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FINITE DIFFERENCE SCHEME FOR THE WILLMORE

FLOW OF GRAPHS

Tomáš Oberhuber

In this article we discuss numerical scheme for the approximation of the Willmore flow
of graphs. The scheme is based on the finite difference method. We improve the scheme we
presented in [8, 7] which is based on combination of the forward and the backward finite
differences. The new scheme approximates the Willmore flow by the central differences and
as a result it better preserves symmetry of the solution. Since it requires higher regularity
of the solution, additional numerical viscosity is necessary in some cases. We also present
theorem showing stability of the scheme together with the EOC and several results of the
numerical experiments.
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1. INTRODUCTION

The Willmore flow is an evolutionary law for minimizing mean curvature of curves or
surfaces. Consider a surface Γ0 smooth enough so that at each point of this surface
we can evaluate mean curvature H = κ1 + κ2 where κ1 and κ2 are the principal
curvatures of the surface. Then we can define the Willmore functional W as

WΓ0
=

∫

Γ0

H2dS. (1)

This functional also expresses elastic energy of the surface. As follows from [1, 2, 5]
the Willmore flow defined as

V = 2△ΓH + H3 − 4HK on Γ (t) , (2)

drives the surface towards the minimizer of (1). In (2) V is normal velocity, △Γ is
the Laplace-Beltrami operator and K = κ1 · κ2 is the Gauss curvature.

Recently the Willmore flow has attracted interest of many mathematicians. To-
day several different formulations of the Willmore flow and different approaches
to approximate the exact solution numerically are known. In [1] the authors study
graph formulation of the Willmore flow and they apply the method of finite elements
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for discretization. Detailed numerical analysis can be found in their article as well.
In [2] the level set formulation is derived and several numerical results obtained by
the finite element method are presented. Numerical analysis of the level set formu-
lation is difficult and no results have been published yet. Asymptotical convergence
of the phase-field model for the Willmore flow has been proved in [3, 4]. For the
approximation the authors chose the finite difference method. Finally in [5] the La-
grangian formulation of the elastic curves is studied. For the readers interested in
the theory of the Willmore flow, we refer to [10, 9, 6].

2. PROBLEM FORMULATION

We assume that Γ (t) is a graph of a function u of two variables:

Γ (t) =
{

[x, u (t,x)] | x ∈ Ω ⊂ R2
}

,

where Ω ≡ (0, L1) × (0, L2) is an open rectangle, ∂Ω its boundary and ν its outer
normal. Let us denote

Q =

√

1 + |∇u|
2
, E =

1

Q

(I− ∇u

Q
⊗

∇u

Q

)

, H = ∇ ·

(

∇u

|∇u|

)

. (3)

For the following definitions we refer to [8].

Definition 1 The graph formulation for the Willmore flow is a system of two partial

differential equations of the second order for u and w in the form

∂u

∂t
= −Q∇ ·

[

2E∇w −
w2

Q3
∇u

]

in Ω × (0, T ) , (4)

w = QH, (5)

u(·, 0) = uini,

with the Dirichlet boundary conditions

u |∂Ω= 0, w |∂Ω= 0, (6)

or with the Neumann boundary conditions

∂u

∂ν
|∂Ω= 0,

∂w

∂ν
|∂Ω= 0. (7)

3. NUMERICAL SCHEME

For the numerical solution of (4)-(7), we will use method of lines with finite difference
discretization in space.

We use the following notation. Let h1, h2 be space steps such that h1 = L1

N1

and

h2 = L2

N2

for some N1, N2 ∈ N
+. We define a uniform grid as

ωh = {(ih1, jh2) | i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1} ,

ωh = {(ih1, jh2) | i = 0 · · ·N1, j = 0 · · ·N2} ,

∂ωh = ωh \ ωh.



