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State of Art

Willmore flow is a problem defined in differential geometry. It finds many real applications in
physics of elasticity e.g. modelling of bio-membranes. In image processing the Willmore flow was
successfully applied to a problem called image inpainting. Even though the Willmore functional
has been defined almost one hundred years ago it has not been studied from the numerical
point of view for long time. Evolutionary law for finding a minimum of the Willmore functional
is a fourth-order parabolic partial differential equation. It is highly non-linear problem. It
is challenging problem from theoretical point of view but also for a numerical approximation.
Anisotropic Willmore flow has not been studied yet. Also for the isotropic level-set formulation,
new numerical schemes need to be investigated.

Research Goals

The main goals of this thesis are to derive graph and level-set formulations for anisotropic
Willmore flow and to design reliable numerical scheme for the level-set formulation of the
(anisotropic) Willmore flow of planar curves. First we test proposed schemes on the graph
formulation which is easier to approximate. We find experimental order of convergence. Ap-
proximate solutions obtained by the isotropic level-set method are compared with the parametric
approach. As a reference problem we also solve mean-curvature flow and we demonstrate dif-
ferences in evolutions of both problems. We consider explicit and semi-implicit discretisation in
time and investigate efficiency, accuracy and reliability of both approaches. We do not study
numerical analysis of the schemes. We only show simple energy equality for the graph formula-
tion.

Methods Used

We present numerical schemes based on the finite-difference method and complementary finite-
volume method. For planar curves, level-set method and parametric approach (discretised by
flowing finite-volume method with asymptotically uniform redistribution) are both implemented.
For the explicit time discretisation, the Merson alternative of the Runge-Kutta method is used.
Linear systems coming from the semi-implicit time discretisation are solved by restarted GMRES
method with ILUT preconditioning.

Research Results

The thesis describes isotropic and anisotropic Willmore flow of surfaces given as graphs or
curves given as a zero level-set of an auxiliary function. Three classes of numerical schemes are
studied. They are compared on several qualitative numerical experiments and by evaluating
the experimental order of convergence. For all of them energy equality is proven. The most
reliable scheme (the one based on the finite-volume method) is then tested more extensively on
the level-set formulation but also on anisotropic problems.
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1. Notation

Notation Meaning Definition

∇Γf the surfacial gradient of function f ∈ C1 (Γ) D: 4.2.7
∇Γ · h the surfacial divergence of vector field h ∈ C1 (Γ,Rn) D: 4.2.8

∂iu denotes ∂u
∂xi

for i = 1, · · ·n and u ∈ C1 (Rn)

∂nf denotes ∇f · n
∂2
nf denotes nTD2fn
A surface area functional (5.1)
Aγ surface area functional (5.20)
α tangential velocity for parametric curves (5.117)
β normal velocity for parametric curves (5.117)
γ (u) parametrisation of Γ D: 4.1.1
γ (s) arclength parametrisation of Γ D: 4.1.1
γ anisotropy function D: 5.1.9
Γ hypersurface or curve in Rn D: 4.2.1
Γext exterior of hypersurface Γ
Γint interior of hypersurface Γ
Γ (t) moving hypersurface D:4.3.1
D2f the Hessian matrix of f i.e. D2

ij = ∂i∂jf

dΓ signed distance function to Γ D: 4.4.1
dHn Hausdorff measure of Rn D: A.0.4
di principal directions D:4.2.6
Dtf normal time derivative D:4.38
EOC experimental order of convergence (7.13)
g local length D: 5.118
h space step for numerical discretisation
H mean curvature of Γ D: 4.9
K Gauss curvature of Γ D: 4.10
κ curvature of a curve Γ D: 4.1.11
κi principal curvatures D: 4.2.6
L length of a curve
n (x) outward normal unit vector of Γ at point x (4.7)
ν normal of the boundary of finite volume Ωij resp. domain Ω
Ph projection operator on ωh (6.2)
P projection to the tangential space (5.38)
ϕ function expressing Γ given as a graph
s parameter of arclength parametrisation
τx tangential vector of Γ at point x D: 4.2.2
t (x) oriented tangential unit vector of Γ at point x D: 4.1.7
T (x) tangential space at x D: 4.2.3
{t1, · · · , tn−1} orthonormal basis of T (x)
τ time step for numerical discretisation
Tr A trace of matrix A ∈ Rn×n
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1. Notation

Notation Meaning Definition

U neighbourhood of x
u function expressing Γ by the level-set method
u⊗ v tensor product of vectors u and v
v parameter of general parametrisation of a curve
V normal velocity D: 4.3.2
Vh dual mesh to the grid ωh (6.54)
W Weingarten map or shape operator D: 4.2.10
Ω domain in Rn

ωh numerical grid (6.1)
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2. Introduction

2.0.1. Willmore flow and related topics

In this thesis we present several numerical schemes for a numerical approximation of the Will-
more flow. This problem was introduced by an English geometer Thomas James Willmore
(see the Figure 2.1) in his well-known book [100]. In differential geometry the Willmore surface
(curve) is understood as a minimiser of mean curvature square. The Willmore flow also finds
its applications in the physics of elasticity. However, our main interest is in applications to
image processing. By minimising the elastic energy of the image lines (for example the edges
of some object), we can get a continuation of some missing parts which will look very natural
to the human eye. We would like to note that the Willmore flow belongs to a much wider class
of problems. They are usually referred to as (mean) curvature dependent flows. We begin by
introducing these both interesting and important mathematical problems.

We consider a curve in R2 or surface in R3. Such a curve or surface may represent an interface
between two different phases of some substance (for example melting ice in water), a growing
crystal, a soap bubble in the air, a water drop, the boundary of advancing water in nature,
an advancing fire in a forest, elastic membranes or the boundary of an object in image resp.
segmented organ in some medical data. In most of these problems the curve or surface represents
an interface or boundary which is moving. We are interested in the evolutionary laws describing
the motion.

Let us go back to the problem of the bubble floating in the air. To simulate this phenomenon
we first note that the bubble moves in the direction of wind. Denoting this direction as d we
move all particles of the bubble in the direction of vector d. In terms of the partial differential
equation we use the term ”advection”. Let us assume that the bubble goes to a region with
a higher air pressure. It will shrink a little bit. In this case all particles move in the inner
normal direction. Denoting by n the outer normal we get a motion in the direction of −n.
If the bubble gets into a stronger wind it may be deformed. However, it will restore its original
shape when the wind disappears. The motion of each particle depends on the bubble shape.

Figure 2.1.: T. J. Willmore in 1979 at the Oberwolfach mathematical research institute (by
Wikipedia).
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2. Introduction

Therefore a quantity to express the shape is needed. Considering the normal vector need not
to be enough. Differential geometry provides the notion of shape operator which describes a
change of normal vector along a curve or surface respectively. In this sense, the normal vector
can be understood as the first derivative of the shape and the shape operator as the second
derivative of the shape. In many situations its trace is enough to work with.This is precisely
how we get the mean curvature H of a surface. The motion of the surface inward in the normal
direction proportionally to the mean curvature will shrink the bubble. The smaller the bubble
is the larger the mean curvature will be. It would lead, however, to a complete disappearance of
the bubble. It is not realistic. We know that the bubble preserves the air inside. This constraint
is related to the interior volume. If we have a balloon instead of the bubble which is made of
some textile material it can change the shape but it preserves its total surface area S. Finally
if it is a rubber ball, the change of shape depends on its elasticity which can be expressed in
terms of fourth derivatives of the shape.

We can summarise that the change of the surface shape Γ given by the motion of particles
creating the surface can be expressed as

∂tx = f

(
x,F,n, ∂2x, ∂4x,

∫
IntΓ

g1 (x) dx,

∫
Γ
g2

(
p,n, ∂2x, ∂4x

)
dS

)
where

• x is the position of the surface point

• F is exterior force which does not depend on the shape of Γ

• n is the normal vector of Γ

• ∂2x is the second derivative of the shape related to the mean curvature

• ∂4x is the fourth derivative of the shape related to elasticity

•
∫

IntΓ g1 (p) dx expresses dependency on the interior of Γ

•
∫

Γ g2

(
x,n, ∂2x, ∂4x

)
dS expresses dependency on some global quantity g2 defined on Γ

If f does not depend on the integrals, its value at a certain point x0 is given by the knowledge
of some small neighbourhood of x0. We speak of local law. Otherwise, it is a non-local law.
When we are interested in the change of shape, we do not identify motion of particular points
along the curve or surface Γ. Such tangential motion is important in some applications –
for example in medical data processing, where we would like to trace motion of tissues. In
cardiac MRI, the complete reconstruction of the heart motion, not only the change of shape,
is of the main interest. Such applications, however, usually need some special techniques. To
our knowledge there is no general approach to solve these problems. Therefore we only consider
the motion in the normal direction. Most of the laws then might be given as a formula for the
normal velocity prescribing velocity of Γ in the normal direction.

In this text we consider the mean-curvature flow given by

V = H on Γ, (2.1)

as supporting issue of the main topic given by the Willmore flow

V = −∆ΓH −
1

2
H3 + 2KH on Γ. (2.2)

4



Another well known problem is the surface-diffusion flow (often referred only as the surface
diffusion)

V = −∆ΓH on Γ, (2.3)

which, however, is not studied in this text. These problems belong to the class of geometrical
partial differential equations or, to be more specific, curvature-driven flows . We show
that they can be formulated as variational problems. They also can be understood as examples
of gradient flow i.e. processes of functional relaxations. In this view, the system state moves
(”flows”) towards a minimum-energy state.

The mean-curvature flow has been studied extensively in recent years. On the other hand, the
surface-diffusion flow and the Willmore flow are problems with limited knowledge. The results
obtained for the mean-curvature flow are good motivation for solving more difficult problems.
For example we show that with the complementary finite volume method we may obtain nice
numerical convergence in the case of the mean-curvature flow. This is more difficult in case of
the surface-diffusion flow and the Willmore flow. This is supported by numerical experiments
showing the difference between particular laws under the same initial condition.

Numerical solution of given problems is possible by several approaches as discussed by Elliott
in [45]. These methods can be divided into parametric and implicit ones. The parametric
methods parametrise the curve (or surface). The curve is given as an image of some mapping.
Quantities like outer normal or curvature can be expressed in a straightforward way. The
evolution law becomes an equation for the parametrisation. On the other hand, some stabilising
methods are often necessary to obtain robust algorithm - see e.g. Mikula and Ševčovič [77].
This stabilisation makes the final scheme more complicated. Nevertheless, it is still efficient
method. Main disadvantage is its incapability to handle changes of topology (situations when
two curves merge together or one curve splits into two). One way to solve this problem is using
re-parametrisation from time to time (see e.g. topological snakes or T-snakes by McInerney
and Terzopoulos [73]). T-snakes were applied to image processing. To our best knowledge, their
mathematical properties have not yet been studied.

Sethian and Osher [90, 85] proposed an elegant approach which is known as a level-set
method. It is an implicit method. The curve is given as a zero level set of some mapping
referred as a level-set function. Such approach increases the dimension of the problem by one
which makes this method less efficient then the parametric approach. On the other hand, the
changes in topology are handled automatically. The main difficulty of the level-set method is
related to the behaviour of other level sets. They can evolve in agreement with the same law
imposed on the zero level set. This can lead to a deformation of the level-set function. The
signed distance function [85], for which the gradient size equals to 1, is usually said to be the
best choice for the level-set method. Here the mean curvature simplifies to the Laplace operator.
Consider the signed distance function to a unit circle. Its graph is a cone in R3 – see the Figure
2.2. Level sets for negative real numbers are smaller circles then the one given by the zero level
set. In case of the mean curvature flow each level set shrinks with velocity proportional to the
curvature. It means that smaller circles shrink faster and at certain time they disappear. It
makes the vertex of the level-set function graph to rise up and the gradient size to decrease. The
level-set function is deformed and the property of the signed distance functions is lost. This can
negatively affect accuracy of the numerical approximation. It happens especially in case of the
Willmore flow. The level-set formulation of the surface-diffusion flow was studied in [83]. To
restore the signed distance function one can employ redistancing. It, however, brings in some
errors too.

The remedy of this problem can be found either in highly reliable re-distancing method or
in different normal velocity prescribed to the non-zero level sets. The first approach has been
proposed by Sussman and Fatemi [94]. Their method is explained later in this thesis. For the

5



2. Introduction

(I) (II)

(III) (IV)

Figure 2.2.: Evolution of a level-set function. The initial function (I) has been evolved by the
mean-curvature flow (II), the surface-diffusion flow (III) and the Willmore flow (IV)
until the time t = 0.001.

second approach, the extension of the normal velocity might be promising. Sethian [1] gives
examples of several problems where it is not possible to define the normal velocity in the same
way for all the level sets. He applied the fast marching method to extend the normal velocity
from some narrow neighbourhood of the zero level set to the rest of the computational domain.
He also shows that this method preserves the signed distance function. A similar method was
described by Smereka [92]. He employed it for the surface-diffusion flow. Its application to the
Willmore flow might be promising.

Another method is the phase-field approach originally introduced by Allen and Cahn [2].
The spatial domain is split into a part with, for example a liquid phase, another part with a solid
phase and a narrow interface between them. We consider a function u which is zero at the solid
part, one at the liquid part and it continuously changes from zero to one at the interface. The
interface is usually narrow but with finite thickness. The level set corresponding to the value
1/2 is related to the interface. An advantage in comparison with the level-set method is in the
fact that the function u preserves well its property to stay between zero and one. On the other
hand, the phase-field models are often sensitive with respect to the parameter which controls
the thickness of the interface. It is known that the Allen-Cahn equation approximates the mean
curvature flow [2], the Cahn-Hilliard equation approximates the surface-diffusion flow [17] and
recently Du, Liu, Ryham and Wang [42, 41] derived a phase-field model for the Willmore flow.

Some comparisons between different approaches have been done by Beneš and Mikula [8],
Beneš, Mikula, Oberhuber, Ševčovič [13] and Elliott and Styles [46].
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3. Physical background

Goal of this chapter is to provide a motivation to the effort of finding a numerical approximation
of the mentioned evolutionary laws. We show that these laws find many important applications
in physics.

3.1. Physical problems related to the curvature-driven flow

3.1.1. Capillary surfaces

Consider unusual phenomena allowing water drops hanging on a spider web or water strider
walking on water. We speak of surface tension. It appears in situations when two different
fluids or fluid and solid material are in contact. If these fluids do not diffuse one into each
other they remain separate. Small water drop diffuses in contact with sand or textiles. On the
other hand, on plastic or in the air it remains as a water drop. In 1805, Thomas Young [104]
introduced a notion of the mean curvature H by showing the Young-Laplace equation

∆p = 2σH, (3.1)

where ∆p is the pressure drop across the interface separating the fluids, σ is the surface tension
and H is the mean curvature. When equilibrium ∆p = 0 is attained, it means that H = 0 and
we arrive to so called minimal surface. Trivial solution for H = 0 is a plane. However, if we
set up some non-trivial boundary conditions we may get more complex shapes. Soap film in
non-planar wire loop is one example (height of the wire loop represents the Dirichlet boundary
conditions). A water drop on plastic plate with prescribed contact angle (it depends only
on the materials) represented by the Neumann boundary conditions is another example of this
phenomenon.

The mentioned phenomenon is related with an interesting domain of physics. Even though the
Young-Laplace equation is now older than 200 years, this domain is a living source of problems
to be solved. Readers more interested in this topic may read for example a survey text by Finn
[51]. For a derivation of the equation (3.1) together with its applications in nanoscaled solids,
we refer to Chen, Chiu and Weng [19].

3.1.2. Stefan problem

The Stefan problem arises in phase transitions – see Gurtin [54]. Consider a homogeneous and
isotropic material which can exist in two phases – liquid and solid. We denote by Ω a bounded
domain in R3, by Ωl (t) the liquid subdomain and by Ωs (t) the solid subdomain for t ∈ [0, T ] –
see the Figure 3.1. Let Γ (t) = ∂Ωl (t)∩∂Ωs (t) be an interface between the phases, u (x, t) space
dependent temperature of the system, c heat capacity per unit volume at constant pressure, λl,
λs thermal conductivity of given phases and L the latent heat which is the heat exchanged
by the phase transition of a unit volume.

Assuming that both phases are incompressible, from the classical Fourier conduction law and
energy balance in each phase ( see. Visintin [96] for details) we get the heat equations in
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3. Physical background

Solid phase - Ωs (t)

Interphase - Γ (t)

Liquid phase - Ωl (t)

Ω ≡ Ωs (t) ∩ Γ (t) ∩ Ωl (t)

Outer unit normal - n

0 < κΓ(t)

0 > κΓ(t)

Figure 3.1.: Setting of the Stefan problem.

both phases as

c∂tu = ∇ · (λl∇u) in Ωl (t) , (3.2)

c∂tu = ∇ · (λs∇u) in Ωs (t) . (3.3)

Denote by V the normal velocity of the interface Γ (t) (i.e. the speed in what Γ (t) is moving in
its unit interface normal n direction at each point). Consider a small element dS of the interface
moving with the velocity V . Denoting ql, qs the heat flux of the liquid resp. solid phase (both
are given as ql = −λl∇u, resp. qs = −λs∇u). Then the latent heat L is absorbed resp. released
according to the following formula

ql · n− qs · n = LV on Γ (t).

It yields Stefan condition of the heat-flux jump

λs∂nu |s −λl∂nu |l= −LV on Γ (t), (3.4)

where we denoted ∂nu |s normal derivative of u relative to Ωs (t) (similarly for ∂nu |l). If
the phase transitions are studied at the microscopic scale, we incorporate effect of the surface
tension . It is described by the Gibbs-Thomson law

u− u∗ = − σ

∆s
κΓ(t) − α

σ

∆s
V, (3.5)

where u∗ denotes temperature at what the phase change occurs in equilibrium, σ is the surface
tension coefficient , ∆s = Sl |l −Ss |s denotes the difference in the unit volume entropy
density across the interface and κΓ(t) is the (mean) curvature of the interface Γ (t). Clearly we
observe a similarity between equations (3.1) and (3.5).

3.1.3. Grain boundary motion

Phase transition is a phenomenon where one phase turns into another one. Solid volume may
consist of grains - domains of the same crystallographic orientation. The phase change need not
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3.2. Willmore flow

Figure 3.2.: Example of two grains with different orientation.

occur simultaneously in whole volume. Crystal growth is initiated at impurity. Under special
conditions, only one grain is formed creating a monocrystal. However, usually many impurities
cause formation of many crystals forming the grain structure of a polycrystal – see the Figure
3.2. The boundaries between particular crystals or grains are called grain boundaries .

The grain boundary motion is a phenomenon which may occur under many different
circumstances. Some of them are described in Beck [5]. Mullins [78] describes situation when a
metal crystal, after not very strong deformation, recrystallise back to strain-free state while it
is annealed. During this process the grain boundary moves ”toward its centre of curvature with
a speed proportional to the curvature”. Moreover, the motion is induced by pressure p = κσ
where κ is the curvature and σ stands for free energy per unit area. This is the Young-Laplace
equation again.

Another example might be the diffusion-induced grain-boundary motion. Assuming
a thin metallic polycrystalline film which is inserted in a vapour consisting of another metal.
The film has grain boundaries. Since these boundaries are gaps in atomic structure, they are
good places where the metallic atoms from the vapour can diffuse in. An interesting thing
is that these atoms do not fill the grain boundaries but the grain boundaries start to move.
The deposition of vapour atoms changes the chemical composition. This phenomenon has been
studied mathematically e.g. by Styles and Elliott [46].

3.2. Willmore flow

Let us now turn from the physics of materials to physics of elasticity resp. to biology of the
red blood cells . They have been discovered in the seventeenth century and since then, many
scientists tried to find explanation of their biconcave shape. In 1960’s, it has been shown that
after deformation, the red blood cells can quickly restore their shape again. It seemed that this
shape is a minimiser of some energy. In 1970 Canham [18] proposed an explanation of the shape
by minimising the bending energy of the membrane. Such energy is given by

E =
D

2

∫
Γ(t)

1

R2
1

+
1

R2
2

dHn−1 =
D

2

∫
Γ(t)

H2 − 2KdHn−1, (3.6)

9



3. Physical background

where R1, R2 are radii of the principal curvatures, H is the mean curvature, K is the Gauss
curvature and D is the bending rigidity given by

D =
Eh3

12 (1− ν2)
,

for E denoting the Young modulus of elasticity, h denotes the membrane thickness and
ν is the Poisson ratio. Applying the global Gauss-Bonnet theorem (A.0.12) together with the
fact that the Euler-Poincaré characteristic χ (Γ) = 2 for all surfaces obtained from a sphere
in R3 by a diffeomorphism (i.e. it does not change the topology of the surface) we get that
the minimum of E is the same as for

W∗ =
D

2

∫
Γ(t)

H2dHn−1, (3.7)

which is the Willmore functional . In the same article [18], Canham achieved correspondence
between observed and predicted shapes. His method consists of evaluation of (3.6) for Cassini
ovals and taking those with minimal values. It is surprising that using such a simple technique,
he was able to get reliable results. For readers interested in the red-blood cells shapes we also
refer to Helfrich [57] or Svetina and Žekš [95].
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4. Evolving hypersurfaces

In this chapter we introduce some tools of differential geometry and explain the theory of evolving
surfaces. Introduction to the planar curves is brief and for more details we refer to Oprea [84]
or Ševčovič [98]. The theory of evolving surfaces is explained more deeply. The importance of
some theorems for this text is crucial because they make the derivation of the later presented
evolutionary laws easier. Even though they can be found in a very similar form in Kimura [65],
some of our definitions are slightly different (less general, designed for the purpose of this text).

