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NUMERICAL SOLUTION FOR THE WILLMORE FLOW OF

GRAPHS

TOMÁŠ OBERHUBER1

Abstract. In this article we present a numerical scheme for the Willmore flow of graphs. It
is based on the method of lines. Resulting ordinary differential equations are solved using the 4th
order Runge-Kutta-Merson solver. We show basic properties of the semi-discrete scheme and present
several computational studies of evolving graphs.
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1. Introduction. For the purpose of this article we consider evolution of two
dimensional surface Γ(t) embedded in

� 3 such that it can be described as a graph of
some function u : (0, T 〉 × Ω →

�
, Ω ⊂

� 2. We investigate the following law

V = 24ΓH + H3 − 4HK on Γ (t) , (1.1)

where V is the normal velocity, 4Γ is the Laplace-Beltrami operator, H = κ1 + κ2

is the mean curvature, K = κ1 · κ2 is the Gauss curvature and κ1 and κ2 denote the
principal curvatures of the surface.

As follows from [5, 6, 7] the law (1.1) represents the L2-gradient flow for the
functional W defined as:

W (f) =

∫

Γ

H2dS, Γ = {(x, u (x)) | x ∈ Ω} . (1.2)

The gradient flow approach is described e.g. in [13]. Existence of the solution under
certain initial conditions was proved in [12, 8]. In [5] an implicit numerical scheme
for the Willmore flow of graphs based on the finite element method together with the
numerical analysis is presented. A level set formulation for the Willmore flow can be
found in [6]. For the physical meaning of the minimization of (1.2) we refer to [4]. In [7]
the authors describe an algorithm for evolution of elastic curves in

�
n. An interesting

algorithm for parametrised curves driven by intrinsic Laplacian of curvature can be
found in [9] where the authors use the tangential vector for redistribution of the
control points on the curve. Application for the surface reconstruction of scratched
objects is discused in [14].

We present a numerical scheme for the Willmore flow of graphs based on the
method of lines. For discretization in time we use the 4th order Runge-Kutta type
solver having explicit nature. This method was succesfully used for solving several
problems in interface motion [2]. Our work is also related to [3] where the surface
diffusion for graphs is treated by a similar approach.
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2. Problem formulation. We assume that Γ (t) is a graph of a function u of
two variables:

Γ (t) =
{

[x, u (t,x)] | x ∈ Ω ⊂
� 2
}

,

where Ω ≡ (0, L1) × (0, L2) is an open rectangle, ∂Ω its boundary and ν its outer
normal.

We express the quantities of (1.1) in terms of the graph description of Γ (t) see
[3]:

Q =

√

1 + |∇u|2; n =
(∇u,−1)

Q
, (2.1)

V = −
ut

Q
, (2.2)

H = ∇ · n, (2.3)

K =
det D2u

Q4
, (2.4)

4ΓH =
1

Q
∇ ·

[(

QI −
∇u ⊗∇u

Q

)

∇H

]

. (2.5)

Lemma 2.1. For the graph formulation of the Willmore flow, (1.1) takes the
following form

∂u

∂t
= −Q∇ ·

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

, (2.6)

w = Q∇ ·
∇u

Q
, (2.7)

where

� =
∇u

Q
⊗

∇u

Q
, (u ⊗ v)ij = ui · vj .

Proof. The proof follows [5]. It is given here because of better understanding of
consequent results. We start with the expression (2.5) which can be written as

4ΓH = ∇·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇ (QH)

)

−H∇·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇Q

)

. (2.8)

Using (2.3) we have

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇Q =
1

Q

(

∇Q −
4u

Q
∇u

)

+ H
∇u

Q
, (2.9)

from (2.4) and by a brief rearangement we obtain

∇ ·

(

1

Q

(

∇Q −
4u

Q
∇u

))

= −2K. (2.10)

Putting (2.9) and (2.10) into (2.8) we have

4ΓH = ∇ ·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇ (QH)

)

+ 2HK − H∇ ·

(

H
∇u

Q

)

= ∇ ·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇ (QH)

)

+ 2HK −
1

2
∇ ·

(

H2

Q
∇u

)

