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State of Art

Willmore flow is a problem defined in differential geometry. It finds many real applications in
physics of elasticity e.g. modelling of bio-membranes. In image processing the Willmore flow was
successfully applied to a problem called image inpainting. Even though the Willmore functional
has been defined almost one hundred years ago it has not been studied from the numerical
point of view for long time. Evolutionary law for finding a minimum of the Willmore functional
is a fourth-order parabolic partial differential equation. It is highly non-linear problem. It
is challenging problem from theoretical point of view but also for a numerical approximation.
Anisotropic Willmore flow has not been studied yet. Also for the isotropic level-set formulation,
new numerical schemes need to be investigated.

Research Goals

The main goals of this thesis are to derive graph and level-set formulations for anisotropic
Willmore flow and to design reliable numerical scheme for the level-set formulation of the
(anisotropic) Willmore flow of planar curves. First we test proposed schemes on the graph
formulation which is easier to approximate. We find experimental order of convergence. Ap-
proximate solutions obtained by the isotropic level-set method are compared with the parametric
approach. As a reference problem we also solve mean-curvature flow and we demonstrate dif-
ferences in evolutions of both problems. We consider explicit and semi-implicit discretisation in
time and investigate efficiency, accuracy and reliability of both approaches. We do not study
numerical analysis of the schemes. We only show simple energy equality for the graph formula-
tion.

Methods Used

We present numerical schemes based on the finite-difference method and complementary finite-
volume method. For planar curves, level-set method and parametric approach (discretised by
flowing finite-volume method with asymptotically uniform redistribution) are both implemented.
For the explicit time discretisation, the Merson alternative of the Runge-Kutta method is used.
Linear systems coming from the semi-implicit time discretisation are solved by restarted GMRES
method with ILUT preconditioning.

Research Results

The thesis describes isotropic and anisotropic Willmore flow of surfaces given as graphs or
curves given as a zero level-set of an auxiliary function. Three classes of numerical schemes are
studied. They are compared on several qualitative numerical experiments and by evaluating
the experimental order of convergence. For all of them energy equality is proven. The most
reliable scheme (the one based on the finite-volume method) is then tested more extensively on
the level-set formulation but also on anisotropic problems.
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1. Notation

Notation Meaning Definition
Vrf the surfacial gradient of function f € C* (T) D:|4.2.7
Vr-h the surfacial divergence of vector field h € C* (I', R") D:|4.2.8
Oiu denotes % fori=1,---n and u € C* (R")

Onf denotes Vf -n

02 f denotes n” D2 fn

A surface area functional (5.1

A, surface area functional 5.20

« tangential velocity for parametric curves 5.117
I3 normal velocity for parametric curves 5.117
v (u) parametrisation of T’ D:4.1.1
v (s) arclength parametrisation of T’ D:4.1.1
0% anisotropy function D:5.1.9
r hypersurface or curve in R" D:4.2.1
Text exterior of hypersurface I'

Tint interior of hypersurface I'

T (¢t) moving hypersurface Dj4.3.1
D?f the Hessian matrix of f i.e. Digj = 0;0; f

dr signed distance function to I

dH" Hausdorff measure of R™

d; principal directions

D.f normal time derivative

EOC experimental order of convergence

g local length

h space step for numerical discretisation

H mean curvature of I'

K Gauss curvature of '

K curvature of a curve I

Ki principal curvatures

L length of a curve

n (x) outward normal unit vector of I" at point x

v normal of the boundary of finite volume (2;; resp. domain

Py, projection operator on wp 6.2

P projection to the tangential space 5.38

% function expressing I' given as a graph

s parameter of arclength parametrisation

Tx tangential vector of I' at point x D:[4.2.2
t (x) oriented tangential unit vector of I" at point x D:4.1.7
T (x) tangential space at x D:4.2.3
{t1,--- ,t,—1} orthonormal basis of T (x)

T time step for numerical discretisation

Tr A trace of matrix A € R™*"




1. Notation

Notation Meaning Definition
U neighbourhood of x

U function expressing I' by the level-set method

uv tensor product of vectors u and v

v parameter of general parametrisation of a curve

\% normal velocity

Vi, dual mesh to the grid wy,

w Weingarten map or shape operator

Q domain in R"™

wh numerical grid




2. Introduction

2.0.1. Willmore flow and related topics

In this thesis we present several numerical schemes for a numerical approximation of the Will-
more flow. This problem was introduced by an English geometer Thomas James Willmore
(see the Figure in his well-known book [100]. In differential geometry the Willmore surface
(curve) is understood as a minimiser of mean curvature square. The Willmore flow also finds
its applications in the physics of elasticity. However, our main interest is in applications to
image processing. By minimising the elastic energy of the image lines (for example the edges
of some object), we can get a continuation of some missing parts which will look very natural
to the human eye. We would like to note that the Willmore flow belongs to a much wider class
of problems. They are usually referred to as (mean) curvature dependent flows. We begin by
introducing these both interesting and important mathematical problems.

We consider a curve in R? or surface in R3. Such a curve or surface may represent an interface
between two different phases of some substance (for example melting ice in water), a growing
crystal, a soap bubble in the air, a water drop, the boundary of advancing water in nature,
an advancing fire in a forest, elastic membranes or the boundary of an object in image resp.
segmented organ in some medical data. In most of these problems the curve or surface represents
an interface or boundary which is moving. We are interested in the evolutionary laws describing
the motion.

Let us go back to the problem of the bubble floating in the air. To simulate this phenomenon
we first note that the bubble moves in the direction of wind. Denoting this direction as d we
move all particles of the bubble in the direction of vector d. In terms of the partial differential
equation we use the term "advection”. Let us assume that the bubble goes to a region with
a higher air pressure. It will shrink a little bit. In this case all particles move in the inner
normal direction. Denoting by n the outer normal we get a motion in the direction of —n.
If the bubble gets into a stronger wind it may be deformed. However, it will restore its original
shape when the wind disappears. The motion of each particle depends on the bubble shape.

Figure 2.1.: T. J. Willmore in 1979 at the Oberwolfach mathematical research institute (by
Wikipedia).



2. Introduction

Therefore a quantity to express the shape is needed. Considering the normal vector need not
to be enough. Differential geometry provides the notion of shape operator which describes a
change of normal vector along a curve or surface respectively. In this sense, the normal vector
can be understood as the first derivative of the shape and the shape operator as the second
derivative of the shape. In many situations its trace is enough to work with.This is precisely
how we get the mean curvature H of a surface. The motion of the surface inward in the normal
direction proportionally to the mean curvature will shrink the bubble. The smaller the bubble
is the larger the mean curvature will be. It would lead, however, to a complete disappearance of
the bubble. It is not realistic. We know that the bubble preserves the air inside. This constraint
is related to the interior volume. If we have a balloon instead of the bubble which is made of
some textile material it can change the shape but it preserves its total surface area S. Finally
if it is a rubber ball, the change of shape depends on its elasticity which can be expressed in
terms of fourth derivatives of the shape.

We can summarise that the change of the surface shape I' given by the motion of particles
creating the surface can be expressed as

Ox = f <X,F,n, 9%x, 84x,/ 91 (%) dx,/gz (p,m, x,0"x) dS)
I T

ntl’

where

e x is the position of the surface point

F is exterior force which does not depend on the shape of I’

n is the normal vector of T’

0%x is the second derivative of the shape related to the mean curvature

0*x is the fourth derivative of the shape related to elasticity

Jrwr 91 (P) dx expresses dependency on the interior of I

Jr 92 (X, n, 0°x, 84x) dS expresses dependency on some global quantity go defined on I'

If f does not depend on the integrals, its value at a certain point x¢ is given by the knowledge
of some small neighbourhood of xy. We speak of local law. Otherwise, it is a non-local law.
When we are interested in the change of shape, we do not identify motion of particular points
along the curve or surface I'. Such tangential motion is important in some applications —
for example in medical data processing, where we would like to trace motion of tissues. In
cardiac MRI, the complete reconstruction of the heart motion, not only the change of shape,
is of the main interest. Such applications, however, usually need some special techniques. To
our knowledge there is no general approach to solve these problems. Therefore we only consider
the motion in the normal direction. Most of the laws then might be given as a formula for the
normal velocity prescribing velocity of I' in the normal direction.
In this text we consider the mean-curvature flow given by

V=HonT, (2.1)

as supporting issue of the main topic given by the Willmore flow

1
V=-ApH — H®+2KH onT. (2.2)



Another well known problem is the surface-diffusion flow (often referred only as the surface
diffusion)
V=-ArHonT, (2.3)

which, however, is not studied in this text. These problems belong to the class of geometrical
partial differential equations or, to be more specific, curvature-driven flows . We show
that they can be formulated as variational problems. They also can be understood as examples
of gradient flow i.e. processes of functional relaxations. In this view, the system state moves
("flows”) towards a minimum-energy state.

The mean-curvature flow has been studied extensively in recent years. On the other hand, the
surface-diffusion flow and the Willmore flow are problems with limited knowledge. The results
obtained for the mean-curvature flow are good motivation for solving more difficult problems.
For example we show that with the complementary finite volume method we may obtain nice
numerical convergence in the case of the mean-curvature flow. This is more difficult in case of
the surface-diffusion flow and the Willmore flow. This is supported by numerical experiments
showing the difference between particular laws under the same initial condition.

Numerical solution of given problems is possible by several approaches as discussed by Elliott
in [45]. These methods can be divided into parametric and implicit ones. The parametric
methods parametrise the curve (or surface). The curve is given as an image of some mapping.
Quantities like outer normal or curvature can be expressed in a straightforward way. The
evolution law becomes an equation for the parametrisation. On the other hand, some stabilising
methods are often necessary to obtain robust algorithm - see e.g. Mikula and Sevcovié [77].
This stabilisation makes the final scheme more complicated. Nevertheless, it is still efficient
method. Main disadvantage is its incapability to handle changes of topology (situations when
two curves merge together or one curve splits into two). One way to solve this problem is using
re-parametrisation from time to time (see e.g. topological snakes or T-snakes by MclInerney
and Terzopoulos [73]). T-snakes were applied to image processing. To our best knowledge, their
mathematical properties have not yet been studied.

Sethian and Osher [90, B5] proposed an elegant approach which is known as a level-set
method. It is an implicit method. The curve is given as a zero level set of some mapping
referred as a level-set function. Such approach increases the dimension of the problem by one
which makes this method less efficient then the parametric approach. On the other hand, the
changes in topology are handled automatically. The main difficulty of the level-set method is
related to the behaviour of other level sets. They can evolve in agreement with the same law
imposed on the zero level set. This can lead to a deformation of the level-set function. The
signed distance function [85], for which the gradient size equals to 1, is usually said to be the
best choice for the level-set method. Here the mean curvature simplifies to the Laplace operator.
Consider the signed distance function to a unit circle. Its graph is a cone in R? — see the Figure
Level sets for negative real numbers are smaller circles then the one given by the zero level
set. In case of the mean curvature flow each level set shrinks with velocity proportional to the
curvature. It means that smaller circles shrink faster and at certain time they disappear. It
makes the vertex of the level-set function graph to rise up and the gradient size to decrease. The
level-set function is deformed and the property of the signed distance functions is lost. This can
negatively affect accuracy of the numerical approximation. It happens especially in case of the
Willmore flow. The level-set formulation of the surface-diffusion flow was studied in [83]. To
restore the signed distance function one can employ redistancing. It, however, brings in some
errors too.

The remedy of this problem can be found either in highly reliable re-distancing method or
in different normal velocity prescribed to the non-zero level sets. The first approach has been
proposed by Sussman and Fatemi [94]. Their method is explained later in this thesis. For the
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Figure 2.2.: Evolution of a level-set function. The initial function (I) has been evolved by the
mean-curvature flow (II), the surface-diffusion flow (III) and the Willmore flow (IV)
until the time ¢ = 0.001.

second approach, the extension of the normal velocity might be promising. Sethian [I] gives
examples of several problems where it is not possible to define the normal velocity in the same
way for all the level sets. He applied the fast marching method to extend the normal velocity
from some narrow neighbourhood of the zero level set to the rest of the computational domain.
He also shows that this method preserves the signed distance function. A similar method was
described by Smereka [92]. He employed it for the surface-diffusion flow. Its application to the
Willmore flow might be promising.

Another method is the phase-field approach originally introduced by Allen and Cahn [2].
The spatial domain is split into a part with, for example a liquid phase, another part with a solid
phase and a narrow interface between them. We consider a function « which is zero at the solid
part, one at the liquid part and it continuously changes from zero to one at the interface. The
interface is usually narrow but with finite thickness. The level set corresponding to the value
1/2 is related to the interface. An advantage in comparison with the level-set method is in the
fact that the function u preserves well its property to stay between zero and one. On the other
hand, the phase-field models are often sensitive with respect to the parameter which controls
the thickness of the interface. It is known that the Allen-Cahn equation approximates the mean
curvature flow [2], the Cahn-Hilliard equation approximates the surface-diffusion flow [17] and
recently Du, Liu, Ryham and Wang [42] 41] derived a phase-field model for the Willmore flow.

Some comparisons between different approaches have been done by Benes and Mikula [§],
Benes, Mikula, Oberhuber, Sevéovic [I3] and Elliott and Styles [46].



3. Physical background

Goal of this chapter is to provide a motivation to the effort of finding a numerical approximation
of the mentioned evolutionary laws. We show that these laws find many important applications
in physics.

3.1. Physical problems related to the curvature-driven flow

3.1.1. Capillary surfaces

Consider unusual phenomena allowing water drops hanging on a spider web or water strider
walking on water. We speak of surface tension. It appears in situations when two different
fluids or fluid and solid material are in contact. If these fluids do not diffuse one into each
other they remain separate. Small water drop diffuses in contact with sand or textiles. On the
other hand, on plastic or in the air it remains as a water drop. In 1805, Thomas Young [104]
introduced a notion of the mean curvature H by showing the Young-Laplace equation

Ap = 20 H, (3.1)

where Ap is the pressure drop across the interface separating the fluids, o is the surface tension
and H is the mean curvature. When equilibrium Ap = 0 is attained, it means that H = 0 and
we arrive to so called minimal surface. Trivial solution for H = 0 is a plane. However, if we
set up some non-trivial boundary conditions we may get more complex shapes. Soap film in
non-planar wire loop is one example (height of the wire loop represents the Dirichlet boundary
conditions). A water drop on plastic plate with prescribed contact angle (it depends only
on the materials) represented by the Neumann boundary conditions is another example of this
phenomenon.

The mentioned phenomenon is related with an interesting domain of physics. Even though the
Young-Laplace equation is now older than 200 years, this domain is a living source of problems
to be solved. Readers more interested in this topic may read for example a survey text by Finn
[51]. For a derivation of the equation together with its applications in nanoscaled solids,
we refer to Chen, Chiu and Weng [19].

3.1.2. Stefan problem

The Stefan problem arises in phase transitions — see Gurtin [54]. Consider a homogeneous and
isotropic material which can exist in two phases — liquid and solid. We denote by 2 a bounded
domain in R3, by € (¢) the liquid subdomain and by Q (¢) the solid subdomain for ¢ € [0, 7] —
see the Figure Let I" (t) = 0 (t) N0 (t) be an interface between the phases, u (x,t) space
dependent temperature of the system, ¢ heat capacity per unit volume at constant pressure, A;,
As thermal conductivity of given phases and L the latent heat which is the heat exchanged
by the phase transition of a unit volume.

Assuming that both phases are incompressible, from the classical Fourier conduction law and
energy balance in each phase ( see. Visintin [96] for details) we get the heat equations in
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Q=0,@)NT )N () Interphase - T (t)

0< Kr(t)

0> K1 (1)
Liquid phase - (t)

Outer unit normal - n

Figure 3.1.: Setting of the Stefan problem.

both phases as

cou = V-(NVu) in Q (1), (3.2)
cou = V- (AsVu) in Q4 (2). (3.3)

Denote by V' the normal velocity of the interface I' (¢) (i.e. the speed in what I" () is moving in
its unit interface normal n direction at each point). Consider a small element d.S of the interface
moving with the velocity V. Denoting q;, qs the heat flux of the liquid resp. solid phase (both
are given as q; = —\;Vu, resp. qs = —AsVu). Then the latent heat L is absorbed resp. released
according to the following formula

q-n—qs-n=LVonTl().
It yields Stefan condition of the heat-flux jump
AsOptt |s —NOqu |;= —LV on T (1), (3.4)

where we denoted O u |s normal derivative of u relative to € (¢) (similarly for dyu |;). If
the phase transitions are studied at the microscopic scale, we incorporate effect of the surface
tension . It is described by the Gibbs-Thomson law

(2 g
—Eﬂr(t) - QE

where u* denotes temperature at what the phase change occurs in equilibrium, o is the surface
tension coefficient , As = S; |; —S; |s denotes the difference in the unit volume entropy
density across the interface and kp) is the (mean) curvature of the interface I' (¢). Clearly we
observe a similarity between equations and .

u—ut =

v, (3.5)

3.1.3. Grain boundary motion

Phase transition is a phenomenon where one phase turns into another one. Solid volume may
consist of grains - domains of the same crystallographic orientation. The phase change need not
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Figure 3.2.: Example of two grains with different orientation.

occur simultaneously in whole volume. Crystal growth is initiated at impurity. Under special
conditions, only one grain is formed creating a monocrystal. However, usually many impurities
cause formation of many crystals forming the grain structure of a polycrystal — see the Figure
The boundaries between particular crystals or grains are called grain boundaries .

The grain boundary motion is a phenomenon which may occur under many different
circumstances. Some of them are described in Beck [5]. Mullins [78] describes situation when a
metal crystal, after not very strong deformation, recrystallise back to strain-free state while it
is annealed. During this process the grain boundary moves ”toward its centre of curvature with
a speed proportional to the curvature”. Moreover, the motion is induced by pressure p = ko
where k is the curvature and o stands for free energy per unit area. This is the Young-Laplace
equation again.

Another example might be the diffusion-induced grain-boundary motion. Assuming
a thin metallic polycrystalline film which is inserted in a vapour consisting of another metal.
The film has grain boundaries. Since these boundaries are gaps in atomic structure, they are
good places where the metallic atoms from the vapour can diffuse in. An interesting thing
is that these atoms do not fill the grain boundaries but the grain boundaries start to move.
The deposition of vapour atoms changes the chemical composition. This phenomenon has been
studied mathematically e.g. by Styles and Elliott [46].

3.2. Willmore flow

Let us now turn from the physics of materials to physics of elasticity resp. to biology of the
red blood cells . They have been discovered in the seventeenth century and since then, many
scientists tried to find explanation of their biconcave shape. In 1960’s, it has been shown that
after deformation, the red blood cells can quickly restore their shape again. It seemed that this
shape is a minimiser of some energy. In 1970 Canham [I8] proposed an explanation of the shape
by minimising the bending energy of the membrane. Such energy is given by

D 11 D
=— —dH"! = / H? - 2KdH" !, (3.6)
2 Jrq

£ =+
2 Jray R R3



3. Physical background

where Ri, Ro are radii of the principal curvatures, H is the mean curvature, K is the Gauss
curvature and D is the bending rigidity given by

Eh3

D= "
12 (1 —v?)’

for F¥ denoting the Young modulus of elasticity, h denotes the membrane thickness and
v is the Poisson ratio. Applying the global Gauss-Bonnet theorem together with the
fact that the Euler-Poincaré characteristic x (I') = 2 for all surfaces obtained from a sphere
in R3 by a diffeomorphism (i.e. it does not change the topology of the surface) we get that
the minimum of £ is the same as for
we =D H2dH" 1, (3.7)
2 Jrw

which is the Willmore functional . In the same article [I8], Canham achieved correspondence
between observed and predicted shapes. His method consists of evaluation of for Cassini
ovals and taking those with minimal values. It is surprising that using such a simple technique,
he was able to get reliable results. For readers interested in the red-blood cells shapes we also
refer to Helfrich [57] or Svetina and Zeks [95].
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4. Evolving hypersurfaces

In this chapter we introduce some tools of differential geometry and explain the theory of evolving
surfaces. Introduction to the planar curves is brief and for more details we refer to Oprea [84]
or Sevéovié [98]. The theory of evolving surfaces is explained more deeply. The importance of
some theorems for this text is crucial because they make the derivation of the later presented
evolutionary laws easier. Even though they can be found in a very similar form in Kimura [65],
some of our definitions are slightly different (less general, designed for the purpose of this text).

4.1. Planar curves

Definition of planar curves

The planar curves can represent e.g. boundaries of objects in images, interfaces in phase tran-
sitions etc. Suitable definition of a curve, that would be general enough and would not allow
any spurious objects to be the curves, is difficult to find. It was not solved completely yet - see
Lomtatidze [68]. In this section we define important properties of curves corresponding to the
scope of the text.

Definition 4.1.1. A curve I' € R" is an image of a continuous mapping v : I — R"™, where I
is an interval in R consisting of more than one point.

For the previous definition we refer to Jost [64]. However, for our purposes we have changed
the meaning of the curve to be an image of a mapping rather then the mapping itself. The
mapping 7 will be referred to a parametrisation of the curve I' = « () (in this text we always
assume that the parametrisation 7 is defined on interval I C R having more then one point).
The parametrisation choice is not unique. Having bijective continuous mapping ¢ : I — I for
some nonempty interval I; C R the mapping vo ¢ : I1 — R" provides another parametrisation.
It means, that two different parametrisations can define the same curve. (On the other hand,
Jost [64] defines an arc for a class of parametrisations describing the same curve in our sense -
we will not use this terminology).

Let v = v (v) for v € I. The theory of curves uses the arclength parametrisation for
which |0,y (v)| = 1 for all v € I, where 0,7y denotes the derivative of v with respect to v. The
arclength parameter is denoted by s.

Definition 4.1.2. Assume that I = [a,b], and v : I — R"™ is a parametrisation of a curve
I'=~(I). I is called the closed curve iff v (a) = v (b).

In case of closed curves, the parameter v can belong to the unit circle S' instead of the interval
I. Then v : S' — R"™. The following definition and theorem on the Jordan curves were adopted
from Jost [64].

Definition 4.1.3. A planar curve I’ is defined by the Definition [{.1.1] where n = 2.

Definition 4.1.4. A curve I is called the Jordan curve iff it is represented by an injective
parametrisation v : I — R"™ .

11



4. Evolving hypersurfaces

If the mapping + is injective it means that for each v1,ve € I, v1 # vy = v (v1) # v (v2) holds.
We say that the curve v (I) is non-selfintersecting.

Theorem 4.1.5. A closed planar Jordan curve T' partitions R? into exactly two open and
connected sets, that is, RZ2\T = Q UQy, 00 =T = 92, Q1 N Qs = 0, Q1, Qo are open
and connected. Only one of these two sets is bounded. It is called the interior of I denoted as
Int (). The other one is unbounded and is called the exterior of I', denoted as Ext (T).

The property of the Theorem is important for many applications. For example in image
segmentation the interior of I" usually corresponds to the segmented object. Unfortunately, this
definition can not be applied when we need to segment more then one object. In this case we have
to consider more then one Jordan curve i.e. curvesI'y,--- ,I'y, with interiors Int (I'y) , - - - Int (T'),)
corresponding to the segmented objects and with one exterior Ext (I'y,---I'y,) = (i, Ext (T;).

Normal and tangential vector of planar curve

Definition of a curve by the mapping + allows to employ the differential calculus. We observe
that the differentiation of v could indicate many important properties of the curve 7 (I). Corre-
sponding domain of mathematics is called the differential geometry [38, 63, 84, 100]. It studies
qualitative aspects of curves expressed by derivatives or partial derivatives. We start with a
definition establishing important condition for the curve parametrisation.

Definition 4.1.6. Let v = v (v) be a parametrisation of a curve I' = v (I). We say that the
parametrisation v is regular iff |0,y (v)| # 0 for all v € I.

The arclength parametrisation is regular. Therefore the class of regular parametrisations is
not empty. We proceed by defining the tangential space and the normal vector:

Definition 4.1.7. Let T' be a closed, planar, Jordan curve parametrised by a regular parametri-
sation v : I — R? and v = v (v). The tangential space T (x) at a point x € ' is a linear
vector space T (x) = [0y7]y, where [v], denotes the linear span of the vector v. The normal
unit vector n (x) at a point x € T is given byn (x) € T (x)© and |n (x)| = 1. We say that n (x)
is an inward normal vector iff there ezists € > 0 such that x + en (x) € Int(I"). Otherwise it
1s an outward normal vector. The tangential unit vector at a point x € I is any vector
7(x) € T (x) such that |7 (x)| = 1. The oriented tangential unit vector t(x) at a point
x € T is given by the conditions t (x) = n(x)", |t (x)| = 1 and det [n (x),t (x)] = 1, where
n (x) is the outward normal unit vector, the matriz n (x),t (x)] consists of the rows given by
the vectors t (x) and n (x).

In this text, if we do not say explicitly, we always mean by n (x) the outward normal unit
vector. The definition of t (x) is such that if we stand on I' looking in the t (x) direction we
have the interior of I' on the left-hand side and n (x) points to the right. For the following two
definitions we refer to Yazaki [103].

Definition 4.1.8. The parametrisation v is the immersion iff 0,y # 0 for all v € I.

Definition 4.1.9. The parametrisation v is the embedding iff it is the immersion and injec-
tion.

Remark: As already mentioned, the parametrisation + is identified with I' in some texts. Then
the notion of immersed curve is used often. One should, however, keep in mind that it is a
property of the mapping describing the curve. On the other hand, if v is embedding, the curve
v (I) is not self-intersecting and it is a property of the image of the mapping v as well. The
notion embedded curve is frequent too. In textbooks on differential geometry one can find
more general definitions of immersion and embedding - see e.g. do Carmo [38]. For our purposes
such formalism is not necessary.
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4.1. Planar curves
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Figure 4.1.: Meaning of .

Frenet formulae for planar curves

The Frenet formulae for planar curves show an important relationship between the derivatives
of the tangential and the normal vector.

Theorem 4.1.10. The Frenet formulae: Let T be a closed, planar, Jordan curve, v : I — R2,
v =7 (s) the arclength parametrisation of T, let t (s) = t.(s) is the tangential vector at a point
v (s) € I' and n(s) = ny) is the outer normal vector at the same point. Then there exists
function k : I — R such that:

omn = ~ktonl, (4.1)
Ost = —knon I (4.2)

Proof. Take fixed s € I. Since we have that (n(s),n(s)) = 1 (here (-,-) denotes the Eu-
clidean scalar product in R?) and 0 = 95 (n(s),n(s)) = 2(dsn (s),n(s)) we see that dsn (s)
is orthogonal to n(s). It means that it is proportional to t(s) and (4.I) holds. Now from
(n(s),t(s)) = 0 and since (9st(s),t(s)) = 0 we have that n(s) is
0=0s(n(s),t(s)) = (0sn(s),t(s)) + (n(s),0st(s)). Therefore

(n(s), 05t (5)) = —(Bn (s) £ () = —(xt () , £ (5)) = —~.

proportional to Ost(s). Also

O

The meaning of the quantity x is discussed below. Writing t = (cosf(s),sinf (s)) and
differentiating with respect to s we obtain 0st = 056 (—sinf (s),cosf (s)) = —0sfn and so

Kk = 0s0. (4.3)

In convex parts 6 (s) is increasing and £ > 0. In concave parts 6 (s) is decreasing and x < 0.
This tells us that x has a meaning of the rate of change of t and so we say that:

Definition 4.1.11. Function k defined on I by and is the curvature of I

From (4.2]) we also see that
_<88t7 n) = _(8377tL) = _(8377687L) = —det [652’}/, 857] = det [(93")/, 837] ) (4‘4)

where det [a, b] denotes determinant of matrix, columns of which are vectors a and b.
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4. Evolving hypersurfaces

Implicit curves

So far we studied the curves described by a parametrisation . The implicit description of curves
represents an alternative in case of closed curves. The approaches like the level-set method or
the phase-field method are based on the implicit curves.

Definition 4.1.12. We say that the curve I' is implicit iff there exists a domain Q C R?
such that I' C Q and there is a function u € C (2;R) such that

Fr={xeQlu(x)=0}. (4.5)

If u e C1(Q) in then the implicit function theorem implies that each implicit
curve given by , can by locally parametrised by a mapping v« € C? (I ; RQ) on the neighbour-
hood of an arbitrary point x € I' where 4 is defined on some interval I ¢ S'. As a consequence
we can fully parametrise each compact curve I'. Then it is enough, in mathematical theory, to
study the curves given by some parametrisation.

4.2. Hypersurfaces

In this section hypersurfaces are discussed. The approach of the previous section can be extended
to higher dimensions. A definition and evaluation of the mean curvature and the Laplace-
Beltrami operator are the main results. Major part of this section is adopted from Kimura
[65].

Hypersurfaces in R"”, tangential vector and normal vector field

Definition 4.2.1. T' C R" is called C"™-hypersurface (m > 1) in R" iff there is a function
u € C™(R"™) such that
'={xeR"|u(x)=0}, (4.6)

and Vu does not vanish on I'. Moreover, if there exists a bounded set I'yyy and a set Text such
that T, Ting and Text are disjoint, R™ = T'U T U lext, u (Xx) < 0 on Tipg and u (x) > 0 on Texy,
we call u the level-set function of I'.

Definition 4.2.2. Let I' be a C™-hypersurface. We say that vector T (x) is the tangential
vector of I' at point x iff there exists a curve v (I) C T' with parametrisation v = ~ (v),
v € C™ (I;R™) defined on interval I C R, 0 € I such that y(0) = x and (9,7y)(0) = 7 (x).

Fixing some x € T', taking the curve v (I) from the previous definition and inserting it to a
function u from (4.2.1) we have that u(y(v)) = 0 and so g—’; = Vu - 0,y = 0 which holds for all
7 (x). It means that Vu is orthogonal to all the tangential vectors 7 (x). If u is the level-set
function then Vu points to I'c;; and we have that the outer normal unit vector field is given
Y (

Vu (x
n (x) V) (4.7)
It is clear that for any x € I' all the tangential vectors 7 (x) create vector space T (x) given
by T (x) = {7 (x) e R"| (n(x),7 (x)) = 0}. Its dimension is n — 1. Let {ti,---t,—1} be the
orthonormal basis of T (x).

Definition 4.2.3. The vector space T (x) is called the tangential space at the point x € I.

Definition 4.2.4. A C™-hypersurface I' € R" is called oriented iff there exists a vector field
n(x) € C* (I',R™?) such that n(x) L T (x) and |n(x)| =1 for allx €T.
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4.2. Hypersurfaces

Remark 4.2.5. Let x € T' be an arbitrary point. Without loss of generality we may assume that
x=0,t;=e;fori=1,---n—1and n(x) = e, where {ej,--- ,e,} is the standard basis of R".
By the implicit function theorem we know that for a neighbourhood O of 0 there exists a function
@ € C"™ (0) such that T is given as a graph of p = p (§) on O i.e. TNO ={(&, ¢ (£)) | £ € O}.
In other words, for any x € I there exists a neighbourhood U of x € I" such that

FrNU={x+T{+¢()n((x)| O}

where rows of the matrix T consists of vectors ty,--- ,t,—1. We say that I" is given as a graph
of ponU.

Mean curvature and Gauss curvature

One of the most important local quantity for the curve is the curvature. Its counterparts in case
of hypersurfaces are the mean curvature and the Gauss curvature . We will define them using
an auxiliary curve defined on I'. Consider now a unit tangential vector 7 (x) € T (x) and define
a plane curve v (s) = x + s7 (x) + ¢ (s7 (x)) n (x), where ¢ (§) is the function from the Remark
and s € (—¢,€) for € small enough. Then 7 (s) C T and 7(0) = x,

057(s) = 7 (x) + (V(s7 (x))7 (%)) . (x)

and
027 () = (D% (57 (x)) 7 (x)) 7 (%)) m (%) = (7 ()7 D2 (57 (%)) 7 (%) ) m (),
where
(DQSD (5))23 = 6?@5@ &),

is a Hessian matrix of ¢ (¢). If I' is C%-hypersurface then ¢ € C? (R”‘l) and D?¢p is sym-
metric. Since from (4.4) £ = — (92y,n(x)) we have

Koy = —T (%) D27 (x), (4.8)
which is the curvature of I" at the point x in the direction of the tangential vector 7 (x).

Definition 4.2.6. Denote the eigenvalues and the eigenvectors of the symmetric matriz D?p (x)
by k; and d;; € R" ! fori=1,--- ,n—1. Then k; are called the principal curvatures of I' at
the point x and d; € T (x) (I') given by d; = Td] are called the principal directions . Here
the colummns of the matriz T consist of vectors t1,--- ,t,_1 . We define the mean curvature

as
n—1

H=> &, (4.9)

i=1
and the Gauss curvature as

K =[]~ (4.10)

Differential calculus on T°

In the following we are interested in the differential calculus restricted on I'. Assume having a
function f € C!' (R"™) and a curve v (s) such that v (0) = x € I'. Assume that there exists ¢ > 0
such that v (s) C T for all s € (—e¢,€). We want to study the change of f along . We get that
4 f(y(s)) = Vf-057(s). Since dyy (s) € T (x) we can project V f to T (x) without affecting the
correct result. It follows that Vf-9sv(s) = [Vf — (Vfin(x))n(x)]=[(I —n(x)®n(x))] Vf.
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4. Evolving hypersurfaces

Definition 4.2.7. For a function f € C* (T') we define the surfacial gradient of f on I' as
Vrf(x):=P(x)Vf(x) forxeT, (4.11)

where
P(x):=I-n(x)®n(x)=1-n(x)nx)’, (4.12)

is orthogonal projection from R™ to T (x) and fect (R™) is an arbitrary extension of f to
R™.

One has to show that the previous definition does not depend on the choice of f. Assume
having two different extensions fi and f2. Then f1 — fo =0on I f1 — f2 can become a level-set
function of I on IR™ up to the sign of f1 — fo in I'jyy and Ieyxt. Its gradient is therefore orthogonal

to T (x). It means that P (x)V (fl - fg) =0 and so P (x) Vf; = P (x) Vfo.

Definition 4.2.8. For the vector field h € C* (', R") we define the surfacial divergence of
hon ! as
Vr -h:=trVrh?, (4.13)

Definition 4.2.9. For the function f € C? (') we define the Laplace-Beltrami operator of
fonl as
Arf:=Vr-Vrf. (4.14)

Weingarten map (shape operator)

Definition 4.2.10. The Weingarten map or the shape operator W ¢ C" (I', R"*") is
defined as
W (x) := —Vrn! (x), for x € T. (4.15)

Theorem 4.2.11. W (x) is symmetric, W (x)n (x) =0 and W (x)d; = kid; fori=1,--- ;n—1
where d; are the principal directions from the Definition [{.2.0,.

Proof. Let x € T' be a fixed point. Clearly W (x) : I' — T (x)(I') and W (x)n(x) = 0 (all
columns of the matrix W (x) are from T (x)). Without loss of generality we may assume that

x=0,t,=e;fori=1,--- ,n—1and n(x) = e, where {eq, - ,e,} is the standard basis of
R™. Let O be a neighbourhood of 0. Let ¢ be a function such that I' is given as a graph of ¢
on O. Writing n (x) = (n1 (x),--- ,n, (x)) we get
1 _ _
- ()= ()
1+ [V (%)

Let d; be a principal direction and d} related eigenvector of D% (£). Define a plane curve
v (v) = x +vd; + ¢ (vd]) n (x).
Now we see that

G520 0D o= o e v+ (v m ) ( R ) + 1, (0) ( —D*(0)d; )

1 0
(4.16)
We will show that

%nn [x +vd; + ¢ (vd}) n (x)] = 0. (4.17)
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4.2. Hypersurfaces

Indeed

. Lny (x + vd; + ¢ (vd]) n (x))
0 = —[n(x+vdi+p(vd)n(x)[* o= 2n(0) : o0
fnn (x4 vdi + ¢ (vd)) n (x))

— Q%nn (x+vd; + ¢ (vd}) n (%)),

where the last equality follows from n (0) = (0,---,1)7. It is a proof of (4.17). Together with
ny, (0) = 1 we have from (4.16)

%n(fy (v)) lvo=0= < —DQ%(O) d > = —rid;.

Now we see that
dvy (v) = d; + djVe (vd)) n (x) .
T

By our assumptions we have that n(0) = (0,---,0,1)7 = (=V¢(0),1)".
Ve (0) = 0. It follows that

It means that

9y (0) = d,
and d
i =~ (5/(0)) = — (Ven” (71(0))) 9,7 (0) = W (30 .
It means that the vectors {dj,---,d,—1,n(x)} are orthonormal eigenvectors with the corre-
sponding eigenvalues {k1, -+, kp—1,0} and that W (x) is symmetric. O

Some useful expressions for H and the Laplace-Beltrami operator

The theorem (4.2.11)) allows us to express the mean curvature as
H=TrW=-Vr-n. (4.18)

We might be tempted to say that K = det W but we know that the eigenvalue corresponding
to n is 0. To make it 1 we add the matrix nn” to W. Then

K = det (W +nn"). (4.19)

Our interest is to express the mean curvature H efficiently. The following theorem contributes
to this effort.

Theorem 4.2.12. Let 1 be a Cl-extension of n i.e. 0 € C1(R"), |i(x)| = 1 in some neigh-
bourhood of T and i (x) = n (x) on I'. Then

H=V-n (4.20)
holds.

Proof. For x €I fixed and small € > 0, we have |fi (x 4 en)|> = 1. Now

0= % In(x + en)|2 le=o= 20 (x + en)T [Vfl (x + en)T} n |—o= on’ (VﬁT) n (4.21)
and
H=-Vr a=TrVra’ =Tr [(I-nn”)Va’| =V -a—-n" (VA')n=V 4,
where the last equality follows from . O
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4. Evolving hypersurfaces

If T is given as a zero level-set of some level-set function u € C? (R") (i.e. u < 0 in Tjyt) then
n(x)= |§Z‘ and H =V - ‘§u| In the definition of the hypersurface I', we assume that Vu # 0
on I'. At the points where Vu = 0, n would not be defined. Since we assume u € C™ (R") for
m > 1, we observe that Vu # 0 in some neighbourhood of I" as well. This is enough for the
application of the theorem . In the other parts of R" we may introduce regularisation
by a non-zero function € (x) vanishing in some neighbourhood of I' where Vu is non-zero. Then

we define
Vu

fi = . (4.22)
e(x)* + |Vul?
and
H=V-h =V- Vu . (4.23)
€ (x)2 + \Vu]Q

Later, in the numerical computations, we assume that € (x) = € is constant.
If T is given as a graph of a function ¢ € C? (]R”fl), ¢ = ¢ (&) then we have

ne & ( —YW ) , (4.24)

V14 Vel

for x € T expressed as x = (£, ¢ (€))7, However, 1) can be easily extended on R™ and we
can define n as

1 _
T — ( Y@ ) on R”. (4.25)
V14 Vel
It follows that
H — _ a:190 ) Oz, 18P

- - mn 1 3371
\/1+\Vg0 /14 |[Vel? /14 Vol

— 0, :Jc1$0 '+8xn 1 a:n 1P

1+|Vg02 14 |Vl

Vo

V14 Vel |

L = 0. Therefore we often simplify the normal of I" given as a graph of ¢ to

because 0., ————

V14V
n = V/y/1+|Vg|?. The same holds even for the normal unit vector field extension f. For
better consistency of the notation, we will consider inner normal unit vector in the case of the
graph formulation and write

_ Ve
V1+1Vel

Denote @ = |Vul for the level-set formulation resp. @ = 4/1+ |V<p\2 for the graph formulation.
It allows us to express the unit normal vector and the mean curvature as

n—quandH V- <VQU>,

H=V" (4.26)
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4.2. Hypersurfaces

for the level-set formulation resp.

n:%pandH:V~<vcf>,

Then we get (what follows holds even for the graph formulation - we would write ¢ instead of

w)

o = (%) = b o b (uman)] = foru 4 (S )|

. (H T (V;)T) D= & (@) D= Lep
and
W=Vin=PpP (éPD%) = éJPDQu. (4.27)
Using we get
H = TtW = ggTr (PD?u) = éTr ((11 - v“gf“) D2u>
N - Lov (4.28)

Q

2
1<ij<N @

We will also find useful to consider the Frobenius norm of the Weingarten map matrix defined
as

W5 = Wi =Te(W'W)
ij=1
for which we have
W7 = Tr(W'w) = C;Tr(]PDQUJPD%) = Tr(Vn’ vnT). (4.29)

It follows from

v - v <(VU)T> _v(vw vQ(vu)"

Q Q Q?
R _qu2u(vu)T 1 _@(W)T N Py
_Q<Du 0 Q>—Q<]I QiQ )DU—QIPDu,

where we used V@ = (VuDzu) /Q. Concerning the Laplace-Beltrami operator, the following
identity is important:

Lemma 4.2.13. Let O be an open set in R™ such that T C O C R™ and f € C?(0). Then we
have

Arf =Af - Honf - 03, (4.30)
on T, where we denoted Onf = Vfn and 02 = nT D? fn.
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4. Evolving hypersurfaces

Proof. Since

Vi Vf = ﬁ(vp (Vf)T) = Tr((I—nn”) D2f) = Af — n” D*un = Af — 82f,

we have
Af = Vp-Vf+0:f=Vr-(Vrf+0unfn)+0af
Arf 4 (Vr-n)duf + 0" Vidnf + 05 f
= Arf—Houf + 0,/
where it is easy to see that n” Vg = 0 for any g € C' (R"™). O

The following was adopted from Deckelnick, Dziuk and Eliott [36]. Let I' be given as graph
of function p € C? (Q) for Q C R*lie. I' = {(x,¢ (%)) | x € Q} and we seek for an expression
of Arf for f € C?(I). Let f be an C%-extension of f to R", let £ € C™ (T") be a test function
and §~ its C*°-extension to R™ such that £ is vanishing on J0I' and é is vanishing on 0{2. Then
we have

(Vrf,Vr§) = (Vf—(Vﬁn) mVé—(Vg,n) n)

_ (vf, vg) _ (vf, n) (n, vé) _ (vé, n> <n, vf) + (vf, n) (vé, n)
BAGE 52 (V7o) (VE-vy)
— (VF9E) - 53 (VE) (Ve vy v
1 T _
- 5 (vg) EV f
for
E:=QI- V¥ g Ve

Integrating over I' we get

/F (Vif, Veé) dH™! = /Q (Ve f, Vr€) Qdx = /Q (vé)" Eviax.

and the Gauss-Green theorem on I' (A.0.8) we obtain
/ EARfAHM = — / VeV fAdH" L = — / (]Ev f)  VEdx
I I Q
- _ 1 _
= /§V-]EVfdx:/§V-]EVfd7—[”_1.
Q r @

Since the last is true for all testing functions £ and their extensions §~ we can conclude in the
following Lemma:

Lemma 4.2.14. Let I’ be given as T = {(x, ¢ (x)) | x € Q} for o € C*(Q) and Q@ C R", let
fe€C?>() and f is an extension of f into R™. Then we have

N Ve Vp ~
Apf—Qv <<Q]I —a >Vf>. (4.31)

Remark 4.2.15. The previous lemma can be proved in the same way even for I' given as a zero
level set of a function u € C? ().
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4.3. Moving hypersurfaces

4.3. Moving hypersurfaces

Following Kimura [65] we present several tools necessary for studying moving hypersurfaces.

Definition 4.3.1. Let I' (t) fort € Z be a time dependent class of oriented hypersurfaces in R™.
Let T' (t) be nonempty for allt € Z. Then I'(t) is called oriented moving hypersurface iff

M=J{T @)= {t}} cRrR"™! (4.32)
tel
is Cl-hypersurface in R™""1 and for its normal vector field n € C* (M, R") holds.

Definition 4.3.2. Let (xq,ty) € M, ¢ € C! (]R"_1 X IO,IR), To CZI, 1y is open in I and ¢ is
such that M is given as a graph of ¢ on some neighbourhood U of (xg,t0). Then if we write the
normal vector n as n = (n1,--- ,ny) we define the normal velocity of I' () at (xq,%y) as

Vv (Xo, to) = atcp (Xo, to) *Np (Xo, to) . (433)

Remark 4.3.3. To explain the meaning of (4.3.2)) we assume that Q C R, ¢ € C* (Q;]0,T))
and T'(¢) is given as

L) ={(& e (&) [ &}
Then the velocity of a point x (¢) € I' (¢) such that

x(t) = (¢ (&1),
is d
X (1) = (0,09 (6,1) .

If n is the normal vector and n = (ng,---n,) then the normal velocity reads as

V(x,t) = %x(t) ‘n =0 (&,1) - Ny

Since n is given by (up to the sign) (4.24) we get that
1

Ny =F——.
V1tV
If n is the inner normal then _q
Ny = ——
v/ 14+ ’Vggo’Q
and we have that
V (x0,t0) = —Orp (x0. o) (4.34)

V1 Ve (xo. to)?

Remark 4.3.4. Note that the definition of V' does not depend on the choice of ¢. Indeed,
consider another neighbourhood U’ of (xq, tp) and ¢’ € C! (Rn_l x Ty, R) such that M is given
as a graph of ¢’ on U’ and (x¢,tp) € UNU'. Then ¢ (x,t) = ¢’ (x,t) on U N U’ must hold and
s0 Oy (X0, t0) = O’ (x0,t0) holds as well.

Definition 4.3.5. A curve v is called C'-trajectory on M iff v € C' (Zg,R"), v (t) € T (¢)
fort € Iy and Zy is some open subinterval of .
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4. Evolving hypersurfaces

Theorem 4.3.6. Let (xq,t9) € M and let v be a C'-trajectory such that ~y (to) = (xo,t0). Then
|4 (XQ, to) == 8t’}/ (to) - 1n (XQ, to) . (435)

Proof. Let ¢ € C' (U, R"™) be such that M is given as a graph of ¢ on some neighbourhood U
of (x0,%0). Without loss of generality we may assume that xg = 0 and n (x¢) (0,---,0,1). Let
7 be defined for t € Ty C Z, Ty open in Z and tq € Zyg. Then there exists ¢ (t) : Zy — R™ ! such
that v (t) = (C(t),¢ (C(t),t)) for t € Zp. Then

Ay (t) = (3 (), Dpp (C (1), 1))T for t € T

and
Oy (to) - (%0, t0) = Orp (X0, 10) - 7 (X0,t0) = V (%0, t0) -

O
Remark 4.3.7. If I' (t) C 2 C R" is described by a level-set function u (x,t) as
P ()= {xeQ|ulx1) =0},
then for Cl-trajectory «y (t) defined on some Zg C Z such that for some ty € Zp and 7 (tg) =
(x0,t0) we have that u (v (t),t) = 0 for all ¢ € Zy. Then we see that
%u (v () ,t) |t=to= Oru (x0,t0) + Vu (Xg, to) - Oy (%0, t0) = 0. (4.36)
Since
V (x0,t0) = 9y (to) - n(x0,t0) = 9y () - m,
we have that ) = o (xo. to)
0,t0) = TV (x0,f0)| (4.37)

Definition 4.3.8. A Cl-trajectory ~ (t) defined on Iy is called normal trajectory on M iff
Oy () € Ty (T (£)) " for all t € To.

Definition 4.3.9. Let f € C* (M, R™), (xo,t0) € M and v (t) is the normal trajectory on M
through the point (xo,t9). Then the normal time derivative of f on M is defined as

d

Def (x0,t0) == 3 If (7 ()] fe=to - (4.38)

Lemma 4.3.10. For an open neighbourhood U of M in R", f € C' (U) we have
Dif (x,t) = fi (x,t) + V (x,t) Op f (x,1), (4.39)
where O, f (x,t) = Vf(x,t) -n(x,t).

Proof. From V (x0,t0) = Oy (to) - n(xp,t0) we get that V (xg,to) - n (xo,t0) = 9y (to) . Simple
calculation shows

Dif(t) =TI (0.0

= Vf (x,y)T 6,57 (t) + ft (X7t)
= V)V n(xt)+ fi (x,t).
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4.3. Moving hypersurfaces

Lemma 4.3.11. For f € CY (M) and a C'-trajectory v (t) on M (not necessarily the normal
trajectory) we have

SHOW 1) = Duf (10,0 + Ve (0,07 0 (0.

Proof. Let f € C'(U) be a C'-extension of f and x =~ (t) € I'(t). Then we have

Sram.n = SF60.
= VIx0"0y(0) + o] (x.1)
= (VS et + 0, (e n(x.0) 9 (1) + A (x.)
= Vef (6,8 0 (0 + (9af (x,)n (<) 9y (1) + 01F (x.1))
= Vo (070 () + (0] () V (x,6) + 0 (x.1))
= VS ) oy )+ (V) n x0TV (x8) + 0] (x.1))
= VLfx,t)07y )+ Dif (x,t).
]

Remark: If v (¢) is a normal trajectory we have that VL f (x,t) 8¢y (t) = 0 which is in good

agreement with (4.38)).
Theorem 4.3.12. Let I (t) be a moving hypersurface, f € Ct (M) with compact supp (f). Then

4 fxt)dH" ! = / (Dif — fFHV)dH™ !, (4.40)
dt Jre r(t)

where dH™ ' denotes the Hausdorff measure of R" 1.