4.1. Planar curves

Definition of planar curves

The planar curves can represent e.g. boundaries of objects in images, interfaces in phase tran-
sitions etc. Suitable definition of a curve, that would be general enough and would not allow
any spurious objects to be the curves, is difficult to find. It was not solved completely yet - see
Lomtatidze [68]. In this section we define important properties of curves corresponding to the
scope of the text.

Definition 4.1.1. A curve Γ ∈ Rn is an image of a continuous mapping γ : I → Rn, where I
is an interval in R consisting of more than one point.

For the previous definition we refer to Jöst [64]. However, for our purposes we have changed
the meaning of the curve to be an image of a mapping rather then the mapping itself. The
mapping γ will be referred to a parametrisation of the curve Γ ≡ γ (I) (in this text we always
assume that the parametrisation γ is defined on interval I ⊂ R having more then one point).
The parametrisation choice is not unique. Having bijective continuous mapping ϕ : I1 → I for
some nonempty interval I1 ⊂ R the mapping γ ◦ϕ : I1 → Rn provides another parametrisation.
It means, that two different parametrisations can define the same curve. (On the other hand,
Jöst [64] defines an arc for a class of parametrisations describing the same curve in our sense -
we will not use this terminology).

Let γ = γ (v) for v ∈ I. The theory of curves uses the arclength parametrisation for
which |∂vγ (v)| = 1 for all v ∈ I, where ∂vγ denotes the derivative of γ with respect to v. The
arclength parameter is denoted by s.

Definition 4.1.2. Assume that I ≡ [a, b], and γ : I → Rn is a parametrisation of a curve
Γ ≡ γ (I). Γ is called the closed curve iff γ (a) = γ (b).

In case of closed curves, the parameter v can belong to the unit circle S1 instead of the interval
I. Then γ : S1 → Rn. The following definition and theorem on the Jordan curves were adopted
from Jöst [64].

Definition 4.1.3. A planar curve Γ is defined by the Definition 4.1.1 where n = 2.

Definition 4.1.4. A curve Γ is called the Jordan curve iff it is represented by an injective
parametrisation γ : I → Rn .
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4. Evolving hypersurfaces

If the mapping γ is injective it means that for each v1, v2 ∈ I, v1 6= v2 ⇒ γ (v1) 6= γ (v2) holds.
We say that the curve γ (I) is non-selfintersecting.

Theorem 4.1.5. A closed planar Jordan curve Γ partitions R2 into exactly two open and
connected sets, that is, R2 \ Γ = Ω1 ∪ Ω2, ∂Ω1 = Γ = ∂Ω2, Ω1 ∩ Ω2 = 0, Ω1, Ω2 are open
and connected. Only one of these two sets is bounded. It is called the interior of Γ denoted as
Int (Γ). The other one is unbounded and is called the exterior of Γ, denoted as Ext (Γ).

The property of the Theorem 4.1.5 is important for many applications. For example in image
segmentation the interior of Γ usually corresponds to the segmented object. Unfortunately, this
definition can not be applied when we need to segment more then one object. In this case we have
to consider more then one Jordan curve i.e. curves Γ1, · · · ,Γm with interiors Int (Γ1) , · · · Int (Γm)
corresponding to the segmented objects and with one exterior Ext (Γ1, · · ·Γm) =

⋂n
i=1 Ext (Γi).

Normal and tangential vector of planar curve

Definition of a curve by the mapping γ allows to employ the differential calculus. We observe
that the differentiation of γ could indicate many important properties of the curve γ (I). Corre-
sponding domain of mathematics is called the differential geometry [38, 63, 84, 100]. It studies
qualitative aspects of curves expressed by derivatives or partial derivatives. We start with a
definition establishing important condition for the curve parametrisation.

Definition 4.1.6. Let γ = γ (v) be a parametrisation of a curve Γ ≡ γ (I). We say that the
parametrisation γ is regular iff |∂vγ (v)| 6= 0 for all v ∈ I.

The arclength parametrisation is regular. Therefore the class of regular parametrisations is
not empty. We proceed by defining the tangential space and the normal vector:

Definition 4.1.7. Let Γ be a closed, planar, Jordan curve parametrised by a regular parametri-
sation γ : I → R2 and γ = γ (v). The tangential space T (x) at a point x ∈ Γ is a linear
vector space T (x) = [∂vγ]λ, where [v]λ denotes the linear span of the vector v. The normal

unit vector n (x) at a point x ∈ Γ is given by n (x) ∈ T (x)⊥ and |n (x)| = 1. We say that n (x)
is an inward normal vector iff there exists ε > 0 such that x + εn (x) ∈ Int(Γ). Otherwise it
is an outward normal vector. The tangential unit vector at a point x ∈ Γ is any vector
τ (x) ∈ T (x) such that |τ (x)| = 1. The oriented tangential unit vector t (x) at a point
x ∈ Γ is given by the conditions t (x) = n (x)⊥, |t (x) | = 1 and det [n (x), t (x)] = 1, where
n (x) is the outward normal unit vector, the matrix [n (x), t (x)] consists of the rows given by
the vectors t (x) and n (x).

In this text, if we do not say explicitly, we always mean by n (x) the outward normal unit
vector. The definition of t (x) is such that if we stand on Γ looking in the t (x) direction we
have the interior of Γ on the left-hand side and n (x) points to the right. For the following two
definitions we refer to Yazaki [103].

Definition 4.1.8. The parametrisation γ is the immersion iff ∂vγ 6= 0 for all v ∈ I.

Definition 4.1.9. The parametrisation γ is the embedding iff it is the immersion and injec-
tion.

Remark: As already mentioned, the parametrisation γ is identified with Γ in some texts. Then
the notion of immersed curve is used often. One should, however, keep in mind that it is a
property of the mapping describing the curve. On the other hand, if γ is embedding, the curve
γ (I) is not self-intersecting and it is a property of the image of the mapping γ as well. The
notion embedded curve is frequent too. In textbooks on differential geometry one can find
more general definitions of immersion and embedding - see e.g. do Carmo [38]. For our purposes
such formalism is not necessary.
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s1 θ1

s2 θ2

s3 θ3

s4 θ4

s5 θ5

θ1 < θ2 < θ3

θ5 < θ4 < θ3

}
}

κ = ∂sθ > 0

κ = ∂sθ = 0

κ = ∂sθ < 0

Figure 4.1.: Meaning of κ.

Frenet formulae for planar curves

The Frenet formulae for planar curves show an important relationship between the derivatives
of the tangential and the normal vector.

Theorem 4.1.10. The Frenet formulae: Let Γ be a closed, planar, Jordan curve, γ : I → R2,
γ = γ (s) the arclength parametrisation of Γ, let t (s) = tγ(s) is the tangential vector at a point
γ (s) ∈ Γ and n (s) = nγ(s) is the outer normal vector at the same point. Then there exists
function κ : I → R such that:

∂sn = κt on I, (4.1)

∂st = −κn on I. (4.2)

Proof. Take fixed s ∈ I. Since we have that (n (s) ,n (s)) = 1 (here (·, ·) denotes the Eu-
clidean scalar product in R2) and 0 = ∂s (n (s) ,n (s)) = 2 (∂sn (s) ,n (s)) we see that ∂sn (s)
is orthogonal to n (s). It means that it is proportional to t (s) and (4.1) holds. Now from
(n (s) , t (s)) = 0 and since (∂st(s), t(s)) = 0 we have that n (s) is proportional to ∂st(s). Also
0 = ∂s(n (s) , t (s)) = (∂sn (s) , t (s)) + (n (s) , ∂st (s)). Therefore

(n (s) , ∂st (s)) = −(∂sn (s) , t (s)) = −(κt (s) , t (s)) = −κ.

The meaning of the quantity κ is discussed below. Writing t = (cos θ (s) , sin θ (s)) and
differentiating with respect to s we obtain ∂st = ∂sθ (− sin θ (s) , cos θ (s)) = −∂sθn and so

κ = ∂sθ. (4.3)

In convex parts θ (s) is increasing and κ ≥ 0. In concave parts θ (s) is decreasing and κ ≤ 0.
This tells us that κ has a meaning of the rate of change of t and so we say that:

Definition 4.1.11. Function κ defined on I by (4.1) and (4.2) is the curvature of Γ.

From (4.2) we also see that

κ = −(∂st,n) = −(∂2
sγ, t

⊥) = −(∂2
sγ, ∂sγ

⊥) = −det
[
∂2
sγ, ∂sγ

]
= det

[
∂sγ, ∂

2
sγ
]
, (4.4)

where det [a,b] denotes determinant of matrix, columns of which are vectors a and b.
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4. Evolving hypersurfaces

Implicit curves

So far we studied the curves described by a parametrisation γ. The implicit description of curves
represents an alternative in case of closed curves. The approaches like the level-set method or
the phase-field method are based on the implicit curves.

Definition 4.1.12. We say that the curve Γ is implicit iff there exists a domain Ω ⊂ R2

such that Γ ⊂ Ω and there is a function u ∈ C (Ω;R) such that

Γ ≡ {x ∈ Ω | u (x) = 0} . (4.5)

If u ∈ Cq (Ω) in (4.5) then the implicit function theorem (A.0.2) implies that each implicit
curve given by (4.5), can by locally parametrised by a mapping γx ∈ Cq

(
I;R2

)
on the neighbour-

hood of an arbitrary point x ∈ Γ where γx is defined on some interval I ⊂ S1. As a consequence
we can fully parametrise each compact curve Γ. Then it is enough, in mathematical theory, to
study the curves given by some parametrisation.

4.2. Hypersurfaces

In this section hypersurfaces are discussed. The approach of the previous section can be extended
to higher dimensions. A definition and evaluation of the mean curvature and the Laplace-
Beltrami operator are the main results. Major part of this section is adopted from Kimura
[65].

Hypersurfaces in Rn, tangential vector and normal vector field

Definition 4.2.1. Γ ⊂ Rn is called Cm-hypersurface (m ≥ 1) in Rn iff there is a function
u ∈ Cm (Rn) such that

Γ ≡ {x ∈ Rn | u (x) = 0} , (4.6)

and ∇u does not vanish on Γ. Moreover, if there exists a bounded set Γint and a set Γext such
that Γ, Γint and Γext are disjoint, Rn ≡ Γ∪ Γint ∪ Γext, u (x) < 0 on Γint and u (x) > 0 on Γext,
we call u the level-set function of Γ.

Definition 4.2.2. Let Γ be a Cm-hypersurface. We say that vector τ (x) is the tangential
vector of Γ at point x iff there exists a curve γ (I) ⊂ Γ with parametrisation γ = γ (v),
γ ∈ Cm (I;Rn) defined on interval I ⊂ R, 0 ∈ I such that γ(0) = x and (∂vγ)(0) = τ (x).

Fixing some x ∈ Γ, taking the curve γ (I) from the previous definition and inserting it to a
function u from (4.2.1) we have that u(γ(v)) = 0 and so du

dv = ∇u · ∂vγ = 0 which holds for all
τ (x). It means that ∇u is orthogonal to all the tangential vectors τ (x). If u is the level-set
function then ∇u points to Γext and we have that the outer normal unit vector field is given
by

n (x) =
∇u (x)

|∇u (x)| . (4.7)

It is clear that for any x ∈ Γ all the tangential vectors τ (x) create vector space T (x) given
by T (x) ≡ {τ (x) ∈ Rn | (n (x), τ (x)) = 0}. Its dimension is n − 1. Let {t1, · · · tn−1} be the
orthonormal basis of T (x).

Definition 4.2.3. The vector space T (x) is called the tangential space at the point x ∈ Γ.

Definition 4.2.4. A Cm-hypersurface Γ ∈ Rn is called oriented iff there exists a vector field
n (x) ∈ C1

(
Γ,Rn+1

)
such that n (x) ⊥ T (x) and |n (x)| = 1 for all x ∈ Γ.
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Remark 4.2.5. Let x ∈ Γ be an arbitrary point. Without loss of generality we may assume that
x = 0, ti = ei for i = 1, · · ·n− 1 and n (x) = en where {e1, · · · , en} is the standard basis of Rn.
By the implicit function theorem we know that for a neighbourhood O of 0 there exists a function
ϕ ∈ Cm (O) such that Γ is given as a graph of ϕ = ϕ (ξ) on O i.e. Γ ∩O ≡ {(ξ, ϕ (ξ)) | ξ ∈ O}.
In other words, for any x ∈ Γ there exists a neighbourhood U of x ∈ Γ such that

Γ ∩ U ≡ {x +Tξ + ϕ (ξ) n (x) | ξ ∈ O}

where rows of the matrix T consists of vectors t1, · · · , tn−1. We say that Γ is given as a graph
of ϕ on U .

Mean curvature and Gauss curvature

One of the most important local quantity for the curve is the curvature. Its counterparts in case
of hypersurfaces are the mean curvature and the Gauss curvature . We will define them using
an auxiliary curve defined on Γ. Consider now a unit tangential vector τ (x) ∈ T (x) and define
a plane curve γ (s) = x + sτ (x) + ϕ (sτ (x)) n (x), where ϕ (ξ) is the function from the Remark
4.2.5 and s ∈ (−ε, ε) for ε small enough. Then γ (s) ⊂ Γ and γ(0) = x,

∂sγ(s) = τ (x) + (∇ϕ(sτ (x))τ (x)) n (x)

and
∂2
sγ (s) =

((
D2ϕ (sτ (x)) τ (x)

)
τ (x)

)
n (x) =

(
τ (x)TD2ϕ (sτ (x)) τ (x)

)
n (x),

where (
D2ϕ (ξ)

)
ij

:=
∂2ϕ

∂ξi∂ξj
(ξ) ,

is a Hessian matrix of ϕ (ξ). If Γ is C2-hypersurface then ϕ ∈ C2
(
Rn−1

)
and D2ϕ is sym-

metric. Since from (4.4) κ = −
(
∂2
sγ,n (x)

)
we have

κτ(x) = −τ (x)TD2ϕτ (x) , (4.8)

which is the curvature of Γ at the point x in the direction of the tangential vector τ (x).

Definition 4.2.6. Denote the eigenvalues and the eigenvectors of the symmetric matrix D2ϕ (x)
by κi and d′i ∈ Rn−1 for i = 1, · · · , n− 1. Then κi are called the principal curvatures of Γ at
the point x and di ∈ T (x) (Γ) given by di = Td′i are called the principal directions . Here
the columns of the matrix T consist of vectors t1, · · · , tn−1 . We define the mean curvature
as

H =
n−1∑
i=1

κi, (4.9)

and the Gauss curvature as

K =
n−1∏
i=1

κi. (4.10)

Differential calculus on Γ

In the following we are interested in the differential calculus restricted on Γ. Assume having a
function f ∈ C1 (Rn) and a curve γ (s) such that γ (0) = x ∈ Γ. Assume that there exists ε > 0
such that γ (s) ⊂ Γ for all s ∈ (−ε, ε). We want to study the change of f along γ. We get that
d
dsf (γ (s)) = ∇f ·∂sγ (s). Since ∂sγ (s) ∈ T (x) we can project ∇f to T (x) without affecting the
correct result. It follows that ∇f · ∂sγ (s) = [∇f − (∇f,n (x)) n (x)] = [(I− n (x)⊗ n (x))]∇f .
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4. Evolving hypersurfaces

Definition 4.2.7. For a function f ∈ C1 (Γ) we define the surfacial gradient of f on Γ as

∇Γf (x) := P (x)∇f̃ (x) for x ∈ Γ, (4.11)

where

P (x) := I− n (x)⊗ n (x) = I− n (x)n (x)T , (4.12)

is orthogonal projection from Rn to T (x) and f̃ ∈ C1 (Rn) is an arbitrary extension of f to
Rn.

One has to show that the previous definition does not depend on the choice of f̃ . Assume
having two different extensions f̃1 and f̃2. Then f̃1− f̃2 = 0 on Γ. f̃1− f̃2 can become a level-set
function of Γ on Rn up to the sign of f̃1− f̃2 in Γint and Γext. Its gradient is therefore orthogonal

to T (x). It means that P (x)∇
(
f̃1 − f̃2

)
= 0 and so P (x)∇f̃1 = P (x)∇f̃2.

Definition 4.2.8. For the vector field h ∈ C1 (Γ,Rn) we define the surfacial divergence of
h on Γ as

∇Γ · h := tr∇ΓhT . (4.13)

Definition 4.2.9. For the function f ∈ C2 (Γ) we define the Laplace-Beltrami operator of
f on Γ as

∆Γf := ∇Γ · ∇Γf. (4.14)

Weingarten map (shape operator)

Definition 4.2.10. The Weingarten map or the shape operator W ∈ C0 (Γ,Rn×n) is
defined as

W (x) := −∇ΓnT (x) , for x ∈ Γ. (4.15)

Theorem 4.2.11. W (x) is symmetric, W (x) n (x) = 0 and W (x) di = κidi for i = 1, · · · , n−1
where di are the principal directions from the Definition 4.2.6.

Proof. Let x ∈ Γ be a fixed point. Clearly W (x) : Γ → T (x) (Γ) and W (x) n (x) = 0 (all
columns of the matrix W (x) are from T (x)). Without loss of generality we may assume that
x = 0, ti = ei for i = 1, · · · , n − 1 and n (x) = en where {e1, · · · , en} is the standard basis of
Rn. Let O be a neighbourhood of 0. Let ϕ be a function such that Γ is given as a graph of ϕ
on O. Writing n (x) = (n1 (x) , · · · , nn (x)) we get

n (x) =
1√

1 + |∇ϕ (x)|2

(
−∇ϕ (x)

1

)
= nn (x)

(
−∇ϕ (x)

1

)
.

Let di be a principal direction and d′i related eigenvector of D2ϕ (ξ). Define a plane curve
γ (v) = x + vdi + ϕ (vd′i) n (x).

Now we see that

d

dv
n (γ (v)) |v=0=

d

dv
nn
[
x + vdi + ϕ

(
vd′i
)
n (x)

]( −∇ϕ (0)
1

)
+ nn (0)

(
−D2ϕ (0) d′i

0

)
(4.16)

We will show that
d

dv
nn
[
x + vdi + ϕ

(
vd′i
)
n (x)

]
= 0. (4.17)
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Indeed

0 =
d

dv

∣∣n (x + vdi + ϕ
(
vd′i
)
n (x)

)∣∣2 |v=0= 2n (0)


d
dvn1 (x + vdi + ϕ (vd′i) n (x))

...
d
dvnn (x + vdi + ϕ (vd′i) n (x))

 |v=0

= 2
d

dv
nn
(
x + vdi + ϕ

(
vd′i
)
n (x)

)
,

where the last equality follows from n (0) = (0, · · · , 1)T . It is a proof of (4.17). Together with
nn (0) = 1 we have from (4.16)

d

dv
n (γ (v)) |v=0=

(
−D2ϕ (0) d′i

0

)
= −κidi.

Now we see that
∂vγ (v) = di + d′i∇ϕ

(
vd′i
)
n (x) .

By our assumptions we have that n (0) = (0, · · · , 0, 1)T = (−∇ϕ (0) , 1)T . It means that
∇ϕ (0) = 0. It follows that

∂vγ (0) = di,

and

κidi = − d

dv
n (γ (0)) = −

(
∇ΓnT (γ (0))

)
∂vγ (0) = W (x) di.

It means that the vectors {d1, · · · ,dn−1,n (x)} are orthonormal eigenvectors with the corre-
sponding eigenvalues {κ1, · · · , κn−1, 0} and that W (x) is symmetric.

Some useful expressions for H and the Laplace-Beltrami operator

The theorem (4.2.11) allows us to express the mean curvature as

H = Tr W = −∇Γ · n. (4.18)

We might be tempted to say that K = detW but we know that the eigenvalue corresponding
to n is 0. To make it 1 we add the matrix nnT to W . Then

K = det
(
W + nnT

)
. (4.19)

Our interest is to express the mean curvature H efficiently. The following theorem contributes
to this effort.

Theorem 4.2.12. Let ñ be a C1-extension of n i.e. ñ ∈ C1 (Rn), |ñ (x)| = 1 in some neigh-
bourhood of Γ and ñ (x) = n (x) on Γ. Then

H = ∇ · ñ (4.20)

holds.