−
1

2
H3.
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Together with (1.1), (2.2) and (2.7) we obtain (2.6).
The above lemma allows to introduce the following problem:
Definition 2.2. The graph formulation for the Willmore flow is a system of two

partial differential equations of the second order for u and w in the form

∂u

∂t
= −Q∇ ·

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

in Ω × (0, T ) , (2.11)

w = Q∇ ·
∇u

Q
, (2.12)

u(·, 0) = uini,

with the Dirichlet boundary conditions

u |∂Ω= 0, w |∂Ω= 0, (2.13)

or with the Neumann boundary conditions

∂u

∂ν
|∂Ω= 0,

∂w

∂ν
|∂Ω= 0. (2.14)

Remark: Multiplying (2.11) by test function ϕ ∈ H1
0 (Ω) in the case of the

Dirichlet boundary conditions, or ϕ ∈ H1 (Ω) for the Neumann boundary conditions,
summing over Ω and applying the Green theorem we have

∫

Ω

ut

Q
ϕ = −

∫

Ω

∇ ·

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

ϕ

=

∫

Ω

[

2

Q
( � − � )∇w −

w2

Q3
∇u

]

· ∇ϕ −

∫

∂Ω

[(

2

Q
( � − � )∇w

)

· ν −
w2

Q3

∂w

∂ν

]

ϕ.

The last term vanishes because of the choice of the test function ϕ in the case of
the Dirichlet boundary conditions (2.13). In the case of the Neumann boundary
conditions the sum over ∂Ω vanishes because of (2.14) and the fact that

(( � − � ) · ∇w) ν =
∂w

∂ν
−

1

Q2
((∇u ⊗∇u)∇w) · ν =

∂w

∂ν
−

∇u · ∇w

Q2

∂u

∂ν
.

Similarly we multiply (2.12) by test function ξ ∈ H1
0 (Ω) for the Dirichlet boundary

conditions resp. ξ ∈ H1 (Ω) for the Neumann boundary conditions and we have
∫

Ω

w

Q
ξ =

∫

Ω

(

∇ ·
∇u

Q

)

ξ = −

∫

Ω

∇u · ∇ξ

Q
+

∫

∂Ω

ξ

Q

∂u

∂ν
.

The last term vanishes because of the choice of ξ in the case of the Dirichlet boundary
conditions or because of (2.14) in the case of the Neumann boundary conditions.

We can define the weak solution for the Willmore flow of graphs as follows:
Definition 2.3. The weak solution of the graph formulation for the Willmore

flow with homogeneous Dirichlet boundary conditions is a couple u, w : (0, T ) →
H1

0 (Ω) which satisfy a.e in (0, T ), for each test functions ϕ, ξ ∈ H1
0 (Ω)

∫

Ω

ut

Q
ϕ =

∫

Ω

2

Q
[( � − � )∇w] · ∇ϕ −

∫

Ω

w2

Q3
∇u · ∇ϕ a.e. in (0, T ) (2.15)

∫

Ω

w

Q
ξ = −

∫

Ω

∇u · ∇ξ

Q
. (2.16)
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with the initial condition

u |t=0= uini.

Weak solution for the problem with homogeneous Neumann boundary conditions is
a couple u, w : (0, T ) → H1 (Ω) which satisfy (2.15) a.e. in (0, T ), for each test
functions ϕ, ξ ∈ H1 (Ω).

Remark: There are at least two different steady solutions for the Willmore flow
of graphs. The trivial solution is represented by a constant function u(specified by
the boundary conditions) and zero mean curvature (w = 0) The second solution is
induced by a sphere with given radius r since the principal curvatures are κ1 = κ2 = 1

r

and so H = κ1 + κ2 = 2
r

and K = κ1κ2 = 1
r2 . From this fact it follows that the right

hand side of (1.1) is equal to zero. In this case, the boundary conditions are different
from (2.13) and (2.14).

Mathematical properties of (1.1) have been partially studied in [12] for the case
when the initial condition is close to a sphere and in [8] existence of the solution was

proved under the assumption that
∫

Γ
|A◦|2 is sufficiently small, for A◦ denoting the

trace-free part of the second fundamental form.

3. Numerical scheme. For the numerical solution of (1.1), we will use method
of lines with finite difference discretization in space.

We use the following notation. Let h1, h2 be space steps such that h1 = L1

N1

and

h2 = L2

N2

for some N1, N2 ∈ N
+. We define a uniform grid as

ωh = {(ih1, jh2) | i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1} ,

ωh = {(ih1, jh2) | i = 0 · · ·N1, j = 0 · · ·N2} .

