort/mvs

4.45 DFSMS Network File System

Figure 4-52 DFSMS Network File System

DFSMS Network File System
A client is a computer or process that requests services on the network. A server is a
computer or process that responds to a request for service from a client. A user accesses a
service, which allows the use of data or other resources.

Figure 4-52 illustrates the client-server relationship:

� The upper center portion shows the DFSMS Network File System (NFS) address space
server; the lower portion shows the DFSMS Network File System (NFS) address space
client.

� The left side of the figure shows various NFS clients and servers that can interact with the
DFSMS NFS server and client.

� In the center of the figure is the Transmission Control Protocol/Internet Protocol (TCP/IP)
network used to communicate between clients and servers.

With the DFSMS NFS server, you can remotely access z/OS conventional data sets or UNIX
server z/OS files from workstations, personal computers, and other systems that run client
software for the Sun NFS Version 2 protocols on a TCP/IP network.

The DFSMS NFS server acts as an intermediary to read, write, create, or delete UNIX server
z/OS files and z/OS data sets that are maintained on an z/OS host system. The remote z/OS
data sets or UNIX server z/OS files are mounted from the host processor to appear as local
directories and files on the client system.

AIX

OS/2Unix

DOS Other NFS
Client and
Servers

A/UX

TCP/IP
Network

z/OS

DFSMS
NETWORK
FILE
SYSTEM
SERVER

AMS

OMVS

MVS Data Sets

Hierarchical File
Systemz/OS

DFSMS
NETWORK
FILE
SYSTEM
CLIENT
Chapter 4. Storage management software 165

This server makes the strengths of an z/OS host processor—storage management,
high-performance disk storage, security, and centralized data—available to the client
platforms.

With the DFSMS NFS client, you can allow basic sequential access method (BSAM), queued
sequential access method (QSAM), virtual storage access method (VSAM), and UNIX server
z/OS users and applications to have transparent access to data on systems that support Sun
NFS Version 2 protocols.

The remote NFS server can be a z/OS, UNIX, AIX, OS/2, or other system. The DFSMS NFS
client is implemented on UNIX server z/OS and implements the client portion of the Sun NFS
Version 2 protocols.

The Network File System can be used for:

� File sharing between platforms

� File serving (as a data repository)

For further information about NFS, refer to z/OS Network File System Customization and
Operation, SC26-7417, and z/OS Network File System User’s Guide, SC26-7419.
166 ABCs of z/OS System Programming Volume 3

4.46 DFSMS Optimizer

Figure 4-53 DFSMS Optimizer

DFSMS Optimizer
The DFSMS Optimizer provides analysis and simulation information for both SMS and
non-SMS users. The DFSMS Optimizer can help you maximize storage use and minimize
storage costs. It provides methods and facilities for you to:

� Monitor and tune DFSMShsm functions as migration and backup

� Create and maintain a historical database of system and data activity

� Fine-tune an SMS configuration by performing in-depth analysis of:

– Management class policies, including simulations and cost-benefit-analysis using your
storage component costs

– Storage class policies for SMS data, with recommendations for both SMS and
non-SMS data

– High I/O activity data sets, including recommendations for placement and simulation
for cache and expanded storage

– Storage hardware performance of subsystems and volumes including I/O rate,
response time, and caching statistics

� Simulate potential policy changes and understand the costs of those changes

� Produce presentation-quality charts

For more information about the DFSMS Optimizer, refer to DFSMS Optimizer User’s Guide
and Reference, SC26-7047.

0

20

40

60

80

100

120
Chapter 4. Storage management software 167

4.47 DFSMSdss

Figure 4-54 DFSMSdss

DFSMSdss
DFSMSdss is a direct access storage device (DASD) data and space management tool.
DFSMSdss works on DASD volumes only in the MVS environment. You can use DFSMSdss
to do the following:

� Copy and move data sets between volumes of like and unlike device types

� Dump and restore data sets, entire volumes, or specific tracks

� Convert data sets and volumes to and from SMS management

� Compress partitioned data sets

� Release unused space in data sets

� Reduce or eliminate DASD free-space fragmentation by consolidating free space on a
volume

� Implement concurrent copy in 9390/3990 control units. If the control unit is a 9393 RVA, a
snapshot is transparently generated without any change in the JCL.

Note: Like devices have the same track capacity and number of tracks per cylinder (for
example, 3380 Model D, Model E, and Model K). Unlike DASD devices have different
track capacities (for example, 3380 and 3390), a different number of tracks per cylinder,
or both.

TSO

RESTORE...
TAPECNTL...

//JOB2 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//DASD1 DD UNIT=3390,VOL=(PRIVATE,SER=111111),DISP=OLD
//TAPE DD UNIT=3490,VOL=SER=TAPE02,
// LABEL=(1,SL),DISP=(NEW,CATLG),DSNAME=USER2.BACKUP
//SYSIN DD *
DUMP INDDNAME(DASD1) OUTDDNAME(TAPE) -
 DATASET(INCLUDE(USER2.**,USER3.*))
168 ABCs of z/OS System Programming Volume 3

4.48 DFSMSdss: physical and logical processing

Figure 4-55 DFSMSdss physical and logical processing

DFSMSdss: physical and logical processing
Before you begin using DFSMSdss, you should understand the difference between logical
processing and physical processing. DFSMSdss can perform two kinds of processing when
executing COPY, DUMP, and RESTORE commands:

� Logical processing operates against data sets independently of physical device format.

� Physical processing moves data at the track-image level and operates against volumes,
tracks, and data sets.

Each type of processing offers different capabilities and advantages.

During a restore operation, the data is processed the same way it is dumped because
physical and logical dump tapes have different formats. If a data set is dumped logically, it is
restored logically; if it is dumped physically, it is restored physically. A data set restore
operation from a full volume dump is a physical data set restore operation.

TSO

Physical
or
Logical ?
Chapter 4. Storage management software 169

4.49 DFSMSdss: logical processing

Figure 4-56 DFSMSdss logical processing

Logical processing
A logical copy, dump, or restore operation treats each data set and its associated information
as a logical entity, and processes an entire data set before beginning the next one.

Each data set is moved by tracks from the source device and is potentially written to the
target device as a set of data records, allowing data movement between devices with
different track and cylinder configurations. Checking of data record consistency is not
performed during dump operation.

DFSMSdss performs logical processing if:

� You specify the data set keyword with the COPY command. A data set copy is always a
logical operation, regardless of how or whether you specify input volumes.

� You specify the data set keyword with the DUMP command, and either no input volume is
specified, or LOGINDDNAME or LOGINDYNAM is used to specify input volumes.

� The RESTORE command is performed, and the input volume was created by a logical dump.

Catalogs and VTOCs are used to select data sets for logical processing. If you do not specify
input volumes, the catalogs are used to select data sets for copy and dump operations.

When to use logical processing
Use logical processing for the following situations:

TSO

DUMP
ABC.FILE

DUMP01

UCAT

ABC.FILE

VOLABC

ABC.FILE
170 ABCs of z/OS System Programming Volume 3

� Data is copied to an unlike device type.

� Logical processing is the only way to move data between unlike device types.

� Data that may need to be restored to an unlike device is dumped.

� Data must be restored the same way it is dumped. This is particularly important to bear in
mind when making backups that you plan to retain for a long period of time (such as vital
records backups). If a backup is retained for a long period of time, it is possible that the
device type it originally resided on will no longer be in use at your site when you want to
restore it. This means you will have to restore it to an unlike device, which can be done
only if the backup has been made logically.

� Aliases of VSAM user catalogs are to be preserved during copy and restore functions.
Aliases are not preserved for physical processing.

� Unmovable data sets or data sets with absolute track allocation are moved to different
locations.

� Multivolume data sets are processed.

� VSAM and multivolume data sets are to be cataloged as part of DFSMSdss processing.

� Data sets are to be deleted from the source volume after a successful dump or copy
operation.

� Both non-VSAM and VSAM data sets are to be renamed after a successful copy or restore
operation.

� You want to control the percentage of space allocated on each of the output volumes for
copy and restore operations.

� You want to copy and convert a PDS to a PDSE or vice versa.

� You want to copy or restore a data set with an undefined DSORG to an unlike device.

� You want to keep together all parts of a VSAM sphere.
Chapter 4. Storage management software 171

4.50 DFSMSdss: physical processing

Figure 4-57 DFSMSdss physical processing

Physical processing
Physical processing moves data based on physical track images. Because data movement is
carried out at the track level, only target devices with track sizes equal to those of the source
device are supported. Physical processing operates on volumes, ranges of tracks, or data
sets. For data sets, it relies only on volume information (in the VTOC and VVDS) for data set
selection, and processes only that part of a data set residing on the specified input volumes.

DFSMSdss performs physical processing if:

� You specify the FULL or TRACKS keyword with the COPY or DUMP command. This
results in a physical volume or physical tracks operation.

Attention: Be aware that, when invoking the TRACKS keyword with the COPY and RESTORE
commands, the TRACKS keyword should be used only for a data recovery operation. For
example, you can use it to repair a bad track in the VTOC or a data set, or to retrieve data
from a damaged data set. You cannot use it in place of a full-volume or a logical data set
operation. Doing so could destroy a volume or impair data integrity.

� You specify the data set keyword on the DUMP command and input volumes with the
INDDNAME or INDYNAM parameter. This produces a physical data set dump.

� The RESTORE command is executed and the input volume is created by a physical dump
operation.

TSO

DUMP FULL
CACSW3

DUMP01
172 ABCs of z/OS System Programming Volume 3

When to use physical processing
Use physical processing when:

� Backing up system volumes that you might want to restore with a stand-alone DFSMSdss
restore operation.

Stand-alone DFSMSdss restore supports only physical dump tapes.

� Performance is an issue.

Generally, the fastest way—measured by elapsed time—to copy or to dump an entire
volume is with a physical full-volume command. This is primarily because minimal catalog
searching is necessary for physical processing.

� Substituting one physical volume for another or recovering an entire volume.

With a COPY or RESTORE (full volume or track) command, the volume serial number of the
input DASD volume can be copied to the output DASD volume.

� Dealing with I/O errors.

Physical processing provides the capability to copy, dump, and restore a specific track or
range of tracks.

� Dumping or copying between volumes of the same device type but different capacity.
Chapter 4. Storage management software 173

4.51 DFSMSdss stand-alone services

Figure 4-58 DFSMSdss stand-alone services

Stand-alone services
DFSMS Version 1 Release 4 provided a new stand-alone services function, that is intended
for the storage administrator, the system programmer, and anyone who runs the stand-alone
services program. This, along with related information in z/OS MVS System
Messages,Volume 1 (ABA-AOM), SA22-7631, supports a new stand-alone services program.

Stand-alone services can perform either a full-volume restore or a tracks restore from dump
tapes produced by DFSMSdss or DFDSS. It offers the following benefits when compared to
the previous DFSMSdss stand-alone functions:

� Provides user-friendly commands to replace the previous control statements

� Supports IBM 3494 and 3495 Tape Libraries, and 3590 Tape Subsystems

� Supports IPLing from a DASD volume, in addition to tape and card readers

� Allows you to predefine the operator console to be used during stand-alone services
processing

For detailed information about the stand-alone service, and other DFSMSdss information,
refer to z/OS DFSMSdss Storage Administration Reference, SC35-0424, and z/OS
DFSMSdss Storage Administration Guide, SC35-0423.

DFDSS Stand-Alone Tape
174 ABCs of z/OS System Programming Volume 3

4.52 DFSMShsm

Figure 4-59 DFSMShsm

DFSMShsm
DFSMShsm is a licensed program that automatically performs space management and
availability management in a storage device hierarchy. Availability management is used to
make data available by automatically copying new and changed data set to backup volumes.
Space management is used to manage DASD space by enabling inactive data sets to be
moved off fast-access storage devices, thus creating free space or new allocations.
DFSMShsm also provides for other supporting functions that are essential to your
installation's environment.

For further information about DFSMShsm, refer to z/OS DFSMShsm Storage Administration
Guide, SC35-0421, and z/OS DFSMShsm Storage Administration Reference, SC35-0422.

Availability
Automatic Backup

Incremental Backup

Space
Chapter 4. Storage management software 175

4.53 Availability management

Figure 4-60 DFSMShsm availability management

Availability management
Availability management ensures that a recent copy of your DASD data set exists. The
purpose of availability management is to ensure that lost or damaged data sets can be
retrieved at the most current possible level. To do this, availability management automatically
and periodically performs functions that:

1. Copy all the data sets on DASD volumes to tape volumes

2. Copy the changed data sets on DASD volumes (incremental backup) either to other
DASD volumes or to tape volumes

DFSMShsm minimizes the space occupied by the data sets on the backup volume.

Availability management functions are:

� Automatic physical full-volume dump
� Automatic incremental backup
� Automatic control data set backup
� Command dump and backup
� Command recovery
� Expiration of backup versions
� Disaster backup
� Aggregate backup and recovery (ABARS)

SMS-Managed Non-SMS-Managed

Storage Grops
 (volumes)

Primary and
Secondary Volumes

TAPE

DFSMShsm

Backup
Functions

User
Catalog

Control
Data
Sets
176 ABCs of z/OS System Programming Volume 3

4.54 Space management

Figure 4-61 DFSMShsm space management

Space management
Space management is the function of DFSMShsm that allows you to keep DASD space
available for users in order to meet the service level objectives for your system. The purpose
of space management is to manage your DASD storage efficiently. To do this, space
management automatically and periodically performs functions that:

1. Move low-activity data sets from user-accessible volumes to DFSMShsm volumes

2. Reduce the space occupied by data on both the user-accessible volumes and the
DFSMShsm volumes

The DFSMShsm space management functions are:

� Automatic primary space management of DFSMShsm-managed volumes, which includes:

– Deletion of temporary data sets

– Deletion of expired data sets

– Release of unused, over-allocated space

– Migration to DFSMShsm-owned migration level 1 (ML1) volumes (compressed)

� Automatic secondary space management of DFSMShsm-owned volumes, which includes:

– ML1 cleanup, including deletion of expired migrated data sets and some migration
control data set (MCDS) records

SMS-Managed Non-SMS-Managed

Storage Grops
 (volumes)

Primary
Volumes

TAPE

DASD
Migration
 Level 1

Migration
 Level 2

DASD

User
Catalog

Control
Data
Sets

DFSMShsm
Chapter 4. Storage management software 177

– Moving migration copies from migration level 1 (ML1) to migration level 2 (ML2)
volumes

� Automatic interval migration, initiated when a DFSMShsm-managed volume exceeds a
specified threshold

� Automatic recall of user data sets back to DASD volumes, when referenced by the
application

� Space management by command

� Space-saving functions, which include:

– Data compaction and data compression. Compaction provides space savings through
fewer gaps and less control data. Compression provides a more compact way to store
data.

– Partitioned data set (PDS) free space compression.

– Small data set packing (SDSP) data set facility, which allows small data sets be
packaged in just one physical track.

– Data set rebuilding.

It is possible to have more than one z/OS image sharing the same DFSMShsm policy. In this
case one of the DFSMShsm images is the primary host and the others are secondary. The
primary HSM host is identified by 'HOST= in the HSM startup and is responsible for:

� Hourly space checks

� During auto backup: CDS BUP, BUP of ML1 data sets to tape

� During auto dump: expiration of dump copies and deletion of excess dump VTOC copy
data sets

� During SSM: cleanup of MCDS, migration volumes, and L1-to-L2 migration

If you are running your z/OS HSM images in sysplex (parallel or basic), you can use
secondary host promotion to allow a secondary image to assume the primary image's tasks if
the primary host fails. Secondary host promotion uses XCF status monitoring to execute the
promotion. To indicate a system as a candidate, issue:

� SETSYS PRIMARYHOST(YES), and

� SSM(YES)
178 ABCs of z/OS System Programming Volume 3

4.55 Storage device hierarchy

Figure 4-62 Storage device hierarchy

Storage device hierarchy
A storage device hierarchy consists of a group of storage devices that have different costs for
storing data, different amounts of data stored, and different speeds of accessing the data.

DFSMShsm uses the following three-level storage device hierarchy for space management:

� Level 0: Are DFSMShsm-managed storage devices at the highest level of the hierarchy;
these devices contain data directly accessible to your application.

� Level 1 and Level 2: Storage devices at the lower levels of the hierarchy, level 1 and level
2, contain data that DFSMShsm has compressed and optionally compacted into a format
that you cannot use. Devices at this level provide lower cost per byte storage and usually
slower response time. Usually L1 is in a cheaper DASD (or the same cost, but with the
gain of compression) and L2 is on tape.

Note: If you have RVA DASD, you may skip level 1 (ML1) migration because the data in
L0 is already compacted/compressed.

Primary Volumes
or Level 0 (ML0)

Migration
Level 2 (ML2)

Migration
 Level 1 (ML1)

Migration
 Level 2 (ML2)
Chapter 4. Storage management software 179

4.56 HSM volume types

Figure 4-63 DFSMShsm volume types

DFSMShsm volume types
Backing up an individual cataloged data set is performed in the same way as for
SMS-managed data sets. However, to back up individual uncataloged data sets, issue the
following commands:

 BACKDS dsname UNIT(unittype) VOLUME(volser)

 HBACKDS dsname UNIT(unittype) VOLUME(volser)

The HBACKDS form of the command can be used by either non-DFSMShsm-authorized or
DFSMShsm-authorized users. The BACKDS form of the command can be used only by
DFSMShsm-authorized users. The UNIT and VOLUME parameters are required because
DFSMShsm cannot locate an uncataloged data set without being told where it is.

DFSMShsm supports the following volume types:

� Level 0 (L0) volumes contain data sets that are directly accessible to you and the jobs you
run. DFSMShsm-managed volumes are those L0 volumes that are managed by the
DFSMShsm automatic functions. These volumes must be mounted and online when you
refer to them with DFSMShsm commands.

� Migration level 1 (ML1) volumes are DFSMShsm-supported DASD on which DFSMShsm
maintains your data in DFSMShsm format. These volumes are normally permanently
mounted and online. They can be:

– Volumes containing data sets that DFSMShsm migrated from L0 volumes.

Level 0

Migration
Level 1

Migration
Level 2

Daily
Backup

Spill
Backup

Dump
Volumes

Agregate
backup
180 ABCs of z/OS System Programming Volume 3

– Volumes containing backup versions created from a DFSMShsm BACKDS or HBACKDS
command. Backup processing requires ML1 volumes to store incremental backup and
dump VTOC copy data sets, and as intermediate storage for data sets that are backed
up by data set command backup.

� Migration level 2 (ML2) are DFSMShsm-supported tape or DASD on which DFSMShsm
maintains your data in DFSMShsm format. These volumes are normally not mounted or
online. They contain data sets migrated from ML1 volumes or L0 volumes.

� Daily backup volumes are DFSMShsm-supported tape or DASD on which DFSMShsm
maintains your data in DFSMShsm format. These volumes are normally not mounted or
online. They contain the most current backup versions of data sets copied from L0
volumes. These volumes may also contain earlier backup versions of these data sets.

� Spill backup volumes are DFSMShsm-supported tape or DASD on which DFSMShsm
maintains your data sets in DFSMShsm format. These volumes are normally not mounted
or online. They contain earlier backup versions of data sets, which were moved from
DASD backup volumes.