Proof. For x ∈ Γ fixed and small ε > 0, we have |ñ (x + εn)|2 = 1. Now

0 =
d

dε
|ñ (x + εn)|2 |ε=0= 2ñ (x + εn)T

[
∇ñ (x + εn)T

]
n |ε=0= 2nT

(
∇ñT

)
n (4.21)

and

H = −∇Γ · ñ = Tr ∇ΓñT = Tr
[(
I− nnT

)
∇ñT

]
= ∇ · ñ− nT

(
∇ñT

)
n = ∇ · ñ,

where the last equality follows from (4.21).
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4. Evolving hypersurfaces

If Γ is given as a zero level-set of some level-set function u ∈ C2 (Rn) (i.e. u < 0 in Γint) then
ñ (x) = ∇u

|∇u| and H = ∇ · ∇u|∇u| . In the definition of the hypersurface Γ, we assume that ∇u 6= 0

on Γ. At the points where ∇u = 0, ñ would not be defined. Since we assume u ∈ Cm (Rn) for
m ≥ 1, we observe that ∇u 6= 0 in some neighbourhood of Γ as well. This is enough for the
application of the theorem (4.2.12). In the other parts of Rn we may introduce regularisation
by a non-zero function ε (x) vanishing in some neighbourhood of Γ where ∇u is non-zero. Then
we define

ñε =
∇u√

ε (x)2 + |∇u|2
. (4.22)

and

H = ∇ · ñε = ∇ ·

 ∇u√
ε (x)2 + |∇u|2

 . (4.23)

Later, in the numerical computations, we assume that ε (x) = ε is constant.

If Γ is given as a graph of a function ϕ ∈ C2
(
Rn−1

)
, ϕ = ϕ (ξ) then we have

n =
1√

1 + |∇ϕ|2

(
−∇ϕ

1

)
, (4.24)

for x ∈ Γ expressed as x = (ξ, ϕ (ξ))T . However, (4.24) can be easily extended on Rn and we
can define ñ as

ñ =
1√

1 + |∇ϕ|2

(
−∇ϕ

1

)
on Rn. (4.25)

It follows that

H = ∇ · ñ = ∂x1

∂x1ϕ√
1 + |∇ϕ|2

+ · · ·+ ∂xn−1

∂xn−1ϕ√
1 + |∇ϕ|2

+ ∂xn
1√

1 + |∇ϕ|2

= ∂x1

∂x1ϕ√
1 + |∇ϕ|2

+ · · ·+ ∂xn−1

∂xn−1ϕ√
1 + |∇ϕ|2

= −∇ ·

 ∇ϕ√
1 + |∇ϕ|2

 ,

because ∂xn
1√

1+|∇ϕ|2
= 0. Therefore we often simplify the normal of Γ given as a graph of ϕ to

n = ∇ϕ/
√

1 + |∇ϕ|2. The same holds even for the normal unit vector field extension ñ. For
better consistency of the notation, we will consider inner normal unit vector in the case of the
graph formulation and write

H = ∇ ·

 ∇ϕ√
1 + |∇ϕ|2

 . (4.26)

Denote Q = |∇u| for the level-set formulation resp. Q =
√

1 + |∇ϕ|2 for the graph formulation.
It allows us to express the unit normal vector and the mean curvature as

n =
∇u
Q

and H = ∇ ·
(∇u
Q

)
,

18



4.2. Hypersurfaces

for the level-set formulation resp.

n =
∇ϕ
Q

and H = ∇ ·
(∇ϕ
Q

)
,

Then we get (what follows holds even for the graph formulation - we would write ϕ instead of
u)

∇nT = ∇
(∇u
Q

)T
=

1

Q

[
D2u− 1

Q

(
∇u (∇Q)T

)]
=

1

Q

[
D2u− 1

Q

(
∇u(∇u)T D2u

Q

)]

=
1

Q

(
I− ∇u

Q

(∇u
Q

)T)
D2u =

1

Q

(
I− nnT

)
D2u =

1

Q
PD2u

and

W = ∇TΓn = P

(
1

Q
PD2u

)
=

1

Q
PD2u. (4.27)

Using (4.27) we get

H = TrW =
1

Q
Tr
(
PD2u

)
=

1

Q
Tr

((
I− ∇u⊗∇u

Q2

)
D2u

)

=
1

Q

∆u−
∑

1≤i,j≤N

∂iu∂ju

Q2
∂i∂ju

 . (4.28)

We will also find useful to consider the Frobenius norm of the Weingarten map matrix defined
as

‖W‖2F :=

n∑
i,j=1

W 2
ij = Tr

(
W TW

)
for which we have

‖W‖2F = Tr
(
W TW

)
=

1

Q2
Tr
(
PD2uPD2u

)
= Tr

(
∇nT∇nT

)
. (4.29)

It follows from

∇nT = ∇
(

(∇u)T

Q

)
=
∇ (∇u)T

Q
− ∇Q (∇u)T

Q2

=
1

Q

(
D2u− ∇uD

2u

Q

(∇u)T

Q

)
=

1

Q

(
I− ∇u

Q

(∇u)T

Q

)
D2u =

1

Q
PD2u,

where we used ∇Q =
(
∇uD2u

)
/Q. Concerning the Laplace-Beltrami operator, the following

identity is important:

Lemma 4.2.13. Let O be an open set in Rn such that Γ ⊂ O ⊂ Rn and f ∈ C2 (O). Then we
have

∆Γf = ∆f −H∂nf − ∂2
nf, (4.30)

on Γ, where we denoted ∂nf = ∇fn and ∂2
n = nTD2fn.
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4. Evolving hypersurfaces

Proof. Since

∇Γ · ∇f = Tr
(
∇Γ (∇f)T

)
= Tr

((
I− nnT

)
D2f

)
= ∆f − nTD2un = ∆f − ∂2

nf,

we have

∆f = ∇Γ · ∇f + ∂2
nf = ∇Γ · (∇Γf + ∂nfn) + ∂2

nf

= ∆Γf + (∇Γ · n) ∂nf + nT∇Γ∂nf + ∂2
nf

= ∆Γf −H∂nf + ∂2
nf,

where it is easy to see that nT∇Γg = 0 for any g ∈ C1 (Rn).

The following was adopted from Deckelnick, Dziuk and Eliott [36]. Let Γ be given as graph
of function ϕ ∈ C2 (Ω) for Ω ⊂ Rn−1 i.e. Γ ≡ {(x, ϕ (x)) | x ∈ Ω} and we seek for an expression
of ∆Γf for f ∈ C2 (Γ). Let f̃ be an C2-extension of f to Rn, let ξ ∈ C∞ (Γ) be a test function
and ξ̃ its C∞-extension to Rn such that ξ is vanishing on ∂Γ and ξ̃ is vanishing on ∂Ω. Then
we have

(∇Γf,∇Γξ) =
(
∇f̃ −

(
∇f̃ ,n

)
n,∇ξ̃ −

(
∇ξ̃,n

)
n
)

=
(
∇f̃ ,∇ξ̃

)
−
(
∇f̃ ,n

)(
n,∇ξ̃

)
−
(
∇ξ̃,n

)(
n,∇f̃

)
+
(
∇f̃ ,n

)(
∇ξ̃,n

)
=

(
∇f̃ ,∇ξ̃

)
− 1

Q2

(
∇f̃ · ∇ϕ

)(
∇ξ̃ · ∇ϕ

)
=

(
∇f̃ ,∇ξ̃

)
− 1

Q2

(
∇ξ̃
)T

(∇ϕ⊗∇ϕ)∇f̃

=
1

Q

(
∇ξ̃
)T
E∇f̃

for

E := QI− ∇ϕ⊗∇ϕ
Q

.

Integrating over Γ we get∫
Γ

(∇Γf,∇Γξ) dHn−1 =

∫
Ω

(∇Γf,∇Γξ)Qdx =

∫
Ω

(
∇ξ̃
)T
E∇f̃dx.

and the Gauss-Green theorem on Γ (A.0.8) we obtain∫
Γ
ξ∆ΓfdHn−1 = −

∫
Γ
∇Γξ∇ΓfdHn−1 = −

∫
Ω

(
E∇f̃

)
· ∇ξ̃dx

=

∫
Ω
ξ̃∇ ·E∇f̃dx =

∫
Γ
ξ

1

Q
∇ ·E∇f̃dHn−1.

Since the last is true for all testing functions ξ and their extensions ξ̃ we can conclude in the
following Lemma:

Lemma 4.2.14. Let Γ be given as Γ ≡ {(x, ϕ (x)) | x ∈ Ω} for ϕ ∈ C2 (Ω) and Ω ⊂ Rn−1, let
f ∈ C2 (Γ) and f̃ is an extension of f into Rn. Then we have

∆Γf =
1

Q
∇ ·
((

QI− ∇ϕ⊗∇ϕ
Q

)
∇f̃
)
. (4.31)

Remark 4.2.15. The previous lemma can be proved in the same way even for Γ given as a zero
level set of a function u ∈ C2 (Ω).
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4.3. Moving hypersurfaces

4.3. Moving hypersurfaces

Following Kimura [65] we present several tools necessary for studying moving hypersurfaces.

Definition 4.3.1. Let Γ (t) for t ∈ I be a time dependent class of oriented hypersurfaces in Rn.
Let Γ (t) be nonempty for all t ∈ I. Then Γ (t) is called oriented moving hypersurface iff

M =
⋃
t∈I
{Γ (t)× {t}} ⊂ Rn+1 (4.32)

is C1-hypersurface in Rn+1 and for its normal vector field n ∈ C1 (M,Rn) holds.

Definition 4.3.2. Let (x0, t0) ∈ M, ϕ ∈ C1
(
Rn−1 × I0,R

)
, I0 ⊂ I, I0 is open in I and ϕ is

such that M is given as a graph of ϕ on some neighbourhood U of (x0, t0). Then if we write the
normal vector n as n = (n1, · · · , nn) we define the normal velocity of Γ (t) at (x0, t0) as

V (x0, t0) := ∂tϕ (x0, t0) · nn (x0, t0) . (4.33)

Remark 4.3.3. To explain the meaning of (4.3.2) we assume that Ω ⊂ Rn−1, ϕ ∈ C1 (Ω; [0, T ])
and Γ (t) is given as

Γ (t) ≡ {(ξ, ϕ (ξ, t)) | ξ ∈ Ω} .
Then the velocity of a point x (t) ∈ Γ (t) such that

x (t) = (ξ, ϕ (ξ, t)) ,

is
d

dt
x (t) = (0, ∂tϕ (ξ, t)) .

If n is the normal vector and n = (n1, · · ·nn) then the normal velocity reads as

V (x, t) =
d

dt
x (t) · n = ∂tϕ (ξ, t) · nn.

Since n is given by (up to the sign) (4.24) we get that

nn = ± 1√
1 + |∇ϕ|

.

If n is the inner normal then

nn =
−1√

1 + |∇ξϕ|2

and we have that

V (x0, t0) =
−∂tϕ (x0, t0)√

1 + |∇ξϕ (x0, t0)|2
. (4.34)

Remark 4.3.4. Note that the definition of V does not depend on the choice of ϕ. Indeed,
consider another neighbourhood U ′ of (x0, t0) and ϕ′ ∈ C1

(
Rn−1 × I0,R

)
such thatM is given

as a graph of ϕ′ on U ′ and (x0, t0) ∈ U ∩ U ′. Then ϕ (x, t) = ϕ′ (x, t) on U ∩ U ′ must hold and
so ∂tϕ (x0, t0) = ∂tϕ

′ (x0, t0) holds as well.

Definition 4.3.5. A curve γ is called C1-trajectory on M iff γ ∈ C1 (I0,R
n), γ (t) ∈ Γ (t)

for t ∈ I0 and I0 is some open subinterval of I.

21



4. Evolving hypersurfaces

Theorem 4.3.6. Let (x0, t0) ∈M and let γ be a C1-trajectory such that γ (t0) = (x0, t0). Then

V (x0, t0) = ∂tγ (t0) · n (x0, t0) . (4.35)

Proof. Let ϕ ∈ C1 (U,Rn) be such that M is given as a graph of ϕ on some neighbourhood U
of (x0, t0). Without loss of generality we may assume that x0 = 0 and n (x0) (0, · · · , 0, 1). Let
γ be defined for t ∈ I0 ⊂ I, I0 open in I and t0 ∈ I0. Then there exists ζ (t) : I0 → Rn−1 such
that γ (t) = (ζ (t) , ϕ (ζ (t) , t)) for t ∈ I0. Then

∂tγ (t) = (∂tζ (t) , ∂tϕ (ζ (t) , t))T for t ∈ I0

and
∂tγ (t0) · n (x0, t0) = ∂tϕ (x0, t0) · nn (x0, t0) = V (x0, t0) .

Remark 4.3.7. If Γ (t) ⊂ Ω ⊂ Rn is described by a level-set function u (x, t) as

Γ (t) ≡ {x ∈ Ω | u (x, t) = 0} ,

then for C1-trajectory γ (t) defined on some I0 ⊂ I such that for some t0 ∈ I0 and γ (t0) =
(x0, t0) we have that u (γ (t) , t) = 0 for all t ∈ I0. Then we see that

d

dt
u (γ (t) , t) |t=t0= ∂tu (x0, t0) +∇u (x0, t0) · ∂tγ (x0, t0) = 0. (4.36)

Since

V (x0, t0) = ∂tγ (t0) · n (x0, t0) = ∂tγ (t) · ∇u (x0, t0)

|∇u (x0, t0)| ,

we have that

V (x0, t0) =
−∂tu (x0, t0)

|∇u (x0, t0)| . (4.37)

Definition 4.3.8. A C1-trajectory γ (t) defined on I0 is called normal trajectory on M iff
∂tγ (t) ∈ Tγ(t) (Γ (t))⊥ for all t ∈ I0.

Definition 4.3.9. Let f ∈ C1 (M,Rm), (x0, t0) ∈ M and γ (t) is the normal trajectory on M
through the point (x0, t0). Then the normal time derivative of f on M is defined as

Dtf (x0, t0) :=
d

dt
[f (γ (t))] |t=t0 . (4.38)

Lemma 4.3.10. For an open neighbourhood U of M in Rn+1, f ∈ C1 (U) we have

Dtf (x, t) = ft (x, t) + V (x, t) ∂nf (x, t) , (4.39)

where ∂nf (x, t) = ∇f (x, t) · n (x, t).

Proof. From V (x0, t0) = ∂tγ (t0) · n (x0, t0) we get that V (x0, t0) · n (x0, t0) = ∂tγ (t0) . Simple
calculation shows

Dtf (x, t) =
d

dt
f (γ (t) , t)

= ∇f (x, y)T ∂tγ (t) + ft (x, t)

= V (x, t)∇f (x, t)T n (x, t) + ft (x, t) .
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Lemma 4.3.11. For f ∈ C1 (M) and a C1-trajectory γ (t) on M (not necessarily the normal
trajectory) we have

d

dt
f (γ (t) , t) = Dtf (γ (t), t) +∇Γf (γ (t), t)T ∂tγ (t) .

Proof. Let f̃ ∈ C1 (U) be a C1-extension of f and x = γ (t) ∈ Γ (t). Then we have

d

dt
f (γ (t) , t) =

d

dt
f̃ (γ (t) , t)

= ∇f̃ (x, t)T ∂tγ (t) + ∂tf̃ (x, t)

=
(
∇Γf (x, t) + ∂nf̃ (x, t) n (x, t)

)T
∂tγ (t) + ∂tf̃ (x, t)

= ∇Γf (x, t)T ∂tγ (t) +
(
∂nf̃ (x, t) n (x, t)T ∂tγ (t) + ∂tf̃ (x, t)

)
= ∇Γf (x, t)T ∂tγ (t) +

(
∂nf̃ (x, t)V (x, t) + ∂tf̃ (x, t)

)
= ∇Γf (x, t)T ∂tγ (t) +

(
∇f̃ (x, t) · n (x, t)T V (x, t) + ∂tf̃ (x, t)

)
= ∇TΓf (x, t) ∂tγ (t) +Dtf (x, t) .

Remark: If γ (t) is a normal trajectory we have that ∇TΓf (x, t) ∂tγ (t) = 0 which is in good
agreement with (4.38).

Theorem 4.3.12. Let Γ (t) be a moving hypersurface, f ∈ C1 (M) with compact supp (f). Then

d

dt

∫
Γ(t)

f (x, t) dHn−1 =

∫
Γ(t)

(Dtf − fHV ) dHn−1, (4.40)

where dHn−1 denotes the Hausdorff measure of Rn−1.

Proof. Let x ∈ Γ (t). Without loss of generality we assume that x = 0, ti (~x) = ei for i =
1, · · · , n− 1 and n (x) = en. Then there exists a neighbourhood U of x and a function ϕ (x, t)
defined on O × I0 with O ⊂ Rn−1 such that Γ (t) is given as a graph of ϕ for t ∈ I0 ⊂ I i.e.

Γ (t) ≡
{
ϕ (ξ, t) | ξ ∈ O ⊂ Rn−1

}
,

Suppose now that suppf ⊂ U . Denoting A (ξ, t) :=
(
∇Tϕ (ξ, t) ,n (ϕ (ξ, t))

)
∈ Rn×n we may

write ∫
Γ(t)

f (x, t) dHn−1 =

∫
O
f (ϕ (ξ, t) , t) detA (ξ, t) dξ.

Defining the inverse mapping Ψ = Ψ (x, t) such that x = ϕ (ξ, t) = ϕ (Ψ (x, t) , t) for x ∈ U ⊂
Γ (t) i.e. Ψ : (U × I0)→ O × I0 we have that

A (ξ, t)−1 =

(
∇TΓΨ (x, t)
nT (x, t)

)
.

Differentiating the determinant of A w.r. to t and using the Jocabi’s formula (A.0.13) we get

∂t detA (ξ, t) = detA (ξ, t) Tr
(
A (ξ, t)−1At (ξ, t)

)
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4. Evolving hypersurfaces

and

Tr
(
A (Ψ (x, t) , t)−1At (ξ, t)

)
= Tr

[(
∇TΓΨ (x, t)

nT

)(
∇T∂tϕ (ξ, t) , ∂tn (ϕ (ξ, t))

)]
= Tr

[ (∇TΓΨ (x, t)
) (
∇T∂tϕ (ξ, t)

) (
∇TΓΨ (x, t)

)
∂tn (ϕ (ξ, t))

nT
(
∇T∂tϕ (ξ, t)

)
1
2∂t |n|

2

]
= Tr

[(
∇TΓΨ (x, t)

) (
∇T∂tϕ (ξ, t)

)]
= Tr

[
∇Γ

(
∂tϕ

T (Ψ (x, t) , t)
)]

= ∇Γ · ∂tϕ (ξ, t) .

We obtain

d

dt

∫
Γ(t)

f (x, t) dHn−1 =
d

dt

∫
O
f (ϕ (ξ, t) , t) detA (ξ, t) dξ

=

∫
O

{((
∇TΓf

)
∂tϕ+Dtf

)
detA+ f∂t detA

}
dξ

=

∫
O

{((
∇TΓf

)
∂tϕ+Dtf

)
+ fTr

(
A−1At

)}
detAdξ

=

∫
Γ(t)

{(
∇TΓf

)
∂tϕ+Dtf + f∇Γ(t) · ∂tϕ (ξ, t)

}
dHn−1.

The Gauss-Green formula on Γ (t) (A.0.8) gives∫
Γ(t)

∂tϕ∇TΓ(t)fdHn−1 = −
∫

Γ(t)
(∇Γ · ∂tϕ+Hn · ∂tϕ) fdHn−1,

and finally we get the result

d

dt

∫
Γ(t)

f (x, t) dHn−1 =

∫
Γ(t)

Dtf −Hn · ∂tϕfdHn−1 =

∫
Γ(t)

Dtf −HV fdHn−1.

If suppf 6⊂ U we apply the above result with a partition of unity (see Evans [47]) of M.

Remark 4.3.13. The Theorem 4.3.12 simplifies evaluation of evolutionary laws for minimising
functionals defined as

F (Γ (t)) =

∫
Γ(t)

f (x, t) dHn−1,

for f ∈ C1 (M). The right-hand side of (4.40) contains the normal time derivative Dtf . In
the case of mean-curvature dependent flows f often depends on H. Therefore we would like to
know DtH. The Theorem 4.5.1 gives answer to this question. To be able to prove it, we need
to define the signed distance function and establish some results concerning it.

4.4. Signed distance function

In this section we define the signed distance function and briefly explain some basic properties
which we will need in the next section for the proof of the Theorem 4.5.1. In later parts, we will
also study calculation of the signed distance function. It is important for the level-set method.

Definition 4.4.1. Let Γ be a Cm-hypersurface in Rn for which Γint and Γext is defined. We
define the signed distance function to the hypersurface Γ as

dΓ (x) :=


dist (x,Γ) x ∈ Γext,
0 x ∈ Γ,
−dist (x,Γ) x ∈ Γint,

(4.41)
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where

dist (x,Γ) := inf
y∈Γ
|x− y| .

It is easy to see that if Γ is closed (in the topological sense) then for each x ∈ Rn there exists
x ∈ Γ such that |x− x| = miny∈Γ |x− y| = dist (x,Γ). We would like to know under which
conditions there exists unique minimiser x. For this purpose let us define

X (y, ρ) := y + ρn (y) , for y ∈ Γ, ρ > 0,

N ε (Γ) := {X (y, ρ) | y ∈ Γ, |ρ| < ε} ,

N ε
± (Γ) := {X (y, ρ) | y ∈ Γ, 0 < ±ρ < ε} ,

where n (y) denotes the outer unit normal vector at y.