Proof. Let x € T'(t). Without loss of generality we assume that x = 0, t; (¥) = e; for i =
1,---,n—1and n(x) = e,. Then there exists a neighbourhood U of x and a function ¢ (x,t)
defined on O x Ty with O C R™~! such that I" (¢) is given as a graph of ¢ for t € Iy C T i.e.

rt)y={e&t)|£€OCR" '},

Suppose now that suppf C U. Denoting A (£,t) = (VI (&,t),n(p (&, 1)) € R™"™ we may
write

/ ﬂwww”z/fW@WﬂwA@w%
r(t) o

Defining the inverse mapping ¥ = ¥ (x,t) such that x = ¢ (§,t) = ¢ (¥ (x,t),t) for x € U C
I'(t)ie. ¥: (U xZy) — O x Iy we have that

Ae, )t = < VE® (x,1) >

n” (x,t)
Differentiating the determinant of A w.r. to ¢ and using the Jocabi’s formula (A.0.13]) we get

8, det A (¢, 1) = det A (€,1) T (A (€,1)1 Ay (€, t))
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4. Evolving hypersurfaces

and
(a0 aen) = (V) (TTas e an e e0)]
_ Tr[(V?‘I’(x,t)(VT@w( &1) (VR (x,1) m (o (&,1))
T (VTop (£,1)) 10, o[
= Tr[(VL¥(x, )(VTE)tcp(f,t))]
= Tr [Vr (G ( 1))]
= VF at(p(fvt)'
We obtain
d et
g F(t)f(x,t)dH b= dt/f (6,1),t)det A (€,1)dE

— / {((VEF) Bp + Dof) det A + f0, det A} de
@]
= / {((VEf) O+ Dif) + fTr (A" Ay) } det Ade
- / {(VEF) 0up+ Dof + [V - Bup (€,)} dH™ .
The Gauss-Green formula on I' () (A.0.8|) gives
/ PV fdH" " = _/ (Vr-8ip+ Hu - 0yp) fdH" ",
L(t) I(t)
and finally we get the result
d
/ f(x,t)dH" 1 = Dif — Hn-OypfdH" ! = D,f — HV fdH" L.
I(t) I(t) L'(t)
If suppf ¢ U we apply the above result with a partition of unity (see Evans [47]) of M. O

Remark 4.3.13. The Theorem simplifies evaluation of evolutionary laws for minimising
functionals defined as
FE@W)=[ flxt)yaH
()

for f € C'(M). The right-hand side of contains the normal time derivative D;f. In
the case of mean-curvature dependent flows f often depends on H. Therefore we would like to
know D;H. The Theorem gives answer to this question. To be able to prove it, we need
to define the signed distance function and establish some results concerning it.

4.4. Signed distance function

In this section we define the signed distance function and briefly explain some basic properties
which we will need in the next section for the proof of the Theorem In later parts, we will
also study calculation of the signed distance function. It is important for the level-set method.

Definition 4.4.1. Let I be a C™-hypersurface in R™ for which Uiy and Dext is defined. We
define the signed distance function to the hypersurface I' as

dist (x,I")  x € Dext,
dr (x): =4 0 xel, (4.41)
—dist (x,T') x € Tin,
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4.4. Signed distance function

where
dist (x,I") := inf |x — y]|.
yel

It is easy to see that if I" is closed (in the topological sense) then for each x € R™ there exists
X € I' such that |x —X| = minyer [x —y| = dist (x,I'). We would like to know under which
conditions there exists unique minimiser X. For this purpose let us define

X(y,p)==y+pn(y), fory el',p>0,

NI) ={X (y,p) |y €L, |p| <e},
NE(T) ={X(y,p) [y €,0 < £p <e},

where n (y) denotes the outer unit normal vector at y.

Theorem 4.4.2. Let I' be a C™-hypersurface for which Uiy and Uexy is defined. Then there
exists € > 0 and mapping X : T x (—¢,€) — N€(I') such that X is C™1 diffeomorphism.

Proof. For the proof of this theorem we refer to Kimura [65]. O]

This theorem says that there exists an inverse mapping such that X ! (x) is defined for all
x € N¢(I'). It allows us to define mapping ¢ € C™~! (N (T'),T") such that X (¢ (x),dr (x)) = x.
The meaning of the mapping ¢ is that for each x € N¢(T') it gives the closest point on I" in the
distance |dr (x)| and in fact ¢ (x) = X. This point is unique and X = x — dr (x) n (X).

Theorem 4.4.3. Let I' be an oriented C™-hypersurface for which Uiy and Uexy is defined and
let dr is its signed distance function. Then there exists € such that dp € C™ (N€(T')) and for all
x e N(T)

Vdr (x) = n(X), (4.42)
D2dr (x) = (I+dr(x)W (X)W (%), (4.43)

hold.

Proof. The proof can be found in Kimura [65] too.

Theorem 4.4.4. Let I' (t) be an oriented moving C™ -hypersurface such that for each t iy (t)
and Text (t) is defined and let dp (x,t) is its signed distance function. For (x,t) € N (M)

Odr (x,1) = -V (X,1), (4.44)
OVdr (x,t) = (I+dp(x, )W (x,8)" ' ViV (x,1) (4.45)

hold. If (x,t) € M then
Oy D*dr (x,t) = VAV (x,t) —n(x,t) VEV (x,1) W (x, 1), (4.46)
18 true.

Proof. The proof comes from Kimura [65] as well.
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4. Evolving hypersurfaces

4.5. Normal time derivatives of some geometric quantities

In this section, we compute the normal time derivatives (see the definition |4.38))) of some basic
geometric quantities which we will employ later using the Theorem [4.3.12]in the gradient flows
of given energies depending on I'.

Theorem 4.5.1. Let T'(t) be a moving hypersurface in R™ such that its interior and exterior
is defined. Let n be the outer unit normal vector, V' the normal velocity and W the Weingarten
map. Then the following equalities hold for any (x,t) € M.

D = ViV, (4.47)

DW = —VW?+ ViV —n(VLV)W, (4.48)
n—1

DiH = VY Kl +ArV. (4.49)
=1

Proof. The proof was adopted from Kimura [65]. Let «y (¢) be a normal trajectory on M passing
through x = v (¢) € I' (¢) and dr (x,t) the signed distance function to I' (¢). Then

Dn(x) = G (0).0)

= Vrn(y(t),0)" - 9y (1) +9m (v (1), 1)
= W(x,t)n(x,t)V (x,t)+ 0 Vrdr (x,t),

and since W (x,t)n (x,t) = 0 we have that Din (x,t) = Vp0id (x,t). It shows that (4.47) is
true. For (4.48) we have

DI 1) = & (Inly(en)T) = S (V (VT (3 (x0) = S (D%r (3 (x,1))
= D3dr (x)9y (x,t) + 8, D%dr (x,1)
= D3dr (x,t)V (x,t)n(x,t) + 0, D*dr (x,1)

= V(x,t)0,D%r (x,t) + 8;D?dr (x,1).
For the first term we have (using (4.43)) on D?d (x,t) with r = dr (x))

d

Oy D%dr (x,t) = o (D*d(x +rn(x,t),1)) [r=0
- % ((11 LW (x, 1) W (x,t)) l—o

= = (@ W ()P W2 (x,1)) lrmo= ~ W2 (x, 1)

Employing (4.46) gives (4.48). (4.49) follows easily from (4.48) using D:H = D,/Tr(W) =
Te(D,W). O

4.6. Gradient flow structure

In this section, we define gradient flows. They serve as a mathematical framework for a class
of geometric evolution problems.
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4.6. Gradient flow structure

Let us start with a simple problem. Assume that we have a smooth strictly convex function
F in R™ and we want to find its minimum. From calculus, we know that the change of F' at a
point x in a direction d is given by

SF (x,d) = (VF (x),d), (4.50)

where (-, -) denotes standard scalar product. From all directions d such that |d| = |[VF (x)|, the
function F' decreases the most in the direction

d*=arg min (VF (x),d)=-VF (x),
g uin (VF (x).d) = ~VF (x)

We start with some initial guess x¢ and we apply the following iterative formula
X" =x" — 7VF (x"). (4.51)

If 7 is small enough then {x"};7 ; is monotonically decreasing and bounded from bellow by the
minimum of F. Therefore it must converge to some x* € R". But then lim,, (X"Jrl — x”) =0
and so —VF (x*) = 0. We see that F' attains its minimum at x*.

We may rewrite the formula (4.51)) as
=—-VF (x"),
and we denote x () |,r= x". Passing 7 — 0 we get a differential formula
Ox (t) == =VF (x(t)). (4.52)

As before, as t goes to infinity, x (¢) converges to x* which is the minimum of F.

Another way how to look at the equation is that it defines an evolutionary law for
motion of x (¢) and the convergence to minimum of F' is a secondary effect. To define another
evolutionary laws for the motion of x we may replace the standard scalar product (-,-) in
by another scalar product or even a scalar product. This is the idea of the gradient flows. From
now we can classify certain motions of vectors in R” by taking appropriate function F' and scalar
product g (-, ).

Proceeding to Banach spaces we may arrive to evolutionary laws using gradient flows of
certain real valued functionals £ and given bilinear forms g. For the following definition we
adopt the concept from Droske [39).

Definition 4.6.1. Let Q) be a domain in R", let X be a Banach space of functions defined on
Q, let g be scalar product defined on X, g: X x X — R and let £ be a real valued functional
£ : X — R having the Fréchet derivative. The g-gradient flow for the functional € is defined
as

du = —Ve€(u) inRYxQ,

w(0,:) = Ui on 2,

with appropriate boundary conditions where V 4€ (u) is a representation of the Fréchet derivative
&' (u) in a product induced by g, i.e.

9 (Vg€ (u),v) = (& (u),v) for all ve CF°(Q) resp. v e C™®(Q).
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4. Evolving hypersurfaces

Remark: If the scalar product g can be represented as

9 (u,v) = (Agu, v) 1y x »
then the g-gradient flow can be written as
Ou = ng_IE' (u)

and we have the uniqueness and the solution existence. The following theorem was also taken
from Droske [39]:

Theorem 4.6.2. Suppose that X is a Banach space and there exists a Banach space Y such
that X CY and Y is continuously embedded to X'. Let A, be a linear isomorphism from X
onto Y. Suppose that £ is Lipschitz continuous mapping from X to Y. Then there exists a
unique solution of the evolution problem of finding a solution u : IRE{ — X, such that

ou = —A;lé’/(u),
w(0) = Ujp;.

Sometimes we want to define general evolutionary law for I' (¢) without any assumptions on
the form of I' (¢). In this case we may operate only with the normal velocity and quantities
which do not depend on the way we express I' (¢). The gradient flow for the normal velocities
can be defined as follows:

Definition 4.6.3. Let T (t) be a moving hypersurface in R"™, let X be a Banach space of functions
defined on T (t), let g be scalar product defined on X, g: X x X — R and let £ be a real valued
functional € : X — R having a Fréchet derivative. The g-gradient flow for the functional €
is defined as

V = =V,&T) onT(t),
F<O) - Fim‘a

where V 4& (T) is a representation of the Fréchet derivative £ (T') in a product induced by g, i.e.

g (Vg€ (), v) = (E'(T),v) for all ve C™ (T (t)).

28



5. Mathematical formulation

The aim of this chapter is to give a mathematical formulation for the Willmore flow. It is a
variational problem which can be understood as a Lo-gradient flow of a functional W defined as

W () = / H?*dH" 1,
r

where T is a C™-hypersurface in R and H" ! is (n — 1)-dimensional Haussdorf measure. There
is another geometrical problem closely related to the Willmore flow. It is a mean-curvature
flow which is a Lo-gradient flow of a functional A given by

A = /F 1dH" L (5.1)

The mean-curvature flow is a second order problem whilst the Willmore flow is the fourth order
problems. Both of them can be studied in more general anisotropic form.

To be more educative we start with the simplest problem which is the isotropic mean-curvature
flow. Then we insert the anisotropy and finally we proceed to the fourth order problem i.e. the
Willmore flow. We restrict ourselves only to graph, parametric and the level-set formulation.

Remark 5.0.4. We remind that for the graph formulation we assume that I' (¢) is a graph of a
function ¢ : Q x [0,7] — R where Q is a domain in R" !

D () = {Ix, 0 (x,0)] | x € O}, (5.2)
We denote
Q=1\/1+|Vy]?, H=V. (VQ‘P). (5.3)

In the case of the level-set method I' (t) is given by a field u : Q x [0,7] — R where Q is a
domain in R™:

I't)y={xeQ|u(x,t)=0}, (5.4)

Qe=+\/e+|Vu?>, H=V. <Z“> (5.5)

By 02 we mean boundary of Q. In fact, € is an oriented C™-hypersurface in R"~! in the
case of the graph formulation resp. oriented C"-hypersurface in R" in the case of the level-set
formulation. If it is a C''-hypersurface then the outer unit normal vector v exists at each point
x € 0fd.

and we denote

Remark 5.0.5. Evolving planar curve I' () can be parametrised either by v : [0, 1] x [0, 7] — R?
such that

L) ={v(v,t)|vel01]}, (5.6)
or by the arclength parametrisation ~ : Z x [0, 7] — R? for which

F'(t)={v(s,t)| seZ CcR} and |05y (s,t)] =1, (5.7)

29



5. Mathematical formulation

5.1. Mean-curvature flow

5.1.1. Brief introduction

In the Chapter 3] the Young-Laplace equation was introduced. It concerns the pressure jump
across an interface separating two domains with for example different fluids. It depends on the
mean-curvature H of the interface. The equilibrium is reached when the mean-curvature H
equals zero. In this section we will show that H = 0 holds for minimal surfaces. It will be
also a proof of fact that the surface tension minimises the surface resp. interface area [14].

The mean-curvature flow is a minimisation of the surface area resp. curve length. It reads as

V=41, (5.8)

where V' is the normal velocity, H is the mean curvature In dependence on how we express I' (¢)
we can get several formulations of this problem:

e the graph formulation of the mean-curvature flow defined in the Definition

e the level-set formulation of the mean-curvature flow defined in the Definition

e parametric approach of the mean-curvature flow defined in the Definition
Then we proceed to the anisotropic formulations of the mean-curvature flow:

e the anisotropic graph formulation of the mean-curvature flow defined in the Definition

B.IIT

e the anisotropic level-set formulation of the mean-curvature flow defined in the Definition
B.1.12

At the end of this section we give brief overview of some results obtained for the mean curvature
and mean-curvature flow.
5.1.2. Isotropic formulation for graphs

We start with the graph formulation of (5.8)). Having I" given by (5.2) for n = 3 then the surface

area is
A(@:A(r):/me—l:/Q\axfxayf\dx:/ﬂ\(l,—axgo, —3y<p)‘dX:/Qde, (5.9)

where we defined function f: R? — R? as f (z,y) = (z,9, ¢ (7,¥)).
First of all we should ask whether there exists some minimiser.

Lemma 5.1.1. (Johnson, Thomeé - [62]) The area functional is convez .

Proof. If we denote Q (p) = 1/1 + |p|* we get

Op,0p,Q (P) &i&5 = (H‘p'z)_

= (1+pP)

(NI

(1 +p7) & — 2pipata&a + (1 +p3) &3]

N|w

[512 +&+ (mée —P2§1)2] > (1 + \P’2>_g I35

Thus .
> 90.05,Q(P)&i&; 2 0 for all §,p € R”
ij=1
and from [52] page. 178, the functional A (¢) = [, Q (V) dx is convex. O
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5.1. Mean-curvature flow

From the previous lemma we see that it makes good sense looking for the minimiser of (5.9).
Let d¢ € Cg° () be small variation of ¢ vanishing on 9 and let us define function G as

Gap (s) = Al +389) = [ 1419 (o s80)

This function indicates us what is the change of A when we perturb the graph of ¢ by dep.
Assume dp = 0 on 0f) i.e. ¢ is fixed at the boundaries of the domain ). By differentiating this
function w.r. to s we obtain

Vo - Vip+ s |Vigp|*
\/1 + |V (o + sdp)[?

dp Vo

— 8y<pdS—/V-5<Pd$
/ag Q Q Q

— —/QHésode(&‘l(@)ﬁ@)LQ(Q)’

. . Vi
lim 0,Gs, (8) = hm/ dr = / — - Vipdx

s—0

were we applied the Green formula 1' and the integral fag %&,gpds vanishes because
(5(,0 ‘aQE 0.

Remark 5.1.2. The minimal surface problem is the second order elliptic problem with the
boundary condition g defined as:

= 0 on{
¢ = g on S

To get a parabolic problem we employ Ly (2)-gradient flow. If we look at the Definition [4.6.1]
we see that £ = A, g(p,d¢) = (¢,00) 1, ) and we want

/ VA (p) dpdx = / H (¢) dpdx for all dp € C5° () resp. dp € C ().
Q Q

It means that VA = H.
Remark: Notice that to obtain the Euler-Lagrange equations for A we might also assume
dup |laa= 0 to eliminate the integral |, 5 %"&,gpds and we may drop the assumption on d¢. This
assumption then defines the Neumann boundary condition for ¢. We did not consider it in the
case of the problem because such a problem may not have unique solution (it is given up
to an arbitrary constant).

Resulting problem is a parabolic second order equation:

Remark 5.1.3. The parabolic minimal surface problem with the Dirichlet boundary
conditions is the second order parabolic problem and the initial condition ¢;,; which satisfies

dp—H = 0 on (0,T)xQ (5.10)
¢li=o = @i onfl
¢ = g ondf. (5.11)

The parabolic minimal surface problem with the Neumann boundary conditions is
the second order parabolic problem and the initial condition ¢;,; which satisfies —
and

d,p =0 on 0f.
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5. Mathematical formulation

The disadvantage of the equation is that the evolution of I' (¢) depends on the choice
of coordinates and not only on I' (¢) itself. To avoid this, we need to express the change of I" (¢)
in terms of the normal velocity V. It can be done by considering a scalar product of normal
velocities defined on I’

(Vi, ‘/Q)LQ(F) = 8%01 at@? danl _ at@l 8tg02

r @ @ o @ @

Qdx = / OriprDripr @ dx.
Q

Since the space Ly (I') is used, we speak of the Ly-gradient flow. In general, for two functions
@1, p2 € Lo (©2) we have

9 (p1,02) = /QsowzQ‘ldx. (5.12)

From the Definition we get that

g(VgA(p),0p) = / VA (p)0pQ tdx = / H (¢) 0pdx for all 6p € C§° (2) resp. dp € C (),
Q Q
which gives that V A = QH. The gradient flow reads as

O = QH.

Definition 5.1.4. Let Q be a domain on R"~!. The graph formulation of the mean-
curvature flow with the Dirichlet boundary conditions and the initial condition
Yini 1S a second order parabolic problem given by

o = QV- <VCSO> on (0,T) x €,

@li=0 = @ini on
¢ = g on 0N

The graph formulation of the mean-curvature flow with the Neumann boundary
conditions and the initial condition @;n; is a second order parabolic problem given by

F13)- (519 and

Oy =0 on 0. (5.13)

To complete the definition of the mean-curvature flow of graphs we will also show its weak
formulation. As we said before we may either consider d¢ vanishing on 92 leading to the
Dirichlet boundary conditions for ¢ or d, = 0 on 92 which gives the Neumann boundary
conditions for ¢.

Multiplying by a testing function ¢ € H{ () resp. ¢ € H' (), integrating over Q and
applying the Green formula we have:

wgp—H(pdx:/ mgpdx—/ ('O&,god’l-[”_l—i-/ E'Vgpdx.
o @ o @ o0 o @Q

The integral over 0f2 is zero since ¢ resp. 0, is vanishing at the boundaries. We conclude in
the following definition.
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5.1. Mean-curvature flow

Definition 5.1.5. The weak solution for the graph formulation of the mean-curvature flow
with the Dirichlet boundary conditions is a function ¢ : (0,T) — H' (Q) satisfying a.e. in
(0,T) for all test functions p € H} (Q) :

ath V
—i-iV dx =0 a.e.in (0,7), 5.14
[ Lo+ 0.7) (5.14)

with the initial condition
¢ |t=0= @ini on Q. (5.15)

Weak solution for the homogeneous Neumann boundary condition is a function ¢ : (0,T) —

H' (Q) which satisfies a.e. in (0,T) for all test functions o € H' (Q).

5.1.3. Isotropic level-set formulation

Now we assume that I'(¢) is given as a zero level set by (5.4). We remind that we want to

A (T) = / LdH" ! = / LdH"
ING) u(t)=0}

where u is the level-set function of I'(¢). If w is smooth enough each level set defines some
hypersurface in 2 (some of them might be disconnected since 2 is bounded). It allows us to
define A even for all non-zero level sets of u. Integrating over all the level sets of v and using
the co-area formula restricted on €2 we get

maxgq u(-,t)
/ / ydH ! dr:/vvwdw.
ming u(-,t) u(-t)=r Q

In the next step, we minimise the length of all level sets appearing in the graph of w on 2. In

fact, we minimise
Is = / |Vu|dz.
Q

It is the same functional which we had for the mean-curvature flow of graphs (5.9), just |Vul
replaces (). We can repeat the same process to compute

Q’U/
SAj=—H =-V- | — Q.
A (IVu> .

minimise

To find a proper scalar product for the gradient flow we take again two normal velocities V; =
Owur/ |Vul and Va = Qyug/ |Vu| and integrate them over all level-lines of u in 2

6tu1 atUQ 1 / 8tu1 atUQ /
Vi1, V3) 5) // —=dH" ds = Vu|dx = | Owuq0ius |Vu dx
L 0 B (o [Vl [Vl Vel vl 7 [Vl

where we again applied the co-area formula and denoted I' (s) = {x € Q | u(x) = s}. Thus we
define the scalar product

g (ur,ug) := / uyug |[Vu| ' dx. (5.16)
Q

Since it is very similar to the one for the gradient flow of graphs (5.12)) it is now easy to see that
the Lo-gradient flow reads as
Ou = H |Vu|.
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5. Mathematical formulation

Taking regularising parameter ¢ > 0 and replacing |Vu| by Q. = 1/€2 + |Vu|?, we may define
the level-set formulation for the mean-curvature flow.

Definition 5.1.6. Let Q2 be a domain in R™. The level-set formulation of the mean-
curvature flow with the Dirichlet boundary conditions and the initial condition
Uin; 18 a second order parabolic problem given by

8tu (Vu)
= V. on (0,T) x €, 5.17
Q. Q. 0. (5.17)
Uli=0 = Ui on Q, (5.18)

u = g on 0f.

The level-set formulation of the mean-curvature flow with the Neumann bound-
ary conditions and the initial condition u;y; s a second order parabolic problem given

by BT)~EI) and
O,u=0 on 0.

Remark 5.1.7. Here w;y,; is usually the signed distance function of I'y (but it is not necessary)
and we set the Neumann boundary conditions 0,u = 1 because they better fit to the signed
distance function.

5.1.4. Evolution of interface

In the preceding text we showed how to derive the level-set and the graph formulation for
the mean-curvature flow. We used a simple approach when we only needed very fundamental
knowledge of the calculus of variations. We have found it more educative and easier to follow for
readers who are not familiar with the theory of the normal time derivatives on the hypersurfaces.
However, once we know this theory, it is more efficient for the computation of the gradient flows
and its main advantage is that it is not dependent on representation of the hypersurface. In this
section we derive general law for the mean-curvature flow which will be also necessary for the
parametric method for the mean-curvature flow. Note, however, that the theorem which
we will employ does not allow any anisotropy. Such generalisation would be very nice but we do
not study it in this text. Since only the isotropic problems will be sufficient for us concerning
the parametric method, it is not a big problem.

Consider now a hypersurface I' (f) which we perturb by an arbitrary normal velocity V. Each
such normal velocity corresponds to some moving hypersurface. The change of A is given by

the theorem (4.5.1) with f (x,t) = 1 which gives

d d -1 —1
i = @ f " /rm VART = (=H. V) 1yen)

The scalar product for the gradient flow now takes the form
gV, Va) = (W1, VQ)LZ(F(t))

and we require an equality
(Vg A, v) 1, ) = (—H,v) forallv e C*(I'(1)).
It is trivial to see that VA = —H and by the Definition we have:
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5.1. Mean-curvature flow

Definition 5.1.8. The normal velocity for the mean-curvature flow is defined as

V =H. (5.19)

5.1.5. Anisotropic mean-curvature flow of graphs

Introducing an anisotropy is very important generalisation of the mean-curvature flow. Instead
of the surface area we will now consider a weighted surface area given by a function of the surface
normal 7, : " — RT where $" denotes the unit ball in R”. Rather than the surface area we
speak of the anisotropic surface energy

Ay = [ yn(n)dH" L (5.20)
r

Since for the graph formulation n = (Vy, —1) /Q (V) holds, we usually extend the definition
of v from $” to R"™ as follows

v (Vp,—1) :=|Ve| <(V92’2_1)> for Vo € R", (5.21)
and we get
— X = E —1 X = — X
Ay = Q%Qd / ( 00 > Qd /Q’Y(V% 1) Qdx. (5.22)

To emphasise the dependence of v on V¢ we will write
7(Ve,—1) =7 (p,~1) forp=Vp e R"".
We are now interested in the first variation of A, which will define the anisotropic mean-

curvature

H,:=—6A,, (5.23)

as it was in the isotropic case. For d¢ € C§° (2) we have
(0A,09) 1) = lm A, (9 +s0p) = / Z 7 (Vp, —1)8,,0pdx

= / Z 7 (Veo, —1) vidpdH™ ! / Z@xl L7 (Vo, —1)) dpdx
- - /Q V- (Vo (Vo, ~1)) i,
where we again used the Green formula (A.0.6) and we denoted

foy = (8p1’77 e 78pnfl)T :

We also see that the form of the Neumann boundary conditions is strongly dependent on the
anisotropic function . If ¢ # 0 on 0 then Vpy (Vu, —1) v = 0 must hold on 02 to eliminate
the integral [5o, Vpy (Vu, —1) voudH™ .
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5. Mathematical formulation

Remark: Before we give the definition of the anisotropic mean curvature we need to conclude
the assumptions on the function . From (5.21)) we see that + is positively homogeneous of
degree one which means

Y(AP) =Xy (P) for P e R"\{0},A>0.

Important assumption for the existence of the minimiser of the surface area functional A in ([5.9))
was convexity of (). Putting this assumption even on - gives us the definition of an admissible
anisotropy function - see Deckelnick, Dziuk and Elliott [32] [35].

Definition 5.1.9. Admissible anisotropy function v : R"**\ {0} — R*, v € C3 (R"*!\ {0})
which is positively homogeneous of degree one and which is convex in the sense that there exists
a constant cy > 0 such that

Q'D?(v(P))Q>c0|Q)? forall P,QeR" with P-Q=0,|P| = 1. (5.24)

Remark: If we substitute n for P in the previous definition the condition Q - P means that
Q € T. The condition ([5.24]) therefore means that « is convex with respect to the tangential
space T.

Definition 5.1.10. For admissible anisotropy function v the anisotropic mean curvature is
defined as
Hy = V- (V (Y, —1)). (5.25)

The gradient flow with g (1, p2) = fQ ©1p2Q~1dx leads in the same way as for the isotropic
problem to the following definition:

Definition 5.1.11. Let Q be a domain in R™!, let v be an admissible anisotropy function.
Then the anisotropic graph formulation of the mean-curvature flow with the
Dirichlet boundary conditions and the initial condition p;n; is a second order parabolic
problem given by

Oy = QV-(Vpy(Ve,—1)) on (0,T) x Q (5.26)
¢li=0 = @ini onQ (5.27)
@ = g on .

The anisotropic graph formulation of the mean-curvature flow with the Neu-
mann boundary conditions and the initial condition p;n; s a second order parabolic

problem given by f and
Vey (Vp,—1)-v=0 on 09. (5.28)

5.1.6. Anisotropic level-set formulation

As before for the isotropic level-set formulation, we assume that I' () is given as a level set by
(5.4). We want to minimise

Ay () o= / AR = / AR,
r(0) {u(t)=0}
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5.1. Mean-curvature flow

where 7 is the admissible anisotropic function and u is the level set function of I' (¢). We define
A even for all non-zero level sets of u (t). We integrate over all the level-sets of u (t) and apply
the co-area formula (A.0.5|) restricted on €2 to get

maxq u(t)
/ / ydH | dr = / v | Vul| dz.
ming u(t) u(t)=r Q

Hence, we minimise the surface energy of all level sets appearing in the graph of u on €2 i.e. we
minimise the following functional

Als:/ﬂVde.
Q

It is very similar to the functional for the anisotropic graph formulation (5.22)), just |Vu| replaces
Q. We can repeat the same process to get

0A;s =—-Hy =—-V-(Vpy(Vu)) on Q.

In the same way we obtained the scalar product ¢ for the isotropic level-set formulation (5.16)
we get

g (ur,uz) :== / uyug | Vu| ' dx, (5.29)
Q
and the Lo-gradient flow reads as
Opu = =V Ajs = =6 A1 |Vu| = Hy |[Vu|.

We may now define the anisotropic level-set formulation for the mean-curvature flow.

Definition 5.1.12. Let Q be a domain in R™. The anisotropic level-set formulation
of the mean-curvature flow with the Dirichlet boundary condition and the initial
condition uip; 18 a second order parabolic problem given by

‘Z;“ V- (Vpy (V) on (0,T) x Q, (5.30)
Uli=0 = Ui on £, (5.31)
u = g on 0.

The anisotropic level-set formulation of the mean-curvature flow with the Neu-
mann boundary condition and the initial condition u;y; is a second order parabolic

problem given by (5.30)- and
Vpy (Vu)-v=0 on 9. (5.32)

5.1.7. Some results from the mathematical analysis of the minimal surfaces and
the mean-curvature flow

Now we would like to present brief overview of results concerning the minimal surfaces problem
as well as the mean-curvature flow.

The readers interested in the minimal surfaces problem should read a good survey text by
Nietsche [79].
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5. Mathematical formulation

In [59] Huisken studies evolution by the mean-curvature flow of convex surfaces into spheres.
He shows what evolutions hold for the unit normal, the Weingarten map (the second fundamental
form ) as well as the evolution of the mean-curvature. He also shows that the convex surface
preserves its convexity and approach the shape of sphere very rapidly. He gives proof for a
bound of |VH| and existence of solution of the mean-curvature flow until final time 7. In [60]
he shows that in the case of the graph formulation ”surfaces with vertical contact angle at the
boundary asymptotically converge to a constant function”. In the case of the Dirichlet boundary
conditions he proves the following theorem:

Theorem 5.1.13. Assume that Q C R", ¢ and ug are functions in C* (ﬁ) and ug = ¢ on
0Q. If 09 has non-negative mean-curvature, then the boundary value problem with the

Dirichlet boundary conditions has a smooth solution w (-,t) which converges to the solution of

the minimal surface problem with the boundary data ¢.

Deckelnick and Dziuk study the mean-curvature flow of graphs and level-set in [33]. It is
very nice introductory text to the mean-curvature flow. The authors also show some simple
mathematical analysis of the problem. Here we just cite an energy equality for (5.1.4):

Theorem 5.1.14. For the solution of the problem one has an energy equation

L _
/Q ot g /Q Qdx = 0. (5.33)

In this text we will study in more details very similar equality for the Willmore flow of graphs.
Applied to the numerical analysis it can prove stability of our schemes. In the same way we
could prove stability even for the mean-curvature flow.

Evans and Spruck [49] give proof of short time existence for the level-set formulation. The
global existence and uniqueness have been proved by Chen, Giga and Goto [I0I]. In the case of
the level-set formulation we especially refer to Giga [53].

Bellettini and Paolini [6] study motion by mean curvature in context of the Finsler geometry.
They show that if the anisotropy function + is convex and smooth, the evolution law then reads
V = H, where H, has a meaning of anisotropic mean curvature.

5.2. Willmore flow

5.2.1. Brief introduction to the Willmore flow

The Willmore flow is a minimiser of the Willmore functional defined as
1
W(D) =3 / H2*AH" . (5.34)
r

This functional has name after Thomas James Willmore who introduced a problem of so
called Willmore surface in his book [100] published 1993. Willmore gave the first talk about
the Willmore surfaces in 1960. However, in his book we can read that the origin of the Euler-
Lagrange equation for this functional goes back to 1923 when it was first studied by Thomsen

and Schadow.
The Willmore flow minimises an elastic energy given by

W () = % /F HZ*AH" !, (5.35)

where I' is C%-hypersurface in R” and H is the mean curvature. The normal velocity is given
by

1
V =—-ArH — 5H?’ +2KH, (5.36)
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5.2. Willmore flow

where Ar is the Laplace-Beltrami operator and K is the Gauss curvature. As well as for the
mean-curvature flow we will define the following problems:

e the graph formulation of the Willmore flow defined in the Definition [5.2.2]
e the level-set formulation of the Willmore flow defined in the Definition
e parametric approach of the Willmore flow defined in the Definition
and their anisotropic counterparts (except of the parametric approach)
e the anisotropic graph formulation of the Willmore flow defined in the Definition

e the anisotropic level-set formulation of the Willmore flow defined in the Definition

5.2.2. Formulation for graphs
If T is given as graph of function ¢ by (/5.2) then the Willmore functional reads as

W (p) = /Q H2Qdx. (5.37)

Taking small variation d¢ € C§° (Q2) of ¢ vanishing on 0€, defining function G as

2
G&P(s)—W(go—i—s&p)—/Q [v. (\/%)] V141V ( + s60)Pax.

and differentiate it w.r. to s we get

2

1
S— s— 0 \/1+ |v (Q0+S(S(p)|2
2
= lim 1 AV V (¢ + s0yp) Vo -Vip+s |V5(p|2
e VIHIV @+ s00)) | 141V (o4 s0)?

»

\/1+|V(g0+s5go)|2 \/1+|V(cp+85g0)\2

V14 |V (p + o) Pax,

and since
v. o, V (¢ + sép) _
\/1 + |V (¢ + s6p)[?
o (1 o+ 35¢y2) Vg — (w Voo + s \V&py?) V (¢ + 56¢)
\/1+]V(<,0+s5<,0)|23 |
we get
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5. Mathematical formulation

2

. 1 Ve Ve -Vip
lim 0,Gs, (s) = / V-
570 a2 \/ 1+ |[Vel? 1+ |V
-Vo
+V.( Ve )V : (W?VsO)Vgso
V1+[Vel 1+\V<p\ 1+ |Vl
1 H? § )
_ /2 Ve Vip+ HY - <V v (Ve vgp W)de
Writing
(V- Vip) Vo = (Vo @ V) Vi,
where in general (u® V)Z-j = u;vj for i =1, --n and denoting
Ve Vo
P=I-—&®& — 5.38
0 %70 (5.38)
we have
lim 8, G, (5) = 1Hv Yoo+ HQV - [ 1Pvip ) d (5.39)
The Green formula gives
1 H? 1 H?
— V- Vs dx—/ SpdH" ! /v- <v >5 dx. 5.40
/ 5 g Ve Ve 50 9,p0¢ 2 g V¥ )oe (5.40)

The first term on the right hand side is zero because of dp vanishing on 9€Q). Now we need to
apply the Green formula twice on the second term in (5.39).

/ QHV - ( ]PV&p) dx = QH]PV&deH” !
— / V(QH) - ( ]PV&p)d (5.41)

Assuming H = 0 on Jf) and using the symmetry of élP we can write

/Q V(QH)V - <612]PV5QO) dx = — /Q Vi <22]PV (QH)) dx =
- /BQ 5 - (é]PV (QH)> v /Q v. (éw (QH)) Spdx,

where we applied the Green formula again. The integral over 0f) is equal to zero because of ¢
vanishing on 0f2. Finally we see that

1 H?
w ,0 :/V ( PV(QH) — -—V >(5 dx, 5.42
W () ,69) 1, A 0 (QH) -5 0 @ (5.42)
and the Euler-Lagrange equation reads

1 1 w?
V- <Q]PVw 2Q3 > =0, (5.43)
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5.2. Willmore flow

where we denoted

w=QH.
In the differential geometry, every surface for which the isotropic version of (5.43]) holds is called
the Willmore surface .

Remark 5.2.1. To get the graph formulation with the Neumann boundary conditions we take
dp € C* (2). We multiply (5.43) by d¢ and integrate over 2

/v <1n>v 1w2v>5d 0 (5.44)
. — w— ——: X = U. .
o \Q 23 Y)Y

we apply the Green formula on the left-hand side of (5.44]) to obtain

2

1 1w 1 1 w?
V| =PVw—--——=Vo|dpdx = / —(PYVw)v — =—VdovdH™ 1
/. <Q 2 QP 9”)“” IR Yol
1 w?

1
+ —PVw — ——VoVipdx.
/QQ 23 PV

If we set Vi - v = 0,0 =0 on 9f) we have

1 w?

———dpVpudH" ! =0,
/89 203

and since

V- Vw

Vo Vgp) Oy0
Q2 17 b

(PVw) v = <I[—Q®Q Vw-yza,,w—&((V@@V@)VU})W:&A}—

setting d,w = 0 on O} together with 0, = 0 on 0f) gives

/ 1 (PVw) vdH" ! = 0.
o0 @

Therefore the Neumann boundary conditions read d,u = d,w = 0 on 0f.
Taking again the scalar product g (5.12]) having the form

g (1, 92) 2/52901<P2Q_1d><,

we get the Lo-gradient flow for the Willmore functional.

Definition 5.2.2. Let Q be a domain in R"~!. The graph formulation of the Will-
more flow with the Dirichlet boundary conditions and the initial condition pin; s
a fourth order parabolic problem given by

1 1 w?
Op = —QV- <Q]PVw - 2ng¢> on € x (0,77, (5.45)
w = QV- <VQ<,0> on Q x [0,T7], (5.46)
Pli=0 = @ini o0 Q, (5.47)
¢ = g,w=0on oN. (5.48)

The the graph formulation of the Willmore flow with the Neumann boundary
conditions and the initial condition p;n; is a fourth order parabolic problem given by

(49) (549 and
0

v

¢ =0,0,w =0 on 0. (5.49)
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5. Mathematical formulation

5.2.3. Isotropic level-set formulation for the Willmore flow

Let I' (t) be given as a zero level set by (5.4). We want to minimise
W () = / H?*dH" ! = / H2dH™ 1,
r(t) u(t)=0}

where u is the level-set function of I' (#). Assuming that u is smooth enough we see that each
level-set defines some hypersurface in 2. This way we extend definition of W even for all non-
zero level sets of u. We integrate over all the level sets of u and using the co-area formula
restricted on ) we get

maxgq u(-,t)
/ / H2dH ! dr=/H2|vuydx,
ming u(-,t) u(-,t)=r Q

and hence we want to minimise a functional
Wis (1) = /Q H2 (V| M, (5.50)
resp. its regularised counterpart
Wis (u) = /QHZQEdHnl, (5.51)

Again we see, that formally ([5.51)) is the same as (5.37]) where we just replace @ by Q.. Therefore

the Euler-Lagrange equation has the same form as (5.43]) and we write ¢ instead of @ i.e.

1 1 w? )
V| =—PVw—--——-=V =0, 5.52
<|Vu 2 (v (5:52)
where we denoted
w = |Vu| H.

Remark 5.2.3. It is easy to see from the Remark that the Neumann boundary conditions
are d,u = 0, w = 0 on Of).

Following (5.16|) and taking

g (u1,us2) :—/u1u2]Vu|_1 dx.
Q

we get the level-set formulation for the Ls-gradient flow of the Willmore functional:
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5.2. Willmore flow

E5) (559 and

Definition 5.2.4. Let Q) be a domain in R™. The level-set formulation for the Will-
more flow with the Dirichlet boundary conditions and the initial condition w;y; is
a fourth order parabolic problem given by

1 1 w?
ou = —QV- (QIPVw — 2Q3Vu> on Q x (0,77, (5.53)
Vu
w = QV- (Q) on Q x [0,77, (5.54)
u |t:0 Uins; ON Q, 555)
u = g,w=0on JN. .56)

The level-set formulation for the Willmore flow with the Dirichlet boundary
conditions and the initial condition w;n; is a fourth order parabolic problem given by

d,u=0,0,w=0 on 0.

5.2.4. Evolution of interface

Let us now consider arbitrary normal velocity V. We know that it generates the moving hy-
persurface for which the change of W defined by (5.34) is given by the Theorem (4.3.12)) where
f (x,t) = H?. From the definition of the normal time derivative (4.38) we have that

Dt}%[2 (X(), t())

d

S (G O)] lemto= 2H 5 [H (0 ()] it

2H (Xo,to) D:H (X()atO) )

where 7 (¢) is the normal trajectory passing through the point (xo,t9). Together with (4.40) and

(4.49) we obtain

d1

—= H2dH" 1

1
- / D;H? — H3VdH" !
2 Jre

1
/ HDH — ~H3VdH" !
r(t) 2

n—1
1
H(VY I+ AV | - SHVAH".
/F(t) ( : ) 2

=1

We apply the Gauss-Green formula on I (¢) 1) on the term fr(t) HArVAH™ ! to get

/ HApVAH ! =
I(t)

It allows us to write

a1 / H?dH" !
r()

dt2

— / VirH-VpVdH ! = / ArHVAH .
I(t) I(t)

n—1
1
HY ki +ArH — -H* | VdH"!
/r(t) < : 2 )

=1

n—1
1
(AFH—i—HZF;?—QH?’,V) ,
Lo(T")

=1
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5. Mathematical formulation

and so the Ly-gradient flow for the Willmore flow w.r. to the Definition with g(u,v) =

(U, ’U)LQ(Q) 1S
n—1

1
V=—ArH-H Z K2+ 5H3. (5.57)
=1
To avoid the dependency on m we use the fact that 2?2—11 KT = ||W||2F (we remind that the last
eigenvalue of W is zero) and so we may define:

Definition 5.2.5. The normal velocity for the isotropic Willmore flow is defined
as

1
V =-ArH — H||W|3 + 5H3, (5.58)

TESP.
n—1

1
V= —AFH—HZH§+§H3.

i=1

Remark: In the case of the surfaces in R3 we have that n = 3 and
n—1
HZHZQ = (K1 + ko) (k] + k3) = H* — 2K H.
i=1

The normal velocity then reads as

1
V =—-ArH — §H3 +2KH.

In the rest of this section we will show how to get back to the graph and the level-set for-
mulation for the Willmore flow knowing only the normal velocity (5.58). First of all we apply

(4.30) on ApH to obtain
1
ArH =AH — HVH -n—n'D?Hn = AH — 3V (H?)-n—n"D*Hn. (5.59)

Clearly
Z 8j (E)iHninj) = Z 8]-81-Hninj + Z 8Z-H8jninj + Z &-Hni@jnj,
ij=1 ij=1 i,j=1 i,5=1
which we may write as
V-(mn®@n)VH) =n"D?Hn+ (VH)" (V'n)n+ VH -nH. (5.60)
Inserting into (5.59) we get
1 1
ArH = AH-=JV (H?) -n—V-(n®n)VH) + (VH)" (V'n)n + 3V (H?) -n
= V- (I-n®n)VH)+ (VH)" (V'n)n. (5.61)

From (4.29)) we have
H W% =HTt(V'nV'n). (5.62)
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5.2. Willmore flow
Writing
n n n n
Z 81 (Hl’ljajni) = Z aiHnjc‘)jni + Z Hﬁinjﬁjni + Z Hnj(?j@ini,
i,j=1 i,j=1 i,j=1 t,j=1

we see that
V- (Hn'V'n) = (VH)" V'n + HTr(V'naV'n) + HVH - n,

and so )
H|W|3=V-(Hn"V'n) — (VH)" V'n - 3V (H?) - n. (5.63)

For the last term in (5.2.5) we get

1y (H?)n. (5.64)

1 1 1
“H?H = -H?>YV -n= -V (H?n) —
5 51V n QV( n) 5

Putting this all together gives
1
ArH + H||W|3% - 5H3 = V- (I-n®n)VH)

1 1
+ V- (Hn"V'n) - 5V (H?) n— 5V (H?n).

From (4.27)) we have
1 1
Vin)n = =P (x) D?>un = =P (x) VQ,
(Vin)n= 5P ) AL
where we used VQ = D%%. Therefore
H
V- (I-n®n)VH)+ V- (Hn'V'n) = V. <IP (x) VH + aIP (x) VQ>
1
= V. (Q]P (x) (QVH + HVQ)>
1
= V. (]P (x)V(QH)) :
Q
The final equation then reads
1 1 H? >
V=V |=Px)V(QH) — =——Vu |,
(gPeaviem- 37
which can be splitted into two PDEs of the form
8tu ( 1 1 W2 >
— = V- |=P)VW — ——Vu ), 5.65
5 5P VW = 55 (5.65)
W = QH. (5.66)

5.2.5. Anisotropic Willmore flow of graphs

We start again with the graph formulation where I' () is determined by (5.2). The anisotropic
Willmore functional then reads as

Wy (¢) = % /Q H?Qdx. (5.67)
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5. Mathematical formulation

We will now derive the Euler-Lagrange equation for (5.67). We consider small variation d¢ of ¢
vanishing at the boundaries of {2. Then we define function G5, : R — R as G (s) = W, (¢ + s0¢)
and we differentiate it with respect to s

1
lim O W, (¢ + sép) = lim [ -0, [H§ (¢ + 560) Q (¢ + sdp)] dx
s—0 s—=0 Jq 2
= glg(l) H, (¢ + 50¢) Q (¢ + $60) O, H, (¢ + s6¢p)
1
+ §H7 (p + sdp) 0,Q (¢ + s0yp) dx. (5.68)
Since
VoV + 5| Vgl
0,Q(p+500) = 9/1+|V(p+s6p) = 5.69
Qo+aop) = 0141V (g +ap) = TETEEE (569)
and
O Hy (p+50p) = OV - (Vpy(V(p+sdp), 1))
= 9, Z 0,7 (V (0 + s6p) ,—1)
= Z 2 0p, 057 (V (@ + s6) , —1)]
= Z 02,00, 7 (V (¢ + s0p) , —1) 0, b
1,j=1
= V- (B, (¢+sdp) Vip), (5.70)
where we denoted
Ev( ) = 9, _8 ; (V% —1) =(Vp®@Vp)7(Ve,-1), (5.71)
the substitution of (5.69)) and (| - ) to gives
(5W7? 590)[,2((2) = ;1_{% 35W7 ((P + 8590)
AR
_ , 2
_ /Q H,QV - (B, Vi) + 2H7 5 dx
1 w?
= / w,yV - (E,Vip) + fQ—ngo - Vipdx (5.72)
Q
= / w, B, Vép - vdH™ —/ Vw, - (E,Vdp) (5.73)
o0 Q
+1/w2v 5d%”11/v G0 s (5.74)
= v = X :
w0 Q3T 2 Ja Q3 i
n—1 1 U}2
= —/ E,Vwy - vépdH —|—/ V- (E,Vwy)dp — =V - 3Vg0 dpdx
P Q 2 Q
(5.75)

2
= /V- E . Vw —E&Vgo dpdx
Q Y v 2@3
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5.2. Willmore flow

where in (5.72]) we denoted
wy = QH,.

To eliminate the first integral in (5.73) we assumed that w, |gpo= O(which is equivalent to
H, |po= 0) and the first integral in is zero since dp € C§° (). In Vw, - (E,V6) =
Viéy (E,Vw,) because E is symmetric, it follows directly from the definition. The first integral
in is zero because of the choice of . What we obtained is the Euler-Lagrange equation
for the Willmore functional :

1w?

Remark: The Neumann boundary conditions Let us now drop the assumption dp €
C5° (Q) and consider only dp € C* () which will allow us to define the Neumann boundary
conditions. We need to eliminate the integrals

2
1 / DY vspdH (5.77)
2 Joo @° '
in (5.74]) and
/ E,Vw, - vépdH" ! (5.78)
o9
in (5.75). (5.77) is zero if
Ve -v=20,p=0on 0, (5.79)

which is usual Neumann boundary condition for ¢. The situation is more complicated for the
integral ([5.78]) where we would like to have

E,Vw, -v =0 on 05 (5.80)

We now turn our attention to the Lo-gradient flow. As we already mentioned, we do not
have any definition of the geometric equation for the fourth order partial differential equations
and so we cannot affirm that we will get such an equation as we did for the mean-curvature
flow. However, majority of the texts concerning the Willmore flow deal only with the variations
of I' (t) in the normal direction. Therefore we do not show the counterpart of for the
Willmore functional. Instead of it we define the Willmore flow of graphs given as the gradient
flow for the Willmore functional with the scalar product

g(p,v) = / wQ™!
Q
and as before we want
g (VgWy,v) = (6Wy,v) 1, q)» for all v e C™ (Q), resp. v € C5° ().

It means that
VW, = QoW,,

and we may define:
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5. Mathematical formulation

Definition 5.2.6. Let Q be a domain in R" . The anisotropic Willmore flow of
graphs with the Dirichlet boundary conditions and the initial condition @in; is a
fourth order parabolic problem given by

2
ey = —-QV- (]EWVwAY - ;gchp> on (0,7) x 9, (5.81)
wy = QH, on (0,T)x €, (5.82)
¢ li=o = @ini onQ, (5.83)
¢ = g, wy=0 on 9N (5.84)

The anisotropic Willmore flow of graphs with the Neumann boundary condi-
tions and the initial condition @;n; is a fourth order parabolic problem given by f

and

0,0=0, E,Vw,-v=0 on 09Q. (5.85)

v

For the weak solution, we first multiply the equation 1D by a test function ¢ € H& (Q)
resp. p € H' () and integrate over §2. Then we have

2
1w

Oy
2.8 - _ AR "
A pdx /Q Vv ( ~Vw, 5 03 Vgp) pdx

1 w'2Y n—1
= - 20 (EWVUH) v — 5@3%0%17{

1 w?
+ / E,Vw, — =—tVp | - Vdx.
Q Y Y 9 Q3

When ¢ € H} () it is easy to see that the integral over 9 is zero. In the case p € H! (Q) we
set the Neumann boundary conditions ([5.85]).
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5.2. Willmore flow

Definition 5.2.7. Let Q2 be a domain in R™ . The weak solution of the graph formulation
for the Willmore flow with the Dirichlet boundary conditions
p = g on 09,
wy = 0 on 09,
is a couple ,w : (0,T) — Hg () which for each test function ¢,& € HE (Q) and a.e in
(0,T) satisfies,

Pt 1 w?y .
A agodx = ; (E,Vwy) - Ve — §@Vgp -Vpdx a.e. in (0,7) (5.86)
/Q %gdx - /Q Vpy - Védx. (5.87)

with the initial condition
@ |t=0= Pini- (5.88)

The weak solution for the problem with homogeneous Neumann boundary conditions

d,0 = 0 on 09,
E,.Vw-v = 0 on 99,

is a couple @, w : (0,T) — H' (Q) which for each test function p,& € H' () and a.e. in
ple p,w : (0, @,

(0,T) satisfies (5.86)-(5.87) and the initial condition (5.88).

