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COMPUTATIONAL STUDY OF THE WILLMORE FLOW ON GRAPHS

TOMÁŠ OBERHUBER∗

Abstract. In this article we present two numerical schemes for theWillmore flow of graphs. Both
of them are based on the method of lines. Resulting ordinary differential equations are solved using the
4th order Runge-Kutta-Merson solver. We show their numerical behaviour on several qualitative results
and by computing experimental order of convergence.
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1. Introduction. In this article we consider evolution of two dimensional surface
Γ(t) embedded in R3 such that it can be described as a graph of some function u :
(0, T 〉 × Ω → R, Ω ⊂ R2. We computationaly investigate the following law

V = 24ΓH + H3 − 4HK on Γ (t) , (1.1)

where V is the normal velocity, 4Γ is the Laplace-Beltrami operator, H = κ1 + κ2 is the
mean curvature, K = κ1 · κ2 is the Gauss curvature and κ1 and κ2 denote the principal
curvatures of the surface.

As follows from [4, 5, 6] the law (1.1) represents the L2-gradient flow for the functional
W defined as:

W (f) =
∫

Γ

H2 dS, Γ = {(x, u (x)) | x ∈ Ω} . (1.2)

The gradient flow approach is described e.g. in [11]. Existence of the solution under
certain initial conditions was proved in [10, 7]. In [4] an implicit numerical scheme for the
Willmore flow of graphs based on the finite element method together with the numerical
analysis is presented. A level set formulation for the Willmore flow can be found in [5].
For the physical meaning of the minimization of (1.2) we refer to [3]. In [6] the authors
describe an algorithm for evolution of elastic curves in Rn. An interesting algorithm for
parametrised curves driven by intrinsic Laplacian of curvature can be found in [8] where
the authors use the tangential vector for redistribution of the control points on the curve.
Application for the surface reconstruction of scratched objects is discused in [12].

In this contribution, we explore the results presented in [9] and show computational
behaviour of two finite-difference schemes incorporated into the method of lines. For
discretization in time we use the 4th order Runge-Kutta type solver having explicit nature.
This method was succesfuly used for solving several problems of the interface motion [1].
Our work is also related to [2] where the surface diffusion for graphs is treated by a similar
approach.
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2. Problem formulation. We assume that Γ (t) is a graph of a function u of two
variables:

Γ (t) =
{
[x, u (t, x)] | x ∈ Ω ⊂ R2

}
,

where Ω ≡ (0, L1)× (0, L2) is on open rectangle, ∂Ω its boundary and ν its outer normal.
We express the quantities of (1.1) in terms of the graph description of Γ (t) – see [2]:

Q =
√

1 + |∇u|2, n =
(
−1,

∇u

Q

)
, V = −ut

Q
,

H = ∇ · n, K =
det D2u

Q4
,

4ΓH =
1
Q
∇ ·
[(

QI − ∇u⊗∇u

Q

)
∇H

]
.

Lemma 2.1. For the graph formulation of the Willmore flow, (1.1) takes the following
form

∂u

∂t
= −Q∇ ·

[
2
Q

(I− P)∇w − w2

Q3
∇u

]
, (2.1)

w = Q∇ · ∇u

Q
, (2.2)

where

P =
∇u

Q
⊗ ∇u

Q
, (u⊗ v)ij = ui · vj .

The proof of this lemma can be found in [4] or [9]. It allows to introduce the following
problem:

Definition 2.2. The graph formulation for the Willmore flow is a system of two partial
differential equations of the second order for u and w

∂u

∂t
= −Q∇ ·

[
2
Q

(I− P)∇w − w2

Q3
∇u

]
in Ω× (0, T ) , (2.3)

w = Q∇ · ∇u

Q
, (2.4)

u(·, 0) = uini,

with the Dirichlet boundary conditions

u |∂Ω= 0, w |∂Ω= 0, (2.5)

or with the Neumann boundary conditions

∂u

∂ν
|∂Ω= 0,

∂w

∂ν
|∂Ω= 0. (2.6)