Theorem 4.4.2. Let Γ be a Cm-hypersurface for which Γint and Γext is defined. Then there
exists ε > 0 and mapping X : Γ× (−ε, ε)→ N ε (Γ) such that X is Cm−1 diffeomorphism.

Proof. For the proof of this theorem we refer to Kimura [65].

This theorem says that there exists an inverse mapping such that X−1 (x) is defined for all
x ∈ N ε (Γ). It allows us to define mapping ζ ∈ Cm−1 (N ε (Γ) ,Γ) such that X (ζ (x) , dΓ (x)) = x.
The meaning of the mapping ζ is that for each x ∈ N ε (Γ) it gives the closest point on Γ in the
distance |dΓ (x)| and in fact ζ (x) = x. This point is unique and x = x− dΓ (x) n (x).

Theorem 4.4.3. Let Γ be an oriented Cm-hypersurface for which Γint and Γext is defined and
let dΓ is its signed distance function. Then there exists ε such that dΓ ∈ Cm (N ε (Γ)) and for all
x ∈ N ε (Γ)

∇dΓ (x) = n (x) , (4.42)

D2dΓ (x) = (I+ dΓ (x)W (x))−1W (x) , (4.43)

hold.

Proof. The proof can be found in Kimura [65] too.

Theorem 4.4.4. Let Γ (t) be an oriented moving Cm-hypersurface such that for each t Γint (t)
and Γext (t) is defined and let dΓ (x, t) is its signed distance function. For (x, t) ∈ N ε (M)

∂tdΓ (x, t) = −V (x, t) , (4.44)

∂t∇dΓ (x, t) = (I+ dΓ (x, t)W (x, t))−1∇ΓV (x, t) (4.45)

hold. If (x, t) ∈M then

∂tD
2dΓ (x, t) = ∇2

ΓV (x, t)− n (x, t)∇TΓV (x, t)W (x, t) , (4.46)

is true.

Proof. The proof comes from Kimura [65] as well.
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4. Evolving hypersurfaces

4.5. Normal time derivatives of some geometric quantities

In this section, we compute the normal time derivatives (see the definition 4.38)) of some basic
geometric quantities which we will employ later using the Theorem 4.3.12 in the gradient flows
of given energies depending on Γ.

Theorem 4.5.1. Let Γ (t) be a moving hypersurface in Rn such that its interior and exterior
is defined. Let n be the outer unit normal vector, V the normal velocity and W the Weingarten
map. Then the following equalities hold for any (x, t) ∈M.

Dtn = ∇ΓV, (4.47)

DtW = −VW 2 +∇2
ΓV − n

(
∇TΓV

)
W, (4.48)

DtH = V
n−1∑
i=1

κ2
i + ∆ΓV. (4.49)

Proof. The proof was adopted from Kimura [65]. Let γ (t) be a normal trajectory onM passing
through x = γ (t) ∈ Γ (t) and dΓ (x, t) the signed distance function to Γ (t). Then

Dtn (x, t) =
d

dt
(n (γ (t), t))

= ∇Γn (γ (t), t)T · ∂tγ (t) + ∂tn (γ (t), t)

= W (x, t) n (x, t)V (x, t) + ∂t∇ΓdΓ (x, t) ,

and since W (x, t) n (x, t) = 0 we have that Dtn (x, t) = ∇Γ(t)∂td (x, t). It shows that (4.47) is
true. For (4.48) we have

DtW (x, t) =
d

dt

(
∇n (γ (x, t))T

)
=

d

dt

(
∇
(
∇TdΓ (γ (x, t))

))
=

d

dt

(
D2dΓ (γ (x, t))

)
= D3dΓ (x)∂tγ (x, t) + ∂tD

2dΓ (x, t)

= D3dΓ (x, t)V (x, t) n (x, t) + ∂tD
2dΓ (x, t)

= V (x, t) ∂nD
2dΓ (x, t) + ∂tD

2dΓ (x, t).

For the first term we have (using (4.43) on D2d (x, t) with r = dΓ (x))

∂nD
2dΓ (x, t) =

d

dr

(
D2d (x + rn (x, t) , t)

)
|r=0

=
d

dr

(
(I+ rW (x, t))−1W (x, t)

)
|r=0

= −
(

(I+ rW (x, t))−2W 2 (x, t)
)
|r=0= −W 2 (x, t)

Employing (4.46) gives (4.48). (4.49) follows easily from (4.48) using DtH = DtTr(W ) =
Tr(DtW ).

4.6. Gradient flow structure

In this section, we define gradient flows. They serve as a mathematical framework for a class
of geometric evolution problems.
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4.6. Gradient flow structure

Let us start with a simple problem. Assume that we have a smooth strictly convex function
F in Rn and we want to find its minimum. From calculus, we know that the change of F at a
point x in a direction d is given by

δF (x,d) = (∇F (x) ,d) , (4.50)

where (·, ·) denotes standard scalar product. From all directions d such that |d| = |∇F (x)|, the
function F decreases the most in the direction

d∗ = arg min
|d|=|∇F |

(∇F (x) ,d) = −∇F (x) ,

We start with some initial guess x0 and we apply the following iterative formula

xn+1 = xn − τ∇F (xn) . (4.51)

If τ is small enough then {xn}∞n=0 is monotonically decreasing and bounded from bellow by the
minimum of F . Therefore it must converge to some x∗ ∈ Rn. But then limn→∞

(
xn+1 − xn

)
= 0

and so −∇F (x∗) = 0. We see that F attains its minimum at x∗.
We may rewrite the formula (4.51) as

xn+1 − xn

τ
= −∇F (xn) ,

and we denote x (t) |nτ= xn. Passing τ → 0 we get a differential formula

∂tx (t) := −∇F (x (t)) . (4.52)

As before, as t goes to infinity, x (t) converges to x∗ which is the minimum of F .

Another way how to look at the equation (4.52) is that it defines an evolutionary law for
motion of x (t) and the convergence to minimum of F is a secondary effect. To define another
evolutionary laws for the motion of x we may replace the standard scalar product (·, ·) in (4.50)
by another scalar product or even a scalar product. This is the idea of the gradient flows. From
now we can classify certain motions of vectors in Rn by taking appropriate function F and scalar
product g (·, ·).

Proceeding to Banach spaces we may arrive to evolutionary laws using gradient flows of
certain real valued functionals E and given bilinear forms g. For the following definition we
adopt the concept from Droske [39].

Definition 4.6.1. Let Ω be a domain in Rn, let X be a Banach space of functions defined on
Ω, let g be scalar product defined on X, g : X × X → R and let E be a real valued functional
E : X → R having the Fréchet derivative. The g-gradient flow for the functional E is defined
as

∂tu = −∇gE (u) in R+ × Ω,

u (0, ·) = uini on Ω,

with appropriate boundary conditions where ∇gE (u) is a representation of the Fréchet derivative
E ′ (u) in a product induced by g, i.e.

g (∇gE (u) , v) =
(
E ′ (u) , v

)
for all v ∈ C∞0 (Ω) resp. v ∈ C∞ (Ω) .
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4. Evolving hypersurfaces

Remark: If the scalar product g can be represented as

g (u, v) = (Agu, v)X′×X ,

then the g-gradient flow can be written as

∂tu = −A−1
g E ′ (u)

and we have the uniqueness and the solution existence. The following theorem was also taken
from Droske [39]:

Theorem 4.6.2. Suppose that X is a Banach space and there exists a Banach space Y such
that X ⊂ Y and Y is continuously embedded to X ′. Let Ag be a linear isomorphism from X
onto Y . Suppose that E ′ is Lipschitz continuous mapping from X to Y . Then there exists a
unique solution of the evolution problem of finding a solution u : R+

0 → X, such that

∂tu = −A−1
g E ′ (u) ,

u (0) = uini.

Sometimes we want to define general evolutionary law for Γ (t) without any assumptions on
the form of Γ (t). In this case we may operate only with the normal velocity and quantities
which do not depend on the way we express Γ (t). The gradient flow for the normal velocities
can be defined as follows:

Definition 4.6.3. Let Γ (t) be a moving hypersurface in Rn, let X be a Banach space of functions
defined on Γ (t), let g be scalar product defined on X, g : X ×X → R and let E be a real valued
functional E : X → R having a Fréchet derivative. The g-gradient flow for the functional E
is defined as

V = −∇gE (Γ) on Γ (t),

Γ (0) = Γini,

where ∇gE (Γ) is a representation of the Fréchet derivative E ′ (Γ) in a product induced by g, i.e.

g (∇gE (Γ) , v) =
(
E ′ (Γ) , v

)
for all v ∈ C∞ (Γ (t)) .
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5. Mathematical formulation

The aim of this chapter is to give a mathematical formulation for the Willmore flow. It is a
variational problem which can be understood as a L2-gradient flow of a functional W defined as

W (Γ) =

∫
Γ
H2dHn−1,

where Γ is a Cm-hypersurface in Rn and Hn−1 is (n−1)-dimensional Haussdorf measure. There
is another geometrical problem closely related to the Willmore flow. It is a mean-curvature
flow which is a L2-gradient flow of a functional A given by

A (Γ) =

∫
Γ

1dHn−1. (5.1)

The mean-curvature flow is a second order problem whilst the Willmore flow is the fourth order
problems. Both of them can be studied in more general anisotropic form.

To be more educative we start with the simplest problem which is the isotropic mean-curvature
flow. Then we insert the anisotropy and finally we proceed to the fourth order problem i.e. the
Willmore flow. We restrict ourselves only to graph, parametric and the level-set formulation.

Remark 5.0.4. We remind that for the graph formulation we assume that Γ (t) is a graph of a
function ϕ : Ω× [0, T ]→ R where Ω is a domain in Rn−1:

Γ (t) ≡ {[x, ϕ (x, t)] | x ∈ Ω} , (5.2)

We denote

Q =

√
1 + |∇ϕ|2, H = ∇ ·

(∇ϕ
Q

)
. (5.3)

In the case of the level-set method Γ (t) is given by a field u : Ω × [0, T ] → R where Ω is a
domain in Rn:

Γ (t) ≡ {x ∈ Ω | u (x, t) = 0} , (5.4)

and we denote

Qε =

√
ε2 + |∇u|2, H = ∇ ·

(∇u
Qε

)
. (5.5)

By ∂Ω we mean boundary of Ω. In fact, ∂Ω is an oriented Cm-hypersurface in Rn−1 in the
case of the graph formulation resp. oriented Cm-hypersurface in Rn in the case of the level-set
formulation. If it is a C1-hypersurface then the outer unit normal vector ν exists at each point
x ∈ ∂Ω.

Remark 5.0.5. Evolving planar curve Γ (t) can be parametrised either by γ : [0, 1]×[0, T ]→ R2

such that
Γ (t) ≡ {γ (v, t) | v ∈ [0, 1]} , (5.6)

or by the arclength parametrisation γ : I × [0, T ]→ R2 for which

Γ (t) ≡ {γ (s, t) | s ∈ I ⊂ R} and |∂sγ (s, t)| = 1, (5.7)
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5. Mathematical formulation

5.1. Mean-curvature flow

5.1.1. Brief introduction

In the Chapter 3, the Young-Laplace equation was introduced. It concerns the pressure jump
across an interface separating two domains with for example different fluids. It depends on the
mean-curvature H of the interface. The equilibrium is reached when the mean-curvature H
equals zero. In this section we will show that H = 0 holds for minimal surfaces. It will be
also a proof of fact that the surface tension minimises the surface resp. interface area [14].

The mean-curvature flow is a minimisation of the surface area resp. curve length. It reads as

V = H, (5.8)

where V is the normal velocity, H is the mean curvature In dependence on how we express Γ (t)
we can get several formulations of this problem:

• the graph formulation of the mean-curvature flow defined in the Definition 5.1.4,

• the level-set formulation of the mean-curvature flow defined in the Definition 5.1.6,

• parametric approach of the mean-curvature flow defined in the Definition 5.1.8.

Then we proceed to the anisotropic formulations of the mean-curvature flow:

• the anisotropic graph formulation of the mean-curvature flow defined in the Definition
5.1.11

• the anisotropic level-set formulation of the mean-curvature flow defined in the Definition
5.1.12

At the end of this section we give brief overview of some results obtained for the mean curvature
and mean-curvature flow.

5.1.2. Isotropic formulation for graphs

We start with the graph formulation of (5.8). Having Γ given by (5.2) for n = 3 then the surface
area is

A(ϕ) = A(Γ) =

∫
Γ

1dHn−1 =

∫
Ω

∣∣∂xf × ∂yf ∣∣dx =

∫
Ω

∣∣(1,−∂xϕ,−∂yϕ)∣∣ dx =

∫
Ω
Qdx, (5.9)

where we defined function f : R2 → R3 as f (x, y) = (x, y, ϕ (x, y)).
First of all we should ask whether there exists some minimiser.

Lemma 5.1.1. (Johnson, Thomeé - [62]) The area functional (5.9) is convex .

Proof. If we denote Q (p) =
√

1 + |p|2 we get

∂pi∂pjQ (p) ξiξj =
(

1 + |p|2
)− 3

2 [(
1 + p2

1

)
ξ2

1 − 2p1p2ξ1ξ2 +
(
1 + p2

2

)
ξ2

2

]
=

(
1 + |p|2

)− 3
2
[
ξ2

1 + ξ2
2 + (p1ξ2 − p2ξ1)2

]
≥
(

1 + |p|2
)− 3

2 |ξ|2 .

Thus
n∑

i,j=1

∂pi∂pjQ (p) ξiξj ≥ 0 for all ξ,p ∈ Rn

and from [52] page. 178, the functional A (ϕ) =
∫

ΩQ (∇ϕ) dx is convex.
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5.1. Mean-curvature flow

From the previous lemma we see that it makes good sense looking for the minimiser of (5.9).
Let δϕ ∈ C∞0 (Ω) be small variation of ϕ vanishing on ∂Ω and let us define function G as

Gδϕ (s) = A (ϕ+ sδϕ) =

∫
Ω

√
1 + |∇ (ϕ+ sδϕ)|2.

This function indicates us what is the change of A when we perturb the graph of ϕ by δϕ.
Assume δϕ = 0 on ∂Ω i.e. ϕ is fixed at the boundaries of the domain Ω. By differentiating this
function w.r. to s we obtain

lim
s→0

∂sGδϕ (s) = lim
s→0

∫
Ω

∇ϕ · ∇δϕ+ s |∇δϕ|2√
1 + |∇ (ϕ+ sδϕ)|2

dx =

∫
Ω

∇ϕ
Q
· ∇δϕdx

=

∫
∂Ω

δϕ

Q
∂νϕdS −

∫
Ω
∇ · ∇ϕ

Q
δϕdx

= −
∫

Ω
Hδϕdx = (δA (ϕ) , δϕ)L2(Ω) ,

were we applied the Green formula (A.0.6) and the integral
∫
∂Ω

δϕ
Q ∂νϕdS vanishes because

δϕ |∂Ω≡ 0.

Remark 5.1.2. The minimal surface problem is the second order elliptic problem with the
boundary condition g defined as:

H = 0 on Ω

ϕ = g on ∂Ω.

To get a parabolic problem we employ L2 (Ω)-gradient flow. If we look at the Definition 4.6.1
we see that E = A, g (ϕ, δϕ) = (ϕ, δϕ)L2(Ω) and we want∫

Ω
∇gA (ϕ) δϕdx =

∫
Ω
H (ϕ) δϕdx for all δϕ ∈ C∞0 (Ω) resp. δϕ ∈ C∞ (Ω) .

It means that ∇gA = H.
Remark: Notice that to obtain the Euler-Lagrange equations for A we might also assume
∂νϕ |∂Ω≡ 0 to eliminate the integral

∫
∂Ω

δϕ
Q ∂νϕdS and we may drop the assumption on δϕ. This

assumption then defines the Neumann boundary condition for ϕ. We did not consider it in the
case of the problem (5.1.2) because such a problem may not have unique solution (it is given up
to an arbitrary constant).

Resulting problem is a parabolic second order equation:

Remark 5.1.3. The parabolic minimal surface problem with the Dirichlet boundary
conditions is the second order parabolic problem and the initial condition ϕini which satisfies

∂tϕ−H = 0 on (0,T〉 × Ω (5.10)

ϕ |t=0 = ϕini on Ω,

ϕ = g on ∂Ω. (5.11)

The parabolic minimal surface problem with the Neumann boundary conditions is
the second order parabolic problem and the initial condition ϕini which satisfies (5.10)–(5.11)
and

∂νϕ = 0 on ∂Ω.
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5. Mathematical formulation

The disadvantage of the equation (5.10) is that the evolution of Γ (t) depends on the choice
of coordinates and not only on Γ (t) itself. To avoid this, we need to express the change of Γ (t)
in terms of the normal velocity V . It can be done by considering a scalar product of normal
velocities defined on Γ

(V1, V2)L2(Γ) =

∫
Γ

∂tϕ1

Q

∂tϕ2

Q
dHn−1 =

∫
Ω

∂tϕ1

Q

∂tϕ2

Q
Qdx =

∫
Ω
∂tϕ1∂tϕ2Q

−1dx.

Since the space L2 (Γ) is used, we speak of the L2-gradient flow. In general, for two functions
ϕ1, ϕ2 ∈ L2 (Ω) we have

g (ϕ1, ϕ2) =

∫
Ω
ϕ1ϕ2Q

−1dx. (5.12)

From the Definition 4.6.1 we get that

g (∇gA (ϕ) , δϕ) =

∫
Ω
∇gA (ϕ) δϕQ−1dx =

∫
Ω
H (ϕ) δϕdx for all δϕ ∈ C∞0 (Ω) resp. δϕ ∈ C∞ (Ω) ,

which gives that ∇gA = QH. The gradient flow reads as

∂tϕ = QH.

Definition 5.1.4. Let Ω be a domain on Rn−1. The graph formulation of the mean-
curvature flow with the Dirichlet boundary conditions and the initial condition
ϕini is a second order parabolic problem given by

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = ϕini on Ω,

ϕ = g on ∂Ω.

The graph formulation of the mean-curvature flow with the Neumann boundary
conditions and the initial condition ϕini is a second order parabolic problem given by
(5.13)–(5.13) and

∂νϕ = 0 on ∂Ω. (5.13)

To complete the definition of the mean-curvature flow of graphs we will also show its weak
formulation. As we said before we may either consider δϕ vanishing on ∂Ω leading to the
Dirichlet boundary conditions for ϕ or ∂νϕ = 0 on ∂Ω which gives the Neumann boundary
conditions for ϕ.

Multiplying (5.13) by a testing function ϕ ∈ H1
0 (Ω) resp. ϕ ∈ H1 (Ω), integrating over Ω and

applying the Green formula we have:∫
Ω

∂tϕ

Q
ϕ−Hϕdx =

∫
Ω

∂tϕ

Q
ϕdx−

∫
∂Ω

ϕ

Q
∂νϕdHn−1 +

∫
Ω

∇ϕ
Q
· ∇ϕdx.

The integral over ∂Ω is zero since ϕ resp. ∂νϕ is vanishing at the boundaries. We conclude in
the following definition.
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5.1. Mean-curvature flow

Definition 5.1.5. The weak solution for the graph formulation of the mean-curvature flow
with the Dirichlet boundary conditions is a function ϕ : (0, T )→ H1 (Ω) satisfying a.e. in
(0, T ) for all test functions ϕ ∈ H1

0 (Ω) :∫
Ω

∂tϕ

Q
ϕ+
∇ϕ
Q
∇ϕdx = 0 a.e. in (0, T ) , (5.14)

with the initial condition
ϕ |t=0= ϕini on Ω. (5.15)

Weak solution for the homogeneous Neumann boundary condition is a function ϕ : (0, T )→
H1 (Ω) which satisfies (5.14) a.e. in (0, T ) for all test functions ϕ ∈ H1 (Ω).

5.1.3. Isotropic level-set formulation

Now we assume that Γ (t) is given as a zero level set by (5.4). We remind that we want to
minimise

Als (Γ) :=

∫
Γ(t)

1dHn−1 =

∫
{u(t)=0}

1dHn−1,

where u is the level-set function of Γ (t). If u is smooth enough each level set defines some
hypersurface in Ω (some of them might be disconnected since Ω is bounded). It allows us to
define A even for all non-zero level sets of u. Integrating over all the level sets of u and using
the co-area formula (A.0.5) restricted on Ω we get∫ maxΩ u(·,t)

minΩ u(·,t)

(∫
u(·,t)=r

γdHn−1

)
dr =

∫
Ω
γ |∇u| dx.

In the next step, we minimise the length of all level sets appearing in the graph of u on Ω. In
fact, we minimise

Als =

∫
Ω
|∇u| dx.

It is the same functional which we had for the mean-curvature flow of graphs (5.9), just |∇u|
replaces Q. We can repeat the same process to compute

δAls = −H = −∇ ·
( ∇u
|∇u|

)
on Ω.