Finite difference scheme for the Willmore flow of graphs 3

For uh : R
2 → R we define a projection on ωh as uh

ij = u(ih1, jh2). We introduce
the differences as follows

uh
f.,ij =

ui+1j − ui,j

h1
, uh

b.,ij =
ui,j − ui−1j

h1
,

uh
.f,ij =

uij+1 − ui,j

h2
, uh

.b,ij =
ui,j − uij−1

h2
,

uh
.c,ij =

uh
.f,ij + uh

.b,ij

2
, uh

c.,ij =
uh

f.,ij + uh
b.,ij

2
,

and for the gradient approximation we will use the following notation (approximation
of the divergence is done in the same manner)

∇h
fuh

ij =
(

uh
f.,ij , u

h
.f,ij

)

, ∇h
b uh

ij =
(

uh
b.,ij , u

h
.b,ij

)

, (8)

∇h
c uh

ij =
1

2

(

∇h
fuh

ij + ∇h
b uh

ij

)

. (9)

For f, g : ωh → R, f , g : ωh → R2 we define

(f, g)h =

N1−1,N2−1
∑

i,j=1

h1h2fijgij , ‖f‖
2
h = (f, f)h ,

(

f1, g1
)

f.
=

N1,N2−1
∑

i,j=1

h1h2f
1
ijg

1
ij ,

(

f2, g2
)

.f
=

N1−1,N2
∑

i,j=1

h1h2f
2
ijg

2
ij ,

(

f
1, g1

)

b.
=

N1−1,N2−1
∑

i=0,j=1

h1h2f
1
ijg

1
ij ,

(

f
2, g2

)

.b
=

N1−1,N2−1
∑

i=1,j=0

h1h2f
2
ijg

2
ij ,

(

f1, g1
)

c.
=

1

2

[

(

f1, g1
)

f.
+
(

f1, g1
)

b.

]

,

(

f2, g2
)

.c
=

1

2

[

(

f2, g2
)

.f
+
(

f2, g2
)

.b

]

,

(f , g)c =
(

f1, g1
)

c.
+
(

f2, g2
)

.c
.

For the discretization of the Neumann boundary conditions we define the grid bound-
ary normal difference un̄:

un̄,0j = ub.,1j for j = 0, . . . , N2,

un̄,N1j = uf.,N1j for j = 0, . . . , N2,

un̄,i0 = u.b,i1 for i = 0, . . . , N1,

un̄,iN2
= u.f,iN2

for i = 0, . . . , N1.

For the purpose of analysis, we will need the grid version of the Green formula:
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Lemma 2 Let p, f, g : ω̄h → R. Then the following Green formulas are valid

(

∇h
f ·
(

p∇h
b f
)

, g
)

h
= −(p∇h

b f,∇h
b g)f (10)

+

N2−1
∑

j=1

h2(pfb.,N1jgN1j − pfb.,1jg0j)

+

N1−1
∑

i=1

h1(pf.b,iN2
giN2

− pf.b,i1gi0).

(

∇h
b ·
(

p∇h
ff
)

, g
)

h
= −(p∇h

ff,∇h
fg)b (11)

+

N2−1
∑

j=1

h2(pfb.,N1−1jgN1j − pfb.,0jg0j)

+

N1−1
∑

i=1

h1(pf.b,iN2−1giN2
− pf.b,i0gi0).

(

∇h
c ·
(

p∇h
c f
)

, g
)

h
= −(p∇h

c f,∇h
c g)c (12)

+
1

2

N2−1
∑

j=1

h2(pfb.,N1jgN1j − pfb.,1jg0j + pfb.,N1−1jgN1j − pfb.,0jg0j)

+
1

2

N1−1
∑

i=1

h1(pf.b,iN2
giN2

− pf.b,i1gi0 + pf.b,iN2−1giN2
− pf.b,i0gi0).

Proof. Let us denote Lh ≡ {ih | 0 ≤ i ≤ N} for 0 < h ∈ R and N ∈ N+. Then
for functions u, v : Lh → R we define the following scalar products

(u, v)f =

N
∑

i=1

huivi, (u, v)b =

N−1
∑

i=0

huivi, (u, v)h =

N−1
∑

i=1

huivi,

(u, v)c =
1

2

[

(u, v)f + (u, v)b

]

.