According to [9] we can define the weak solution for the Willmore flow of graphs as
follows:
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Definition 2.3. The weak solution of the graph formulation for the Willmore flow with
homogeneous Dirichlet boundary conditions is a couple u, w : (0, T ) → H1

0 (Ω) which
satisfy a.e in (0, T ), for each test functions ϕ, ξ ∈ H1

0 (Ω)∫
Ω

ut

Q
ϕ =

∫
Ω

2
Q

(I− P)∇w∇ϕ−
∫

Ω

w2

Q3
∇u∇ϕ a.e. in (0, T ) (2.7)∫

Ω

w

Q
ξ = −

∫
Ω

∇u

Q
∇ξ. (2.8)

with the initial condition

u |t=0= uini.

Weak solution for the problem with homogeneous Neumann boundary conditions is a
couple u, w : (0, T ) →∈ H1 (Ω) which satisfy (2.7) a.e. in (0, T ), for each test functions
ϕ, ξ ∈ H1 (Ω).

Remark: There are at least two different steady solutions for the Willmore flow of
graphs. The trivial solution is represented by a constant function u(specified by the
boundary conditions) and zero mean curvature (w = 0) The second solution is induced
by a sphere with given radius r since the principal curvatures are κ1 = κ2 = 1

r and so
H = κ1 + κ2 = 2

r and K = κ1κ2 = 1
r2 . From this fact it follows that the right hand side

of (1.1) is equal to zero. In this case, the boundary conditions are different from (2.5)
and (2.6).

Mathematical properties of (1.1) have been partially studied in [10] for the case when
the initial condition is close to a sphere and in [7] existence of the solution was proved
under the assumption that

∫
Γ
|A◦|2 is sufficiently small, for A◦ denoting the trace-free

part of the second fundamental form.

3. Numerical schemes. For the numerical solution of (1.1), we will use method of
lines with the finite difference discretization in space. We will derive both, the scheme
based on combination of backward and forward formulas, and the scheme based on central
formulas.

We use the following notation. Let h1, h2 be space steps such that h1 = L1
N1

and
h2 = L2

N2
for some N1, N2 ∈ N. We define a uniform grid as

ωh = {(ih1, jh2) | i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1} ,

ωh = {(ih1, jh2) | i = 0 · · ·N1, j = 0 · · ·N2} .

For u : R2 → R we define a projection on ωh as uij = u(ih1, jh2). We introduce the
differences as follows

ux1,ij =
uij − ui−1,j

h1
, ux2,ij =

uij − ui,j−1

h2
,

ux1,ij =
ui+1,j − uij

h1
, ux2,ij =

ui,j+1 − uij

h2
,

ux̊1,ij =
ui+1,j − ui−1,j

2h1
, ux̊2,ij =

ui,j+1 − ui,j−1

2h2
,

∇huij = (ux1,ij , ux2,ij) , ∇huij = (ux1,ij , ux2,ij) , ∇̊huij = (ux̊1,ij , ux̊2,ij) .
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For the discretization of the Neumann boundary conditions we define the grid boundary
normal difference un̄:

un̄,0j = ux̄1,1j and un̄,N1j = ux̄1,N1j for j = 0, . . . , N2,

un̄,i0 = ux̄2,i1 and un̄,iN2 = ux̄2,iN2 for i = 0, . . . , N1.