To find a proper scalar product for the gradient flow we take again two normal velocities V1 =
∂tu1/ |∇u| and V2 = ∂tu2/ |∇u| and integrate them over all level-lines of u in Ω∫
R

(V1, V2)L2(Γ(s)) ds =

∫
R

∫
Γ(s)

∂tu1

|∇u|
∂tu2

|∇u|dH
n−1ds =

∫
Ω

∂tu1

|∇u|
∂tu2

|∇u| |∇u| dx =

∫
Ω
∂tu1∂tu2 |∇u|−1 dx,

where we again applied the co-area formula and denoted Γ (s) ≡ {x ∈ Ω | u (x) = s}. Thus we
define the scalar product

g (u1, u2) :=

∫
Ω
u1u2 |∇u|−1 dx. (5.16)

Since it is very similar to the one for the gradient flow of graphs (5.12) it is now easy to see that
the L2-gradient flow reads as

∂tu = H |∇u| .
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5. Mathematical formulation

Taking regularising parameter ε > 0 and replacing |∇u| by Qε =
√
ε2 + |∇u|2, we may define

the level-set formulation for the mean-curvature flow.

Definition 5.1.6. Let Ω be a domain in Rn. The level-set formulation of the mean-
curvature flow with the Dirichlet boundary conditions and the initial condition
uini is a second order parabolic problem given by

∂tu

Qε
= ∇ ·

(∇u
Qε

)
on (0,T〉 × Ω, (5.17)

u |t=0 = uini on Ω, (5.18)

u = g on ∂Ω.

The level-set formulation of the mean-curvature flow with the Neumann bound-
ary conditions and the initial condition uini is a second order parabolic problem given
by (5.17)–(5.18) and

∂νu = 0 on ∂Ω.

Remark 5.1.7. Here uini is usually the signed distance function of Γ0 (but it is not necessary)
and we set the Neumann boundary conditions ∂νu = 1 because they better fit to the signed
distance function.

5.1.4. Evolution of interface

In the preceding text we showed how to derive the level-set and the graph formulation for
the mean-curvature flow. We used a simple approach when we only needed very fundamental
knowledge of the calculus of variations. We have found it more educative and easier to follow for
readers who are not familiar with the theory of the normal time derivatives on the hypersurfaces.
However, once we know this theory, it is more efficient for the computation of the gradient flows
and its main advantage is that it is not dependent on representation of the hypersurface. In this
section we derive general law for the mean-curvature flow which will be also necessary for the
parametric method for the mean-curvature flow. Note, however, that the theorem (4.5.1) which
we will employ does not allow any anisotropy. Such generalisation would be very nice but we do
not study it in this text. Since only the isotropic problems will be sufficient for us concerning
the parametric method, it is not a big problem.

Consider now a hypersurface Γ (t) which we perturb by an arbitrary normal velocity V . Each
such normal velocity corresponds to some moving hypersurface. The change of A is given by
the theorem (4.5.1) with f (x, t) = 1 which gives

d

dt
A =

d

dt

∫
Γ(t)

1dHn−1 =

∫
Γ(t)
−HV dHn−1 = (−H,V )L2(Γ(t)) .

The scalar product for the gradient flow now takes the form

g (V1, V2) = (V1, V2)L2(Γ(t))

and we require an equality

(∇gA, v)L2(Ω) = (−H, v) for all v ∈ C∞ (Γ (t)) .

It is trivial to see that ∇gA = −H and by the Definition 4.6.3 we have:
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5.1. Mean-curvature flow

Definition 5.1.8. The normal velocity for the mean-curvature flow is defined as

V = H. (5.19)

5.1.5. Anisotropic mean-curvature flow of graphs

Introducing an anisotropy is very important generalisation of the mean-curvature flow. Instead
of the surface area we will now consider a weighted surface area given by a function of the surface
normal γn : Sn → R+ where Sn denotes the unit ball in Rn. Rather than the surface area we
speak of the anisotropic surface energy

Aγ =

∫
Γ
γn (n) dHn−1. (5.20)

Since for the graph formulation n = (∇ϕ,−1) /Q (∇ϕ) holds, we usually extend the definition
of γn from Sn to Rn as follows

γ (∇ϕ,−1) := |∇ϕ| γn
(

(∇ϕ,−1)

Q

)
for ∇ϕ ∈ Rn, (5.21)

and we get

Aγ =

∫
Ω
γnQdx =

∫
Ω
γn

(∇ϕ
Q
,
−1

Q

)
Qdx =

∫
Ω
γ (∇ϕ,−1)Qdx. (5.22)

To emphasise the dependence of γ on ∇ϕ we will write

γ (∇ϕ,−1) = γ (p,−1) for p = ∇ϕ ∈ Rn−1.

We are now interested in the first variation of Aγ which will define the anisotropic mean-
curvature

Hγ := −δAγ , (5.23)

as it was in the isotropic case. For δϕ ∈ C∞0 (Ω) we have

(δAγ , δϕ)L2(Ω) = lim
s→0

∂sAγ (ϕ+ sδϕ) =

∫
Ω

n∑
i=1

∂piγ (∇ϕ,−1) ∂xiδϕdx

=

∫
∂Ω

n∑
i=1

∂piγ (∇ϕ,−1) νiδϕdHn−1 −
∫

Ω

n∑
i=1

∂xi
(
∂piγ (∇ϕ,−1)

)
δϕdx

= −
∫

Ω
∇ · (∇pγ (∇ϕ,−1)) δϕdx,

where we again used the Green formula (A.0.6) and we denoted

∇pγ :=
(
∂p1γ, · · · , ∂pn−1

)T
.

We also see that the form of the Neumann boundary conditions is strongly dependent on the
anisotropic function γ. If δϕ 6= 0 on ∂Ω then ∇pγ (∇u,−1) ν = 0 must hold on ∂Ω to eliminate
the integral

∫
∂Ω∇pγ (∇u,−1) νδudHn−1.
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5. Mathematical formulation

Remark: Before we give the definition of the anisotropic mean curvature we need to conclude
the assumptions on the function γ. From (5.21) we see that γ is positively homogeneous of
degree one which means

γ (λP) = λγ (P) for P ∈ Rn \ {0} , λ > 0.

Important assumption for the existence of the minimiser of the surface area functional A in (5.9)
was convexity of Q. Putting this assumption even on γ gives us the definition of an admissible
anisotropy function - see Deckelnick, Dziuk and Elliott [32, 35].

Definition 5.1.9. Admissible anisotropy function γ : Rn+1 \ {0} → R+, γ ∈ C3
(
Rn+1 \ {0}

)
which is positively homogeneous of degree one and which is convex in the sense that there exists
a constant c0 > 0 such that

QTD2 (γ (P)) Q ≥ c0 |Q|2 for all P,Q ∈ Rn with P ·Q = 0, |P| = 1. (5.24)

Remark: If we substitute n for P in the previous definition the condition Q ·P means that
Q ∈ T. The condition (5.24) therefore means that γ is convex with respect to the tangential
space T.

Definition 5.1.10. For admissible anisotropy function γ the anisotropic mean curvature is
defined as

Hγ := ∇ · (∇pγ (∇ϕ,−1)) . (5.25)

The gradient flow with g (ϕ1, ϕ2) =
∫

Ω ϕ1ϕ2Q
−1dx leads in the same way as for the isotropic

problem to the following definition:

Definition 5.1.11. Let Ω be a domain in Rn−1, let γ be an admissible anisotropy function.
Then the anisotropic graph formulation of the mean-curvature flow with the
Dirichlet boundary conditions and the initial condition ϕini is a second order parabolic
problem given by

∂tϕ = Q∇ · (∇pγ (∇ϕ,−1)) on (0,T〉 × Ω (5.26)

ϕ |t=0 = ϕini on Ω (5.27)

ϕ = g on ∂Ω.

The anisotropic graph formulation of the mean-curvature flow with the Neu-
mann boundary conditions and the initial condition ϕini is a second order parabolic
problem given by (5.26)–(5.27) and

∇pγ (∇ϕ,−1) · ν = 0 on ∂Ω. (5.28)

5.1.6. Anisotropic level-set formulation

As before for the isotropic level-set formulation, we assume that Γ (t) is given as a level set by
(5.4). We want to minimise

Als (Γ) :=

∫
Γ(t)

γdHn−1 =

∫
{u(t)=0}

γdHn−1,
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5.1. Mean-curvature flow

where γ is the admissible anisotropic function and u is the level set function of Γ (t). We define
A even for all non-zero level sets of u (t). We integrate over all the level-sets of u (t) and apply
the co-area formula (A.0.5) restricted on Ω to get∫ maxΩ u(t)

minΩ u(t)

(∫
u(t)=r

γdHn−1

)
dr =

∫
Ω
γ |∇u| dx.

Hence, we minimise the surface energy of all level sets appearing in the graph of u on Ω i.e. we
minimise the following functional

Als =

∫
Ω
γ |∇u| dx.

It is very similar to the functional for the anisotropic graph formulation (5.22), just |∇u| replaces
Q. We can repeat the same process to get

δAls = −Hγ = −∇ · (∇pγ (∇u)) on Ω.

In the same way we obtained the scalar product g for the isotropic level-set formulation (5.16)
we get

g (u1, u2) :=

∫
Ω
u1u2 |∇u|−1 dx, (5.29)

and the L2-gradient flow reads as

∂tu = −∇gAls = −δAls |∇u| = Hγ |∇u| .

We may now define the anisotropic level-set formulation for the mean-curvature flow.

Definition 5.1.12. Let Ω be a domain in Rn. The anisotropic level-set formulation
of the mean-curvature flow with the Dirichlet boundary condition and the initial
condition uini is a second order parabolic problem given by

∂tu

Qε
= ∇ · (∇pγ (∇u)) on (0,T〉 × Ω, (5.30)

u |t=0 = uini on Ω, (5.31)

u = g on ∂Ω.

The anisotropic level-set formulation of the mean-curvature flow with the Neu-
mann boundary condition and the initial condition uini is a second order parabolic
problem given by (5.30)–(5.31) and

∇pγ (∇u) · ν = 0 on ∂Ω. (5.32)

5.1.7. Some results from the mathematical analysis of the minimal surfaces and
the mean-curvature flow

Now we would like to present brief overview of results concerning the minimal surfaces problem
as well as the mean-curvature flow.

The readers interested in the minimal surfaces problem should read a good survey text by
Nietsche [79].
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5. Mathematical formulation

In [59] Huisken studies evolution by the mean-curvature flow of convex surfaces into spheres.
He shows what evolutions hold for the unit normal, the Weingarten map (the second fundamental
form ) as well as the evolution of the mean-curvature. He also shows that the convex surface
preserves its convexity and approach the shape of sphere very rapidly. He gives proof for a
bound of |∇H| and existence of solution of the mean-curvature flow until final time T . In [60]
he shows that in the case of the graph formulation ”surfaces with vertical contact angle at the
boundary asymptotically converge to a constant function”. In the case of the Dirichlet boundary
conditions he proves the following theorem:

Theorem 5.1.13. Assume that Ω ⊂ Rn, φ and u0 are functions in C2,α
(
Ω
)

and u0 = φ on
∂Ω. If ∂Ω has non-negative mean-curvature, then the boundary value problem (5.1.4) with the
Dirichlet boundary conditions has a smooth solution u (·, t) which converges to the solution of
the minimal surface problem (5.1.2) with the boundary data φ.

Deckelnick and Dziuk study the mean-curvature flow of graphs and level-set in [33]. It is
very nice introductory text to the mean-curvature flow. The authors also show some simple
mathematical analysis of the problem. Here we just cite an energy equality for (5.1.4):

Theorem 5.1.14. For the solution of the problem (5.1.4) one has an energy equation∫
Ω

u2
t

Q
dx +

d

dt

∫
Ω
Qdx = 0. (5.33)

In this text we will study in more details very similar equality for the Willmore flow of graphs.
Applied to the numerical analysis it can prove stability of our schemes. In the same way we
could prove stability even for the mean-curvature flow.

Evans and Spruck [49] give proof of short time existence for the level-set formulation. The
global existence and uniqueness have been proved by Chen, Giga and Goto [101]. In the case of
the level-set formulation we especially refer to Giga [53].

Bellettini and Paolini [6] study motion by mean curvature in context of the Finsler geometry.
They show that if the anisotropy function γ is convex and smooth, the evolution law then reads
V = Hγ where Hγ has a meaning of anisotropic mean curvature.

5.2. Willmore flow

5.2.1. Brief introduction to the Willmore flow

The Willmore flow is a minimiser of the Willmore functional defined as

W (Γ) =
1

2

∫
Γ
H2dHn−1. (5.34)

This functional has name after Thomas James Willmore who introduced a problem of so
called Willmore surface in his book [100] published 1993. Willmore gave the first talk about
the Willmore surfaces in 1960. However, in his book we can read that the origin of the Euler-
Lagrange equation for this functional goes back to 1923 when it was first studied by Thomsen
and Schadow.

The Willmore flow minimises an elastic energy given by

W (Γ) =
1

2

∫
Γ
H2dHn−1, (5.35)

where Γ is C2-hypersurface in Rn and H is the mean curvature. The normal velocity is given
by

V = −∆ΓH −
1

2
H3 + 2KH, (5.36)
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5.2. Willmore flow

where ∆Γ is the Laplace-Beltrami operator and K is the Gauss curvature. As well as for the
mean-curvature flow we will define the following problems:

• the graph formulation of the Willmore flow defined in the Definition 5.2.2,

• the level-set formulation of the Willmore flow defined in the Definition 5.2.4,

• parametric approach of the Willmore flow defined in the Definition 5.2.5,

and their anisotropic counterparts (except of the parametric approach)

• the anisotropic graph formulation of the Willmore flow defined in the Definition 5.2.6

• the anisotropic level-set formulation of the Willmore flow defined in the Definition 5.2.8

5.2.2. Formulation for graphs

If Γ is given as graph of function ϕ by (5.2) then the Willmore functional reads as

W (ϕ) =

∫
Ω
H2Qdx. (5.37)

Taking small variation δϕ ∈ C∞0 (Ω) of ϕ vanishing on ∂Ω, defining function G as

Gδϕ (s) =W (ϕ+ sδϕ) =

∫
Ω

[
∇ ·
(

∇ϕ√
1 + |∇ϕ|

)]2√
1 + |∇ (ϕ+ sδϕ)|2dx.

and differentiate it w.r. to s we get

lim
s→0

∂sGδϕ (s) = lim
s→0

1

2

∫
Ω
∂s


∇ ·

 ∇ (ϕ+ sδϕ)√
1 + |∇ (ϕ+ sδϕ)|2

2√
1 + |∇ (ϕ+ sδϕ)|2

dx

= lim
s→0

∫
Ω

1

2

∇ ·
 ∇ (ϕ+ sδϕ)√

1 + |∇ (ϕ+ sδϕ)|2

2

∇ϕ · ∇δϕ+ s |∇δϕ|2√
1 + |∇ (ϕ+ sδϕ)|2

+ ∇ ·

 ∇ (ϕ+ sδϕ)√
1 + |∇ (ϕ+ sδϕ)|2

∇ ·
∂s

 ∇ (ϕ+ sδϕ)√
1 + |∇ (ϕ+ sδϕ)|2


·
√

1 + |∇ (ϕ+ sδϕ)|2dx,

and since

∇ ·

∂s
 ∇ (ϕ+ sδϕ)√

1 + |∇ (ϕ+ sδϕ)|2

 =

∇ ·


(

1 + |ϕ+ sδϕ|2
)
∇δϕ−

(
∇ϕ · ∇δϕ+ s |∇δϕ|2

)
∇ (ϕ+ sδϕ)√

1 + |∇ (ϕ+ sδϕ)|2
3

 ,

we get
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5. Mathematical formulation

lim
s→0

∂sGδϕ (s) =

∫
Ω

1

2

∇ ·
 ∇ϕ√

1 + |∇ϕ|2

2

∇ϕ · ∇δϕ√
1 + |∇ϕ|2

+ ∇ ·

 ∇ϕ√
1 + |∇ϕ|2

∇ ·
 ∇δϕ√

1 + |∇ϕ|2
− (∇ϕ · ∇δϕ)∇ϕ√

1 + |∇ϕ|2
3


=

∫
Ω

1

2

H2

Q
∇ϕ · ∇δϕ+H∇ ·

(∇δϕ
Q
− (∇ϕ · ∇δϕ)∇ϕ

Q3

)
Qdx

Writing
(∇ϕ · ∇δϕ)∇ϕ = (∇ϕ⊗∇ϕ)∇δϕ,

where in general (u⊗ v)ij = uivj for i = 1, · · ·n and denoting

P = I− ∇ϕ
Q
⊗ ∇ϕ

Q
(5.38)

we have

lim
s→0

∂sGδϕ (s) =

∫
Ω

1

2

H2

Q
∇ϕ · ∇δϕ+HQ∇ ·

(
1

Q
P∇δϕ

)
dx. (5.39)

The Green formula gives∫
Ω

1

2

H2

Q
∇ϕ · ∇δϕdx =

∫
∂Ω

1

2

H2

Q
∂νϕδϕdHn−1 −

∫
Ω

1

2
∇ ·
(
H2

Q
∇ϕ
)
δϕdx. (5.40)

The first term on the right hand side is zero because of δϕ vanishing on ∂Ω. Now we need to
apply the Green formula twice on the second term in (5.39).∫

Ω
QH∇ ·

(
1

Q
P∇δϕ

)
dx =

∫
∂Ω
QHP∇δϕνdHn−1

−
∫

Ω
∇ (QH) ·

(
1

Q
P∇δϕ

)
dx (5.41)

Assuming H = 0 on ∂Ω and using the symmetry of 1
QP we can write∫

Ω
∇ (QH)∇ ·

(
1

Q
P∇δϕ

)
dx = −

∫
Ω
∇δϕ ·

(
1

Q
P∇ (QH)

)
dx =

−
∫
∂Ω
δϕ ·

(
1

Q
P∇ (QH)

)
ν +

∫
Ω
∇ ·
(

1

Q
P∇ (QH)

)
δϕdx,

where we applied the Green formula again. The integral over ∂Ω is equal to zero because of δϕ
vanishing on ∂Ω. Finally we see that

(W (ϕ) , δϕ)L2(Ω) =

∫
Ω
∇ ·
(

1

Q
P∇ (QH)− 1

2

H2

Q
∇ϕ
)
δϕdx, (5.42)

and the Euler-Lagrange equation reads

∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

= 0, (5.43)
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5.2. Willmore flow

where we denoted
w = QH.

In the differential geometry, every surface for which the isotropic version of (5.43) holds is called
the Willmore surface .

Remark 5.2.1. To get the graph formulation with the Neumann boundary conditions we take
δϕ ∈ C∞ (Ω). We multiply (5.43) by δϕ and integrate over Ω∫

Ω
∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)
δϕdx = 0. (5.44)

we apply the Green formula on the left-hand side of (5.44) to obtain∫
Ω
∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)
δϕdx =

∫
∂Ω

1

Q
(P∇w) ν − 1

2

w2

Q3
∇ϕδϕνdHn−1

+

∫
Ω

1

Q
P∇w − 1

2

w2

Q3
∇ϕ∇δϕdx.

If we set ∇ϕ · ν = ∂νϕ = 0 on ∂Ω we have∫
∂Ω

1

2

w2

Q3
δϕ∇ϕνdHn−1 = 0,

and since

(P∇w) · ν =

(
I− ∇ϕ

Q
⊗ ∇ϕ

Q

)
∇w · ν = ∂νw −

1

Q2
((∇ϕ⊗∇ϕ)∇w) · ν = ∂νw −

∇ϕ · ∇w
Q2

∂νϕ,

setting ∂νw = 0 on ∂Ω together with ∂νϕ = 0 on ∂Ω gives∫
∂Ω

1

Q
(P∇w) νdHn−1 = 0.

Therefore the Neumann boundary conditions read ∂νu = ∂νw = 0 on ∂Ω.

Taking again the scalar product g (5.12) having the form

g (ϕ1, ϕ2) =

∫
Ω
ϕ1ϕ2Q

−1dx,

we get the L2-gradient flow for the Willmore functional.

Definition 5.2.2. Let Ω be a domain in Rn−1. The graph formulation of the Will-
more flow with the Dirichlet boundary conditions and the initial condition ϕini is
a fourth order parabolic problem given by

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] , (5.45)

w = Q∇ ·
(∇ϕ
Q

)
on Ω× [0, T ] , (5.46)

ϕ |t=0 = ϕini on Ω, (5.47)

ϕ = g, w = 0 on ∂Ω. (5.48)

The the graph formulation of the Willmore flow with the Neumann boundary
conditions and the initial condition ϕini is a fourth order parabolic problem given by
(5.45)–(5.47) and

∂νϕ = 0, ∂νw = 0 on ∂Ω. (5.49)
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5. Mathematical formulation

5.2.3. Isotropic level-set formulation for the Willmore flow

Let Γ (t) be given as a zero level set by (5.4). We want to minimise

W (Γ) :=

∫
Γ(t)

H2dHn−1 =

∫
{u(t)=0}

H2dHn−1,

where u is the level-set function of Γ (t). Assuming that u is smooth enough we see that each
level-set defines some hypersurface in Ω. This way we extend definition of W even for all non-
zero level sets of u. We integrate over all the level sets of u and using the co-area formula (A.0.5)
restricted on Ω we get

∫ maxΩ u(·,t)

minΩ u(·,t)

(∫
u(·,t)=r

H2dHn−1

)
dr =

∫
Ω
H2 |∇u|dx,

and hence we want to minimise a functional

Wls (u) :=

∫
Ω
H2 |∇u|dHn−1, (5.50)

resp. its regularised counterpart

Wls (u) :=

∫
Ω
H2QεdHn−1, (5.51)

Again we see, that formally (5.51) is the same as (5.37) where we just replace Q by Qε. Therefore
the Euler-Lagrange equation has the same form as (5.43) and we write Qε instead of Q i.e.