5.2.6. Anisotropic level-set formulation

In the same way we derived the level-set formulation for the mean-curvature flow, we will proceed
even for the Willmore flow. Taking the Willmore functional (5.34)) and the scalar product (5.16)

we get that the gradient flow for the level-set formulation of the Willmore flow reads as
Ou = =V Wy = =W, |Vu|,

and we may define:

49



5. Mathematical formulation

Definition 5.2.8. Let Q) be a domain in R™. The anisotropic level-set formulation of
the Willmore flow with the Dirichlet boundary conditions and the initial condition
Yini 1S a fourth order parabolic problem

1 w?
du = —Q.V- <E'va'y — QZgVu) on (0,7) x €, (5.89)
wy = QV-(Vpy(Ve,—1)) on (0,T) x €, (5.90)
Ulg=0 = wipi on £, (5.91)
u = g, wy=0 on . (5.92)

The anisotropic level-set formulation of the Willmore flow with the Dirichlet
boundary conditions and the initial condition pin; is a fourth order parabolic problem

given by (5.89)- and
J,u=0, E;Vw,-v=0 on 09. (5.93)

To get the weak formulation for the level-set formulation of the (anisotropic) Willmore flow
we proceed in the same way we did for the graph formulation:

Definition 5.2.9. Let Q be a domain in R™. The weak solution of the anisotropic level-set
formulation for the Willmore flow with the Dirichlet boundary conditions
u = g on 08,
wy = 0 on 09,
is a couple u,w : (0,T) — H} (Q) which for each test function p,& € HE (Q) and a.e in (0,T)
satisfies,

2

0, 1w
tucpdx = / (B,Vw,) -V — =—IVu - Vedx ae. in (0,T) (5.94)
Q Qe Q 2 Q
/ Wreaqx = — / Vpy - Védx. (5.95)
Q € Q
with the initial condition
u |t:0: WUing- (596)

The weak solution for the problem with homogeneous Neumann boundary conditions
d,u = 0 on 09,
E,Vwy,-v = 0 on 09,
is a couple u,w : (0,T) — H* (Q) which for each test function ¢,& € H' (Q) and a.e. in (0,T)
satisfies -(5-95) and the initial condition (5.96)).
5.2.7. Integral equality for the graph formulation

For the numerical analysis we will need the following theorem, proof of which can be found in
Deckelnick and Dziuk [34]. We incorporate the proof into this text for better understanding of
a more general modification we will show later.

50



5.2. Willmore flow

Theorem 5.2.10. For the solution p,w of the isotropic problem — the Dirichlet
boundary conditions the following equality holds:

/Q(a“p th/HQ Qdx =0 (5.97)

Proof. Differentiating ({5.46)) with respect to t gives

pwg 0 4
/Q tg dx — /Q ng /QEV(?tLp -VE=0 forall € € H} () (5.98)

where we used the fact that

d (Vo\ QVip—0QVy
()
and Voo,
8,Q = ~12 V7P (5.100)
Q
Inserting ([5.100)) to (5.99) we have
d V@) Ve (Vop-Ve)Ve 1 ( (Vso Vw))
el R ) R — = (I-( L -—-2L Voo = EVOp.
dt < Q Q Q Q QQ i i
Substituting £ = w in (5.98)) and ¢ = 9, in (5.45]) we have
2
1w
/ (9h0) dx—/ (EVw)-VatgodX—F/ SVgo Voipedx = 0, (5.101)
o @ Q 2Q
2
dww g [w %de+ / EVdp Vw = 0 (5.102)
o @ o @ Q
The sum of (5.101)) and (5.102f) gives
8tcp2 Otww 28tQ
+ - V - VOspdx = 0. 5.103
Since Vo,p - Vo = 0,QQ (5.103)) turns to
2 2
/ (Orp) N Juw 1w %Qd o,
o @ Q 2 Q
which is indeed what we wanted to show because
lgHzQzlgui:&gww 1w28tQ
2dt 2dt Q Q 2 @
]

In the following theorem we extend the equality ([5.2.10)) even for the anisotropic problem:

Theorem 5.2.11. For the solution ¢, w of - with the Dirichlet boundary conditions
the following equality holds:

(Btso)
/Q 0 dx +2dt/H2de_ (5.104)
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5. Mathematical formulation

Proof. As well as in the case of the isotropic problem we differentiate ((5.87]) with respect to ¢

atw'yg w'ygatQ
dx —
0o Q O Jo @2

which follows from

dx +/ E, Voo -VE=0 forall & € H} () (5.105)
Q

d d &
=1
= D 9,0, (V. 1) 0,0,,90,,

,j=1

— E,Vp- VE.

The rest of the proof remains the same as in the isotropic case. O

5.2.8. Some results from the mathematical analysis of the elastic energy and the
Willmore flow

Dziuk, Kuwert and Schétzle [44] showed long time solution existence for the curves in R”
where the evolution is driven by elastic energy (the Willmore functional) possibly with some
additional constraints on the curve length. Kuwert and Schétzle [67] show lower bound on the
lifespan of smooth solution for compact immersed surfaces in R"™. Under assumption that the
initial surface is close to a sphere, Simonett [91] shows the global solution existence, uniqueness
and regularity. He also proves that the solution converges exponentially fast to a sphere. Very
similar result obtained also Kuwert and Schétzle [66]. Mayer and Simonett [72] prove ”that the
Willmore flow can drive embedded surfaces to self-intersections in finite time”. In the case of
anisotropy, Clarenz [21] gives proof that ”Wulff-shapes are the only minimisers (of the Willmore
functional)”. It is important result for the surface restoration problem.

5.3. Examples of anisotropies

In this section we show some examples of the anisotropy functions . To visualise them, we
define the Wulff shape - see Giga [53]:

Definition 5.3.1. Let v be an admissible anisotropy function. We say that
W= (] {xeR"|(xa <@} (5.106)
laj=1
1s the Wulff shape associated with .

We start with + for the isotropic problem. It takes a form

Yiso (P, —1) = /1 + [p|*, (5.107)
Yiso (P) = \/ € + [p[*. (5.108)

for the level-set formulation. Note that in both cases (if we set € = 0) 7;50 (n) = ||n||, = 1 and
in fact for the isotropic problem ~;s, is the Euclidean norm of normal. For the derivatives w.r.t
to p; for i = {1,2} we have

for the graph formulation resp.

By, Yiso = - (5.109)

150
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5.3. Examples of anisotropies

and substituting p = Vu we have

Hy =V | —Y% )| resp. H, =V Vu

1+ |Vl \/ €2 + | Vul?

The second derivatives w.r.t. to p; are

1 v} pip; o,
azi%'so = (1 - QZ ) and apiapj%so = - 12 ]7 for 4 7& J-
o

1S iso iso

The substitution p = Vu gives

1 Vu Vu
E—Q<H—Q®Q>. (5.110)

Figure 5.1.: The Wulff shape of ~;5, given by (5.108]) and ([5.109)).

Slightly more general is an anisotropy induced by a quadratic form G : R? x R? — R,
G (p1,p2) = pl Gps given by positive definite matrix G € R*2. The anisotropy, which might
be understood as a weighted Euclidean norm, is defined as

va (p, —1) :== V14 pTGp, resp. 1¢ (p) := Ve + pTGp, (5.111)

and since (G ; denotes the i-th column of GG)

Tqy .
oY = L G'l, fori=1,2,
TG
1 Ty . .
e = — <Gii _ PG GZP) , fori=1,2,
VG TG G
1 TG, G,
8Z8J’YG = (Glj - p : ]p> ) for 7’7] = ]-727@' 7& ja
VG G VG
we have
1
Hy, =V~ <Gv”) ,and By, = — (G _GVu g GW) . (5.112)
TG TG TG TG
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5. Mathematical formulation

Figure 5.2.: The Wulff shape of vg given by (5.111)).

Another (stronger) anisotropy is given by formula

3
Yabs P) =D | P2+ €aps »_ P2, (5.113)
i=1 =

where the vector P is defined as P = (p,—1) for graphs and P = (p,e¢) for the level-set
formulation. If we set €, = 0 we have a sum of absolute values of the coordinates of P. The
term €gps Z?’:l P]-2 is therefore only regularisation in the case when p = 0. It is difficult to
express H, , and [E, , in some compact form and so we only show partial derivatives of ~y,ps
with respect to p; and p; for 7,5 = 1,2.

3

Yo, = Y e B for =12
J=1 \/PJQ + €abs Zk:1 P]? \/pl2 + €abs Ej:l PJ2

2 2
€abs o €absPi

3
+ €abs Zk:l PI? (Pf + €abs Zi:l PI?)

Njw

3
Vabspip: = D
j=1 \/ Pj2

+ ! - P; ~ for i=1,2,
VP e P (5t e, P2)
3 9 2
Yabs.pipy = _Z €absPiPj %_ Z €absPiPj .

! (Plg + €abs E?:l PIQ) k=1 (Plg + €abs Z?:l Pl2)
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5.4. Parametric approach

Figure 5.3.: The Wulff shape of v, given by ((5.113)).

Another anisotropy is the discrete {"-norm for 1 < m < oo

. E
o (P) = (Z\mm> . (5.114)

The partial derivatives then read as

Ymps = Y " il ™ i,
Ym g = Y o™ (X = m) ™ ™+ m - 1),
Yimpp; = (1—m) ”YllnTQmpz'pj ’pz‘pj!n_Q

Figure 5.4.: The Wulff shape of vm given by (|5.114)).

5.4. Parametric approach

In this section, we mention another method of interface description based on parametrisation.
In the Chapter [7]we will compare the results obtained by the level-set method and this approach

(sometimes called Lagrangian).
Assume that for fixed ¢ > 0, T'(¢) is described by « : (0,1) — R2

I'(t)={y(o,t) [ €[0,1]}, (5.115)
or by the arclength parametrisation ~ : Z x [0, T] — R? for which
F'(t)={v(s,t) | s€eZ CR} and |05y (s,t)] =1, (5.116)
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5. Mathematical formulation

holds for all ¢ > 0. Of course I' (¢) is evolving in time as ¢ grows. Since I' (¢) should remain closed
for all £ > 0 we set periodic boundary conditions on any function f related to the evolution of
I'(t) i.e f(0,t) = f(1,t) for t > 0. It is easy to see that the movement of each point can be
decomposed into the shift in the tangential and the normal direction and so we may write

Oy (s,t) = at + fn, (5.117)

where v and 8 depend on given evolution. I' (¢) will change only when 8 # 0 for some x € T" (¢).
On the other hand « # 0 will never change the shape of T" (¢) and so theoretically we might omit
the tangential direction of the movement. However, some works [75], [76] [77] show that suitable
choice of a can significantly improve the accuracy of numerical schemes and even more. in some
cases it can prevent from the brake down of the numerical simulation. In the rest of this section
we will show how to choose « if we have only § in hand.

In the numerical simulations, we may not assume that if I'(0) is given by the arclength
parametrisation then also all I" (¢) for ¢ > 0 will remain implicitly parametrised by the arclength.
Therefore we assume general parametrisation « (0,t) and denote

9 =107 >0, (5.118)

which is not necessarily equal to 1. After a discretisation in space, g has a meaning of the
distance between two successive points x;_1 and z; (all details concerning the discretisation will
be described in the next chapter). In [77], the authors study so called relative local length g/L
where L stands for the length of T'. In agreement with Sevcovié [98], we now show what is the
change of g. First of all we denote p = 0,v. We have

Op = 00,7 = 001y = Oy (at + fn) = gds (at + fn)
= g (0sat + adst + Jsn + BOsn)
= g (0sat + arkn + 0sfn — Bkt)
— (B — Bs) b+ (s + 0,5) m)

where we used the fact that 0,0, = 0;0,. Also for v = v (s(0),t) we have 0,7 = 8573—5 and
SO g—j = g. Finally we also applied the Frenet formulas and . Multiplying the last
equality by p we have

p-Op = gt-Op = g* (Osx — Br),
and finally we obtain
957005y P Op

8tg = 8t |80"Y| = |a ,7| - g

)

and so

Org = g (0sa — BR) . (5.119)

Of course, the same periodic boundary conditions, we set for o and 3, must hold even for g.
We denote L (t) the length of I' (¢) for which we have L (t) = fol g (0,t)do. Differentiating this
equality w.r. to t gives

1 1
gL (t) = / Og (0,t)do = / g (0sa — Br)do = / Osa — [Brds.
de 0 0 T(t)

Taking into account the periodicity of a we get
d

—L(t)+ Brds = 0. (5.120)
dt F(t)
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5.4. Parametric approach

Let us introduce a nonlocal quantity (k3) = % fF kfBds and 6 = In (%) Then we may write

d
and dg 0L
_ gy _ %9 9kt _
0l = O (lnL) =, 7 kB + Osa+ (KB)p -
Writing the last equation as
Osa = 010 + K — (KB)r (5.121)

we see that appropriate choice of dsa allows us to control §. Choosing Oy« as
Osa = (6_9 - 1) w(t)+ kB —(kB)r,

gives 90 = (e7? —1)w (t). Setting w () = 0 yields &0 = 0 which means that 6 as well as
the relative local length will be preserved for all o € [0,1] and all ¢t € [0, Tinas) Where Than
denotes maximal time of the existence of the evolving curve (it is finite for the mean-curvature
flow and infinite for the surface diffusion flow and the Willmore flow). Such strategy is called
redistribution preserving relative local length [77].

Another strategy is to suppose that

Tm(lI
/ w (1) dr = 400, (5.122)
0

and solving the ODE 940 = (e™ — 1) w (t) which gives In (1 — e/®)) = — fgw (1) d7. It means
that 0 (o,t) — 0 when ¢t — T4, uniformly on [0, 1] which yields

g(o,1)
L(t)

— 1 as t — Typae uniformly on [0, 1].

This strategy is called asymptotically uniform redistribution . To fulfil the assumption
(5.122)) we might set w = 61 > 0 when T),4: = +00 or w = Jo <"5ﬂ>r(t) if Thpag s finite. Indeed, in
t

1s case I' () shrinks to a single point which means that L (t) — 0 as t — Tya,. From ((5.120))
we have (52%[/ = —0oL </£B)F(t) = —§,Lw and

¢ L(t)
/ w(r)dr = —52/ %dL =02 (InL(0) —InL () = +o0 as t = Trnaz-
0 0

Finally we obtain ODE for « in a form

Osa = KB —(kB)py + <gI(/U(f)t) — 1> w(t), (5.123)
w (t) = 01+ 09 <K‘B>F(t) R (5.124)
a(0,t) = 0. (5.125)

To complete our explanation of the Lagrangian method we only need to show the expressions
for the normal velocity 5. We consider only the isotropic problems. For the mean-curvature
flow it is given by . The plane curves have only one principal curvature which is just the
curvature and therefore H = . It means that:

Remark 5.4.1. The normal velocity for the parametric mean-curvature flow of the planar
curves has a form

B = k. (5.126)

o7



5. Mathematical formulation

The general normal velocity for the Willmore flow is ((5.2.5). For the plane curves we have
n = 2 and so

Remark 5.4.2. The normal velocity for the parametric Willmore flow of the planar curves has

a form
1 3

B=—0% — 7 (5.127)

5.5. Signed distance function as a viscosity solution of the eikonal
equation

The signed distance function is important for most of the methods based on the level-set for-
mulation. Evaluation based on the definition is not efficient. In this section we provide
another approach based on the eikonal partial differential equation.

In the Theorem we showed that for given hypersurface I'g there exists € and certain
”secure” neighbourhood N (T'g) of Ty where the equality Vd (x) = n (X) holds. It also means
that

|Vd| =1 for all x € N°(T) .

By 7secure” we mean that there are no singular points of d in N¢(T"). For the signed distance
function to a unit circle in R?
dsr (%) = [x[ -1

we see that )
Vdsl (X) = 7XT,
which does not make sense at the origin where x = y = 0. For a function given by

) B |x| -1  for |x|>0.25
d (z,y) = { —|x| =05  for |x|<0.25

However, it is not the signed distance function for the unit circle because it contains redundant
local minima at points where |x| = 0.25. One can also see simpler example in R! on the Figure
[5.5]

Yy
+
IA\d
4 \
’ N
4 \\
” \
4 \
A '™
,/ . // \
/ wd N
/ N\
L N o
/N /N A
0 e N /’d2 AN AN 1
v v
d_

Figure 5.5.: Examples of functions for which |d'| = 1 a.e. on [0,1] but only d* and d~ are the
viscosity solutions to the equations £ |d'| = £1 on (0,1) when u (0) = u (1) = 0.
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5.5. Signed distance function as a viscosity solution of the eikonal equation

We seek for a mechanism of minimising number of singularities of d. for avoiding this and get
the simplest (in meaning with the less singularities as possible) function.

Consider now simple example in R!. Assume that I' = {—1,1} and Intl’ = (—1,1). The
signed distance function to I' is then given by dr = |z| — 1. It has one local minimum at
r = 0 and no local maxima. Let u € C?((—1,1)) be an arbitrary smooth function for which
u(—1) =wu(l) =0 and u < 0 on (—1,1). If it has more then one local minimum it must also
have at least one local maximum. From the basic calculus we know that local maxima might be
detected by u” (z) < 0. So if we somehow ensure that u” > 0 for all z € (—1,1) there will be
no local maxima of u and therefore only one local minimum. Now take a look at the following
equation:

W/ (z)] —1=—eu" (z).

For any critical point where v’ (z) = 0 we have v” (z) = 1 > 0 which can be only local minimum.
On the other hand any solution of equation

W ()| — 1 =eu (2),

can have only one local maximum and is positive everywhere in (—1,1).
Going back to the general space R™ we will solve a problem:

H (x,u",Vu) —eAu=0 in R", (5.128)

where we denoted H (x,u, Vu) = + (|Vu| — 1). Equation ([5.128)) is in fact regularised Hamilton-
Jacobi equation of a form:
H(x,u,Vu) =0 in R", (5.129)

where we only assume that H : R" x R®™ — R is continuous. When we pass ¢ — 0 we talk
about the method of the vanishing viscosity for the Hamilton-Jacobi equation - see Evans
[47]. If we assume that the class of functions {u} ., is bounded and equicontinuous on compact
subset of R™ x (0,00) then from the Arzela-Ascoli compactness criterion we get that
there exists a sequence {u }

u — u locally uniformly in R" x (0, 00).

Our aim now is to find some formulation for the weak solution of . We cannot apply the
Green formula because is not in a divergence form. We need to find another approach
how to avoid evaluation of Vu and shift the derivatives on some testing function v € C*° (R").
Fix now any such function v and suppose that

u — v has a strict local maximum at some point xg. (5.130)

It means that
(u—v) (x0) > (u—v)(x) for x € B(%o,7),
where B (Zp,r) denotes a closed ball in R™ with centre in xg and radius r. Now we see that for

each sufficiently small r > 0

r%%}( (u—v) < (u—w)(xo),

holds. From the locally uniform convergence of u“ we get uniform convergence u% — u on B
and so

max (u¥ —v) < (u¥ —v) (x9),

e (19— v) < (4 — ) (x0)
provided ¢; is small enough. Consequently

u® — v attains a local maximum at some point x; € B (7, Xo) . (5.131)
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5. Mathematical formulation

Replacing now r by some subsequence r; — 0 we get x; — Xg as j — 0o. From ([5.131)) we have

Vu (x;) = Vov(xj),
—Au (x5) > —Av(xj),

and directly from (5.128]) we get

H (Vv (xj),%x;) = H(VuY (xj),x;) (5.132)
= 6jA’U,Ej (Xj) < ejAU (Xj), (5.133)

and letting 7 — oo we end with
H (Vv (x0),%0) <O0.

Assume now only
u — v has a local maximum at some point xg,

where we dropped the assumption of strictness. Then we define function
0 (x) :=v(x) +6<\x—x0\2) , 6>0.
for which u — v has strict local maximum at xg and
H (Vv (x0),x0) = H (V7 (x0) ,%0) < 0. (5.134)
In the same way we might show that
H (Vv (x0),%0) > 0,

provided that
u — v has a local minimum at some point xg.

We see that we have reached what we were looking for i.e. putting the derivatives of u on v.
This allows us to define a weak solution of ((5.129)).

Definition 5.5.1. Let H be a continuous function H : R™ x R x R™ — R. Then:

1. function u = u(x) is called the viscosity subsolution of if for each function
v € CH(RM) if u—v has a local mazimum at xg € R™ then

H (x¢,u(x0), Vv (x0)) <0,

2. function v = u (x) is called the viscosity supersolution of if for each function
v e CH(R") if u— v has a local minimum at xo € R™ then

H (x0,u(x0), Vv (x0)) > 0.

Function w is called the viscosity solution of if it is both wviscosity subsolution and
supersolution of .
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5.5. Signed distance function as a viscosity solution of the eikonal equation

The existence and uniqueness of the viscosity solution of Hamilton-Jacobi equation H (x, u¢, Vu) =
f for convex H and discontinuous f has been proved by Deckelnick and Elliott [37].

In the same way we may define the viscosity solution for the initial-value problem of the
Hamilton-Jacobi equation

w4+ H (x,u,Vu) = 0in R" x (0,00), (5.135)

uli=o0 = wuponR"
as Evans [47):
Definition 5.5.2. Let H be a continuous function H : R™ x R x R™ — R. Then:

1. function u = u (x,t) is called viscosity subsolution of if u |t=0= up on R™ and
for each functionv € C* (R" x (0,00)) if u—v has a local maximum at (xg,to) € Rx (0, 00)
then H (x0,u (x0,%0) , Vv (X0, t0)) <0,

2. function u = u (x,1) is called viscosity supersolution of if u |t=0=up on R"™ and
for each functionv € C* (R"™ x (0,00)) if u—v has a local minimum at (xo,t9) € R x (0, 00)
then H (Xo, u (Xo, to) y Vv (X(), to)) > 0.

Function u 1s called viscosity solution of if 1t is both viscosity subsolution and super-
solution of .

To demonstrate the consistency with the classical solution u* of (5.135)) we choose v €
C! (R™ x (0, 00)) such that u* —v has local maximum at (xg,tp). Then Vu* (xq,%0) = V (X0, t0),
uj (x0,t0) = v (zo,t0) and

vt (%0,t0) + H (x0,u" (x0,t0) , Vv (%0, t0))
= uy (Xo,%0) + H (x0,u" (x0,%0) , Vu* (X0, t0)) = 0.

The same equality holds for any (x + 0,tp) where u* — v has its local minimum and so u is the
viscosity solution of .

For H € C'(R"™) and uniformly Lipschitz ug the equation has been studied in Bardi
and Osher [4].

Remark: Viscosity solution for bounded ) If 2 C R" is bounded the definition
is still valid, we only consider the local extremes xg € 2. However, some authors impose explicit
conditions on v at 9€ - see. Briggs [16] or Claisse [20].

Let us now return to the signed distance function dp of I'. If I is given as a level-set of some
continuous function ug we want d to have the same signum as ug everywhere in Q. It means
that we require

dp is a viscosity solution of — |Vdp| = —1 where sign (ug) < 0,
dr is a viscosity solution of |Vdr| =1 where sign (ug) > 0,
or
dr is a viscosity solution of sign (ug) (|Vdr| —1) = 0. (5.136)

Note however, that in the last equality H (x,dr (x,t), Vdr (x,t)) = sign (ug) (|Vdr| — 1) is not
continuous. This fact brings many difficulties into the analysis of such equation.
Similar, but evolutionary equation is (see Sethian [90])

ug — sign (up) (1 — [Vu|) = 0on Qx(0,7), (5.137)
uli=o = wuo, (5.138)
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5. Mathematical formulation

the steady state of which should correspond with the solution of .

The notion of the viscosity solution was proposed by Crandall and Lions in [25]. Even though
the existence has been proved already before the viscosity solution allowed the authors to show
the uniqueness. Introductory texts are by Crandall [26] and Crandall, Ishii and Lions [24] or a
book by Giga [53].
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6. Numerical approximation

In this chapter, we present methods for space discretisation of the graph and the level-set
formulation of the Willmore flow . Explicit and semi-implicit schemes are used for the time
discretisation. Fully implicit schemes are not considered in this thesis.

Finite element approximation of the minimal surfaces problem together with the error esti-
mates been have studied by Johnson and Thomeé in [62].

Numerical approximation of the mean-curvature flow has been studied by Deckelnick and Dz-
iuk. In [28] 29] they study the finite element approximation, convergence and the error estimates.
The anisotropic problem was studied in [31, [32]. A finite difference scheme approximating the
viscosity solution of the level-set formulation for the mean-curvature flow together with Lo, error
bound can be found in [27]. A finite element scheme and proof of the convergence appeared in
[30, B3]. Dziuk [43] also studied the parametric formulation of the anisotropic mean-curvature
flow. Methods by Mikula [74] will be explained in details later in this chapter.

The finite elements approximation of the Willmore flow of graphs has been studied by Deckel-
nick and Dziuk [34] and the finite element approximation for the surface restoration by Clarenz,
Diewald, Dziuk, Rumpf and Rusu [22].

Droske and Rumpf [40] used the finite element method for the approximation of the level-set
formulation of the Willmore flow.

Numerical schemes for the parametric formulation of the elastic curves hes been proposed by
Dziuk, Kuwert and Schétzle [44].

Numerical scheme for axisymmetric surfaces with applications to the mean-curvature flow,
surface diffusion flow and the Willmore flow propose Mayer and Simonett [71].

In this text we extend the results obtained in the works of Bene§ where he applied the finite
difference method for the approximation of the mean-curvature flow [9, 10, 11}, [7] and the surface
diffusion flow in [12]. We also adopt complementary volume method introduced by Handlovicova,
Mikula and Sgallari [55] and we show relation of this class of schemes with schemes based on
the finite difference method. For the graph formulation we show stability of the scheme for the
Willmore flow.

Finite element method based scheme for the surface diffusion of graphs together with the
error analysis can be found in Baénsch, Morin and Nochetto [3], the anisotropic problem has
been studied by Deckelnick, Dziuk and Elliott [36]. Finite element numerical scheme for the
level-set formulation of the surface diffusion flow was presented by Smereka [92], scheme for
the anisotropic problem was proposed by Clarenz, Hausser, Rumpf, Voigt and Weikard [23].
Tangentially stabilised scheme for parametric curves was developed by Mikula and Sevcovié
[77].

We will discus the schemes only for two dimensional problems, however the extension to three
dimension is very straightforward.
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6. Numerical approximation

6.1. Notation

We assume having the domain Q = (0, L1) x (0, Lo). Let hq, ha be space steps such that hy = ]%[—11

and hy = ]j(,—i for some N1, No € NT. We define a numerical grid, its closure and its boundary as

wp = {(ih1,jhe) |i=1---Ny —1,7=1---Noy—1}, (6.1)
Wh = {(Zhlvjhﬂ)‘l:o]\[17.]:0]\]2}7
Owp = Wp \ wh,

forueC (ﬁ) we define the projection operator Py, : C (ﬁh) — w as

P (u),, := uls == (ih1, jhs). (6.2)

v )

6.2. Space discretisation

6.2.1. Semidiscrete scheme based on one-sided finite differences

The finite difference approximation introduced in [8I] combines forward and backward differ-
ences. Similar schemes were already successfully applied to other problems [7, [9, 10} 1T, 12]. In
agreement with Samarskij [89] we define the forward and backward finite differences as follows:

h J h h
hoo_ Y1y T Yy N e e (6.3)
Ui = h, 0 T hy -
h J h h
hoo_ g T Yl heoo_ Ui T %G1 (6.4)
ub’l] = hl 5 ubﬂ] = h2 5 .
h h h h
Viyuj = (uf.,ijvu.f,ij) ) Viuij := (ub.,ijvu.b,ij) ) (6.5)
The discrete operator of divergence is approximated in the same manner as the discrete gradient.
We define the grid boundary normal difference 8,’}1@
Qlfugd = Up,1,j for j =0,..., Ng, (6 6)
8ﬁu'}vm = wup.N,,; forj=0,...,No, (6.7)
6£u20 = up;1 fori=0,..., Ny, (6.8)
aﬁuZNQ = up;nN, fori=0,...,Ng. (6.9)

Remark 6.2.1. Numerical experiments [7.2.2| and [7.2.4] show that this kind of scheme fails in
some cases even for the isotropic Willmore flow of graphs. Therefore we do not consider neither
the anisotropic problems in this section nor the level-set formulation.

Denoting
~h _ 1 1 2 2 2 2
Qij = 5 \Uhij T Ui T Wy + W )
Z.Zlv"'7N1_1a j:17"'7N2_17
h _ 2 2
o= b e

izoa"'lei]-a j:()?"'vNQ*lv

we may introduce the following schemes:
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6.2. Space discretisation

Scheme 6.2.2. The one-sided finite difference semi-discrete approximation of the
mean-curvature flow of graphs with the Dirichlet boundary conditions reads as

dul. _ YV rul
i h J%ij
- 7, . 1
pn Qi Vb ( QZ ) on wp, (6.10)
UZ li—o = F (U““)U on Wp, (6.11)

h
Us; = gij on Owp,.

The one-sided finite difference semi-discrete approximation of the mean-curvature
flow of graphs with the Neumann boundary conditions is given by f
and

OMult. = 0 on dwy,. (6.12)

v Yy

Scheme 6.2.3. The one-sided finite difference semidiscrete approximation of the
Willmore flow of graphs with the Dirichlet boundary conditions is given by

T B TR L BT, n\2
du? B 1 1 ( N2 PEVERE 1 <wz>
J h Q) (@) h J h
= 0OV, | — J Y Vst — — V rust
dt Q” b QZ _uf.,ij:.fQ,ij 1 — “.2{,2‘3‘2 1% 2( h‘)g fUij
(@) (@) )
on wy, (6.13)
Vfuh»
wzhj = Q?jvb' (thj) on W, (6.14)
ij
UZ ’t:O = ,P(uzm)w on W, (6'15)
uZ = g;; and wzhj = 0 on Owy,. (6.16)

The one-sided finite difference semidiscrete approximation of the Willmore flow of
graphs with the Neumann boundary conditions is given by (6.13)—(6.15)) and

8,}}ulhj =0 and 8,711)% =0 on Jwy,. (6.17)

Remark: The level set counterparts of the schemes (6.2.2) and (6.2.3)) differs only in
quantities Q?j and QZ For the level-set formulation they take the form:

~ 1
hoo_ 2 2 2 2
Qi = \/62 Ty (uf.,ij t Uy U T u.b,z’j)’
Z':]-a'”)Nl_]-u jzl)"'7N2_1)
hoo_ 2,2 2
Qij = \/ €8 A U iy T Wy

the
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6. Numerical approximation

Stability for the approximation of the Willmore flow of graphs with the one-sided
differences

Now we aim to prove the discrete version of the theorem (5.2.11]). Let us first of all introduce
some necessary notation. For f,¢g : wp — R, f,g: @, — R?, f = (fl,fQ), g = (91,92) and
denoting

[f7 PQ_ Z h1h2f2]gz]7 (618)
i=p,j=¢q
we define
(fs9)n [fogp1 I£E = (f s
0 = Coys (P ey = Ullr (i
(), = (el (), = el
)y = (0 () o (g )y = (1), 5 ()
(ft9)y = [fha'lor ”V“ (9%, = (Al
(f.8), ( 1)b+( ).b’ (f’91+92)b = (f’ 1)b+(f’92)b’

Now we may proceed to some supporting lemmas.

Lemma 6.2.4. Let u: @y — R, v : @y — R2. Then the following Green formulas are valid

No—1
(Vyu,v), = - (uvvb'v)f + Z ho (UNl,lvzlvl,l - quclu)
=1
Ni—1
+ Z hy (uk7N27),%7N2 — Ukl”]%o) , (6.20)
k=1
No—1
(Vou,v), = —(uw,Vp-v)y+ Y hy(un,—10N,; — uovg)
=1
Ni—1
+ Z hl (uijQ,l’U]%’NQ — ukovzo) . (6.21)
k=1

Proof. 1t is quite straightforward to show that for fixed k = 0,--- N1, [ =0, - , No the following
relations hold:

17 N1—-1,1

[ug.,v ]1,l = — [u,vlﬂ "o (uny, lle L — Uy (6.22)

[ub.,vl]]l\;lil’l = — [u,vﬂé\; L + ho (uN1 1 lle 1 — uOlv(l)l) , (6.23)
k,N2—1 21k N2 |

[u-fv ]k,l = = [u, v b]k 1 th (“k NQUk No — Ukl“ko) (6.24)

[u,b,UQ]::fh R [u,v?f]::évrl + hy (uk7N2_1vk7N2 - Ukovko) . (6.25)
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6.2. Space discretisation

For example for (6.22) we have (see also [89])

Nty " Ni—1 Ni—1
1N-10 i1l = Uil 1 1
[ug.,v }171 = E S hihg = Z U; Vg the — Z ;1 v; 1Py
=1 = =
N1—1 Ni1—1
1 1 1 1
= Zuz le 1,the — Z Ui, 15, lh2 Z Uil (%’—1,; - vz‘,l) ha + (UNl,lUNl—u - Ul,lvu) ho
i—2
N-1
1 1 1 1 1
= > wig (vi1y = vig) ha + [uny gvn, g+ uny g (V8 10— Ny ) — u1avgg + uag (Vg — viyg)] he
1=2

uNl’lle uuv(l)?l) ho — [u, vll,.]]l\fll’l .

Now we have

(Viu,v), = (ug,0), + (g 0%) = [ug, 0] 1) 7+ [ug, UQ]le,i_l’Ng_l
e N TR = kN 1 ! N
— Z [Uf. vl “1 + Z Uf, R Z ( 1’ + ho (UNl,lUle uuv(l)l)>
=1
R kN N1,Na—1
- Z ( k 1 ‘Tt (Uk Nka Ny — ukl”}%{))) = [Uﬂ/l}.]li o
N2—1 Ni_LA N1—1
+ Z (hZ (UNl,lUlel,z - Ullv(l)z)) - [U b]li + Z (hl (Uk,Ngv;%,NQ - umvzo))
I=1 k=1
Na—1 Ni—1
= (u,vg_)f (u,v3) it Z (h2 (unyvi, = vvg)) + Z (h1 (kN vk N, — Uk1VRG))
=1 k=1
Na—1 Ni—1
= — (u, Vb . V)f —+ Z (hg (UN1,ZU11V1,Z — ullvél)) + Z (hl (ukysz,%’NQ — ukﬂ)]zo)) ,
=1 k=1
which is a proof of . The proof of is analogous. O

Corollary 6.2.5. Let p,u,v : Wy, — R and assume v |g,, = 0. Then the following equalities
hold:

(Vo (pVyu),0), = —(@Vyu,Vyv),, (6.26)
(V- (®Vpu),v), = —(Viu, Vpv);. (6.27)
Proof. The proof is trivial application of (6.20) and (6.21)). O

Theorem 6.2.6. For the solution of - ul, wh and wh low, = 0 the following equality

holds: <(U?)27th>h+§t ((Hh>2,Qh>h _o. (6.28)

Proof. We start with the equation for w 1.} divide by Q”, multiply by &;; vanishing on

Owy, and sum over w.
wh Vfuh> )
— = (v, - 7
(5¢), = (7 (7)),
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6. Numerical approximation
The Green theorem ([6.26)) gives

wh Vfu?
98,
(Qh h QL d ;

Now consider the right hand side of (6.13)), multiply it by the test function ¢ vanishing at dwy,
summing over wy, and applying again the Green theorem ([6.26)) to obtain

1 (wh)® L),
-V - (Ehvfwh - = Vfuh’> ,gp) = (]Ehvfwh - = Viu',Vip | .
( 2(QM’ ’ 2(Q"’ ;

(6.30)
Differentiating ((6.29) with respect to ¢t we obtain
d [wh d ((Vpuh
i (ae), i ((C3) w),
d h hv O, h_a hv h
- dt<g’”§> +<Q = thQ N 3
h Q") f
h h h
_ (wt ) (Qt Cw 5) h h _
= (= — + (E"V i u , V) =0
h’ 2 f t f b
Q A (QM) N ( )f
where we used N N
atQh _ fo)tu };Vfu ,
Q
and so
Q"Vsou" — ,Q"Vul 9Vt (Vs Vpuh) Vel 1 (11 B <vfuh 5 vfuh>> _gh
(Qh)2 Qh (Qh)2 Qh Qh Qh
Substitution & = w" gives
h h 2
(), - (2 (o)) + (@ombovit), -0 631
h
and a substitution ¢ = uf in (6.30) gives
2 1 1 (wh)2
h h h h h
uy ) ,— | — [E"Vsuw" — = Viu",Vieu = 0. 6.32
(( t) Qh)h ( f 9 (Qh)3 f e , (6.32)
Adding (6.31)) to (6.32) and using the symmetry of E* we have
2
2 1 ) (wh > Qr 2 1 (wh)
h t .k t h h h
U = + | =w — , lw + = ,Vieu - Vieu =0.
<<t> ), e ), (Qh)2<>h2(62h)3 Y
(6.33)
Since Vfuh : Vfu? = Q" Q' we get
2
2 1 ) (wh > QF 2 1 (wh)
h t . h t h h
U s AP + 5 W - y (W + - 2 Q = 07
<< ) o NV (@) (+") NGO
(6.34)
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6.2. Space discretisation

which is equivalent to

w} ?
() ), + (i), 2 (@i () 0 oo

h
(Qh) f (Qh) h

because for w" |g,= 0

Finally from (/6.35]) we have

O]

Remark: Numerical experiments — demonstrate that the schemes based on the
forward and the backward differences is sufficient for the mean-curvature flow and the surface
diffusion flow of graphs (at least for the isotropic problems). However, in the case of the Willmore
flow one can see very strong deformation of the solution. It is caused by a non-symmetric stencil
of the numerical scheme - see Figure In what follows we will try to solve this problem by
use of the central differences.

P —

1

Figure 6.1.: Non-symmetric stencil of the numerical scheme (6.2.3))

6.2.2. Semidiscrete scheme based on central finite differences

The central-difference approach yields a symmetric scheme ( see Oberhuber [82] ). The central
differences are defined as:

h o J h _ .k
yhoom tirlg T i I e B (6.36)
c.,1) th ’ .C,1J 2h2 ’
. h h
VCU’U T (uc.,ij’u.c,ij> : (637)

As well as in case of the one-sided differences, the discrete operator is approximated in the same
way as the discrete gradient. We have

1 1
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6. Numerical approximation

We denote

_ 1
hoo_ 2 2 2 2
Qj = \/ 1+3 (uf.,ij F Uy T Uy T “.b,ij>’
thj = \/1 Ful i,
Ah h h
Ryisc = Cvichz’j (h% <Ub'ij>f.,ij + h% <u'b’ij>.f,ij> )

fori=1,--- ,Ny—1, j=0,---,Ny—1

Remark 6.2.7. It is known that the approximation by the central differences requires functions
of higher regularity at least u € C? (). If this condition is not fulfilled oscillations may appear

as Figure demonstrates. It is the reason why we introduce the artificial viscosity term (6.39))

to keep the approximate grid function uZ smooth enough.

Figure 6.2.: Oscilations which may appear when the explicit central finite difference numerical
scheme is applied. The figure shows initial condition (on the left) and the
evolution of the graph by the mean of the Willmore flow. On the right, there is a
state of the evolution at time ¢t = 0.0006.

The necessity of setting the parameter R,;s. is a disadvantage of the central-difference schemes.
Numerical schemes based on complementary finite volumes avoid this. It is a reason why we do
not study the anisotropic and the level-set formulation in this section.

The central schemes have the following forms:

Scheme 6.2.8. The central finite difference semi-discrete approximation of the mean-
curvature flow of graphs with the Dirichlet boundary conditions is given by

duf h chf’
dtj = Qijvc : h 4 + Ryjisc on Wy, (639)
4]
UZ li=0 = P (tini);; onwy (6.40)
uf‘] = gij on Owy,.

The central finite difference semi-discrete approximation of the mean-curvature flow
of graphs with the Neumann boundary conditions is given by (6.39)—(6.40) and

A'ul. =0 on dwy,.

v Vg
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6.2. Space discretisation

Scheme 6.2.9. The central finite difference semi-discrete approximation of the Will-
more flow of graphs with the Dirichlet boundary conditions is given by

d h ) 1— 3.,ij2 _uc.,iju.céij . (wh>2
Uy = h AT ij
So= —QVer | o (@) (Qfﬁ) | Vewl - 5Veul;
dt QZ] _ut:‘,v.]“.tgu 1— .c,z]2 2 <Qh>
(@%) (@f) i
+  Ryise on wy, (641)
chh.
wZ = ZVC ( Q’?.Zj> , on Wy, (6.42)
i
ufi li=o = P (Uini);; on W, (6.43)
uz = gi; and wf‘j =0 on Owy,. (6.44)

The central finite difference semi-discrete approximation of the Willmore flow of
graphs with the Neumann boundary conditions is given by (6.41)—(6.43) and

(91]}1% =0 and aﬁw% = 0 on Jwy,.

Remark 6.2.10. Since the stencil of the schemes and is larger then in case of
the one-sided schemes, we need to evaluate the first derivatives on @y, to be able to approximate
the second derivatives on wy, (and the same is true also for the third and the fourth derivatives).
For this purpose, we replace central differences for the approximation of the first and the third
derivatives at the boundaries of wy, by forward resp. backward differences depending on which
ones are appropriate.

Energy equality for the Willmore flow of graphs with central differences

As in the previous section, we would like to gain an equality similar to ((5.2.11]). Once we become
aware of (6.38) the proof is straightforward.

Lemma 6.2.11. Let u : @y, — R, v : @, — R2. Then the Green formula is valid
1

(Veu,v), = 3 [(u, Vp-v),+(u, Vg~ v)b} (6.45)

No—1 L
2 1 1 1 1
+ D) (uNl,l’UNl,l — UV T UN;—1,1VN, ; — Uol’Uoz)
=1

Ni—1
h‘l 2 2 2 2
+ ) > (tk, N2 Vi, v, — W1 Vko + Uk, No—1Vk Ny — Uk0Vko) - (6.46)
k=1

Proof. The proof follows directly from (6.20]) and (6.21)) by writing

(Veu, v), = <; (Vju + Vo) ,v)

h
t

Corollary 6.2.12. Let p,u,v : Wy, — R and assume v |g,,= 0. Then the following equality
holds:

(Vou,v), = —% (0,9 v+ (0,9 v), ] (6.47)
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6. Numerical approximation

Theorem 6.2.13. For the solution of ' 4 ul, wh and wh 0w, = 0, the following equality

BN (6 Rt (RO RS ) B

where for simplicity we assume h = hy = ho.

Proof. To proof is very similar to (6.2.6). Taking 1' divide by Q?j, multiply by &;; vanishing
on Jwy, summing over w and applying (6.47| gives

(5,2 (&) ve) - (&) =) ) o
Qh7 h_ 9 QZ f ; QZ y Vb ) .

Repeating the same with the right hand side of (6.41)) and the test function ¢ vanishing at dwy,
leads to

h o1 (wh)Q h 1 h o1 (wh)2 h
<—VC- <E Vo™ — §(Qh)3vcu , ) = 3 E"V. w" — §(Qh)3vcu , Vip .
1 (wh)2
+ (Ehvcwh -3 (Qh)3v0uh,vb¢> j :
(6.50)

where

2
Eh — 1 < 1- Ue. ij _“c.,ij“c,ij)
— nh \ _ . . 2 :
Qij Uc,,ijlheij L — U ;

Differentiating (6.49) with respect to t we have

h .
ER R R

Substituting ¢ = w” and applying w” |ow, gives

w) Qnr 2
<@2’ h)h ) <<Q'f>2’ (=) )h + (Ve vt =0, (6.51)

and a substitution ¢ = u} in (6.30) together with u}' |5,,, = 0 (We assume the Dirichlet boundary

conditions) gives

2
2 1 1 (wh
((u?> 3 h> - IEhvcwh -3 (w )3 vcuha vcuiL =0. (652)
Q" /n 2(Q" .

Adding (6.51)) to (6.52)), using the symmetry of E* and the fact that V.u" - chl’? =Qh. Qi‘ we

have
2 1 wh 1{ QP 2

((ﬁ) ,h) +< W ") —2< ;2,<wh>> =0, (6.53)

and

(04 ), = b ("), 0
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6.2. Space discretisation

For the viscose term R,;s. we have Ryisc = Cvisch2V?ijuh. Multiplying by ¢ vanishing on dwh
we get

(Cuisch®Viviul, ¢)h — ~Cuiseh® (Vi VZ(p)f = ~Cuiseh® (Vi V’g(p)h.
The last equality holds since ¢ |g,n= 0. Setting ¢ = ul' we obtain

~Concl® (Vi Thul) = ~Conele L (Tt Tt

visc?% b .

O]

Remark: Unfortunately, from we can not claim that (H h)2 Q" is decreasing when C;s.
is non-zero. The viscosity term is main problem of this scheme. In the next section, we will
try to avoid it. The Figure [6.3] shows the stencil for the central schemes applied to the fourth
order problems. For the isotropic problem it is a 41 point stencil. Another disadvantage of the
scheme is the fact that the matrix arising in a semi-implicit scheme would have many non-zero
elements.

Figure 6.3.: Stencil of the numerical scheme (6.2.9) is symmetric, however it is very large.

6.2.3. Semidiscrete scheme based on the finite volume method

The third class of the numerical schemes is based on the method of the finite volumes. More
precisely, we follow complementary volume concept introduced by Walkington [99] who combined
the complementary volumes with the finite elements . Handlovicova, Mikula and Sgallari [55]
applied similar scheme in image processing. For the level-set formulation of the Willmore flow,
we introduced the complementary finite volume scheme in [13]. We restrict ourselves only to
Q c R2. First we demonstrate the finite volume principles of the scheme. Later in this section
we derive the same scheme with the finite difference approach which will allow to prove the

energy equality ((5.2.11]).

Complementary finite volumes

For the purpose of this section we define the dual mesh V}, as

@ = fo{ (Do o (6D )

i—l---Nl—l,j—l---Ng—l}. (6.54)
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6. Numerical approximation

For 0 < i < Ni, 0 < j < Na, ¢ and j fixed, consider a volume v;; of the dual mesh V},, denote
its interior as €, its boundary as I';; and let p (£2;;) be the volume of €2;;. We also denote all
the neighbouring volumes of the volume v;; as ./\/w For all finite volumes v;; of the dual mesh

Vi, the boundary I';j consists of four linear segments. We denote them as I';; 75. It means that
I;;7 is a boundary of the finite volume v;; between nodes (i,;) and (i,j). By l;;77 we denote
the length of this part of I';;.

(0, N2) (N1, N2)
Grvsrreren T R @ R . )
- PR - o ¢ ———————————— PO - P - é
O T TR L. SR R TR . [ S . T
O - of o ot P - ot o
RN N T TR P T SER R &--o| e [ T - ©
R - of o T S — T - [ - — ®
O P — S <:> 7777777777777 — — )

(0,0) (N1, 0)

Figure 6.4.: Dual mesh 1) for the complementary finite volumes method - circles denote dwy,,
dots denote wy, and solid lines stand for V},.