For u : R
2 → R we define a projection on ωh as uij = u(ih1, jh2). We introduce the

differences in agree with [11] as follows:

ux1,ij =
uij − ui−1,j

h1
, ux1,ij =

ui+1,j − uij

h1
,

ux2,ij =
uij − ui,j−1

h2
, ux2,ij =

ui,j+1 − uij

h2
,

∇huij = (ux1,ij , ux2,ij) ,∇huij = (ux1,ij , ux2,ij) .

The discrete operator for divergence is defined in the same manner. For f, g : ωh →
�

and f , g : ωh →
� 2 we define

(f, g)h =

N1−1,N2−1
∑

i,j=1

h1h2fijgij , ‖f‖
2
h = (f, f)h ,

(

f 1, g1
⌋

=

N1,N2−1
∑

i,j=1

h1h2f
1
ijg

1
ij ,

(

f2, g2
⌉

=

N1−1,N2
∑

i,j=1

h1h2f
2
ijg

2
ij ,

(f , g] =
(

f 1, g1
⌋

+
(

f2, g2
⌉

, ‖f ]2 = (f , f ] .

For the discretization of the Neumann boundary conditions we define the grid bound-
ary normal difference un̄:

un̄,0j = ux̄1,1j for j = 0, . . . , N2,

un̄,N1j = ux̄1,N1j for j = 0, . . . , N2,

un̄,i0 = ux̄2,i1 for i = 0, . . . , N1,

un̄,iN2
= ux̄2,iN2

for i = 0, . . . , N1.
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For the purpose of analysis, we recall the grid version of the Green formula proved in
[1]:

Lemma 3.1. Let p, u, v : ω̄h → R. Then the Green formula is valid:

(∇h · (p∇hu), v)h = −(p∇hu,∇hv] (3.1)

+

N2−1
∑

j=1

h2(pux1
|N1jvN1j − pux1

|1jv0j)

+

N1−1
∑

i=1

h1(pux2
|iN2

viN2
− pux2

|i1vi0).

If we denote

Q
h

ij =

√

1 +
1

2

(

u2
x1,ij + u2

x1,ij + u2
x2,ij + u2

x2,ij

)

,

i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1,

Qh
ij =

√

1 + u2
x1,ij + u2

x2,ij ,

i = 1, · · · , N1, j = 1, · · · , N2,

E
h
ij =

2

Qij

(

1 − u2
x1,ij −ux1,ijux2,ij ,

−ux1,ijux2,ij 1 − u2
x2,ij

)

,

i = 1, · · · , N1, j = 1, · · · , N2.

then the scheme has the following form

duh

dt
= −Q

h
∇h

(

1

Qh
E

h∇hwh −

(

wh
)2

(Qh)
3 ∇huh

)

, (3.2)

wh = Qh ·

[

(

uh
x1

Qh

)

x1

+

(

uh
x2

Qh

)

x2

]

, (3.3)

(3.4)

and the initial condition is

uh (0) = uini |ωh
.

We consider either the Dirichlet boundary conditions

uh |∂ωh
= 0, wh |∂ωh

= 0, (3.5)

or the Neumann boundary conditions

uh
n̄ |∂ωh

= 0, wh
n̄ |∂ω= 0. (3.6)

The following theorem shows the energy equality of the scheme.
Theorem 3.2. For uh |∂ωh

= 0 and wh = 0 |∂ωh
we have

1

2

(

(

uh
t

)2
,

1

Qh

)

h

+
1

2

d

dt

(

(

wh
)2

,
1

Qh

)

h

= 0.
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Proof. We start with the equation for wij (3.3), divide by Qh
ij , multiply by ξij

vanishing on ∂ωh and sum over ω.
(

wh

Qh
, ξ

)

h

=

(

(

uh
x1

Qh

)

x1

+

(

uh
x2

Qh

)

x2

, ξ

)

h

.