Now we have

(uf , v)
h

=

N−1
∑

i=1

ui+1 − ui

h
vih =

N−1
∑

i=1

uivi+1 −

N−1
∑

i=1

uivi

=

N
∑

i=2

uivi−1 −

N−1
∑

i=1

uivi =

N−1
∑

i=2

ui (vi−1 − vi) + uNvN−1 − u1v1

=
N−1
∑

i=2

ui (vi−1 − vi) + uNvN + uN (vN−1 − vN ) − u1v0 + u1 (v0 − v1)

= uNvN − u1v0 − (u, vb)f .
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In the same way we can show (ub, v)h = uN−1vN − u0v0 − (u, vf )
b
. For the central

differences we get

(uc, v)h =

(

1

2
(uf + ub) , v

)

h

=
1

2
(uf , v)

h
+

1

2
(ub, v)h

= −
1

2
(u, vb)f + unvn − u1v0 −

1

2
(u, vf )

b
+ uN−1vn − u0v0

= − (u, vc)c + unvn − u1v0 + uN−1vn − u0v0.

Now we can proceed to the Green formula (10)

(∇h
f · (p∇h

b f), g)h =
(

(pfb.)f. , g
)

h
+
(

(pf.b).f , g
)

h

=

N2−1
∑

j=1

h2

(

(p.jfb.,.j)f.
, g.j

)

h
+

N1−1
∑

i=1

h1

(

(pi.f.b,i.).f
, gi.

)

h

=

N2−1
∑

j=1

h2

(

− (p.jfb.,.j, gb.,.j)f
+ pN1jfb.,N1jgN1j − p1jfb.,1jg0j

)

+

N1−1
∑

i=1

h1

(

− (pi.f.b,i., g.b,i.)f
+ piN2

f.b,iN2
giN2

− pi1f.b,i1gi0

)

= − (pfb., gb.)f. − (pf.b, g.b).f +

N2−1
∑

j=1

h2 · (pN1jfb.,N1jgN1j − p1jfb.,1jg0j)

+

N1−1
∑

i=1

h1 · (piN2
f.b,iN2

giN2
− pi1f.b,i1gi0)

= −(p∇h
b f,∇h

b g)f +

N2−1
∑

j=1

h2 · (pN1jfb.,N1jgN1j − p1jfb.,1jg0j)

+

N1−1
∑

i=1

h1 · (piN2
f.b,iN2

giN2
− pi1f.b,i1gi0)

Similarly one can prove (11). In the case of the central differences (12) we just use
the fact that

(

∇h
c ·
(

p∇h
c f
)

, g
)

h
=

1

2

[

(

∇h
f ·
(

p∇h
b f
)

, g
)

h
+
(

∇h
b ·
(

p∇h
ff
)

, g
)

h

]

.

Corollary 3 Let p, f, g : ω̄h → R and v |∂ω= 0. Then

(∇h
f · (p∇h

b f), g)h = −
(

p∇h
b f,∇h

b g
)

f
, (13)

(∇h
b · (p∇h

ff), g)h = −
(

p∇h
ff,∇h

fg
)

b
, (14)

(∇h
c · (p∇h

c f), g)h = −
(

p∇h
c f,∇h

c g
)

c
. (15)
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Denoting

Qh
ij =

√

1 + |∇h
c uij |

2
, Hh

ij = ∇h
c ·

(

∇h
c uij

Qh
ij

)

, (16)

E
h
ij =

1

Qh
ij

(I− ∇h
c uij

Qh
ij

⊗
∇h

c uij

Qh
ij

)

, (17)

Rvisc = CviscQ
h
ij

(

h2
1

(

uh
b.ij

)

f.,ij
+ h2

2

(

uh
.b,ij

)

.f,ij

)

, (18)

for i = 1, · · · , N1 − 1 and j = 1, · · · , N2 − 1, the scheme has the following form

duh
ij

dt
= −Qh

ij∇
h
c ·

(

2E
h
ij∇

h
c wh

ij −

(

wh
ij

)2

(

Qh
ij

)3∇
h
c uh

ij

)

+ Rvisc, (19)

wh
ij = Qh

ijH
h
ij , (20)

for i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1. In (16), (17) and (19) for i = 0 resp. j = 0
we approximate ∇u by uh

f.,ij resp. uh
.f,ij and for i = N1 resp. j = N2 by uh

b.,ij resp.

uh
.b,ij . The same holds for the approximation of ∇w in (19).