Evaluation of isotropic mean curvature of graphs We start with the equation for the isotropic

mean curvature v
‘%
(%)
Q

which we integrate over the finite volume v;; and apply the Stokes theorem ({A.0.7))

/ de:/ V. (W> dx:/ Ewd’l—l”_l, (6.55)
Qu; Q;; Q r,, @

where v denotes the outer unit normal vector to the finite volume boundary I';;. If T';; is a part
of the boundary of V}, we set in agreement with (5.28) V- v = 0. We approximate the term on
the left as

Hdx ~ 1 () H} (6.56)
and the term on the right as
/ VO anrt = > Ve papn! (6.57)
ry; @ vi€NG; Y Lidii Q
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6.2. Space discretisation

For the inner finite volume v;; € Vj, there are four different neighbours v;; € Nij. All the
boundaries T';; 7 are linear segments and so v = v;; ;5 is constant there. Moreover we assume

that Vi and @ are constant along I';; 55 too. It gives

h
Vi _ Vo
> / o v tr Y g th] Vi (6.58)
v;5ENG; Lijis vi5ENG; 23,1
Putting (6.56) and (6.58) together we get
1 Vel
R _Tigg _
B~ o D it Vi (6.59)
v vg;GNij 15,89
For the dual mesh V}, given by , we may substitute p(£;;) = hiha. For vy, v;; such

that v;;75 = (£1,0) we have lU 77 = h2 and if v;; 5 = (0,41) then [;;5 = h1. We also see
that for fixed finite volume v;; one of its neighbours is determined by the form of the normal

v;ji; of the boundary T';; 7. There are four possibilities for the normal v,; ;. For r,s € {—1,1}
and [r| + |s| = 1 the unit outer normal v;;7; can take the values v;;75 = (r,s) when i =i +r
and j = j + s - see Figure The complementary finite volume isotropic mean curvature

approximation from (6.59) then reads

Vi j+1
Vijij+1 = (07 1)

Vi—1, Vit1,j
- (%7 >
Viji—1; = (—1,0) Vijit1; = (1,0)

Figure 6.5.: Notation v;

Vijij—1 = (0, —1)

Vi j—1

ijyij
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6. Numerical approximation

1 V@h i1 V(Ph 1
Hfj =~ hih (lWHJ — Ly b Vg
1762 Qz] i+1j Ql] 1j+1
VSph 1 Vgph 1
+ lij,i 15 h’%l 4 “Viji—15 + lzg ij— 1% “Vijij—1
iji—1j ijyij—1
1 Vol T Vol i T
= hg——27 - (1,0)" + hy—2— - (0, 1)
hihg Qz] i+1y QZJ ij+1
h
Piiic1 v@","fl T
+ hg—2—L  (=1,0)" + hy—29— - (0, 1) >
ij,i—1j ij,ij—1
h _h h _h
. (8119% A1 31290ij,ij+1 B 311901';‘,1'—1]' B 8129% ij—1
- h R
MQisy 2@ M@y heQiy
h h h h h h h h
(%’Hj — Pij n Pig+1 — Pig Pij — Pi1y P T Pig-l
hQQz] i+1j hQQz] ij+1 hZQUz 1j h2sz ij—1
We set
h h R 2 h R 2
Qijiv1; = 1+ (a:vﬁpij,iJrlj) + (3x2%j,z+1j> )
h h  ,h 2 h h 2
ijaj+l T 1+ (ax190ij,z‘j+1> + <3x290¢j,zg+1> )
h  Ah 2 h b 2
sz 1 = 1+ (3@%]’,1‘71]') + (3@%3’,1‘713‘) ,
2 . 2
Q’L] ij—1 = 1+ (8331902] ij— 1) + (8932§0ij7i]_1> ’
for
h h h h
8h 90 Yit1; — Pij o Sﬂh' ‘ Pij — Pi—1j
x1 ¥ig,0+17 hl ’ x1 ¥17,0—1j hl ’
h h h h
8h 90 _ Pij+1 — Pij o @h' - Pi; — Pij—1
2 ¥ij,ij+1 By v Y Pijij—1 ho ’
and
h h h
o P41 T Pt li-1 o ‘Pm Lj+1 — Piji—15—1
xggng i+17 hg ) xQSO’Lj’L 15 — h2
h _ .k
o P41 T Piji—1j41 o Piji+1j—-1 — Piji—15—1
xﬁow i+l = Iy » o O Pigij—1 = Iy
where we denote ( see Figure .
h 1
Pijitij+1 = g (%; + oty + Pl + %+1g+1)
1
h
Vijitlj-1 = 7 (S% + %+1J + ‘Pzg 1+ %+1j 1)
h 1
Piji-1j+1 = 7 (S% + ol 1 T S%H + ol 1]+1)
h 1
Piji-1j-1 = (S% + o 1 T S% L+ el 1j— 1)
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6.2. Space discretisation

------------------ e ST
- bl bk
PPi1541 NS PPit1,41

+ + +
h " h R
Piji—1,j+1 Pijij+1 Piji+1j+1

"
h Yy h AT h
Pi—1,j ¥igi-1j Pij Pijitl] Pit1,j
+, + i
Piji—1j—1 (x:pij,ij—l Pijit1j—1
------------------ -l itttk i B ...-_.t''thL
i h
Pi-1,5—1 PP Pit1,5—1

Figure 6.6.: Notation @?j 7 on the dual mesh.

In the case of the Neumann boundary conditions from ([5.13)) or (5.49) we set:

h h
Y15 — Poj

if i =1then v =(-1,0) = o =0= oh = ok, (6.73)
Y PRy — PR
if i =Ny —1 then v = (1,0) % =0= W}Jiflj = 50%1—1@ (6.74)
b
if j=1thenv=(0,-1) = %1h72%0 — 0=l =l (6.75)
o, — O,
if j =No—1thenv=(0,1) = % =0= ¢y, = ¢t (6.76)
2

Approximation of isotropic Willmore flow of graphs We first need to approximate
wly = QI H]. (6.77)
H[; is given by . For thj we set
1
h h h h h
Qij = 1 (Qz’j,i+1j + Qijijr1 + Qiji1j + Qz‘j,ij—l) : (6.78)

Integrating ([5.45)) over €;; and applying the Stokes theorem we get

/ L / EV L odpn! (6.79)
—Oipdx = — wr — ———=0,p .
0, Q" Ty 2%
where v is the unit outer normal of the boundary I';;. The integral on the left hand side is
approximated as follows:

p(S25) d g

1
—Oypdx = Vi 6.80
/Qij Q" Qij dt™ (6.80)
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6. Numerical approximation

where we again assumed that goz and Q are constant on the element v;;. For the integral on
the right hand side of (6 - we have

1 (wh —.—.)2
1 h h L, h
- / vay—nga wdH" = Y s | BVl grgs — 5 s Vel
Y v EN; (Qh——)
K iJ,ij
(6.81)

(6.80) together with (6.81)) gives

. 2
h oo
d L 1 (wz] Z+1])
hoo ij h h ) h
T Q) lijiv1j Eij,z‘+1jvwij,i+1jVij7i+1j_§ﬁvwi]‘,i+ljyii,i+1j
ij
( i]}i-l—lj)

h h h
+  lijij+ Eij,ijﬂVwij,z‘jﬂ”@'j,ijﬂ— 73v90ij,ij+lyij7ij+l

1
h
+ lij,i—lj Emz 1jvw2]Z 15Vig,i—-15 — 5 3V<Pij7z‘_1j7/ij,i—1j

h h
+  lijij—1 Ezmg 1vwz‘j,z‘j—1’/ij,ij—1_ 73V%j,¢j71%’j7ij—l

2
d 4 y r 1 (w’hjvi“j) h T
afi = i ho | Bl i1Vl (1,0)7 = QQh)g,V%g‘,ng‘ (1,0)
i7,i+17
\ 2
1 <wzg,ij+1>
T T
+ hl EZ zj+1vwz] ij+1 (07 1) - 5 b 3v901lfj,ij+1 (07 1)
(Qm,iﬂl)
2
h
1 (wijz 15
T ) T
+ ha z]z ljkuz 1]( 1’0) _5 . 3V¢?j,i—1j( 1a0)
(Qij,i—1j>
2
h
1 (wz'j,z'j—1>
T T
+ EZ’L] 1va]Z] 1(0 1) _5 N 3v90?j,i]71 (07 1) )
(Qij,ijfl)
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6.2. Space discretisation

and
; 1 ()’
T 2]t 17 T
dt‘pg ~ Z Iy Ez] z+1ngz] i+1; (1,0)7 — §ﬁv¥’?j¢+u (1,0)
(Qij,iJrlj)
1 1 (wh' "—i—l)2
T i5,ij h
+ hiz zg zg-l—lvwm ij+1 (07 1) - 5 N 3v907jj,7,’j+1 (Oa 1)
(Qij,ij—l—l)
1 ()’
T 17,0—1] T
+ hil Ez]z ljvwmz 1]( 170) _5 b 3v90?j,1, lj( 170)
(Qij,i,lj)
| ) (udis)”
T 1J5%) — T
+ E zgzg lvwmz] 1(0 1) _5 N 3v50?j,ij—1 (07 1) )
(Qij,ij—l)
which gives
2
h
d 1 1 (w-- i+1j )
e = 9 T

ij,i+17

2
. (wh. -
h 1,15+
+ hg IE21 7, 7,]+1a wzg iJ+1 + EZQ ,17, Z]+18 1_7 17+1 5 ( 8902 1_7 iJ+1

i hil E112]2+1j8 ijZ+1j+E12Z]Z+1]8 zgz-l—l] 2<Qh ) z1§02]z+1j

acl 501] i—1j

h
EZl,ij,ij 1a wz]z] 1+E222]z] 18 wz]z] 1 5 QSD'LJlJ 1

h X
Qij,ij—l)

We approximate 8361%3 7 and 8362@2] 7 by and the same holds for d,,w! - and

ij,ij
Oz, w”’m with

1 1
wli'ljJJrlj = D) (w + wl+1]) ) wz}'lj,ijJrl = 3 (wz + w?jJrl) ) (6.82)
1 1
h h h h h
Wiji—15 = 92 (w +w;— 1;) y o Wijii—1 = B} (’wij + wij_1> ) (6.83)

and wi j+1 and wzj i—1j—1 are approximated in the same way as 1@}

i7,0+15+12 zjz+lj 1w z z—l
BT @l aee iven by (651) (559). @

1
h h h h h
Wy < iji+1j T Qijij+1 + Qiji-1y + Qij:iiJ) ' (6.8
For h h
E?  — E' . -
h
Eiji = ( e > ) (6.85)
21,i5,ij 22,153
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6. Numerical approximation

the following holds

2
h h h
0 ~ 1 1= (8x190ij,i+1j> —0210141j 02 i i1
ijitly 2 ;
it \ h h _ h
QZ]/L+ J 6501()01]7Z+1]8x2801/],2+1] 1 (8x2807/]77'+1]>
2
h h h
Eh N 1 1- (am%j,in) —8x190ij,ij+1aacz‘ﬂij,ij+1
i+l 2 7
iiiel h h _ h
QUJJ"’ axlgoij,ij-f—laaagoij,ij-i-l 1 <8x280”7”+1>
2
h h h
Eh N 1 1- (&cl%j,iqj) _8301901'3',1'71]‘8272907;]',1'71]’
iji—1j 2 ;
Qijii—1; 01 Pifi 10220501 1 (896290ij,z‘—1j>
2
h h h
Eh - 1 1- (8351%‘,2‘171) 0219417102 3051
ijij—1

2
i1 _ h h _ h
Qi 02103515100 035.55-1 1 <8€D280ij,ij71>

The Neumann boundary conditions d,¢ = 0 on 0N take the form (6.73)—(6.76). The same is
true even for the Neumann boundary conditions d,w = 0

if i=1thenv=(-10) = hll (w{ﬁj - wg,j) — 0= Wl = wl,, (6.86)
if i =Ny —1then v = (1,0) = hll (w?m w]’i,l_lj) — 0= why, ;= w1, (6.87)
if j=1thenv=(0,-1) = h12 (wgfl - wfo) = 0= wly =wh, (6.88)
if j=No—1thenv=(01) = th (ngNz - wg’;Nﬂ) — 0= wly, =wly,_;. (6.89)

Numerical schemes for the isotropic graph formulations We conclude with the following
schemes:

Scheme 6.2.14. The complementary finite volume semi-discrete numerical scheme for
the isotropic mean-curvature flow of graphs with the Dirichlet boundary condi-
tions takes the following form

VN A Bk I W B P B (6.90)
dt™" Y\ MR 1 h3Q% i1 Qi1 h5Q i1

on wy, (6.91)

O li=o = P (w?m-)ij on W, (6.92)

where Q?j is given by 1) and Q?MH]-, Q?Mﬂ_l, Q?N-_lj and Q%l-j_l are given by 1)
(16.64]).

The complementary finite volume semi-discrete numerical scheme for the isotropic
mean-curvature flow of graphs with the Neumann boundary conditions is given by

E9D) E9) and ©73) 610
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6.2. Space discretisation

Scheme 6.2.15. The complementary finite volume semi-discrete numerical scheme for the
isotropic Willmore flow of graphs with the Dirichlet boundary conditions takes the
following form
N 2
d 4 no| 1 h 1 (wij”'“j) ho h
(sz = ij |7 IEll zy,z—l—l]axlwz] i+1j + IE12 ,7, z—&-l]8 zy,z—i—l] 773811 zy,z—{—lj
dt h1 2 ( An
Qijvi-'rlj
2
h
1 h 1 (wwyij—H) h
+ E E21,z’j,ij—|—1a wz] ij+1 + ]EQZ Jid, zg+la wzg ij+1 §ﬁam2 Pig,ij+1
(Qij,ij+1>
2
h
| 1 (i)
- hil IEll i, i— 1]8z1w1]z 15 +El2 Jigyi— 1]a zyz 15 5 N 38551(Pij,i—1j
(Qij,i—1j>
2
1 1 (wzhj,z‘j—1> h
- hi IE21 Jigy1J — 1a wz] ij—1 + E22 YRy 1a wzg ij—1 5 3am2(pij ij—1 )
2 h
( ij,z‘jq)
(6.93)
T e B 2 B B T R
’LU,L‘7 = Ql] h,2 + - h - on W, (6 94)
sz i+1j 2Q7,j ij+1 ng i—1j QQ’L],’L] 1
Sozhj li—o = p(umi)ij on Wh, (6.95)
golhj = gi; and w?j = 0 on Jwy,
Where Q is given by 1’ and Q i1 l i 1, Q”l 1; and Q _j are glven by ,
Zj 7 is given by 1.' w — by 1 2)— and as 1 )— 6.72 go 7 and gpw 7 is
approxmlated by 1.’1-)
The complementary finite volume semi-discrete numerical scheme for the isotropic Will-
more flow of graphs with the Neumann boundary conditions is given by (6.93)—(6.95))
and (6.73)—(6.76) and (6.86)—(6.89).

Evaluation of isotropic mean curvature for the level-set formulation We take the right-hand
side of the equation (5.17) and integrate it over a finite volume €;;

Z“) . (6.96)

/QindXZ/QHv-(

]
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6. Numerical approximation

As for the graph formulation we get

h
1 Vul —
h o _ ) -
Hy = () Z Lijii i Vigii
K t UEEMJ‘ 57@7&3
1 vaul .. \VZT0
_ - (h Uijit1j . (1,0)T—|—h1%]+1 . (0’1)T
17t2 Qezgz-{-lg €1j,0j+1
Yul . YVaul ..
by P (C1,0)T 4y (0, -1)T )
Eﬂ‘j)i_lj €,ij,ij—1

which gives

ul h h h h h h h
b~ Wity — W Wigr — Wiy U — Uiy Uy T U
v h2Q h2Qh hQQh h2Q ’
€,17,0+17 2%eij,05+1 1%eij,i—17 2%e€ig,05—1

where
L ) 2 2
Qﬁ:ij7i+1j = €+ (8 T1 z],z—l—lj) + <8 T2 2] Z+1j> (697)
) 2 2
Qe Ajij+l T e+ (aﬂﬁluwﬂﬁrl) + <6~”Czum Z]+1> (6.98)
b ) 2 2
ciji-1j = \[€ T (8 Ui 1;) t <8362u2]2 1g> (6.99)
Qe dgij—1  — \/62 + (6;]311 ?]l] 1) <622 ?]7/] 1> . (6100)

Evaluation of isotropic level-set formulation of the Willmore flow We integrate the equation
(5.53) over the finite volume €2;; and we apply the Stokes theorem to get

1 1w
—Oudx = —/ EVwr — = (9 udH 1, 6.101
which gives
ho\2
p (Qz‘j) hooon 1 (w@'] ;3)
h Z ll] ij E’L] Zjv ij, 25 17,17 ihivu@] Z} ijig | o (6102)
6,1.7 Uiz GN ( 57,”72])
where .
ZZ] = Z < Z’L'j,i"rl] + QE l],l]+1 + Qe ’L],’L ]_] + Qg ’L],’L] ]_) (6103)
and
wiy = QL HY, (6.104)
h 1 h h 1 h
Wijit15 = 3 (w + wl+1j> » o Wijiip = 3 (w + w”H) (6.105)
1 1
wlhji*lj = D) (w + wz 1]) ) wz}'lj,ij—l = 5 (w + w” 1) (6.106)
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In terms of the regular dual mesh (6.54) it reads

d 1
h _ h h h
dt z] €,1] hil IE‘:’11 KYR z+1ja ’Lj i+1j + ElZ RYR 7,+1]a Zj i+15
+ Lm o +E} o w
By 21,ij,ij+1 wzg ij+1 22.ij,ij+1 2] ij+1

h
Ellz]z 1]8 wzyz 1]+E12z]z 1]8 z]z 15 —

h h
h2 EZl,ij,ij 1a w’L] ij—1 + EQQ 13,85 — 18 zg ij—1

6.2. Space discretisation

2
h
53,
2
(Qe %7, 1—1—1])

N 2
1 (Wiji5+1 6
~ 3 i+1
2 5 D) zg i
€,47,45+1
2
h
1 (wz‘j,z‘fu) 9
T z i—1j
2 (Qh )3 1717, J
€,i7,i—17
2
h
1 (wij,ij—1>
78

2 5 T2 ’Lj ij—1
( e,z'j,z‘j—l)

h
'L],erlj

Numerical schemes for the isotropic level-set formulations We conclude with the following

schemes:

Scheme 6.2.16. The complementary finite volume semi-discrete numerical scheme
for the level-set formulation of the isotropic mean-curvature flow with the
Dirichlet boundary conditions takes the form

ul h ul h h h h h
d uh = Q Uiyyj — Uy + Wigpr — U Wiz — Uiqy uz’j — U
dt ’L] - €,1] h2Q Q h2Q Q on Wwe,
€,17,0+17 2%eij,05+1 €,i7,0—1j 2%eig,05—1
(6.107)
h —  h
ug lt=0 = P (u’m)w on Wy, pj; = Gij on dwp, (6.108)
: h h h h :
where Q is given by (6.103) and Q¢;; 11, Qfijij1s @eiji—1; and QFy; 54 are given

by @51 (559)

The complementary finite volume semi-discrete numerical scheme for the level-set
formulation of the isotropic mean-curvature flow with the Neumann boundary

conditions is given by (6.73)—(6.76).
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6. Numerical approximation

Scheme 6.2.17. The complementary finite volume semi-discrete numerical scheme
for the level-set formulation of the isotropic Willmore flow with the Dirichlet
boundary conditions takes the form

h
1 ( 11 it+1j ) ah h
2 ( z1 Wigit1;

h
d b IE:’11 2, 7,+1_]8 wzg i+17 + ElQ ’L],Z+1]8£L‘2wl_] i+1j
—uz‘] = QC,ij hl

€,17, z+1])

h
h 1 ( ij, 7«J+1)

EQl,ij,ij-l—la wz] 7,]+1+E22 ij, zy—l—la z],z]—i-l i(Q ) 8%2 i5,i7+1
€,17,1j+1

+
ha
RSP RRTS  SOSPNP DO R W i TESF)
11,i5,0—1j ij,0—1j 12,45,0—15"x2 *ij,i—17 2 (Q ) 1 z] i—17
_ €,17,i—17
hy
h h ., h h h ,.h 1 ( i 1)2 h ., h
17,85 —
B3 i.ij—100 Wisii—1 + B3 55100, Wis 151 BEICN Do Ui 151
_ €,17,1j—1
ho ’
(6.109)
h h h h h h h h
o Wity — Wi Wigr — Wiy Uy — Uiy Uy T U
Wij = Q€ 1 h2Q + hQQ hQQ o h2Qh on W,
€,17,0+1j 2%e,ij,i5+1 €,i7,i—17 2% e ij,05—1
h
Ui li=0 = P (uim)ij on wy, (6.110)
u?] = gi; and wzhj = 0 on Owy, (6.111)

Where Q6 ij 1s given by 1) and Q“ i1 Q?Z] i1 thj,ifl and Q6 ijij—1 are given
1 97)— 1 .100)), Eh 7 is given by (6.85), w — by (6.82)(6.83) and as .69)7.

5,17
- and .—.—. is approxnnated by (6.65)—(6.68]).

961 17,4 wo U 15,8 .
The complementary finite volume semi-discrete numerical scheme for the level-set

formulation of the isotropic Willmore flow with the Neumann boundary con-
ditions is given by (6.109)—(6.110)), (6.73)—(6.76) and (6.86)—(6.89).

Evaluation of anisotropic mean curvature of graphs For admissible anisotropy =y, the anisotropic
mean curvature of graphs is given by equation (5.25). Integrating it over a finite volume €;;
and applying the Stokes formula

/ Hvdx:/ V- (Vpy) dx:/ Vp’ymd?—l"*l. (6.112)
The approximation reads
/ Hydx~ p(Q) H = > 1y VevavimdH™ (6.113)
Qi 'U;EE/\/'[']'
where
T T
Vi = (apl%‘j,ijﬂpg%j,ij) = (8p1’>’ (V%] i —1) OpoY (V%] i —1)) . (6.114)
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6.2. Space discretisation

For the regular dual mesh (6.54]) we have

1
HY, = hihs <h2vp%'j,z'+1j'(1,0)T+h1Vp%j,vzj+1'(07 1"

+ haVpiji-1j - (1,007 + h1 V-1 - (0, —1)T)

<5p1%gpi+1j ]; Op1Vij,i—1,5 N 3p2’m¢j+1h— 5pz%ayz‘j—1> ‘ (6.115)
1 2

In the case of the Neumann boundary conditions from Vv - v = 0 we set:

if i=1thenv=(-1,0) = 0Jp7,0j =0, (6.116)
if i=Ny—1thenv=(1,0) = 0pyN -1jN; =0, (6.117)
if j=1thenv=(0,-1) = 0Op,Yi1,i0o =0, (6.118)
if j=Ny—1thenv=(0,1) = 0Op,ViNy—1,iN, = 0. (6.119)

The approximation of Vp7,;7; for general anisotropies is discussed later in the Sections

Anisotropic Willmore flow of graphs From ([6.115) we see the approximation of w, = QH,
on the finite volume ();; as

h
oo Qi _ I
Wyij = 1 () Z Liji Vo i,i5Vi,ij
1
J 'UTTG./V’Z']'
_ O Vigi+1lj — Opi Vigi—15 | OpaYijsij+1 — OpyVijij—1
- Qz_] + 9
h1 ho
and we also define
wh... —1 wh..+wh. . wh.... —1 wh.4+wh.. (6120)
YAty T g \ i v itl ’ Yt +L T o \ i Yiit+l o :
1 1
h _ (. h h h _ 4
Wyiji-1j = 5 <ww‘j + ww’—lj)  Waijij-1 = 5 ( Wi+ wli 1) (6.121)

Integrating (5.81)) over ;; and applying the Stokes theorem we get

lw n—1
/ Lpdx = —/F E,Vwyv — QQSOVgodH (6.122)

ij

where v is the unit outer normal of the boundary I';;. As before, the left hand side is approxi-
mated as follows:

p (i) d ol 1 d
/ atgpd ~ Qh dr Pij = hihy Qh dt%]v (6123)
ij

where we again assumed that gpl and Q . are constant on the element v;;. For the integral on
the right hand side of (|6 m we have

2
h
E Vo0 i a— Y 1 B, vt 1(w“"j’ﬁ>v "
- y V Wyl — 208 0, pdH i | Fyigaz ¥ Waigaitiiid T 9 T, N3 Y idiiPiiYigi
Lij —eN h
Vi SN ij,i]

(6.124)
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6. Numerical approximation

with the usual notation. Putting (6.123)) and (6.124)) together gives

2
h
d 4 Ql h h 1( Wﬂj)
Q= () Z i | B0 Y WasigigVidii — §ﬁviﬁj%%ﬂi
EN: ( zm)
In the terms of the regular dual mesh (6.54]) we get
2
d , QL h 1 <w§ i, z’+1j> h T
P = T ha ]Ey ij, z+1ng'y ij,i+1j (1, 0) 7v90ij,i+1j (1,0)
dt hiho (Q )
17,4+17
()
h T v17,%] h T
+ E v,i7, zg—i—lvw'y ij,ij+1 (07 1) - iﬁV@ij’,ij—l—l (01 1)
(Qij,ij+1>

2
h
1 (ww,z'j,z‘—lj)
2

Qz]z 1j

2
h
(wv,ij,ij—l)

T\ iai=1)
(@)

+ h2 Eh vw'y i7,0— 1]( 1’O)T - vso?j,iflj (_170)T

v,i5,4—17

+ Ehzgzg 1vw7wz] 1(0 I)T_

V@?j,ij—l (0, —1)T ] )

and so
h 2
d 1 1 (w'y ij z‘+1j)
h h h h . .h " h
dt (,0” - _Qij hil E’y,ll 7, ’L"F].]a w’y iJ,4+17 + E’y,l? iJ, H—l]am v,4,0+15 5 L 8$1 (pij,i—i-lj
(@hi115)

2
(o
h ¥5ig,t3+
+ E E'y,Ql,ij,ij—Q—la w'y i5,95+1 + EW,QQ ij, l]+18$2 ¥,i5,85+1 2 b 83:2 cng ij+1
(Qz] z]+1)

2
h
( ’Y:U:Z*l])
78

1 h 1
- E E'y 11,i5,i— 1]8 w’yzjz 1]+E'y,122jz 1]6x2w'ymz 15 — 5 Y xl(tngz 1j
(Qz‘j,z‘—ly>
2
L gn o LR o 1<“’§L,z'j,z'j—1> o b
Ty | it ww ij—1 v,22,ij,ij—1 wwm LT T \3 zo Pijij—1 | |
( z’j,z’jq)
where for
Er . EBM_
h _ J11,49,8 12045,
Egg=\ g " gt ) (6.125)
v,21,45,45 7,22,45,45
we have
h _ h h _ h
Elijivy = OpOpy (V%j,iﬂja —1) o B i1 = OpiOpy (V%‘j,zjﬂv —1> ;
h _ h h
Eliiic1j = OpOpy (V%‘j,i—lja—l) , Em]z] 1= 0Op, Op,y (V‘Pij,z‘j—p—l)-
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6.2. Space discretisation

The Neumann boundary conditions d,¢ = 0 on 92 take the following discrete form

—_

if i = 1then v = (-1,0) = - (&}, —¢f,;) =0,
if i = Ny —1then v =(1,0) = go?vhj—gp}]{h_l,j) —0,

if j=1thenv=(0,-1) =

/N N N

AS)

: ST
—
|
S

S
=}

N——
Il

if j =Nz —1thenv=(0,1) =

SIS

and from ([5.80) we get

(6.126)
(6.127)
(6.128)

(6.129)

. . h h
if i=1thenv=(-1,0) = TEy11150j0z,w51j0; + Eq.12,15,0j0,wy 1505 = 0,

if i = N1 — 1 then v = (1,0) = IE%H’NI_U,NM@Mw§7N1_1j7Nlj +

h _
Er 12,8, —15,N1 Oz Wy Ny 15,815 = 0,

(6.130)

(6.131)

ifj =1 then v = (0, —1) = E7,21,i1,i08m1w27i1,i0 + Ev,gz,iuo@mw;‘yiuo = 0, (6.132)

if j= Ny — 1 then v = (0, 1) = E’Y,QLiNz—LiNzawlw'}yl,iNg—l.iNg +

h
B, 22,iNy—1,iN; Oy Wy in,—1,n, = O-

(6.133)

Numerical schemes for the anisotropic graph formulations We get the following schemes:
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6. Numerical approximation

Scheme 6.2.18. The complementary finite volume semi-discrete numerical scheme for the
anisotropic Willmore flow of graphs with the Dirichlet boundary conditions takes
the following form

h 2
h h . h h h ,.h _ l(w%ij,i+1j) h  h
d , B 111,150 Wy g1y + B 125,041 002 Wy i1 — 2 @0 O, Piit1j

— . ij,i+15
7@1‘]’ - QU hl

dt

h 2
h h h h h ,,.h 1 (w"/,ijyij+l) h  _h
B2 21,6i5419, W5 ijaj1 T BY 22,6505 1100, W ijije1 — 3 @ O, Pl i1

_|_ 17,15+1
ha
h h h h h ,,.h 1(wh...1.)2 h  h
— = Y23t —17
B 110,152, 0 g -1 T B 12450105507 415 2 k) 9, Pii-1j
_ ij,i—1j
hy
h h h h h ,,.h l(wh"“ 1)2 h  .h
—_ = V29,0 —
E’y,Ql,ij,ij—laxlw%ij,z‘j—l + Ey,QQ,ij,ij—lamwv,ij,ij—l 27(@ )3 83:29%,@']'—1
_ ij,ij—1
ho ’
(6.134)
ho b (Ot — O Vii—15 | Opa Vi1 — OpoVigii—1
wy ;= @ + on wp,
h]_ h2
h _
@i lt=0 = P (pini);; on W, (6.135)
ol = gij and wj; =0 on duwy, (6.136)

where Q1 is given by (6.78) and Q1 1, QP i1, QY1 and @l are given by (6.61)-(6.64),
E? i is given by l ) wf;’ij@ by 716.121 . 831 %hj,{j and 8:?2 gozhjﬂ is approximated by
(665 (6:63).

The complementary finite volume semi-discrete numerical scheme for the anisotropic Will-
more flow of graphs with the Neumann boundary conditions is given by 7,
(6.126])—(6.129) and (6.130)—(6.133).
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6.2. Space discretisation

Scheme 6.2.19. The complementary finite volume semi-discrete numerical scheme
for the anisotropic mean-curvature flow of graphs with the Dirichlet boundary
conditions takes the form

d oo~ b Op1Yijit1j = Op Yigi=1j | OpaYigiis1 = OpsYigii—1
dt " ij Iy I
on wy, (6.137)
i le=o = P (@imi);; on wp, (6.138)
ol = gij on Owy, (6.139)

L T. .
where foj is given by 1) and V7,55 = (apl’)/ijjgj, 8102%57;5) is given by (6.114]).
The complementary finite volume semi-discrete numerical scheme for the anisotropic
mean-curvature flow of graphs with the Neumann boundary conditions is given

by (6.137)(6.139) and (6.116)(6.119).

Evaluation of anisotropic mean curvature for the level-set formulation Taking the right-
hand side of the equation ({5.30), integrating over a finite volume €2;; and applying the Stokes
formula we get

/ H.dx = / V- (Vo (V) dx = / Vo (Vi) - vd B, (6.140)
which gives
/ Hydx =~ p(Q) HY ;5 = Z Lijzi VeV dH (6.141)
g v €N
for
T T
VoYisij = (O Vijigs OpaViij) = (81717 (VU?ﬂj) »OpY (VUZE» : (6.142)

On the regular dual mesh (6.54) we get

1
H! o = il <h2vp%j7i+1j (1,007 + I Vpijijn - (0,1)7

+ haVpvijio1j - (1,007 + hVpigii-1 - (0, —UT)

<5p1%j,i+1j — OpYigi=14 | Opaijij+1 = 5pmml> (6.143)
h1 hs ' '

The Neumann boundary conditions from V7 - v = 0 are approximated as follows:

if i =1thenv=(-1,0) = 0Jp70j =0, (6.144)
if i=N;—1thenv=(1,0) = Op7m-_1jn; =0, (6.145)
if j=1then v =(0,—1) = JpYi1,i0 =0, (6.146)
if j=Ny—1thenv=(0,1) = 0Op,ViNy—1,iN, = 0. (6.147)
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6. Numerical approximation

Anisotropic level-set formulation of the Willmore flow As for the isotropic level-set formula-
tion, we start with the approximation of w, = Q.H,. For the finite volume ;; we get

h

h _ €,1] _ Y
Wi =) > i Veratig
K ’U’-’-e./\/—ij

Y

O Vigit1j = O Vigi=1j  OpaYijig+1 = OppVijiij—1
Qe i h + h
1 2
where Q?m - is given by 1} Q e+l Qe g1 Q€ iji—1; and Q6 ij.ij—1 are given by (6.97)—

wh wh
QD and we also define wy ;.. q;, W5 550, Wy i 15 and w%ij7ij_1 by (6.120)—(6.121)). We

integrate the equation ([5.89)) over the finite volume €2;; and we apply the Stokes theorem to get

1w L
/ L, udx = —/ E,Vw,v — Qan udH"™ (6.148)
which gives
N 2
p(Sj) d g h h 1 (w%iﬂ'ﬂ) h _
noq i T = D i [ By Ve it — 27 3 ViV | (6.149)
€,2] vis GNZJ (Q ..ii)
672]7Zj
where for . .
E e RN
h — »117 ) 7127 b
i =\ Eh T mh (6.150)
v,21,i5,43 7,22,35,17
we have
h h
Ey,z’j,iJrlj = O0p,0pyy (vqu z+1y) ) Ey ijij+1 = = Op, OpyY (vuij,ij+1)7
h h
E’y,ij,i—lj = aplapﬂ( WUsji— 1J> ) E’y@]l] 1= O0p,Op,y (Vuij,ij—l)'
and we set
h e h w" Loy h 6.151
Wyigitty = 5 (Wyis T Wyis1s) o Wygiain = 5 (Wi T Wy ) (6.151)
h h 1
Wrigi—15 = 5 ( Wy i +w'y,1 1]) y o Whyghi—1 = 5 ( W ij +QU,Y ij— 1) (6152)

In terms of the regular dual mesh (6.54) it reads

h 2
d 1 1 (w’y ij H—lj)
h _ - h D h
dt g Qez] h E'y,ll iJ, z+1]ax1wwz]z+1] +E12 7, Z-‘rl]a 'yzg i+15 2 38301 i5,i+17
1 h
( €iji+1j)

h
1 (w%w ZJ+1>

1
h h
+ 7y E7,21,z’j,z’j+18 w’yz]z]+1+E'y22UU+1a wvwﬁl N 3% WJ“
(Qe,zjzj+1)
2
1 1 (wh 4
L h v,14,4—13
- E E v,11,45,4— lja w'yz]z 1]+E7,121]z ljaxngz]z 15 — 5 N 3 acluuz 1j
(Qe,zgz 1])
2
1 1 (wh !
b V5tdyi—
- ho By 21,i,ij— 18 www 1+E%22mJ 1a w’YUU - A 381 uWJ 1
(QG,Z]’L] 1)
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6.2. Space discretisation

The Neumann boundary conditions d,¢ = 0 on 92 take the following discrete form

if i=1thenv=(-1,0) = oty —¢hi) =0, (6.153)

if i =Ny —1then v = (1,0) = O — ¢7V1_17j) =0, (6.154)
o — 90?,0) =0, (6.155)

Py — et ) = (6.156)

if j=1thenv=(0,-1) =

if j =Ny —1thenv=(0,1) =

TI=F| =7 = 2| -

and from ([5.80) we get

if i =1then v =(—1,0) = Ey11150j00,w)1;0; + Eq12,15,0i0zw) 150 = 0,
(6.157)
if i =Ny —1then v=(1,0) = Bry11n5 1500w} N 158, +
E»y,lz,Nl—lj,Nljaxzw,}yL,Nl,1]-,N1j =0, (6.158)
if j=1then v =(0,-1) = Eq211i000,w) 10+ Ey 221,000,010 =0, (6.159)
if j=No—1thenv=(0,1) = Erya1in—1iN00, W) iny 108, +

E7,22,1N271,iN239:210;1,1-]\/2_1,]\;2 =0. (6.160)

Numerical schemes for the anisotropic level-set formulations We conclude with the following
schemes:

Scheme 6.2.20. The complementary finite volume semi-discrete numerical scheme
for the level-set formulation of the anisotropic mean-curvature flow with the
Dirichlet boundary conditions takes the form

d 4 ho( OpuVigit1j — OpiVigi-15 | OpaYij,ij+1 — OpaVijiij—1
Rl T Ceij ( Iy + I on wp,
(6.161)
uf le—o = P (uini);; on wp, (6.162)
uZ = g¢ij on Owp, (6.163)

where Q?ﬂ-j is given by (6.103) and and V7,55 = (8};1%]-’;3, apzfyij7;3)T is given by (6.142]).
The complementary finite volume semi-discrete numerical scheme for the level-set

formulation of the anisotropic mean-curvature flow with the Neumann bound-
ary conditions is given by (6.161))—(6.162) and (6.144)—(6.147]).
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6. Numerical approximation

Scheme 6.2.21. The complementary finite volume semi-discrete numerical scheme for the
level-set formulation of the anisotropic Willmore flow with the Dirichlet boundary
conditions takes the form

h
1 ( w] 1+1]) a
2 ( T1 z] i+17

h
d b IE11 RER Z+1_]a w’Lj i+17 + EIQ ,17, 7,—|—1]8.Z’2w7,] i+1j

h €,ij, z+1])
ij Qe,zg hy

1 (wf3”+1) 8 .
2 (@) " Ui+

h h h h
IE21 17, 1]+1811 i5,i7+1 + IEZ2 )17, zg—i—lamz 15,87 +1

+
ha
E 8h +E 8/1 _ 1 ( i]l 1]) a
11,i5,i—1j 7,]7, 15 12,i5,i—1j5 1]1 15 2(@ ) 1 ’LJ’L 1j
o €,1j,i—1j7
hy
h h (el )” on
17,15 —
EQI 15,15 — 8 z] ij—1 +E22 17,85 — 1a ’L] ij—1 E(Q )daatzuzj ij—1
— €,17,ij—1
ho ’
(6.164)
uh h wh h h h h h
h h ity — Wi | Yigyr — Wiy Uy — Uiy uij — Ui
wj = Q| 3 —|- ~ on wyp, (6.165)
Qe ,1,0+17 Qe ,17,87+1 Qez]z 1j Qez],z] 1
h

ul-j t=0 — P(uzm)w on Wy, (6166)
uZ = gi; and wzhj =0 on Jwy, (6.167)
Where Q is glven by 1) and Q“j i+150 Q" Z]H, Qmﬂ 1; and QH ;i1 are given by

E 17
E;;77 is given by (6.85), wy;; by (6.82)-(6.83) and as L:|>72 Ony 53 and
xzu — is approx1mated by l-b 1.'

17,17
The Complementary finite volume semi-discrete numerical scheme for the level-set formu-

lation of the anisotropic Willmore flow with the Neumann boundary conditions is
given by (6.164)—(6.166|), (6.144)—(6.147]) and (6.157))—(6.160)).

Remark 6.2.22. We can see that in general we get implicit boundary conditions of the form
(6.116)-(6.119), (6.144)-(6.147), (6.130])-(6.133)) and (6.157)-(6.160). These equations are non-
linear in uf] resp. wZ on Jwy, and therefore it is not trivial to solve them. As a result we do
not know these quantities on dwp. In section [6.3.2] we will see that it is important for the
semi-implicit scheme and we will show how to approximate the quantities we mentioned on the

boundaries.

Remark 6.2.23. In the Figure we show the stencil of the complementary finite volume
schemes for the fourth order problem and . It is a 21 point stencil (resp. a 25
point stencil in the case of the anisotropy . One can see that the stencil is symmetric and
it is smaller then the stencil for the central schemes (see Figure .
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6.2. Space discretisation

S G -
1

DRSNS

Figure 6.7.: Stencil of the numerical schemes (6.2.15)), (6.2.17), (6.2.18)) and (6.2.21)) is symmetric
and compact. Grey points represent the stencil of the schemes with the anisotropy
(5.111))

AT

Comparison with finite difference approach

Now we aim to derive the same schemes as in the previous section (i.e. schemes (6.2.14)), (6.2.15)),
(6.2.16), (6.2.15), (6.2.19), (6.2.18), (6.2.20) and (6.2.21)) ) in terms of the finite difference
method. The essence of this approach is in a definition of a finer numerical grid

1 1 1
17...]\71_;3':1...]\[2_}7 (6.168)

L .1
Qh_{(lhlajhz)’2_27 2 27 9

In comparison with the mesh wy, we have added new nodes which are counterparts of the bound-
aries of the finite volumes of the dual mesh |i The values of the grid function u on {2, are
obtained by the following interpolation mapping:

]

Definition 6.2.24. The interpolation mapping I(uh,i,j,r, 8) s wp — Qp is linear mapping
defined for r,s € {—1,1} as:

I( h,z,j,r 0) =

2

1

s by 70 > = 3

< 53,0, 2

7(wigns) = |

i,7,r,8) = =

) 7]7 4

Forr,s € {—1,0,1} we set u’* =7 (u
with doubled indices

i+5,J+5

: (6.169)

fork=0,---,2N;and [ =0, --- ,2N,. We extend the notation for finite differences on the finer
grid as

Uh . 2Ul?+1,l - Ul?l Uh . 2Ul?l - Ulil—l,l
fR T 2T bkl =2
U U U
Ufk:l kl+1h W U.]i,kl _ oM . ki1
Ul 2<U}lkl+Ub,kl) , Ul (U kl+Ubkl)
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6. Numerical approximation
To approximate gradient of u we define
voulh = (Ul ... U"....) f j=1.-- Ny —1. j=1.---.Ny—1
hU;; c.,24,25° ¥ .c,21,25 or 1t ) 1 ) ’ y4V2

h =1--- _
i1yl fori=1---N;—1
and j =1,--- Nog — 1. The discrete divergence operator is defined in the same manner.

Note that since we define thzhj in terms of U,?l we can also write Vyu

For the graph formulation we denote

2
1
h — h h _ h
Q11 = \/1 + 'Vh%i;,ji; esp. Q=7 Y. Qe (6170)
¢me{—1,1)
[¢l+Inl=1
HYy = Vi VY = Va- (0p7%i: 9 7)" (6.171)
h _ h _ h
Ew,z':l:%,j:t% = E, (thoij:%d‘i%) = Vp ® Vpy (@ii%di%, —1) . (6.172)
fori=1,---Ny—1land j=1,---,No — 1 where
T h h T
(aplp)/ij7 8172%]') = <8p17 <vh90ij7 _1) » Opy (vhsoij, —1>> . (6.173)

Remark 6.2.25. We demonstrate the meaning of the approximation on the isotropic mean

curvature. It gives
Vot
h \V/ ()
Hyij=Vn- < Qr |-
ij

Since we want to evaluate the discrete divergence V, at the point x;;, we will use the neighbours
Tip1ii1. We get
27 2

h . h h o, h ho,h h o, h
w1 [Omuiy dnuiy L Onyijey Oty
VAT h Y ho h Y ’
1 P S 2 i v
Z+%7] Ql*%:] Qlajfé Ql’]fé
. . . h h _ .
and simple substitution for 07w Ljil for Il =1,2 gives
h h h .k h h h o,k
gho R e L n [ Ui T Wy Uy T Uy
VT 2 h B h h2 h o h ’
L @iy QL 2\ Qs @it

h h : i h
Remark 6.2.26. In case when we compute VhH%ij or Vhwij, having Hv,i+§,j+§ OF Wit r s

for r,s € {—1,0, 1} is required. We have two possibilities how to achieve these quantities - either

exact evaluation by substituting V,u” s as H! = H, (thh

i+5.5+3 Vit 5.a+s z+g,j+§>
of the interpolation mapping (6.2.24) on Hé‘” as HQH%JJF% = I(nyl,z',j, T, s). Numerical
experiments show that the latter approach gives the same accuracy of the scheme. Moreover,
implementation of such schemes is significantly easier and more efficient. Therefore we choose

the interpolation.

, or by means

Now we introduce the following schemes (we consider only the anisotropic problems):
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6.2. Space discretisation

Scheme 6.2.27. The finite difference semi-discrete approximation of the mean-
curvature flow of graphs with the Dirichlet boundary conditions with the
anisotropy given by ~ reads as

h
dij o OpiYijiit1j = Om Vigi=1j , OpVigiig+1 = OpsYigij—1
dt “ hl hQ
on wp, (6.174)
ol li=o = P (ini)y; on @, (6.175)
90% = gij on Owy,

where Q?j is given by (6.170), Op,vVij» Op,7vij by (6.173). The finite difference semi-
discrete approximation of the mean-curvature flow of graphs with the Neumann

boundary conditions with the anisotropy function ~ is given by (6.174)—(6.175)) and

=0 fori=N; — 1, (6.176)
=0 for j = Ny — 1. (6.177)

0 fori=1,

1

Tp1,i—3.j Tpryit3d.d

Tppi—t = Oforg=1, 7 ;1
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6. Numerical approximation

Scheme 6.2.28. The finite difference semi-discrete approximation of the anisotropic
Willmore flow of graphs with the Dirichlet boundary conditions with the
anisotropy given by ~ reads as

2
h

el 1 (w'y,ij>

dt] = — %Vh- wvhww 57%@; on wy, (6.178)
(%)
Wl = Ql OpiYigiit1s — O Vigitj , OpaVigiigt1 — Ops Vi1
hl h2

on wy, (6.179)
Pl li=o = P (pini);; on wh, (6.180)
ol = gy and w!;; =0 on duwy,. (6.181)

where Q} is given by qp E! 5 by (6.172) and 8p,7ij, Op,7vij by (6.173). The finite

difference semi-discrete approximation of the anisotropic Willmore flow of graphs
with the Neumann boundary conditions with the anisotropy function + is given by

(ET79) (150) ana

Enz_fﬁzlww +1E12l_,]8x2w%17§7j = 0fori=1, (6.182)
E112+1J6 ww+ ]+]E12H_1]8 ww+27j = Ofori=N;—1, (6.183)
E21’Z’J77311w%” 1+ EQ?U 1893210%1077 = 0 for 7 =1, (6.184)
Fo ity 8£1w% i+ 3 + By U+1a‘”2wv ity 0forj =Nz —1, (6.185)

together with aycpw =0 on Jwy,.

For the level-set formulation we denote

2
1
_ h h _ h
Qel:l:lJil = \/62—1—‘th&;]&:é resp. Qij_l Z Qi+%7j+g, (6.186)
¢me{-1,1)
[¢l+Inl=1
HY 'y = Vi VY = Va- (017 9 %)" (6.187)
h h
E il,jil = ]E"/ (vh@ii%,ji%> Vp®Vp’y< Zi1]i1>' (6188)
fori=1,---Ny—1land j=1,---, Ny — 1 where
T h B \\7
(O i3+ 0p27i5)" = (90 (el ) 20 (V) ) (6.189)

It allows us to introduce the following schemes:
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6.2. Space discretisation

Scheme 6.2.29. The finite difference semi-discrete approximation of the level-set
formulation of the mean-curvature flow with the Dirichlet boundary conditions
with the anisotropy given by v reads as:

dul"
S = QiH; onwh, (6.190)
uZ =0 = P (tini);; on wh, (6.191)
UZ = gij on Owy,

where Q?j is given by (6 EV i by (6 and Op, vij, Op,Vij by (6

The finite difference semi- dlscrete approx1mat10n of the level-set formulation of the
mean-curvature flow with the Neumann boundary conditions with the anisotropy

function ~y is given by ((6.190)—(6.191]) and
= 0Ofori=1,
= 0forj=1,

—0fori=N —1, (6.192)
=0forj=Ny—1. (6.193)

Tp1,i—1.j Tpryi+1.

Tpasij—1 Vp2ij+i

Scheme 6.2.30. The finite difference semidiscrete approximation of the anisotropic
level-set formulation of the Willmore flow with the Dirichlet boundary condi-
tions with the anisotropy function ~ reads as

2
duj 1 (w%)
(@)
w'}yl,ij = ?ij}yL,ija on Wp, (6.195)
ufj =0 = P(uiNi)ij on Wy, (6.196)
ufbj = g;j and w =0 on Jwy,

where Q?J is given by 1) IIiLY i; by (6.188) and Oy, vij, Op,7i; by (6.189).

The finite difference semidiscrete approximation of the anisotropic level-set formu-
lation of the Willmore flow with the Neumann boundary conditions with the

anisotropy function -~y is given by (6.194))—(6.196]) and

B Onwl 1+ By 1 Ouly 1, = Ofori=1, (6.197)

E?I jiti Jaxlw'y,ﬂ— i IE)12 jitd jamwgﬁ%’j = Ofori=N; —1, (6.198)

ESUJ 1ax1wwj 3 T Eg2z] 189021”37173;% = Oforj=1, (6.199)

By et O] o + By 10wl 0 = 0forj=Ny—1,  (6.200)
together with (91}} fj =0 on Owy,.

Remark: In comparison with the complementary finite volume schemes (6.2.14), (6.2.15)),
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6. Numerical approximation

6.2.16)), (6.2.15), (6.2.19), (6.2.18)), (6.2.20) and (6.2.21)) the finite difference schemes ([6.2.27)),
6.2.28]), (6.2.29) and (6.2.30)) are less general because they are restricted to regular orthogonal

numerical grids. On the other hand, we can see that they are expressed in more compact form
which is more similar to the original mathematical formulation. In the next part, it will allows
us to treat these schemes as the one-sided or central finite difference numerical schemes and
show some energy properties in the case of the Willmore flow of graphs. We remind that in
this text we study all numerical schemes only on the regular orthogonal numerical grids and in
this case the complementary finite volume schemes ((6.2.14)), (6.2.15)), (6.2.16)), (6.2.15), (6.2.19)),
6.2.18)), (6.2.20), (6.2.21)) and they finite difference counterparts (6.2.27)), (6.2.28), (6.2.29) and
6.2.30) give the same results - moreover they lead to the same implementation.

Energy equality of the Willmore flow of graphs

We prove analogy to (5.2.11)). First, we need to extend the definitions of the scalar products
for the grid functions on the finner grid. Assume having the grid functions f,g : Q, — R,
f : @, — R? and the related finner grid functions F, G, F defined by (6.169)) we define

P7Q

hih —12N,—
[F.GLy = =17 > FuGu, (L9 =(F.G),=[FGH "0, (6.201)
k=p,l=q
1
(fi9e)e = (F.Ge). =5 ([F, Grla T [, Gb,ﬁﬁh’mﬂ) : (6.202)
1
(f, g.c)c — (F’ G.C)c — 5 ([‘F‘7 G-f]i]gl_IQNZ_l + [F, G.b]?ﬁhil,z]\&) ’ (6203)
(£, ViG), = (F,V,G), = (F',G.), + (F*,G.),. (6.204)

In this section, all scalar products are summed over the finner grid. We need to transform the
discrete Green formulas from central difference case to the finner grid functions.

Lemma 6.2.31. Let u:w, — R, v : @, — R2. Then the Green formula is valid:

N1
h
(Vau,v), = —(u, Vi v), + ?2 Z [(Uan-11 4 Uany) Vany — U + Un) V]
=1
o 2N
1
"‘? Z [(Ukan—1 + Ugan) Vk2,2N — (Uko + Ura) Vifo] .
k=1

Proof. Writing (Vyu,v), = (V.U, V), and applying (6.45) on the finner grid functions U and
V we obtain (|6.205]). O

Corollary 6.2.32. Let p,u,v: @, — R and v |9,= 0. Then
(Vi - (pVru),v), = = (pVau, Viv), . (6.205)

Proof. The proof is now really trivial. O

Theorem 6.2.33. For the solution ¢, w" of - and wh =0 6w, we have

((@?)2,5}1% +% <(H§)2,Qh>h = 0.