If we denote

Qij =
√

1 + 1
2

(
u2

x1,ij + u2
x1,ij + u2

x2,ij + u2
x2,ij

)
, i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1,

Qij =
√

1 + u2
x1,ij + u2

x2,ij , i = 1, · · · , N1, j = 1, · · · , N2,

Eij = 2
Qij

(
1− u2

x1,ij −ux1,ijux2,ij ,
−ux1,ijux2,ij 1− u2

x2,ij

)
, i = 1, · · · , N1, j = 1, · · · , N2.

then the first scheme has the following form

duh

dt
= −Q∇h

(
2
Q

E∇hwh −
(
wh
)2

Q3
∇huh

)
, (3.1)

wh = Q ·

[(
uh

x1

Q

)
x1

+
(

uh
x2

Q

)
x2

]
. (3.2)

For

Q̊ij =
√

1 + u2
x̊1,ij + u2

x̊2,ij , i = 1, · · · , N1, j = 1, · · · , N2,

E̊ij = 2
Qij

(
1− u2

x̊1,ij −ux̊1,ijux̊2,ij ,

−ux̊1,ijux̊2,ij 1− u2
x̊2,ij

)
, i = 1, · · · , N1, j = 1, · · · , N2,

the second scheme has the following form

duh

dt
= −Q∇̊h

(
2
Q̊

E̊∇̊hwh −
(
wh
)2

Q̊3
∇̊huh

)
, (3.3)

wh = Q̊ ·

[(
uh

x̊1

Q̊

)
x̊1

+
(

uh
x̊2

Q̊

)
x̊2

]
. (3.4)

For both schemes we set the initial condition as

uh (0) = uini |ωh
,

and we consider either the Dirichlet boundary conditions

uh |∂ωh
= 0, wh |∂ωh

= 0, (3.5)

or the Neumann boundary conditions

uh
n̄ |∂ωh

= 0, wh
n̄ |∂ω= 0. (3.6)

The following theorem shows the energy equality of the scheme (3.1)–(3.2).

Theorem 3.1. For uh |∂ωh
= 0 and wh = 0 |∂ωh

the solution of (3.1)–(3.2) satisfies

1
2

((
uh

t

)2
,

1
Q

)
h

+
1
2

d

dt

((
wh
)2

,
1
Q

)
h

= 0.

The proof of the theorem can be found in [9].
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4. Computational results. In this section we analyse both schemes from the view-
point of numerical convergence and of qualitative behaviour. Since any analytical solution
for the Willmore flow is not known we solved the equation (2.3) with additional terms on
the right hand side. We changed the equation in such way that it has analytical solution
utest (x, t) = sin (πx) · e−100t – see fig. 4.1

Fig. 4.1. Decay towards a planar surface at times t = 0, t = 0.005 and t = 0.01.

N h EOC E1 EOC E∞ E1 E∞
20 0.0526 6.9180 5.9651 0.00275 0.01344
30 0.0344 5.0545 4.0265 0.00032 0.00244
40 0.0256 1.6705 2.3854 0.00019 0.00120
50 0.0204 2.1441 2.3586 0.00012 0.00070
60 0.0169 2.3809 2.4314 7.80264e-05 0.00044
70 0.0144 2.5189 2.4497 5.25966e-05 0.00030
80 0.0126 2.6127 2.5947 3.69297e-05 0.00021
90 0.0112 2.6784 2.5884 2.68374e-05 0.00015

100 0.0101 2.7267 2.6773 2.00742e-05 0.00011

Table 4.1
EOC for the forward-backward scheme (3.1)–(3.2)

The resulting equation takes the following form

∂u

∂t
= −Q∇ ·

[
2
Q

(I− P)∇w − w2

Q3
∇u

]
−∂utest

∂t
+ Qtest∇ ·

[
2

Qtest
(I− Ptest)∇wtest −

w2
test

Q3
test

∇utest

]
,
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for

Qtest =
√

1 + |∇utest|2, Ptest =
∇utest

Qtest
⊗ ∇utest

Qtest
, wtest = Qtest∇ · ∇utest

Qtest
.

Since we performed the computation on the interval (0, 1) we set the following time
dependent Dirichlet boundary conditions

uh |x=0 = 0, uh |x=1= 0,

wh |x=0 = wtest |x=0, wh |x=1= wtest |x=1 .