We set the initial condition

uh (0) |ωh
= uini,

and we consider either the Dirichlet boundary conditions

uh |∂ωh
= 0, wh |∂ωh

= 0. (21)

or the Neumann boundary conditions

uh |∂ωh
= 0, wh

n̄ |∂ωh
= 0. (22)

Remark:The employ of the central differences gives us a scheme with symmetric
stencil. It is important advantage in comparison with the scheme using only the
forward and backward differences. The disadvantage of the scheme (19)-(20) is that
it tends to oscillate when approximating solution with lower regularity. The remedy
of this problem is just in the term (18) which keeps the numerical approximation
smooth enough. At this point we must note that we need to regularize a term of the
fourth order. It is of much larger magnitude then the regularizing term (18) itself.
This is why Cvisc must be much larger in some situations then for example in the
case of the Navier-Stokes equations.

The following theorem shows the energy equality of the scheme (for simplicity we
assume h1 = h2 = h).

Theorem 4 For uh |∂ωh
= 0 and wh = 0 |∂ωh

we have

(

(

uh
t

)2
,

1

Qh

)

h

+
d

dt

[

(

(

Hh
)2

, Qh
)

h
− Cvisc

h2

2

(

∇h
b uh,∇h

b uh
)

h

]

= 0.
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Proof. We start with the equation for wh
ij (20), divide by Qh

ij , multiply by ξij

vanishing on ∂ωh and sum over ω
(

wh

Qh
, ξ

)

h

=

(

∇h
c ·

(

∇h
c uh

Qh

)

, ξ

)

h

.

The Green theorem (15) gives
(

wh

Qh
, ξ

)

h

= −

(

∇h
c uh

Qh
,∇h

c ξ

)

c

. (23)

Now consider the right hand side of (19), divide by Qh, multiply by the test function
ϕ vanishing at ∂ωh and applying the Green theorem (15) we obtain

(

−∇h
c ·

(

2E
h∇h

c wh −

(

wh
)2

(Qh)
3 ∇

h
c uh

)

, ϕ

)

h

=

(

2E
h∇h

c wh −

(

wh
)2

(Qh)
3 ∇

h
c uh,∇h

c ϕ

)

c

. (24)

Since
(

Qh
ij

)

t
=

(

∇h
c uh

ij

)

t
· ∇h

c uh
ij

Qh
ij

(25)

we get

d
dt

(

∇h
c uh

Qh

)

=

(

∇h
c uh

)

t

Qh
−

−
1

(

Qh
ij

)3 ·
(

(

uh
c.

)2 (
uh

c.

)

t
+ uh

c.u
h
.c

(

uh
.c

)

t
, uh

c.u
h
.c

(

uh
c.

)

t
+
(

uh
.c

)2 (
uh

.c

)

t

)

=

=

((

uh
c.

)

t
,
(

uh
.c

)

t

)

Qh
−

1

Qh
·





(uh

c.)
2

(Qh)2
uh

c.
uh

.c

(Qh)2

uh

c.
uh

.c

(Qh)2
(uh

.c)
2

(Qh)2





( (

uh
c.

)

t(

uh
.c

)

t

)

=

=
1

Qh

(

I − P
h
)

(
(

uh
c.

)

t(

uh
.c

)

t

)

= E
h∇h

c uh
t .

Differentiating (23) with respect to t we obtain

d

dt

(

wh

Qh
, ξ

)

h

+
d

dt

(

∇h
c uh

Qh
,∇h

c ξ

)

c

=

(

wh
t

Qh
, ξ

)

h

−

(

Qh
t · wh

(Qh)
2 , ξ

)

h

+
(

E
h∇h

c uh
t ,∇h

c ξ
)

c
= 0.