Proof. The proof is the same as the proof of (6.48]) but with the notation (6.201)-(6.204). [
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6.3. Time discretisation

6.3. Time discretisation

In the previous section we derived several semi-discrete schemes (6.2.2)), (6.2.3)), (6.2.8)), (6.2.9),

(6.2.27) and (6.2.28). They can be written in general as

dul
- = f(t,uh)”fort>0, (6.206)
ij
wli (to) = g, (6.207)

fori=1,---Ny,j=1,---Ny. Here F is a mapping f : ¥ — R" and ¥ is a domain ¥ ¢ RN+
If feC(¥) and % € C(¥) for k,l =1,--- N then from Pontryagin [87] we have that for all
[to, ¢0,i;] € ¥ there exists § > 0 and d)?j c (=6 +to,to+6) = RN fori=1,---Ny,j=1,---No
for which

doh.
jgj - f<t,¢h>ij, (6.208)
o (to) = doij, (6.209)

fori=1,---Npj,j=1,- N2 Moreover if there is wh I — RY for open non-empty interval I

and to € I such that holds for 9f; on I then ¢f; = ¢ on I N (=0 +to,to + 0)
fori=1,- Nl,j—l

To complete the discretisation we need to choose appropriate time discretisation. We have
three possibilities: explicit, semi-implicit and fully-implicit discretisation in time. In this text
we deal only with with the explicit and semi-implicit schemes.

6.3.1. Explicit schemes

Since we use highly nonlinear equations, the natural choice is the use of some explicit scheme.
The great advantage of the explicit schemes is their high accuracy and the fact that they are
easier to implement in comparison with the semi-implicit schemes requiring matrix solvers. In
many articles, the fourth order Runge-Kutta kind solvers were successfully used [9, 10, 11, [7].
The Merson solver [97] belongs to this class of solvers. Moreover it offers automatic choice of the
time step which makes it more robust. We will solve a system of ordinary differential equations
having a form

dzfj —f (t’Uh>ij’ (6.210)

where f is given by the right-hand side of some of the semidiscrete schemes (6.2.2)), ,
(6.2.8]), (6.2.9),(6.2.27) and (6.2.28]). The following algorithm represents the solver for the explicit
schemes which we present later in this text:

Algorithm 6.3.1. The explicit Runge-Kutta-Merson solver consist of the following steps:
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6. Numerical approximation

1. Compute the grid functions k., k? kf’j, kfj,

5 e
i Kigo k:ij as:

kilj = Tf(t’Uh>ij

1 1
2 h 1
1 1 1
3 - h 1 2
1 1 3
4 h 1 3
]f” = Tf <t + 57‘,'& + gk + 8k >Z]
5 h 1 1 3 3 4
ki = tf({t+T1,u"+ -k — k4 2k
J 2 2 ij

fori=0,---Nyand j =0,---, No.

2. Evaluate the error of the approximation with the current time step 7 as

' 11 4 9 5 4.4 1 =
e= max ‘516‘1-]- - Tok‘z‘j + 51%']' - Tok‘ij . (6.211)
7=0,++,N
3. If this error is smaller then given tolerance e update u” as:
1
h h
gy =+ (ki + 4k} + K3 (6.212)

fori=0,---Ny1, 7=0,---, Ny and set

t:=t+T.

4. Independently on the previous condition update 7 as:

4 re€ %
= mi == T—t,. 6.213
7 := min {7’ 7 (e> , } ( )

5. Repeat whole process with the new 7 i.e. go to the step 1.

Depending on the form of the right-hand side f (t,uh)ij of (6.210)) we obtain the following

schemes:

Scheme 6.3.2. The explicit one-sided finite difference approximation of the mean-curvature
flow with the anisotropy = is given by the algorithm where for the right-hand side of ((6.210))
we substitute the right-hand side of (6.10)).

Scheme 6.3.3. The explicit one-sided finite difference approximation of the Willmore
flow with the anisotropy 7 is given by the algorithm [6.3.1] where for the right-hand side of

(6.210) we substitute the right-hand side of (6.13)).

Scheme 6.3.4. The explicit central finite difference approximation of the mean-curvature
flow with the anisotropy = is given by the algorithm where for the right-hand side of ((6.210)
we substitute the right-hand side of (6.39)).

Scheme 6.3.5. The explicit central finite difference approximation of the Willmore flow
with the anisotropy -~y is given by the algorithm where for the right-hand side of (6.210)
we substitute the right-hand side of (6.41)).
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6.3. Time discretisation

Scheme 6.3.6. The explicit finite difference approximation of the mean-curvature flow
with the anisotropy = is given by the algorithm where for the right-hand side of ((6.210))
we substitute the right-hand side of (6.174]).

Scheme 6.3.7. The explicit finite difference approximation of the Willmore flow with
the anisotropy 7 is given by the algorithm where for the right-hand side of (6.210]) we
substitute the right-hand side of (6.178)).

Remark: The discretisation of the terms depending on given anisotropy, as they are expressed
in the Section [5.3] is very straightforward. We just substitute appropriate finite differences
approximating Vu for p.

6.3.2. Semi-implicit schemes

This section shows the semi-implicit schemes for the semi-discrete finite volume schemes
and . We omit the one-sided schemes and as well as the central schemes
@D and because of their disadvantages in comparison with first ones ((6.2.27)) and
@) We discussed it in Sections and We study only the graph formulation. We
would proceed in the same way for the level-set method. We also omit the isotropic problems
since they are only special cases of more general anisotropic problems.

We assume having fixed time step 7 such that 7 = T'/k for some k € N* and we denote

ugs := wgj (iha, jhe,n7) for the grid function u : @y x [0,7) — R.

The semi-implicit schemes for the non-linear partial differential equations are always some kind of
linearisation because we want to end up with a system of linear equations. The main difficulties
come with the discretisation of the anisotropic mean-curvature H.,. In general we have

Hy =V (Vpy) = 02, 0p,7 + 0z, Opy7-
We assume that we may write
OpY = ViaP1 + Vigpe for i =1,2.
Then we may write
Hy(p) = V- (Vp7(Vp,—1))
0

o1 (111 (Vo, =1) Oy 0 + 712 (Vp, —1) O, ]
+ 8932 [’Y;l (ch, _1) 8x1‘70 + 7;2 (V(p, _1) 8@90] .

The idea is to discretise H” .. as

Vi
H'Tyl,z] = a:}rzll <7T17nglag1u13 =+ 7;2711] 189’;2 z]> + 622 (’Y;lnz] laaiclluz] + 7;2nzj lao}cbz Z])
- ;(7;172_’_127]8?1 H— \J +’Y:2n1+1 jaﬁ2u?+ J
o kT )
+ g (5 Pty i o
~ Va1, Jl,ﬁiﬁ i 7;‘2"1 Jlaﬁguf,]_> : (6.214)
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6. Numerical approximation

T
where we denote 8£1uw,8§2 U) = V. In the same manner we discretise the boundary

conditions (6.144))-(6.147).

With this notation in hand, we may introduce the following schemes — the choice of the time
step (n or n — 1) for each term is important:

Scheme 6.3.8. The semi-implicit numerical scheme for the finite difference anisotropic
mean-curvature flow graphs with the Dirichlet boundary conditions has a form

n—1
Ui~ Wi e O (it w4 Tl
T - i 711 g Yx1 g 712 i T2 ’Lj
h * 1qh * 1 qh
+ am (7217123 al‘lulj + 7227113 8902 Z])) on W, (6‘215)
w); = P (Uini);; on @y, (6.216)
ui; = gij on Owp,

where Q?j is given by 1) o1 Yijs OpsYij DY 1)

The semi-implicit numerical scheme for the finite difference anisotropic mean-
curvature flow graphs with the Neumann boundary conditions is given by

(F215) (230) and

rlnz—l— Oy i—1j +’Yf2”l_1, ! i1y = Ofori=1, (6.217)
’V;klnwl Jagluwr gt ’Y;kanlQ ]a£2uzl+2,] = Ofori=N —1, (6.218)
;172,31_7821 ij—1 "’7;;,]1_,022 ij-1 = 0for j =1, (6.219)
’V;Z,ji%a?l“zﬁf T Ol = Ofor j=No—1. (6.220)

For the level-set formulation we replace Q - in (6.215) by Q?,ij given by (/6.186)) and

8191’}/”, aprYzj is defined by m

102



6.3. Time discretisation

Scheme 6.3.9. The semi-implicit numerical scheme for the finite difference anisotropic Willmore
flow of graphs with the Dirichlet boundary conditions has a form

1 n—1 2
no_ N Wy
U’L] Uzj _ _anlv . Enflv wh — ELV u™ on w (6 221)
- - ij Vh vig Y hig Ty 3 Vhiti ho .
Qn—l
@)
n—1 __ n—1gn—1
wi = QT Hyy onwp,
n o__ n—1 h *n—1lah n sn—1lah n
wi; = Qj (accl (711,ij Oy Ui + V12,45 a:vzuij)
h sn—1lah n *sn—1lah n
+ Oy, (721,1‘]‘ 8xluij t V22,4 812%]')) on wp,
h _
ujj li=0 = P (Uini);; on W, (6.222)

n
(4]

where Q1 is given by (6.170), B ; by (6.172) and 8,,7ij, 9p,ij by (]6.173'

The semi-implicit numerical scheme for the finite difference anisotropic Willmore flow of graphs
with the Neumann boundary conditions is given by ([6.221)—(6.222)) and

u; = gij and w;; = 0 on dwp,

1
if i =1 then v = (-1,0) = i (uf; —ug;) =0, (6.223)
e 1
if i=N; —1thenv=(1,0) = o (uR, j =l ny—1;) =0, (6.224)
1
if j=1thenv=(0,-1) = - (ufy —ujy) =0, (6.225)
2
1
if j = No —1thenv=(0,1) = - (uf'n, — uilny—1) =0 (6.226)
2
and
En—l . n—1 )
11,—1.5 ) 12i—35,J -1 -1
T2 (ij — wﬁl’j) + TJL; (ijH + w;il,jﬂ — Wiy — wﬁl’jfl) =0 (6.227)
fori=1,
n—1 n—1
11,i+2 .5 1 12,i+2 5 —1 n—1
o (et = wit) ST (w1 + 0ty — wiyo — w5y ) = 0 (6.228)
fori= Ny —1,
n—1 n—1
21’i’j7% n n—1 n n—1 227i7j7% n n—1 _
“dhihy (wiJrl,j twiij 1~ Wis1j — wi—l,j—l) + T hy (wij - wi,j—l) = 0 (6.229)
for j =1,
n—1 n—1
21,i,j++ 1 _ 22,i,j4 % _1
Ak, (e + 0ty = wiy =il ) + h (wih —uly) = 0 (6.230)
for j = NQ — 1.

For the level-set formulation we replace Q?j in (6.215]) by QZU given by (6.186|), Ez” is defined by
6.188 and 8p1’)/2'j with 8p2’)/ij by 6.173.
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6. Numerical approximation

The linear system of the semi-implicit scheme for the mean-curvature flow

To implement the scheme ([6.3.8)) we need to find the coefficients of the linear system related to
it. From (6.215)) we see that fort=1,--- Ny —1,57=1,--- ,No—1

H". I VA *,M— 1ah + lah *,M— lah + *M— 18h n T
o h \ V11,5 uzy 712 7 Yo 137721 uzg V22 o Wij
1 *,n—1 * 1
= — O u O
hl ’711 z+2 2 z U j + 12 z+ 2 zo U j
*n—1 h *n—1 h
711,1'7%,3‘8@ +712z 8 2,;)
+ i *n—1 8h u + *n—1 8h un
ho 7211]4-2 r1 l]+1 7221,]—1— T2 ,J+*

u u

*n—1 h n *n—1 h n
’72113 T -1 Jr72213 T3 z‘,j—§>

Substituting appropriate approximations of 97 Wit il for m = 1,2, k,l € {0,1} and |k| +
lI| =1 we get

*
’}/ L1 ’y
1177'+7’.7 11 'L—*,‘]
n = 22 (g™ 2 (g
H’YU - h% (uH-l,j UZ]) h% (U” uz—l,])
*
Y90l s
12,i+5,j n n n n
+ —2 (Ui U — U — U
4hyhso (o ulljpn —ulin g —ullj)
sk
712 1 .
77'_57] n n n n
— —_—(u.: _|_u._ . — U — U
4h1hso (Ui + Ui = W1 = U 1)
k
721 T |
it 5 n n n n
T ol g — g
4hihoy ( i+1,5+1 i+1,j i—1,j+1 i 1,3)
*
yE
2l4,j—5 n n n n
— —(u, . —|—u = Ui 11— Ui 1
4h]_h2 ( 74+17] 1 Z+1,_] 1 1’] 1 i l,j)
*
72 N | P)/ .1
25,+5 [ n n 22,i,j=5 / n n
T (i1 — uij) — YR (ufy —uii_q) (6.231)
2 2
or denoting
* * * *
00 . _ Tty i-lg o Teaged Te2ig-4
e weoTT® )

4hiho  4hiho +

* * * *
gt z+2,] Torig+1 Tarig-1 oL N2+l Torigd
- Ciiy 4h1hy 4h1hs

* * * *
712z+2,g 712,1‘—%,;’ 722,i,j+2 712,1‘4-%,;’ 721,2‘,;’—

0,1 o _
CH’ij o < 4h1 hg 4h1 hg h% 4hl h2 4h1h2

1
eI as

W2 dhihs | dlnhy )0 CHG 4h1hy 4hyhg

( 1)
* * * *
711 =3 7217i,j+% 721,%‘,]'—* 1,1 (_712,1‘—;,3' ’721,i,j+é>

* *
’712 itig ’712,1—%4 722,1’,3‘—% 1.1 712 -1 T ij—3
4h1h2 4h1h2 h% ’ H,ij ' 4h1h2 4h1 hg ’
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and
Oy = Qi 'Oy for s € {=1,0,1} (6.232)
we may write
Hiij = Z C;fiju?—i—r,j-i-s? (6.233)
Ts€{7170’1}
resp.
w”Z = Z Cu} 17 z+r J+s (6234)
r,s€{—1,0,1}
and (6.215)) now reads as
U”Z -7 Z Cu) K2 z+r J+s u?jil' (6.235)
r,se{—1,0,1}

Discretisation of the Neumann boundary conditions ((6.217))-(6.220)) gives

*n—1 *,n—1
11,—1 5 12i—1 5
R n n R n n n n
T g ) =~ ) = 0 6.236
hl ( i % 1,j) 4h1h2 ( 7,0+1 i—1,7+1 2,7—1 i—1,7 1) ( )
fori =1,
*n—1 *n—1
11’i+%’j n n 12’i+%7j n n n n
e g ) e g~ ) = 0 6.237
hl ( i+1,5 z,j) 4h1h2 ( i+1,7+1 i,7+1 i+1,7—1 ,J 1) ( )
fori =Ny — 1,
*n—1 *,n—1
21i5-3 n n n 220,J—3 ( q n
TR e — g — ) T2 (g ) = 0 6.238
4h1hs ( i+1,j—1 i+1,5 i—1,j—1 i LJ) ha ( ij (2] 1) ( )
for j =1,
*n—1 *,n—1
213,5+5 n n n n 227Z7j+% n n
ST Ul — g — Ul ) 2 (e — ) = 0 6.239
4h1h2 ( i+1,7+1 i+1,5 i—1,7+1 7 1,]) h2 ( 2,7+1 1]) ( )
for j = No — 1,

which we will use to define the values of ug; on Owp,. There is, however, ambiguity for the
values at the corners of wy,. Take for example the value ug,. It appears in two equations
and . This is because in the corner of dwy, the outer normal is not defined and so the
boundary condition Vv = 0 does not make sense. For example for this corner node we have

(for i = j =1 from ((6.236)) and (6.238))):

*,n—1 *,n—1
11,41 12,11
727 n n PR n n n n
— (uy —u + Ul o+ Uy o — U — U =0 6.240
h ( 1,1 0,1) Ahihy ( 1,2 0,2 1,0 0,0) ) ( )
*,n—1 *n—1
21,1,1 22,1,1
] n n n n 1D n n
Uy o+ Uy — Uy — U + Uy — U =0 6.241
Ahiho ( 2,0 2,1 0,0 0,1) ha ( 1,1 1,0) ( )

Summing these two equations we get:

0,0
Cuo ot 00+C 0“10+Cw00U01+C 00“11
+C, 00“12+C 00“02+C 00“20+C 00“21 = 0, (6.242)
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for

oy

w,0,0

oY

wOO

1,2
Cw,O,O

In the same way from (6.236)) and (6.239) with ¢ = 1 and j = Ny — 1 we get equation for ug’N2

*n—1 *n—1
712,%,1 721,1,§
4hihy  4hiho’
*,n—1 *n—1
711,2,1 721,1,§
h1 4hihy’

*,n—1

1

e 12,51

w,0,0 4h1h2

11
w,0,0 *

2,1

w,0,0 " T

*,n—1 *,n—1
712,%,1 722,1,§
4hiho ho
*,n—1 *,n—1

711,2,1 722,1,5
h1 ho '
*,n—1
2,0 72171,§
w,0,0 — 4h1h2.

n n
CwONguO,N2+CwON2u1,N2+C 0N2UON2—1+C 0N2U1 No—1
1, _
+Co o T Na—2 + Coo vy U2 + Cog o U3, + oo Ny Wb g1 = 0,
for
*,n—1 *n—1 *n—1 *,n—1
0.0 _ 12,4 Np—1 21,1,N2ﬁ 1,0 ) 12,1, Np—1 22,1,Np—1
w,0,V2 4h1 h2 4h1 hg w,0,Nz 4h1 h2 h2 ’
*n—1 *,n—1 *n—1 *n—1
007_1 _ 11,1, Ny—1 211N -3 11 ] 11,4, N1 22,1,No—1
w,0,Nz h1 4h1h2 w,0,Nz hl hg ’
*,n—1 *n—1
oL 02 127571\72—1 2-1 20 21,1,N2—3
w,0,N2 wONz 4h1h2 w,0,N2 * wONg . 4h1h2

from (6.237) and (6.238) with i = N7 — 1 and j = 1 we get equation for uy, o

n
Cw N, 0UN 0 T Oy N1 OUN, 1,0 C N1 otn 1t Gy N1 0UN, 1,1
1,2
+Cy Ny 0Ny 1,2 C N1 0UN, 2+ Cy N1 0UN,—21 T Cyy N1 0UN; —2,0 0,
(6.244)
for
*n—1 *,n—1 *n—1 *n—1

00 _ 12,N1+41 21,N1—1,1 o0 12M+31 2N

w,N1,0 4h1ho 4hihy T wANLO 4h1ho hy

*n—1 ’y*,nfl *,n—1 *n—1

oL _ 11,N1+3,1 2LNI-1,4 11 N3 22,N1-1,1

w,N1,0 hy 4h1ho w,N1,0 hy By )

*,n—1 xn—1
~1,2 02 T2,N 410 21 _ 20 . 2LNi-13
w,N1,0 - w,N1,0 " 4h1h2 > ~Yw,N1,0 *— ~Yw,N1,0 " 4h1h2 ’

and from (6.237) and (6.239) with ¢ = N7 — 1 and j = N2 — 1 we get equation for un, n,

n u®
Cw N1,Ny N1, N, +C N1 NguNl—l No +C N1,N2 UN, Ny—1
1,1 "
+Cw7N17N2uN1—17N2—1 + C N1 NQuNl—l No—2 T+ C N1 Ny UNi No—2
72’ .
+Cw7N17N2uN1_27N2—1 +C, N1 NQUN1—2 No — O)
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*n—1 *,n—1 *,n—1 *n—1
0.0 12,N1— 3, Na—1 n 21,N1—1,Np—1 10 12,N1—3,Na—1 n 22,N1—1,No—1
w N1’N2 : Ahihy Ahyho ) w,N1,Na * Ay hy ho 3
*n—1 *,n—1 *n—1 *n—1
CO 11,N;—,Na—1 n 21,N;—1,Np—1 11 11,N1—1,Na—1 _ 722 N1-1,Np—1
Nl’N2 hl 4h1h2 ’ w,N1,Nz hl hg ’
*,n—1 *n—1
—1,-2 0,—2 12,N177 No—1 0_2 -1 0_270 L 21,N171,N27%
’LUN17N2 le,NQ : 4h1h2 ’ w,N1,N2 ~ w,N1,Ng * 4h1h2

Now from the equation (6.236) we get system of equations for u;; fori =0and j =1,--- ,Na—1

0,0

w,0,7 0]
for

*n—1

00 ._ 10 _ 15
707 j T B 707 T ’
w,0,j w,0, hy
*n—1

0L 0ol ool ol 12,54
w,0,] 10,3 w,0,7 w,0,7 4hihs’

from we get system of equations for w;; for i = Ny and j =1,--- , Ny — 1

Cw N1 ]uNlj +C N1 juN1—1J Cw N1, N1 J+1

0,— _
+C N1 JuNl J—1 +C, N1 ]uNl—l j—1 +C, N1 ]UNl_ g+l = 0, (6.247)
for
*n—1
00 ~1,0 _ 1LNi43j
w,N1,j " w,N1,5 " hi ’
*n—1
0,— ~1,-1 “11 12,N1+1.j
c =-C, =-C =C =2
wNm Nm wN1J wNm 4h1ho ’

from (6.238) we get system of equations for up; fori=1--- Ny —land j=0

n 0 170 n 1 0 n 1 1 n
Cw iobio T Culiouin + Culiotitio + Cpliotizio + Cw iobivin Oy oui—11 =0, (6.248)
for
’y*,n—l
0,0 . 0,1 . 22,i,j—
4,0 T T Mw,i0 T T ’
w,? w,? h2
*n—1
0 . A0 ol 11 2y
5,0 T 5,0 " 5,0 " 5,0 "
w,? w,? w,? w,1 4h1h2

and from ([6.239)) we get system of equations for uzy fori=1--- ,Ny—1and j =Ny

0, ,0
szNz %N2+szN2 ZN2—1+Cw2N2 i+1,Na

1,0 1,-1
+C iU 18 + Oy U N1 + Oyt o1 = 0, (6.249)
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6. Numerical approximation

for

’Y*’n_l
0,0 o 0,—1 22,1',]\727%
Cw,i,NQ T _Cu};L',NQ i h ) (6250)

2
*n—1

o “10 _ -1 a-l-1  2LiNe—
Cuive = ~Cuiie = Cuiy = ~Cuilvy = gy (6.251)

So, in general we have nine-point stencil for wj given by the coefficients C’,Z)’Sij for r,s €

{—2,-1,0,1,2} (r and s can be £2 only at the corner nodes) using which we can assembly
the final linear system. In the matrix form it reads

AMC (@ Hu"=b (u" ). (6.252)
Let us index the rows and columns corresponding to some w;; by
I(i,j) = J(i,j) = iN2 + j (6.253)

where we will use [ for the rows of A (u"‘l) and J for its columns. We also define the inverse
mapping

i=i(I) = IdivNyresp.i=i(J)=.J div Na, (6.254)
j=jI) = I mod Ny resp. j=j(J)=J mod Na. (6.255)

If we set C';’;j = 0 for all such i, j,r, s that C:Ji'j was not defined so far, the matrix Ajs¢ is
given by the following algorithm.

Algorithm 6.3.10. Setup of the linear system matrix for the semi-implicit mean-
curvature flow consist of the following steps:

1. set A%C :=0forall I,J=0,---NyNoand by :=0forall I =0,--- N1 No
2. for the row I =0,--- N1 N5 do

3. if (i(1),j(I)) € Owy, set the boundary conditions

4. set A%C =1, br :==g;; for the Dirichlet boundary conditions

5. for r,s € {-2,-1,0,1,2}, J = J(i+rj+s) ANC = C’,Z)’i»j, by := 0 for the
Neumann boundary conditions

6. else set Arr:=1, by := ug._l

7. for r,s € {—1,0,1}, J = J (i +7,j +s) AMC == AMC — TC';’;J».

The linear system of the semi-implicit scheme for the Willmore flow

The equation (6.221)) gives

1
uly  7Q Vi | B Vawly — 5o Valy | = iy (6.256)

(@)
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which gives

6.3. Time discretisation

n n—1
n—1
s )
i n—1 ah + E" 1 8h _1< i3 O u"
h1 V11,043, z W 1. Y1204 5,5 T2 z+2,g 2 L 1415
QH%J
2
wn—l
.1 .
n—1 3h _ gl ahw +1 T2 g
~,11,i— 27] ,%121/ o 17]' 2 1 3Yx1 i_E’j
n—1
w. .
1 1 ( 7’7]+>
L n—1 h Er—1 h , n - 2 n
+h2 7,21,i,j+% o W 7]+§ + 7,22,z,j+2 IQw,]-&-% 2 ] 8ﬂf2ui7j+%
n—
<Qm'+;)
2
n—1
_ -1 h wn _Enr1 ho™ + i’jié 9. u" — vt
y2Lig—g T amg  y22-5 22 iy L\ oo
n—
and the approximations of the partial derivatives of u;; and w;; gives
n n—1
n—1 n—1
YALi+35 . v12i+15 o, n n n
h% ( i+1,5 ) 4h1h2 ( 2,54+1 i+1,7+1 i,7—1 i+1,5 1)
n—1 n—1
YILi—5.§ o, n V12i-3.5  p n n n
— s (Wi —wit ) = — o (Wi i — il — il )
h2 J J 4hy hs J J J J
2 2
n—1 n—1
w. 1 - w. 1 .
n n n ) )
o2 7 \3 (ui+1,j - uij) + 252 3 \Uij — Ui-1,)
1 n—1 1 Qn l
l+%»] 7,—7
n—1 n—1
7,210,545 (w? n n n 7.220.5+5 o p n
i+1,5 i+1,7+1 i—1,j z—l,]—i—l) 2 ( i,7+1 zg)
4h1h2 h2
n—1 n—1
77217i7j_§ ( n n n n 772277'7]_% n n
i+1,5 i+1,7—1 i—1,j 1—1,]—1) 2 ( i 7,—1,])
4h1h2 h2
2 2
n—1 n—1
1 ( Z’]+é> n n 1 < Z’]_é> n n n—1
BY¥] (wijn —wy) + om0 (uiy —uiya) | =

_2h§<

in

)

7]+

Let us now again introduce supporting coefficients C

2h3 <

;; for s € {~1,0,1}
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n—1 n—1 n—1 n—1
0,0 con-l | __ibited | Tydlizgg | 22ty 722,053
’ i i 7 z
n—1 n—1 n—1
10 . _on-l Y,11,i+5,5 v2Lig+y  v2Lij—3
B gl h3 4hyhsy 4h1hsy
n—1 n—1
171 _ TQn—l 7’12»i+%7j 77217i7.j+%
7] K 4h1h2 4h1h2 ’
n—1 n—1 n—1
01 . gnl TA2it5.d 12030 v,22,0,5+%
Eij T ij 2
4h1ho 4h1hs hs
_mn—1 n—1
—11 . ool 1A2i-3.5 T 2Lig+3
i Y 4h1h2 4h1h2 ’
n—1 n—1 n—1 n—1
o0 gnt YALi=5.5 %21,i,j+%+ 7,21,i,5—% 7,22,i,5—%
B gl h? 4hyhy 4hyhsy h3
n—1 n—1
C*l,*l o T n—1 77127i_%’j + ’7721:7:’]'_%
i Y 4h1h2 4h1h2 ’
n—1 n—1
0l pgnt V,12,i+ 5,5 7,12,i— 1.5
.3 B 4h1h2 4h1h2 ’
_mn—1 n—1
oLl _ _on-l i2itz.d 2Lig—3
i . Y 4h1h2 4h1h2 ’
7,8 _ —
and Gy .. for ;s € {—1,0,1} and |r| = [s| =1
2
n—1 n—1
of ) (w,. 1
CI’O = Tanl _1<Z+2’] 0071 _Tanl i hyt5
wQ,ij T ij 2h2 3| wQ,ij T iy 2h2
1 n—1 2 Qn—l
i+3. i+
2
w L w
—1.0 n—1 1 Z_%vj 0.—1 n—1 1 7'7‘7_%
Cugij = T 27\ | Cwei =T on2
1 Qn—l 2 Qn—l
i—3.J ij—1
and also
070 -—— r,S
Cuqij = > Cuwquij-
r,s€{—1,0,1};|r|=|s|=1
Then we may write
! /
n 7,8 n T',8 n _.n—1
Uy + E: CRijWitrj+s + E: CouQijWitr s = Uij >

r,se{—1,0,1}
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r!,s'e{—1,0,1};|r'|+]|s’|=1

)

(6.257)



6.3. Time discretisation

fori=1,---N1—1,j=1,---,Ny— 1. We expand wy,, ;. using the coeflicients C’w Tt for
0<i+r<Npand 0 <j+r <Ny, otherwise we replace w;; by w” 1 At the end we have
n 7,8 7,8
U + Z CIE,ij Z w,i+r,j+s H—r—l-v’ Jt+s+s’ (6'258)
rs€{-1,0,1} r,s'e{-1,0,1}
(i47,j+s)€wp,
v s’ n _ n—1
+ Z wQ,ijWitr! js' = Ui s
/.s'e{-1,0,1}
|| +]s"]=1
n r’.s n _ n—1
wpt D Culitiegey = U
s’e{-1,0,1}
|r'[+]s"]=1
TS n—1
- > R (6.259)
r,s€{—1,0,1}
(i4r,j+s)€dwp,
which is again a system of linear equations in g fori=1,---N;—1,j=1,--- ,No—1 and
it can be written in a matrix form,
A Hu"=b(u" ! w,1). (6.260)

What remains now, is to solve the boundary conditions. The Dirichlet problem is trivial to solve.
In case of the Neumann problem we must deal with the equations ((6.227))-(6.230)) - solving the

Neumann boundary conditions on uf] i.e. 6,’;1% = 0 on Owy, is also trivial. To solve (6.227))-

6.230|) proceed as follows. For the node ngal we get from (6.227) and (6.229]) for ¢ = 1 and

j=1

CIEoowoo "’C 00“’01

021

0,2
CIEOOwO2 +CIE00w2O +Cy 00w12
where
E En 1
0.0 _ 12,;,1 21,1,1 0,1
E,0,0 4h1h2 4h1h2 E,0,0
E En 1
o0 2,;,1 S R B
E,0,0 4h1h2 h2 ’ E,0,0
n— 1
1,2 12,31 2,0
Y = Cpfgi=—2— g =
IEOO E,0,0 * 4h1h2 E,0,0

+CZ

E"~

00“’21

1
11,11

+Cy 00w10 +C]Eoowll +

n—1

n—1
IE)21,1,2

n—
El

hl

1,11

19

4hihs’

n—1
IE:22,1,2

h

IEOO

1

hy 7
n—1
IE]21,1,2

4hihy’

for the node wN 0 we have from (]6 228[) and Q6 229[) withi=N;—1land j=1

n—1

-
CRY N1,0 N1 ot CIE N1, OwN1 1+ Can, N1 oW, Ly ot C} Nl,Ole—l 1

0,2
+CE N, 0Wh;, 5+

CIE N1 0“’1\/1 20T CIE N1 OwN1—1 9+ CIE Nl,ole—z 1

n—1

(6.261)

0 (6.262)
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6. Numerical approximation

where
n—1 n—1
0,0 E12 Ni—11 E21 N1—
E,N1,0 4h1h2 4h1h2
n—1 n—1
~1,0 IE12N -i1 E22 Np-1,1
[,N1,0 4h1h2 h2
n—1
0,2 12 12Ni—31
E,N1,0 E,N1,0 * dhihy

For the node wy

0,0 n—1 1,0 n—1
CE 0,N>Wo A N2 +CRy 0 N2w0 N271 + CE 0 N2w1 N, + CEy 0 N2w1 No—1
n—1 , n—1
+CE 0.3, W vs—2 T CBion, W5y + CE o vy Wi -2 + CElov, W vy 1 0 (6.263)
for
n—1 n—1
0,0 ]E12,;,N2—1 EQl 1,Np—1 -1 E11,§,N2—1 IE21 1,Np—2
;0,2 4h1ho 4hihy E0.N, ° h1 4hihy
n—1 n n—1
1,0 ]E12,;,N2—1 ]E22,1,N2 1,—1 E11,§,N2—1 E22,1,N2
IE ,0,N2 4h1h2 hg ) E,0,N2 * hl hg )
]E n—1
0,—2 12 B 127§,N2—1 2,0 _ ol 21,1,N2—3
E,0,Nz E,0,Ns dhihy E,0,Ns E,0,N; * Ahihy
and from (6.228)) and (6.230]) with i = N; — 1 and j = N2 — 1 we get
n—l 0,—1 n—1 n—1
CE Ny 3 Wy e+ OBy 3y Wi -1 + Oy i NN Z1,N,
1, 1 n—1 0,— n—1 n—1
+CR Ny N W, —1.N,—1 T CF Nl,Nngl No—2 T CIE NLNWN Z2 Ny
1,-2 -1 n-1 _
+Cg Nl,Nngl—l No—2 T C]E NN o N,—1 = 0 (6.264)
where
n—1 n—1 n—1 n—1
0,0 12,N1—1 Np—1 21,N;—1,N,—1 0,—1 11,N1—1,Np—1 21,N1—1,N,—1
I Nl’N2 N 4h1 hg 4h1h2 ’ ]E Nl’N2 B hl 4h1 h2 ’
n—1 n—1 n—1 n—1
E E
~1,0 12,N1—1 Np—1 22,N1—1,N,—1 —1,-1 11,N1—1,Np—1 22,N;—1,N,—1
I Nl’N2 4h1h2 h2 ’ I Nl’N2 h1 h2
En 1 En 1
0,—2 ) —1,—-2 B 12,N;— N2—1 —2,0 4—2,-1 . 21,N1— 17N2—%
E,N1,N2 B N1, N 4h1h2 ’ E,N1,N2 E,N1,Ng 4hyhso
roceeding to the equation (/6. withi=1landj=1,--- 2 —1 we get a system of equations
P ding to the equat 6.227) with land j =1, , No—1 we get a syst f equat
n 1
CIEO,]wO] +C]E ijlj CIE 0,;%0,5+1
0, n—1 _
—I—CEOJU)OJ 1+Cmojw1j+1+cmo,gw1] , = 0 (6.265)
for
n—1
0,0 1,0 11,5,
E,0,j E,0,j )
J J hy
n—1
0,1 0,—1 1,-1 1,1 12,2,3‘
C = C = ] P — ; Loi=
E,0, E,0,j E,0, E,0,5 4hihy’
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n—1 n—1

0,1 _T1L,N - 11 Em N1 —

’ N1,0 hl 4h1h2
n—1 n—1

-1,1 . _Ell Ni—= 1 EQZ ,N1— 1

’ WN1,0 7 hi ho ’
Er 1

-2,0 0_2’1 _ 21,N1— 1
E,N1,0 7 YIE,N1,0 " 4hiho

ng we take and with ¢ =1 and j

Ny — 1. It gives




6.3. Time discretisation

from (6.228) withi=N; —1and j=1,---, Ny — 1 we get
0,0 W 1 0,1 n—1
O N, W, + C]E A WN -1 T OF waNl g1
0,—1 n—1 w 1 w 1 _
+O8 Ny 0N -1 T O Wy a1 T O Wit jer = 0 (6.266)
for
n—1
0,0 N -1,0 . 1L,Ni—3j
E,N1,j E,N1,j hy ’
n—1
0,1 — 0%l ol sl 12,N1—3.7
E,N1,j E,N1,j E,N1,j ° E,N1,j ° 4hihs
from (6.229) with¢=1,--- ,N; — 1 and j = 1 we get
1,0 n—1 n—1
C]Ezowzo + O/ ow; 10+C]E10w2+10
0,1 W'y 1 1,1 n-1 _
+Cg, oWiq  + C]E i 0w1+1 1 T Cpowisy; = 0 (6.267)
where
n—1
0,0 _ 01 . 223
]E,Z,O - ]E,z,() - h2 ’
n—1
1,0 B ~1,0 . _ oLl a1 216,35
E,:,0 E,:,0 - E,:,0 * E,:,0 - 4h1h2
and finally from (6.230) with¢=1,--- ,N; — 1 and j = No — 1 we get
0,0 wh e 1 -1,0 w” 1 wh 1
C]EiNz i,No C]ElNQ i— 1N2+C]E7,N2 i+1,N2
0,—1 wh e 1 W 1 —-1,—1 W 1 o
+CE i Ny Wi Np—1 T CE,i,NQ ir1N—1 T Op i vy Wiy ny—1 =0 (6.268)
where
n—1
0,0 B 0,—1 . 22,2‘,]\/2—%
Ei N, E,i,N )
,4,N2 ,1,N2 hg
n—1
. 1
1,0 —1,0 —1,-1 1,—1 21,i,No—5
s = -C = —C =Cn v = ———2,
E,i,Na E,i,Na * E,i,No E,i,No 4h1h2

As before, we end up with a system of linear equations using which we are able to extend w'"

-1
v

from wy, to wy. The resulting algorithm reads:

Algorithm 6.3.11. Algorithm for the extension of wlhj to wy:

1. set A7s" :=0forall I,J=0,--

2. for therow I =0, --
3. if (i(I),j(I)) € wy, set

4. if (i(I),5(I)) € Owy, set

'NlNQ and b[ =0 forall I = O, e NlNQ

. NlNQ do

A}”f“ =1 and by := wf(l)?j(l)

A}”jffﬂ’ﬁs) {Es” and by := 0,
fori=w(l),j=j(I)and r,s € {-2,-1,0,1,2}
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6. Numerical approximation

5.

solve the linear system
Avertwh = .

The algorithm for assembling the linear system matrix for the semi-implicit scheme for the
Willmore flow is as follows:

Algorithm 6.3.12. Setup of the linear system matrix for the semi-implicit Willmore
flow consists of the following steps:

1.

10.

11.

12.

13.

114

set A% :=0forall I,J=0,---NyNoand by :=0forall I =0, --- N1 No

. evaluate w";! = QZ_IV -Vpy (Vu%_1> on wy,

Vi

in case of the Neumann boundary conditions extend wzhj on @" using the algorithm (6.3.11))

. for the row I =0,--- N7 N5 do

if (i(1),5(I)) € Owy, set the boundary conditions:
for the Dirichlet boundary conditions set

wo._ 1 n—1,_
A =1,br == 9ij s and w;; =0,

for the Neumann boundary conditions set by := 0 and

if i=i(I,J)=0 set Ajj:=—Tand A}, =1,
ifi=i([,J)=N1 set Aff:=land Ay, :=—1,
if j=5(I,J)=0 set Afp:=—Tand A}, ) =1,
if j=4(I,J)=Ny set AW :=1and AII/E/J(Z'J—l) = —1,
n—1
]

for all r,s = —1,0,1 do

else set Aj;:=1, by :=u

for all v/, s" = —1,0,1 and |r/| + |¢'| =1 set

if (i+7r,j+s)€w,do
for all 7/, s’ = —1,0,1 set

Ay = Ay +C£ijcgi+r,j+s for J = J(i—l—r—i—'r’,j —|—s—|—s')

if (i 47,7+ s) € dwy do set

P TS n—1
by := by — CIE,ijwi+7“,j+s



6.4. Numerical scheme for the parametric approach

6.4. Numerical scheme for the parametric approach

We will now describe numerical schemes for the parametric approach . It is a simplified version
of the scheme introduced in [77]. Since we use the parametric approach only for a comparison
with the level-set method, we consider only schemes of the semi-implicit nature. We discretise
the evolved plane curve by points z fori =1,--- ,N andn =1,--- , M. The index ¢ denotes the
space discretisation and index n stands for the time stepping. We remind that since we constrain
ourselves only to closed planar curves, we set the periodic boundary conditions z"; = z'{;_;,
Ty = Ty, TRy = 2] and zY o =2 for all n =1,--- M. For a uniform division of the time
interval [0,7] we get 7 = T'/M and with the uniform division of the parametrisation interval
[0,1], we get h = 1/N and we may write 2 = x (ih,n7). To solve the system ([5.123)-(5.125)
we also discretise the quantities g, s, o, 8 with their discrete counterparts 7', 7', o' and (.
For the approximation of the local lengths ri* we set

rp = |af —af . (6.269)

o) and B represent normal and tangential velocity of the node z}'. Discrete curvature &'

is piecewise constant approximation of x in the so-called flowing finite volume [:Tc?_l,:i’ﬂ for

e = x?‘l;xln. We also define local length of the flowing volume

- - 1
@ ~ |Ep, - ~ 5 (ri + 7)) (6.270)

For the approximation of the curvature x (see the Figure, we introduce the tangential vector
R} =z} — a7 . From (4.3) we see that « is in fact a change of angle between the tangential
vectors adjacent to the vector R;. Since &' is constant approximation of  in the flowing volume
[i“?, j?ﬂ]» we will evaluate it in the node z}'. We measure the change of the angle between R ;
and R}, ; related to the local length 7. It is given by

Af = arccos (H) )
B[R

To keep the correct sign of k (positive for convex and negative for concave parts) we multiply it
by the orientation of R ; and R} ; which is

sign (R}, 1 A R;—1) = signdet (R}, |, R} ;) .

Putting it all together, we have

AO 1 RY . -R!
K =00~ — = — " sion(R™, AR",)arccos [ —+L =1
7 S AS q?ﬁl + q? g ( ’L+1 ’L—l) ( T;Zrlr,?il
~ — sign (R™,; A R" ;) arccos | —4L ~i=1)
277 & ( il 1_1> < T i

where we used the fact that

1

1 1 1
3 (7“?,1 + rf) + = (rf + rﬁl) =i+ oriy oot =20
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6. Numerical approximation

Tit1

Ti—2 R, Ti—1

Figure 6.8.: Curvature approximation for the Lagrangian method is given as a change of the
angles 6; 11 and 6;_; corresponding to the tangential vectors R;;1 and R;_1 divided
by the distance ¢;—1 + ¢;.

Having 7' in hand, we may proceed to the discretisation of 8 from (5.4.1) and (5.4.2)). The
first one is trivial. In the case of (5.4.2)) we need to evaluate the second derivative of k at 7', it
is

Osk (x}) — Osk (93?_1)

PR (7)) = w
(3
_ 1 R (Tf) k@) k(@) — s (30)
ri 4 %
1 <"°?+1_’f? “?_“?1)
i q; a, /)

To approximate « we integrate the equation ([5.124) over the volume [z;_1, z;] and obtain

/ Osads = / KB — (KB)re) +w <g — 1> ds,
Ti—1 LTi—1

L
o — a1 =13 (ki — (KB)r)) +w <N - Ti) :

which gives

Denoting
L :Zrl and B :ﬁZrl/@lﬁl,
=1 =1

and setting ag = 0 we have

%

n—1
n n n—1 n—1,n—1 n—1 L n—1
of =af  +r (k]I B )—l—w( —r! >,
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6.4. Numerical scheme for the parametric approach

for i = 1,--- N. Finally we may proceed to the discretisation of the equation
Ox = fn + at. (6.271)

Since we aim to derive a semi-implicit scheme, we would like to express Sn in terms of partial
derivatives of x w.r. to s. For the mean-curvature flow from (4.4) we have fn = kn = —92x. It
is approximated as follows:

05X (Tip1) — 0sx (%) _ 1 <96i+1 — T Ti— xi—l)

O%x () ~ ” ~ "
1 1

Ti+1 T

To discretise fn with S given by 1) ie. B=—0%k— %Fc?’ we start with the fourth derivative
of the positional vector x:

Ix = 03 = -0 (kn) = =, (Oskn + KOsn) = —02kn — 20,60,n — KO?n
= —0%kn — 20,k (kt) — KOs (kt) = —02kn — 204k (Kkt) — KOskt — KOst
= —0%kn — 304k (Kt) — K205t = —0%kn — g@s (k) Osx — K*O2x.

It means:
3
O2kn = —9x — K20°x — 563 (HQ) 0sX,
and together with kn = —9st = —92x we have:
2 L3 4 3 2 292 L 202
05K + g jm = —0;x — 585 (k%) Osx — K°03x — 3" 0:x

a3 2 3 200
= —0;x 285(/1)83x QKOSX

— —8§‘X - %83 (K285X) .

The approximation of d%x is as follows:

Ox (Zi11) — O3x ()
q;
1 832}( (xi-i—l) - 0§x (LU,) 832}( (xl) - agx (:ci_l)
E ( Ti+1 - Ti )
1 <85X (.fi_;_g) — 85x (531'4_1) _ aSX (i'z'—&-l) — asX (i‘z)>
4iTi+1 gi+1 i
1 <03X (:Z‘prl) — aSX (:ﬁl) _ asX (i’l) — asX (Zi‘zl)>
q;7; qi qi—1
1 <9Ei+2 —Titl | Tit1 — $z>
Qi qi+17i+1 Ti+2 Ti+1

_ 1 (xi+1 — T X = xi—l)
ql-27“7;+1 Ti+1 T

o1 (fvi+1 — T X — wi—l)
Q?Tz‘ Ti+1 T

n 1 (% —Ti-1  Ti—1 — l‘z’—2>
qiqi—174 T Ti—1

oix (z;) =~

%

%

Q
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6. Numerical approximation

The second term is discretised as:

3

_ 3(K20sx) (Fit1) — (K20s) (%4)
583 (K205x) =~ 5

q;

31 9 Ti4l — T4 o&Lj — XTj—1
9 a0, \irl ) — Ry ‘ .
qi Ti+1 i

Q

To complete the space discretisation of ((6.271]) we need only to solve the tangential term:

Tit1 — Ti QG Tipl — Ti—1
at = o = — .
qi 2 i

We replace the time derivative in (6.271) by backward difference. We conclude with the following
algorithm:

Algorithm 6.4.1. The semi-implicit parametric approach with asymptotically uni-
form redistribution:

1. Evaluate the local length r}' for i = 1,--- N by

ri = vy — x|, (6.272)

7 7
and apply the periodic boundary conditions r”y = 1§, rg =iy, riy, =717 and 7R, =
ri.
2. Evaluate the curvature x}' for ¢ =1,--- N by

n o__ L. R™ . AR" R?Jrl ) Ryfl 6.273
/{i = ﬁSIgn ( i1 i—l) arccos W s ( . )
K3 1 11—

for R} = x} — 2} ; and with the periodic boundary conditions ", = s},_;, k§ = K},
n — n n — n
K1 = KT and KR 5 = KT
3. Evaluate the normal velocity /3"

a) In the case of the mean-curvature flow set

B =Ky, fori=—1,---N +2 (6.274)

7

b) In the case of the Willmore flow set

1 N eh no__ en 1
57‘ _ 1 <:‘<&7,+1 K; _ Ry "ﬂ—l) . 5 (Hn)fﬂ for i = 1’ . ,N (6275)

? n n n 7
4q; 41

T
where ¢; = % (rf + 7"?+1) and apply the periodic boundary conditions 8", = 8% _;, By =
BN Ba = Bt and By = BT

4. Evaluate the tangential velocity o} by

N N
1
L" = E r', B" = In g KB, w =01+ 02B"
1=1 1=1
oy = 0,
n—1

L
o = ol A (wPTIE -B Y w < - 7“”_1> ; (6.276)

n

fori=1,---,N.
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6.5. Numerical solution of eikonal equations

5. Solve:
a) Tridiagonal system for the mean-curvature flow:
Bizi_y + Ci'zi + Di'ziy, = F', (6.277)
where
qn qn
cr o= ooy, mr=far

T T

1 1

"i Tit1

b) Pentadiagonal system for the surface diffusion flow: where

c¢) Pentadiagonal system for the Willmore flow:

Aal o+ Biap  + Clal + DYl + By = FJY, (6.278)
where
i = T?qzn_ﬂ'?_il’ i_7_(i+ P+ D'+ E),
1 n
B = ——— Fr=tg
Tit1%+1"Ti+2 T
1 1 1 1
B = - ( + + + )
' (A AT D R/ AR (A B A Y
(3T ot
2 7 2
e < S SR S 1 )
’ rrarri (rR)?ar (Ra)Pa T @i
3(kf)®  of
2, 2

6.5. Numerical solution of eikonal equations

In this section we discuss possible numerical schemes to the eikonal equations and ((5.137)).
We will see that the main difficulties come from the necessity to get a scheme which will ensure
convergence towards the viscosity solution of resp. . We also require that in case
of the level-set function redistancing , the zero level-set curve (hypersurface) I" will be preserved.

We start with the time dependent equation . In the case of general Hamilton-Jacobi

equation of the from
ut + H (x,Vu (x)) =0, (6.279)

for H uniformly continuous, Ostrov [86], Bardi and Osher [4] show convergence of monotone
numerical schemes to the viscosity solution of (6.279). For the definition of the monotone
schemes see for example a book by Feistauer, Felcman and Straskraba [50].

Definition 6.5.1. Assume numerical scheme for the solution of (for the simplicity only

in RY) which can be written in a form
u?iH-l = (uifla o ,U?, e 7u?+l) .

The scheme is called monotone iff ® is nondecreasing in all its arguments:

ajgbj, forjzl,-'-,21+1:><I>(a1,---a21+1)S@(bl,u-,bng).
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6. Numerical approximation

In [80] we compared the following monotone iterative schemes for ([5.137): a regularised
scheme , an upwind scheme and the Godunov scheme .