N h EOC E1 EOC E∞ E1 E∞
20 0.0526 6.9180 5.9651 0.00275 0.01344
40 0.0256 3.6604 3.3504 0.00019 0.00120
80 0.0126 2.3794 2.4432 3.69297e-05 0.00021

Table 4.2
EOC for the forward-backward scheme (3.1)–(3.2) in case of doubling grid size

N h EOC E1 EOC E∞ E1 E∞
20 0.05263 4.9505 3.8605 0.01171 0.06239
30 0.03448 7.3301 6.8252 0.00052 0.00348
40 0.02564 4.6028 5.1642 0.00013 0.00075
50 0.02040 3.6558 2.8342 5.86225e-05 0.00039
60 0.01694 3.6106 3.0554 2.99810e-05 0.00022
70 0.01449 3.7137 3.2093 1.67618e-05 0.00013
80 0.01265 3.7593 3.3069 1.00772e-05 8.65410e-05
90 0.01123 3.7552 3.4530 6.44126e-06 5.73444e-05

100 0.01010 3.7184 3.5785 4.33514e-06 3.91735e-05
110 0.00917 3.8483 3.7392 2.99349e-06 2.73352e-05
120 0.00840 3.9727 3.3529 2.11220e-06 2.03661e-05
130 0.00775 3.4604 1.7160 1.59762e-06 1.77327e-05
140 0.00719 4.2264 4.8064 1.16527e-06 1.23858e-05
150 0.00671 3.3477 4.4887 9.23473e-07 9.06765e-06
160 0.00628 4.3818 4.4219 6.94718e-07 6.80376e-06

Table 4.3
EOC for the central scheme (3.3)–(3.4)

N h EOC E1 EOC E∞ E1 E∞
20 0.05263 4.95058 3.86058 0.01171 0.06239
40 0.02564 6.20653 6.14099 0.00013 0.00075
80 0.01265 3.67665 3.06628 1.00772e-05 8.65410e-05

160 0.00628 3.82374 3.63589 6.94718e-07 6.80376e-06

Table 4.4
EOC for the central scheme (3.3)–(3.4) in case of doubling grid size
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N h EOC E1 EOC E∞ E1 E∞

20 0.05263 4.95058 3.86058 0.01171 0.06239
40 0.02564 6.20653 6.14099 0.00013 0.00075
80 0.01265 3.67665 3.06628 1.00772e-05 8.65410e-05

160 0.00628 3.82374 3.63589 6.94718e-07 6.80376e-06

Fig. 4.5. EOC for the central scheme (3.3)-(3.4) in case of doubling grid size
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Fig. 6.1. Decay towards the planar surface at times t = 0, t = 10−4, t = 17 · 10−4 and t = 0.01.
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Fig. 4.2. Decay towards the planar surface at times t = 0, t = 10−4, t = 17 · 10−4 and t = 0.01.
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Fig. 6.2. Decay towards the planar surface at times t = 0, t = 0.002, t = 0.005 and t = 1.
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Fig. 6.3. Decay towards the planar surface at times t = 0, t = 5 · 10−6 and t = 0.1.

Fig. 4.3. Decay towards the planar surface at times t = 0, t = 0.002, t = 0.005 and t = 1.
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Fig. 6.2. Decay towards the planar surface at times t = 0, t = 0.002, t = 0.005 and t = 1.
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Fig. 6.3. Decay towards the planar surface at times t = 0, t = 5 · 10−6 and t = 0.1.Fig. 4.4. Decay towards the planar surface at times t = 0, t = 5 · 10−6 and t = 0.1.
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Fig. 6.4. Spherical surface restoration at times t = 0, t = 2 · 10−5, t = 10−4 and t = 0.05.

−1
0

1

−1

0

1
0

0.5

1

1.5

−1
0

1

−1

0

1
1

1.2

1.4

−1
0

1

−1

0

1
1

1.2

1.4

−1
0

1

−1

0

1
1

1.2

1.4

Fig. 6.5. Spherical surface restoration at times t = 0, t = 0.05, t = 0.06 and t = 0.2.