∇ ·
(

1

|∇u|P∇w −
1

2

w2

|∇u|3
∇ϕ
)

= 0, (5.52)

where we denoted

w = |∇u|H.

Remark 5.2.3. It is easy to see from the Remark 5.2.1 that the Neumann boundary conditions
are ∂νu = ∂νw = 0 on ∂Ω.

Following (5.16) and taking

g (u1, u2) :=

∫
Ω
u1u2 |∇u|−1 dx.

we get the level-set formulation for the L2-gradient flow of the Willmore functional:
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5.2. Willmore flow

Definition 5.2.4. Let Ω be a domain in Rn. The level-set formulation for the Will-
more flow with the Dirichlet boundary conditions and the initial condition uini is
a fourth order parabolic problem given by

∂tu = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇u
)

on Ω× (0, T ] , (5.53)

w = Q∇ ·
(∇u
Q

)
on Ω× [0, T ] , (5.54)

u |t=0 = uini on Ω, (5.55)

u = g, w = 0 on ∂Ω. (5.56)

The level-set formulation for the Willmore flow with the Dirichlet boundary
conditions and the initial condition uini is a fourth order parabolic problem given by
(5.53)–(5.55) and

∂νu = 0, ∂νw = 0 on ∂Ω.

5.2.4. Evolution of interface

Let us now consider arbitrary normal velocity V . We know that it generates the moving hy-
persurface for which the change of W defined by (5.34) is given by the Theorem (4.3.12) where
f (x, t) = H2. From the definition of the normal time derivative (4.38) we have that

DtH
2 (x0, t0) =

d

dt

[
H2 (γ (t))

]
|t=t0= 2H

d

dt

[
H2 (γ (t))

]
|t=t0

= 2H (x0, t0)DtH (x0, t0) ,

where γ (t) is the normal trajectory passing through the point (x0, t0). Together with (4.40) and
(4.49) we obtain

d

dt

1

2

∫
Γ(t)

H2dHn−1 =
1

2

∫
Γ(t)

DtH
2 −H3V dHn−1

=

∫
Γ(t)

HDtH −
1

2
H3V dHn−1

=

∫
Γ(t)

H

(
V
n−1∑
i=1

κ2
i + ∆ΓV

)
− 1

2
H3V dHn−1.

We apply the Gauss-Green formula on Γ (t) (A.0.8) on the term
∫

Γ(t)H∆ΓV dHn−1 to get∫
Γ(t)

H∆ΓV dHn−1 = −
∫

Γ(t)
∇ΓH · ∇ΓV dHn−1 =

∫
Γ(t)

∆ΓHV dHn−1.

It allows us to write

d

dt

1

2

∫
Γ(t)

H2dHn−1 =

∫
Γ(t)

(
H

n−1∑
i=1

κ2
i + ∆ΓH −

1

2
H3

)
V dHn−1

=

(
∆ΓH +H

n−1∑
i=1

κ2
i −

1

2
H3, V

)
L2(Γ)

,
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5. Mathematical formulation

and so the L2-gradient flow for the Willmore flow w.r. to the Definition 4.6.3 with g(u, v) =
(u, v)L2(Ω) is

V = −∆ΓH −H
n−1∑
i=1

κ2
i +

1

2
H3. (5.57)

To avoid the dependency on m we use the fact that
∑n−1

i=1 κ
2
i = ‖W‖2F (we remind that the last

eigenvalue of W is zero) and so we may define:

Definition 5.2.5. The normal velocity for the isotropic Willmore flow is defined
as

V = −∆ΓH −H ‖W‖2F +
1

2
H3, (5.58)

resp.

V = −∆ΓH −H
n−1∑
i=1

κ2
i +

1

2
H3.

Remark: In the case of the surfaces in R3 we have that n = 3 and

H

n−1∑
i=1

κ2
i = (κ1 + κ2)

(
κ2

1 + κ2
2

)
= H3 − 2KH.

The normal velocity then reads as

V = −∆ΓH −
1

2
H3 + 2KH.

In the rest of this section we will show how to get back to the graph and the level-set for-
mulation for the Willmore flow knowing only the normal velocity (5.58). First of all we apply
(4.30) on ∆ΓH to obtain

∆ΓH = ∆H −H∇H · n− nTD2Hn = ∆H − 1

2
∇
(
H2
)
· n− nTD2Hn. (5.59)

Clearly

n∑
i,j=1

∂j (∂iHninj) =
n∑

i,j=1

∂j∂iHninj +
n∑

i,j=1

∂iH∂jninj +
n∑

i,j=1

∂iHni∂jnj ,

which we may write as

∇ · ((n⊗ n)∇H) = nTD2Hn + (∇H)T
(
∇Tn

)
n +∇H · nH. (5.60)

Inserting into (5.59) we get

∆ΓH = ∆H − 1

2
∇
(
H2
)
· n−∇ · ((n⊗ n)∇H) + (∇H)T

(
∇Tn

)
n +

1

2
∇
(
H2
)
· n

= ∇ · ((I− n⊗ n)∇H) + (∇H)T
(
∇Tn

)
n. (5.61)

From (4.29) we have

H ‖W‖2F = HTr
(
∇Tn∇Tn

)
. (5.62)
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5.2. Willmore flow

Writing

n∑
i,j=1

∂i (Hnj∂jni) =

n∑
i,j=1

∂iHnj∂jni +

n∑
i,j=1

H∂inj∂jni +

n∑
i,j=1

Hnj∂j∂ini,

we see that

∇ ·
(
HnT∇Tn

)
= (∇H)T ∇Tn +HTr

(
∇Tn∇Tn

)
+H∇H · n,

and so

H ‖W‖2F = ∇ ·
(
HnT∇Tn

)
− (∇H)T ∇Tn− 1

2
∇
(
H2
)
· n. (5.63)

For the last term in (5.2.5) we get

1

2
H2H =

1

2
H2∇ · n =

1

2
∇
(
H2n

)
− 1

2
∇
(
H2
)
n. (5.64)

Putting this all together gives

∆ΓH +H ‖W‖2F −
1

2
H3 = ∇ · ((I− n⊗ n)∇H)

+ ∇ ·
(
HnT∇Tn

)
− 1

2
∇
(
H2
)
· n− 1

2
∇
(
H2n

)
.

From (4.27) we have (
∇Tn

)
n =

1

Q
P (x)D2un =

1

Q
P (x)∇Q,

where we used ∇Q = D2u∇uQ . Therefore

∇ · ((I− n⊗ n)∇H) +∇ ·
(
HnT∇Tn

)
= ∇ ·

(
P (x)∇H +

H

Q
P (x)∇Q

)
= ∇ ·

(
1

Q
P (x) (Q∇H +H∇Q)

)
= ∇ ·

(
1

Q
P (x)∇ (QH)

)
.

The final equation then reads

V = ∇ ·
(

1

Q
P (x)∇ (QH)− 1

2

H2

Q
∇u
)
,

which can be splitted into two PDEs of the form

∂tu

Q
= −∇ ·

(
1

Q
P (x)∇W − 1

2

W 2

Q3
∇u
)
, (5.65)

W = QH. (5.66)

5.2.5. Anisotropic Willmore flow of graphs

We start again with the graph formulation where Γ (t) is determined by (5.2). The anisotropic
Willmore functional then reads as

Wγ (ϕ) =
1

2

∫
Ω
H2
γQdx. (5.67)
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5. Mathematical formulation

We will now derive the Euler-Lagrange equation for (5.67). We consider small variation δϕ of ϕ
vanishing at the boundaries of Ω. Then we define functionGδϕ : R → R asG (s) =Wγ (ϕ+ sδϕ)
and we differentiate it with respect to s

lim
s→0

∂sWγ (ϕ+ sδϕ) = lim
s→0

∫
Ω

1

2
∂s
[
H2
γ (ϕ+ sδϕ)Q (ϕ+ sδϕ)

]
dx

= lim
s→0

∫
Ω
Hγ (ϕ+ sδϕ)Q (ϕ+ sδϕ) ∂sHγ (ϕ+ sδϕ)

+
1

2
H2
γ (ϕ+ sδϕ) ∂sQ (ϕ+ sδϕ) dx. (5.68)

Since

∂sQ (ϕ+ sδϕ) = ∂s

√
1 + |∇ (ϕ+ sδϕ)|2 =

∇ϕ∇δϕ+ s |∇δϕ|2
Q (ϕ+ sδϕ)

(5.69)

and

∂sHγ (ϕ+ sδϕ) = ∂s∇ · (∇pγ (∇ (ϕ+ sδϕ) ,−1))

= ∂s

n∑
i=1

∂xi∂piγ (∇ (ϕ+ sδϕ) ,−1)

=
n∑
i=1

∂xi∂pi [∂sγ (∇ (ϕ+ sδϕ) ,−1)]

=
n∑
i=1

∂xi∂pi

 n∑
j=1

∂pjγ (∇ (ϕ+ sδϕ) ,−1) ∂xjδϕ


=

n∑
i,j=1

∂xi∂pi∂pjγ (∇ (ϕ+ sδϕ) ,−1) ∂xjδϕ

= ∇ · (Eγ (ϕ+ sδϕ)∇δϕ) , (5.70)

where we denoted

Eγ (ϕ) := ∂pi∂pjγ (∇ϕ,−1) = (∇p ⊗∇p) γ (∇ϕ,−1) , (5.71)

the substitution of (5.69) and (5.70) to (5.68) gives

(δWγ , δϕ)L2(Ω) = lim
s→0

∂sWγ (ϕ+ sδϕ)

=

∫
Ω
HγQ∇ · (Eγ∇δϕ) +

1

2
H2
γ

∇ϕ∇δϕ
Q

dx

=

∫
Ω
wγ∇ · (Eγ∇δϕ) +

1

2

w2
γ

Q3
∇ϕ · ∇δϕdx (5.72)

=

∫
∂Ω
wγEγ∇δϕ · νdHn−1 −

∫
Ω
∇wγ · (Eγ∇δϕ) (5.73)

+
1

2

∫
∂Ω

w2
γ

Q3
∇ϕ · νδϕdHn−1 − 1

2

∫
Ω
∇ ·
(
w2
γ

Q3
∇ϕ
)
δϕdx (5.74)

= −
∫
∂Ω
Eγ∇wγ · νδϕdHn−1 +

∫
Ω
∇ · (Eγ∇wγ) δϕ− 1

2
∇ ·
(
w2
γ

Q3
∇ϕ
)
δϕdx

(5.75)

=

∫
Ω
∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)
δϕdx,
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5.2. Willmore flow

where in (5.72) we denoted

wγ := QHγ .

To eliminate the first integral in (5.73) we assumed that wγ |∂Ω≡ 0(which is equivalent to
Hγ |∂Ω≡ 0) and the first integral in (5.74) is zero since δϕ ∈ C∞0 (Ω). In (5.75) ∇wγ · (Eγ∇δ) =
∇δϕ (Eγ∇wγ) because Eγ is symmetric, it follows directly from the definition. The first integral
in (5.75) is zero because of the choice of δϕ. What we obtained is the Euler-Lagrange equation
for the Willmore functional :

∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

= 0. (5.76)

Remark: The Neumann boundary conditions Let us now drop the assumption δϕ ∈
C∞0 (Ω) and consider only δϕ ∈ C∞ (Ω) which will allow us to define the Neumann boundary
conditions. We need to eliminate the integrals

1

2

∫
∂Ω

w2
γ

Q3
∇ϕ · νδϕdHn−1 (5.77)

in (5.74) and ∫
∂Ω
Eγ∇wγ · νδϕdHn−1 (5.78)

in (5.75). (5.77) is zero if

∇ϕ · ν = ∂νϕ = 0 on ∂Ω, (5.79)

which is usual Neumann boundary condition for ϕ. The situation is more complicated for the
integral (5.78) where we would like to have

Eγ∇wγ · ν = 0 on ∂Ω. (5.80)

We now turn our attention to the L2-gradient flow. As we already mentioned, we do not
have any definition of the geometric equation for the fourth order partial differential equations
and so we cannot affirm that we will get such an equation as we did for the mean-curvature
flow. However, majority of the texts concerning the Willmore flow deal only with the variations
of Γ (t) in the normal direction. Therefore we do not show the counterpart of (5.10) for the
Willmore functional. Instead of it we define the Willmore flow of graphs given as the gradient
flow for the Willmore functional (5.67) with the scalar product (5.12)

g (ϕ, v) =

∫
Ω
uvQ−1

and as before we want

g (∇gWγ , v) = (δWγ , v)L2(Ω) , for all v ∈ C∞ (Ω) , resp. v ∈ C∞0 (Ω) .

It means that

∇gWγ = QδWγ ,

and we may define:
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5. Mathematical formulation

Definition 5.2.6. Let Ω be a domain in Rn−1. The anisotropic Willmore flow of
graphs with the Dirichlet boundary conditions and the initial condition ϕini is a
fourth order parabolic problem given by

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω, (5.81)

wγ = QHγ on (0, T )× Ω, (5.82)

ϕ |t=0 = ϕini on Ω, (5.83)

ϕ = g, wγ = 0 on ∂Ω. (5.84)

The anisotropic Willmore flow of graphs with the Neumann boundary condi-
tions and the initial condition ϕini is a fourth order parabolic problem given by (5.81)–
(5.83) and

∂νϕ = 0, Eγ∇wγ · ν = 0 on ∂Ω. (5.85)

For the weak solution, we first multiply the equation (5.81) by a test function ϕ ∈ H1
0 (Ω)

resp. ϕ ∈ H1 (Ω) and integrate over Ω. Then we have∫
Ω

∂tϕ

Q
ϕdx = −

∫
Ω
∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)
ϕdx

= −
∫
∂Ω

(Eγ∇wγ) · νϕ− 1

2

w2
γ

Q3
∂νϕϕdHn−1

+

∫
Ω

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)
· ∇ϕdx.

When ϕ ∈ H1
0 (Ω) it is easy to see that the integral over ∂Ω is zero. In the case ϕ ∈ H1 (Ω) we

set the Neumann boundary conditions (5.85).
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5.2. Willmore flow

Definition 5.2.7. Let Ω be a domain in Rn−1. The weak solution of the graph formulation
for the Willmore flow with the Dirichlet boundary conditions

ϕ = g on ∂Ω,

wγ = 0 on ∂Ω,

is a couple ϕ,w : (0, T ) → H1
0 (Ω) which for each test function ϕ, ξ ∈ H1

0 (Ω) and a.e in
(0, T ) satisfies,∫

Ω

ϕt
Q
ϕdx =

∫
Ω

(Eγ∇wγ) · ∇ϕ− 1

2

w2
γ

Q3
∇ϕ · ∇ϕdx a.e. in (0, T ) (5.86)∫

Ω

wγ
Q
ξdx = −

∫
Ω
∇pγ · ∇ξdx. (5.87)

with the initial condition
ϕ |t=0= ϕini. (5.88)

The weak solution for the problem with homogeneous Neumann boundary conditions

∂νϕ = 0 on ∂Ω,

Eγ∇w · ν = 0 on ∂Ω,

is a couple ϕ,w : (0, T ) → H1 (Ω) which for each test function ϕ, ξ ∈ H1 (Ω) and a.e. in
(0, T ) satisfies (5.86)-(5.87) and the initial condition (5.88).

5.2.6. Anisotropic level-set formulation

In the same way we derived the level-set formulation for the mean-curvature flow, we will proceed
even for the Willmore flow. Taking the Willmore functional (5.34) and the scalar product (5.16)
we get that the gradient flow for the level-set formulation of the Willmore flow reads as

∂tu = −∇gWγ = −δWγ |∇u| ,

and we may define:
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5. Mathematical formulation

Definition 5.2.8. Let Ω be a domain in Rn. The anisotropic level-set formulation of
the Willmore flow with the Dirichlet boundary conditions and the initial condition
ϕini is a fourth order parabolic problem

∂tu = −Qε∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω, (5.89)

wγ = Qε∇ · (∇pγ (∇ϕ,−1)) on (0, T )× Ω, (5.90)

u |t=0 = uini on Ω, (5.91)

u = g, wγ = 0 on ∂Ω. (5.92)

The anisotropic level-set formulation of the Willmore flow with the Dirichlet
boundary conditions and the initial condition ϕini is a fourth order parabolic problem
given by (5.89)–(5.91) and

∂νu = 0, Eγ∇wγ · ν = 0 on ∂Ω. (5.93)

To get the weak formulation for the level-set formulation of the (anisotropic) Willmore flow
we proceed in the same way we did for the graph formulation:

Definition 5.2.9. Let Ω be a domain in Rn. The weak solution of the anisotropic level-set
formulation for the Willmore flow with the Dirichlet boundary conditions

u = g on ∂Ω,

wγ = 0 on ∂Ω,

is a couple u,w : (0, T ) → H1
0 (Ω) which for each test function ϕ, ξ ∈ H1

0 (Ω) and a.e in (0, T )
satisfies, ∫

Ω

∂tu

Qε
ϕdx =

∫
Ω

(Eγ∇wγ) · ∇ϕ− 1

2

w2
γ

Q3
∇u · ∇ϕdx a.e. in (0, T ) (5.94)∫

Ω

wγ
Qε
ξdx = −

∫
Ω
∇pγ · ∇ξdx. (5.95)

with the initial condition

u |t=0= uini. (5.96)

The weak solution for the problem with homogeneous Neumann boundary conditions

∂νu = 0 on ∂Ω,

Eγ∇wγ · ν = 0 on ∂Ω,

is a couple u,w : (0, T )→ H1 (Ω) which for each test function ϕ, ξ ∈ H1 (Ω) and a.e. in (0, T )
satisfies (5.94)-(5.95) and the initial condition (5.96).

5.2.7. Integral equality for the graph formulation

For the numerical analysis we will need the following theorem, proof of which can be found in
Deckelnick and Dziuk [34]. We incorporate the proof into this text for better understanding of
a more general modification we will show later.
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5.2. Willmore flow

Theorem 5.2.10. For the solution ϕ,w of the isotropic problem (5.45)-(5.46) the Dirichlet
boundary conditions the following equality holds:∫

Ω

(∂tϕ)2

Q
dx +

1

2

d

dt

∫
Ω
H2Qdx = 0. (5.97)

Proof. Differentiating (5.46) with respect to t gives∫
Ω

∂twξ

Q
dx−

∫
Ω

wξ∂tQ

Q2
dx +

∫
Ω
E∇∂tϕ · ∇ξ = 0 for all ξ ∈ H1

0 (Ω) (5.98)

where we used the fact that

d

dt

(∇ϕ
Q

)
=
Q∇∂tϕ− ∂tQ∇ϕ

Q2
(5.99)

and

∂tQ =
∇∂tϕ · ∇ϕ

Q
. (5.100)

Inserting (5.100) to (5.99) we have

d

dt

(∇ϕ
Q

)
=
∂t∇ϕ
Q
− (∇∂tϕ · ∇ϕ)∇ϕ

Q2
=

1

Q

(
I−

(∇ϕ
Q
⊗ ∇ϕ

Q

))
∇∂tϕ = E∇∂tϕ.

Substituting ξ = w in (5.98) and ϕ = ∂tϕ in (5.45) we have∫
Ω

(∂tϕ)2

Q
dx−

∫
Ω

(E∇w) · ∇∂tϕdx +

∫
Ω

1

2

w2

Q3
∇ϕ · ∇∂tϕdx = 0, (5.101)∫

Ω

∂tww

Q
dx−

∫
Ω

w2∂tQ

Q2
dx +

∫
Ω
E∇∂tϕ · ∇w = 0 (5.102)

The sum of (5.101) and (5.102) gives∫
Ω

∂tϕ
2

Q
+
∂tww

Q
− w2∂tQ

Q2
+

1

2

w2

Q3
∇ϕ · ∇∂tϕdx = 0. (5.103)

Since ∇∂tϕ · ∇ϕ = ∂tQQ (5.103) turns to∫
Ω

(∂tϕ)2

Q
+
∂tww

Q
− 1

2

w2∂tQ

Q2
dx = 0,

which is indeed what we wanted to show because

1

2

d

dt
H2Q =

1

2

d

dt

w2

Q
=
∂tww

Q
− 1

2

w2∂tQ

Q2
.

In the following theorem we extend the equality (5.2.10) even for the anisotropic problem:

Theorem 5.2.11. For the solution ϕ,w of (5.81)-(5.82) with the Dirichlet boundary conditions
the following equality holds: ∫

Ω

(∂tϕ)2

Q
dx +

1

2

d

dt

∫
Ω
H2
γQdx = 0. (5.104)
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5. Mathematical formulation

Proof. As well as in the case of the isotropic problem we differentiate (5.87) with respect to t∫
Ω

∂twγξ

Q
dx−

∫
Ω

wγξ∂tQ

Q2
dx +

∫
Ω
Eγ∇∂tϕ · ∇ξ = 0 for all ξ ∈ H1

0 (Ω) (5.105)

which follows from

d

dt
∇pγ (∇ϕ,−1) · ∇ξ =

d

dt

n∑
i=1

∂piγ (∇ϕ,−1) ∂piξ

=
n∑

i,j=1

∂pi∂pjγ (∇ϕ,−1) ∂t∂xjϕ∂piξ

= Eγ∇∂tϕ · ∇ξ.