� Dump volumes are DFSMShsm-supported tape. They contain image copies of volumes
that are produced by the full volume dump function of DFSMSdss (write a copy of the
entire allocated space of that volume), which is invoked by DFSMShsm.

� Aggregate backup volumes are DFSMShsm-supported tape. These volumes are normally
not mounted or online. They contain copies of the data sets of a user-defined group of
data sets, along with control information for those data sets. These data sets and their
control information are stored as a group so that they can be recovered (if necessary) as
an entity by an aggregate recovery process (ABARS).
Chapter 4. Storage management software 181

4.57 Automatic space management

Figure 4-64 DFSMShsm automatic space management

Automatic space management
Automatic space management prepares the computing system for the addition of new data by
freeing space on the DFSMShsm-managed volumes (L0) and DFSMShsm-owned volumes
(ML1). The functions associated with automatic space management can be divided into two
groups

Automatic volume space management
Primary Invoked timely in a daily basis, it cleans L0 volumes by deleting

expired and temporary data sets and releasing allocated and not used
space. If after that the free space is still below a threshold, then it
moves data sets (under control of the management class) from L0 to
ML1 or ML2 volumes.

Interval migration Executed each hour throughout the day, as needed for all storage
groups. In interval migration, DFSMShsm performs a space check on
each DFSMShsm volume being managed. A volume is considered
eligible for interval migration based on the AUTOMIGRATE and
THRESHOLD settings.

Automatic secondary space management
It deletes expired data sets from ML1/ML2, then moves data sets (under control of the
management class) from ML1 to ML2 volumes. It should complete before automatic primary
space management so that the ML1 volumes will not run out of space.

ABC.FILE1

ABC.FILE2

ABC.FILE3

Level 0

10 days
without
any
access

HSM.HMIG.ABC.FILE1.T891008.I9012

Level 1

dsname
Migrate
182 ABCs of z/OS System Programming Volume 3

4.58 Recall

Figure 4-65 Recall

Automatic and command recall
Recall returns a migrated data set to a user L0 volume. The recall is transparent and the
application does not need to know that it happened or where the migrated data set resides.
To provide applications with quick access to their migrated data sets, DFSMShsm allows up
to 15 concurrent recall tasks. RMF monitor III shows delays caused by the recall operation.

The MVS allocation routine discovers that the data set is migrated when, while accessing the
catalog, it finds the word MIGRAT instead of the volser.

Automatic recall returns your migrated data set to a DFSMShsm-managed volume when you
refer to it. The catalog is updated accordingly.

Command recall returns your migrated data set to a user volume when you enter the HRECALL
DFSMShsm command through an ISMF panel or by directly keying in the command.

For both automatic and command recall, DFSMShsm working with SMS invokes the
automatic class selection (ACS) routines. Data sets that were not SMS-managed at the time
they were migrated may be recalled as SMS-managed data sets. The ACS routines
determine whether the data sets should be recalled as SMS-managed, and if so, the routines
select the classes and storage groups in which the data sets will reside. The system chooses
the appropriate volume for the data sets.

DFSMShsm working without SMS returns a migrated data set to a DFSMShsm-managed
non-SMS level 0 volume with the most free space.

ABC.FILE1

ABC.FILE2

ABC.FILE3

Level 0

HSM.HMIG.ABC.FILE1.T891008.I9012

Level 1

dsname
Chapter 4. Storage management software 183

4.59 Removable media manager (DFSMSrmm)

Figure 4-66 DFSMSrmm

DFSMSrmm
In your enterprise, you store and manage your removable media in several types of media
libraries. For example, in addition to your traditional tape library (a room with tapes, shelves,
and drives), you might have several automated and manual tape libraries. You probably also
have both onsite libraries and offsite storage locations, also known as vaults or stores.

With the DFSMSrmm functional component of DFSMS, you can manage your removable
media as one enterprise-wide library (single image) across systems. Because of the need of
global control information, these systems must have accessibility to some shared DASD
volumes. DFSMSrmm manages your installation's tape volumes and the data sets on those
volumes. DFSMSrmm also manages the shelves where volumes reside in all locations
except in automated tape library data servers.

DFSMSrmm manages all tape media (such as cartridge system tapes and 3420 reels), as
well as other removable media you define to it. For example, DFSMSrmm can record the
shelf location for optical disks and track their vital record status; however, it does not manage
the objects on optical disks.

IBM 3494

Virtual Tape Server
184 ABCs of z/OS System Programming Volume 3

4.60 Libraries and locations

Figure 4-67 Libraries and locations

Libraries and locations
You decide where to store your removable media based on how often the media is accessed
and for what purpose it is retained. For example, you might keep volumes that are frequently
accessed in an automated tape library data server, and you probably use at least one storage
location to retain volumes for disaster recovery and audit purposes. You might also have
locations where volumes are sent for further processing, such as other data centers within
your company or your customers and vendors.

IBM 3494

Virtual Tape Server
Chapter 4. Storage management software 185

4.61 What DFSMSrmm can manage

Figure 4-68 What DFSMSrmm can manage

DFSMSrmm can manage the following libraries and storage locations:

Removable media library
A removable media library contains all the tape and optical volumes that are available for
immediate use, including the shelves where they reside. A removable media library usually
includes other libraries:

� System-managed libraries, such as automated or manual tape library data servers

� Non-system-managed libraries, containing the volumes, shelves, and drives not in an
automated or a manual tape library data server

In the removable media library, you store your volumes in “shelves”, where each volume
occupies a single shelf location. This shelf location is referred to as a rack number in the
DFSMSrmm TSO sub commands and ISPF dialog. A rack number matches the volume's
external label. DFSMSrmm uses the external volume serial number to assign a rack number
when adding a volume, unless you specify otherwise. The format of the volume serial you
define to DFSMSrmm must be one to six alphanumeric characters. The rack number must be
six alphanumeric or national characters.

System-managed tape library
A system-managed tape library is a collection of tape volumes and tape devices defined in
the tape configuration database. The tape configuration database is an integrated catalog

Removable media library
 System-managed tape libraries

Automated tape libraries

Manual tape libraries

Non-system-managed tape libraries or traditional
tape libraries

Storage locations
Installation defined

DFSMSrmm built-in
Local

Distant

Remote
186 ABCs of z/OS System Programming Volume 3

facility user catalog marked as a volume catalog (VOLCAT) containing tape volumes and
tape library records. A system-managed tape library can be either automated or manual:

� An automated tape library dataserver is a device consisting of robotic components,
cartridge storage areas (or shelves), tape subsystems, and controlling hardware and
software, together with the set of tape volumes that reside in the library and can be
mounted on the library tape drives. The IBM automated tape libraries are the automated
IBM 3494 and IBM 3495 Library Dataservers.

� A manual tape library dataserver is a set of tape drives and the set of system-managed
volumes the operator can mount on those drives. The IBM manual tape library is the
manual IBM 3495 Tape Library Dataserver, which supports 3490 and 3490E Magnetic
Tape Subsystems.

Non-system-managed tape library
A non-system-managed tape library consists of all the volumes, shelves, and drives not in an
automated tape library dataserver or manual tape library dataserver. You might know this
library as the traditional tape library. DFSMSrmm provides complete tape management
functions for the volumes and shelves in this traditional tape library. Volumes in a
non-system-managed library are defined by DFSMSrmm as being “shelf-resident”.

All tape media and drives supported by z/OS are supported in this environment. Using
DFSMSrmm, you can fully manage all types of tapes in a non-system-managed tape library,
including 3420 reels, 3480, and 3590 cartridge system tapes.

Storage location
Storage locations are not part of the removable media library because the volumes in storage
locations are not generally available for immediate use. A storage location is comprised of
shelf locations that you define to DFSMSrmm. A shelf location in a storage location is
identified by a bin number. Storage locations are typically used to store removable media that
are kept for disaster recovery or vital records.
Chapter 4. Storage management software 187

4.62 Managing libraries and storage locations

Figure 4-69 DFSMSrmm: managing libraries and storage locations

Managing libraries and storage locations
DFSMSrmm records the complete inventory of the removable media library and storage
locations in the DFSMSrmm control data set, which is a VSAM key-sequenced data set. In
the control data set, DFSMSrmm records all changes made to the inventory (such as adding
or deleting volumes), and also keeps track of all movement between libraries and storage
locations. DFSMSrmm manages the movement of volumes among all library types and
storage locations. This lets you control where a volume—and hence, a data set—resides, and
how long it is retained.

DFSMSrmm helps you manage the movement of your volumes and retention of your data
over their full life, from initial use to the time they are retired from service. Among the
functions DFSMSrmm performs for you are:

� Automatically initializing and erasing volumes

� Recording information about volumes and data sets as they are used

� Expiration processing

� Identifying volumes with high error levels that require replacement

To make full use of all of the DFSMSrmm functions, you specify installation setup options and
define retention and movement policies.

For more information about DFSMSrmm, refer to z/OS DFSMSrmm Guide and Reference,
SC26-7404, and z/OS DFSMSrmm Implementation and Customization Guide, SC26-7405.

RMM CDS

IBM 3494

Virtual Tape Server
188 ABCs of z/OS System Programming Volume 3

Chapter 5. System-managed storage

As your business expands, so do your needs for storage to hold your applications and data,
and the costs of managing that storage. Storage costs include more than the price of the
hardware, with the highest cost being the people needed to perform storage management
tasks. If your business requires transaction systems, the batch window can also be a high
cost. Additionally, you must pay for people to install, monitor, and operate your storage
hardware devices, for electrical power to keep each piece of storage hardware cool and
running, and for floor space to house them. Removable media, such as optical and tape
storage, cost less per gigabyte (GB) than online storage, but require additional time and
resources to locate, retrieve, and mount.

To allow your business to grow efficiently and profitably, you need to find ways to control the
growth of your information systems and use your current storage more effectively.

With these goals in mind, in this chapter we present:

� The z/OS storage-managed environment

� Benefits of a system-managed environment

� An overview of how DFSMS manages a storage environment based on installation
policies

� How to set up a minimal SMS configuration and activate a DFSMS subsystem

� How to manage data using a minimal SMS configuration

� How to use Interactive Storage Management Facility (ISMF), an interface for defining and
maintaining storage management policies

5

© Copyright IBM Corp. 2004. All rights reserved. 189

5.1 Storage management

Figure 5-1 Managing storage with DFSMS

Storage management
Storage management involves data set allocation, placement, monitoring, migration, backup,
recall, recovery, and deletion. These activities can be done either manually or by using
automated processes.

Managing storage with DFSMS
DFSMS comprises the base z/OS operating system and performs the essential data, storage,
program, and device management functions of the system. DFSMS is the central component
of both system-managed and non-system-managed storage environments.

The DFSMS software product, together with hardware products and installation-specific
requirements for data and resource management, comprises the key to system-managed
storage in a z/OS environment.

The heart of DFSMS is the Storage Management Subsystem (SMS). Using SMS, the storage
administrator defines policies that automate the management of storage and hardware
devices. These policies describe data allocation characteristics, performance and availability
goals, backup and retention requirements, and storage requirements for the system. SMS
governs these policies for the system and the Interactive Storage Management Facility
(ISMF) provides the user interface for defining and maintaining the policies.

Before we go further, let us distinguish DFSMS from the DFSMS environment.

dfp

hsm

rmm
DFSMS

dss

tvs
ISMF

IBM
3494

VTS

Availability
Space
Security
Performance
190 ABCs of z/OS System Programming Volume 3

5.2 DFSMS and DFSMS environment

Figure 5-2 SMS environment

DFSMS functional components
DFSMS is a set of products, and one of these products, DSFMSdfp, is mandatory for running
z/OS. DFSMS comprises the base z/OS operating system, where DFSMS performs the
essential data, storage, program, and device management functions of the system. DFSMS
is the central component of both system-managed and non-system-managed storage
environments.

DFSMS environment
The DFSMS environment consists of a set of hardware and IBM software products which
together provide a system-managed storage solution for z/OS installations.

The DFSMS uses a set of constructs, user interfaces, and routines (using the DFSMS
products) that allow the storage administrator to better manage the storage system. The core
logic of DFSMS, such as the ACS routines, ISMF code, and constructs, is located in
DFSMSdfp. DFSMShsm and DFSMSdss are involved in the management class construct.

In this environment, the Resource Access Control Facility (RACF) and Data Facility Sort
(DFSORT) products complement the functions of the base operating system. RACF provides
resource security functions, and DFSORT adds the capability for faster and more efficient
sorting, merging, copying, reporting, and analyzing of business information.

The DFSMS environment is also called the SMS environment.

DFSMS z/OS

RACF DFSORT

DFSMS Environment for z/OS

+

+ +
Chapter 5. System-managed storage 191

5.3 Benefits of system-managed storage

Figure 5-3 Benefits of system-managed storage

Benefits of SMS
With SMS, you can define performance goals and data availability requirements, create
model data definitions for typical data sets, and automate data backup. SMS can
automatically assign, based on installation policy, those services and data definition attributes
to data sets when they are created. IBM storage management-related products determine
data placement, manage data backup, control space usage, and provide data security.

Goals of system-managed storage
The goals of system-managed storage are:

� To improve the use of the storage media (for example, by reducing out-of-space abends
and providing a way to set a free-space requirement).

� To reduce the labor involved in storage management by centralizing control, automating
tasks, and providing interactive controls for storage administrators.

� To reduce the user's need to be concerned with the physical details, performance, space,
and device management. Users can focus on using data, instead of on managing data.

In the next section we describe the benefits of system-managed storage, which may be
integrated with the goals. These benefits include simplified data allocation, improved
allocation control, improved I/O performance management, and more. Let’s look at them in
more detail.

Simplified data allocation

Improved allocation control

Improved I/O performance management

Automated DASD space management

Automated tape/optical space management

Improved data availability management

Simplified conversion of data to different device types
192 ABCs of z/OS System Programming Volume 3

Benefits of system-managed storage
Simplified data allocation
System-managed storage enables users to simplify their data allocations. For example,
without using the Storage Management Subsystem, a z/OS user would have to specify the
unit and volume on which the system should allocate the data set. The user would also have
to calculate the amount of space required for the data set in terms of tracks or cylinders. This
means the user has to know the track size of the device which will contain the data set. With
system-managed storage, users can let the system select the specific unit and volume for the
allocation. They can also specify size requirements in terms of megabytes or kilobytes. This
means the user does not need to know anything about the physical characteristics of the
devices in the installation.

Improved allocation control
System-managed storage enables you to set a requirement for free space across a set of
direct access storage device (DASD) volumes. You can then provide adequate free space to
avoid out-of-space abends. The system automatically places data on a volume containing
adequate free space. DFSMS 1.4 offers enhancements to avoid out-of-space by the relief of
the SPACE requirements. You can also set a threshold for scratch tape volumes in tape
libraries, to ensure enough cartridges are available in the tape library for scratch mounts.

Improved Input/Output (I/O) performance management
System-managed storage enables you to improve DASD I/O performance across the
installation and at the same time reduce the need for manual tuning by defining performance
goals for each class of data. You can use cache statistics recorded in System Management
Facility (SMF) records to help evaluate performance. You can also improve sequential
performance by using extended sequential data sets. The DFSMS environment makes the
most effective use of the caching abilities of the IBM 3990 Model 3 and Model 6 Storage
Controls, as well as other new models.

Automated DASD space management
System-managed storage enables you to automatically reclaim space that is allocated to old
and unused data sets or objects. You can define policies that determine how long an unused
data set or object will be allowed to reside on primary storage (storage devices used for your
active data). You can have the system remove obsolete data by migrating the data to other
DASD, tape, or optical volumes, or you can have the system delete the data. You can also
release allocated but unused space that is assigned to new and active data sets.

Automated tape space management
System-managed storage enables you to fully use the capacity of your tape cartridges and to
automate tape mounts. Using tape mount management techniques, DFSMShsm can fill tapes
to their capacity. With 3490E tape devices, Enhanced Capacity Cartridge System Tape,
36-track recording mode, and the improved data recording capability, you can increase the
amount of data that can be written on a single tape cartridge.

You can also use the IBM 3495 or 3494 Tape Library Dataserver to automatically mount tape
volumes and manage the inventory in an automated tape library. If you do not have an
automated tape library dataserver, you can still take advantage of system-managed tape by
using manual tape libraries and the 3495 Model M10 Tape Library Dataserver.

Automated optical space management
System-managed storage enables you to fully use the capacity of your optical cartridges and
to automate optical mounts. Using a 3995 Optical Library Dataserver, you can automatically
mount optical volumes and manage the inventory in an automated optical library.
Chapter 5. System-managed storage 193

Improved data availability management
System-managed storage enables you to provide different backup requirements to data
residing on the same DASD volume. Thus, you do not have to treat all data on a single
volume the same way.

You can use DFSMShsm to automatically back up CICS/ESA and DATABASE 2 (DB2)
databases, partitioned data sets extended (PDSEs), and physical sequential, partitioned,
virtual storage access method (VSAM), hierarchical file system (HFS), and direct access data
sets. You can also back up other types of data and use concurrent copy to maintain access to
critical data sets while they are being backed up. Concurrent Copy, along with
Backup-While-Open, has an added advantage in that it avoids the invalidation of a backup of
a CICS VSAM KSDS due to a control area or control interval split.

You can also create a logical grouping of data sets, so that the group is backed up at the
same time to allow for recovery of the application defined by the group. This is done with the
aggregate backup and recovery support (ABARS) provided by DFSMShsm.

Simplified conversion of data to different device types
System-managed storage enables you to move data to new volumes without requiring users
to update their job control language (JCL). Because users in a DFSMS environment do not
need to specify the unit and volume which contains their data, it does not matter to them if
their data resides on a specific volume or device type. This allows you to easily replace old
devices with new ones.

You can also use system-determined block sizes to automatically reblock physical sequential
and partitioned data sets that can be reblocked.
194 ABCs of z/OS System Programming Volume 3

5.4 Establishing service level objectives

Figure 5-4 Implementing your storage management policies

Storage management policies
The purpose of a backup plan is to ensure the prompt and complete recovery of data. A
well-documented plan identifies data that requires backup, the levels required,
responsibilities for backing up the data, and methods to be used.

The policies defined by your installation represent decisions about your resources, such as:

� What performance objectives are required by the transactions accessing the data

Based on these objectives, you can try to better exploit cache data striping. By tracking
data set I/O activities, you can make better decisions about data set caching policies and
improve overall system performance. For object data, you can track transaction activities
to monitor and improve OAM's performance.

� When and how to back up data - incremental or total

Determine the backup frequency, the number of backup versions, and the retention period
by consulting user group representatives. Be sure to consider whether certain data
backups need to be synchronized. For example, if the output data from application A is
used as input for application B, you must coordinate the backups of both applications to
prevent logical errors in the data when they are recovered.

� Whether data sets should be kept available for use during backup or copy

You can store backup data sets on DASD or tape (this does not apply to objects). Your
choice depends on how fast the data needs to be recovered, media cost, operator cost,

What performance objectives are required by data

When and how to back up data

Whether data sets should be kept available for use

during backup or copy

How to manage backup copies kept for disaster

recovery

What to do with data that is obsolete or seldom used
Chapter 5. System-managed storage 195

floor space, power requirements, air conditioning, the size of the data sets, and whether
you want the data sets to be portable.