After substituting ξ = wh we obtain

(

wh
t

Qh
, wh

)

h

−

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

+
(

E
h∇h

c uh
t ,∇h

c wh
)

c
= 0, (26)
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substitution ϕ = uh
t in (24) gives

(

(

uh
t

)2
,

1

Qh

)

h

−

(

2E
h∇h

c wh −

(

wh
)2

(Qh)
3 ∇

h
c uh,∇h

c uh
t

)

c

= 0. (27)

Substituting (26) to (27) (term E
h∇h

c wh) we have

(

(

uh
t

)2
,

1

Qh

)

h

+ 2

(

wh
t

Qh
, wh

)

h

− 2

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

+

(

(

wh
)2

(Qh)
3 ,∇h

c uh · ∇h
c uh

t

)

c

= 0.

(28)

Using (25) gives

(

(

uh
t

)2
,

1

Qh

)

h

+ 2

(

wh
t

Qh
, wh

)

h

− 2

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

+

(

(

wh
)2

(Qh)
2 , Qh

t

)

c

= 0

(29)

Since wh is vanishing on ∂ωh we have
(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

=

(

(

wh
)2

(Qh)
2 , Qh

t

)

c

,

and (29) is equivalent to

(

(

uh
t

)2
,

1

Qh

)

h

+ 2

(

wh
t

(Qh)
2 , wh

)

h

−

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

= 0. (30)

Rewriting the second and the third term in (30) using

2

(

wh
t

(Qh)
2 , wh

)

h

−

(

Qh
t

(Qh)
2 ,
(

wh
)2

)

h

=
d

dt

(

(

wh
)2

,
1

Qh

)

h

=
d

dt

(

(

Hh
)2

, Qh
)

h
.

we end up with
(

(

uh
t

)2
,

1

Qh

)

h

+
d

dt

(

(

Hh
)2

, Qh
)

h
= 0.

For the viscose term Rvisc we have Rvisc = Cvisch
2∇h

f∇
h
b uh. Multiplying by ϕ

vanishing on ∂ωh we get
(

Cvisch
2∇h

f∇
h
b uh, ϕ

)

h
= −Cvisch

2
(

∇h
b uh,∇h

b ϕ
)

f
= −Cvisch

2
(

∇h
b uh,∇h

b ϕ
)

h
.

The last equality holds since ϕ |∂ωh= 0. Setting ϕ = uh
t we obtain

−Cvisch
2
(

∇h
b uh,∇h

b uh
t

)

h
= −Cvisc

h2

2

d

dt

(

∇h
b uh,∇h

b uh
)

h
.

Remark: Similar statement as (4) for the Neumann boundary conditions remains
an open problem.
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Figure 1: Decay towards a planar surface at times t = 0, t = 0.005 and t = 0.01.

4. EXPERIMENTAL ORDER OF CONVERGENCE

In this section we study the experimental order of convergence of the presented
scheme. In the case of graphs there is not known any analytical solution for the
Willmore flow. Therefore we modify the equation (4) in such way that it has an
analytical solution. Suppose we want u⋆ (x, t) = sin (πx) · e−100t to be solution of
modified equation defined on Ω ≡ (0, 1) × (0, 1) - see Fig. 1. It is easy to see that
the modified equation takes the following form:

∂u

∂t
= −Q∇ ·

[

2

Q
(I−P)∇w −

w2

Q3
∇u

]

−
∂u⋆

∂t
+ Q⋆∇ ·

[

2

Q⋆
(I−P⋆)∇w⋆ −

(w⋆)
2

(Q⋆)
3∇u⋆

]

,

for

Q⋆ =

√

1 + |∇u⋆|
2
, P⋆ =

∇u⋆

Q⋆
⊗

∇u⋆

Q⋆
, w⋆ = Q⋆∇

∇u⋆

Q⋆
.