6.5.1. Regularised scheme

The idea of the regularised scheme comes directly from the method of the vanishing viscosity.
The scheme has a form

Scheme 6.5.2. The regularised finite difference numerical scheme for the equation (5.137)) reads
as:

n+1_ n

ij ij . 0
- = sign (ul]) (1 —|Veusj]) + eAhu;‘j on wy,
h —
Uy li=o0 = P (Uzm)z] Onl Wp,
8ﬁuf] = 1 on Jwy, (the Neumann b.c.),
for
ul — 2uii 4+ ul ul — 2uii 4+ ul
h i—1,j ij i+l ij—1 ij i.j-+1

nt h3

6.5.2. Upwind scheme

The methods based on the upwind schemes are well known from the numerical methods for the
equation containing advection. For the first order Hamilton-Jacobi equation of the form

u + F (x,u) |Vu| =0, (6.280)
the upwind scheme reads as
uT.H'I —um
7 7 —
E— s = [Fyly Vi (u) + [Fyl Vi (ul) (6.281)
where
1
Vi = ([ub.,z-jﬁ + [up i)+ [wpis)s + [ f,z-j]i) : (6.282)
1
Vou; = ([Uf.,z'j]i + [up.i)” + [wpi)> + [u.b,z‘j]z_) °. (6.283)
and we use the notation [a] . = max {a,0} and [a]_ = min {a,0}. At the boundaries we replace:
up.ij by ug ;5 for i =0 and wuy ;; by uy, ;5 for i = Ny, (6.284)
U.b,ij by U.f.ij for j =0 and U, fij by U.p,ij for j = NQ. (6.285)

For (5.137)) we have:

Scheme 6.5.3. The upwind finite difference numerical scheme for the equation (5.137)) reads
as:

u%ﬂ —njj : 0 +(m : 0 —(n : 0
- = [sign (uy)], Vi (ufy) + [sign (ui;)] _ Vi (ulj) —sign (uj;) on wp,
U,Z ‘t:O = P (umz)m on Wy,

where VJUF and Vi; are given by ([6.283)) and (6.283)).
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6.5. Numerical solution of eikonal equations

6.5.3. Godunov scheme

The Godunov scheme — see Bardi and Osher [4] — is similar to the upwind scheme. For equation

(16.280)) it has a form

Pty
— =yl Vi (“w + 1Pl Vi (“53>
where
Vi = <max ([ub,7ij]+ ,— [uf.,ij]_>2 + max <[U.b,z‘j]+ » [u.f,z‘j]_)2> 2 ,
(6.286)
Vy = <max ([uf.,ij]Jr - [ub-,ij]i)z + max ([u.f,ij]+ T [u,b,z‘j])2> 2 ;
(6.287)

and the finite differences at the boundaries are handled in the same way as for the upwind

scheme using (6.284) and (6.285). In R? the scheme for the equation (5.137)) has a form:
Scheme 6.5.4. The Godunov finite difference numerical scheme for the equation (5.137)) reads

as:
k+1 .k
Wij “ij_[- 01 v, (uk) + [sign u%] Vi, (uk) — sign
- = sign UU + VM 'U/,L] sign u’Lj Vv U”L] sign uz‘j,
h —
uj lt=0 = P (Uini);; on wp,

where V]D and V;, are given by d6.286[) and (]6.287[).

6.5.4. Interface preserving re-distancing

In [R0], we show that the above mentioned schemes do not preserve the zero level-set sufficiently.
Moreover, in some cases when the evolution of is computed for a time long enough, the
zero level-set may totally disappear. We have achieved these results independently on the works
of Sussman and others [70} 69, 93 94] where we can read: ”"The evolution equation for the
interface conserves the volume of the domain bounded by the curve defined implicitly
by the equation wug (x) = 0. This is due to the fact that it does not change the position of the
boundary (zero level-set). In numerical computation this is not true anymore.”

The authors of [94] propose a method for better preserving of the zero level-set based on the
conserving of the volume of IntI’. If H is the Heaviside function defined as

1 if uw>0
H(u)—{o i ow<o0 (6.288)
then we want
9, / H (1) dx = 0. (6.289)
Q

It is a condition for the preserving of the volume of IntI'. Let us denote

L (up,u) = sign (up) (1 — |Vul).
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6. Numerical approximation

Instead of (5.137)) we consider a modified evolution equation
Ou = L (ug,u) + \f (u), (6.290)

where A is a function only of ¢ determined by
8,5/ H (u)dx = / H' (u) Oyu = / H' (u) (L (ug, u) + Af (u)) =0,
Q Q Q

which gives
o H WL (wo,w)
Jo H' (u) f (u)

To correct u only near the zero level-set we set

fu)=H'(u) [Vul.

For the numerical implementation, we consider the dual mesh (6.54), take a finite volume v;;
for 0 <7 < N1, 0< j < Na, ¢ and j fixed, and denote €);; its interior. We want to preserve the
volume of IT" interior on each €2;;. It means that 0 fQ H (u) dx = 0 should hold. It gives us

ij

d n = L (ué‘,uh) + i f (uh)7

dt "
e B ()
9T T, H ) (M)
The Heaviside and the sign function are discretise as
1 if ul > h
H, (uh) — 1 0 if uh < —h |

% (1 + %+ Lgin (w%)) otherwise

signy, (uh) S <Hh (uh) _ ;) .

The partial derivatives of v are approximated as
wp. ;o if uf.Jjuhsign (uo,ij) < 0 and (up. ;5 + uf.45) sign (ug,i;) <0
821 Uy =~ Up. i if ub.,ijuhsign (UO,ij) > 0 and (ub.7ij + Uf.7z‘j) Sign (U()J'j) >0
0 if wp.i;8ign (uo,ij) < Oand wy. ;5sign (ug,;) > 0
w.pi;  if u.fﬂ'juhsign (uo,ij) < 0 and (u.pi; + u.ri5) sign (ug5) < 0
8;}2’&1']' ~ U.p 5 if u.b,ijuhsign (UOJ;]') > 0 and (u.b@' + U.fﬂ‘j) sign (UOJ']‘) >0
0 if wp;8ign (uo,ij) < Oand w.y4jsign (ug,i;) > 0
and the numerical scheme reads as:

Scheme 6.5.5. The zero level-set preserving explicit finite difference numerical scheme for the
level-set function redistancing with the first order discretisation reads as

~n+1 n h = n
¥ = u; +7L <u07u ) ,
n+l _  ~n+l / h h
Uy = u;  + TN (u()) ‘VUOM )
~n+1 h
! h\ % "Uo,ij
Nij = , (6.291)

dx

2
fQij {H//z <u82j>} ‘V“g,ij

where 7 is fixed time step.
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6.5. Numerical solution of eikonal equations

The integrals over the finite volume €2;; are approximated as

1

h2
/Q gdx =~ 5 | 16g9i + > Gitm,jtn

i m,n:—l;(m,n)#(0,0)

The discretisation of the constraint removes the leading order term of the error in

/Q (Hp (u™*) = Hp (uo)) -

ij

The Taylor expansion gives
| () = Hy (w0)
n+1 o 2
:/ Hj, (uo) (u" = ug) + / Hy uo) +--

If we assume that );; is constant on );; then we may write

/ Hj, (uo) (u™ = uy)

/ Hh Uo) ( ntl + T)\ZjH (UO) |VUO| - Uo)

=T [/ Hh U() dX—i—)\lj/ (H]/l (UQ))Q‘VUO‘dX =0,

ij

where the we substituted from ((6.291]).

6.5.5. Direct methods

At the end of this section we only refer to some direct methods which might be used for finding
a viscosity solution of an equation

IVu (x)] = F (x) on R" and u =g on I' C R", (6.292)

where the boundary conditions are given on some subset I' where u is fixed. ' might be for
example some hypersurface to which we want to construct the (signed) distance function — in
this case ¢ = 0. We should also imposed some compatibility condition on g to ensure that
has a solution. Let us assume that such solution exists. Discretisation of the left hand
side of using some of the monotones scheme gives linear system which might by solved
by some appropriate solver of linear systems. However, better understanding of this equation
allows us to develop much more efficient methods. Very simply said, we should construct the
solution first at the regions closer to I'. It corresponds well with the fact that simulates
a monotonically advancing front, for example water front. Assume that n = 2, g = 0 and I
is a planar curve representing the front moving in R? with speed v (x) = 1/F (x) depending
on the space variable x (v is only scalar now and it says, in what speed the particles of the
front can move at given point x). I'(¢) given as I' (t) = {x € R? | u(x)} = ¢ is just the shape
of the advancing front at time t. Realizing this fact it is really natural that we construct the
approximate solution first at the nodes of the numerical mesh which are closest to I" |;—p and
the we proceed to further regions following the front.
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6. Numerical approximation

This idea led to the first method optimised just for . It was the fast marching
method by Sethian [61]. This method splits all nodes of the numerical mesh to fixed points
(those where we already know the approximate solution), tentative points (they are usually
neighbours of the fixed points and therefore we can approximate the solution there using the
values from the fixed points) and unknown points (they are too far from the regions where
we know the approximate solution so that we do not even try to guess their values). At each
iteration of the algorithm we seek for the tentative point with the smallest value. This point is
the closest one to the region where we know the solution. We fix this point, update values of its
neighbours and mark them as tentative. It is an efficient method which allows us to construct
the solution only in some small neighbourhood of I'. It is useful especially for the narrow band
methods . The main disadvantage of this method is the necessity of searching the tentative
point with the smallest value. This can significantly slowdown whole method. Heap sort is
usually preferred for this task.

Tsai, Cheng and Zhao [102, 58] introduced the fast sweeping method . This method
eliminates any seeking. It consists of the Gauss-Seidel type iterations called sweepings. At each
sweeping we immediately use new values at nodes we went already through as it is usual for
the Gauss-Seidel iterations. If the direction of the sweeping agree with the direction at which
the front is propagating we construct the correct approximate solution very efficiently. To cover
all the directions the front can propagate, we change the direction of the sweepings every time
we finish one sweeping and start another. It is not difficult to prove that if f = 1 we can get
the approximate solution after 4 iterations — see Qian, Zhang and Zhao [88]. The fast sweeping
method is simple to implement and at the same time it is very efficient.

In [80] we introduced so called the front tracing method. It combines advantages of both
methods. It also avoids the necessity of seeking for the smallest tentative node and at the same
time it allows to construct the approximate solution only in some small neighbourhood of T’
which is not possible with the fast sweeping method. In cases when f is not constant and
generates more complex characteristics (lines along which the front is moving) the fast sweeping
method may require more then 4 iterations. At this situation the front tracking method might
perform even better then the fast sweeping method. The disadvantage of the front tracking
method is in its higher complexity (it is also why we do not explain this method in this text)
and the fact that it is not trivial to extend it to higher dimensions which is trivial for both fast
marching and fast sweeping method.

For our numerical simulations we preferred mainly the fast sweeping method.
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7. Computational studies

7.1. Experimental order of convergence

In this chapter, we describe methods which we use for the measuring of the experimental order of
convergence and we also present many qualitative results obtained using the numerical schemes

we described in this thesis.

7.1.1. Experimental order of convergence for the graph formulation

To our best knowledge, there is no analytical solution for the graph formulation of the mean-
curvature flow or Willmore flow. To study the experimental convergence, we solve a modified

problems of the form

Ve
Op = Q@V-<>—|—FMC¢ on (0,T) x €,
¢ lt=0 = pini onfl
with the Dirichlet boundary condition
p=g¢g on 0,

(7.1)

for the isotropic graph formulation of the mean-curvature flow and

w2
dhp = —Q(p)V- <11P (¢) Vw (¢) — ;Qg Ez;

w = QHonQx|[0,T],
¢ lt=0 = ©ini on §,

with the Dirichlet boundary conditions

w=g,w =0 on 0,

Vgo) + Fyw () on Q x (0,7],

(7.2)
7.3

for the isotropic graph formulation of the Willmore flow. We choose Fj;c and Fy such that

(7.1) and (7.2)—(7.3) have analytical solution. Having a function ¢ (x,t) and setting

Fye (0) = -Q(O) V- (%) Lo,

(7.4)
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7. Computational studies

and

Fw (@) = Q)Y (JP (€)Y (Q)

1 L 1u?(Q)
20°(Q)

16 W) o

V¢

0@ = QY (g) e x 0.1,

©)

We express all necessary quantities in terms of the function (:

Q
Quz
Qy

Qua
Quy
ny
(o
Qaay

Q:L"yy

nyy

126

e+ G+ ¢

(CaCoa + Cylay) / Qs

(CyCyy + Calay) / Qs

(C2a + Calamr + Coy + Cyloay — Q) /Q,

(CoyCaa + Celazy + Cyylay + Cylayy — R2Qy) /Q,

(Coy + Cylyyy + Coy + Calayy — Q2) /Q,

(3CeaCazr + Calazae + 2CuyCany + CoyCozy + CyCoaay — 3Q2Q) /Q,
(2CeaCoay + CoyCaza + CaCozay + 2CayCayy + CyyCazy + CyCazyy
—2Q:Qzy — Q22Qy) /Q,

(2CyyCayy + CoyCuyy + CyCoyyy + 2CayCamy + CaaCoyy + Calomyy
—2QyQuy — QyyQ2) /Q,

(3CyyCyyy + CyCyyyy + 2CeyCayy + CayCayy + Celayyy — 3QyQyy) /Q,

(sz + ny) /Q — (CQz + CyQy) /Q27

(Cow + Cayy) /Q + 2Qz (GQu + (Qy) /Q° —

(2602 Qx + CyyQa + CQuaz + CoyQy + G Quy) / Q%

(nyy + Cm"y) /Q + 2Qy (CZBQCE + CyQy) /Q3 -

(2CyyQy + CoaQy + G Quy + CayQu + CQuy) /Q?,

(Cazay + Cayyy) /Q — [Qu (Caay + Cyyy) + Qy (Caazx + Cayy) +

Quy (Cez + Cyy) + CoayQz + CoyQuz + CooQuy + CeQuay+

C:t:nyy + nysz + nyny + Cnyyy] /Q2 +

2(QeQy (Caz + Cyy) + Qu (CayQu + CuQuy + CpyQy + (yQyy) +

Qy ((o2Qa + GoQua + CayQy + (yQay) + Quy (C:Qa + Q)] /Q° —
6[Q2Qy (G:Qx + Q)] /QY,

(Cozze + Coayy) /Q — (QuCayy + 3Co2aQz + 3C22Qur + (e Qraat
CayyQa + CyyQua + CoayQy + 2CayQuy + (yQuay) /Q* +

2[Quz (G2Qz + (yQy) + Qu (32 Qu + 2¢Qua + 2C4yQy + (yQuy+
CyyQa + yQay)] /Q° — 6 [Q2 (G Qx + (,Qy)] /QY,

(nyyy + C:m:yy) /Q - [Qy(ﬂmy + 3nyyQy + 3nyny + Cynyy+
CowyQy + CozQuy + CoyyQu + 26y Quy + CoQuyy) / Q% +

2[Qyy (GQy + (Qq) + Qy (3CyyQy + 2¢yQyy + 2Cuy Qe + (o Quy+
CoaQy + C:Qay)] /Q° — 6 [Q2 (G, Qy + (Q2)] /Q°,




7.1. Experimental order of convergence

w = QH,
Wy = QxH + QH;L’a
wy = QyH +QH,,
Wyy = Qa:yH + QyHm + QxHy + QHrya
Wyy = QuyH +2QuHy + QHyy.
Eff = 1/Q-¢/Q°,
Ely = —G(y/Q°,
By = 1/Q-(/Q°
B, = —Qu/Q*—26:Cr/Q° +3Q.(2/Q",
E}/g,:p = - (Cm:gy + ngxy) /Q3 + 3Q:c<a:€y/Q4v
E}/g,y = - (CacyCy + Cnyy) /Q3 + 3Qy€m<y/Q4a
Eggy = _Qy/Q2 - QCyny/QS + 3@3;(5/@47
We get that (7.4]) reads
Fyo = —w+ 0, (7.7)
and for (7.5) we get
Fy = -Q [Emwz + Eﬂ/wm + Egg,ywy + Eggwyy
+ By wy + Elywey + Ely we + By wey
1
_5 ((2101033(95 + w2<:mz + 2wwy<y + w2ny) /QS
- 3w2 (Cme + CyQy) /Q4)] + atC- (7'8)

As an analytical solution ((x,t)

of (7.1)) and (7.2)—(7.3) we chose the following function

¢ (z,y) := cos (mt) 7“% (" —r™) (y" —r") exp (—J (932 + yQ)) on Q x [0,7T1,

(7.9)

for Q = [—~r,r]2. Then we get

Cx = cos(mt) /r2" (y" —r") nz" 1 exp (—a (:1c2 + y2)) — 20x(C,

Gy := cos(mt) /7“2" (™ —7r") ny™ Lexp (—cr (;U2 + y2)) — 20z,
Cea = cos(mt) /7“2” (y" —r") (n (n—1) "2 — 2anx") exp (—a (mQ + y2)) —20(C+ (),
Cey = cos(mt) /2" (nQy”_lx”_l exp (—O‘ (:cQ + y2))) — 20 (yCp — (y) — 402 2yC,
Cyy = cos(mt) /r*™ (a" — " (n(n-1) Yy — 20ny™) exp (—o (x2 + y2)) — 20 (¢ +yly)
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Cowe = cos(mt) /r?" (y" —1r™) (n(n—1) (n—2)2"> = 20n (2n — 1) 2" + 407na™ )
exp (=0 (2 +y°)) = 20 (20s + 2Caa)

Coay = cos(mt) /r2n ( 2(n—1)z" 2yt — 20n2ay"" 1) exp (—0 (acz + y2))
—20YCaa — 4029 (C+2C) — 20y — 202(yy,

Coyy = cos(mt) /r*" (n Zn—1)a" gy 2 — 2an2x”_1y”) exp (—o (x2 + yg))

—202Cy, — 4072 (¢ + y¢y) — 206, — 20YCay,

Cypy = cos(mt) /r?™ (" — ™) (n(n—1)(n—2) Y3 —20m (2n — 1)y + 402ny”+1)

exp (* (“7j +y )) — 20 (2¢y + YCyy) »
Coaza = cos(mt) /r*" (y" —r")exp (=0 (2 + y7))

(n(n—1) (n72)( 3):1: ~ —6on(n—1)(n—1)z""? + 120%n>z" 803nx”+2)
—20 (SCxx + mecx) )

Coazy = COS (7rt) /r*" (n(n—1)(n—2)2"" —20n (2n — 1) 2" ' + 4c*na™ ")
(ny" ™' =20y (y" — 1)) exp (— (x +1%)) = 20 (26ay + Caay)
Cowyy = cos(mt) /r*"exp (—o (2° +y?))
2

<n2 (n—1)22"2y""2 —20n% (n — 1) 2"y 2 — 20m% (n — 1) 2"~ 2y"+402n2x"y")

—20 (Cxx + ny + ygxxy + mnyy) - 40' (C + «TC;E + yCy =+ $yCa:y) )

Cogyy = cos(mt) /r*" (n(n—1)(n—2)y" > —20n (2n —1)y"" ' + 4o’ny™*")
(na:”fl — 20z (2" — 1)) exp (—U (x2 + yQ)) — 20 (2Cay + YCayy) »
Cyyyy = cos(mt) /r2" ("™ —r™)exp (—0’ (m2 + y2))

(n(n—1)(n—2)(n—3) Yyt —6on (n—1)(n—1)y" 2 + 120%n%*y" — 8o ny"+2)
—20 (3Cyy + YCyyy) -

For given T, we evaluate the errors in the norms of the spaces Ly (€2;[0,77]), L2 (€2;[0,7]) and
L (€2;]0,T1) resp. their approximations

N1,N2
h,T
h b
_ — Ej Y e h,—r + jh, k ‘h 1
HSD Ph(C)‘Ll(wh;[O,T]) 2T 2 ¢ (=r +ih,—r + jh, kT) (7.10)
hor M N1,N2 9 %
h_ ’ — h (k) — (gt bt 2
le" =P, om §_jTi:§0j:j0(som<kT> C(=r+ih, =1+ jhkr)) B2 |
(7.11)
h,7
[ =P @], oy = e, e (el (b7) = C (i, —r 4 bk, (712)

=0, N
for 7 = T/M. We would like to emphasise that 7 does not correspond with the time step of a
solver. In case of the explicit schemes, the time step is adaptively set by the solver. For the
semi-implicit scheme the time step is proportional to h2.
The experimental order of convergence is evaluated as follows - for two approximations ¢ and

©"2 obtained by the discretisation with the space steps h; and hy we compute the approximation
errors Erry, and Errp, in one norm of (7.10)—(7.12) as

log (Erry, /Errh,)
log (h1/hs)

EOC (Erry,, Erry,) == (7.13)
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7.1. Experimental order of convergence

The results for the numerical schemes for the mean-curvature flow of graphs (6.3.2)), (6.3.4),

(6.3.6), (6.3.8) and the Willmore flow of graphs (6.3.3)), (6.3.5), (6.3.7), (6-3.9) are presented
in the Numerical experiments (7.1.1))-(7.1.8) resp. Figures (7.1)-(7.16). One can see that the
one-sided schemes approximate both ¢ and w with the EOC equal to 1 - see Tables (7.1)), (7.2)),

and . For this class of schemes we tested only the explicit versions. On the other
hand, the central schemes approximate the quantities ¢ and H resp. w with the second order of
accuracy except of the approximation of w in the case of the Willmore flow. Here, only the error
in Ls, norm decreases with the second order. It follows from Tables , , and .
Note also, that the central schemes require significantly less CPU time in comparison with the
one-sided schemes, the only exception here is the finest mesh for the Willmore flow. Even for
this class of schemes we tested only the ones with the explicit discretisation in time. Finally
the complementary finite volume schemes with the explicit time discretisation also give EOC
equal to 2 - see Tables , , and . Concerning the CPU time requirement,
it is comparable with the one-sided schemes. For this class of scheme we also implemented
the semi-implicit counterparts. The results can be found in Tables (7.13)), (7.14)), (7.15) and
. We achieved again the approximation of the second order and we see that, except of the
mean-curvature flow, the semi-implicit schemes are computationally much more efficient.

h I HLl (wn3[0,1) I HL2 (wn;[0,T7) 1 (wn;[0,77) CPU/sec.
Error ‘ EOC | Error ‘ EOC | Error. ‘ EOC
1/2 | 0.003227 0.00394 0.02163 1
1/4 | 0.001216 | 1408 | 0001544 | 1351 | go1125 | 0-9428 1
1/8 | 0.000541 | 1-168 ¢ 0007301 | 1-081 | g opa77 | 1238 3
1/16 | 0.0002576 | 1-07 | 0.0003602 | 1-02 | 0.002178 | 1-131 8
1/32 | 0.0001262 | 1-03 | 0.0001795 | 1-005 | 9.001046 | 1-058 31
1/64 | 6.26e-05 | 1011 | g 967e-05 | 1001 | 9005103 | 1-036 292

Figure 7.1.: EOC of the approximation of ¢ for the explicit one-sided numerical scheme for
the mean-curvature flow of graphs 1' See the Numerical experiment [7.1.1

h,T

) (nil0.T) 17 o2 1127 ooy

Error ‘EOC Error ‘EOC Error. ‘EOC
1/2 | 0.02809 0.04154 0.292
1/4 | 0.01383 | 1-023 | 2067 | 0-8739 | g 9004 | 0-543
1/8 | 0.006039 | 1195 | 01211 | 0-9041 | 91095 | 0.9328
1/16 | 0.002888 | 1-064 | 0.006139 | 0-9804 | ¢ p5569 | 0-9148
1/32 | 0.00142 | 1-024 | 9 gp308 | 0-9952 | (2707 | 1.03
1/64 | 0.000706 | 1-009 | 0.001541 | 0-9988 | (01346 | 1-019

Figure 7.2.: EOC of the approximation of w for the explicit one-sided numerical scheme for
the mean-curvature flow of graphs 1j See the Numerical experiment

Numerical experiment 7.1.1. EOC for the explicit one-sided finite difference numerical scheme for the mean-
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7. Computational studies
curvature flow of graphs. Computational domain: Q = [—4, 4]2. Initial condition:

pini (2,9) = 1 (@" ") (4" — ") exp (-0 (o 7))

forr =4,n=4,0 = 1. Final time: T = 0.1. Space steps: 0.5 x 0.5, 0.25 x 0.25, 0.125 x 0.125, 0.0625 x 0.0625,
0.03125 x 0.03125 and 0.015625 x 0.015625. Time step: Adaptive. Numerical scheme: Figure:
and Remark: The approximation of ¢ and w is of the first order.

. 112 oy 1025 ntory 1L o1 —
Error ‘ EOC | Error ‘ EOC | Error. ‘ EOC
1/2 | 0.01267 0.01914 0.167 1
1/4 | 0003319 | 1932 | 000459 | 2:06 | 004993 | 1-742 1
1/8 | 0.0008469 | 1-971 | p.001111 | 2:047 | 900921 | 2-439 3
1/16 | 0.0002127 | 1-993 | 00002771 | 2:003 | 0002137 | 2-107 6
1/32 | 5.324e-05 | 1-998 | 6.9250-05 | 2 0.000528 | 2-017 14
1/64 | 1.331e-05 | 2 1.731e-05 | 2 0.0001316 | 2-004 98

Figure 7.3.: EOC of the approximation of ¢ for the explicit central numerical scheme for the
mean-curvature flow of graphs (} See the Numerical experiment [7.1.2

L R ||L1 (wn3[0,77) I HLQ (wp3[0,T]) I HLoo (wr3[0,T7)

Error ‘ EOC | Error ‘ EOC Error. ‘ EOC
1/2 | 0.05449 0.06402 0.3501
1/4 | 0.02439 | 116 | go3808 | 0-7494 | (4347 | -0-312
1/8 | 0.007615 | 1679 | 001356 | 1489 | 1864 | 1-221
1/16 | 0.002055 | 1-89 | 0.003667 | 1-887 | 0.05047 | 1-885
1/32 | 0.000523 | 1-974 | 0.0009342 | 1973 | 0.01286 | 1-972
1/64 | 0.0001313 | 1-994 | 0.0002347 | 1-993 | 0.003231 | 1-993

Figure 7.4.: EOC of the approximation of w for the explicit central numerical scheme for the
mean-curvature flow of graphs 1} See the Numerical experiment [7.1.2

Numerical experiment 7.1.2. EOC for the explicit central finite difference numerical scheme for the mean-
curvature flow of graphs. Computational domain: = [—4, 4]2. Initial condition:

Yini (T,9) == 7”2% (" —r") (y" —r")exp (—0c (ac2 + yz))

for r =4,n = 4,0 = 1. Final time: T = 0.1. Time step: Adaptive. Numerical scheme: Figure:
and Remark: The approximation of ¢ and w is of the second order.
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7.1. Experimental order of convergence

b | Miwom | MEaon | Filoon | opyje
Error \EOC Error \EOC Error. ‘EOC
1/2 | 0.003339 0.004452 0.02897 1
1/4 | 0.0008226 | 2:021 | 0.0000809 | 2:182 | 0.005666 | 2-354 1
1/8 | 0.0002085 | 198 | 0.0002458 | 1997 | 0.001335 | 2-086 3
1/16 | 5.226e-05 | 1-996 | 6.152¢-05 | 1-998 | 00003299 | 2-016 6
1/32 | 1.307e-05 | 2 1.539¢-05 | 1-999 | g 996005 | 2-004 929
1/64 | 3.268¢-06 | 2 3.847¢-06 | 2 2.055¢-05 | 2-001 368

Figure 7.5.: EOC of the approximation of ¢ for the explicit complementary finite volume
numerical scheme for the mean-curvature flow of graphs (6.3.6). See the Nu-

merical experiment

L - HL1 (ws[0,T7) ;[0,77) I ”Loo (wns[0,T7)
Error ‘EOC Error ‘EOC Error. ‘EOC
1/2 | 0.02175 0.03425 0.2702
1/4 | 0.006553 | 1731 | 0.008048 | 2:09 | g.08475 | 1673
1/8 |0.001721 | 1929 | 0001988 | 2:017 | g.02168 | 1-967
1/16 | 0.000438 | 1974 | 0.0005028 | 1-983 | 0.005449 | 1-993
1/32 | 0.0001099 | 1-995 | 0.0001261 | 1-996 | 0.001364 | 1-998
1/64 | 2.762e-05 | 1-993 | 3.155¢-05 | 1:998 | 00003411 | 2

Figure 7.6.: EOC of the approximation of w for the explicit finite difference numerical scheme

for the mean-curvature flow of graphs (6.3.6). See the Numerical experiment
7.1.3

Numerical experiment 7.1.3. EOC for the explicit finite difference numerical scheme for the mean-curvature
flow of graphs. Computational domain: 2 = [—4, 4]2. Initial condition:

1 n n
)= ~on (" —7") (y" —r") exp (—U (m2+y2))
forr=4,n=4,0 = 1. Final time: T = 0.1. Time step: Adaptive. Numerical scheme: Figure:

Pini (T,

and Remark: The approximation of ¢ and w is of the second order.

o | Mewn | Wiewn | Mileon | opome
Error ‘ EOC | Error ‘ EOC | Error. ‘ EOC

1/2 | 0.05847 0.1215 0.6936 3

1/4 | 0.004741 | 3:624 1 000441 | 4785 | 01577 | B4 5

1/8 | 0.001783 | 1411 | 9002152 | 1:035 | g gpg123 | 0-7894 65

1/16 | 0.000602 | 1-966 | 0.00073 | 1-56 | 0.003162 | 1-529 3672

1/32 | 0.0002489 | 1274 | 0.0003037 | 1-265 | 0001246 | 1-344 273181

Figure 7.7.: EOC of the approximation of ¢ for the explicit one-sided numerical scheme for
the Willmore flow of graphs 1) See the Numerical experiment [7.1.4]
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h,T
) 1 nsto.r Isenory | 12 @nior
Error ‘ EOC | Error ‘ EOC | Error. ‘ EOC
1/2 | 0.3495 0.8077 4.281

1/4 | 0.04469 | 2-968 | 906361 | 3-667 | 05434 | 2-978
1/8 | 001728 | 137 | 0.02333 | 1447 | 01206 | 2148
1/16 | 0.007537 | 1197 | 0.01080 | 1:099 | 05642 | 1-119
1/32 | 0.003566 | 108 | 0.005345 | 1-027 | 02793 | 1-014

Figure 7.8.: EOC of the approximation of w for the explicit one-sided numerical scheme for
the Willmore flow of graphs 1} See the Numerical experiment

Numerical experiment 7.1.4. EOC for the explicit one-sided finite difference numerical scheme for the Will-
more flow of graphs. Computational domain: Q = [—4, 4}2. Initial condition:

fini (,) 1= 3 (2" = 1) (4" = ") exp (=0 (22 +47))

forr =4,n=4,0 = 1. Final time: 7' = 0.1. Space steps: 0.5 x 0.5, 0.25 x 0.25, 0.125 x 0.125, 0.0625 x 0.0625
and 0.03125 x 0.03125. Time step: Adaptive. Numerical scheme: [6.3.3] Figure: [7.7and[7.8l Remark: The
approximation of ¢ and w is of the first order.

. 1 0.1 0.1 I o) CPU /scc,
Error ‘ EOC | Error ‘ EOC | Error. ‘ EOC

1/2 | 0.2631 0.8637 9.058 1

1/4 | 0.04963 | 2406 | go7862 | 3488 | o374 | 4596 6

1/8 | 0.005386 | 3204 | 0.004646 | 4-081 | 9 02642 | 3-826 14

1/16 | 0.001284 | 2:068 | 9001061 | 2-13 | 0.004619 | 2-516 201

1/32 | 0.0002489 | 2-367 | 0.0003037 | 1-805 | .001246 | 1-89 268116

Figure 7.9.: EOC of the approximation of ¢ for the explicit central numerical scheme for the
Willmore flow of graphs 1) See the Numerical experiment |7.1.5

h H ”Ll(w}“OT] || HL2 wh,[OT] H HLoo(whvoT]
Error ‘ EOC | Error ‘ EOC Error. ‘ EOC
1/2 0.5269 0.5517 1.838

1/4 | 02113 | 1318 1 gogg2 | 0-8974 | 9199 | -0.2537
1/8 | 0.03547 | 2:375 | g.04777 | 2:632 | g 5783 | 1.922
1/16 | 0.009032 | 1-974 | 0.01212 | 1979 | g.1307 | 2-145
1/32 | 0.003566 | 1341 | 0.005345 | 1-181 | 02793 | 2-227

Figure 7.10.: EOC of the approximation of w for the explicit central numerical scheme for the
Willmore flow of graphs |) See the Numerical experiment [7.1.5

Numerical experiment 7.1.5. EOC for the explicit central finite difference numerical scheme for the Willmore
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7.1. Experimental order of convergence

flow of graphs. Computational domain: Q2 = [—4, 4]2. Initial condition:

fini (2,9) = e (@ =) (5" = 1) exp (=0 (2 + 7))

forr =4,n=4,0 = 1. Final time: T = 0.1. Space steps: 0.5 x 0.5, 0.25 x 0.25, 0.125 x 0.125, 0.0625 x 0.0625
and 0.03125 x 0.03125. Time step: Adaptive. Numerical scheme: Figure: and Remark:
The approximation of u is of the first order and the approximation of w is of the first order except of the error in
the norm H'”g’;(%;[o,ﬂ) where the approximation is of the second order.

o | Wwn | Wiewn | Mioem | orome
Error \EOC Error \EOC Error. \EOC

1/2 | 0.0992 0.202 1.049 3

1/4 | 0.00437 | 4505 | 0.004395 | 5523 | gg2826 | ©-214 5

1/8 | 0.0009964 | 2-133 | 9.000755 | 2-541 | 0.001687 | 4-066 7

1/16 | 0.0002499 | 1-995 | 0.0001804 | 1:995 | 0.0004223 | 1-999 4494

1/32 | 6.256e-05 | 1998 | 474005 | 1:999| 90001057 | 1998 | 328300

Figure 7.11.: EOC of the approximation of ¢ for the explicit finite difference numerical
scheme for the Willmore flow of graphs (6.3.7). See the Numerical experiment

7.1.6
h,T
h ” ||L1 (wn;[0,17) (wn;[0,T7) H HLoo (wn;[0,17)
Error \ EOC | Error \ EOC | Error. \ EOC
1/2 | 0.4846 0.8378 3.652

1/4 | 0.03197 | 3922 | 004893 | 4-098 | 5334 | 2776
1/8 | 0.007023 | 2187 | 900779 | 2:651 |  pgg12 | 2598
1/16 | 0.001763 | 1-994 | g.001911 | 2:028 | ( p2102 | 2-068
1/32 | 0.0004408 | 2 0.0004755 | 2:007 | g gp52 | 2-015

Figure 7.12.: EOC of the approximation of w for the explicit finite difference numerical

scheme for the Willmore flow of graphs (/6.3.7). See the Numerical experiment
7.1.6

Numerical experiment 7.1.6. EOC for the explicit finite difference numerical scheme for the Willmore flow
of graphs. Computational domain: Q = [—4, 4]2. Initial condition:

Pini (z,y) 1= Tin (" =r") (" —r")exp (—0o (x2 + y2))

forr =4,n=4,0 = 1. Final time: T = 0.1. Space steps: 0.5 x 0.5, 0.25 x 0.25, 0.125 x 0.125, 0.0625 x 0.0625

and 0.03125 x 0.03125. Time step: Adaptive. Numerical scheme: Figure: and [T.12] Remark:
The approximation of ¢ and w is of the second order.
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) 11 onstocry 11 onstocry LT onso) —
Error \EOC Error \EOC Error. \EOC
1/2 | 0.0033 0.004406 0.02867 0
1/4 | 0.0008171 | 2:014 1 9 g009751 | 2:176 | 0005642 | 2-345 0
1/8 | 0.0002078 | 1976 | 0.000245 | 1993 | 9001332 | 2-083 9
1/16 | 5.216e-05 | 1-994 | 6.143¢-05 | 1-996 | 0.0003296 | 2-015 15
1/32 | 1.306c-05 | 1-998 | 1 5370.05 | 1-998 | g 921¢.05 | 2:003 101
1/64 | 3.266e-06 | 1999 | 3.845¢-06 | 1999 | 2.054e-05 | 2-001 823

Figure 7.13.: EOC of the approximation of ¢ for the semi-implicit finite difference numerical
scheme for the mean-curvature flow of graphs (6.3.8).

See the Numerical

experiment

. T BT/ I,
Error ‘EOC Error ‘EOC Error. ‘EOC
1/2 | 0.01955 0.03179 0.2601
1/4 | 0.006261 | 1-643 | o.007808 | 2:026 | o 08415 | 1628
1/8 | 0.001679 | 1899 | 0001955 | 1:998 | g 02162 | 1-96
1/16 | 0.0004324 | 1957 | 0.0004985 | 1972 | 0.005442 | 199
1/32 | 0.0001093 | 1-984 | 0.0001257 | 1-988 | 0.001364 | 1-996
1/64 | 2.745e-05 | 1994 | 315005 | 1:996 | 00003411 | 1-999

Figure 7.14.: EOC of the approximation of w for the semi-implicit finite difference numerical
scheme for the mean-curvature flow of graphs (6.3.8). See the Numerical
experiment

Numerical experiment 7.1.7. EOC for the semi-implicit finite difference numerical scheme for the mean-

curvature flow of graphs. Computational domain: Q = [—4, 4]2. Initial condition:

1
7“2"

Yini (T,y) := (" —r") (y" —r") exp (—0 (m2 + yz))

forr =4,n=4,0 = 1. Final time: T = 0.1. Space steps: 0.5 x 0.5, 0.25 x 0.25, 0.125 x 0.125, 0.0625 x 0.0625,
0.03125 % 0.03125 and 0.015625 % 0.015625. Time step: Depends on the space steps - 5-1072, 2.5-1073, 1.25-1073,

6.25-107%, 3.125-107* and 1.5625 - 10~*. Numerical scheme: Figure: and Remark: The
approximation of ¢ and w is of the second order.
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o | Mown | Wiewn | Wioem | orome
Error \EOC Error \EOC Error. \EOC

1/2 | 0.0925 0.1856 0.9748 0

1/4 | 0.0043 | 4427 | 0004341 | 5418 | g 2809 | 5-117 5

1/8 | 0.0009945 | 2112 | 00007539 | 2:526 | 0001685 | 4-06 34

1/16 | 0.0002498 | 1-993 | 0.0001893 | 1-994 | 0.0004221 | 1-997 1106

1/32 | 6.247¢-05 | 2 4.736e-05 | 1999 | 0.0001057 | 1-997 20804

Figure 7.15.: EOC of the approximation of ¢ for the semi-implicit finite difference numerical
scheme for the Willmore flow of graphs (6.3.9). See the Numerical experiment

7.1.8
h,T
h H ||L1 (wr3[0,T7) (wr;[0,T7) H HLOQ (wp;[0,T7)
Error ‘ EOC | Error ‘ EOC | Error. ‘ EOC
1/2 0.3897 0.7456 3.812

1/4 |0.03144 | 3632 ] 00486 | 394 | o5327 | 2-839
1/8 | 0.007006 | 2-166 | o.007785 | 2:642 |  0gs811 | 2-596
1/16 | 0.001762 | 1991 | g.00191 | 2:027 | ( p2102 | 2-068
1/32 | 0.0004407 | 2 0.0004755 | 2:006 | go52 | 2-015

Figure 7.16.: EOC of the approximation of w for the semi-implicit finite difference numerical
scheme for the Willmore flow of graphs (6.3.9). See the Numerical experiment
7.1.8

Numerical experiment 7.1.8. EOC for the semi-implicit finite difference numerical scheme for the Willmore
flow of graphs. Computational domain: = [—4, 4]2. Initial condition:

ini (T,y) = Tin (" =r") (" —r")exp (—0o (x2 + yg))

forr=4,n=4,0 = 1. Final time: T = 0.1. Space steps: 0.5 x 0.5, 0.25 x 0.25, 0.125 x 0.125, 0.0625 x 0.0625
and 0.03125 x 0.03125. Time step: Depends on the space steps - 2.5-1072, 6.25-107%, 1.5625-10%, 3.90625-10~°

and 9.765625 - 10~%. Numerical scheme: Figure: and Remark: The approximation of ¢ and
w is of the second order.

7.1.2. Experimental order of convergence for the level-set formulation

For the isotropic level-set formulations of the mean-curvature flow and the Willmore flow, there
exist analytical solutions. As an initial condition we always choose a circle with radius rg. For
all the evolutionary laws, the initial curve remains the circle, however the radius may change.
We want to find formulas describing the rate of change. It is easy to see that the curvature of
circle with radius 7 (¢) equals

1
t) = ———.
R(t) =~ @
For the mean-curvature flow from ([5.19) resp. (5.4.1]) we have that
1
or (t) = ———=
LT ( ) r (t) ’
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7. Computational studies

which is an ordinary differential equation. Solving it we get:

A circle with initial radius r¢ driven by mean-curvature flow
V=H

evolves with respect to the following relation for the radius

r(t) =/r3 — 2t. (7.14)

In case of the Willmore flow we look at the Definition [5.2.5| resp. ([5.4.2)) and obtain

o (1) = (7.15)

273’

solution of which gives:

A circle with initial radius rg driven by the Willmore flow
1
V =—ArH — 5}13 +2KH

evolves with respect to the following relation for the radius r

NI

r(t) = (2t +rg) (7.16)

The errors of the approximation are evaluated in similar manner as for the graph formu-
lation. Having an exact solution I' (¢) and an approximated solution I'j, (t), the error of the
approximation at point x € I'y, (¢) is given by

Err (T, (t) ,x) = min |x —y|.
(T (6),3) = min x|
Employing the norms of spaces Lj (I' (t);[0,T7]), resp. Lo (I'(¢);[0,T7]) resp. Lo (I'(¢);[0,T1]),
we get the global error of the approximation I'y, (¢) of T' (¢) during the evolution up to time 7'
If " (¢) is a circle with its centre in the origin we may approximate the local error Err (I'y, (¢) ,x)
by

Err (T (1), %) = [[x| = (8)],

For function o (t) defined on I'y, (t) as o (t) = a(z; (t),t) where T, (¢) is approximated by

points z; for i = 1,--- , N, we define the discrete norms as
h‘ ' — h
HO‘ — Ty | (kT)| g,
L1(Tp;[0,77) k=0 i=0
h h,T (i i h 2 %
Ha ‘ — T (ozl- (/{:7’)) q|
L2 (T'p;[0,T7) k=0 i=0
h h,T h
HO‘ ‘ ‘=  max max ol (k7)],
Loo(T3i0,7)) k=0, M i=0,,N
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7.1. Experimental order of convergence

where ¢; is given by (6.270). We leave the superscript h in the norm notation H||’£T(Fh
to express the dependence on the numerical grid wy which was used for the level-set met OA.
Experimental order of convergence with errors on two different numerical grids with space steps
h1 and hg is given by .

The reader can find obtained experimental order of convergence in Tables 7.19

h,T

A (T (£):[0,7]) I ||L2 (T (£);[0,77) I ||Loo C@:0T) | Py /sec.

Error ‘EOC Error ‘EOC Error. ‘EOC
1/16 | 1.601e-05 0.0001282 0.00223
1/32 | 3.11e-06 | 2:364 | 251705 | 2-349 | 0.0004446 | 2-326
1/64 | 7.864e-07 | 1919 | 6.394e-06 | 1-913 | 0.0001175 | 1-858
1/128 | 1.954e-07 | 2:078 | 1562006 | 2:104 | 294005 | 2-068 13
1/256 | 4.631e-08 | 2:077 | 3748007 | 2:059 | 7329006 | 2004 148
1/512 | 1.145e-08 | 2:016 | 9386608 | 1-998 | 1 84e-06 | 1-994 2688
1/1024 | 2.876e-09 | 1992 | 235008 | 1-998 | 4 502007 | 2-002 41270

Figure 7.17.: EOC of the approximation of I'(¢) for the explicit finite difference numerical
scheme for the level-set formulation of the mean-curvature flow. See the

Numerical experiment

Numerical experiment 7.1.9. EOC for the explicit finite difference numerical scheme for the level-set for-
mulation of the mean-curvature flow. Computational domain: Q = [~0.5,0.5]>. Initial condition: Circle
given by z? 4+ y? = 0.25°. Boundary conditions: d,u = 1 on Q. Final time: T = 0.02. Space steps:
1/16 x 1/16, 1/32 x 1/32, 1/64 x 1/64, 1/128 x 1/128, 1/256 x 1/256, 1/512 x 1/512 and 1/1024 x 1/1024. Time

step: Adaptive. Level-set: regularisation ¢ = 107!, no re-distancing. Numerical scheme: Figure:
[[11 Remark: —

" Mz oo | Moo | HEZewmomn CPU Jsec.
Error ‘EOC Error ‘EOC Error. ‘EOC
1/16 | 1.648¢-05 0.0001318 0.002276 0
1/32 | 3.218¢-06 | 2884 | 957005 | 2-886 | 0004519 | 2-859 3
1/64 | 8.13e-07 | 1-877 | 655006 | 1-865 | 0.0001184 | 1-828 56
1/128 | 2.027e-07 | 195 | 1.602e-06 | 1977 | 2.948¢-05 | 1-951 1068
1/256 | 4.793¢-08 | 213 | 3.844-07 | 2107 | 7433006 | 2-035 16446
1/512 | 1.192¢-08 | 2032 | 9 6580-08 | 2:017 | 1 854006 | 2:027 | 267354

Figure 7.18.: EOC of the approximation of I' (¢) for the semi-implicit finite difference nu-
merical scheme for the level-set formulation of the mean-curvature flow.
See the Numerical experiment [7.1.10

Numerical experiment 7.1.10. EOC for the semi-implicit finite difference numerical scheme for the level-set
formulation of the mean-curvature flow. Computational domain: Q = [-0.5,0.5]°. Initial condition: Circle
given by z? 4+ y? = 0.25%2. Boundary conditions: d,u = 1 on 9Q. Final time: T = 0.02. Space steps:
1/16x 1/16, 1/32x 1/32, 1/64 x 1/64, 1/128 x 1/128, 1/256 x 1/256 and 1/512 x 1/512. Time step: Depends on
the space step — 2-107%,5-107°,1.25-107°,3.125-107°,7.8125-10~" and 1.953125-10~". Level-set: regularisation
€ = 107", no re-distancing. Numerical scheme: Figure: Remark: —
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7. Computational studies

. R 1 0.7 12T (o esto.y CPU fsce.
Error \EOC Error \EOC Error. \EOC

1/16 | 0.2715 0.1499 0.1092 0

1/32 | 0.01877 | 4974 | 01188 | 4719 | 001488 | 3-711 11

1/64 | 0.02958 | “0-6891 | ¢ g1756 | -0-5915 | 91484 | 0-003516 683

1/128 | 0.02275 | 9-3735 | 01375 | 0-3481 | 1999 | 0-2768 59127

Figure 7.19.: EOC of the approximation of I' () for the semi-implicit finite difference nu-
merical scheme for the level-set formulation of the Willmore flow.
Numerical experiment [7.1.11

Numerical experiment 7.1.11. EOC for the semi-implicit finite difference numerical scheme for the level-set
formulation of the Willmore flow. Computational domain:
by 2? +4* = 0.25%. Boundary conditions: d,u = 1 on 9Q. Final time: T = 0.02. Space steps: 1/16 x 1/16,
1/32 x 1/32, 1/64 x 1/64, 1/128 x 1/128, 1/256 x 1/256 and 1/512 x 1/512. Time step: Depends on the
space step — 0.01,2.5 - 1072,6.25 - 10~% and 1.5625 - 10~*. Level-set: regularisation depends on the space step
€ = 0.4472, 0.3162,0.2236 and 0.1581, re-distancing depends on the space step Tredist = 0.025, 0.0125, 6.25 - 1073

and 3.125 - 107%. Numerical scheme: Figure: Remark: —
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7.2. Numerical experiments

7.2. Numerical experiments

In this part we bring almost 100 numerical experiments. They demonstrate differences between
all the classes of the schemes we derived in this text i.e. one-sided finite differences, central
finite differences and the complementary finite volumes schemes. We show both the graph
and the level-set formulation. For all initial conditions the reader can see comparison of the
evolutions given by the mean-curvature flow and the Willmore flow. We will be also interested
in a comparison of the explicit and semi-implicit schemes. First of all, we test the schemes on
the graph formulation then we proceed to the level-set method. In both cases we start with the
isotropic problems and then we show examples of few anisotropies.

7.2.1. Graph formulation

Let us begin with the one-sided finite difference schemes. Numerical experiments
and Figures [7.20] - [7.23] show that the scheme [6.3.2] for the mean-curvature flow performs well.
However, we can see significant loss of symmetry when we approximate the Willmore flow - see
Figure related to the experiment It is even more evident on the Figure[7.23 and the
experiment where we can see that the scheme in fact failed to converge to the correct
solution. We have already mentioned that this class of schemes suffers from non-symmetric
stencils. Therefore in [82] we proposed to use the central differences.

The results obtained by the finite difference method with use of the central differences (i.e.
schemes f are on Figures f resp. experiments f One can see that
these schemes preserve the symmetry sufficiently even for the Willmore flow. The disadvantage
is that they do not perform well for discontinuous initial conditions in the experiments —
For the fourth order problem (experiment we had to add some artificial viscosity
Chisc from 100 to 1000. This, however, decreases the accuracy of the scheme. It makes this
class of schemes not very good choice. Moreover, large stencil in the case of the fourth order
problems is not convenient for the semi-implicit schemes.

The rest of the results was obtained just by the complementary finite volumes method ei-
ther in explicit or semi-implicit form. Figures - and numerical experiments —
demonstrate the isotropic problems. The level lines always show good preserving of the
symmetry when the initial condition is symmetric.

For Figures - and the numerical experiments — the Neumann boundary

conditions were imposed.

The effect of the anisotropy can be seen on Figures - and numerical exper-
iments - First of all, the quadratic form G is set such that the level-lines turn
into ellipses oriented along the axis y. By setting up even the non-diagonal elements to non-

zero values (Figures - and experiments [7.2.23| - [7.2.24] ), we get a deformation along

the line x = y. The Neumann boundary conditions were imposed in the case of the numerical
experimentd7.2.25] - results of which can be seen on the Figures —~ We have
tested both, the deformation along the axis y (experiments [7.2.25|—|7.2.26] [7.2.29) - [7.2.30| and
Figures [7.44] — [7.45| and [7.48) - [7.49] ) and along the line = y (experiments [7.2.27 —|7.2.28]

7.2.31|—[7.2.32| and Figures|7.46|—|7.47| and [7.50] - [7.51)).
The anisotropy ([5.113)) has been studied at the experiments [7.2.33| —7.2.44| and Figures

- This anisotropy turns the level-lines into squares or rectangles which have the same
orientation as the coordinate system. When this anisotropy is inserted into the fourth order
problems, we get really highly non-linear problems. If we employ the explicit schemes, we get
very small time steps even on quite coarse meshes. For example the numerical experiment
(Figure was performed with space step h = 0.01 and the adaptive algorithm at the Merson
method set the time step to 107!2. The computation was running for more then 8 months on 2
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7. Computational studies

CPU AMD Opteron 270 (4 cores) and it did not reach a steady state. The semi-implicit scheme
here gave comparable results with much higher efficiency. It is the reason why we were not able
to show the steady states for all simulations. We can, however, see that even with such high
non-linearity, the complementary finite volume schemes are able to handle discontinuities like
the ones we can see at the experiments - and Figures - We, of course,
show experiments with the Neumann boundary conditions —[(2:44] see Figures [7.60] —
1.0

The last anisotropy we consider is the [,,,-norm for m = 16. The results are presented
on Figures - and numerical experiments - This anisotropy leads to even
stronger non-linearity. The semi-implicit schemes often require very small time steps too. The
explicit schemes then may be better choice.
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7.2. Numerical experiments

Numerical experiment 7.2.1. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic mean-curvature flow of graphs

Op = QV- (Zf) on (0,T) x €,
¢ lt=0 = sin(27x)sin (27y) on Q,
with the Dirichlet boundary condition
p=0 on 09Q.