� How to manage backup copies kept for disaster recovery - locally or in a vault

Related data sets should be backed up in aggregated tapes. Each application should have
its own, self-contained aggregate of data sets. If certain data sets are shared by two or
more applications, you might want to ensure application independence for disaster
recovery by backing up each application that shares the data. This is especially important
for shared data in a distributed environment.

� What to do with data that is obsolete or seldom used

Data is obsolete when it has exceeded its expiration dates and is no longer needed. Some
examples are old masters, listings, and permanent work files. To select obsolete data for
deletion using DFSMSdss, issue the DUMP command and the DELETE parameter, and
force OUTDDNAME to DUMMY.
196 ABCs of z/OS System Programming Volume 3

5.5 Implementing SMS policies

Figure 5-5 Creating SMS policies

Implementing SMS policies
To implement a policy for managing storage, the storage administrator defines classes of
space management, performance, and availability requirements for data sets. The storage
administrator uses:

Data class Data class is used to define model allocation characteristics for data
set.s

Storage class Storage class is used to define performance and availability goals.

Management class Management class is used to define backup and retention
requirements.

Storage group Storage group is used to create logical groupings of volumes to be
managed as a unit.

ACS routines Automatic Class Selection (ACS) routines are used to assign class
and storage group definitions to data sets and objects.

DFSMS facilitates all of these tasks by providing menu-driven, fill-in-the-blank panels with
the Interactive Storage Management Facility (ISMF). ISMF panels make it easy to define
classes, test and validate ACS routines, and perform other tasks to analyze and manage
your storage. Note that many of these functions are available in batch through the NaviQuest
tool.

For example, the administrator can define one storage class for data entities requiring high
performance, and another for those requiring standard performance. Then, the administrator

D
at

a
C

la
ss

Ma nagement Class
S

torage
C

lass

StorageGroup

Data
Set

What does it
look like?

What is the
service level?

Where is it
placed?

Which are the
services?

ACS Routines
Chapter 5. System-managed storage 197

writes Automatic Class Selection (ACS) routines that use naming conventions or other criteria
of your choice to automatically assign the classes that have been defined to data as that data
is created. These ACS routines can then be validated and tested.

When the ACS routines are started and the classes (also referred to as constructs) are
assigned to the data, SMS uses the policies defined in the classes to apply to the data for the
life of the data. Additionally, devices with various characteristics can be pooled together into
storage groups, so that new data can be automatically placed on devices that best meet the
needs for the data.
198 ABCs of z/OS System Programming Volume 3

5.6 Monitoring SMS policies

Figure 5-6 Monitoring your SMS policies

Monitoring SMS policies
After storage administrators have established the installation's service levels and
implemented policies based on those levels, they can use DFSMS facilities to see if the
installation objectives have been met. Information on past use can help to develop more
effective storage administration policies and manage growth effectively. The DFSMS
Optimizer feature can be use to monitor, analyze, and tune the policies.

Monitor DASD use

Monitor data set performance

Decide when to consolidate free space on DASD

Set policies for DASD or tape

Use reports to manage your removable media
Chapter 5. System-managed storage 199

5.7 Assigning data to be system-managed

Figure 5-7 How to be system-managed

How to be system-managed
Using SMS, you can automate storage management for individual data sets and objects, and
for DASD, optical, and tape volumes. Figure 5-7 shows how a data set, object, DASD volume,
tape volume, or optical volume becomes system-managed. The numbers shown in
parentheses are associated with the following notes:

1. A DASD data set is system-managed if you assign it a storage class. If you do not assign
a storage class, the data set is directed to a non-system-managed DASD or tape
volume–one that is not assigned to a storage group.

2. You can assign a storage class to a tape data set to direct it to a system-managed tape
volume. However, only the tape volume is considered system-managed, not the data set.

3. Objects are also known as byte-stream data, and this data is used in specialized
applications such as image processing, scanned correspondence, and seismic
measurements. Object data typically has no internal record or field structure and, once
written, the data is not changed or updated. However, the data can be referenced many
times during its lifetime. Objects are processed by OAM. Each object has a storage class;
therefore, objects are system-managed. The optical or tape volume on which the object
resides is also system-managed.

4. Tape volumes are added to tape storage groups in tape libraries when the tape data set is
created.

DASD Optical Tape

Data Set (1) Assign Storage
Class (SC) Not applicable

 Not
system-managed
(2)

Object (3) Stored Stored Stored

Volume Assign System
Group (SG)

Define OAM
Storage Groups
(SG)

Assign Storage
Group (SG) (4)
200 ABCs of z/OS System Programming Volume 3

5.8 Using data classes

Figure 5-8 Using data classes

Using data classes
A data class is a collection of allocation and space attributes that you define. It is used when
data sets are created. You can simplify data set allocation for the users by defining data
classes that contain standard data set allocation attributes. You can use data classes with
both system-managed and non-system-managed data sets. However, some data class
characteristics, like extended format, are only available for system-managed data sets.

Data class attributes define space and data characteristics that are normally specified on JCL
DD statements, TSO/E ALLOCATE command, IDCAMS DEFINE commands, and dynamic
allocation requests. For tape data sets, data class attributes can also specify the type of
cartridge and recording method, and if the data is to be compacted. Users then need only
specify the appropriate data classes to create standardized data sets.

You can assign a data class through:

� The DATACLAS parameter of JCL DD statement, ALLOCATE or DEFINE commands.

� Data class ACS routine to automatically assign a data class when the data set is being
created. For example, data sets with the low-level qualifiers LIST, LISTING, OUTLIST, or
LINKLIST are usually utility output data sets with similar allocation requirements, and can
all be assigned the same data class.

You can override some data set attributes assigned in the data class, but you cannot change
the data class name assigned through an ACS routine.

Record and Space Attributes
Key Length and Offset
Record Format
Record Length
Record Organization
Space (Primary, Secondary, Avg
Rec, Avg Value)
Volume and VSAM Attributes
Compaction
Control Interval Size
Imbed
Media Type and Recording
Technology
Percent Free Space
Replicate
Retention Period or Expiration Date
Share Options (Cross Region,
Cross System)
Volume Count
Data Sets Attributes
Backup-While-Open
Data Set Name Type
Extended Addressability
Extended Format
Initial Load (Speed, Recovery)
Log and Logstream ID
Record Access Bias
Reuse
Space Constrait Relief and Reduce
Space Up to %
Spanned/Nospanned

TSO Allocate
ISPF/PDF

JCL IDCAMS DYNALLOC

Non-System-Managed
 Volumes

System-Managed
 Volumes

Data
Class

 ACS
ROUTINE

Allocation
Chapter 5. System-managed storage 201

Even though data class is optional, we usually recommend that you assign data classes to
system-managed and non-system-managed data. Although the data class is not used after
the initial allocation of a data set, the data class name is kept in the catalog entry for
system-managed data sets for future reference. The data class name is not saved for
non-system-managed data sets, although the allocation attributes in the data class are used
to allocate the data set.

For objects on tape, we recommend that you do not assign a data class via the ACS routines.
To assign a data class, specify the name of that data class on the SETOAM command.

If you change a data class definition, the changes only affect new allocations. Existing data
sets allocated with the data class are not changed.
202 ABCs of z/OS System Programming Volume 3

5.9 Using storage classes

Figure 5-9 Choosing volumes that met availability requirements

Using storage classes
A storage class is a collection of performance goals and availability requirements that you
define. The storage class is used to select a device to meet those goals and requirements.
Only system-managed data sets and objects can be assigned to a storage class. Storage
classes free users from having to know about the physical characteristics of storage devices
and manually placing their data on appropriate devices.

Some of the availability requirements that you specify to storage classes (such as cache and
dual copy) can only be met by DASD volumes attached through one of the following storage
control units or a similar device:

� 3990-3 or 3990-6
� RAMAC Array Subsystem
� Enterprise Storage Server (ESS)

Figure 5-9 shows storage control unit configurations and their storage class attribute values.

With storage class, you can assign a data set to dual copy volumes to ensure continuous
availability for the data set. With dual copy, two current copies of the data set are kept on
separate DASD volumes (by the control unit). If the volume containing the primary copy of the
data set is damaged, the companion volume is automatically brought online and the data set
continues to be available and current. Remote copy is the same, with the two volumes in
distinct control units (generally remote).

3390 / RAMAC Dual
pair

Availability
Requirement

Performance
Requirement

Storage Management Subsystem Mapping

3390-like 3390 / RAMAC

9393 RVA
Storage
Control

or
ESS

3990
Model
3 or 6

Storage
Control

with
cache

3990 Model
3 or 6

Storage
Control

with
cache

Data Set Requirements

Storage
Class
Chapter 5. System-managed storage 203

You can use the ACCESSIBILITY attribute of the storage class to request that concurrent
copy be used when data sets or volumes are backed up.

The 3990-6 and 9390 concurrent copy function enables you to take point-in-time copies of
data by using a cache sidefile that is loaded with the time-zero version of the data. Time-zero
refers to the state of the data when the concurrent copy session is started and before it gets
updated. Before a record is updated, it is copied to the cache sidefile, thus creating a before
update version or time-zero version of the record.

You can specify an I/O response time objective with storage class by using the millisecond
response time (MSR) parameter. During data set allocation, the system attempts to select the
closest available volume to the specified performance objective. Also along the data set life,
through the use MSR, DFSMS dynamically uses the cache algorithms as DASD Fast Write
(DFW) and Inhibit Cache Load (ICL) in order to reach the MSR target I/O response time. This
DFSMS function is called dynamic cache management.

To assign a storage class to a new data set, you can use:

� The STORCLAS parameter of the JCL DD statement, ALLOCATE or DEFINE command
� Storage class ACS routine

For objects, the system uses the performance goals you set in the storage class to place the
object on DASD, optical, or tape volumes. The storage class is assigned to an object when it
is stored or when the object is moved. The ACS routines can override this assignment.

If you change a storage class definition, the changes affect the performance service levels of
existing data sets that are assigned to that class when the data sets are subsequently
opened. However, the definition changes do not affect the location or allocation
characteristics of existing data sets.
204 ABCs of z/OS System Programming Volume 3

5.10 Using management classes

Figure 5-10 Using management classes

Using management classes
A management class is a collection of management attributes that you define. The attributes
defined in a management class are related to:

� Expiration date
� Migration criteria
� GDG management
� Backup of data set
� Object Class Transition Criteria
� Aggregate backup

Management classes let you define management requirements for individual data sets, rather
than defining the requirements for entire volumes. All the data set functions described in the
management class are executed by DFSMShsm and DFSMSdss programs. Figure 5-11 on
page 207 shows the sort of functions an installation may define in a management class.

To assign a management class to a new data set, you can use:

� The MGMTCLAS parameter of the JCL DD statement, ALLOCATE or DEFINE command
� The management class ACS routine to automatically assign management classes to new

data sets

The ACS routine can override the management class specified in JCL, ALLOCATE or DEFINE
command.You cannot override management class attributes via JCL or command
parameters.

Expiration

SPACE

Management
Class

DFSMShsm-Owned

DFSMShsm
and

 DFSMSdss

Storage
Management
 Subsystem

System-Managed
Volume

Data
Management
Requirements

Migration/Object
Transition

BACKUP

GDG
Management
Chapter 5. System-managed storage 205

If you do not explicitly assign a management class to a system-managed data set or object,
the system uses the default management class. You can define your own default
management class when you define your SMS base configuration.

If you change a management class definition, the changes affect the management
requirements of existing data sets and objects that are assigned that class. You can reassign
management classes when data sets are renamed.

For objects, you can:

� Assign a management class when it is stored, or
� Assign a new management class when the object is moved, or
� Change the management class by using the OAM Application Programming Interface

(OSREQ CHANGE function)

The ACS routines can override this assignment for objects.
206 ABCs of z/OS System Programming Volume 3

5.11 Management class functions

Figure 5-11 Management class functions

Management class functions
By classifying data according to management requirements, an installation can define unique
management classes to fully automate data set and object management. For example:

� Control the migration of CICS user databases, DB2 user databases and archive logs.

� Test systems and their associated data sets.

� IMS archive logs.

� Specify that DB2 image copies, IMS image copies and change accumulation logs be
written to primary volumes and then migrated directly to migration level 2 tape volumes.

� For objects, define when an object is eligible for a change in its performance objectives or
management characteristics. For example, after a certain number of days an installation
might want to move an object from a high performance DASD volume to a slower optical
volume.

Management class can also be used to specify that the object should have a backup copy
made when the OAM Storage Management Component (OSMC) is executing.

When changing a management class definition, the changes affect the management
requirements of existing data sets and objects that are assigned to that class.

Allow early migration for old generations of GDG
Delete selected old/unused data sets from DASD
volumes
Release allocated but unused space from data sets
Migrate unused data sets to tape or DASD volumes
Specify how often to back up data sets, and whether
concurrent copy should be used for backups
Specify how many backup versions to keep for data sets
Specify how long to save backup versions
Specify the number of versions of ABARS to keep and
how to retain those versions
Establish the expiration date/transition criteria for objects
Indicate if automatic backup is needed for objects
Chapter 5. System-managed storage 207

5.12 Using storage groups

Figure 5-12 Grouping storage volumes for specific purposes

Storage groups
A storage group is a collection of storage volumes and attributes that you define. The
collection can be a group of:

� System paging volumes
� DASD volumes
� Tape volumes
� Optical volumes
� Combination of DASD and optical volumes that look alike
� DASD, tape, and optical volumes treated as a single object storage hierarchy

Storage groups, along with storage classes, help reduce the requirement for users to
understand the physical characteristics of the storage devices which contain their data.

In a tape environment, you can also use tape storage groups to direct a new tape data set to
an automated or manual tape library.

DFSMShsm uses some of the storage group attributes to determine if the volumes in the
storage group are eligible for automatic space or availability management.

Figure 5-12 shows an example of how an installation can group storage volumes according to
their objective. In this example:

� SMS-managed DASD volumes are grouped into storage groups so that primary data sets,
large data sets, DB2 data, IMS data, and CICS data are all separated.

Migration
Level 2,
Backup,
Dump

DFSMShsm-owned

Migration
Level 1

Non-system-managed
UNMOVABLESYSTEM TAPE

Storage
Groups

TAPE

PRIMARYVIO LARGE

OBJECT BACKUP

OBJECT

DB2 IMS CICS

SMS-managed
208 ABCs of z/OS System Programming Volume 3

� The VIO storage group uses system paging volumes for small temporary data sets.
� The tape storage groups are used to group tape volumes that are held in tape libraries.
� The object storage group can span optical, DASD, and tape volumes.
� The object backup storage group can contain either optical or tape volumes within one

OAM invocation.
� Some volumes are not system-managed
� Other volumes are owned by DFSMShsm for use in data backup and migration.

DFSMShsm migration level 2 tape cartridges can be system-managed if you assign them
to a tape storage group.

A storage group is assigned to a data set only through the storage group ACS routine. Users
cannot specify a storage group when they allocate a data set, although they can specify a unit
and volume. Whether or not to honor their unit and volume request is an installation decision,
but we recommend that you discourage users from directly requesting specific devices. It is
more effective for users to specify the logical storage requirements of their data by storage
and management class, which the installation can then verify in the automatic class selection
routines.

For objects, there are two types of storage groups, OBJECT and OBJECT BACKUP. An
OBJECT storage group is assigned by OAM when the object is stored; the storage group
ACS routine can override this assignment. There is only one OBJECT BACKUP storage
group, and all backup copies of all objects are assigned to this storage group.

SMS volume selection
SMS determines which volumes are used for data set allocation by developing a list of all
volumes from the storage groups assigned by the storage group ACS routine. Volumes are
then either removed from further consideration or flagged as the following:

Primary Volumes online, below threshold, that meet all the specified criteria in
the storage class.

Secondary Volumes that do not meet all the criteria for primary volumes.
Tertiary When the number of volumes in the storage group is less than the

number of volumes that are requested.
Rejected Volumes that do not meet the required specifications. They are not

candidates for selection.

SMS starts volume selection from the primary list, if no volumes are available, SMS selects
from the secondary and, when no volumes are available, SMS selects from the tertiary list.

SMS interfaces with the system resource manager (SRM) to select from the eligible volumes
in the primary list. SRM uses device delays as one of the criteria for selection, and does not
prefer a volume if it is already allocated in the jobstep. This is useful for batch processing
when the data set is accessed immediately after creation. It is, however, not useful for
database data that is reorganized at off-peak hours.

SMS does not use SRM to select volumes from the secondary or tertiary volume lists. It uses
a form of randomization to prevent skewed allocations, in instances such as when new
volumes are added to a storage group, or when the free space statistics are not current on
volumes.

For a striped data set, when multiple storage groups are assigned to an allocation, SMS
examines each storage group and selects the one that offers the largest number of volumes
attached to unique control units. This is called control unit separation. Once a storage group
has been selected, SMS selects the volumes based on available space, control unit
separation, and performance characteristics if they are specified in the assigned storage
class.
Chapter 5. System-managed storage 209

5.13 Using aggregate backup and recovery support (ABARS)

Figure 5-13 ABARS

Aggregate backup and recovery support (ABARS)
Aggregate backup and recovery support, also called application backup application recovery
support, is a command-driven process to back up and recover any user-defined group of data
sets that are vital to your business. An aggregate group is a collection of related data sets
and control information that has been pooled to meet a defined backup or recovery strategy.
If a disaster occurs, you can use these backups at a remote or local site to recover critical
applications.

The user-defined group of data sets can be those belonging to an application, or any
combination of data sets that you want treated as a separate entity. Aggregate processing
enables you to:

� Back up and recover data sets by application, to enable business to resume at a remote
site if necessary

� Move applications in a non-emergency situation in conjunction with personnel moves or
workload balancing

� Duplicate a problem at another site

You can use aggregate groups as a supplement to using management class for applications
that are critical to your business. You can associate an aggregate group with a management
class. The management class specifies backup attributes for the aggregate group, such as
the copy technique for backing up DASD data sets on primary volumes, the number of

DataSet

Data and control
information

DataSet

DataSet
210 ABCs of z/OS System Programming Volume 3

aggregate versions to retain, and how long to retain versions. Aggregate groups simplify the
control of backup and recovery of critical data sets and applications.

Although SMS must be used on the system where the backups are performed, you can
recover aggregate groups to systems that are not using SMS, provided that the groups do not
contain data which requires that SMS be active, such as PDSEs. You can use aggregate
groups to transfer applications to other data processing installations, or to migrate
applications to newly-installed DASD volumes. You can transfer the application's migrated
data, along with its active data, without recalling the migrated data.
Chapter 5. System-managed storage 211

5.14 Automatic Class Selection (ACS) routines

Figure 5-14 Using ACS routines

Using Automatic Class Selection routines
You use automatic class selection (ACS) routines to assign classes (data, storage, and
management) and storage group definitions to data sets, database data, and objects. You
write ACS routines using the ACS language, which is a high-level programming language.
Once written, you use the ACS translator to translate the routines to object form so they can
be stored in the SMS configuration.

The ACS language contains a number of read-only variables, which you can use to analyze
new data allocations. For example, you can use the read-only variable &DSN to make class
and group assignments based on data set or object collection name, or &LLQ to make
assignments based on the low-level qualifier of the data set or object collection name.