The Green theorem (3.1) gives
(

wh

Qh
, ξ

)

h

= −

(

ξx1
,
uh

x1

Qh

⌋

−

(

ξx2
,
uh

x2

Qh

⌋

(3.7)

+

N2−1
∑

j=1

(

ξ
uh

x1

Qh
|N1j −ξ

uh
x1

Qh
|0j

)

h2, (3.8)

+

N1−1
∑

i=1

(

ξ
uh

x2

Qh
|iN2

−ξ
uh

x2

Qh
|i0

)

h1, (3.9)

and the terms (3.8) and (3.9) are equal to zero because of the choice of ξij . Rewriting
the equation (3.2) in the following form

uh
t

Q
h

= −∇h

(

2

Qh
E

h∇hwh −

(

wh
)2

(Qh)
3 ∇huh

)

,

multiplying by test function ϕ vanishing at ∂ωh and applying the Green theorem (3.1)
we obtain

(

uh
t

Q
h
, ϕ

)

h

=

(

2

Qh
E

h∇hwh −

(

wh
)2

(Qh)
3 ∇huh,∇hϕ

]

(3.10)

+

N2−1
∑

j=1

[

ϕ ·

(

E
h
11 · w

h
x1

+ E
h
12 · w

h
x2

−

(

wh
)2

(Qh)
3 uh

x1

)

|N1j (3.11)

−ϕ ·

(

E
h
11 · w

h
x1

+ E
h
12 · w

h
x2

−

(

wh
)2

(Qh)
3 uh

x1

)

|0j

]

(3.12)

+

N1−1
∑

i=1

[

ϕ ·

(

E
h
21 · w

h
x1

+ E
h
22 · w

h
x2

−

(

wh
)2

(Qh)
3 uh

x2

)

|iN2
(3.13)

−ϕ ·

(

E
h
21 · w

h
x1

+ E
h
22 · w

h
x2

−

(

wh
)2

(Qh)
3 uh

x2

)

|i0

]

. (3.14)

The terms (3.11), (3.12), (3.13) and (3.14) are zero because of ϕij vanishing on ∂ωh.
Differentiating (3.7) with respect to t we obtain

d

dt

(

wh

Qh
, ξ

)

h

+
d

dt

(

uh
x1

Qh
, ξx1

⌋

+
d

dt

(

uh
x2

Qh
, ξx2

⌉

= 0,

and using the following statements

d

dt

(

uh
xi

Qh

)

=

(

uh
xi

)

t
Q − Qh

t uh
xi

(Qh)
2 , i = 1, 2,

Qh
t =

(

uh
x1

)

t
uh

x1
+
(

uh
x2

)

t
uh

x2

Qh
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we get

d

dt

(

∇huh

Qh

)

=

((

uh
x1

)

t
,
(

uh
x2

)

t

)

Q
−

−
1

(Qh)
3 ·
(

(

uh
x1

)2 (
uh

x1

)

t
+ uh

x1
uh

x2

(

uh
x2

)

t
, uh

x1
uh

x2

(

uh
x1

)

t
+
(

uh
x2

)2 (
uh

x2

)

t

)

=

=

((

uh
x1

)

t
,
(

uh
x2

)

t

)

Qh
−

1

Qh
·





(uh
x1

)2

(Qh)2
uh

x1
uh

x2

(Qh)2

uh
x1

uh
x2

(Qh)2
(uh

x2
)
2

(Qh)2





( (

uh
x1

)

t(

uh
x2

)

t

)

=

=
1

Qh

(

I − P
h
)

( (

uh
x1

)

t(

uh
x2

)

t

)

= E
h

( (

uh
x1

)

t(

uh
x2

)

t

)

,

which together with

d

dt

(

wh

Qh

)

=
wh

t

Qh
−

Qh
t · wh

(Qh)
2 ,

gives

d

dt

(

wh

Qh
, ξ

)

h

+
d

dt

(

uh
x1

Qh
, ξx1

⌋

+
d

dt

(

uh
x2

Qh
, ξx2

⌉

=

=

(

wh
t

Qh
, ξ

)

h

−

(

Qh
t · wh

(Qh)
2 , ξ

)

h

+
1

2

(

E
h

( (

uh
x1

)

t(

uh
x2

)

t

)(

ξx1

ξx2

)]

= 0.

After substituting ξ = wh we obtain

(

wh
t

Qh
, wh

)

h

−

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

+
1

2

(

E
h∇huh

t ,∇hwh
]

= 0, (3.15)

and a substitution ϕ = uh
t in (3.10) gives

(

(

uh
t

)2
,

1

Q
h

)

h

−

(

E
h∇hwh −

(

wh
)2

(Qh)
3 ∇huh,∇huh

t

]

= 0. (3.16)

Now we sum (3.15) with one half times (3.16) and we have

(

wh
t

Qh
, wh

)

h

−

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

+
1

2

(

(

uh
t

)2
,

1

Q
h

)

h

+
1

2

(

(

wh
)2

(Qh)
3 ,∇huh · ∇huh

t

]

= 0.