The rest of the proof remains the same as in the isotropic case.

5.2.8. Some results from the mathematical analysis of the elastic energy and the
Willmore flow

Dziuk, Kuwert and Schätzle [44] showed long time solution existence for the curves in Rn

where the evolution is driven by elastic energy (the Willmore functional) possibly with some
additional constraints on the curve length. Kuwert and Schätzle [67] show lower bound on the
lifespan of smooth solution for compact immersed surfaces in Rn. Under assumption that the
initial surface is close to a sphere, Simonett [91] shows the global solution existence, uniqueness
and regularity. He also proves that the solution converges exponentially fast to a sphere. Very
similar result obtained also Kuwert and Schätzle [66]. Mayer and Simonett [72] prove ”that the
Willmore flow can drive embedded surfaces to self-intersections in finite time”. In the case of
anisotropy, Clarenz [21] gives proof that ”Wulff-shapes are the only minimisers (of the Willmore
functional)”. It is important result for the surface restoration problem.

5.3. Examples of anisotropies

In this section we show some examples of the anisotropy functions γ. To visualise them, we
define the Wulff shape - see Giga [53]:

Definition 5.3.1. Let γ be an admissible anisotropy function. We say that

W =
⋂
|q|=1

{x ∈ Rn | (x,q) ≤ γ (q)} , (5.106)

is the Wulff shape associated with γ.

We start with γ for the isotropic problem. It takes a form

γiso (p,−1) =

√
1 + |p|2, (5.107)

for the graph formulation resp.

γiso (p) =

√
ε2 + |p|2. (5.108)

for the level-set formulation. Note that in both cases (if we set ε = 0) γiso (n) = ‖n‖2 = 1 and
in fact for the isotropic problem γiso is the Euclidean norm of normal. For the derivatives w.r.t
to pi for i = {1, 2} we have

∂piγiso =
pi
γiso

, (5.109)
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5.3. Examples of anisotropies

and substituting p = ∇u we have

Hγiso = ∇ ·

 ∇u√
1 + |∇u|2

 , resp. Hγiso = ∇ ·

 ∇u√
ε2 + |∇u|2

 .

The second derivatives w.r.t. to pi are

∂2
piγiso =

1

γiso

(
1− p2

i

γ2
iso

)
and ∂pi∂pjγiso = −pipj

γ2
iso

, for i 6= j.

The substitution p = ∇u gives

E =
1

Q

(
I− ∇u

Q
⊗ ∇u

Q

)
. (5.110)

Figure 5.1.: The Wulff shape of γiso given by (5.108) and (5.109).

Slightly more general is an anisotropy induced by a quadratic form G : R2 × R2 → R,
G (p1,p2) = pT1Gp2 given by positive definite matrix G ∈ R2,2. The anisotropy, which might
be understood as a weighted Euclidean norm, is defined as

γG (p,−1) :=
√

1 + pTGp, resp. γG (p) :=
√
ε2 + pTGp, (5.111)

and since (G.i denotes the i-th column of G)

∂iγG =
pTG.i

γG
, for i = 1, 2,

∂2
i γG =

1

γG

(
Gii −

pTG.i

γG

Gi.p

γG

)
, for i = 1, 2,

∂i∂jγG =
1

γG

(
Gij −

pTG.i

γG

Gj.p

γG

)
, for i, j = 1, 2, i 6= j,

we have

HγG = ∇ ·
(
G∇u
γG

)
, and EγG =

1

γG

(
G− G∇u

γG
⊗ G∇u

γG

)
. (5.112)
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5. Mathematical formulation

Figure 5.2.: The Wulff shape of γG given by (5.111).

Another (stronger) anisotropy is given by formula

γabs (P) =
3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , (5.113)

where the vector P is defined as P = (p,−1) for graphs and P = (p, ε) for the level-set
formulation. If we set εabs = 0 we have a sum of absolute values of the coordinates of P. The
term εabs

∑3
j=1 P

2
j is therefore only regularisation in the case when p = 0. It is difficult to

express Hγabs and Eγabs in some compact form and so we only show partial derivatives of γabs
with respect to pi and pj for i, j = 1, 2.

γabs,pi =

3∑
j=1

εabspi√
P 2
j + εabs

∑3
k=1 P

2
k

+
pi√

p2
i + εabs

∑3
j=1 P

2
j

for i = 1, 2,

γabs,pipi =
3∑
j=1

 εabs√
P 2
j + εabs

∑3
k=1 P

2
k

− ε2absp
2
i(

P 2
j + εabs

∑3
k=1 P

2
k

) 3
2


+

1√
p2
i + εabs

∑3
j=1 P

2
j

− p2
i(

p2
i + εabs

∑3
j=1 P

2
j

) 3
2

for i = 1, 2,

γabs,pipj = −
3∑

k=1

ε2abspipj(
P 2
k + εabs

∑3
l=1 P

2
l

) 3
2

−
2∑

k=1

εabspipj(
P 2
k + εabs

∑3
l=1 P

2
l

) 3
2

.
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5.4. Parametric approach

Figure 5.3.: The Wulff shape of γabs given by (5.113).

Another anisotropy is the discrete lm-norm for 1 ≤ m ≤ ∞

γlm (P) =

(
3∑
i=1

|Pi|m
) 1

m

. (5.114)

The partial derivatives then read as

γlm,pi = γ1−m
lm |pi|m−2 pi,

γlm,pipi = γ1−m
lm |pi|m−2 ((1−m) γ−mlm |pi|

m +m− 1
)
,

γlm,pipj = (1−m) γ1−2m
lm pipj |pipj |n−2 .

Figure 5.4.: The Wulff shape of γlm given by (5.114).

5.4. Parametric approach

In this section, we mention another method of interface description based on parametrisation.
In the Chapter 7 we will compare the results obtained by the level-set method and this approach
(sometimes called Lagrangian).

Assume that for fixed t ≥ 0, Γ (t) is described by γ : 〈0, 1〉 → R2

Γ (t) ≡ {γ (σ, t) | σ ∈ [0, 1]} , (5.115)

or by the arclength parametrisation γ : I × [0, T ]→ R2 for which

Γ (t) ≡ {γ (s, t) | s ∈ I ⊂ R} and |∂sγ (s, t)| = 1, (5.116)

55



5. Mathematical formulation

holds for all t ≥ 0. Of course Γ (t) is evolving in time as t grows. Since Γ (t) should remain closed
for all t > 0 we set periodic boundary conditions on any function f related to the evolution of
Γ (t) i.e f (0, t) = f (1, t) for t > 0. It is easy to see that the movement of each point can be
decomposed into the shift in the tangential and the normal direction and so we may write

∂tγ (s, t) = αt + βn, (5.117)

where α and β depend on given evolution. Γ (t) will change only when β 6= 0 for some x ∈ Γ (t).
On the other hand α 6= 0 will never change the shape of Γ (t) and so theoretically we might omit
the tangential direction of the movement. However, some works [75, 76, 77] show that suitable
choice of α can significantly improve the accuracy of numerical schemes and even more. in some
cases it can prevent from the brake down of the numerical simulation. In the rest of this section
we will show how to choose α if we have only β in hand.

In the numerical simulations, we may not assume that if Γ (0) is given by the arclength
parametrisation then also all Γ (t) for t > 0 will remain implicitly parametrised by the arclength.
Therefore we assume general parametrisation γ (σ, t) and denote

g = |∂σγ| > 0, (5.118)

which is not necessarily equal to 1. After a discretisation in space, g has a meaning of the
distance between two successive points xi−1 and xi (all details concerning the discretisation will
be described in the next chapter). In [77], the authors study so called relative local length g/L
where L stands for the length of Γ. In agreement with Ševčovič [98], we now show what is the
change of g. First of all we denote p = ∂σγ. We have

∂tp = ∂t∂σγ = ∂σ∂tγ = ∂σ (αt + βn) = g∂s (αt + βn)

= g (∂sαt + α∂st + ∂sβn + β∂sn)

= g (∂sαt + ακn + ∂sβn− βκt)

= g ((∂sα− βκ) t + (ακ+ ∂sβ) n)

where we used the fact that ∂σ∂t = ∂t∂σ. Also for γ = γ (s (σ) , t) we have ∂σγ = ∂sγ
ds
dσ and

so ds
dσ = g. Finally we also applied the Frenet formulas (4.1) and (4.2). Multiplying the last

equality by p we have
p · ∂tp = gt · ∂tp = g2 (∂sα− βκ) ,

and finally we obtain

∂tg = ∂t |∂σγ| =
∂σγ · ∂t∂σγ
|∂σγ|

=
p · ∂tp
g

,

and so
∂tg = g (∂sα− βκ) . (5.119)

Of course, the same periodic boundary conditions, we set for α and β, must hold even for g.
We denote L (t) the length of Γ (t) for which we have L (t) =

∫ 1
0 g (σ, t) dσ. Differentiating this

equality w.r. to t gives

d

dt
L (t) =

∫ 1

0
∂tg (σ, t) dσ =

∫ 1

0
g (∂sα− βκ) dσ =

∫
Γ(t)

∂sα− βκds.

Taking into account the periodicity of α we get

d

dt
L (t) +

∫
Γ(t)

βκds = 0. (5.120)
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5.4. Parametric approach

Let us introduce a nonlocal quantity 〈κβ〉 = 1
L

∫
Γ κβds and θ = ln

( g
L

)
. Then we may write

d

dt
L (t) + 〈κβ〉Γ(t) L = 0.

and

∂tθ = ∂t

(
ln
g

L

)
=
∂tg

g
− ∂tL

L
= −κβ + ∂sα+ 〈κβ〉Γ .

Writing the last equation as
∂sα = ∂tθ + κβ − 〈κβ〉Γ (5.121)

we see that appropriate choice of ∂sα allows us to control θ. Choosing ∂sα as

∂sα =
(
e−θ − 1

)
ω (t) + κβ − 〈κβ〉Γ ,

gives ∂tθ =
(
e−θ − 1

)
ω (t). Setting ω (t) = 0 yields ∂tθ = 0 which means that θ as well as

the relative local length will be preserved for all σ ∈ [0, 1] and all t ∈ [0, Tmax) where Tmax
denotes maximal time of the existence of the evolving curve (it is finite for the mean-curvature
flow and infinite for the surface diffusion flow and the Willmore flow). Such strategy is called
redistribution preserving relative local length [77].

Another strategy is to suppose that∫ Tmax

0
ω (τ) dτ = +∞, (5.122)

and solving the ODE ∂tθ =
(
e−θ − 1

)
ω (t) which gives ln

(
1− eθ(t)

)
= −

∫ t
0 ω (τ) dτ. It means

that θ (σ, t)→ 0 when t→ Tmax uniformly on [0, 1] which yields

g (σ, t)

L (t)
→ 1 as t→ Tmax uniformly on [0, 1] .

This strategy is called asymptotically uniform redistribution . To fulfil the assumption
(5.122) we might set ω = δ1 > 0 when Tmax = +∞ or ω = δ2 〈κβ〉Γ(t) if Tmax is finite. Indeed, in
this case Γ (t) shrinks to a single point which means that L (t)→ 0 as t→ Tmax. From (5.120)
we have δ2

d
dtL = −δ2L 〈κβ〉Γ(t) = −δ2Lω and∫ t

0
ω (τ) dτ = −δ2

∫ L(t)

0

1

L
dL = δ2 (lnL (0)− lnL (t))→ +∞ as t→ Tmax.

Finally we obtain ODE for α in a form

∂sα = κβ − 〈κβ〉Γ(t) +

(
L (t)

g (σ, t)
− 1

)
ω (t) , (5.123)

ω (t) = δ1 + δ2 〈κβ〉Γ(t) , (5.124)

α (0, t) = 0. (5.125)

To complete our explanation of the Lagrangian method we only need to show the expressions
for the normal velocity β. We consider only the isotropic problems. For the mean-curvature
flow it is given by (5.1.8). The plane curves have only one principal curvature which is just the
curvature and therefore H = κ. It means that:

Remark 5.4.1. The normal velocity for the parametric mean-curvature flow of the planar
curves has a form

β = κ. (5.126)
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5. Mathematical formulation

The general normal velocity for the Willmore flow is (5.2.5). For the plane curves we have
n = 2 and so

Remark 5.4.2. The normal velocity for the parametric Willmore flow of the planar curves has
a form

β = −∂2
sκ−

1

2
κ3. (5.127)

5.5. Signed distance function as a viscosity solution of the eikonal
equation

The signed distance function is important for most of the methods based on the level-set for-
mulation. Evaluation based on the definition (4.4.1) is not efficient. In this section we provide
another approach based on the eikonal partial differential equation.

In the Theorem 4.4.3 we showed that for given hypersurface Γ0 there exists ε and certain
”secure” neighbourhood N ε (Γ0) of Γ0 where the equality ∇d (x) = n (x) holds. It also means
that

|∇d| = 1 for all x ∈ N ε (Γ) .

By ”secure” we mean that there are no singular points of d in N ε (Γ). For the signed distance
function to a unit circle in R2

dS1 (x) = |x| − 1

we see that

∇dS1 (x) =
1

|x|x
T ,

which does not make sense at the origin where x = y = 0. For a function given by

d′ (x, y) =

{
|x| − 1 for |x| > 0.25

− |x| − 0.5 for |x| ≤ 0.25

However, it is not the signed distance function for the unit circle because it contains redundant
local minima at points where |x| = 0.25. One can also see simpler example in R1 on the Figure
5.5.

x

y

0 1

d−

d+

d1

d2

Figure 5.5.: Examples of functions for which |d′| = 1 a.e. on [0, 1] but only d+ and d− are the
viscosity solutions to the equations ± |d′| = ±1 on (0, 1) when u (0) = u (1) = 0.
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5.5. Signed distance function as a viscosity solution of the eikonal equation

We seek for a mechanism of minimising number of singularities of d. for avoiding this and get
the simplest (in meaning with the less singularities as possible) function.

Consider now simple example in R1. Assume that Γ ≡ {−1, 1} and IntΓ ≡ (−1, 1). The
signed distance function to Γ is then given by dΓ = |x| − 1. It has one local minimum at
x = 0 and no local maxima. Let u ∈ C2 ((−1, 1)) be an arbitrary smooth function for which
u (−1) = u (1) = 0 and u < 0 on (−1, 1). If it has more then one local minimum it must also
have at least one local maximum. From the basic calculus we know that local maxima might be
detected by u′′ (x) < 0. So if we somehow ensure that u′′ ≥ 0 for all x ∈ (−1, 1) there will be
no local maxima of u and therefore only one local minimum. Now take a look at the following
equation: ∣∣u′ (x)

∣∣− 1 = −εu′′ (x) .

For any critical point where u′ (x) = 0 we have u′′ (x) = 1
ε > 0 which can be only local minimum.

On the other hand any solution of equation∣∣u′ (x)
∣∣− 1 = εu′′ (x) ,

can have only one local maximum and is positive everywhere in (−1, 1).
Going back to the general space Rn we will solve a problem:

H (x, uε,∇uε)− ε∆u = 0 in Rn, (5.128)

where we denotedH (x, u,∇u) = ± (|∇u| − 1). Equation (5.128) is in fact regularised Hamilton-
Jacobi equation of a form:

H (x, u,∇u) = 0 in Rn, (5.129)

where we only assume that H : Rn × Rn → R is continuous. When we pass ε → 0 we talk
about the method of the vanishing viscosity for the Hamilton-Jacobi equation - see Evans
[47]. If we assume that the class of functions {uε}ε>0 is bounded and equicontinuous on compact
subset of Rn × 〈0,∞) then from the Arzela-Ascoli compactness criterion (A.0.3) we get that
there exists a sequence {uεj}

uεj → u locally uniformly in Rn × 〈0,∞) .

Our aim now is to find some formulation for the weak solution of (5.129). We cannot apply the
Green formula because (5.129) is not in a divergence form. We need to find another approach
how to avoid evaluation of ∇u and shift the derivatives on some testing function v ∈ C∞ (Rn).
Fix now any such function v and suppose that

u− v has a strict local maximum at some point x0. (5.130)

It means that
(u− v) (x0) > (u− v) (x) for x ∈ B (~x0, r) ,

where B (~x0, r) denotes a closed ball in Rn with centre in x0 and radius r. Now we see that for
each sufficiently small r > 0

max
∂B

(u− v) < (u− v) (x0) ,

holds. From the locally uniform convergence of uεj we get uniform convergence uεj → u on B
and so

max
∂B

(uεj − v) < (uεj − v) (x0) ,

provided εj is small enough. Consequently

uεj − v attains a local maximum at some point xj ∈ B (r,x0) . (5.131)
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5. Mathematical formulation

Replacing now r by some subsequence rj → 0 we get xj → x0 as j →∞. From (5.131) we have

∇uεj (xj) = ∇v (xj) ,

−∆uεj (xj) ≥ −∆v (xj) ,

and directly from (5.128) we get

H (∇v (xj) ,xj) = H (∇uεj (xj) ,xj) (5.132)

= εj∆u
εj (xj) ≤ εj∆v (xj) , (5.133)

and letting j →∞ we end with

H (∇v (x0) ,x0) ≤ 0.

Assume now only

u− v has a local maximum at some point x0,

where we dropped the assumption of strictness. Then we define function

ṽ (x) := v (x) + δ
(
|x− x0|2

)
, δ > 0.

for which u− ṽ has strict local maximum at x0 and

H (∇v (x0) ,x0) = H (∇ṽ (x0) ,x0) ≤ 0. (5.134)

In the same way we might show that

H (∇v (x0) ,x0) ≥ 0,

provided that

u− v has a local minimum at some point x0.

We see that we have reached what we were looking for i.e. putting the derivatives of u on v.
This allows us to define a weak solution of (5.129).

Definition 5.5.1. Let H be a continuous function H : Rn ×R ×Rn → R. Then:

1. function u = u (x) is called the viscosity subsolution of (5.129) if for each function
v ∈ C1 (Rn) if u− v has a local maximum at x0 ∈ Rn then

H (x0, u (x0) ,∇v (x0)) ≤ 0,

2. function u = u (x) is called the viscosity supersolution of (5.129) if for each function
v ∈ C1 (Rn) if u− v has a local minimum at x0 ∈ Rn then

H (x0, u (x0) ,∇v (x0)) ≥ 0.

Function u is called the viscosity solution of (5.129) if it is both viscosity subsolution and
supersolution of (5.129).
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5.5. Signed distance function as a viscosity solution of the eikonal equation

The existence and uniqueness of the viscosity solution of Hamilton-Jacobi equationH (x, uε,∇uε) =
f for convex H and discontinuous f has been proved by Deckelnick and Elliott [37].

In the same way we may define the viscosity solution for the initial-value problem of the
Hamilton-Jacobi equation

ut +H (x, u,∇u) = 0 in Rn × (0,∞) , (5.135)

u |t=0 = u0 on Rn

as Evans [47]:

Definition 5.5.2. Let H be a continuous function H : Rn ×R ×Rn → R. Then:

1. function u = u (x, t) is called viscosity subsolution of (5.135) if u |t=0= u0 on Rn and
for each function v ∈ C1 (Rn × (0,∞)) if u−v has a local maximum at (x0, t0) ∈ R×(0,∞)
then H (x0, u (x0, t0) ,∇v (x0, t0)) ≤ 0,

2. function u = u (x, t) is called viscosity supersolution of (5.135) if u |t=0= u0 on Rn and
for each function v ∈ C1 (Rn × (0,∞)) if u−v has a local minimum at (x0, t0) ∈ R×(0,∞)
then H (x0, u (x0, t0) ,∇v (x0, t0)) ≥ 0.

Function u is called viscosity solution of (5.135) if it is both viscosity subsolution and super-
solution of (5.135).

To demonstrate the consistency with the classical solution u∗ of (5.135) we choose v ∈
C1 (Rn × (0,∞)) such that u∗−v has local maximum at (x0, t0). Then ∇u∗ (x0, t0) = ∇ (x0, t0),
u∗t (x0, t0) = vt (x0, t0) and

vt (x0, t0) +H (x0, u
∗ (x0, t0) ,∇v (x0, t0))

= u∗t (x0, t0) +H (x0, u
∗ (x0, t0) ,∇u∗ (x0, t0)) = 0.

The same equality holds for any (x + 0, t0) where u∗ − v has its local minimum and so u is the
viscosity solution of (5.135).

For H ∈ C (Rn) and uniformly Lipschitz u0 the equation (5.135) has been studied in Bardi
and Osher [4].

Remark: Viscosity solution for bounded Ω If Ω ⊂ Rn is bounded the definition (5.5.2)
is still valid, we only consider the local extremes x0 ∈ Ω. However, some authors impose explicit
conditions on v at ∂Ω - see. Briggs [16] or Claisse [20].