We set time dependent Dirichlet boundary conditions uh |x=0= uh |x=1= 0, wh |x=0=
w∗ |x=0 and wh |x=1= w∗ |x=1 combined with the Neumann boundary conditions
∂uh

∂ν
|y=0=

∂uh

∂ν
|y=1=

∂wh

∂ν
|y=0=

∂wh

∂ν
|y=1= 0. We evaluate the following errors of
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Meshes h EOC Ehi

L1(Ω) EOC Ehi

L2(Ω) EOC Ehi

L∞(Ω)

20 0.05 2.58969820958 2.4653462049 2.17520282298
30 0.03333 2.97637543595 3.61729905377 3.98116947809
40 0.025 2.29855758399 2.66369360864 3.54740507303
50 0.02 1.95805707937 2.11198673181 2.51711995978
60 0.01666 2.01897594977 2.04163094651 2.10533271594
70 0.01428 1.99159354982 2.02084609088 2.03726029417
80 0.0125 1.97100585415 2.00529812469 2.04216507258
90 0.01111 1.95921581197 1.99160335394 2.04564154453

100 0.01 1.95565974986 1.97895099513 1.9874281869

Figure 2: EOC for the scheme (19)-(20) evaluated by (31) - (33).

the evolution until time T with discretization parameter hi:

Ehi

L1(Ω) =

∫ T

0

∫

Ω

∣

∣uh (x, t) − u∗ (x, t)
∣

∣ dxdt, (31)

Ehi

L2(Ω) =

(

∫ T

0

∫

Ω

(

uh (x, t) − u∗ (x, t)
)2

dxdt

)
1

2

, (32)

Ehi

L∞(Ω) = max
t∈〈0,T 〉,x∈Ω

∣

∣uh (x, t) − u∗ (x, t)
∣

∣ . (33)

Related EOC for the scheme (19)-(20) with Cvisc = 103 is in Fig. 2.

5. COMPUTATIONAL RESULTS

In this section we show several evolutions obtained by (19-20). On the Fig. 3 the
initial condition is

u0(x, y) = 0.5 sin
(

π tanh
(

5.0
(

x2 + y2
)

− 0.25
))

on the domain Ω ≡ 〈−1, 1〉 × 〈−1, 1〉. We set the Dirichlet boundary conditions
u |∂Ω= w |∂Ω= 0. The steady state is the planar surface. On the Fig. 4 the

initial condition is u0(x, y) = 0.5 sin(5π
√

x2 + y2). The computational domain is the
same as in the previous example. However in this experiment we set the Neumann
boundary conditions ∂u

∂ν
|∂Ω= ∂w

∂ν
|∂Ω= 0. On the Fig. 5, 6 the initial condition is

u0(x, y) = sin(2πx) on Ω ≡ 〈0, 1〉 × 〈0, 1〉. For the Fig. 5 we set ∂u
∂ν

|∂Ω= ∂w
∂ν

|∂Ω= 0

and for the Fig. 6 we set ∂u
∂ν

|y=0,y=1= 0, ∂u
∂ν

|x=1= −1, ∂u
∂ν

|x=1= 1 and ∂w
∂ν

|∂Ω= 0.
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Figure 3: Convergence towards the planar surface with the Dirichlet boundary con-
ditions and Cvisc = 0 at times t = 0, t = 2.5 · 10−4, t = 0.001875 and t = 0.005.

−1
0

1

−1

0

1
−1

0

1

−1
0

1

−1

0

1
−1

0

1

−1
0

1

−1

0

1
−0.5

0

0.5

−1
0

1

−1

0

1
−1

0

1

Figure 4: Convergence towards a planar surface with the Neumann boundary con-
ditions and Cvisc = 0 at times t = 0, t = 5.0 · 10−4, t = 0.005 and t = 0.01.
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Figure 5: Test with the Neumann boundary conditions and Cvisc = 1000 at times
t = 0, t = 0.001, t = 0.005 and t = 0.15.
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Figure 6: Test with the Neumann boundary conditions and Cvisc = 0 at times t = 0,
t = 5.0 · 10−4, t = 0.0025 and t = 0.025.
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