We remind that ∇huh · ∇huh
t = Qh · Qh

t which gives

(

wh
t

Qh
, wh

)

h

−

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

+
1

2

(

(

uh
t

)2
,

1

Q
h

)

h

+
1

2

(

(

wh
)2

(Qh)
2 , Qh

t

]

= 0.

It is equivalent to

1

2

(

(

uh
t

)2
,

1

Q
h

)

h

+

(

wh
t

(Qh)
2 , wh

)

h

−
1

2

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

+ Sh = 0, (3.17)



Numerical solution for the Willmore flow of graphs 133

for

Sh =
1

2

N2−1
∑

j=1

(

wh
N1j

Qh
N1j

)2

·
(

Qh
t

)

N1j
h1h2 +

1

2

N1−1
∑

i=1

(

wh
iN2

Qh
iN2

)2

·
(

Qh
t

)

iN2

h1h2.

Finaly from (3.17) we have

1

2

(

(

uh
t

)2
,

1

Q
h

)

h

+
1

2

d

dt

(

(

wh
)2

,
1

Qh

)

h

+ Sh = 0.

To complete the proof of we need to eliminate the term Sh. This can be done by
applying the Dirichlet boundary conditions (2.13).

Remark: The above given procedure can be used even for nonhomogenous time
independent Dirichlet boundary conditions for u. Similar statetment as (3.2) for the
Neumann boundary conditions remains an open problem.

4. Computational results. Here, we present several numerical experiments
qualitative character. Quantitative results are summarized in [10]. First three exam-
ples show a decay towards planar surface. For all of them we considered homogeneous
Dirichlet boundary conditions for u and w. Fig. 6.1 shows evolution of the initial
condition uini (x, y) = sin (2πx) · sin (2πy) on domain Ω ≡ (0, 1)2 with 50× 50 meshes
and the space steps h1 = h2 = 0.02. The computation has been performed until the
time T = 0.01.

In the Fig. 6.2 we show again a decay towards a planar surface. The initial con-
dition is discontinuous: uini (x, y) = sign

(

x2 + y2 − 0.22
)

. The domain Ω is (−1, 1)
2

and there are again 50×50 meshes and h1 = h2 = 0.04. We stopped the computation
at the time T = 1.

The Fig. 6.3 shows a decay towards the planar surface with highly oscilating

intial condition uini (x, y) = sin
[

2π
(

15 tanh
(

√

x2 + y2 − 0.2
))]

. The domain Ω is

(−1, 1)
2

and there are 50 × 50 meshes and h1 = h2 = 0.04. The final time for the
computation was T = 0.1.

Next two examples show the restoration of a spherical surface. We start with a
part of the sphere with radius R = 3 and center C = (0, 0,−1.5) above the square

domain Ω ≡ (−1, 1)
2
. We obtain a graph which can be described by a function uS .

It yields wS = Q (us) H (uS). Then the following Dirichlet boundary conditions

u |∂ωh
= uS , w |∂ωh

= wS ,

are considered (they are more general than (2.13) and (2.14)). In case of Fig. 6.4 we
perturb the original function uS as follows

uini = uS + exp−5r · sin (7.5πr) ,

for r =
√

x2 + y2. The initial condition for Fig. 6.5 was obtained by applying the
heat equation on the initial function vini ≡ 0 with the Dirichlet boundary conditions
v |∂ωh

= uS and setting uini = v |t=0.1. There were 50×50 meshes and h1 = h2 = 0.04
in both cases. In the first case (Fig. 6.4) we stopped the computation at the time
T = 0.05 and in the second case (Fig. 6.5) at T = 0.2.

The example on Fig. 6.6 shows a computation with the homogeneous Neumann
boundary conditions. The initial condition is u0 = sin (2πx) on Ω = (0, 1)2 with
25× 25 meshes and h1 = h2 = 0.04. The final time T = 0.5.
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Fig. 6.1. Convergence towards the planar surface at times t = 0, t = 10−4, t = 17 · 10−4 and

t = 0.01.

5. Conclusion. In this article, we discussed a formulation of the Willmore flow
for graphs and we presented a numerical scheme based on the method of lines. We
have proved energy equality for the scheme and we have showed several computational
experiments.
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Fig. 6.2. Convergence towards the planar surface at times t = 0, t = 0.002, t = 0.005 and t = 1.
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