Note: You cannot alter the value of read-only variables.

You use the four read-write variables to assign the class or storage group you determine for
the data set or object, based on the routine you are writing. For example, you use the
&STORCLAS variable to assign a storage class to a data set or object.

For a detailed description of the ACS language and its variables, see z/OS DFSMSdfp
Storage Administration Reference, SC26-7402.

For each SMS configuration, you can write as many as four routines: one each for data class,
storage class, management class, and storage group. Use ISMF to create, translate, validate,
and test the routines.

Non-System-Managed
Volume

DFSMSdss or
DFSMShsm
Conversion of
Existing Data Sets

 Data Class
ACS Routine

Storage Class
 ACS Routine

Management Class
 ACS Routine

Storage Group
 ACS Routine

New Data Set
Allocations

System-Managed
Volume

Storage
Class

not
assignedStorage

Class Assigned
212 ABCs of z/OS System Programming Volume 3

Processing order of ACS routines
Figure 5-14 on page 212 shows the order in which ACS routines are processed. Data can
become system-managed if the storage class routine assigns a storage class to the data, or if
it allows a user-specified storage class to be assigned to the data. If this routine does not
assign a storage class to the data, the data cannot reside on a system-managed volume.

Because data allocations, whether dynamic or through JCL, are processed through ACS
routines, you can enforce installation standards for data allocation on system-managed and
non-system-managed volumes. ACS routines also enable you to override user specifications
for data, storage, and management class, and requests for specific storage volumes.

You can use the ACS routines to determine the SMS classes for data sets created by the
Distributed FileManager/MVS. If a remote user does not specify a storage class, and if the
ACS routines decide that the data set should not be system-managed, the Distributed
FileManager/MVS terminates the creation process immediately and returns an error reply
message to the source. Therefore, when you construct your ACS routines, consider the
potential data set creation requests of remote users.
Chapter 5. System-managed storage 213

5.15 SMS configuration

Figure 5-15 Defining the SMS configuration

SMS configuration
An SMS configuration is composed of:

� A set of data class, management class, storage class and storage group

� ACS routines to assign the classes and groups

� Optical library and drive definitions

� Tape library definitions

� Aggregate group definitions and

� SMS base configuration, that contains information such as:

– Default management class
– Default device geometry
– The systems in the installation for which the subsystem manages storage

The SMS configuration is stored in SMS control data sets, which are VSAM linear data sets.
You must define the control data sets before activating SMS. SMS uses the following types of
control data sets:

� Source Control Data Set (SCDS)

� Active Control Data Set (ACDS)

� Communications Data Set (COMMDS)

SMS

ACDS

SCDS

SMS configuration is made of:
Set of the four classes
Optical library and drive definitions
Tape library definitions
ACS routines to assign classes
Aggregate group definitions
SMS base configuration

COMMDS
214 ABCs of z/OS System Programming Volume 3

Source Control Data Set (SCDS)
The SCDS contains SMS classes, groups, and translated ACS routines that define a single
storage management policy, called an SMS configuration. You can have several SCDSs, but
only one can be used to activate the SMS configuration.

You use the SCDS to develop and test but, before activating a configuration, retain at least
one prior configuration should you need to regress to it because of error. The SCDS is never
used to manage allocations.

Active Control Data Set (ACDS)
The ACDS is the system's active copy of the current SCDS. When you activate a
configuration, SMS copies the existing configuration from the specified SCDS into the ACDS.
By using copies of the SMS classes, groups, volumes, optical libraries, optical drives, tape
libraries, and ACS routines rather than the originals, you can change the current storage
management policy without disrupting it. For example, while SMS uses the ACDS, you can:

� Create a copy of the ACDS
� Create a backup copy of an SCDS
� Modify an SCDS
� Define a new SCDS

The ACDS must reside on a shared device to ensure that all systems in the installation use
the same active configuration.

We recommend that you have extra ACDSs in case a hardware failure causes the loss of
your primary ACDS. It must reside on a shared device, accessible to all systems, to ensure
that they share a common view of the active configuration. Do not have the ACDS reside on
the same device as the COMMDS or SCDS. Both the ACDS and COMMDS are needed for
SMS operation across the complex. Separation protects against hardware failure. You should
also create a backup ACDS in case of hardware failure or accidental data loss or corruption.

Communications Data Set (COMMDS)
The COMMDS data set contains the name of the ACDS and storage group volume statistics.
It enables communication between SMS systems in a multisystem environment. The
COMMDS also contains space statistics, SMS status, and MVS status for each
system-managed volume. Although only one COMMDS is used at a time for an SMS
installation, we recommend that you have more COMMDSs on different volumes for recovery
purposes.

The COMMDS must reside on a shared device accessible to all systems. However, do not
allocate it on the same device as the ACDS. Create a spare COMMDS in case of a hardware
failure or accidental data loss or corruption. SMS activation fails if the COMMDS is
unavailable.

SMSplex
An ACDS and COMMDS must reside on a shared volume, accessible for all systems in the
SMS complex (SMSplex). DFSMS components exploit the Coupling Facility capabilities to
provides services such as the following:

� Enhanced Catalog Sharing (ECS), which uses the CF cache structure to hold change
information for shared catalogs. This eliminates catalog-related I/O to the VVDS, resulting
in better performance for both user and master catalog requests.

� Sharing VSAM data sets in a Parallel Sysplex using VSAM RLS and TVS.

� DFSMShsm using a common recall queue to recall data sets in the Parallel Sysplex.
Chapter 5. System-managed storage 215

5.16 Implementing DFSMS

Figure 5-16 SMS implementation phases

Implementing DFSMS
You can implement SMS tot fit your specific needs. You do not have to implement and use all
of the SMS functions. Rather, you can implement the functions you are most interested in
first. For example, you can:

� Set up a storage group to only exploit the functions provided by extended format data
sets, such as striping, system-managed buffering (SMB), partial release, and so on.

� Put some of your data in a pool of one or more storage groups and assign them policies at
the storage group level to implement DFSMShsm operations in stages.

� Exploit VSAM record level sharing (RLS).

DFSMS implementation phases
There are five major DFSMS implementation phases:

� Enabling the software base
� Activating the storage management subsystem
� Managing temporary data
� Managing permanent data
� Managing tape data

In this redbook we present an overview of the steps needed to activate, and manage data
with, a minimal SMS configuration, without affecting your JCL or data set allocations. To
implement DFSMS in your installation, however, you must refer toz/OS DFSMS Implementing
System-Managed Storage, SC26-7407.

Enabling the
System-Managed
 Software base

Activating the
Storage Management

Subsystem

Managing
temporary

 data

Managing
permanent

 data

Managing
object
 data

Optimizing tape usage

Managing tape
volumes
216 ABCs of z/OS System Programming Volume 3

5.17 Steps to activate a minimal SMS configuration

Figure 5-17 Steps to activate a minimal SMS configuration

Steps to activate a minimal SMS configuration
Activating a minimal configuration lets you experience managing an SMS configuration
without affecting your JCL or data set allocations. This establishes an operating environment
for the storage management subsystem, without data sets becoming system-managed.

The steps needed to activate the minimal configuration are presented in Figure 5-17. When
implementing DFSMS, beginning by implementing a minimal configuration allows you to:

� Gain experience with ISMF applications for the storage administrator, since you use ISMF
applications to define and activate the SMS configuration.

� Gain experience with the operator commands that control operation of resources
controlled by SMS.

� Learn how the SMS base configuration can affect allocations for non-system-managed
data sets. The base configuration contains installation defaults for data sets:

� For non-system-managed data sets, you can specify default device geometry to ease the
conversion from device-dependent space calculations to the device-independent method
implemented by SMS.

� For system-managed data sets, you can specify a default management class to be used
for data sets that are not assigned a management class by your management class ACS
routine.

� Use simplified JCL.
� Implement allocation standards, since you can develop a data class ACS routine to

enforce your standards.

Allocate the SMS control data sets

Define to GRS the resource names for the SMS
control data sets

Define the system group

Define a minimal SMS configuration:

Create the SCDS base data set

Create classes, storage groups and respective ACS
routines

Define the SMS subsystem to z/OS

Start SMS and activate the SMS configuration
Chapter 5. System-managed storage 217

5.18 Allocating SMS control data sets

Figure 5-18 Using IDCAMS to create SMS control data sets

Calculating the SCDS and ACDS sizes
The size of the ACDS and SCDS may allow constructs for up to 32 systems. Be sure to
allocate sufficient space for the ACDS and SCDS, since insufficient ACDS size can cause
errors such as failing SMS activation. See z/OS DFSMSdfp Storage Administration
Reference, SC26-7402 for the formula used to calculate the appropriate SMS control data set
size.

Calculating the COMMDS size
The size of the communications data set (COMMDS) increased in DFSMS 1.3, because the
amount of space required to store system-related information for each volume increased. To
perform a precise calculation of the COMMDS size, use the formula provided in z/OS
DFSMSdfp Storage Administration Reference, SC26-7402.

Defining the control data sets
After you have calculated their respective sizes, define the SMS control data sets using
access method services. The SMS control data sets are VSAM linear and you define them
using IDCAMS DEFINE command, as shown in Figure 5-18. Because these data sets are
allocated before SMS is activated, space is allocated in tracks. Allocations in KBs or MBs are
only supported when SMS is active.

Specify SHAREOPTIONS(2,3) only for the SCDS. This lets one update-mode user operate
simultaneously with other read-mode users between regions.

 //ALLOC EXEC PGM=IDCAMS
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 DEFINE CLUSTER(NAME(YOUR.OWN.SCDS) LINEAR VOLUME(D65DM1) -
 TRK(25 5) SHAREOPTIONS(2,3)) -
 DATA(NAME(YOUR.OWN.SCDS.DATA))

 DEFINE CLUSTER(NAME(YOUR.OWN.ACDS) LINEAR VOLUME(D65DM2) -
 TRK(25 5) SHAREOPTIONS(3,3)) -
 DATA(NAME(YOUR.ACDS.DATA))

 DEFINE CLUSTER(NAME(YOUR.OWN.COMMDS) LINEAR VOLUME(D65DM3) -
 TRK(1 1) SHAREOPTIONS(3,3)) -
 DATA(NAME(YOUR.OWN.COMMDS.DATA))

218 ABCs of z/OS System Programming Volume 3

Specify SHAREOPTIONS(3,3) for the ACDS and COMMDS. These data sets must be shared
between systems that are managing a shared DASD configuration in a DFSMS environment.

Define GRS resource names for active SMS control data sets
If you plan to share SMS control data sets between systems, consider the effects of multiple
systems sharing these data sets. Access is serialized by the use of RESERVE, which locks
out access to the entire device volume from other systems until the RELEASE is issued by
the task using the resource. This is undesirable, especially when there are other data sets in
the volume.

A RESERVE is issued when SMS is updating:

� COMMDS data set with space statistics at the expiration time interval specified in
IGDSMSxx PARMLIB member.

� ACDS data set due to changes in the SMS configuration.

Place the resource name IGDCDSXS in the RESERVE conversion RNL as a generic entry to
convert the RESERVE/RELEASE to ENQueue/DEQueue. This minimizes delays due to
contention for resource and prevent deadlocks associated with the VARY SMS command.

Prior to DFSMS 1.5, you should not have more than one SMSplex controlled by one
GRSPlex. The name of the ENQ resource was not associated with the ACDS name, which
caused performance problems due to false contention (different resource, but same name).
In DFSMS 1.5, the RNAME is appended by the BCDS name.

If there are multiple SMS complexes within a global resource serialization complex, be sure to
use unique COMMDS and ACDS data set names to prevent false contention. For information
on allocating COMMDS and ACDS data set names, see z/OS DFSMS Implementing
System-Managed Storage, SC26-7407.

Defining the system group
A system group is a group of systems within an SMS complex that have similar connectivity to
storage groups, libraries, and volumes. When a Parallel Sysplex name is specified and used
as a system group name, the name applies to all systems in the Parallel Sysplex except for
those systems defined as part of the Parallel Sysplex that are explicitly named in the SMS
base configuration. The system group is defined using ISMF when defining the base
configuration.
Chapter 5. System-managed storage 219

5.19 Defining the SMS base configuration

Figure 5-19 Minimal SMS configuration

Protecting the DFSMS environment
Before defining the SMS base configuration, you have to protect access to the SMS control
data sets, programs and functions. For example, some functions in the ISMF are related only
to storage administration tasks and you must protect your storage environment from
unauthorized access. You can protect the DFSMS environment with RACF.

RACF controls access to the following functions:

� System-managed data sets
� SMS control data sets
� SMS functions and commands
� Fields in the RACF profile
� SMS classes
� ISMF functions

For more information, refer to z/OS DFSMSdfp Storage Administration Reference,
SC26-7402.

Defining the SMS base configuration
After creating the SCDS data set with IDCAMS and setting up the security to the DFSMS
environment, you use the ISMF Control Data Set option to define the SMS base
configuration, which contains information such as:

� Default management class

ACSStorage
Group Storage

Class
Validate
SCDSTranslate

Validade

Base Configuration
Storage Class Definition
Storage group containing at
least one volume
Storage class ACS routine
Storage group ACS routine

ISMF

Security
definitions
220 ABCs of z/OS System Programming Volume 3

� Default device geometry.
� The systems in the installation for which SMS manages storage using that configuration

To define a minimal configuration, you must do the following:

� Define a storage class.
� Define a storage group containing at least one volume. (The volume does not have to

exist, as long as you do not direct allocations to either the storage group or the volume.)
� Create their respective ACS routines.

Defining a data class, a management class and creating their respective ACS routines are
not required for a valid SCDS. However, because of the importance of the default
management class, we recommend that you include it in your minimal configuration.

For a detailed description of SMS classes and groups, see z/OS DFSMS Implementing
System-Managed Storage, SC26-7407.

The DFSMS product tape contains a set of sample ACS routines. The appendix of z/OS
DFSMSdfp Storage Administration Reference, SC26-7402 contains sample definitions of the
SMS classes and groups that are used in the sample ACS routines. The starter set
configuration can be used as a model for your own SCDS. For a detailed description of base
configuration attributes and how to use ISMF to define its contents, see z/OS DFSMSdfp
Storage Administration Reference, SC26-7402.

Defining the storage class
You must define at least one storage class name to SMS. Because a minimal configuration
does not include any system-managed volumes, no performance or availability information
need be contained in the minimal configuration's storage class. Specify an artificial storage
class, NONSMS. This class is later used by the storage administrator to create
non-system-managed data sets on an exception basis.

In the storage class ACS routine, the &STORCLAS variable is set to a null value to prevent
users from coding a storage class in JCL before you want to have system-managed data
sets.

You define the class using ISMF. Select Storage Class in the primary menu. Then you can
define the class, NONSMS, in your configuration in one of two ways:

1. Select option 3 Define in the Storage Class Application Selection panel. The CDS Name
field must point to the SCDS you are building.

2. Select option 1 Display in the Storage Class Application Selection panel. The CDS Name
field must point to the starter set SCDS. Then, in the displayed panel, use the COPY line
operator to copy the definition of NONSMS from the starter set SCDS to your own SCDS.

Defining the storage group
You must define at least one pool storage group name to SMS, and at least one volume serial
number to this storage group. A storage group with no volumes defined is not valid. This
volume serial number should be for a nonexistent volume to prevent the occurrence of JCL
errors from jobs accessing data sets using a specific volume serial number.

Defining a non-existent volume lets you activate SMS without having any system-managed
volumes. No data sets are system-managed at this time. This condition provides an
opportunity to experiment with SMS without any risk to your data.

Define a storage group (for example, NOVOLS) in your SCDS. A name like NOVOLS is
useful because you know it does not contain valid volumes.
Chapter 5. System-managed storage 221

Defining the default management class
Define a default management class and name it STANDEF to correspond with the entry in the
base configuration. We recommend that you specifically assign all system-managed data to a
management class. If you do not supply a default, DFSMShsm uses two days on primary
storage, and 60 days on migration level 1 storage, as the default.

No management classes are assigned when the minimal configuration is active. Definition of
this default is done here to prepare for the managing permanent data implementation phase.

The management class, STANDEF, is defined in the starter set SCDS. You can copy its
definition to your own SCDS in the same way as the storage class, NONSMS.
222 ABCs of z/OS System Programming Volume 3

5.20 Creating ACS routines

Figure 5-20 Sample ACS routines for a minimal SMS configuration

Creating ACS routines
After you define the SMS classes and group, develop their respective ACS routines. For a
minimal SMS configuration, In the storage class ACS routine, you assign a null storage class,
as shown in the sample storage class ACS routine in Figure 5-20. The storage class ACS
routine ensures that the storage class read/write variable is always set to null. This prevents
users from externally specifying a storage class on their DD statements (STORCLASS
keyword), which would cause the data set to be system-managed before you are ready.

The storage group ACS routine will never run if a null storage class is assigned. Therefore, no
data sets are allocated as system-managed by the minimal configuration. However, you must
code a trivial one to satisfy the SMS requirements for a valid SCDS. After you have written
the ACS routines, use ISMF to translate them into executable form.

1. If you do not have the starter set, allocate a fixed-block PDS or PDSE with LRECL=80 to
contain your ACS routines. Otherwise, start with the next step.

2. On the ISMF Primary Option Menu, select Automatic Class Selection to display the ACS
Application Selection panel.

3. Select option 1 Edit. When the next panel is shown, enter in the Edit panel the name of
the PDS or PDSE data set you create to contain your source ACS routines. A sample
storage class ACS routine is shown Figure 5-20.

St
or

ag
e

cl
as

s
A

C
S

ro
ut

in
e

St
or

ag
e

gr
ou

p
A

C
S

ro
ut

in
e

Chapter 5. System-managed storage 223

Translating the ACS routines
The translation process checks the routines for syntax errors and converts the code into an
ACS object. If the code translates without any syntax errors, then the ACS object is stored in
the SCDS. For translate:

1. From the ISMF ACS Application Selection Menu panel, select 2 Translate and press
Enter.

2. Enter your SCDS data set name, the PDS or PDSE data set name containing the ACS
source routine, and a data set name to hold the translate output listing. When the listing
data set does not exist, it is created automatically.

Validating the SCDS
When you validate your SCDS, you verify that all classes and groups assigned by your ACS
routines are defined in the SCDS. To validate the SCDS:

1. From the ISMF Primary Option Menu panel, select Control Data Set and press Enter.

2. Enter your SCDS data set name and select 4 Validate.

For more information, see z/OS DFSMS: Using the Interactive Storage Management Facility,
SC26-7411.
224 ABCs of z/OS System Programming Volume 3

5.21 DFSMS setup for z/OS

Figure 5-21 DFSMS setup for z/OS

DFSMS setup
In preparation for starting SMS, update the following PARMLIB members to define SMS to
z/OS:

IEASYSxx Verify the suffix of the IEFSSNyy in use and add the SMS=xx
parameter, where xx is the IGDSMS member name suffix.

IEFSSNyy You can activate SMS only after you define the SMS subsystem to
z/OS. To define SMS to z/OS, you must place a record for SMS in the
IEFSSNxx PARMLIB member.

IEFSSNxx defines how z/OS activates the SMS address space. You
can code an IEFSSNxx member with keyword or positional
parameters, but not both. We recommend using keyword parameters.
We recommend that you place the SMS record before the JES2
record in IEFSSNxx in order to start SMS before starting the JES2
subsystem.