Computational domain: Q = [0,1]*.

Final time: T = 0.05.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.2]

Figure: [7.20

Remark: In the case of the mean-curvature flow of graphs the scheme performs
sufficiently.

Numerical experiment 7.2.2. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic Willmore flow of graphs

1 1 w?
dp = —QV-(IPVw— v

Q 2Q3V<p> on ) x (O,T} s

w = QV- <Z§0> on Q x [0,7T],
¢ lt=0 = sin(27z)sin (27y) on Q,

with the Dirichlet boundary conditions
¢ =0,w =0 on 0.

Computational domain: Q = [0,1)°.

Final time: 7' = 0.002.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.3]

Figure:

Remark: In the case of the Willmore flow of graphs we see that the scheme does
not preserve the symmetry of the initial condition.
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Isotropic graph formulation of the mean-curvature flow

Figure 7.20.: The explicit one-sided finite difference numerical scheme for the isotropic
mean-curvature flow of graphs at times ¢ = 0, t = 0.0125, ¢ = 0.025 and
t = 0.05 (graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical
experiment [7.2.1
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7.2. Numerical experiments

Isotropic graph formulation of the Willmore flow

Figure 7.21.: The explicit one-sided finite difference numerical scheme for the isotropic
Willmore flow of graphs at times ¢t = 0, ¢t = 0.0001, ¢ = 0.0005 and ¢t = 0.001
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
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Numerical experiment 7.2.3. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic mean-curvature flow of graphs

Op = QV- <Z;0> on (0,T) x €,
¢li—o = sign(2?+y*—0.1)+1 on,
with the Dirichlet boundary condition
=0 on 0.

Computational domain: Q = [—0.5,0.5)°.

Final time: T = 0.25.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.2]

Figure: |7.22

Remark: The scheme ([6.3.2)) performs well even for discontinuous initial condition.

Numerical experiment 7.2.4. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic Willmore flow of graphs

1 w?

1
Oop = —QV- (QIPVw — 2Q3V(’0> on 2 x (0,77,

w = QV- (VQ@> on Q x [0,T7],
¢ =0 = sign (x2 + 9% — 0.1) +1 on Q,
with the Dirichlet boundary conditions
@ =0,w =0 on 0f.

Computational domain: Q = [—0.5,0.5)°.

Final time: T = 0.03.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.3]

Figure: |7.23

Remark: With discontinuous initial condition the Numerical scheme completely
fails to find approximate solution.
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7.2. Numerical experiments

Isotropic graph formulation of the mean-curvature flow

0.5

-05 +
-0.5 (o] 0.5

0.5

-0.5

0.5

-0.5
-0.5 0 0.5

0.5

-0.5 -
05 -05 -0.5 0 05

Figure 7.22.: The explicit one-sided finite difference numerical scheme for the mean-
curvature flow of graphs at times ¢t = 0, t = 0.0125, t = 0.0625 and ¢t = 0.125
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
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Isotropic graph formulation of the Willmore flow

- 0.5
-0.5 -05 0.5 0 0.5

Figure 7.23.: The explicit one-sided finite difference numerical scheme for the Willmore
flow of graphs at times ¢t =0, ¢ =1-107°, ¢t = 0.01 and ¢ = 0.03 (graph of ¢ on
the left, level-lines of ¢ on the right). See the Numerical experiment |7.2.4
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Numerical experiment 7.2.5. Test of the explicit central finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

Oy = QV- <VQ¢> on (0, T) x Q,
¢ |t=0 = sin(27z)sin(27y) on Q,
with the Dirichlet boundary condition
w=0 on 0f.

Computational domain: Q = [0,1]%,

Final time: T = 0.05.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme:

Figure: [7.20

Remark: In the case of the mean-curvature flow of graphs the scheme performs

well.

Numerical experiment 7.2.6. Test of the explicit central finite difference numerical
scheme for the isotropic Willmore flow of graphs

1 1 w?
By = —QV-(IPVw— v

Q 2623v<,0> on {2 X (O,T],

w o= QV-(?) on Q x [0,7T],

¢ lt=0 = sin(27x)sin (27y) on £,
with the Dirichlet boundary conditions
@ =0,w =0 on 0f.

Computational domain: Q = [0,1]°.

Final time: T = 0.002.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.5]

Figure:

Remark: In the case of the Willmore flow of graphs we see that the scheme ([6.3.5)
preserves the symmetry of the solution well.

147



7. Computational studies

Isotropic graph formulation of the mean-curvature flow

o

Figure 7.24.: The explicit central finite difference numerical scheme for the isotropic
mean-curvature flow of graphs at times ¢ = 0, t = 0.0125, ¢ = 0.025 and
t = 0.05 (graph of u on the left, level-lines of w on the right). See the Numerical

experiment
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Isotropic graph formulation of the Willmore flow
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Figure 7.25.: The explicit central finite difference numerical scheme for the isotropic Will-
more flow of graphs at times ¢t = 0, ¢ = 0.0001, ¢ = 0.0005 and ¢ = 0.002 (graph
of u on the left, level-lines of u on the right). See the Numerical experiment |7.2.6
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Numerical experiment 7.2.7. Test of the explicit central finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

Op = QV- (Vép) on (0,T) x £,
¢lizo = sign(z+y*—01)+1 onQ,
with the Dirichlet boundary condition
=0 on 0.

Computational domain: Q = [—0.5,0.5)°.

Initial condition: w;,; (z,y) := sign (z2 + 92 — 0.1) + 1.

Boundary conditions: v = w = 0 on 0.

Final time: T = 0.25.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme:

Figure: [7.26

Remark: In the case of the mean-curvature flow of graphs with discontinuous initial
condition the scheme performs sufficiently.

Numerical experiment 7.2.8. Test of the explicit central finite difference numerical
scheme for the isotropic Willmore flow of graphs

e = —QV lIPV — Ew:v Q% (0,7T]
P = Q w 2 Qg ® on ’ )
w = QV-(%O) on Q x [0,77],
¢ li=0 = sign (acQ +y?— 0.1) +1 on Q,

with the Dirichlet boundary conditions
@ =0,w =0 on .

Computational domain: Q = [-0.5,0.5)°.

Final time: T = 0.125.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.5]

Figure:

Remark: In the case of the Willmore flow of graphs we see that the scheme (|6.3.5))
preserves the symmetry of the solution. However, strong artificial viscosity Cy;sc = 1000
have to be added to avoid oscillations.
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Isotropic graph formulation of the mean-curvature flow

0.5

0.5

-0.5 -0.5

Figure 7.26.: The explicit central finite difference numerical scheme for the isotropic
mean-curvature flow of graphs at times ¢t = 0, t = 0.0125, ¢ = 0.0625 and
t = 0.125 (graph of u on the left, level-lines of u on the right). See the Numerical
experiment [7.2.
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Isotropic graph formulation of the Willmore flow
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Figure 7.27.: The explicit central finite difference numerical scheme for the isotropic Will-
more flow of graphs at times t = 0, t = 0.00625, ¢t = 0.03125 and ¢ = 0.125
(graph of w on the left, level-lines of u on the right). See the Numerical experiment
7.2.8
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Numerical experiment 7.2.9. Test of the explicit finite difference numerical scheme
for the isotropic mean-curvature flow of graphs

Oy = QV- <VQ¢> on (0, T) x Q,
¢ li=0 = sin(27x)sin(27y) on Q,
with the Dirichlet boundary condition
w=0 on 0f.

Computational domain: Q = [0,1]%,

Final time: T = 0.05.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure:

Remark: In the case of the mean-curvature flow of graphs the scheme (6.3.6|) preserves
the symmetry of the solution well.

Numerical experiment 7.2.10. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

1 1 w?
Oy = —QV~<IPVw— v

0 2QZJ’V¢> on Q x (0,77,

wo o= QV-(VQQO> on Q x [0,7T],

¢ lt=0 = sin(27x)sin (27y) on £,
with the Dirichlet boundary conditions
@ =0,w =0 on 0f.

Computational domain: Q = [0,1]°.

Final time: 7' = 0.004.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.7

Figure:

Remark: In the case of the Willmore flow of graphs we see that the scheme ([6.3.7)
preserves the symmetry of the solution well.
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Isotropic graph formulation of the mean-curvature flow

o

Figure 7.28.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times ¢t = 0, ¢t = 0.0125, ¢t = 0.025 and ¢t = 0.05 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment [7.2.9
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Isotropic graph formulation of the Willmore flow

F

— /T\

Figure 7.29.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times ¢t = 0, t = 0.0001, ¢ = 0.002 and ¢ = 0.004 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment |7.2.10
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Numerical experiment 7.2.11. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

Op = QV- (Vép) on (0,T) x £,
¢lizo = sign(z+y*—01)+1 onQ,
with the Dirichlet boundary condition
=0 on 0.

Computational domain: Q = [—0.5,0.5)°.

Final time: T = 0.25.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.30

Remark: In the case of the mean-curvature flow of graphs with discontinuous initial
condition the scheme performs sufficiently.

Numerical experiment 7.2.12. Test of the explicit central finite difference numer-
ical scheme for the isotropic Willmore flow of graphs

e = —QV lIPV - lev Qx (0,7
tSD - Q w 2 Qg ¥ on ) ’
w o= QV-(?) on Q x [0,77],
¢ |t=0 = sign (xQ + 9% — 0.1) + 1 on €,

with the Dirichlet boundary conditions
@ =0,w =0 on 01.

Computational domain: Q = [—0.5,0.5]°.

Final time: T = 0.125.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.31

Remark: In the case of the Willmore flow of graphs with discontinuous initial condition

the scheme (6.3.7)) performs well.
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Isotropic graph formulation of the mean-curvature flow
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Figure 7.30.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times ¢t = 0, t = 0.0125, ¢ = 0.0625 and ¢ = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment [7.2.11
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Isotropic graph formulation of the Willmore flow

Figure 7.31.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times ¢t = 0, t = 0.00625, ¢t = 0.03125 and ¢ = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment (7.2.12
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Numerical experiment 7.2.13. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

Oy = QV- <VC;0> on (0,T) x £,

¢ lt=0 = sin (7 tanh (5 ((m2 + y2) —-0.25))) onQ,
with the Dirichlet boundary condition

@=0 on 0f.
Computational domain: Q = [-1,1]%.
Final time: T = 0.125.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: [6.3.6
Figure: [7.32
Remark: —

Numerical experiment 7.2.14. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

Oy = QV- <VC;0> on (0,T) x €,

¢ lt=0 = sin (mtanh (5 ((m2 + y2) —-0.25))) onQ,
with the Dirichlet boundary condition

p=0 on Of.
Computational domain: Q = [-1,1)%.
Final time: T = 0.1.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure: [7.33
Remark: —
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Isotropic graph formulation of the mean-curvature flow

”/ff/ﬁ.\ \T :

0.5

Figure 7.32.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times ¢t = 0, ¢t = 0.0125, ¢t = 0.0625 and ¢ = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment |7.2.13
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Isotropic graph formulation of the Willmore flow

Figure 7.33.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times ¢t = 0, ¢t = 0.00625, t = 0.025 and steady state at t = 0.1 (graph
of u on the left, level-lines of u on the right). See the Numerical experiment
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Numerical experiment 7.2.15. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

Oy = QV- <VC;0> on (0,T) x €,

olico = —0.5sin?(rz)- (1 (- 2)2) (1 ~ tanh <1o (\/m - 0.6))) on €,

with the Dirichlet boundary condition

=0 on 0f.
Computational domain: Q = [-1,1]%
Initial condition:
wini (2, 9) := —0.5sin? () - (1 (- 2)2) (1 ~ tanh (10 ( 22+ — 0.6))).
Boundary conditions: u = w = 0 on 0.
Final time: T = 0.5.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: [6.3.6
Figure: [7.34
Remark: -

Numerical experiment 7.2.16. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

Oy = QV- <Z§0> on (0, T) x £,

¢ li=o = —0.5sin?(rz) - (1 —(y— 2)2) (1 — tanh (10 (\/ x4+ y? — 0.6))) on

with the Dirichlet boundary condition
=0 on 0f.

Computational domain: Q = [-1,1]%
Final time: T = 0.5.

Space steps: h = 0.02.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.35

Remark: —
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Isotropic graph formulation of the mean-curvature flow

Figure 7.34.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, ¢ = 0.0625, t = 0.125 and ¢t = 0.5 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment [7.2.15

163



7. Computational studies

Isotropic graph formulation of the Willmore flow

Figure 7.35.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times ¢t = 0, t = 0.00125, ¢t = 0.025 and ¢ = 0.5 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment [7.2.16
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Numerical experiment 7.2.17. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

Oy = QV- <VQ¢> on (0, T) x Q,
¢ |t=0 = sin(27z)sin(27y) on Q,
with the Neumann boundary condition
d,0 =0 on 0N.

Computational domain: Q = [0,1]%.

Initial condition: u;,; (z,y) := sin (27x) sin (27y).

Boundary conditions: 0,u = d,w = 0 on 0f).

Final time: 7" = 0.125.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.36

Remark: See the Numerical experiment with the same initial condition but the
Dirichlet boundary conditions.

Numerical experiment 7.2.18. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

Oy = QV- <VQ@> on (0,T) x Q,

¢ li=0 = sin(27x)sin(27y) on Q,
with the Neumann boundary condition

0,0 =0,w=0 on 0.
Computational domain: Q = [0,1]%.
Final time: T = 0.025.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure:
Remark: See the Numerical experiment with the same initial condition but the
Dirichlet boundary conditions.
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Isotropic graph formulation of the mean-curvature flow

F

T

Figure 7.36.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times ¢t = 0, ¢t = 0.005, t = 0.025 and t = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment
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Isotropic graph formulation of the Willmore flow
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Figure 7.37.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times ¢t = 0, ¢ = 0.00025, ¢t = 0.00125 and ¢ = 0.025 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment |7.2.18
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7. Computational studies

Numerical experiment 7.2.19. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

e = QV- (Zf) on (0,T) x €,

¢ li=o = sin (3%\/1‘2 + y2> on €,

with the Neumann boundary condition

0,

14

p=0 on 0f.
Computational domain: Q = [-2,2]%.
Final time: T = 0.5.

Space steps: h = 0.04.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.38

Remark: —

Numerical experiment 7.2.20. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

Op = QV- (VQ('D> on (0,T) x €,

¢ li=0o = sin (37r\/a:2 + y2) on €,

with the Neumann boundary condition

0, = 0,w0 on ON.

Computational domain: Q = [-2, 2]2.

Initial condition: u,; (x,y) := sin (371'\/332 + y2).
Boundary conditions: 0,u = d,w = 0 on 0.
Final time: T = 0.1.

Space steps: h = 0.04.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.39

Remark: —
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Isotropic graph formulation of the mean-curvature flow

2 -2 2 -15-1-05 0 05 1 15 2

0.5

-0.5

Figure 7.38.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, t = 0.025, t = 0.1 and ¢t = 0.5 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment [7.2.19
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Isotropic graph formulation of the Willmore flow
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Figure 7.39.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times ¢ = 0, t = 0.01, t = 0.025 and ¢t = 0.1 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment |7.2.20
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7.2. Numerical experiments

Numerical experiment 7.2.21. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

e = QVpye (Ve,—1) on (0,T) x Q
¢limo = sign(z®+y*—01)+1 onQ

where the anisotropy function g is given by

¢ (Vo,—1) := /14 VTGV, for G := (

— O
S~~~

and we apply the Dirichlet boundary conditions
¢=0 on 9.

Computational domain: Q = [—0.570.5]2.

Final time: T = 0.1.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.40

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.22. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?
de = -QV- (Eva - QQ;KV@) on (0.7) x 0,
wy = QH, on (0,T) xQ,
¢limo = sign(z®+y*—0.1)+1 onQ,

where the anisotropy function g is given by

a (Vp,—1):=/1+ VTGV ,for(G—<(2) (1)>

and we apply the Dirichlet boundary conditions
p=wy,=0 on Q.

Computational domain: Q = [1,1]*.

Final time: T = 0.001.

Space steps: h = 0.02.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.41

Remark: Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.40.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t = 0, ¢t = 0.025, t = 0.05 and t = 0.1 (graph
of p on the left, level-lines of ¢ on the right). See the Numerical experiment |7.2.21
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Anisotropic graph formulation of the Willmore flow
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Figure 7.41.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times ¢t =0, ¢t =5-107°,¢ = 2.5-10"% and ¢ = 0.001 (graph of
¢ on the left, level-lines of ¢ on the right). See the Numerical experiment 7.2.22
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Numerical experiment 7.2.23. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

oo = QVpye(Ve,—1) on (0,T) x Q
¢lieo = sign(z®+y*—01)+1 onQ

where the anisotropy function g is given by

a (Vp,—1):=/1+ VTGV, for G := < ? ; )

and we apply the Dirichlet boundary conditions
©=0 on 0N.

Computational domain: 2 = [—-0.5, 0.5]2.

Final time: T = 0.0625.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.42

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.24. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1w?
op = —-QV-|E,Vw,—-—1Vp on (0,7) x Q,
2Q3
wy = QH, on (0,T)xQ,
©li=0 = sign (;L'2 +9° - 0.1) +1 on Q,

where the anisotropy function g is given by

a (Vp,—1):=/1+ VTGV, for G —< ! )

and we apply the Dirichlet boundary conditions

[\)

p=w,=0 ondf.

Computational domain: Q = [-1,1]*.

Final time: T = 0.01.

Space steps: h = 0.02.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.43

Remark: Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.42.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t = 0, ¢t = 0.00625, ¢t = 0.03125 and t = 0.0625
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
7.2.23
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Anisotropic graph formulation of the Willmore flow

0.5

0.5

Figure 7.43.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times ¢ = 0, ¢ = 0.0001, ¢ = 0.0005 and t = 0.01 (graph of ¢
on the left, level-lines of ¢ on the right). See the Numerical experiment |7.2.24
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7.2. Numerical experiments

Numerical experiment 7.2.25. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

e = QVpye (Ve,—1) on (0,T) x Q
© lt=0 = sin(27x)sin(2wy) on

where the anisotropy function g is given by

v (Vo,—1) := /14 VTGV, for G := ( 100 ? )

and we apply the Neumann boundary conditions
Vpy-v=0 on 0.

Computational domain: = [0,1)°.

Final time: T = 0.125.

Space steps: h = 0.01.

Time step: 7 =2-107°

Numerical scheme: [6.3.§

Figure: [7.44

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.26. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?
O = —QV- (IEAYVwV - QZ§V¢> on (0,T) x Q,
wy, = QH, on (0,T)xQ,
@ |t=0 = sin(27z)sin (27y) on Q,

where the anisotropy function g is given by

G (Vo,—1) = /11 VTGV, for G = ( 100 (1))

and we apply the Neumann boundary conditions

0,

v

¢ =E,Vwy-v=0 on .

Computational domain: Q = [0, 1]*.

Final time: 7 = 1074,

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.45

Remark: Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.44.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, ¢ = 0.0025, £ = 0.01 and ¢t = 0.125
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
7.2.25
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Anisotropic graph formulation of the Willmore flow
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Figure 7.45.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t =0, t = 1076, t = 4 - 107% and ¢ = 0.0001 (graph of ¢
on the left, level-lines of ¢ on the right). See the Numerical experiment |7.2.26
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Numerical experiment 7.2.27. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

oo = QVpye(Ve,—1) on (0,T) x Q
¢ lt=0 = sin(27x)sin(2wy) on Q

where the anisotropy function ¢ is given by

va (Vo,—1) := /14 VTGV, for G := ( 1 1(1) >

and we apply the Neumann boundary conditions
Vpyr =0 on 09Q.

Computational domain: Q = [0,1]°.

Final time: T = 0.025.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.40

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.28. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?
Oip = —QV- (]EVVwW - 22;V4p> on (0,T) x €,
wy, = QH, on (0,T)xQ,
© lt=0 = sin(27x)sin(2wy) on £,

where the anisotropy function g is given by

G (Vo —1) = /T4 VTGV, for G = ( 1?)
and we apply the Neumann boundary conditions
0,0y =E,Vw, -v=0 on 0Q.

Computational domain: Q = [0, 1],
Final time: T = 107°.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure:

Remark: Compare with the Numerical experiment [7.2.18
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.46.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, ¢ = 0.001, ¢ = 0.002 and ¢t = 0.025
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
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Anisotropic graph formulation of the Willmore flow
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Figure 7.47.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t =0,¢t=3-10"7,¢t=10"% and t = 5- 1075 (graph of ¢
on the left, level-lines of ¢ on the right). See the Numerical experiment 7.2.28l
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Numerical experiment 7.2.29. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

e = QVpye (Ve,—1) on (0,T) x Q

sin (BW\/W) on €

where the anisotropy function g is given by

a (Vp,—1):=/1+ VTGV ,for(G—<(8) (1)>

2 |t:()

and we apply the Neumann boundary conditions
Vpy:-v=0 on o

Computational domain: Q = [-2,2]*.

Final time: T = 0.25.

Space steps: h = 0.04.

Time step: 7 =5-107%.

Numerical scheme: [6.3.8

Figure: [7.48

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.30. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 2
oo = —QV- <I]37Vw7 - 2&%@) on (0,7) x €,
wy, = QH, on (0,T)xQ,

© |lt=0 = sin (37r\/x2 + y2> on €,

where the anisotropy function g is given by

a (Vp,—1):=/1+ VTGV ,for(G—<(8) (1)>
and we apply the Neumann boundary conditions

0

v

¢ =E,Vw,-v=0 on 0.

Computational domain: Q = [-2,2]*.

Final time: T = 0.001.

Space steps: h = 0.04.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.49

Remark: Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.48.: The semi-implicit finite difference numerical scheme for the anisotropic
mean-curvature flow of graphs at times t =0, t = 0.02, ¢ = 0.08 and ¢ = 0.25
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
7.2.29
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Anisotropic graph formulation of the Willmore flow
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Figure 7.49.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t =0, ¢t = 1.6-107°, ¢t = 1.28-10~* and ¢ = 0.001 (graph
of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment |7.2.30)
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Numerical experiment 7.2.31. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

oo = QVpye(Ve,—1) on (0,T) x Q

sin (377\/962 + y2> on

where the anisotropy function g is given by

va (Vo,—1) := /14 VTGV, for G := ( 180 >

and we apply the Neumann boundary conditions

2 |t:0

Vpyw =0 on 05.

Computational domain: = [-2, 2]2.

Final time: T = 0.25.

Space steps: h = 0.04.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.50

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.32. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

2

1
Oy = —QV- (IE)VWU,y - 2622Vg0> on (0,7) x Q,

wy, = QH, on (0,T)xQ,

©li=0 = sin (37r\/ 2+ y2) on ),

where the anisotropy function g is given by

va (Vo,—1) := /14 VTGV, for G := ( 180 >

and we apply the Neumann boundary conditions
0,0 =E,Vw,-v=0 on 0Q.

Computational domain: Q = [-2,2]*.

Final time: 7' = 1.024 - 1073.

Space steps: h = 0.04.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.51

Remark: Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow

Figure 7.50.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t =0, ¢t = 0.01, ¢ = 0.04 and ¢ = 0.25 (graph
of  on the left, level-lines of ¢ on the right). See the Numerical experiment [7.2.31
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Anisotropic graph formulation of the Willmore flow
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Figure 7.51.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t =0, ¢t =8-107%, t = 6.4-107° and ¢t = 1.024 - 1073
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
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Numerical experiment 7.2.33. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

e = QVpvabs (Vp,—1) on (0,T) x Q
¢ lt=0 = sin(27x)sin (2ry) on Q

where the anisotropy function v,ps is given by

3 3
Yabs (P) =Y (| P2+ €aps Y P? for €ape = 0.001,

i=1 j=1
and we apply the Dirichlet boundary conditions
v=0 on 0.

Computational domain: Q = [0,1]°.

Final time: T = 0.025.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.52

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.34. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?
b = —Qv-@w—;ggw) on (0.T) x 2,
wy = QH, on (0,T) xQ,

sin (37r\/332 + y2> on ,

where the anisotropy function 7,5 is given by

¥ \t:o

3 3
Yabs (P) = Z Pi2 + €abs Z P]2 for €qps = 0.001,
i=1 j=1

and we apply the Dirichlet boundary conditions

p=wy=0 on .
Computational domain: = [0,1]°.
Final time: 7 =1.5-1073.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure: [7.53
Remark: Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.52.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.00625, ¢ = 0.0125 and ¢ = 0.025
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
7.2.33
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Anisotropic graph formulation of the Willmore flow
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Figure 7.53.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 4-107%, ¢t =2.56-10"% and t = 1.5-1073
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
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Numerical experiment 7.2.35. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

O = QVpvyaws (Ve,—1) on (0,T) x Q
¢lieo = sign(z®+y*—01)+1 onQ

where the anisotropy function 7.5 is given by

3 3
Yabs (P) =Y | P2 + €aps Y P? for eqps = 0.001,

i=1 j=1
and we apply the Dirichlet boundary conditions
=0 on o

Computational domain: Q = [—0.5,0.5]°.

Final time: T = 0.0625.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.54

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.36. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?
o = —QV- (EVan, - QQZV¢> on (0,7T) x €,
wy = QH, on (0,T)xQ,
¢limo = sign(z®+y*—01)+1 onQ,

where the anisotropy function 7.5 is given by

3

3
Yabs (P) = Z 1312 + €abs ZPJZ’

i=1 j=1
and we apply the Dirichlet boundary conditions

p=w,=0 on .
Computational domain: Q = [-0.5,0.5]°.
Final time: T = 2.048 - 1073.
Space steps: h = 0.01.
Time step: 7 = 107°.
Numerical scheme: [6.3.9]
Figure:
Remark: Compare with the Numerical experiment Note small asymmetry on the third
image cause probably by use of the semi-implicit scheme.
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.54.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t = 0, t = 0.015625, ¢ = 0.03125 and t =
0.0625 (graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical
experiment [7.2.35
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Anisotropic graph formulation of the Willmore flow

0.5

0.5

Figure 7.55.: The semi-implicit finite difference numerical scheme for the anisotropic
Willmore flow of graphs at times t = 0, t = 4-107%, ¢t = 1.6 - 107® and
t = 2.048 - 1073 (graph of ¢ on the left, level-lines of ¢ on the right). See the
Numerical experiment [7.2.36
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Numerical experiment 7.2.37. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

O = QVpyabs (Ve,—1) on (0,T) x Q
@ [i=0 sin (wtanh (5 ((2* +y*) —0.25))), on Q

where the anisotropy function v,ps is given by

3 3
Yabs (P) =Y (| P2+ €aps Y P? for €aps = 0.001,

i=1 j=1
and we apply the Dirichlet boundary conditions
v=0 on 0.

Computational domain: Q = [-1,1]%

Final time: T = 0.125.

Space steps: h = 0.02.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.56

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.38. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1w?
Op = —QV- <1EWVwAY - QQ‘ZV(’D> on (0,7) x Q,
wy = QH, on (0,T) xQ,
¢ lt=0 = sin (ﬂtanh (5 ((x2 + y2) — 0.25))) on (2,

where the anisotropy function 7,ps is given by

3

3
Yabs (P) = D | P2+ €aps D P? for eaps = 0.001,
i=1 j=1

and we apply the Dirichlet boundary conditions

p=wy=0 on oS
Computational domain: Q = [-1,1]*.
Final time: T =2-107%.
Space steps: h = 0.02.
Time step: 7 = 1078,
Numerical scheme: [6.3.9]

Figure:
Remark: Compare with the Numerical experiment [7.2.14
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.56.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t = 0, t = 0.03125, ¢t = 0.0625 and ¢ = 0.125
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.57.: The semi-implicit finite difference numerical scheme for the anisotropic
Willmore flow of graphs at times t = 0, t = 4-107%, ¢t = 3.2-107® and
t =2-107% - it is not a steady state solution - (graph of ¢ on the left, level-lines
of ¢ on the right). See the Numerical experiment |7.2.38
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7. Computational studies

Numerical experiment 7.2.39. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

O = QVpvyaws (Ve,—1) on (0,T) x Q

¢ lizo = —0.5sin®(mz)- (1 —(y- 2)2) (1 — tanh <10 (\/W B 0'6))) on £

where the anisotropy function 7.5 is given by

3 3
Yabs (P) = Z Pi2 + €abs pr for €qps = 0.001,

i=1 j=1
and we apply the Dirichlet boundary conditions

p=0 on 9N.
Computational domain: Q = [-1,1]°.
Final time: T = 0.125.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: [6.3.6]
Figure: [7.58
Remark: Compare with the Numerical experiment

Numerical experiment 7.2.40. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1w?
o = —QV- (IEWVwW - 2Q§ch> on (0,T) x €,
wy = QH, on (0,T)xQ,
olico = —0.5sin? (rz)- (1 ~(y— 2)2) (1 ~ tanh (10 ( 22 4 y? — 0.6))) on Q,

where the anisotropy function 7, is given by

3 3
Yavs (P) =D | P2+ €ans y_ P for eaps = 0.001,

i=1 j=1
and we apply the Dirichlet boundary conditions
p=wy, =0 ondf.

Computational domain: = [-1, 1}2.

Final time: T = 0.012.

Space steps: h = 0.02.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.59

Remark: Compare with the Numerical experiment
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.58.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, ¢t = 0.03125, t = 0.0625 and t = 0.125
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
7.2.39
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7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.59.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times ¢t = 0, t = 9.6-107%, t = 1.536-1073 and ¢ = 0.012 (graph
of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment (7.2.40
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7.2. Numerical experiments

Numerical experiment 7.2.41. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

e = QVpvabs (Vp,—1) on (0,T) x Q
¢ lt=0 = sin(27x)sin (2ry) on Q

where the anisotropy function v,ps is given by

3 3
Yabs (P) =Y (| P2+ €aps Y P? for €ape = 0.001,

i=1 j=1
and we apply the Neumann boundary conditions
Vpyr =0 on 09.

Computational domain: O = [0,1]°.

Final time: T = 0.7.

Space steps: h = 0.01.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.60

Remark: Compare with the Numerical experiment

Numerical experiment 7.2.42. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

2

lw
e = —-QV- <E7vwv - 2Q’;Vg0> on (0,7) x €,
wy = QH, on (0,T) xQ,
¢ lt=0 = sin(27x)sin (27y) on £,

where the anisotropy function 7,5 is given by

3 3
Yabs (P) = D | P2+ €abs D PF for eaps = 0.001,

i=1 j=1
and we apply the Neumann boundary conditions

0,0 =E,Vw, -v=0 on 0Q.
Computational domain: ) = [0, 1]2.
Final time: T = 0.004.
Space steps: h = 0.01.
Time step: 7 =5-1071C.
Numerical scheme: [6.3.9
Figure: [7.61
Remark: Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.60.: The explicit finite difference numerical scheme for the anisotropic mean-

curvature flow of graphs at times t = 0, t = 0.04, t = 0.16 and ¢t = 0.7 (graph
of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment (7.2.41
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow
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Figure 7.61.: The semi-implicit finite difference numerical scheme for the anisotropic
Willmore flow of graphs at times t = 0, t = 0.0001, £ = 0.0002 and ¢ = 0.0004
(graph of ¢ on the left, level-lines of ¢ on the right) — not a steady state. See the
Numerical experiment
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7. Computational studies

Numerical experiment 7.2.43. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

O = QVpvyaws (Ve,—1) on (0,T) x Q

¢ lt=0 = sin (37r\/a;2 + y2> on

where the anisotropy function 7.5 is given by

3 3
Vabs (P) = Z Pi2 + €abs pr for €qps = 0.001,

i=1 j=1
and we apply the Neumann boundary conditions

Vpyv =0 on 09Q.
Computational domain: Q = [-2, 2]2.
Final time: T = 0.5.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: [6.3.6]
Figure: [7.62
Remark: Compare with the Numerical experiment

Numerical experiment 7.2.44. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1w?
dp = —QV-|E,Vu,—5-5Ve | on (0,T)xQ,
2Q3
w, = QH, on (0,T)xQ,
¢ lt=0 = sin(27x)sin(27y) on Q,

where the anisotropy function 7,5 is given by

3 3
Yavs (P) =Y~ | P? + caps »_ PF for eqps = 0.001,

i=1 j=1
and we apply the Neumann boundary conditions

0,0y =E,Vw, -v=0 on 0Q.
Computational domain: Q = [-2,2]*.
Final time: T = 0.006.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure: [7.63
Remark: Compare with the Numerical experiment The computation has been stopped
after 70 days of running on 4 CPUs Opteron 2261.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow
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Figure 7.62.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, ¢t = 0.04, ¢t = 0.08 and ¢ = 0.5 (graph
of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment |7.2.43
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7. Computational studies

Anisotropic graph formulation of the Willmore flow
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Figure 7.63.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t =0, ¢ =5-1075, ¢t = 0.001 and ¢ = 0.006 — not a steady
state (graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical
experiment (7.2.44
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7.2. Numerical experiments

Numerical experiment 7.2.45. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

Op = QVpye (Vp,—1) on (0,T) x Q
¢ li=0 = sin(27z)sin(27y)) on Q

where the anisotropy function ;16 is given by

1
3 6
)= (311
i=1
and we apply the Dirichlet boundary conditions

p=0 on 0.
Computational domain: Q = [0, 1]2.
Final time: T = 0.1.
Space steps: h = 0.01.
Time step: 7 = 0.005.
Numerical scheme: [6.3.§
Figure: [7.64
Remark: In case of {" anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment

Numerical experiment 7.2.46. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1w?
oo = —QV- (EWanY — ZQ;V@> on (0,7) x €,
wy = QH, on (0,T) xQ,
¢ lt=0 = sin(27z)sin(27y) on £,

where the anisotropy function 716 is given by

3
Yo (P) = (Z |Pi|16>

and we apply the Dirichlet boundary conditions

1
16

p=wy=0 on S
Computational domain: 2 = [0,1]°.
Final time: T = 0.0004.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure: [7.65
Remark: —
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow
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Figure 7.64.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t = 0, t = 0.005, t = 0.025 and ¢ = 0.1 (graph
of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment (7.2.45
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Anisotropic graph formulation of the Willmore flow
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Figure 7.65.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 2-107°, t = 0.0001 and ¢ = 0.0004 (graph of
¢ on the left, level-lines of ¢ on the right) — not a steady state. See the Numerical
experiment [7.2.46
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7. Computational studies

Numerical experiment 7.2.47. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

dp = QVpys (Veo,—1) on (0,T) x Q
¢li=o = sign(z?+y*—-0.1)+1 onQ

where the anisotropy function ;16 is given by

1
3 16
16
e (P) = (Z |P] )
i=1
and we apply the Dirichlet boundary conditions

@p=0 on 9.
Computational domain: Q = [-0.5, 0.5]2.
Final time: T = 0.0625.
Space steps: h = 0.01.
Time step: 7 = 107°.
Numerical scheme: [6.3.§
Figure: [7.66
Remark: Compare with the Numerical experiment

Numerical experiment 7.2.48. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1w?
Oip = —QV- (Evav - 2Q’;V§0> on (07T) x £,
wy = QH, on (0,7)xQ,
¢ li=o = sign (xQ + 9% — 0.1) +1 on(,

where the anisotropy function ;16 is given by

3 15
o (P) (z P)
=1

and we apply the Dirichlet boundary conditions

¢=w,=0 ond.
Computational domain: Q = [—0.5,0.5].
Final time: T = 0.025.
Space steps: h = 0.01.
Time step: 7 =15-107Y.
Numerical scheme: [6.3.9]
Figure: (7.6
Remark: In case of ["™ anisotropy the solution of the Willmore flow of graphs seems to converge
to non-trivial steady state. Compare with the Numerical experiment
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.66.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t = 0, t = 0.0125, ¢t = 0.0375 and ¢t = 0.0625
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
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Anisotropic graph formulation of the Willmore flow

05 = 059 A

Figure 7.67.: The semi-implicit finite difference numerical scheme for the anisotropic Will-
more flow of graphs at times t = 0, ¢ = 0.0001, ¢t = 0.005 and ¢ = 0.025 (graph
of v on the left, level-lines of ¢ on the right). See the Numerical experiment (7.2.48
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7.2. Numerical experiments

Numerical experiment 7.2.49. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

O = QVpys(Vep,—1) on (0,T) x Q
¢ lt=o = sin (7r tanh (5 ((:v2 + y2) — 0.25))) on Q

where the anisotropy function ;16 is given by

1
3 6
)= (311
i=1
and we apply the Dirichlet boundary conditions

p=0 on 0.
Computational domain: Q = [-1,1]°.
Final time: T = 1.0.
Space steps: h = 0.02.
Time step: 7 =1.25-10"%.
Numerical scheme: [6.3.§
Figure: [7.68
Remark: In case of {" anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment

Numerical experiment 7.2.50. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?
Op = —QV- (EWanY — ZQ;V@> on (0,7) x €,
wy = QH, on (0,T) xQ,
¢ li=o = sin (Wtanh (5 ((72 + yz) — 0.25))) on €,

where the anisotropy function 716 is given by

3 %
Yo (P) = (Z |Pi|16>
=1

and we apply the Dirichlet boundary conditions

p=wy=0 on S
Computational domain: Q = [-1,1]*.
Final time: T = 0.1.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure: [7.69
Remark: The solution at the time ¢t = 0.1 seems to be a steady state solution.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.68.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times ¢t = 0, ¢t = 0.01, ¢t = 0.04 and ¢t = 1.0 (graph of
¢ on the left, level-lines of ¢ on the right). See the Numerical experiment (7.2.49
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Anisotropic graph formulation of the Willmore flow
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Figure 7.69.: The semi-implicit finite difference numerical scheme for the anisotropic Will-
more flow of graphs at times ¢t = 0, ¢ = 0.001, t = 0.01 and ¢ = 0.1 (graph of ¢
on the left, level-lines of ¢ on the right). See the Numerical experiment [7.2.50

215



7. Computational studies

Numerical experiment 7.2.51. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

O = QVpvyus (Vep,—1) on (0,T) x Q

¢ lizo = —0.5sin® (mz)- (1 —(y- 2)2) (1 — tanh <10 (\/W B 0'6))) on £

where the anisotropy function ;16 is given by

3 15
s (P) = (Zﬂ-16>
i=1
and we apply the Dirichlet boundary conditions

=0 on 0.
Computational domain: Q = [-1,1]°.
Final time: T = 0.125.
Space steps: h = 0.02.
Time step: 7 =2.5-107%,
Numerical scheme: [6.3.8
Figure:
Remark: In case of {" anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment

Numerical experiment 7.2.52. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

oo = v (Bve, LYy 0,T) x 0
tY = _Q : v w"/ - 5@ 2 on ( 9 ) X )
wy = QH, on (0,T)xQ,
¢lico = —0.5sin?(rz)- (1 (- 2)2) (1 ~ tanh (10 (\/xQ 2 0.6))) on ©,

where the anisotropy function 716 is given by

3 16
16
)= (32 1m)
i=1
and we apply the Neumann boundary conditions

¢=wy,=0 on 0.
Computational domain: Q = [-1,1]*.
Final time: T = 0.009.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure:
Remark: The computation has been stopped after 50 days of running on 4 CPUs Opteron 270 2
GHz.
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Anisotropic graph formulation of the mean-curvature flow

Figure 7.70.: The semi-implicit finite difference numerical scheme for the anisotropic

mean-

curvature flow of graphs at times t = 0, ¢t = 0.02, t = 0.04 and ¢t = 1.0 (graph of

© on the left, level-lines of ¢ on the right). See the Numerical experiment
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Anisotropic graph formulation of the Willmore flow

Figure 7.71.: The semi-implicit finite difference numerical scheme for the anisotropic Will-
more flow of graphs at times ¢t = 0, ¢ = 0.0001, ¢t = 0.001 and ¢t = 0.009 —
not a steady state (graph of ¢ on the left, level-lines of ¢ on the right). See the
Numerical experiment
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7.2. Numerical experiments

Numerical experiment 7.2.53. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

Op = QVpye (Vp,—1) on (0,T) x Q
© lt=0 = sin(2mx)sin(2wy) on

where the anisotropy function ;16 is given by

3 T6
)= (311
i=1
and we apply the Neumann boundary conditions

Vpyr =0 on 09Q.
Computational domain: O = [0,1]°.
Boundary conditions: Vv =0 on 9.
Final time: T = 10%.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: [6.3.6]
Figure: [7.72
Remark: In case of {" anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment

Numerical experiment 7.2.54. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?
Op = —QV- <IE,YVw7 - QI;V@) on (0,T) x Q,
wy = QH, on (0,T) x4,
¢ lt=0 = sin(27x)sin(27y) on Q,

where the anisotropy function ;16 is given by

3 16
16
)= (311
i=1
and we apply the Neumann boundary conditions

0

v

¢ =E,Vwy-v=0 on 0.
Computational domain: Q = [0,1]°.
Final time: T = 0.005.

Space steps: h = 0.02.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure:

Remark: —
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.72.: The explicit finite difference numerical scheme for the anisotropic mean-

curvature flow of graphs at times t = 0, t = 0.001, ¢t = 0.008 and ¢t = 10* (graph
of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment (7.2.53
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Anisotropic graph formulation of the Willmore flow
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Figure 7.73.: The explicit finite difference numerical
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scheme for the anisotropic Willmore

flow of graphs at times ¢t = 0, ¢ = 0.0001, ¢ = 0.001 and ¢ = 0.005 (graph of ¢
on the left, level-lines of ¢ on the right). See the Numerical experiment 7.2.54
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7. Computational studies

Numerical experiment 7.2.55. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

dp = QVpys (Veo,—1) on (0,T) x Q

sin (377\/m) on €2

where the anisotropy function ;16 is given by

3 15
Y6 (P) = (Zﬂ-16>
=1

and we apply the Dirichlet boundary conditions

2 |t:()

=0 on 9N.
Computational domain: Q = [-2,2]°.
Final time: T =5 - 10°.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: [6.3.6]
Figure:
Remark: In case of {" anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment

Numerical experiment 7.2.56. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

1 w?

O = —-QV-[E,Vw, - 7&V<p on (0,7) x Q,
2Q3

wy = QH, on (0,T)xQ,

¢ li=o = sin (377\/302 + y2) on €,

where the anisotropy function 716 is given by

L1

3 16
Yo (P) = (Z Pz‘m)

i=1
and we apply the Neumann boundary conditions

p=w,=0 on .
Computational domain: Q = [-2,2]*.
Final time: T =0.1.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: [6.3.7]
Figure: [7.75
Remark:
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Anisotropic graph formulation of the mean-curvature flow
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Figure 7.74.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.001, t = 0.008 and ¢t = 5 - 10°
(graph of ¢ on the left, level-lines of ¢ on the right). See the Numerical experiment
7.2.55
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Anisotropic graph formulation of the Willmore flow
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Figure 7.75.: The explicit finite difference numerical scheme for the anisotropic Willmore

flow of graphs at times t =0, t = 0.001, t = 0.01 and ¢t = 0.1 (graph of ¢ on the
left, level-lines of ¢ on the right). See the Numerical experiment |7.2.56
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7.2. Numerical experiments

7.2.2. Level-set formulation

The numerical experiments for the level-set formulation consist of two parts. In the first one
we compare the level-set method with the parametric approach on the isotropic problems. The
results are shown on the Figures — and set-ups of the experiments are described in
the Numerical experiments [7.2.57—[7.2.64] Except of the last experiment [7.2.64] we have always
employed the semi-implicit versions of the complementary finite volume schemes. We have
considered initial curves with sharp corners and also curves which are not convex. In all cases
we show comparison of the evolutions driven by the mean-curvature and the Willmore flow. All
the experiments show very good agreement of the results obtained by both methods. We also
show evolution of the level-set function which is important too. One can see that its deformation
is most significant in the case of the Willmore flow.

The second part demonstrates anisotropic level-set method, but now it is not compared to the
parametric approach. One can find the results on the Numerical experiments — the
Figures [7.84] - As well as in case of the isotropic evolutions, we also show the level-set
function evolution. One can see, that the numerical schemes we propose, are able to drive the
curves towards appearance of sharp corners even in cases of the fourth order problems.

225



7. Computational studies

Numerical experiment 7.2.57. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

ﬁtu <Vu>
= V. on (0,T) x Q,
Q. 0. 0.
Uli—0 = Ui ong,

with the Neumann boundary conditions
Oyu=1 on 09,

and the parametric approach.

0,x = kn.
The initial condition is an ellipse given by (%5)2 + (0_‘%)2 =1.
Computational domain: Q = [-2,2]*.
Final time: T = 0.5.
Level-set: 200 x 200 nodes, regularisation ¢ = 107>, no re-distancing.
Parametric approach: 100 nodes, redistribution ¢; =1, §; =1 and dp = 1.
Time step: 0.0005 - level-set method, 0.001 - parametric approach.
Numerical scheme: for the mean-curvature flow
Figure:

Remark: One can see that both methods, level-set and parametric, give equivalent results.

Numerical experiment 7.2.58. Comparison of the semi-implicit finite difference numerical
scheme for the isotropic level-set formulation of the Willmore flow

0, = —QV lIPVw - lwiv on Q x (0,7
t‘P - Q 2 Q3 90 ) 9
w = QHonQx|[0,T],
¥ It:O = Pini On €2,

with the Neumann boundary conditions
du=1, O,w=0 on o,

and the parametric approach.
1. .
0x = (afk - k3) n.
2
Yy

The initial condition is an ellipse given by (%5)2 + (mﬁ =1.
Computational domain: Q = [2,2]*.

Final time: T = 0.5.

Level-set: 100 x 100 nodes, regularisation € = 0.04, no re-distancing.
Parametric approach: 100 nodes, redistribution ¢; =1, §; =1 and d, = 1.
Time step: 1076 - level-set method, 0.001 - parametric approach.
Numerical scheme: for the Willmore flow

Figure:

Remark: One can see that both methods, level-set and parametric, give equivalent results.
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7.2. Numerical experiments

Isotropic level-set formulation of the mean-curvature flow

Figure 7.76.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times ¢t = 0, ¢t = 0.05, ¢ = 0.1 and ¢ = 0.5. See the numerical

experiment
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Isotropic level-set formulation of the Willmore flow

-
-
-
O

Figure 7.77.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-
more flow at times ¢t = 0, t = 0.01, £ = 0.02 and ¢ = 0.5. See the numerical
experiment [7.2.58
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7.2. Numerical experiments

Numerical experiment 7.2.59. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

= V. on (0,T) x £,
Q. o.) » T
u ‘t:O = Uin; on Q,

with the Neumann boundary conditions
Oyu=1 on 09,

and the parametric approach.
0,x = kn.

The initial condition is a square given by (|| — 0.75) (Jy| — 0.75) = 0.
Computational domain: Q = [—1, 1]2.

Initial condition: Square given by (|z| — 0.75) (Jy| — 0.75) = 0.

Boundary conditions: dur =1 on 9f).

Final time: T = 0.2.

Level-set: 200 x 200 nodes, regularisation ¢ = 107>, no re-distancing.
parametric approach: 150 nodes, redistribution ¢; = 1, §; = 1000 and 6 = 1.
Time step: 1076 - level-set method, 0.001 - parametric approach.

Numerical scheme: for the mean-curvature flow

Figure: [7.78

Remark: One can see that both methods, level-set and parametric, give equivalent results.

Numerical experiment 7.2.60. Comparison of the semi-implicit finite difference numerical
scheme for the isotropic level-set formulation of the Willmore flow

0 = —QV l11:’Vw - lw:v on Q x (0,T]
P - Q 2 Q3 ® ) 9
w = QHon$x][0,T],
@ lt=0 = Pini On L,

with the Neumann boundary conditions
ou=1, J,w=0 on o,

and the parametric approach.

The initial condition is an ellipse given by (%5)2 + (%)2 =1.
Computational domain: Q = [-1,1]*.

Final time: T = 0.2.

Level-set: 100 x 100 nodes, regularisation € = 0.002, no re-distancing.
parametric approach: 200 nodes, redistribution ¢; =2, §; = 1 and d§, = 0.
Time step: 21077 - level-set method, 10~% - parametric approach.
Numerical scheme: for the Willmore flow

Figure:

Remark: One can see that both methods, level-set and parametric, give equivalent results.
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7. Computational studies

Isotropic level-set formulation of the mean-curvature flow

Figure 7.78.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times ¢t =0, t = 0.01, t = 0.05 and ¢ = 0.2. See the numerical
experiment |7.2.59
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7.2. Numerical experiments

Isotropic level-set formulation of the Willmore flow

Figure 7.79.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-
more flow at times t = 0, t = 0.01, £ = 0.05 and ¢t = 0.2. See the numerical
experiment [7.2.59
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7. Computational studies

Numerical experiment 7.2.61. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

ﬁtu <Vu>
= V. on (0,T) x Q,
Q. 0. 0.
Uli—0 = Ui ong,

with the Neumann boundary conditions
Oyu=1 on 09,

and the parametric approach.
0,x = kn.