Fig. 4.5. Spherical surface restoration at times t = 0, t = 2 · 10−5, t = 10−4 and t = 0.05.
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We evaluate the errors of computation on a grid with the space step hi according to

Ehi
∞ = max

j=0,···Ni−1

∣∣∣uhi
j − utest (jhi)

∣∣∣ , Ehi
1 =

Ni−1∑
j=0

∣∣∣uhi
j − utest (jhi)

∣∣∣ ,
where Ni = 1/hi. Then for two different space steps hi, hj we compute the experimental
order of convergence as

EOC Ehihj
∞ =

ln
(
Ehi
∞/E

hj
∞

)
ln (hi/hj)

, EOC E
hihj

1 =
ln
(
Ehi

1 /E
hj

1

)
ln (hi/hj)

. (4.1)

The results for the forward-backward scheme (3.1)–(3.2) are concluded in tables 4.1
and 4.2. For the central scheme (3.3)–(3.4) see tables 4.3 and 4.4.

In the following we present several numerical experiments of qualitative character.
First three examples show a decay towards a planar surface. For all of them we considered
homogeneous Dirichlet boundary conditions for u and w. fig. 4.2 shows evolution of the
initial condition uini (x, y) = sin (2πx) · sin (2πy) on the domain Ω ≡ (0, 1)2 with 50× 50
meshes and the space steps h1 = h2 = 0.02. The computation has been performed until
the time T = 0.01.

In the fig. 4.3 we show again a decay towards a planar surface. The initial condition
is discontinuous: uini (x, y) = sign

(
x2 + y2 − 0.22

)
. The domain Ω is (−1, 1)2 and there

are again 50× 50 meshes and h1 = h2 = 0.04. We stopped the computation at the time
T = 1.

The fig. 4.4 shows a decay towards the planar surface with highly oscilating intial
condition uini (x, y) = sin

[
2π
(
15 tanh

(√
x2 + y2 − 0.2

))]
. The domain Ω is (−1, 1)2

and there are 50 × 50 meshes and h1 = h2 = 0.04. The final time for the computation
was T = 0.1.

Next two examples show the restoration of a spherical surface. We start with a part
of the sphere with radius R = 3 and center C = (0, 0,−1.5) above the square domain
Ω ≡ (−1, 1)2. We obtain a graph which can be described by a function uS . It yields
wS = Q (us)H (uS). Then the following Dirichlet boundary conditions

u |∂ωh
= uS , w |∂ωh

= wS ,

are considered (they are more general then (2.5) and (2.6)). In case of fig. 4.5 we perturb
the original function uS as follows

uini = uS + exp−5r · sin (7.5πr) ,

for r =
√

x2 + y2. The initial condition for fig. 4.6 was obtained by applying the
heat equation on the initial function vini ≡ 0 with the Dirichlet boundary conditions
v |∂ωh

= uS and setting uini = v |t=0.1. There were 50× 50 meshes and h1 = h2 = 0.04 in
both cases. In the first case (fig. 4.5) we stopped the computation at the time T = 0.05
and in the second case (fig. 4.6) at T = 0.2.

The example on fig. 4.7 shows a computation with the homogeneous Neumann
boundary conditions (3.6). The initial condition is u0 (x, y) = sin (2πx) on Ω = (0, 1)2

with 25× 25 meshes and h1 = h2 = 0.04. The final time T = 0.5.

5. Conclusion. In this article, we presented two numerical schemes for the Willmore
flow of graphs. We computed experimental order of convergence for both of them together
with several numerical experiments.
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Fig. 6.4. Spherical surface restoration at times t = 0, t = 2 · 10−5, t = 10−4 and t = 0.05.
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Fig. 6.6. Test with the Neumann boundary conditions at times t = 0, t = 0.005, t = 0.175 and
t = 0.5.
Fig. 4.7. Test with the Neumann boundary conditions at times t = 0, t = 0.005, t = 0.175 and t = 0.5.
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