IGDSMSzz For each system in the SMS complex, you must create an IGDSMSxx
member SYS1.PARMLIB. The IGDSMSzz member contains SMS
initialization control information. The suffix has a default value of 00.

Every SMS system must have an IGDSMSzz member in SYS1.PARMLIB that specifies a
required ACDS and COMMDS control data set pair. This ACDS and COMMDS pair is used if
the COMMDS of the pair does not point to another COMMDS.

IEASYSxx
.....
SSN=yy
SMS=zz

IEFSSNyy
SMS,ID=zz
JES2,...
.....

IGDSMSzz
.....
SMS ACDS(ds1)
.....

ACS
Routines

Data
Class

Mgmt.
Class

Storage
Class

Storage
Group

System Managed Storage Volumes
Chapter 5. System-managed storage 225

If the COMMDS points to another COMMDS, the referenced COMMDS is used. This
referenced COMMDS might contain the name of an ACDS that is different from the one
specified in the IGDSMSzz. If so, the name of the ACDS is obtained from the COMMDS
rather than from the IGDSMSzz to ensure that the system is always running under the most
recent ACDS and COMMDS.

If the COMMDS of the pair refers to another COMMDS during IPL, it means a more recent
COMMDS has been used. SMS uses the most recent COMMDS to ensure that you cannot
IPL with a down-level configuration.

The data sets that you specify for the ACDS and COMMDS pair must be the same for every
system in an SMS complex. Whenever you change the ACDS or COMMDS, update the
IGDSMSzz for every system in the SMS complex so that it specifies the same data sets.

IGDSMSzz has many parameters. For a complete description of SMS parameters, see z/OS
MVS Initialization and Tuning Reference, SA22-7592, and z/OS DFSMSdfp Storage
Administration Reference, SC26-7402.
226 ABCs of z/OS System Programming Volume 3

5.22 Starting SMS

Figure 5-22 Starting SMS and activating a new SMS configuration

Starting SMS
To start SMS—which starts the SMS address space—use either of these methods:

� With SMS=xx defined in IEASYSxx and SMS defined as a valid subsystem, IPL the
system. This starts SMS automatically.

� With SMS defined as a valid subsystem to z/OS, IPL the system. Start SMS later, using
the SET SMS=yy MVS operator command.

For detailed information, refer to z/OS DFSMSdfp Storage Administration Reference,
SC26-7402.

Activating a new SMS configuration
Activating a new SMS configuration means to copy the configuration from SCDS to ACDS
and to the SMS address space. The SCDS itself is never considered active. Attempting to
activate an ACDS that is not valid results in an error message.

You can manually activate a new SMS configuration in two ways. Note that SMS must be
active before you use one of these methods:

1. Activating an SMS configuration from ISMF

– From the ISMF Primary Option Menu panel, select Control Data Set.

– In the CDS Application Selection panel, enter your SCDS data set name and select 5
Activate, or enter the ACTIVATE command on the command line.

Starting
SMS

At IPL, with SMS subsystem
defined
Later, SET SMS=zz, with SMS
subsystem defined

Activating a new
SMS configuration
Chapter 5. System-managed storage 227

2. Activating an SMS configuration from the operator console

– From the operator console, enter the command:

SETSMS {ACDS(YOUR.OWN.ACDS)} {SCDS(YOUR.OWN.SCDS)}

Activating the configuration means that information is brought into the SMS address space
from the ACDS.

To update the current ACDS with the contents of an SCDS, specify the SCDS parameter
only.

If you want to both specify a new ACDS and update it with the contents of an SCDS, enter
the SETSMS command with both the ACDS and SCDS parameters specified.

The ACTIVATE command, which runs from the ISMF CDS application, is equivalent to the
SETSMS operator command with the SCDS keyword specified.

If you use RACF, you can enable storage administrators to activate SMS configurations from
ISMF by defining the facility STGADMIN.IGD.ACTIVATE.CONFIGURATION and issuing
permit commands for each storage administrator.
228 ABCs of z/OS System Programming Volume 3

5.23 Control SMS processing with operator commands

Figure 5-23 SMS operator commands

Controlling SMS processing using operator commands
The DFSMS environment provides a set of z/OS operator commands to control SMS
processing. The VARY, DISPLAY, DEVSERV, and SET commands are MVS operator commands
that support SMS operation.

SETSMS This command changes a subset of SMS parameters from the operator
console without changing the active IGDSMSxx PARMLIB member. For
example, you can use this command to activate a new configuration from
an SCDS. The MVS operator must use SETSMS to recover from ACDS and
COMMDS failures.

For an explanation about how to recover from ACDS and COMMDS
failures, refer to z/OS DFSMSdfp Storage Administration Reference,
SC26-7402.

SET SMS=zz This command starts SMS, if it has not already been started, and is defined
as a valid MVS subsystem. The command also:

– Changes options set on the IGDSMSxx PARMLIB member
– Restarts SMS if it has terminated
– Updates the SMS configuration

Table 5-1 on page 230 lists the differences between the SETSMS and SET
SMS commands.

VARY SMS This command changes storage group, volume, library, or drive status. You
can use this command to:

SETSMS
SET SMS=xx
VARY SMS
DEVSERV
DISPLAY
Chapter 5. System-managed storage 229

– Limit new allocations to a volume or storage group
– Enable a newly-installed volume for allocations

DEVSERV This command displays information for a device. Use it to display the status
of extended functions in operation for a given volume that is attached to a
cache-capable 3990 storage control.

Table 5-1 Differences between SETSMS and SET SMS commands

For more information about operator commands, refer to z/OS MVS System Commands,
SA22-7627.

Difference SET SMS=xx SETSMS

When and how to use the
command.

Initializes SMS parameters and
starts SMS if SMS is defined
but not started at IPL. Changes
SMS parameters when SMS is
running.

Changes SMS parameters only
when SMS is running.

Where the parameters are
entered.

IGDSMSxx PARMLIB member. At the console.

What default values are
available.

Default values are used for
non-specified parameters.

No default values. Parameters
non-specified remain
unchanged.
230 ABCs of z/OS System Programming Volume 3

5.24 Displaying the SMS configuration

Figure 5-24 Display SMS configuration

Displaying SMS configuration
You can display the SMS configuration in two ways:

� Using ISMF Control Data Set, enter ACTIVE in the CDS Name field and select 1 Display.

� The DISPLAY SMS: operator command shows volumes, storage groups, libraries, drives,
SMS configuration information, SMS trace parameters, SMS operational options, OAM
information, OSMC information, and cache information. Enter this command to:

– Confirm that the system-managed volume status is correct

– Confirm that SMS starts with the proper parameters
Chapter 5. System-managed storage 231

5.25 Managing data with minimal SMS configuration

Figure 5-25 Managing data with minimal SMS configuration

Managing data allocation
After the SMS minimal configuration is active, your installation can exploit some SMS
capabilities that give you experience with SMS and help you plan the DFSMS full exploitation
with system-managed data set implementation.

Inefficient space usage and poor data allocation cause problems with space and performance
management. In a DFSMS environment, you can enforce good allocation practices to help
reduce some of these problems. The following section highlights how to exploit SMS
capabilities.

Using data class to standardize data allocation
This section describes how to use data class to establish standards for data allocation. For
sample data classes, descriptions, and ACS routines, see z/OS DFSMS Implementing
System-Managed Storage, SC26-7407.

You can define data classes containing standard data set allocation attributes. Users then
only need to use the appropriate data class names to create standardized data sets. To
override values in the data class definition, they can still provide specific allocation
parameters.

Data classes can be determined from the user-specified value on the DATACLAS parameter
(DD card, TSO Alloc, Dynalloc macro), from a RACF default, or by ACS routines. ACS

Device-independence space allocation

System-determined block size

Use ISMF to manage volumes

Use simplified JCL to allocate data sets

Manage expiration date

Establish installation standards and use data class
ACS routine to enforce them

Manage data set allocation

Use PDSE data sets
232 ABCs of z/OS System Programming Volume 3

routines can also override user-specified or RACF default data classes, as shown in
Figure 5-26 on page 234.

However, you can override a data class attribute (not the data class itself) using JCL or
dynamic allocation parameters. However, overriding a subparameter of a parameter
overrides all of the subparameters for that parameter. For example, SPACE=(TRK,(1)) in
JCL will cause primary, secondary, and directory quantities, as well as AVGREC and
AVGUNIT, in the data class to be overridden.

DFSMS usually does not change values that are explicitly specified, because doing so would
alter the original meaning and intent of the allocation. There is an exception, however–if it is
clear that a PDS is being allocated (DSORG=PO or DSNTYPE=PDS is specified), and no
directory space is indicated in the JCL—then the directory space from the data class is used
even though SPACE=(TRK,(1)) was specified.

Users cannot override the data class attributes of dynamically-allocated data sets if you use
the IEFDB401 user exit.

Data classes can also be determined for objects by a specification using the SETOAM
command in the CBROAMxx member of SYS1.PARMLIB.
Chapter 5. System-managed storage 233

5.26 Device-independence space allocation

Figure 5-26 Device independence

Ensuring device independence
The base configuration contains a default unit that corresponds to a DASD esoteric (such as
SYSDA). Default geometry for this unit is specified in bytes/track and tracks/cylinder for the
predominant device type in the esoteric. If users specify the esoteric, or do not supply the
UNIT parameter for new allocations, the default geometry converts space allocation requests
into device-independent units, such as KBs and MBs. This quantity is then converted back
into device-dependent tracks based on the default geometry.

System-determined block size
During allocation, DFSMSdfp assists you to assign a block size that is optimal for the device.
When you allow DFSMSdfp to calculate the block size for the data set, you are using a
system-determined block size. System-determined block sizes can be calculated for
system-managed and non-system-managed primary storage, VIO, and tape data sets.

The use of system-determined block size provides:

� Device independence, since you do not need to know the track capacity to allocate
efficiently

� Space usage optimization
� I/O performance improvement
� Simplifies JCL, since you do not need to code BLKSIZE

You take full advantage of system-managed storage when you allow the system to place data
on the most appropriate device in the most efficient way, as shown in Figure 5-26, when you

//SYSDATA DD DSN=SYSA.TEST,DISP=NEW
// SPACE=(23200,(10,2),RLSE),

// AVGREC=U

SUB

SMS

Best Allocation

VOLABC VOLDEF VOLGHI

SYSA.TEST
234 ABCs of z/OS System Programming Volume 3

use system-managed data sets. In the DFSMS environment, you control volume selection
through the storage class and storage group definitions you create, and by ACS routines.
This means that users do not have to specify volume serial numbers with the VOL=SER
parameter, or code a specific device type with the UNIT= parameter on their JCL.

When converting data sets for use in DFSMS, they do not have to remove these parameters
from existing JCL because volume and unit information can be ignored with ACS routines.
(However, you should work with users to evaluate UNIT and VOL=SER dependencies before
conversion.)

If you keep the VOL=SER parameter for a non-SMS volume, but you are trying to access a
system-managed data set, then SMS might not find the data set. All SMS data sets (the ones
with a storage class) must reside in a system-managed volume.
Chapter 5. System-managed storage 235

5.27 Developing naming conventions

Figure 5-27 Setting data set HLQ conventions

Developing a data set naming convention
Whenever you allocate a new data set, you (or the operating system) must give the data set a
unique name. Usually, the data set name is given as the dsname in JCL. A data set name can
be one name segment, or a series of joined name segments. Each name segment represents
a level of qualification. For example, the data set name DEPT58.SMITH.DATA3 is composed
of three name segments. The first name on the left is called the high-level qualifier (HLQ).
The last name is the low-level qualifier (LLQ).

You must implement a naming convention for your data sets. Although naming convention is
not a prerequisite for DFSMS conversion, it makes more efficient use of DFSMS. You can
also reduce the cost of storage management significantly by grouping data that shares
common management requirements. Naming conventions are an effective way of grouping
data. They also:

� Simplify service-level assignments to data
� Facilitate writing and maintaining ACS routines
� Allow data to be mixed in a system-managed environment while retaining separate

management criteria
� Provide a filtering technique useful with many storage management products
� Simplify the data definition step of aggregate backup and recovery support

Most naming conventions are based on the HLQ and LLQ of the data name. Other levels of
qualifiers can be used to identify generation data sets and database data. They can also be
used to help users to identify their own data.

 Setting the high-level qualifier standard

 First character Second character Remaining characters

 Type of user Type of data Project name, code, or
 userid

 A - Accounting Support P - Production data Example:
 D - Documentation D - Development data
 E - Engineering T - Test data 3000 = Project code
 F - Field Support M - Master data
 M - Marketing Support U - Update data
 P - Programming W - Work data
 $ - TSO userid

236 ABCs of z/OS System Programming Volume 3

Using a high-level qualifier (HLQ)
Use the HLQ to:

� Identify the owner or owning group of the data or

� Indicate data type

Do not embed information that is subject to frequent change in the HLQ, such as department
number, application location, output device type, job name, or access method. Set a standard
within the HLQ. Figure 5-27 on page 236 shows examples of naming standards.
Chapter 5. System-managed storage 237

5.28 Setting the low-level qualifier (LLQ) standards

Figure 5-28 Setting the LLQ standards

Setting the low-level qualifier standards
The LLQ determines the contents and storage management processing of the data. You can
use LLQs to identify data requirements for:

� Migration (data sets only)
� Backup (data sets and objects)
� Archiving (data sets)
� Retention or expiration (data sets and objects)
� Class transitions (objects only)
� Release of unused space (data sets only)

The retention and expiration of objects on tape volumes are determined on two levels. Tape
volumes containing objects have a tape data set expiration date and an expiration date of
when the last object on the tape is going to expire. For information on deleting expired objects
on tape, see z/OS DFSMShsm Storage Administration Guide, SC35-0421.

Mapping storage management requirements to data names is especially useful in a
system-managed environment. In an environment without storage groups, data with differing
requirements is often segregated onto separate volumes that are monitored and managed
manually. LLQ data naming conventions allow data to be mixed together in a
system-managed environment and still retain the separate management criteria.

Figure 5-28 shows examples of how you can use LLQ naming standards to indicate the
storage management processing criteria.

 Low-Level Exp Days Max Ret Partial Migrate Days Cmd/Auto
 Qualifier Non-Usage Period Release Non-Usage Migrate
 --------- -------- ------- ------- ----------- - --------
 ASM...... NOLIM NOLIM YES 15 BOTH
 CLIST.... NOLIM NOLIM YES 15 BOTH
 COB*..... NOLIM NOLIM YES 15 BOTH
 CNTL..... NOLIM NOLIM YES 15 BOTH
 DATA..... 400 400 YES 15 BOTH
 *DATA.... 400 400 YES 151 BOTH
 FOR*..... NOLIM NOLIM YES 15 BOTH
 INCL*.... NOLIM NOLIM YES 15 BOTH
 INPUT.... 400 400 YES 15 BOTH
 ISPROF... 400 400 YES 30 BOTH
 JCL...... NOLIM NOLIM YES 15 BOTH
 LIST*.... 2 2 YES NONE NONE
 *LIST.... 2 2 YES NONE NONE
 LOAD*.... 400 400 YES 15 BOTH
 MACLIB... 400 400 YES 15 BOTH
 MISC..... 400 400 YES 15 BOTH
 NAMES... .NOLIM NOLIM YES 15 BOTH
 OBJ*..... 180 180 YES 7 BOTH
 PLI...... NOLIM NOLIM YES 15 BOTH

 No.GDG Backup Backup Retain Days Retain Day
 Primary Freqcy Versns Only BUP Extra BUP
------- ------ ------ ----------- ------------
 -- 0 5 1100 120
 -- 0 5 1100 120
 -- 0 5 1100 120
 -- 0 5 1100 120
 -- 2 2 400 60
 -- 2 2 400 60
 -- 0 5 1100 120
 -- 0 5 1100 120
 -- 2 2 1100 120
 -- 0 2 60 30
 -- 0 5 1100 120
 -- NONE NONE -- --
 -- NONE NONE -- --
 -- 1 2 -- --
 -- 1 2 400 60
 -- 2 2 400 60
 -- 0 5 1100 120
 -- 3 1 180 30
 -- 0 5 1100 120
238 ABCs of z/OS System Programming Volume 3

The first column lists the LLQ of a data name. An asterisk indicates where a partial qualifier
can be used. For example, LIST* indicates that only the first four characters of the LLQ must
be LIST; valid qualifiers include LIST1, LISTING, and LISTOUT. The remaining columns
show the storage management processing information for the data listed.
Chapter 5. System-managed storage 239

5.29 Establishing installation standards

Figure 5-29 Establishing installation standards

Establishing installation standards
Establishing standards such as naming conventions and allocation policies helps you to
manage storage more efficiently and improves service to your users. With them, your
installation is better prepared to make a smooth transition to system-managed storage.

Negotiate with your user group representatives to agree on the specific policies for the
installation, how soon you can implement them, and how strongly you enforce them.
Document negotiated policies in a service level agreement.

You can simplify storage management by limiting the number of data sets and volumes that
cannot be system-managed.

Based on user needs

Improve service to users

Better transition to SMS-managed
storage

Use service-level agreement
240 ABCs of z/OS System Programming Volume 3

5.30 Planning and defining data classes

Figure 5-30 Planning and defining data class

Planning and defining data class
After you establish your installation’s standards, use your service level agreement (SLA) for
reference when planning your data classes. SLAs identify users current allocation practices
and their requirements. For example:

� Based on user requirements, you might create a data class to allocate standard control
libraries.

� You can create a data class to supply the default value of a parameter, so users do not
have to specify a value for that parameter in the JCL or dynamic allocation.

Data class names should indicate the type of data they are assigned to. This makes it easier
for users to identify the template they need to use for allocation.

You define data classes using the ISMF data class application. Users can access the Data
Class List panel to determine which data classes are available and the allocation values that
each data class contains.

Figure 5-31 on page 242 contains information that can help in this task. For more information
on planning and defining data classes, see z/OS DFSMSdfp Storage Administration
Reference, SC26-7402.

DATA CLASS ATTRIBUTES
DATA SET TYPE
RECORD LENGTH
BLOCKSIZE
SPACE REQUIREMENTS
EXPIRATION DATE
VSAM ATTRIBUTES

DC A

DC B

DC C

What does it look like? Sources of Data Class:
User Data Class defined (DD)
ACS DC routine (*)
RACF default
Chapter 5. System-managed storage 241

5.31 Data class attributes

Figure 5-31 Data class attributes

Data class attributes
You can specify the data class space attributes to control DASD space waste. For example:

� The primary space value should specify the total amount of space initially required for
output processing. The secondary allocation allows automatic extension of additional
space as the data set grows and does not waste space by overallocating the primary
quantity. You can also use data class space attributes to relieve users of the burden of
calculating how much primary and secondary space to allocate.

� The COMPACTION attribute specifies whether data is to be compressed on DASD if the
data set is allocated in the extended format. The COMPACTION attribute alone also
allows you to use the improved data recording capability (IDRC) of your tape device when
allocating tape data sets. To use the COMPACTION attribute, the data set must be
system-managed, since this attribute demands an extended format data set.