The initial condition is an astroid given by z2/3 + y?/3 = 0.75%/3. Computational domain:
Q=[-1,17>

Final time: T = 0.05.

Level-set: 130 x 130 nodes, regularisation ¢ = 10~°, no re-distancing.

Parametric approach: 150 nodes, redistribution ¢; = 1, §; =1 and o = 1.

Time step: 1076 - level-set method, 10~° - parametric approach.

Numerical scheme: for the mean-curvature flow

Figure: [7.80

Remark: One can see that both methods, level-set and parametric, give equivalent results.

Numerical experiment 7.2.62. Comparison of the semi-implicit finite difference numerical
scheme for the isotropic level-set formulation of the Willmore flow

0, = —QV l]P’V — 1w—QV on Q x (0,7
Y = Q w D) Q3 "2 11 ) )
w = QHonQxI[0,T],
¥ It:O = Pini on €2,

with the Neumann boundary conditions
du=1, O,w=0 onof,

and the parametric approach.
1.
0x = (—afk - 2k5) n.

The initial condition is an astroid given by x?/3 4+ y2/3 = 0.75%/3.

Computational domain: Q = [-1,1]°.

Final time: T = 0.05.

Level-set: 150 x 150 nodes, regularisation € = 0.025, re-distancing Treqist = 1072
Parametric approach: 200 nodes, redistribution ¢; =0, §; = 1 and d, = 1.

Time step: 2-107? - level-set method, 10~? - parametric approach.

Numerical scheme: for the Willmore flow

Figure: [7.81

Remark: One can see that both methods, level-set and parametric, give equivalent results.
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7.2. Numerical experiments

Isotropic level-set formulation of the mean-curvature flow

<
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o
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Figure 7.80.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times ¢ = 0, ¢ = 0.001, ¢ = 0.005 and ¢ = 0.04. See the
numerical experiment [7.2.61
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7. Computational studies

Isotropic level-set formulation of the Willmore flow

<
<
<
O

Figure 7.81.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-
more flow at times t =0, ¢t = 1076, ¢ = 10™* and ¢t = 0.0015. See the numerical

experiment [7.2.62
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7.2. Numerical experiments

Numerical experiment 7.2.63. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

du g, (v“) on (0,T) x Q,
Qe e
u ‘t:O = Uin; on Q,

with the Neumann boundary conditions
Oyu=1 on 09,

and the parametric approach.
0,x = kn.

The initial condition is a non-convex curve given by z = 1 — 0.75cos? (6t)cost, y = 1 —
0.75 cos? (6t) sint for ¢ € [0,27).
Computational domain: = [—1.5,1.5]
Final time: T = 0.03.

Level-set: 400 x 400 nodes, regularisation € = 107, re-distancing 7,.eqis¢ = O.

parametric approach: 400 nodes, redistribution ¢; = 0, §; = 10 and 65 = 1.

Time step: Adaptive - level-set method, 10~° - parametric approach.

Numerical scheme: for the mean-curvature flow

Figure: [7.82

Remark: One can see that both methods, level-set and parametric, give equivalent results even
with highly non-convex initial curve.

2
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7. Computational studies

Numerical experiment 7.2.64. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the Willmore flow

O = —QV lIPVw - lw—gv on Q x (0,7]
t(P - Q 2 Q3 90 ’ 9
w = QHonQx|[0,T],
® |t:0 = Qini on £,

with the Neumann boundary conditions
du=1, J,w=0 on 0N,

and the parametric approach.
1. .
0x = (afk - 2k3) n.

The initial condition is a non-convex curve given by z = 1 — 0.3cos? (6t)cost, y = 1 —
0.3 cos? (6t) sint for t € [0, 27).
Computational domain: Q = [-1.5,1.5]
Final time: T = 0.00032.

Level-set: 200 x 200 nodes, regularisation € = 0.05, re-distancing Treqist = 5 - 107°.

Parametric approach: 1000 nodes, redistribution e; = 0, ;1 = 1 and 65 = 1.

Time step: Adaptive - level-set method, 2 - 10™? - parametric approach.

Numerical scheme: for the Willmore flow

Figure:

Remark: One can see that both methods, level-set and parametric, give equivalent results. We
would like to note, that the semi-implicit scheme for the level-set method failed to compute ap-
proximate solution at this experiment. We chose a bit different initial curve then in the experiment
[7.2.63| because it would lead to splitting into more the one curve which is not possible to be handled
by the parametric method.

2
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7.2. Numerical experiments

Isotropic level-set formulation of the mean-curvature flow

e
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»
O

Figure 7.82.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times ¢t = 0, t = 0.005, ¢ = 0.01 and ¢ = 0.03. See the numerical
experiment [7.2.63
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7. Computational studies

Isotropic level-set formulation of the Willmore flow

-
o
@
O

15 15
Figure 7.83.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-

more flow at times ¢t = 0, ¢t = 8- 107>, t = 0.00016 and ¢t = 0.00032. See the
numerical experiment [7.2.64
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7.2. Numerical experiments

Numerical experiment 7.2.65. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpya (V) on (0,T) x Q,
U\t:o = Ujp; ON Q»

with the Neumann boundary conditions
Vpygy =1 on 0.

The anisotropy function ~g is given by
T 10 0
Yo (P, —1) = V1+p"Gp, for G:=( | |,

and the initial condition is a circle given by 2% + y? = 1.
Computational domain: 2 = [-2, 2]2.

Final time: T'=0.2.

Level-set: 100 x 100 nodes, regularisation ¢ = 107>, no re-distancing.
Time step: 7 = 0.0005.

Numerical scheme: [6.3.8

Figure: [7.84

Remark: —

Numerical experiment 7.2.66. Test of the level-set formulation for the anisotropic Will-
more flow

Oru . 1 w?}/
Q0. A <E7Vw,y Q@Vu on (0,7) x Q,
wy = QH, on (0,T)xQ,

Uli=0 = Ui onQ,

with the Neumann boundary conditions
Ju=1, E,Vw,-v=0 on 09Q.

The anisotropy function ~g is given by
T 10 0
76 (p.—1) = V1+pTGp, for G:=( o | |,

and the initial condition is a circle given by 22 4+ y? = 1.
Computational domain: Q = [-2,2]°.

Final time: T = 0.07.

Level-set: 100 x 100 nodes, regularisation ¢ = 0.01, no re-distancing.
Time step: 7 =2-10"".

Numerical scheme: [6.3.9]

Figure: [7.85

Remark: —
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

0

-1 1

Figure 7.84.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times t = 0,6t = 0.1 and ¢t = 0.2 and evolution of the initial curve
until the time ¢t = 0.2 with the time period 0.02. See the Numerical experiment
7.2.65
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

2

Figure 7.85.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times ¢ = 0, ¢ = 0.03 and ¢ = 0.07 and evolution of the initial curve
until the time t = 0.07 with the time period 0.007. See the Numerical experiment
7.2.66
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7. Computational studies

Numerical experiment 7.2.67. Test of the level-set formulation for the anisotropic mean-
curvature flow

‘25“ = V- (Vpye (V) on (0,T) x Q,
U|t:o = Ujp; on ),

with the Neumann boundary conditions
Vpygry =1 on 0Q.

The anisotropy function g is given by
T TN 11 10
TG (pa 71) =v1+p Gp, for G := 10 11 )

and the initial condition is a circle given by 22 + 2 = 1.
Computational domain: = [-2, 2]2.

Final time: T = 0.16.

Level-set: 100 x 100 nodes, regularisation ¢ = 10~°, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.86

Remark: —

Numerical experiment 7.2.68. Test of the level-set formulation for the anisotropic Will-
more flow

O B 1 w?y
0. A (IE,YVwW §@Vu on (0,7) x €,
wy = QcH, on (0,T)xQ,

u |t:0 = Upp; on ),

with the Neumann boundary conditions
J,u=1, E,Vw,-v=0 on 9Q.

The anisotropy function 7 is given by
11 10
va (p,—1) =1+ pTG ,forG::(lo 11),

and the initial condition is a circle given by 22 + y? = 1.
Computational domain: Q = [-2,2]*.

Final time: T = 0.0008.

Level-set: 100 x 100 nodes, regularisation ¢ = 0.01, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure:

Remark: —
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

D= O = N W
D= O = NN W

3
0 - -

2
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2
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-1 0 1

Figure 7.86.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times t = 0, ¢ = 0.1, t = 0.16 and evolution of the initial curve until

the time ¢ = 0.16 with the time period 0.02. See the Numerical experiment
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

2

Figure 7.87.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t = 0, t = 0.0004, t = 0.008 and evolution of the circle until the
time ¢t = 0.0008 with the time period 8-107°. See the Numerical experiment [7.2.68
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7.2. Numerical experiments

Numerical experiment 7.2.69. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpya (V) on (0,T) x Q,
U\t:o = Ujp; ON Q»

with the Neumann boundary conditions
Vpygy =1 on 0.

The anisotropy function ~g is given by

ve (p,—1) := v/1+ pTGp, for G := ( 100 (1)),

and the initial condition is a square given by (|| — 0.75) (Jy| — 0.75) = 0.
Computational domain: 2 = [-2, 2]2.

Final time: T = 0.25.

Level-set: 100 x 100 nodes, regularisation € = 10~°, no re-distancing.
Time step: 7 = 1075,

Numerical scheme: [6.3.8

Figure: [7.88

Remark: —

Numerical experiment 7.2.70. Test of the level-set formulation for the anisotropic Will-
more flow

8tu 1 w2
- _v-[|E S —— 0,T) x Q
0. \% < ~Vw,y 2Q3Vu> on (0,T) x Q,
wy = Q.H, on (0,T)xQ,
Uli=o = Ui on

with the Neumann boundary conditions
J,u=1, E,Vw, -v=0 on 09Q.

The anisotropy function ~g is given by
T 10 0
e (P, —1) == V1+pTGp, for Go=( ' | ).

and the initial condition is a square given by (|| — 0.75) (Jy| — 0.75) = 0.
Computational domain: Q = [—3,3]2.

Final time: T = 0.0025.

Level-set: 150 x 150 nodes, regularisation € = 0.01, no re-distancing.
Time step: 7 = 1073,

Numerical scheme: [6.3.9]

Figure: [7.89

Remark: -
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Anisotropic level-set formulation of the mean-curvature flow

-1 0 1

Figure 7.88.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times t = 0, ¢t = 0.128 and ¢ = 0.25 and evolution of the circle until
the time ¢ = 0.25 with the time period 0.025. See the Numerical experiment (7.2.69
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

Figure 7.89.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times ¢ = 0, ¢ = 0.00125, ¢ = 0.0025 and evolution of the initial curve
at the time ¢ = 0.0025 with the time period 0.0001. See the Numerical experiment
7.2.70
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7. Computational studies

Numerical experiment 7.2.71. Test of the level-set formulation for the anisotropic mean-
curvature flow

‘25“ = V- (Vpye (V) on (0,T) x Q,
U|t:o = Ujp; on ),

with the Neumann boundary conditions
Vpygry =1 on 0Q.

The anisotropy function g is given by
T TN 11 10
TG (pa 71) =v1+p Gp, for G := 10 11 )

and the initial condition is a square given by (|z| — 0.75) (|Jy| — 0.75) = 0.
Computational domain: Q = [-2,2]°.

Final time: T = 0.2.

Level-set: 100 x 100 nodes, regularisation € = 0.001, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.90

Remark: —

Numerical experiment 7.2.72. Test of the level-set formulation for the anisotropic Will-
more flow

2

8{& 1w
- v.|E R 0,7) x Q
0. \Y ( ~Vw, 2Q3Vu> on (0,7) x Q,
wy = Q.H, on (0,T)xQ,
Ult=0 = Ui on,

with the Neumann boundary conditions
Ju=1, E;Vw,-v=0 on Q.

The anisotropy function 7 is given by
11 10
16 (P, —1) == V1+pTGp, for G:={ o |, |

and the initial condition is a square given by (|| — 0.75) (Jy| — 0.75) = 0.
Computational domain: Q = [-3, 3]2‘

Final time: T = 0.0008.

Level-set: 150 x 150 nodes, regularisation € = 0.01, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure:

Remark: —
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.90.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times ¢t = 0, t = 0.1, ¢ = 0.2 and evolution of the initial curve until
the time ¢ = 0.2 with the time period 0.02. See the Numerical experiment |7.2.71
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Anisotropic level-set formulation of the Willmore flow
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Figure 7.91.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t = 0, ¢ = 0.0004, ¢t = 0.0008 and evolution of the initial curve at
times t = 107°,4-1075,8 - 107°,0.00016, 0.00024, - - - ,0.0008. See the Numerical
experiment |7.2.72
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7.2. Numerical experiments

Numerical experiment 7.2.73. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpya (V) on (0,T) x Q,
U\t:o = Ujp; ON Q»

with the Neumann boundary conditions
Vpygy =1 on 0.

The anisotropy function ~g is given by
T 10 0
Yo (P, —1) = V1+p"Gp, for G:=( | |,

and the initial condition is an astroid given by /3 4 32/3 = 0.75%/3.
Computational domain: = [-1, 1]2.

Final time: T = 0.0045.

Level-set: 100 x 100 nodes, regularisation € = 10~°, no re-distancing.
Time step: 7 =2-107°.

Numerical scheme: [6.3.8

Figure: [7.92

Remark: -

Numerical experiment 7.2.74. Test of the level-set formulation for the anisotropic Will-
more flow

Oru . 1 w?),
0. -V <]E7Vw,y - §@Vu on (0,7) x Q,
wy = QH, on (0,T)xQ,

Ult=o = Ui on g,

with the Neumann boundary conditions
Ju=1, E,Vw,-v=0 on 09Q.

The anisotropy function ~¢ is given by
T 10 0
va (P, —1) := 1+ pTGp, for G := 0 1)

and the initial condition is an astroid given by /3 4 42/3 = 0.75%/3.
Computational domain: Q = [1,1]*.

Final time: T =5-10"4.

Level-set: 125 x 125 nodes, regularisation € = 0.01, no re-distancing.
Time step: 7 = 1077,

Numerical scheme: [6.3.9]

Figure: [7.93

Remark: —
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Anisotropic level-set formulation of the mean-curvature flow
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Figure 7.92.: Anisotropic level-set method for the mean-curvature flow — graphs if the level-
set function at times ¢ = 0, ¢ = 0.001, £ = 0.0045 and evolution of the initial
curve until the time ¢ = 0.0045 with the time period 0.005. See the Numerical
experiment |7.2.73
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Anisotropic level-set formulation of the Willmore flow

-1 -1 -1 0 1

Figure 7.93.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t = 0, t = 1075, ¢t = 0.0005 and evolution of the initial curve at
times t = 107%,107%,5-1075,0.00015, - - - ,0.0005. See the Numerical experiment
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7. Computational studies

Numerical experiment 7.2.75. Test of the level-set formulation for the anisotropic mean-
curvature flow

‘25“ = V- (Vpye (V) on (0,T) x Q,
U|t:o = Ujp; on ),

with the Neumann boundary conditions
Vpygry =1 on 0Q.

The anisotropy function g is given by
T TN 11 10
TG (pa 71) =v1+p Gp, for G := 10 11 )

and the initial condition is an astroid given by z2/3 4 y%/3 = 0.75%/3.
Computational domain: = [-1, 1}2.

Final time: T = 0.033.

Level-set: 100 x 100 nodes, regularisation € = 0.001, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.94

Remark: —

Numerical experiment 7.2.76. Test of the level-set formulation for the anisotropic Will-
more flow

2

oiu . 1 wy
0. -V (IE,YV’LU,Y ~508 Vu) on (0,T) x Q,
wy, = QcH, on (0,T)xQ,

Ult=0 = Ui on g,

with the Neumann boundary conditions
Ju=1, E,Vw, -v=0 on 9Q.

The anisotropy function 7 is given by
11 10
va (p,—1) :=+v/1+pTG ,forG::(lo 11),

and the initial condition is an astroid given by z:2/3 4 y%/3 = 0.75%/3.
Computational domain: Q = [-1,1]*.

Final time: T = 0.0001.

Level-set: 125 x 125 nodes, regularisation € = 0.01, no re-distancing.
Time step: 7= 1077,

Numerical scheme: [6.3.9]

Figure: [7.95

Remark: —
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Anisotropic level-set formulation of the mean-curvature flow

-1 -1 05 0 0.5

Figure 7.94.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times ¢t = 0, t = 0.015, ¢ = 0.033 and evolution of the initial curve
until the time ¢ = 0.033 with the time period 0.003. See the Numerical experiment
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Anisotropic level-set formulation of the Willmore flow

-1 0 1

Figure 7.95.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t =0, t = 5-107°, t = 0.0001 and evolution of the initial curve
at times ¢t = 107%,5.1076,107°,2-1075,3-107°,--- ,0.0001. See the Numerical
experiment |7.2.76
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Numerical experiment 7.2.77. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpya (V) on (0,T) x Q,
U\t:o = Ujp; ON Q»

with the Neumann boundary conditions
Vpygy =1 on 0.

The anisotropy function ~g is given by

ve (p,—1) := v/1+ pTGp, for G := ( 100 (1) ) ,
and the initial condition is a curve given by

u(z,y) =22 +y?>—1—0.75sin <6 arccos ac)
v Ve

Computational domain: Q = [—1.5,1.5)°.

Final time: T = 0.1.

Level-set: 250 x 250 nodes, regularisation € = 10~°, no re-distancing.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure:

Remark: —
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Numerical experiment 7.2.78. Test of the level-set formulation for the anisotropic Will-
more flow

8{& 1 ’U)2
= _v-|E S —— 0,7) x Q
0. \Y ( ~Vw, 2Q3Vu> on (0,7) x Q,
wy = Q.H, on (0,T)xQ,
Uli=0 = Ui on €,

with the Neumann boundary conditions
J,u=1, E;Vw, -v=0 on 9Q.

The anisotropy function g is given by

76 (p,~1) = v/T+ pTGp, for G := ( oo )
and the initial condition is a curve given by

x
u(z,y) =+va2+y?2—1-0.3sin <6 arccos )
/:1:2 _|_y2

Computational domain: Q = [-1.5,1.5].

Final time: T = 0.0012.

Level-set: 100 x 100 nodes, regularisation ¢ = 0.01, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.93

Remark: —

258
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Anisotropic level-set formulation of the mean-curvature flow

Figure 7.96.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times t = 0, t = 0.05, t = 0.1 and evolution of the initial curve at
times t = 0.005, 0.01, 0.02,0.03,--- ,0.1. See the Numerical experiment
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.97.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t = 0, ¢t = 0.0006, ¢t = 0.0012 and evolution of the initial curve at
times t = 107%,107°,5-107°,0.0001, 0.0002, 0.0003, - - - ,0.0012. See the Numerical
experiment |7.2.78
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7.2. Numerical experiments

Numerical experiment 7.2.79. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpya (V) on (0,T) x Q,
U\t:o = Ujp; ON Q»

with the Neumann boundary conditions
Vpygy =1 on 0.

The anisotropy function ~g is given by

vG (p,—1) := 1+ pTGp, for G := < }(1) }(1) ) ,
and the initial condition is a curve given by

u(z,y) =22 +y?>—1—0.75sin <6 arccos ac)
v Ve

Computational domain: Q = [—1.5,1.5)°.

Final time: T = 0.075.

Level-set: 250 x 250 nodes, regularisation € = 0.001, no re-distancing.

Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure:

Remark: —
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7. Computational studies

Numerical experiment 7.2.80. Test of the level-set formulation for the anisotropic Will-
more flow

8{& 1 ’U)2
= _v-|E S —— 0,7) x Q
0. \Y ( ~Vw, 2Q3Vu> on (0,7) x Q,
wy = Q.H, on (0,T)xQ,
Uli=0 = Ui on €,

with the Neumann boundary conditions
J,u=1, E;Vw, -v=0 on 9Q.

The anisotropy function g is given by

76 (p,~1) = v/T+ pTGp, for G := ( oo )
and the initial condition is a curve given by

x
u(z,y) =+va2+y?2—1-0.3sin <6 arccos )
/:1:2 _|_y2

Computational domain: Q = [-1.5,1.5].

Final time: 7 = 3- 10~

Level-set: 100 x 100 nodes, regularisation ¢ = 0.01, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.99

Remark: —

262



7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.98.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times t = 0, ¢ = 0.0375, t = 0.075 and evolution of the initial
curve until the time ¢ = 0.075 with the time period 0.0075. See the Numerical
experiment [7.2.79
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow
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Figure 7.99.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t =0, ¢t = 1.5-107%, t = 3-10~* and evolution of the initial curve
at times t = 107%,3-107°,6 - 107°,9 - 107°,0.00012, 0.00015, 0.00018, - - - , 0.0003.
See the Numerical experiment [7.2.80
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7.2. Numerical experiments

Numerical experiment 7.2.81. Test of the level-set formulation for the anisotropic mean-
curvature flow

)
é“ = V- (VpYars (Vu)) on (0,T) x €,
U\f,:o = Uy on ),

with the Neumann boundary conditions
VpYabs -V =1 on 0.

The anisotropy function 74, is given by

3 3
Yabs (P) = Z P2 + €45 ZPJZ, for €455 = 0.001,

i=1 j=1

and the initial condition is a circle given by 22 + y2 = 1.
Computational domain: Q = [-2,2]%.

Final time: T = 0.36.

Level-set: 100 x 100 nodes, regularisation ¢ = 107, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.100

Remark: -
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7. Computational studies

Numerical experiment 7.2.82. Test of the level-set formulation for the anisotropic Will-
more flow

8{& 1 ’U)2
= _v-|E S —— 0,7) x Q
0. \Y ( ~Vw, 2Q3Vu> on (0,7) x Q,
wy = Q.H, on (0,T)xQ,
Uli=0 = Ui on €,

with the Neumann boundary conditions
J,u=1, E;Vw, -v=0 on 9Q.

The anisotropy function 7.5 is given by

3 3
Yabs (P) = (| P2+ €aps Y P2, for eqps = 0.001,
j=1

i=1

and the initial condition is a circle given by 22 + 2 = 1.
Computational domain: Q = [—2,2]*.

Initial condition: Circle given by 22 + y? = 1.

Boundary conditions: d,u =1, E,Vw, - v =0 on 0Q.

Final time: T =0.1.

Level-set: 100 x 100 nodes, regularisation € = 0.01, no re-distancing.
Time step: 7= 1075,

Numerical scheme: [6.3.9]

Figure: [7.101
Remark: —
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow
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Figure 7.100.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times ¢ = 0,t = 0.18 and ¢t = 0.36 and evolution of the initial curve
until the time ¢ = 0.36 with the time period 0.04. See the Numerical experiment
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

-1 0 1

Figure 7.101.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t = 0, t = 0.001 and ¢ = 0.1 and evolution of the curve at times
t = 0.001, 0.005,0.01,0.02,0.03,--- ,0.1. See the Numerical experiment [7.2.82
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7.2. Numerical experiments

Numerical experiment 7.2.83. Test of the level-set formulation for the anisotropic mean-
curvature flow

P
é“ = V- (VpYars (Vu)) on (0,T) x €,
U\f,:o = Uini 01197

with the Neumann boundary conditions
VpYabs -V =1 on 0.

The anisotropy function 74, is given by

3 3
Yabs (P) = Z P2 + €45 ZPJZ, for €455 = 0.001,

i=1 j=1

and the initial condition is a square given by (|| — 0.75) (Jy| — 0.75) = 0.
Computational domain: 2 = [-2, 2]2.

Final time: T = 0.48.

Level-set: 100 x 100 nodes, regularisation € = 0.001, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.102
Remark: —.

Numerical experiment 7.2.84. Test of the level-set formulation for the anisotropic Will-
more flow

8tu - 1 w'%/
0. -V <E7va — §@Vu on (0,T) x €,
wy, = QH, on (0,T)xQ,

Uli—0 = Ui ong,

with the Neumann boundary conditions
J,u=1, E,Vw, -v=0 on 0.

The anisotropy function 7.5 is given by

3 3
Yabs (P) = Z f)f + €abs ZP]'27 for eqps = 0.001,

i=1 j=1

and the initial condition is a square given by (|| — 0.75) (Jy| — 0.75) = 0.
Computational domain: 2 = [-2, 2]2.

Final time: T = 0.003.

Level-set: 100 x 100 nodes, regularisation ¢ = 0.01, no re-distancing.
Time step: 7 = 1078,

Numerical scheme: [6.3.9

Figure: [7.103

Remark: —.
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

0 1

Figure 7.102.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times ¢t = 0, t = 0.24, ¢ = 0.48 and evolution of the curve until the
time ¢ = 0.48 with the time period 0.04. See the Numerical experiment [7.2.83
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

-1 0 1

Figure 7.103.: Anisotropic level-set method for the Willmore flow — graphs of the level-set func-
tion at times ¢ = 0, t = 0.0015, t = 0.003 and evolution of the initial curve until
the time ¢ = 0.003 with the time period 0.0003. See the Numerical experiment
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7. Computational studies

Numerical experiment 7.2.85. Test of the level-set formulation for the anisotropic mean-
curvature flow

55“ = V- (Vorans (Vu)) on (0,T) x €,
u |t:0 = Ujp; ON Qa

with the Neumann boundary conditions
VpYabs -V =1 on 0.

The anisotropy function 7,5 is given by

3
Yabs (P) = Z Pi2 + €abs Z P]‘27 for €abs = 00017
j=1

i=1

and the initial condition is an astroid given by z2/3 4 y?/3 = 0.75%/3.
Computational domain: 2 = [-1, 1}2.

Final time: T = 0.075.

Level-set: 150 x 150 nodes, regularisation e = 107°, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.61

Figure: [7.104]
Remark: —.

Numerical experiment 7.2.86. Test of the level-set formulation for the anisotropic Will-
more flow

&u 1 U)2
— = -V.|E,Vw, - ~—1V 0,7) x Q
Qe <’7w’Y 2@3 u) On(: )X ’
wy = QH, on (0,T)xQ,
u |t:0 = Ujp; on ),

with the Neumann boundary conditions
J,u=1, E;Vw, -v=0 on 9Q.

The anisotropy function 7,5 is given by

3
Yabs (P) = Z P2 + €ups Z sz, for €445 = 0.001,
j=1

i=1

and the initial condition is an astroid given by z2/3 4 y?/3 = 0.75%/3.
Computational domain: 2 = [-1, 1}2.

Final time: 0.0012.

Level-set: 100 x 100 nodes, regularisation € = 0.01, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.9]

Figure: [7.105)
Remark: The computation was stopped after 38 days of running on 2 CPU Core2 Duo 2.66 GHz.
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow
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Figure 7.104.: Anisotropic level-set method for the mean-curvature flow — graphs if the level-
set function at times t = 0, t = 0.04, ¢ = 0.075 and evolution of the curve until the
time ¢ = 0.075 with the time period 0.05. See the Numerical experiment |7.2.85
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow
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Figure 7.105.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times t = 0, ¢ = 107>, ¢ = 0.0012 and evolution of the curve at
times t = 107°,5-107°,0.0001, 0.0002 - - - 0.0012 — it is not a steady state. See the
Numerical experiment [7.2.86
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7.2. Numerical experiments

Numerical experiment 7.2.87. Test of the level-set formulation for the anisotropic mean-
curvature flow

)
é“ = V- (VpYars (Vu)) on (0,T) x €,
U\f,:o = Uy on ),

with the Neumann boundary conditions
VpYabs -V =1 on 0.

The anisotropy function 74, is given by

3 3
Yabs (P) = Z P2 + €45 ZPJZ, for €455 = 0.001,

i=1 j=1

and the initial condition is a curve given by

u(z,y) =+vax2+y?—1-0.75sin <6 arccos x)
Nz

Computational domain: Q = [-1.5,1.5]%.

Final time: T = 1.7.

Level-set: 250 x 250 nodes, regularisation € = 0.001, no re-distancing.

Time step: Adaptive.

Numerical scheme: [6.3.6

Figure: [7.106

Remark: —.
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7. Computational studies

Numerical experiment 7.2.88. Test of the level-set formulation for the anisotropic Will-
more flow

8{& 1 ’U)2
= _v-|E S —— 0,7) x Q
0. \Y ( ~Vw, 2Q3Vu> on (0,7) x Q,
wy = Q.H, on (0,T)xQ,
Uli=0 = Ui on €,

with the Neumann boundary conditions
J,u=1, E;Vw, -v=0 on 9Q.

The anisotropy function 7.5 is given by

3 3
Yabs (P) = (| P2+ €aps Y P2, for eqps = 0.001,
j=1

i=1

and the initial condition is a curve given by

u(z,y) = a2 +y?>—1-0.3sin (6 arccos I)
NG

Computational domain: Q = [-1.5,1.5]°.

Final time: T = 0.025.

Level-set: 100 x 100 nodes, regularisation € = 0.01, no re-distancing.

Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.107

Remark: —
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow
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Figure 7.106.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times ¢t = 0, t = 0.8, ¢ = 1.7 and evolution of the curve at times
t = 0.005,0.01,0.2,0.3,0.4,--- ,1.7. See the Numerical experiment
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.107.: Anisotropic level-set method for the Willmore flow — graphs
of the level-set function at times ¢ = 0, t = 0.0001,
t = 0.025 and evolution of the initial curve at times ¢

278

107°,0.0001, 0.00025, 0.0005, 0.001, 0.002, 0.0025, 0.003, 0.004, 0.005, - - - ,0.025.
See the Numerical experiment [7.2.88



7.2. Numerical experiments

Numerical experiment 7.2.89. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpyus (Vi) on (0,T) x
U|t:0 = Ujp; on ),

with the Neumann boundary conditions
VpYabs -V =1 on 0.

The anisotropy function ;16 is given by

L

3 16
e (P) = (Z |Pz‘|16>

i=1

and the initial condition is a circle given by 22 + y? = 1.
Computational domain: 2 = [-2, 2]2.

Final time: T = 0.55.

Level-set: 100 x 100 nodes, regularisation ¢ = 107, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.6]

Figure: [7.10§

Remark: —

Numerical experiment 7.2.90. Test of the level-set formulation for the anisotropic Will-
more flow

8tu 1 w2
= -V-[E — - 0,7) x Q,
0. \Y < +Vuw, 2Q3Vu> on (0,7) x
wy = QH, on (0,T)xQ,
u |t:0 = Uinp; O Q,

with the Neumann boundary conditions
Ju=1, E,.Vw, -v=0 on 0.

The anisotropy function 716 is given by

3 %
v (S
=1

and the initial condition is a circle given by 2% 4+ y? = 1.
Computational domain: Q = [-2,2]°.

Final time: T = 0.0375.

Level-set: 100 x 100 nodes, regularisation € = 0.01, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.109

Remark: —
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

-1 0 1

Figure 7.108.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times t = 0,f = 0.25, t = 0.55 and evolution of the initial curve
until the time t = 0.55 with the time period 0.05. See the Numerical experiment
7.2.89
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow
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Figure 7.109.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times ¢ = 0, t = 0.015 and ¢t = 0.0375 and evolution of the curve
at times t = 0.0,0.0025,0.005---0.0375 — not a steady state. See the Numerical
experiment [7.2.90
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7. Computational studies

Numerical experiment 7.2.91. Test of the level-set formulation for the anisotropic mean-
curvature flow

)
é“ = V- (Vpyus (Vi) on (0,T) x
U\t:o = Ujp; on ),

with the Neumann boundary conditions
VpYabs -V =1 on 0.
The anisotropy function 16 is given by

3
e (P) = (ZR”)

i=1

Sk

and the initial condition is a square given by (|| — 0.75) (Jy| — 0.75) = 0.
Computational domain: Q = [-2, 2]2.

Final time: T =0.7.

Level-set: 150 x 150 nodes, regularisation ¢ = 10, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.6

Figure: [7.110

Remark: —.

Numerical experiment 7.2.92. Test of the level-set formulation for the anisotropic Will-
more flow

o 1 w?
= -V-|E S — T) xQ
0. \Y ( ~Vw, 2Q3Vu> on (0,7) x Q,
Wy = H, on (0,T)xQ
y QcH (0, ;
u |t:0 = Ujp; on ),

with the Neumann boundary conditions
J,u=1, E;Vw, -v=0 on 9Q.

The anisotropy function ;16 is given by

3
e (P) = (Z Pz'16>
i=1

and the initial condition is a square given by (|| — 0.75) (|y| — 0.75) = 0.
Computational domain: = [-2, 2]2.

Final time: T = 0.025.

Level-set: 100 x 100 nodes, regularisation € = 0.05, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7

Figure: [7.111

Remark: —.
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow
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Figure 7.110.: Anisotropic level-set method for the mean-curvature flow — graphs of the level-
set function at times ¢t = 0, t = 0.35, t = 0.7 and evolution of the curve until the
time ¢t = 0.7 with the time period 0.07. See the Numerical experiment [7.2.91
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.111.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times ¢ = 0, t = 0.01, ¢ = 0.025 and evolution of the initial curve at
times ¢t = 0.001, 0.002, 0.003, 0.004, 0.005,0.01,0.15- - - 0.025 — not a steady state.
See the Numerical experiment
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7.2. Numerical experiments

Numerical experiment 7.2.93. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpyus (Vi) on (0,T) x
U|t:0 = Ujp; on ),

with the Neumann boundary conditions
VpYabs -V =1 on 0.
The anisotropy function ;16 is given by

3 1
Yo (P) = (Z IPi|16>

i=1

Sk

and the initial condition is an astroid given by 2%/3 4 42/3 = 0.75%/3,
Computational domain: Q = [—1,1]°.

1
Anisotropy: ;s (P) = (Z?Zl \Pi\m) B
Initial condition: Astroid given by 22/3 4 42/3 = 0.75%/3.
Boundary conditions: Vv -v =1 on 0.
Final time: T = 0.115.
Level-set: 150 x 150 nodes, regularisation ¢ = 10~°, no re-distancing.
Time step: Adaptive.
Numerical scheme: [6.3.61

Figure: [7.112
Remark: —.
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7. Computational studies

Numerical experiment 7.2.94. Test of the level-set formulation for the anisotropic Will-
more flow

8{& 1 ’U)2
= _v-|E S —— 0,7) x Q
0. \Y ( ~Vw, 2Q3Vu> on (0,7) x Q,
wy = Q.H, on (0,T)xQ,
Uli=0 = Ui on €,

with the Neumann boundary conditions
J,u=1, E;Vw, -v=0 on 9Q.

The anisotropy function 7,16 is given by

3
Yo (P) = <Z Pz-16>

and the initial condition is an astroid given by z2/3 4 y%/3 = 0.75%/3.
Computational domain: Q = [-1,1]°.

Final time: 0.0009.

Level-set: 100 x 100 nodes, regularisation € = 0.05, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.113]

Remark: —
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow
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Figure 7.112.: Anisotropic level-set method for the mean-curvature flow — graphs if the level-
set function at times t = 0, t = 0.06, ¢ = 0.115 and evolution of the curve until
the time ¢ = 0.115 with the time period 0.005. See the Numerical experiment
7.2.93
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

1

Figure 7.113.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times ¢t = 0, t = 0.0001, ¢ = 0.0009 and evolution of the initial curve
at times t = 107°,5-107°,0.0001, 0.0002, 0.0003, - - - ,0.0009. See the Numerical

experiment
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7.2. Numerical experiments

Numerical experiment 7.2.95. Test of the level-set formulation for the anisotropic mean-
curvature flow

%“ = V- (Vpyus (Vi) on (0,T) x
U|t:0 = Ujp; on ),

with the Neumann boundary conditions
VpYabs -V =1 on 0.
The anisotropy function ;16 is given by

3 1
s (P) = (Zm—ﬂ‘j)

i=1

Sk

and the initial condition is a curve given by

u(z,y) =22 +y%>—1—0.75sin <6 arccos x)
N

Computational domain: 2 = [—1.5, 1.5]2.

Final time: T = 0.26.

Level-set: 250 x 250 nodes, regularisation € = 0.001, no re-distancing.

Time step: Adaptive.

Numerical scheme: [6.3.61

Figure: [7.114

Remark: —.
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7. Computational studies

Numerical experiment 7.2.96. Computational domain: ) = [-1.5, 1.5]2. Test of the level-
set formulation for the anisotropic Willmore flow

O 1 w?
= _v-|E S 0,7) xQ
0. \Y ( ~Vw, 2@3%) on (0,7) x Q,
wy = QH, on (0,T)xQ,
Uli=0 = Ui on g,

with the Neumann boundary conditions
O,u=1, E,Vw, -v=0 on 0Q.

The anisotropy function ;16 is given by

3
s (P) = (_21%-16)

and the initial condition is a curve given by

=

1

o

T
u(z,y) = a2 +y?>—1-0.3sin <6 arccos ) =0
2+ 32

Final time: T = 0.01.

Level-set: 100 x 100 nodes, regularisation € = 0.05, no re-distancing.
Time step: Adaptive.

Numerical scheme: [6.3.7]

Figure: [7.115

Remark: —
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow
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Figure 7.114.: Anisotropic level-set method for the mean-curvature flow — graphs if the level-
set function at times ¢t = 0, t = 0.13, t = 0.26 and evolution of the curve at times
t = 0.005,0.01,0.2,0.3,--- ,0.26. See the Numerical experiment [7.2.95
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.115.: Anisotropic level-set method for the Willmore flow — graphs of the level-set
function at times ¢ = 0, t = 0.001, ¢ = 0.01 and evolution of the initial curve
at times ¢ = 0.0001, 0.0005,0.001,0.002, - - - ,0.01. See the Numerical experiment
7.2.96
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7.3. Summary

7.3. Summary

We summarise results of performed numerical experiments.

7.3.1. Discretisation in space

We proposed three different classes of schemes based on the discretisation in space:

e schemes based on the one-sided finite differences —[6.2.2] and [6.2.3]
e schemes based in the central differences — [6.2.8 and [6.2.9]

e complementary finite volume schemes resp. finite difference counterparts — 6.2.21

resp. [6.2.27 and [6.2.30

The Numerical experiments and show that the first class of schemes fails especially
in the approximation of the Willmore flow. The main problem is in lack of symmetry of those
schemes. Therefore we proposed replacing the one-sided finite differences by the central ones.
They offer better approximation. However, Figure [6.2] shows, that in case of discontinuous
functions, oscillations may appear. We tried to overcome this difficulty by introducing artificial
viscosity term which was supposed to keep the approximate solution smooth enough. This
approach, however, involve setting of a new parameter which is something we usually want to
avoid from the numerical schemes. We found a better solution in complementary finite-volume
schemes. They are symmetric (in the meaning of having symmetric stencil), they do not need
any artificial parameter and they also have smaller stencil then the central schemes. This is
important for the semi-implicit discretisation in time. Numerous tests, we performed in this
thesis, show that the complementary finite-volume schemes appear appropriate for the space
discretisation of the geometric partial differential equations.

7.3.2. Discretisation in time

We also have extensively tested two discretisations in time — the explicit and the semi-implicit
ones. None of them outperforms the other. We solve really highly non-linear problems. From
the nature of the semi-implicit schemes, we always have to undergo certain linearisation. It is
necessary for turning non-linear algebraic problem into linear one. This always brings in some
error of the approximation. The more non-nonlinear problem we solve the bigger this error is.
Therefore the semi-implicit schemes do not seem to be good choice in case of strongly non-linear
equations.

The disadvantage of the explicit schemes is in very small time step which is necessary for their
stability. It decreases efficiency of the algorithm.

We expected that such situation may occur in case of the fourth order level-set methods.
Here, the signed distance function of the initial curve is taken as an initial condition. It usually
contains singular points at which the partial derivatives are not defined.

The results of our tests are surprising. In most cases we are able to get correct approximation
using both kinds of time discretisation. Sometimes, however, the semi-implicit schemes fail
completely — see the Numerical experiment or the Willmore flow with anisotropy given by
(5.114)) in general. We were also surprised by the fact that the explicit schemes can be employed
even for the fourth order level-set methods. We must, however, confess, that the explicit schemes
require often a lot of CPU time. For example Numerical experiment was running for more
then 8 months on 4 CPUs Opteron 270 and still did not reach the steady state. The same but
semi-implicit scheme performed almost ten times faster. On the other hand, in most of the
experiments dealing with the mean-curvature flow,, both kinds of schemes required the same
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CPU time and sometimes the explicit schemes were even faster — see the Numerical experiment
[7.1.9] and [7.1.70, We would like to note that even for the semi-implicit schemes we had to set
quite small time steps such that the iterative matrix solver (GMRES in most cases) converged
in tens of iterations. Therefore a preconditioning, like ILU for example, do not speed up the
computation at all. It also requires some CPU for initiation which is not advantageous in the
situation when the iterative solver converges in few iterations.

The result of this comparison is that the explicit and the semi-implicit schemes are sufficient
for the second-order problems and both offer approximately the same efficiency. For the fourth-
order flows, fully implicit schemes based on the Newton solver might be more promising for
development of efficient algorithm.

7.3.3. Second order vs. fourth order flows

We would like to emphasise one important fact concerning the level-set formulation for the mean-
curvature flow. For both explicit and semi-implicit schemes, we were able to obtain experimental
order of convergence equal almost exactly 2 with the regularising parameter e = 1071° — see the
Numerical experiment [7.1.9/and [7.1.10. We did not have to change this parameter with respect
to the space step h (moreover, in the case of the explicit scheme we did not have to set even the
time step). It turns, especially the explicit scheme, into a black box which needs only the input
data and does not require setting of any parameter.

We would like to achieve similar results even for the Willmore flow. Unfortunately, we did not
succeed. The Numerical experiment shows insufficient result obtained as an experimen-
tal order of convergence for the level-set formulation of the Willmore flow. Our computations
performed for the surface-diffusion flow for [83] showed better EOC. Moreover, Numerical exper-
iment shows that the semi-implicit version of the Numerical scheme may fail in case
of highly non-convex initial curves. We also experienced serious difficulties in case of changes of
topology with the level-set formulation of the Willmore flow — see [13].

As a result we see that the Willmore flow is the most difficult to approximate. Comparing
the equation for the normal velocity for the surface-diffusion flow

V =ArH, on I'(t),
and for the Willmore flow

1
V =ArH+H|W|3% - §H3 on I'(t),

we see that the difficulties with the Willmore flow come from the terms H |[W |3 — $H? and not
ArH, which is easier for numerical approximation when standing alone. We understand this as
one of the most important results in this thesis.

In the future work we would like to study the Willmore flow in context of image processing
and image inpainting. For this purpose we propose to study functional of bending energy

/ K3+ K3dH ! = / H? - 2KdH" L,
r r

instead of

/ H2dH™ .
I

As a result we can say, that the numerical approximation of the Willmore flow is still an open
problem, especially the level-set formulation even without any anisotropy.
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The thesis deals with one of challenging fourth-order problems — with the Willmore flow. For
this purpose, physical background was presented. Chapter [4] summarises tools of differential
geometry needed for understanding of this problem. Chapter [5| deals with corresponding math-
ematical formulation using variational methods In this part there are two contributions by the
author — definition of the anisotropic Willmore flow , and an extension of the
energy equality to anisotropic problems — see the Theorem

Main contributions concern numerical approximation of the Willmore flow. In Chapter [f
we present three classes of numerical schemes - numerical schemes based on one-sided finite
differences, schemes based on central finite differences and schemes based on complementary
finite volumes. We demonstrate that the first class is sufficient only for the reference problem
of mean-curvature flow. The second class suffers from possible appearance of oscillations in
case of discontinuous initial conditions. We obtained the best results using the complementary
finite-volume schemes. We reformulate them in terms of finite differences and we apply simple
mathematical background for the finite difference method to prove discrete energy equality
(5.2.11]) and its anisotropic counterpart.

One of main goals of this thesis is a comparison of numerical schemes for the geometric partial
differential equations from different points of view. We find experimental order of convergence
for all isotropic numerical schemes. For graphs, it was done with additional forcing term which
allowed us to find analytical solution. When it comes to the level-set method, we know analytical
solution when the initial curve is a circle. Except of the level-set formulation of the Willmore
flow (see. Table we obtained sufficient results.

We have performed many qualitative numerical experiments. We have tested the Willmore
flow on many different initial conditions and compared its evolution with the mean-curvature
flow. This holds for both - the graph formulation and the level-set formulation. The reader
can see differences in evolutions of both flows. We set the same initial conditions even for the
anisotropic problems. One can easily see even the differences between several anisotropies. In
case of the isotropic level-set method we also give comparison with the parametric approach.
This is an important test of reliability of proposed numerical schemes. We have achieved a good
agreement.

Unfortunately, there was no space left in the thesis for studying topological changes of curves
modelled by the level-set method. For the Willmore flow, it is non-trivial problem which we
do not consider as solved yet. In the future we would like to extend the theory of moving
hypersurfaces to anisotropic ones. It would allow us to derive a parametric model for the
anisotropic Willmore flow. We also would like to study the Willmore flow (even anisotropic one)
in context of edge detection and image inpainting. As we already mentioned in the text, a fully
implicit numerical scheme based on the Newton solver might be a promising approach to get an
efficient algorithm for the level-set formulation of the Willmore flow.
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A. Theoretical toolbox

In this chapter we summarise some neccesary theorems from calculus, measure theory and
functional analysis.

Definition A.0.1. Diffeomorphism [38]: Let 'y and T'y be differentiable manifolds. A map-
ping ¢ : Ty — Ty is a diffeomorphism if it is differentiable, bijective, ans its inverse o~
differentiable.

15 also

Theorem A.0.2. Implicit function theorem [47]: Assume f = (fl, e fm) € Ck(Q;R™),
Q C R"™™ and

o (f17 ) ..fm)
det | —/—— = (%o, 0,
8<y17ym) ( 0 yO) 75
where we denote (X,y) = (T1," "+ ,Tn, Y1, Ym) € R™T"™. Then there exists an open set ¥ C Q

with (x0,y0) € ¥, an open set ¥ C R, with xg € T and a C* mapping g : T — R™ such that
1. g(x0) = yo
2. f(x,8(x)) =20, (x€7)

and if (x,y) € ¥ and f (x,y) = z¢, then y = g (x). The function g is implicitly defined near xg
by the equation f (x,y) = zo.

Theorem A.0.3. Arzela-Ascoli compactness criterion [47]: Suppose that {fi}re, is a
sequence of real-valued functions defined on R™, such that

|fe (x)| <Cfork=1,--- and x € R",

for some constant C, and the sequence { fi}re, are uniformly equicontinuous. Then there exists
a subsequence {fkj };’il C A{fi}rey and a continuous function f, such that

fx; — f uniformly on compact subset of R".

Definition A.0.4. Hausdorff Measure [48]: LetI' C R, 0 < s < 00, 0 < 6 < c0. We
define
s ) diam Q;° > ,
H3 (I') = inf 22104(3) — | A C UQj,dlamng(S ,
J:

J=1

where Q; is a system of closed sets in R™ and

N|w

a(s) = m

Here T (s) = [ e a1z, (0 < s < 00), is the usual gamma function. We denote

H® (1) = lim Hj (T') = sup HE (),

and we call H® s-dimensional Hausdorff measure on R".
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Theorem A.0.5. Co-area formula [47]: Let u : R™ — R be Lipschitz continuous and assume
that for a.e r € R the level-set
{xeR"|u(z)=r}

is a smooth, (n — 1)-dimensional hypersurface in R™. Suppose also f : R™ — R is continous

and summable. Then oo
f|Vu|da :/ </ de”—1> dr.
R™ —00 u=r

Theorem A.0.6. Gauss-Green Theorem [47]: Let Q be a domain in R™. Suppose u €

ct (ﬁ) Then
/ Uy, dX = / uydS, fori=1,---n.
Q 0N

Let u,v € C* (ﬁ) Then

/UmiUdX: —/ uvxidx—i—/ uy;dS, fori=1,---n.
Q Q a0

Theorem A.0.7. Stokes theorem: Let Q be a domain in R™. Let u € C! (ﬁ; lR”). Then

/V-u:/ u-vdS.
Q a0

Theorem A.0.8. Gauss-Green Theorem for hypersurfaces [56]: Let I' be a manifold (or
Cl-hypersurface for purposes of this text) in R™. Let f € C' (I',R"), g € C'(T') and supp (fg)
1s compact. Then we have

/f-Vpgd’H”_l = —/(Vp-f+Hn-f)gdH”_1.
N I

Theorem A.0.9. Lax-Milgram [15]: Given a Hilbert space X, a continuous, coercive bilinear
form a(-,) and a continuous linear functional F € X' (here X' denotes dual space to X ), there
exists a unique u € X such that

a(u,v) = F (v) for all v € X. (A.1)

Definition A.0.10. Bounded and coercive bilinear form [15]: A bilinear form a(-,-) on
a normed linear space X is said to be bounded (or continuous) if there exists C1 < 0o such
that

la (v,w)| < Cq ||v]lx [Jw]x for all v,w € X,

and coercive on Y C X if there exists (5 > 0 sucht that
a(v,v) > Cy|[v]3 for all v €Y.

Theorem A.0.11. Poincaré inequality on Riemannian manifold [56]: Let I' C R" be a
compact Riemannian manifold of dimension n, and let 1 < q < n be a real number. There exists
a positive constant C = C (T, q) such that for any v € W} (I),

1 1
</ \u—ﬁ\qu">q SC(/\Vpu]qu”>q,
N N

where @ = ITI\ JpudH™.
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Theorem A.0.12. Global Gauss-Bonnet theorem [100]: LetT" be a compact two-dimensional
orientable Riemannian manifold without boundary. Then

/ KdH" ' =27y (T),
r

where x (I') is the Euler-Poincaré characteristic of I'.

Theorem A.0.13. Jacobi’s formula [65]: Let A € C' (Z,R™") for T C R. Then
d . =1 4/
et A () = det A(¢) Tr<A )t A (t))

fort € T provided det A (t) # 0 on Z.
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