� The following attributes are used for tape data sets only.
– MEDIA TYPE allows you to select the mountable tape media cartridge type.
– RECORDING TECHNOLOGY allows you to select the format to use when writing to

that device.
– The read-compatible special attribute indicator in the tape device selection information

(TDSI) allows an 18-track tape to be mounted on a 36-track device for read access.
The attribute increases the number of devices that are eligible for allocation when you
are certain that no more data will be written to the tape.

For detailed information on specifying data class attributes, see z/OS DFSMSdfp Storage
Administration Reference, SC26-7402.

Data class name and data class description (DC)

Data set organization (RECORG) and data set name type
(DSNTYPE)

Record format (RECFM) and logical record length (LRECL)

Key length (KEYLEN) and offset (KEYOFF)

Space attributes (AVGREC, AVE VALUE, PRIMARY, SECONDARY,
DIRECTORY)

Retention period or expiration date (RETPD or EXPDT)

Number of volumes the data set can span (VOLUME COUNT)

Allocation amount when extending VSAM extended data set

VSAM index options (IMBED or REPLICATE)

Control interval size for VSAM data components (CISIZE DATA)

Percentage of control interval or control area free space (%
FREESPACE)

VSAM share options (SHAREOPTIONS)

Compaction option for data sets (COMPACTION)

Tape media (MEDIA TYPE)
242 ABCs of z/OS System Programming Volume 3

5.32 Use data class ACS routine to enforce standards

Figure 5-32 Using data class (DC) ACS routine to enforce standards

Using data class (DC) ACS routine to enforce standards
Once you started DFSMS with the minimal configuration, you can use data class ACS routine
facilities to automate or simplify storage allocation standards if you:

� Use manual techniques to enforce standards
� Plan to enforce standards before implementing DFSMS
� Use DFSMSdfp or MVS installation exits to enforce storage allocation standards

The data class ACS routine provides an automatic method for enforcing standards, because
it is called for system-managed and non-system-managed data set allocations. Standards are
enforced automatically at allocation time, rather than through manual techniques after
allocation.

Enforcing standards optimizes data processing resources, improves service to users, and
positions you for implementing system-managed storage. You can fail requests or issue
warning messages to users who do not conform to standards. Consider enforcing the
following standards in your DFSMS environment:

� Prevent extended retention or expiration periods
� Prevent specific volume allocations, unless authorized; for example, you can control

allocations to spare, system, database, or other volumes

Require valid naming conventions before implementing DFSMS system management for
permanent data sets

Prevent extended retention or expiration periods

Prevent specific volume allocations, unless
authorized

You can control allocations to spare, system,
database, or other volumes

Require valid naming conventions for permanent
data sets

Examples of standards to be enforced:
Chapter 5. System-managed storage 243

5.33 Simplifying JCL use

Figure 5-33 Using SMS capabilities to simplify JCL

Use simplified JCL
Once you defined and start using data classes, several JCL keywords can help you simplify
the task of creating data sets and also to make the allocation process more consistent. It is
also possible to allocate VSAM data sets through JCL without IDCAMS assistance.

For example, with the use of data classes, you have less use for the JCL keywords: UNIT,
DCB, and AMP. When you start using system-managed data sets, you do not need to use the
JCL VOL keyword.

JCL keywords used in the DFSMS environment
You can use JCL keywords to create VSAM and non-VSAM data sets. For a detailed
description of the keywords and their use, see z/OS MVS JCL User’s Guide, SA22-7598.

In the following pages, we present some sample jobs exemplifying the use of JCL keywords
when:

� Creating a sequential data set

� Creating a VSAM cluster

� Specifying a retention period

� Specifying an expiration date

MVS/ESA

STORAGE MANAGEMENT SUBSYSTEM

DEFINING A NEW DATA SET
(SMS)

 //DD1 DD DSN=PAY=PAY.D3,
 // DISP=(NEW,CATLG)
244 ABCs of z/OS System Programming Volume 3

5.34 Allocating a data set

Figure 5-34 Allocating a sequential data set

Creating and allocating data sets
Many times the words create and allocate, when applied to data sets, are used in MVS as
synonyms. However, they are not.

� To create (in DASD) means to assign a space in VTOC to be used for a data set
(sometimes create implies cataloging the data set). A data set is created in response to
the DD card DISP=NEW in JCL.

� To allocate means to establish a logical relationship between the request for the use of the
data set within the program (through the use of a DCB or ACB) and the data set itself in
the device where it is located. Being more specific, allocation implies finding where the
data set is (for an already existent data set) or where it will be (for a new one). Thinking in
control block terms, the DCB/ACB is connected to the DD card through the DDNAME
field. The DD card content forms a TIOT entry and at allocation time this entry points to the
UCB where the data set exists.

Figure 5-34 shows an example of JCL used to create a data set in a system-managed
environment.

These are some characteristics of the JCL in a system-managed environment:

� The LRECL and RECFM parameters are independent keywords. This makes it easier to
override individual attributes that are assigned default values by the data class, selected
by the ACS routines, that might not be appropriate for the data set being allocated.

//NEWDATA DD DSN=FILE.SEQ1,
// DISP=(,CATLG),
// SPACE=(50,(5,5)),AVGREC=M,

// RECFM=VB,LRECL=80

FILE.SEQ1FILE.SEQ1
Chapter 5. System-managed storage 245

� In this example, the SPACE parameter is coded with the average number of bytes per
record (50), and the number of records required for the primary data set allocation (5 M)
and secondary data set allocation (5 M). These are the values that the system uses to
calculate the least number of tracks required for the space allocation. This also eliminates
the need for device awareness, replacing the TRK or CYL unit specification. For
variable-block data sets, the average number of bytes per record is not necessarily the
same as the LRECL value. In the example, the average record length is 50, whereas the
LRECL is 80.

Note that if you code the SPACE parameter on a DD statement that defines an existing
data set, the SPACE value you specify temporarily overrides the SPACE value used to
create the data set.

� The AVGREC attribute indicates the scale factor for the primary and secondary allocation
values. In the example, an AVGREC value of M indicates that the primary and secondary
values of 5 are each to be multiplied by 1 048 576.

The SPACE parameter would result in a primary allocation of 5 MB and a secondary
allocation of 5 MB.

� For system-managed data sets, the device-dependent volume serial number and unit
information is no longer required, because the volume is assigned within a storage group
selected by the ACS routines. This eliminates the need for device awareness.

Overriding data class attributes with JCL
In a DFSMS environment, the JCL to allocate a data set is simpler and has no
device-dependent keywords. The data class can be:

� Specified in the DATACLAS parameter of the JCL DD statement
� Automatically assigned by data class ACS routine
� Set in the user RACF profile

Table 5-2 lists the attributes a user can override with JCL.

Table 5-2 Data class attributes that can be overridden by JCL

As previously mentioned, in order to use a data class, the data set does not have to be
system-managed. An installation can take advantages of a minimal SMS configuration to
simplify JCL use and manage data set allocation.

For information on managing data allocation, refer to z/OS DFSMS Using Data Sets,
SC26-7410.

JCL DD statement keyword Use for

RECORG,KEYLEN,KEYOFF Only VSAM

RECFM Sequential (PO or PS)

LRECL,SPACE,AVGREC, RETPD or EXPDT,
VOLUME (volume count)

All data set types

DSNTYPE PDS or PDSE
246 ABCs of z/OS System Programming Volume 3

5.35 Creating a VSAM cluster

Figure 5-35 Creating a VSAM data class

Creating a VSAM data set using JCL
In the DFSMS environment, you can create temporary and permanent VSAM data sets using
JCL by using either of the following:

� The RECORG parameter of the JCL DD statement

� A data class

You can use JCL DD statements parameters to override some data class attributes; refer to
Table 5-2 on page 246 for those related to VSAM data sets.

A data set with a disposition of MOD is treated as a NEW allocation if it does not already
exist; otherwise, it is treated as an OLD allocation.

For a non-SMS environment, a VSAM cluster creation is only done through IDCAMS. In
Figure 5-35, NEW.VSAM refers to a KSDS VSAM cluster.

Attention: Regarding DISP=(OLD,DELETE), in an SMS environment, the VSAM data set
is deleted at unallocation. In a non-SMS environment, the VSAM data set is kept.

//VSAM DD DSN=NEW.VSAM,
// DISP=(,CATLG),
// SPACE=(1,(2,2)),AVGREC=M,
// RECORG=KS,KEYLEN=17,KEYOFF=6,
// LRECL=80

NEW.VSAMNEW.VSAM
NEW.VSAM.DATANEW.VSAM.DATA
NEW.VSAM.INDEXNEW.VSAM.INDEX
Chapter 5. System-managed storage 247

5.36 Space allocation for a VSAM KSDS cluster

Figure 5-36 Allocating VSAM data sets in JCL

Considerations when specifying space for a KSDS
The space allocation for a VSAM entity depends on the level of the entity being allocated:

� If allocation is specified at the cluster or alternate index level only, the amount needed for
the index is subtracted from the specified amount. The remainder of the specified amount
is assigned to data.

� If allocation is specified at the data level only, the specified amount is assigned to data.
The amount needed for the index is in addition to the specified amount.

� If allocation is specified at both the data and index levels, the specified data amount is
assigned to data and the specified index amount is assigned to the index.

� If secondary allocation is specified at the data level, secondary allocation must be
specified at the index level or the cluster level.

You cannot use certain parameters in JCL when allocating VSAM data sets, although you
can use them in the IDCAMS DEFINE command.

Allocation specified at the cluster or alternate

index level

Allocation specified at the data level

Allocation specified at both the data and index

levels

Secondary allocation specified at the data level
248 ABCs of z/OS System Programming Volume 3

5.37 Retention period and expiration date

Figure 5-37 Retention period and expiration date

Managing retention period and expiration date
The RETPD and EXPDT parameters specify retention period and expiration date. They apply
alike to system-managed and non-system-managed data sets. They control the time during
which a data set is protected from being deleted by the system. The first DD statement in
Figure 5-37 protects the data set from deletion for 365 days. The second DD statement in
Figure 5-37 protects the data set from deletion until December 30, 1999.

The VTOC entry for non-VSAM and VSAM data sets contains the expiration date as declared
in the JCL, the TSO ALLOCATE command, or the IDCAMS DEFINE command, or can also come
from the data class definition. The expiration date is placed in the VTOC either directly from
the date specification, or after it is calculated from the retention period specification. The
expiration date in the catalog entry exists for information purposes only. If you specify the
current date or an earlier date, the data set is immediately eligible for replacement.

You can use management class to limit or ignore the RETPD and EXPDT parameters given
by a user. If a user specifies values that exceed the maximum allowed by the management
class definition, the retention period is reset to the allowed maximum. For an expiration date
beyond year 1999 use the following format: YYYY/DDD. For more information on using
management class to control retention period and expiration date, refer to z/OS DFSMShsm
Storage Administration Guide, SC35-0421.

Attention: EXPDT=99365, or 99366, or 1999/365 or 1999/3666 are special dates and
they mean never expires.

//RETAIN DD DSN=DEPTM86.RETPD.DATA,
// DISP=(,CATLG),RETPD=365

//RETAIN DD DSN=DEPTM86.EXPDT.DATA,
// DISP=(,CATLG),EXPDT=99364
Chapter 5. System-managed storage 249

5.38 SMS PDSE support

Figure 5-38 SMS PDSE support

SMS PDSE support
Partitioned data set extended (PDSE) is a type of data set organization that improves the
partition data set (PDS) organization. It has an improved indexed directory structure and a
different member format.

With the minimal SMS configuration, you can exploit the use of PDSE data sets. A PDSE
does not have to be system-managed. You can use them for source (programs and text)
libraries, macros, and program object libraries. PDSE advantages, when compared with PDS,
are:

� The size of a PDSE directory is flexible and can expand to accommodate the number of
members stored in it (the size of a PDS directory is fixed at allocation time).

� PDSE members are indexed in the directory by member name. This eliminates the need
for time-consuming sequential directory searches.

� The logical requirements of the data stored in a PDSE are separated from the physical
(storage) requirements of that data, which simplifies data set allocation.

� PDSEs provide more efficient use of DASD space. For example, by moving or deleting a
PDSE member, you free space that is immediately available for the allocation of a new
member, without first having to compress the data set to consolidate the fragmented
space for reuse. This makes PDSEs less susceptible to space-related abends than PDSs.

� The number of PDSE members stored in the library can be large or small without concern
for performance or space considerations.

CONVERSION

USE

CREATION

DATA CLASS CONSTRUCT

DSNTYPE=LIBRARY

// DD DSNTYPE=LIBRARY

+SMS
VOLUME

DFDSS CONVERT (PDS I PDSE)

BSAM, QSAM, BPAM
250 ABCs of z/OS System Programming Volume 3

� The ability to update a member in place is possible with PDSs and PDSEs. But with
PDSEs, you can extend the size of members and the integrity of the library is maintained
while simultaneous changes are made to separate members within the library.

� The maximum number of extents of a PDSE is 123; the PDS is limited to 16.

� PDSEs are device-independent because they do not contain information that depends on
location or device geometry.

� All members of a PDSE are reblockable.

� PDSEs can contain program objects built by the program management binder that cannot
be stored in PDSs.

You can also share PDSEs within and across systems. With systems that support PDSEs
(MVS/DFP 3.2.0 or higher level), multiple users are allowed to read PDSE members while the
data set is open.

If you have DFSMS installed, you can extend the sharing to enable multiple users on multiple
systems to concurrently create new PDSE members and read existing members.

Using the PDSESHARING keyword in the SYS1.PARMLIB member, IGDSMSxx, you can
specify:

� NORMAL. This allows multiple users to read any member of a PDSE.

� EXTENDED. This allows multiple users to read any member or create new members of a
PDSE

All systems sharing PDSEs need to be upgraded to DFSMS to use the extended PDSE
sharing capability.

After updating the IGDSMSxx member of SYS1.PARMLIB, you need to issue the SET SMS
ID=xx command for every system in the complex to activate the sharing capability.

For additional information on PDSEs, see z/OS DFSMS Using Data Sets, SC26-7410.

Although SMS supports PDSs, you should consider converting these to the PDSE format.
The following sections describe this process.
Chapter 5. System-managed storage 251

5.39 PDSE conversion

Figure 5-39 Converting PDS to PDSE

Converting a PDS data set to a PDSE
You can use IEBCOPY or DFSMSdss COPY to convert partitioned data sets to PDSEs, as shown
in Figure 5-39. We recommend using DFSMSdss.

You can convert the entire data set or individual members, and also back up and restore
PDSEs. By using the DFSMSdss COPY function with the CONVERT and PDS keywords, you
can convert a PDSE back to a PDS. This is especially useful if you need to prepare a PDSE
for migration to a site that does not support PDSEs. When copying members from a
partitioned data set load module library into a PDSE program library, or vice versa, the
system invokes the program management binder.

Many types of libraries are candidates for conversion to PDSE:

� PDSs that are updated often, and that require frequent and regular reorganization

� Large PDSs that require specific device types because of the size of allocation

Converting PDSs to PDSEs is beneficial, but be aware that certain data sets are unsuitable
for conversion to, or allocation as, PDSEs because the system does not retain the original
block boundaries. Also, data sets requiring device dependency are inappropriate to convert
or allocate because PDSEs are device-independent.

To reclaim unused space in those data sets that cannot be converted, use the DFSMSdss
COMPRESS command to compress PDSs in place. This consolidates space that is no longer
used within a PDS and makes it available at the end of the data set. For large or critical

Using DFSMSdss Using IEBCOPY

COPY DATASET(INCLUDE -
 (MYTEST.**) -
 BY(DSORG = PDS)) -
 INDY(SMS001) -
 OUTDY(SMS002) -
 CONVERT(PDSE(**))-
 RENAMEU(MYTEST2) -

 DELETE

//INPDS DD DISP=SHR,
 DSN=USER.PDS.LIBRARY
//PDSE DD DSN=USER.PDSE.LIBRARY,
 DISP=OLD
//SYSIN DD *
 COPY OUTDD=OUTPDSE
 INDD=INPDS

 SELECT MEMBER=(A,B,C)
252 ABCs of z/OS System Programming Volume 3

PDSs, you might want to copy or back up the data sets before you compress them. This
maintains data set availability should the compress fail. For more information on DFSMSdss,
see z/OS DFSMSdss Storage Administration Guide, SC35-0423, and z/OS DFSMSdss
Storage Administration Reference, SC35-0424.
Chapter 5. System-managed storage 253

5.40 DFSMS and program objects

Figure 5-40 DFSMS and program objects

Problems for load modules in PDS
Load modules stored in a PDS present some constraints, such as:

� Maximum size for TXT is 16 MB.

� Maximum number of CESDs is 32 K.

� The PDS restrictions, such as:

– It needs compression (IEBCOPY)

– Unexpandable directory size

– High directory search connect time (LLA and DASD cache relief)

– Directory must be rewritten, when a member is added (sorted by collating sequence)

– Authorization and serialization at data-set level only

– Concurrent member creation by different tasks is an integrity exposure

� Software programs such as service aids and utilities must know the internal structures of
module and directory entries.

The binder converts the output of language translators and compilers into an executable
program unit that can either be read directly into virtual storage for execution or stored in a
program library.

Functions to create, update, execute, and access
program objects in PDSEs

New load module format

New Linkage Editor, the binder

New program fetch

DESERV internal interface function AMASPZAP

Set of utilities such as IEWTPORT, which builds
transportable programs from program objects and
vice versa

Coexistence between PDS and PDSE load module
libraries in same system
254 ABCs of z/OS System Programming Volume 3

Most of the loading functions are transparent to the user. The loader knows whether the
program being loaded is a load module or a program object by the source data set type:

� If the program is being loaded from a PDS, it calls IEWFETCH (now integrated as part of
the loader) to do what it has always done.

� If the program is being loaded from a PDSE, a new routine is called to bring in the
program using DIV. The loading is done using special loading techniques that can be
influenced by externalized options.

A second directory service in support of PDSE directories, DESERV, was externalized in
DFSMS 1.3. You may issue DESERV for either PDS or PDSE directory access, but you must
pass the DCB address. It does not default to a predefined search order, as does BLDL. (Both
BLDL and DESERV support "bypass-LLA.") DESERV returns an SMDE which, for PDSE
directories, contains more information than is mapped by IHAPDS.

You create a transportable copy of the program object using IEWTPORT, then send the
transportable copy to the system without program management services. A program on the
target system can access the transportable copy using QSAM. If you want to load, bind, or
execute a transportable program, you must first recreate the program object by executing
IEWTPORT on a system with program management services installed. No programming
interfaces exist to perform any of these operations on transportable programs. IEWTPORT
does not support load modules, nor does it support program objects in overlay format.

Program objects
Program objects are a new format of load modules. In this format, load modules are called
program objects. This format is only allowed when stored in a PDSE program object library. A
program object consists of text (executable code and data areas), information about load
(relocating address constants) and binding (solve external references) in text. The format and
content of the object program and directory entry are not externalized (encapsulation).

The constraints removed from program objects are:

� Module size up to 2 Gb (TXT up to 1 Gb)
� Virtually unlimited number of aliases and external names

DFSMS has:

� Functions to create, update, execute, and access load modules (program objects) in
PDSEs.

� A new load module format named the program object library.

� A new linkage editor, called the binder.

� A new program fetch, called the loader, and five new load modes. For fetching load
modules, IEWFETCH is invoked by the loader.

� The DESERV internal interface function, to access, add, or replace directories entries in a
program library (PDS or PDSE), used by:

– Binder
– Loader
– LLA
– AMASPZAP

� A set of utilities including:

– IEWTPORT, which builds transportable programs from program objects, and vice
versa.

� Coexistence between PDS and PDSE load module libraries in the same system.
Chapter 5. System-managed storage 255

Binder (DFSMS) replaces the linkage editor and loader. It executes all functions of load
module linkage and editing done by the linkage editor/loader. It supports the new PDSE load
module format program object, and also supports the old PDS load module format.

The program management loader is the MVS support to load program objects from PDSEs:

� Relocates all the address constants in the program to point to the appropriated areas in
VS.

� Supports 24-bit or 31-bit addressing.

� Program objects may have different load modes, based on the module characteristics and
parameters specified to the binder when the object program was created (FETCHOPT).
Among these load modes are the following:

– Relocate and pre-load in virtual storage before execution

– Relocate and load into real storage (with a virtual storage address) for execution as a
result of a page fault)
256 ABCs of z/OS System Programming Volume 3

5.41 Selecting data sets to allocate as PDSEs

Figure 5-41 Selecting a data set to allocate as PDSE

Selecting a data set to allocate as PDSE
As a storage administrator, you can code appropriate ACS routines to select data sets to
allocate as PDSEs and prevent inappropriate PDSs from being allocated or converted to
PDSEs.

By using the &DSNTYPE read-only variable in the ACS routine for data-class selection, you
can control which PDSs are to be allocated as PDSEs. The following values are valid for
DSNTYPE in the data class ACS routines:

 &DSNTYPE = 'LIBRARY' for PDSEs.
 &DSNTYPE = 'PDS' for PDSs.
 &DSNTYPE is not specified. This indicates that the allocation request
 is provided by the user through JCL, the TSO/E ALLOCATE command, or
 dynamic allocation.

If you specify a DSNTYPE value in the JCL, and a different DSNTYPE value is also specified
in the data class selected by ACS routines for the allocation, the value specified in the data
class is ignored.

The &DSNTYPE ACS read-only variable
controls the allocation:

&DSNTYPE = 'LIBRARY' for PDSEs.

 &DSNTYPE = 'PDS' for PDSs.

 &DSNTYPE is not specified

This indicates that the allocation request is provided
by the user through JCL, the TSO/E ALLOCATE
command, or dynamic allocation.
Chapter 5. System-managed storage 257

5.42 Allocating new PDSEs

Figure 5-42 Allocating a PDSE data set

Allocating new PDSEs
You can allocate PDSEs only in an SMS-managed environment. The PDSE data set does not
have to be system-managed. To create a PDSE, use:

� DSNTYPE keyword in the JCL, TSO or IDCAMS ALLOCATE command
� A data class with LIBRARY in the Data Set Name Type field

You use DSNTYPE(LIBRARY) to allocate a PDSE, or DSNTYPE(PDS) to allocate a PDS.
Figure 5-42 shows IDCAMS ALLOCATE used with the DSNTYPE(LIBRARY) keyword to
allocate a PDSE.

A PDS and a PDSE can be concatenated in JCL DD statements, or by using dynamic
allocation, such as the TSO ALLOCATE command.

//ALLOC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ALLOCATE
DSNAME('FILE.PDSE') -
 NEW -
 DSNTYPE(LIBRARY)

SUB

SMS

VOLSMS

FILE.PDSE
258 ABCs of z/OS System Programming Volume 3

5.43 Identifying PDSEs

Figure 5-43 Identifying PDSEs

Identifying PDSEs
You can use ISMF to display information associated with data set name type (DSNTYPE).
Figure 5-43 shows a sample data set list obtained through a catalog. Navigating in the right
direction, you find the Data Set Name Type column. LIBRARY indicates the data set is a
PDSE, and OTHERS indicates that the data set is a PDS.

When you obtain the list through a catalog and the Data Set Name Type column contains
nulls "-------" the data set name type is neither LIBRARY (PDSE) nor a PDS.

A saved data set list from a release prior to DFSMS can still be used, and the values of data
set name type matches those under DFSMS. For example, PDSs are indicated as OTHERS
in the Data Set Name Type column.

When defining a data class, the valid values you use for the Data Set Name Type field in the
ISMF data set application are:

� EXTENDED, for extended format sequential data sets
� HFS, for hierarchical file system data sets
� LIBRARY, for PDSEs
� Or leave the field blank (for data sets not created in extended, HFS, or PDSE format)

Using ISMF, option 1:

Using PDF, option 3.4:
Chapter 5. System-managed storage 259

5.44 System-managed data types

Figure 5-44 System-managed data types

Data set types that can be system-managed
Now that you have experience with SMS using the minimal SMS configuration, you can plan
system-managed data sets implementation. First you need to know which data sets can be
SMS-managed and which data sets cannot be SMS-managed.

These are some common types of data that can be system-managed. For details on how
these data types can be system-managed using SMS storage groups, see z/OS DFSMS
Implementing System-Managed Storage, SC26-7407.

Temporary data Data sets used only for the duration of a job, job step, or terminal
session, and then deleted. These data sets can be cataloged or
uncataloged, and can range in size from small to very large.

Permanent data Data sets consisting of:

• Interactive data
• TSO user data sets
• ISPF/PDF libraries you use during a terminal session

Data sets classified in this category are typically small, and are
frequently accessed and updated.

Batch data Data that is classified as either online-initiated, production, or test.

• Data accessed as online-initiated are background jobs that an
online facility (such as TSO) generates.

Temporary
Data

Permanent
Data

Database
Data System Data

Object Data
260 ABCs of z/OS System Programming Volume 3

• Production batch refers to data created by specialized applications
(such as payroll), that could be critical to the continued operation of
your business or enterprise.

• Test batch refers to data created for testing purposes.

VSAM data Data organized with VSAM, including VSAM data sets that are part of
an existing database.

Large data For most installations, large data sets occupy more than 10 percent of
a single DASD volume. Note, however, that what constitutes a large
data set is installation-dependent.

Multivolume data Data sets that span more than one volume.

Database data Data types usually having varied requirements for performance,
availability, space, and security. To accommodate special needs,
database products have specialized utilities to manage backup,
recovery, and space usage. Examples include DB2, IMS, and CICS
data.

System data Data used by MVS to keep the operating system running smoothly. In
a typical installation, 30-to-50 percent of these data sets are high
performance and are used for cataloging, error recording, and other
system functions.

Because these critical data sets contain information required to find
and access other data, they are read and updated frequently, often by
more than one system in an installation. Performance and availability
requirements are unique for system data. The performance of the
system depends heavily upon the speed at which system data sets
can be accessed. If a system data set such as a master catalog is
unavailable, the availability of data across the entire system and
across other systems can be affected.

Some system data sets can be system-managed if they are uniquely
named. These data sets include user catalogs. Place other system
data sets on non-system managed volumes. The system data sets
which are allocated at MVS system initialization are not
system-managed, because the SMS address space is not active at
initialization time.

Object data Also known as byte-stream data, this data is used in specialized
applications such as image processing, scanned correspondence, and
seismic measurements. Object data typically has no internal record or
field structure and, once written, the data is not changed or updated.
However, the data can be referenced many times during its lifetime.
Chapter 5. System-managed storage 261

5.45 Data types that cannot be system-managed

Figure 5-45 Data types that cannot be system-managed

Data types that cannot be system-managed
All permanent DASD data under the control of SMS must be cataloged in integrated catalog
facility (ICF) catalogs using the standard search order. The catalogs contain the information
required for locating and managing system-managed data sets.

When data sets are cataloged, users do not need to know which volumes the data sets reside
on when they reference them; they do not need to specify unit type or volume serial number.
This is essential in an environment with storage groups, where users do not have private
volumes.

Some data cannot be system-managed, as described here:

Uncataloged data Objects, stored in groups called collections, must have their
collections cataloged in ICF catalogs because they, and the objects
they contain, are system-managed data. The object access method
(OAM) identifies an object by its collection name and the object's own
name.

An object is described only by an entry in a DB2 object directory. An
object collection is described by a collection name catalog entry and a
corresponding OAM collection identifier table entry. Therefore, an
object is accessed by using the object's collection name and the
catalog entry.

Uncataloged data

Unmovable Data Sets:

Partitioned unmovable (POU)
Sequential unmovable (PSU)
Direct access unmovable (DAU)
Indexed-sequential unmovable (ISU)
262 ABCs of z/OS System Programming Volume 3

When objects are written to tape, they are treated as tape data sets
and OAM assigns two tape data set names to the objects. Objects in
an object storage group being written to tape are stored as a tape data
set named OAM.PRIMARY.DATA. Objects in an object backup
storage group being written to tape are stored as a tape data set
named OAM.BACKUP.DATA. Each tape containing objects has only
one tape data set, and that data set has one of the two previous
names. Because the same data set name can be used on multiple
object-containing tape volumes, the object tape data sets are not
cataloged.

If you do not already have a policy for cataloging all permanent data, it
is a good idea to establish one now. For example, you can enforce
standards by deleting uncataloged data sets.

Uncataloged data sets

The system locates these with JOBCAT or STEPCAT statements.
Data set LOCATEs using JOBCATs or STEPCATs are not permitted
for system-managed data sets. You must identify the owning catalogs
before you migrate these data sets to system management. The
ISPF/PDF SUPERC utility is valuable for scanning your JCL and
identifying any dependencies on JOBCATs or STEPCATs.

Unmovable data sets

Unmovable data sets cannot be system-managed. These data sets
include:

– Data sets identified by the following data set organizations
(DSORGs):
• Partitioned unmovable (POU)
• Sequential unmovable (PSU)
• Direct access unmovable (DAU)
• Indexed-sequential unmovable (ISU)

– Data sets with user-written access methods
– Data sets containing processing control information on the device

or volume on which they reside, including:
• Absolute track data that is allocated in absolute DASD tracks or

on split cylinders
• Location-dependent direct data sets

All unmovable data sets must be identified and converted for use in a
system-managed environment. For information on identifying and
converting unmovable data sets, see z/OS DFSMSdss Storage
Administration Guide, SC35-0423.
Chapter 5. System-managed storage 263

5.46 Introduction to ISMF

Figure 5-46 ISMF Primary Option Menu panel

Using ISMF
The Interactive Storage Management Facility (ISMF) helps you analyze and manage data
and storage interactively. ISMF is an Interactive System Productivity Facility (ISPF)
application. Figure 5-46 shows the first ISMF panel, the Primary Option Menu.

ISMF provides interactive access to the space management, backup, and recovery services
of the DFSMShsm and DFSMSdss functional components of DFSMS, to the tape
management services of the DFSMSrmm functional component, as well as to other products.
DFSMS introduces the ability to use ISMF to define attributes of tape storage groups and
libraries.

A storage administrator uses ISMF to define the installation's policy for managing storage by
defining and managing SMS classes, groups, and ACS routines. ISMF then places the
configuration in an SCDS. You can activate an SCDS through ISMF or an operator
command.

ISMF operates as an Interactive System Productivity Facility (ISPF) application. It is
menu-driven with fast paths for many of its functions. ISMF uses the ISPF data-tag language
(DTL) to give its functional panels on workstations the look of common user access (CUA)
panels and a graphical user interface (GUI).
264 ABCs of z/OS System Programming Volume 3

5.47 ISMF product relationships

Figure 5-47 ISMF product relationships

ISMF product relationships
ISMF works with the following products, which you should be familiar with:

� Interactive System Productivity Facility/Program Development Facility (ISPF/PDF), which
provides the edit, browse, Data Set and Library utility functions.

� TSO/Extensions (TSO/E), TSO CLISTs and commands.

� DFSMS, which consists of four functional components: DFSMSdfp, DFSMShsm,
DFSMSdss, and DFSMSrmm. ISMF is designed to use the space management and
availability management (backup/recovery) functions provided by those products.

� Data Facility SORT (DFSORT), which provides the record-level functions.

� Resource Authorization Control Facility (RACF), which provides the access control
function for data and services.

� Device Support Facilities (ICKDSF) to provide the storage device support and analysis
functions.

� IBM NaviQuest for MVS 5655-ACS.

ISMF also works with NaviQuest, which is a new product from IBM Storage System Division
Software Products. NaviQuest is a testing and reporting tool that speeds and simplifies the
tasks associated with DFSMS initial implementation and ongoing ACS routine and
configuration maintenance. NaviQuest assists storage administrators by allowing more

ISPF/PDF

TSO/Extensions (TSO/E), TSO CLISTs, commands

 DFSMS

 Data Facility SORT (DFSORT)

 Resource Authorization Control Facility (RACF)

 Device Support Facilities (ICKDSF)

 IBM NaviQuest for MVS (NaviQuest), 5655-ACS
Chapter 5. System-managed storage 265

automation of storage management tasks. More information on NaviQuest can be found in
the NaviQuest User's Guide.

NaviQuest provides:

� A familiar ISPF panel interface to functions

� Fast, easy, bulk test-case creation

� ACS routine and DFSMS configuration-testing automation

� Storage reporting assistance

� Additional tools to aid with storage administration tasks

� Batch creation of data set and volume listings

� Printing of ISMF LISTs

� Batch ACS routine translation

� Batch ACS routine validation
266 ABCs of z/OS System Programming Volume 3

5.48 What you can do with ISMF

Figure 5-48 What you can do with ISMF

What you can do with ISMF
ISMF is a panel-driven interface. Use the panels in an ISMF application to:

� Display lists with information about specific data sets, DASD volumes, mountable optical
volumes, and mountable tape volumes

� Generate lists of data, storage, and management classes to find out how data sets are
being managed

� Display and manage lists saved from various ISMF applications

ISMF generates a data list based on your selection criteria. Once the list is built, you can use
ISMF entry panels to perform space management or backup and recovery tasks against the
entries in the list.

As a user performing data management tasks against individual data sets or against lists of
data sets or volumes, you can use ISMF to:

� Edit, browse, and sort data set records

� Delete data sets and backup copies

� Protect data sets by limiting their access

� Recover unused space from data sets and consolidate free space on DASD volumes

� Copy data sets or DASD volumes to the same device or another device

� Migrate data sets to another migration level

Edit, browse, and sort data set records

Delete data sets and backup copies

Protect data sets by limiting their access

Copy data sets to another migration level

Back up data sets and copy entire volumes,
mountable optical volumes, or mountable tape
volumes

Recall data sets that have been migrated
Chapter 5. System-managed storage 267

� Recall data sets that have been migrated so that they can be used

� Back up data sets and copy entire volumes for availability purposes

� Recover data sets and restore DASD volumes, mountable optical volumes, or mountable
tape volumes

Every site can control who can use certain functions described in this book. Your organization
might require you to have authorization to use certain functions. Your security administrator
can explain any restrictions your site has established.

You cannot allocate data sets from ISMF. Data sets are allocated from ISPF, from TSO, or
with JCL statements. ISMF provides the DSUTIL command, which enables users to get to
ISPF and toggle back to ISMF.
268 ABCs of z/OS System Programming Volume 3

5.49 Accessing ISMF

Figure 5-49 ISMF Primary Option Menu panel for storage administrators

Accessing ISMF
How you access ISMF depends on your site.

� You can create an option on the ISPF Primary Option Menu to access ISMF. Then access
ISMF by typing the appropriate option after the arrow on the Option field, in the ISPF
Primary Option Menu. This starts an ISMF session from the ISPF/PDF Primary Option
Menu.

� To access ISMF directly from TSO, use the command:

ISPSTART PGM (DGTFMD001) NEWAPPL(DGT)

There are two Primary Option Menus, one for storage administrators, and another for end
users:

1. Figure 5-49 shows the menu available to storage administrators; it includes additional
applications not available to end users.

2. Figure 5-51 on page 271 shows the ISMF Primary Option Menu for end users.

Option 0 controls the user mode or the type of Primary Option Menu to be displayed. Refer to
“ISMF Profile option” on page 270 for information on how to change the user mode.

The ISMF Primary Option Menu example assumes installation of DFSMS at the current
release level. For information about adding the DFSORT option to your Primary Option Menu,
refer to DFSORT Installation and Customization Release 14, SC33-4034.
Chapter 5. System-managed storage 269

5.50 ISMF Profile option

Figure 5-50 ISMF PROFILE OPTION MENU panel

Setting the ISMF profile
Figure 5-50 shows the ISMF Profile Option Menu panel, Option 0 from the ISMF Primary
Menu. Use this menu to control the way ISMF runs during the session. You can:

� Change the user mode from end user to storage administrator, or from storage
administrator to end user

� Control ISMF error logging and recovery from abends

� Define statements for ISMF to use in processing your jobs, such as:

– JOB statements,
– DFSMSdss
– Device Support Facilities (ICKDSF)
– Access Method Services (IDCAMS)
– PRINT execute statements in your profile

You can select ISMF or Interactive System Productivity Facility (ISPF) JCL statements for
processing batch jobs.
270 ABCs of z/OS System Programming Volume 3

5.51 Navigating through ISMF

Figure 5-51 End user ISMF Primary Option Menu

Navigating through ISMF
ISMF provides an action bar-driven interface that exploits many of the usability features of
Common User Access (CUA) interfaces. The panels look different than in previous releases:
all screens will be mixed case and most will have action bars at the top.

Navigating without using the action bar
You can still navigate through ISMF using the standard method of typing in a selection
number and pressing Enter.

Using the action bar
Most ISMF panels have action bars at the top. The choices display in white (by default). The
action bar gives you another way to move through ISMF. If the cursor is located somewhere
on the panel, there are several ways to move the cursor to the action bar:

� Using the Tab key
� Using the mouse button
� Using the cursor manually

After you have chosen an action, press Enter to open the menu. Figure 5-54 on page 274
shows the List pull-down menu for the Data Set List panel. Notice the input field in the upper
left corner. There, type the number of the action you want, then press Enter.

Figure 5-51 shows the options available for end users.
Chapter 5. System-managed storage 271

5.52 Obtaining information about a panel field

Figure 5-52 Obtaining information using Help command

Using the Help Program Function Key (PFK)
On any ISMF panel, you can use ISMF Help Program Function Key (PFK) to obtain
information about the panel you are using and the panel fields. By positioning the cursor in a
specific field, you can obtain detailed information related to that field.

Figure 5-52 shows the panel you reach when you press the Help PFK with the cursor in the
Line Operator field of the panel shown in Figure 5-54 on page 274. The panel shows the
commands available to enter in that field. If you want an explanation about a specific
command, type the option corresponding to the desired command and a panel is displayed
showing information about the command function.

You can exploit the Help PFK, when defining classes, to obtain information about what you
have to enter in the fields. Place the cursor in the field and press the Help PFK.

To see and change the assigned functions to the PFKs, enter the KEYS command in the
Command field.
272 ABCs of z/OS System Programming Volume 3

5.53 Data Set option

Figure 5-53 ISMF Data Set Selection Entry Panel

Data Set Selection Entry panel
Figure 5-53 shows the panel that appears when you select option 1 (Data Set) from the ISMF
Primary Option Menu.

The Data Set Application constructs a list of data sets, using the filters provided in the panel.
Figure 5-54 on page 274 shows the Data Set List generated, in our environment, for the
selection criteria used in Figure 5-53.
Chapter 5. System-managed storage 273

5.54 Obtaining a data set list

Figure 5-54 Data Set List panel using action bars

Data Set List panel
You can use line operators to execute tasks with individual data sets. Use list commands to
execute tasks with a group of data sets. These tasks include editing, browsing, recovering
unused space, copying, migrating, deleting, backing up, and restoring data sets.

TSO commands and CLISTs can also be used as line operators or list commands. You can
save a copy of a data set list and reuse it later.

If ISMF is unable to get certain information required to check if a data set meets the selection
criteria specified, that data set is also to be included in the list. This is indicated by dashes on
the corresponding column. For example, if ISMF is unable to check if a data set meets the
specified volume serial number criteria, that data set still appears in the list with dashes in the
corresponding Volume Serial Number field.

Figure 5-54 shows a data set list. The Data Fields field shows how many fields you have in
the list. You can navigate throughout these fields using Right and Left PF keys. The figure
also shows the use of the actions bar; in this case the cursor was placed in the List action, the
Enter key was pressed, and the list options were shown.
274 ABCs of z/OS System Programming Volume 3

5.55 Volume Option

Figure 5-55 Volume Section Entry panel

Volume option
Selecting option 2 (Volume) from the ISMF Primary Menu takes you to the Volume List
Selection Menu Panel, shown in the first part (1) of Figure 5-55. Here you can choose the
volume type from DASD, mountable optical or mountable tape.

Selecting option 1 (DASD) displays the Volume Selection Entry Panel, shown in the second
part (2) of Figure 5-55.

Using filters, you can select a Volume List Panel, shown in Figure 5-56 on page 276.

1

2

Chapter 5. System-managed storage 275

5.56 Obtaining a volume list

Figure 5-56 Volume List panel

Volume List panel
The volume application constructs a list of DASD volumes, mountable optical volumes, or
mountable tape volumes. Use line operators to do tasks with an individual volume. These
tasks include consolidating or recovering unused space, copying, backing up, and restoring
volumes. TSO commands and CLISTs can also be line operators or list commands.

You can save a copy of a volume list and reuse it later. With the list of mountable optical
volumes or mountable tape volumes, you can only browse the list.

For information about when to select the Volume option and tasks you can do using the
Volume Application, you can:

� Type the HELP command in the Command field.
� Press the Help PFK.
� Refer to z/OS DFSMS: Using the Interactive Storage Management Facility, SC26-7411.
276 ABCs of z/OS System Programming Volume 3

5.57 Management Class option

Figure 5-57 Management Class Selection Menu panel

Management Class Application Selection panel
Figure 5-57 shows the panel displayed when you select option 3 (Management Class) from
the ISMF Primary Menu. Use this option to display, modify, and define options for the
management classes of the SMS. It also constructs a list of the available management
classes.

Figure 5-58 on page 278 shows the management class list generated by the filters chosen in
this panel, using option 2 (Display).
Chapter 5. System-managed storage 277

5.58 Management Class List panel

Figure 5-58 Listing the management class defined in the SMS configuration

Management Class List panel
Figure 5-58 shows the partial contents of the ISMF Management Class List panel. Note how
many data columns are available. You can navigate through them using right and left PFKs.

To view the commands, you can use in the Line Operator field (marked with a circle in the
figure), place the cursor in the field and press the Help PFK.

To see the PFKs, type the KEYS command in the Command panel field and press Enter.
278 ABCs of z/OS System Programming Volume 3

5.59 Data Class option

Figure 5-59 Data Class Application Selection panel

Displaying information about data classes
Figure 5-59 shows the panel displayed when you choose option 4 (Data Class) from the ISMF
Primary Menu. Use this option to define the way data sets are allocated in your installation.

Data class attributes are assigned to a data set when the data set is created. They apply to
both DFSMS-managed and non-DFSMS-managed data sets. Attributes specified in JCL or
equivalent allocation statements override those specified in a data class. Individual attributes
in a data class can be overridden by JCL, TSO, IDCAMS, and dynamic allocation statements.

Figure 5-60 on page 280 shows the Data Class List generated by the filters located in this
panel, when using the option 1 Display.
Chapter 5. System-managed storage 279

5.60 Obtaining a data class listing

Figure 5-60 Data Class List panel

Data Class List panel
Figure 5-60 show the data class listing obtained using the filters shown in Figure 5-59 on
page 279.

Typing DISPLAY line command in the Line Operator field, in front a data class name, shows
the informations about that data class, with out have to navigate throughout the use of Right
and Left PFKs, as shown in Figure 5-61 on page 281.
280 ABCs of z/OS System Programming Volume 3

5.61 Displaying data class information

Figure 5-61 Displaying information about a data class

Data Class Display panel
To see all the attributes specified to the data class, navigate through this application by using
the up and down PFKs.
Chapter 5. System-managed storage 281

5.62 Storage Class option

Figure 5-62 Storage Class Application Selection panel

Storage Class Application Selection panel
Figure 5-62 shows the Storage Class Application Selection panel displayed when you select
option 5 (Storage Class) of the ISMF Primary Menu.

The Storage Class Application Selection panel lets the storage administrator specify
performance objectives and availability attributes that characterize a collection of data sets.

For objects, the storage administrator can define the performance attribute Initial Access
Response Seconds. A data set or object must be assigned to a storage class in order to be
managed by DFSMS.

Figure 5-63 on page 283 shows the storage class list generated by the filters located in
Figure 5-62 with the option 1 Display.
282 ABCs of z/OS System Programming Volume 3

5.63 Storage Class List panel

Figure 5-63 Storage Class List panel

Storage Class List panel
You can specify the DISPLAY line operator next to any class name on a class list to generate
a panel that displays values associated with that particular class. This information can help
you decide whether you need to assign a new DFSMS class to your data set or object.

If you determine that a data set you own should be associated with a different management
class or storage class, and if you have authorization, you can use the ALTER line operator
against a data set list entry to specify another storage class or management class.
Chapter 5. System-managed storage 283

5.64 List option

Figure 5-64 Saved ISMF Lists panel

Saving ISMF lists
After obtaining a list (data set, data class, and storage class), you can save the list by typing
SAVE listname in the Command panel field. To see the saved lists, use the option L (List) in
the ISMF Primary Option Menu.

The List Application panel displays a list of all lists saved from ISMF applications. Each entry
in the list represents a list that was saved. If there are no saved lists to be found, the ISMF
Primary Option Menu panel is redisplayed with the message that the list is empty.

You can reuse and delete saved lists. From the List Application, you can reuse lists as if they
were created from the corresponding application. You can then use line operators and
commands to tailor and manage the information in the saved lists.

For more about the ISMF panel, refer to z/OS DFSMS: Using the Interactive Storage
Management Facility, SC26-7411.
284 ABCs of z/OS System Programming Volume 3

5.65 Removable Media Manager option

Figure 5-65 Removable Media Manager option

Removable Media Manager primary option menu
Figure 5-65 shows option R (Removable Media Manager) of the ISMF Primary Option Menu.
This option displays the Primary Option Menu of the Removable Media Manager application.

Under normal circumstances, the DFSMSrmm subsystem starts automatically through IPL
procedures, either standard or as modified by your installation. In exceptional cases, such as
after recovery of the DFSMSrmm control data set, you might need to restart the subsystem.

Data Facility Removable Media Manager for MVS/DFP Version 3 (DFRMM) Program Offering
provides support for non-system-managed tape libraries. When you use DFRMM and
DFSMSrmm together, or multiple DFSMSrmm systems, they can share the same control data
set. When both DFRMM and DFSMSrmm share the control data set, you can use the
DFRMM ISPF dialog and RMM TSO subcommands to display all information that has been
recorded in the control data set. There are some restrictions on using the RMM TSO
subcommands from DFRMM, and from DFSMSrmm on a non-system-managed tape system,
to add and change information in the control data set.

 Panel Help

 EDG@PRIM REMOVABLE MEDIA MANAGER (DFSMSrmm)
 Option ===>

 0 OPTIONS - Specify dialog options and defaults
 1 USER - General user facilities
 2 LIBRARIAN - Librarian functions
 3 ADMINISTRATOR - Administrator functions
 4 SUPPORT - System support facilities
 5 COMMANDS - Full DFSMSrmm structured dialog
 6 LOCAL - Installation defined dialog
 X EXIT - Exit DFSMSrmm Dialog

 Enter selected option or END command. For more info., enter HELP or PF1.

 5695-DF1 (C) COPYRIGHT IBM CORPORATION 1993
Chapter 5. System-managed storage 285

286 ABCs of z/OS System Programming Volume 3

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 288.
Note that some of the documents referenced here may be available in softcopy only.

� VSAM Demystified, SG24-6105

� DFSMStvs Overview and Planning Guide, SG24-6971

� DFSMStvs Presentation Guide, SG24-6973

� z/OS DFSMS V1R3 and V1R5 Technical Guide, SG24-6979

Other publications
These publications are also relevant as further information sources:

� z/OS DFSMStvs Administration Guide, GC26-7483

� Device Support Facilities User’s Guide and Reference Release 17, GC35-0033

� z/OS MVS Programming: Assembler Services Guide, SA22-7605

� z/OS MVS System Commands, SA22-7627

� z/OS MVS System Messages,Volume 1 (ABA-AOM), SA22-7631

� DFSMS Optimizer User’s Guide and Reference, SC26-7047

� z/OS DFSMStvs Planning and Operating Guide, SC26-7348

� z/OS DFSMS Access Method Services for Catalogs, SC26-7394

� z/OS DFSMSdfp Storage Administration Reference, SC26-7402

� z/OS DFSMSrmm Guide and Reference, SC26-7404

� z/OS DFSMSrmm Implementation and Customization Guide, SC26-7405

� z/OS DFSMS Implementing System-Managed Storage, SC26-7407

� z/OS DFSMS: Using Data Sets, SC26-7410

� z/OS DFSMS: Using the Interactive Storage Management Facility, SC26-7411

� z/OS DFSMS: Using Magnetic Tapes, SC26-7412

� z/OS DFSMSdfp Utilities, SC26-7414

� z/OS Network File System Customization and Operation, SC26-7417

� z/OS Network File System User’s Guide, SC26-7419

� z/OS DFSORT: Getting Started, SC26-7527

� DFSORT Installation and Customization Release 14, SC33-4034

� z/OS DFSMShsm Storage Administration Guide, SC35-0421

� z/OS DFSMShsm Storage Administration Reference, SC35-0422
© Copyright IBM Corp. 2004. All rights reserved. 287

� z/OS DFSMSdss Storage Administration Guide, SC35-0423

� z/OS DFSMSdss Storage Administration Reference, SC35-0424

� z/OS DFSMS Object Access Method Application Programmer’s Reference, SC35-0425

� z/OS DFSMS Object Access Method Planning, Installation, and Storage Administration
Guide for Object Support, SC35-0426

� Tivoli Decision Support for OS/390 System Performance Feature Reference Volume I,
SH19-6819

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
288 ABCs of z/OS System Programming Volume 3

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

ABCs of z/OS System
 Program

m
ing Volum

e 3

ABCs of z/OS System
 Program

m
ing

Volum
e 3

ABCs of z/OS System
 Program

m
ing

Volum
e 3

ABCs of z/OS System
 Program

m
ing Volum

e 3

ABCs of z/OS System
 Program

m
ing

Volum
e 3

ABCs of z/OS System
 Program

m
ing

Volum
e 3

®

SG24-6983-00 ISBN 0738491403

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

ABCs of z/OS System
Programming
Volume 3

DFSMS, data set
basics

Storage management
hardware and
software

System-managed
storage, ISMF

The ABCs of z/OS System Programming is an eleven-volume
collection that provides an introduction to the z/OS operating
system and the hardware architecture. Whether you are a
beginner or an experienced system programmer, the ABCs
collection provides the information that you need to start your
research into z/OS and related subjects.

If you would like to become more familiar with z/OS in your
current environment, or if you are evaluating platforms to
consolidate your e-business applications, the ABCs collection will
serve as a powerful technical tool.

Volume 3 describes an introduction to DFSMS, data set basics,
storage management hardware and software, system-managed
storage, and ISMF.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. DFSMS introduction
	1.1 Introduction to DFSMS
	1.2 Data Facility Storage Management Subsystem
	1.3 DFSMSdfp component
	1.4 DFSMSdss component
	1.5 DFSMSrmm component
	1.6 DFSMShsm component
	1.7 DFSMStvs component

	Chapter 2. Data set basics
	2.1 Data sets
	2.2 Data set name rules
	2.3 DFSMSdfp data set organizations
	2.4 Types of VSAM data sets
	2.5 Non-VSAM data sets
	2.6 Extended-format data sets and objects
	2.7 z/OS UNIX files
	2.8 Data set organization (DSORG)
	2.9 Allocate a data set with ISPF 3.2
	2.10 Logical record length (LRECL)
	2.11 Locating a data set
	2.12 Uncataloged and cataloged data sets
	2.13 Volume table of contents (VTOC)
	2.14 Data set control block (DSCB)
	2.15 VTOC index structure
	2.16 Initializing a volume (ICKDSF)
	2.17 Problem determination

	Chapter 3. Storage management hardware
	3.1 Overview of DASD types
	3.2 Traditional DASD capacity
	3.3 Large Volume Support
	3.4 Redundant array of independent disks (RAID)
	3.5 Seascape architecture
	3.6 Enterprise Storage Server (ESS)
	3.7 ESS universal access
	3.8 Operating systems supporting ESS
	3.9 ESS major components
	3.10 ESS host adapters
	3.11 FICON host adapters
	3.12 ESS disks
	3.13 Device adapters
	3.14 SSA loops
	3.15 RAID-10
	3.16 Storage balancing with RAID-10
	3.17 ESS performance features
	3.18 WLM controlling PAVs
	3.19 ESS copy services
	3.20 TotalStorage Expert product highlights
	3.21 Introduction to tape processing
	3.22 SL and NL format
	3.23 Tape capacity - tape mount management
	3.24 TotalStorage Enterprise Tape Drive 3592 Model J1A
	3.25 IBM TotalStorage Enterprise Automated Tape Library 3494
	3.26 Introduction to Virtual Tape Server (VTS)
	3.27 IBM TotalStorage Peer-to-Peer VTS
	3.28 Storage area network (SAN)

	Chapter 4. Storage management software
	4.1 Overview of DFSMSdfp utilities
	4.2 IEBCOMPR (compare data set) program
	4.3 Comparing data sets
	4.4 IEBCOPY utility
	4.5 IEBCOPY copy operation
	4.6 IEBCOPY compress operation
	4.7 IEBGENER
	4.8 Adding members to a PDS using IEBGENER
	4.9 Copying data to tape
	4.10 IEHLIST
	4.11 IEHLIST LISTVTOC output
	4.12 IEHINITT
	4.13 IEFBR14
	4.14 Access method services
	4.15 AMS functional commands
	4.16 AMS modal commands
	4.17 Data Collection Facility (DCOLLECT)
	4.18 Generation data groups (GDG)
	4.19 Defining a generation data group
	4.20 Absolute generation and version numbers
	4.21 Relative generation numbers
	4.22 Access method
	4.23 Major DFSMS access methods
	4.24 Basic Partitioned Access Method (BPAM)
	4.25 PDS data organization
	4.26 Partitioned data set extended (PDSE)
	4.27 Sequential access methods
	4.28 Virtual Storage Access Method (VSAM)
	4.29 VSAM resource pool and buffering techniques
	4.30 System-managed buffering (SMB)
	4.31 VSAM terminology and concepts
	4.32 Control interval (CI)
	4.33 VSAM data set components
	4.34 Key sequenced data set (KSDS)
	4.35 Processing a KSDS data set
	4.36 Relative record data set (RRDS)
	4.37 Typical RRDS processing
	4.38 Linear data set (LDS)
	4.39 Data-in-virtual
	4.40 Data-in-virtual objects
	4.41 Mapping a linear data set
	4.42 Entry sequenced data set (ESDS)
	4.43 Typical ESDS processing
	4.44 DFSORT
	4.45 DFSMS Network File System
	4.46 DFSMS Optimizer
	4.47 DFSMSdss
	4.48 DFSMSdss: physical and logical processing
	4.49 DFSMSdss: logical processing
	4.50 DFSMSdss: physical processing
	4.51 DFSMSdss stand-alone services
	4.52 DFSMShsm
	4.53 Availability management
	4.54 Space management
	4.55 Storage device hierarchy
	4.56 HSM volume types
	4.57 Automatic space management
	4.58 Recall
	4.59 Removable media manager (DFSMSrmm)
	4.60 Libraries and locations
	4.61 What DFSMSrmm can manage
	4.62 Managing libraries and storage locations

	Chapter 5. System-managed storage
	5.1 Storage management
	5.2 DFSMS and DFSMS environment
	5.3 Benefits of system-managed storage
	5.4 Establishing service level objectives
	5.5 Implementing SMS policies
	5.6 Monitoring SMS policies
	5.7 Assigning data to be system-managed
	5.8 Using data classes
	5.9 Using storage classes
	5.10 Using management classes
	5.11 Management class functions
	5.12 Using storage groups
	5.13 Using aggregate backup and recovery support (ABARS)
	5.14 Automatic Class Selection (ACS) routines
	5.15 SMS configuration
	5.16 Implementing DFSMS
	5.17 Steps to activate a minimal SMS configuration
	5.18 Allocating SMS control data sets
	5.19 Defining the SMS base configuration
	5.20 Creating ACS routines
	5.21 DFSMS setup for z/OS
	5.22 Starting SMS
	5.23 Control SMS processing with operator commands
	5.24 Displaying the SMS configuration
	5.25 Managing data with minimal SMS configuration
	5.26 Device-independence space allocation
	5.27 Developing naming conventions
	5.28 Setting the low-level qualifier (LLQ) standards
	5.29 Establishing installation standards
	5.30 Planning and defining data classes
	5.31 Data class attributes
	5.32 Use data class ACS routine to enforce standards
	5.33 Simplifying JCL use
	5.34 Allocating a data set
	5.35 Creating a VSAM cluster
	5.36 Space allocation for a VSAM KSDS cluster
	5.37 Retention period and expiration date
	5.38 SMS PDSE support
	5.39 PDSE conversion
	5.40 DFSMS and program objects
	5.41 Selecting data sets to allocate as PDSEs
	5.42 Allocating new PDSEs
	5.43 Identifying PDSEs
	5.44 System-managed data types
	5.45 Data types that cannot be system-managed
	5.46 Introduction to ISMF
	5.47 ISMF product relationships
	5.48 What you can do with ISMF
	5.49 Accessing ISMF
	5.50 ISMF Profile option
	5.51 Navigating through ISMF
	5.52 Obtaining information about a panel field
	5.53 Data Set option
	5.54 Obtaining a data set list
	5.55 Volume Option
	5.56 Obtaining a volume list
	5.57 Management Class option
	5.58 Management Class List panel
	5.59 Data Class option
	5.60 Obtaining a data class listing
	5.61 Displaying data class information
	5.62 Storage Class option
	5.63 Storage Class List panel
	5.64 List option
	5.65 Removable Media Manager option

	Related publications
	IBM Redbooks
	Other publications
	How to get IBM Redbooks
	Help from IBM

	Back cover