Let us now return to the signed distance function dΓ of Γ. If Γ is given as a level-set of some
continuous function u0 we want d to have the same signum as u0 everywhere in Ω. It means
that we require

dΓ is a viscosity solution of − |∇dΓ| = −1 where sign (u0) < 0,

dΓ is a viscosity solution of |∇dΓ| = 1 where sign (u0) > 0,

or
dΓ is a viscosity solution of sign (u0) (|∇dΓ| − 1) = 0. (5.136)

Note however, that in the last equality H (x, dΓ (x, t) ,∇dΓ (x, t)) = sign (u0) (|∇dΓ| − 1) is not
continuous. This fact brings many difficulties into the analysis of such equation.

Similar, but evolutionary equation is (see Sethian [90])

ut − sign (u0) (1− |∇u|) = 0 on Ω× (0, T ) , (5.137)

u |t=0 = u0, (5.138)
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5. Mathematical formulation

the steady state of which should correspond with the solution of (5.136).
The notion of the viscosity solution was proposed by Crandall and Lions in [25]. Even though

the existence has been proved already before the viscosity solution allowed the authors to show
the uniqueness. Introductory texts are by Crandall [26] and Crandall, Ishii and Lions [24] or a
book by Giga [53].
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6. Numerical approximation

In this chapter, we present methods for space discretisation of the graph and the level-set
formulation of the Willmore flow . Explicit and semi-implicit schemes are used for the time
discretisation. Fully implicit schemes are not considered in this thesis.

Finite element approximation of the minimal surfaces problem together with the error esti-
mates been have studied by Johnson and Thomeé in [62].

Numerical approximation of the mean-curvature flow has been studied by Deckelnick and Dz-
iuk. In [28, 29] they study the finite element approximation, convergence and the error estimates.
The anisotropic problem was studied in [31, 32]. A finite difference scheme approximating the
viscosity solution of the level-set formulation for the mean-curvature flow together with L∞ error
bound can be found in [27]. A finite element scheme and proof of the convergence appeared in
[30, 33]. Dziuk [43] also studied the parametric formulation of the anisotropic mean-curvature
flow. Methods by Mikula [74] will be explained in details later in this chapter.

The finite elements approximation of the Willmore flow of graphs has been studied by Deckel-
nick and Dziuk [34] and the finite element approximation for the surface restoration by Clarenz,
Diewald, Dziuk, Rumpf and Rusu [22].

Droske and Rumpf [40] used the finite element method for the approximation of the level-set
formulation of the Willmore flow.

Numerical schemes for the parametric formulation of the elastic curves hes been proposed by
Dziuk, Kuwert and Schätzle [44].

Numerical scheme for axisymmetric surfaces with applications to the mean-curvature flow,
surface diffusion flow and the Willmore flow propose Mayer and Simonett [71].

In this text we extend the results obtained in the works of Beneš where he applied the finite
difference method for the approximation of the mean-curvature flow [9, 10, 11, 7] and the surface
diffusion flow in [12]. We also adopt complementary volume method introduced by Handlovičová,
Mikula and Sgallari [55] and we show relation of this class of schemes with schemes based on
the finite difference method. For the graph formulation we show stability of the scheme for the
Willmore flow.

Finite element method based scheme for the surface diffusion of graphs together with the
error analysis can be found in Baënsch, Morin and Nochetto [3], the anisotropic problem has
been studied by Deckelnick, Dziuk and Elliott [36]. Finite element numerical scheme for the
level-set formulation of the surface diffusion flow was presented by Smereka [92], scheme for
the anisotropic problem was proposed by Clarenz, Hausser, Rumpf, Voigt and Weikard [23].
Tangentially stabilised scheme for parametric curves was developed by Mikula and Ševčovič
[77].

We will discus the schemes only for two dimensional problems, however the extension to three
dimension is very straightforward.
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6. Numerical approximation

6.1. Notation

We assume having the domain Ω ≡ (0, L1)×(0, L2). Let h1, h2 be space steps such that h1 = L1
N1

and h2 = L2
N2

for some N1, N2 ∈ N+. We define a numerical grid, its closure and its boundary as

ωh = {(ih1, jh2) | i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1} , (6.1)

ωh = {(ih1, jh2) | i = 0 · · ·N1, j = 0 · · ·N2} ,
∂ωh = ωh \ ωh,

for u ∈ C
(
Ω
)

we define the projection operator Ph : C
(
Ωh

)
→ ω as

Ph (u)ij := uhij := u (ih1, jh2) . (6.2)

6.2. Space discretisation

6.2.1. Semidiscrete scheme based on one-sided finite differences

The finite difference approximation introduced in [81] combines forward and backward differ-
ences. Similar schemes were already successfully applied to other problems [7, 9, 10, 11, 12]. In
agreement with Samarskij [89] we define the forward and backward finite differences as follows:

uhf.,ij :=
uhi+1,j − ujij

h1
, uh.f,ij :=

uhi,j+1 − uhij
h2

, (6.3)

uhb.,ij :=
uhi,j − uji−1,j

h1
, uh.b,ij :=

uhi,j − uhi,j−1

h2
, (6.4)

∇fuij :=
(
uhf.,ij , u

h
.f,ij

)
, ∇buij :=

(
uhb.,ij , u

h
.b,ij

)
, (6.5)

The discrete operator of divergence is approximated in the same manner as the discrete gradient.
We define the grid boundary normal difference ∂hνu

h
ij .

∂hνu
h
0,j = ub.,1,j for j = 0, . . . , N2, (6.6)

∂hνu
h
N1,j = ub.,N1,j for j = 0, . . . , N2, (6.7)

∂hνu
h
i,0 = u.b,i,1 for i = 0, . . . , N1, (6.8)

∂hνu
h
i,N2

= u.b,i,N2 for i = 0, . . . , N1. (6.9)

Remark 6.2.1. Numerical experiments 7.2.2 and 7.2.4 show that this kind of scheme fails in
some cases even for the isotropic Willmore flow of graphs. Therefore we do not consider neither
the anisotropic problems in this section nor the level-set formulation.

Denoting

Q̄hij =

√
1 +

1

2

(
u2
f.,ij + u2

b.,ij + u2
.f,ij + u2

.b,ij

)
,

i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1,

Qhij =
√

1 + u2
f.,ij + u2

.f,ij ,

i = 0, · · · , N1 − 1, j = 0, · · · , N2 − 1,

we may introduce the following schemes:
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6.2. Space discretisation

Scheme 6.2.2. The one-sided finite difference semi-discrete approximation of the
mean-curvature flow of graphs with the Dirichlet boundary conditions reads as

duhij
dt

= Q̄hij∇b ·
(
∇fuhij
Qhij

)
on ωh, (6.10)

uhij |t=0 = P (uini)ij on ωh, (6.11)

uhij = gij on ∂ωh.

The one-sided finite difference semi-discrete approximation of the mean-curvature
flow of graphs with the Neumann boundary conditions is given by (6.10)–(6.11)
and

∂hνu
h
ij = 0 on ∂ωh. (6.12)

Scheme 6.2.3. The one-sided finite difference semidiscrete approximation of the
Willmore flow of graphs with the Dirichlet boundary conditions is given by

duhij
dt

= −Q̄hij∇b ·

 1

Qhij

 1− u2
f.,ij

(Qhij)
2 −uf.,iju.f,ij

(Qhij)
2 ,

−uf.,iju.f,ij

(Qhij)
2 1− u2

.f,ij

(Qhij)
2

∇fwhij − 1

2

(
whij

)2

(
Qhij

)3∇fuhij


on ωh, (6.13)

whij = Qhij∇b ·
(
∇fuhij
Qhij

)
on ωh, (6.14)

uhij |t=0 = P (uini)ij on ωh, (6.15)

uhij = gij and whij = 0 on ∂ωh. (6.16)

The one-sided finite difference semidiscrete approximation of the Willmore flow of
graphs with the Neumann boundary conditions is given by (6.13)–(6.15) and

∂hνu
h
ij = 0 and ∂hνw

h
ij = 0 on ∂ωh. (6.17)

Remark: The level set counterparts of the schemes (6.2.2) and (6.2.3) differs only in the
quantities Q̄hij and Qhij . For the level-set formulation they take the form:

Q̄hij =

√
ε2 +

1

2

(
u2
f.,ij + u2

b.,ij + u2
.f,ij + u2

.b,ij

)
,

i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1,

Qhij =
√
ε2 + u2

f.,ij + u2
.f,ij .
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6. Numerical approximation

Stability for the approximation of the Willmore flow of graphs with the one-sided
differences

Now we aim to prove the discrete version of the theorem (5.2.11). Let us first of all introduce
some necessary notation. For f, g : ωh → R, f ,g : ωh → R2, f =

(
f1, f2

)
, g =

(
g1, g2

)
and

denoting

[f, g]PQpq =

P,Q∑
i=p,j=q

h1h2fijgij , (6.18)

we define

(f, g)h = [f, g]N1−1,N2−1
1,1 , ‖f‖2h = (f, f)h ,

(f ,g)h =
(
f1, g1

)
h

+
(
f2, g2

)
h
,

(
f, g1 + g2

)
h

=
(
f, g1

)
h

+
(
f, g2

)
h
,(

f1, g1
)
f.

=
[
f1, g1

]N1,N2−1

1,1
,

(
f2, g2

)
.f

=
[
f2, g2

]N1−1,N2

1,1
,

(f ,g)f =
(
f1, g1

)
f.

+
(
f2, g2

)
.f
,
(
f, g1 + g2

)
f

=
(
f, g1

)
f.

+
(
f, g2

)
.f
,(

f1, g1
)
b.

=
[
f1, g1

]N1−1,N2−1

0,1
,

(
f2, g2

)
.b

=
[
f2, g2

]N1−1,N2−1

1,0
,

(f ,g)b =
(
f1, g1

)
b.

+
(
f2, g2

)
.b
,
(
f, g1 + g2

)
b

=
(
f, g1

)
b.

+
(
f, g2

)
.b
,

(6.19)

Now we may proceed to some supporting lemmas.

Lemma 6.2.4. Let u : ωh → R, v : ωh → R2. Then the following Green formulas are valid

(∇fu,v)h = − (u,∇b · v)f +

N2−1∑
l=1

h2

(
uN1,lv

1
N1,l − u1lv

1
0l

)
+

N1−1∑
k=1

h1

(
uk,N2v

2
k,N2
− uk1v

2
k0

)
, (6.20)

(∇bu,v)h = − (u,∇f · v)b +

N2−1∑
l=1

h2

(
uN1−1,lv

1
N1,l − u0lv

1
0l

)
+

N1−1∑
k=1

h1

(
uk,N2−1v

2
k,N2
− uk0v

2
k0

)
. (6.21)

Proof. It is quite straightforward to show that for fixed k = 0, · · ·N1, l = 0, · · · , N2 the following
relations hold:

[
uf., v

1
]N1−1,l

1,l
= −

[
u, v1

b.

]N1,l

1,l
+ h2

(
uN1,lv

1
N1,l − u1lv

1
0l

)
, (6.22)[

ub., v
1
]N1−1,l

1,l
= −

[
u, v1

f.

]N−1,l

0,l
+ h2

(
uN1−1,lv

1
N1,l − u0lv

1
0l

)
, (6.23)[

u.f , v
2
]k,N2−1

k,1
= −

[
u, v2

.b

]k,N2

k,1
+ h1

(
uk,N2v

2
k,N2
− uk1v

2
k0

)
, (6.24)[

u.b, v
2
]k,N1−1

k,1
= −

[
u, v2

.f

]k,N2−1

k,0
+ h1

(
uk,N2−1v

2
k,N2
− uk0v

2
k0

)
. (6.25)
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6.2. Space discretisation

For example for (6.22) we have (see also [89])

[
uf., v

1
]N1−1,l

1,l
=

N1−1∑
i=1

ui+1,l − ui,l
h1

v1
i,lh1h2 =

N1−1∑
i=1

ui,lv
1
i+1,lh2 −

N1−1∑
i=1

ui,lv
1
i,lh2

=

N1∑
i=2

ui,lv
1
i−1,lh2 −

N1−1∑
i=1

ui,lv
1
i,lh2 =

N1−1∑
i=2

ui,l
(
v1
i−1,l − v1

i,l

)
h2 +

(
uN1,lv

1
N1−1,l − u1,lv

1
1,l

)
h2

=

N−1∑
i=2

ui,l
(
v1
i−1,l − v1

i,l

)
h2 +

[
uN1,lvN1,l + uN1,l

(
v1
N1−1,l − v1

N1,l

)
− u1,lv

1
0,l + u1,l

(
v1

0,l − v1
1,l

)]
h2

=
(
uN1,lv

1
N1,l − u1,lv

1
0,l

)
h2 −

[
u, v1

b.

]N1,l

1,l
.

Now we have

(∇fu,v)h =
(
uf., v

1
)
h

+
(
u.f , v

2
)

=
[
uf., v

1
]N1−1,N2−1

1,1
+
[
u.f , v

2
]N1−1,N2−1

1,1

=

N2−1∑
l=1

[
uf., v

1
]N1−1,l

1,l
+

N1−1∑
k=1

[
u.f , v

2
]k,N2−1

k,1
= −

N2−1∑
l=1

([
u, v1

b.

]N1,l

1,l
+ h2

(
uN1,lv

1
N1,l − u1lv

1
0l

))
−
N1−1∑
k=1

([
u, v2

.b

]k,N2

k,1
+ h1

(
uk,N2v

2
k,N2
− uk1v

2
k0

))
= −

[
u, v1

b.

]N1,N2−1

1,1

+

N2−1∑
l=1

(
h2

(
uN1,lv

1
N1,l − u1lv

1
0l

))
−
[
u, v2

.b

]N1−1,N2

1,1
+

N1−1∑
k=1

(
h1

(
uk,N2v

2
k,N2
− uk1v

2
k0

))
= −

(
u, v1

b.

)
f.
−
(
u, v2

.b

)
.f

+

N2−1∑
l=1

(
h2

(
uN1,lv

1
N1,l − u1lv

1
0l

))
+

N1−1∑
k=1

(
h1

(
uk,N2v

2
k,N2
− uk1v

2
k0

))
= − (u,∇b · v)f +

N2−1∑
l=1

(
h2

(
uN1,lv

1
N1,l − u1lv

1
0l

))
+

N1−1∑
k=1

(
h1

(
uk,N2v

2
k,N2
− uk1v

2
k0

))
,

which is a proof of (6.20). The proof of (6.21) is analogous.

Corollary 6.2.5. Let p, u, v : ωh → R and assume v |∂ωh≡ 0. Then the following equalities
hold:

(∇b · (p∇fu) , v)h = − (p∇fu,∇fv)b , (6.26)

(∇f · (p∇bu) , v)h = − (p∇bu,∇bv)f . (6.27)

Proof. The proof is trivial application of (6.20) and (6.21).

Theorem 6.2.6. For the solution of (6.13)-(6.14) uh, wh and wh |∂ωh≡ 0 the following equality
holds: ((

uht

)2
,

1

Qh

)
h

+
d

dt

((
Hh
)2
, Qh

)
h

= 0. (6.28)

Proof. We start with the equation for whij (6.14), divide by Qhij , multiply by ξij vanishing on
∂ωh and sum over ω. (

wh

Qh
, ξ

)
h

=

(
∇b ·

(∇fuh
Qh

)
, ξ

)
h

.
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The Green theorem (6.26) gives(
wh

Qh
, ξ

)
h

= −
((
∇fuhij
Qhij

)
,∇fξ

)
f

. (6.29)

Now consider the right hand side of (6.13), multiply it by the test function ϕ vanishing at ∂ωh,
summing over ωh and applying again the Green theorem (6.26) to obtain(

−∇b ·
(
Eh∇fwh −

1

2

(
wh
)2

(Qh)
3∇fuh

)
, ϕ

)
h

=

(
Eh∇fwh −

1

2

(
wh
)2

(Qh)
3∇fuh,∇fϕ

)
f

.

(6.30)

Differentiating (6.29) with respect to t we obtain

d

dt

(
wh

Qh
, ξ

)
h

+
d

dt

((∇fuh
Qh

)
,∇fξ

)
f

=
d

dt

(
wh

Qh
, ξ

)
h

+

(
Qh∇f∂tuh − ∂tQh∇fuh

(Qh)
2 ,∇fξ

)
f

=

(
wht
Qh

, ξ

)
h

−
(
Qht · wh
(Qh)

2 , ξ

)
h

+
(
Eh∇fuht ,∇fξ

)
f

= 0,

where we used

∂tQ
h =
∇f∂tuh · ∇fuh

Qh
,

and so

Qh∇f∂tuh − ∂tQh∇fuh
(Qh)

2 =
∂t∇fuh
Qh

−
(
∂t∇fuh · ∇fuh

)
∇fuh

(Qh)
2 =

1

Qh

(
I−

(∇fuh
Qh

⊗ ∇fu
h

Qh

))
= E

h

Substitution ξ = wh gives(
wht
Qh

, wh
)
h

−
(

Qht

(Qh)
2 ,
(
wh
)2
)
h

+
(
Eh∇fuht ,∇fwh

)
f

= 0, (6.31)

and a substitution ϕ = uht in (6.30) gives((
uht

)2
,

1

Qh

)
h

−
(
Eh∇fwh −

1

2

(
wh
)2

(Qh)
3∇fuh,∇fuht

)
f

= 0. (6.32)

Adding (6.31) to (6.32) and using the symmetry of Eh we have((
uht

)2
,

1

Qh

)
h

+

(
wht
Qh

, wh
)
h

−
(

Qht

(Qh)
2 ,
(
wh
)2
)
h

+
1

2

((
wh
)2

(Qh)
3 ,∇fuh · ∇fuht

)
f

= 0.

(6.33)

Since ∇fuh · ∇fuht = Qh ·Qht we get((
uht

)2
,

1

Qh

)
h

+

(
wht
Qh

, wh
)
h

−
(

Qht

(Qh)
2 ,
(
wh
)2
)
h

+
1

2

((
wh
)2

(Qh)
2 , Q

h
t

)
f

= 0,

(6.34)
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which is equivalent to((
uht

)2
,

1

Qh

)
h

+

(
wht

(Qh)
2 , w

h

)
h

− 1

2

(
Qht

(Qh)
2 ,
(
wh
)2
)
h

= 0, (6.35)

because for wh |∂ω≡ 0 ((
wh
)2

(Qh)
2 , Q

h
t

)
f

=

((
wh
)2

(Qh)
2 , Q

h
t

)
h

.

Finally from (6.35) we have((
uht

)2
,

1

Qh

)
h

+
1

2

d

dt

((
Hh
γ

)2
, Qh

)
h

= 0.

Remark: Numerical experiments (7.2.1)-(7.2.4) demonstrate that the schemes based on the
forward and the backward differences is sufficient for the mean-curvature flow and the surface
diffusion flow of graphs (at least for the isotropic problems). However, in the case of the Willmore
flow one can see very strong deformation of the solution. It is caused by a non-symmetric stencil
of the numerical scheme - see Figure 6.1. In what follows we will try to solve this problem by
use of the central differences.

Figure 6.1.: Non-symmetric stencil of the numerical scheme (6.2.3)

6.2.2. Semidiscrete scheme based on central finite differences

The central-difference approach yields a symmetric scheme ( see Oberhuber [82] ). The central
differences are defined as:

uhc.,ij :=
uhi+1,j − uji−1,j

2h1
, uh.c,ij :=

uhi,j+1 − uhi,j−1

2h2
, (6.36)

∇cuij :=
(
uhc.,ij , u

h
.c,ij

)
. (6.37)

As well as in case of the one-sided differences, the discrete operator is approximated in the same
way as the discrete gradient. We have

uhc.,ij =
1

2

(
uhf.,ij + uhb.,ij

)
and uh.c,ij =

1

2

(
uh.f,ij + uh.b,ij

)
. (6.38)
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6. Numerical approximation

We denote

Q̄hij =

√
1 +

1

2

(
u2
f.,ij + u2

b.,ij + u2
.f,ij + u2

.b,ij

)
,

Qhij =
√

1 + u2
c.,ij + u2

.c,ij ,

Rvisc = CviscQ̄
h
ij

(
h2

1

(
uhb.ij

)
f.,ij

+ h2
2

(
uh.b,ij

)
.f,ij

)
,

for i = 1, · · · , N1 − 1, j = 0, · · · , N2 − 1

Remark 6.2.7. It is known that the approximation by the central differences requires functions
of higher regularity at least u ∈ C2 (Ω). If this condition is not fulfilled oscillations may appear
as Figure 6.2 demonstrates. It is the reason why we introduce the artificial viscosity term (6.39)
to keep the approximate grid function uhij smooth enough.

Figure 6.2.: Oscilations which may appear when the explicit central finite difference numerical
scheme (6.3.5) is applied. The figure shows initial condition (on the left) and the
evolution of the graph by the mean of the Willmore flow. On the right, there is a
state of the evolution at time t = 0.0006.

The necessity of setting the parameter Rvisc is a disadvantage of the central-difference schemes.
Numerical schemes based on complementary finite volumes avoid this. It is a reason why we do
not study the anisotropic and the level-set formulation in this section.

The central schemes have the following forms:

Scheme 6.2.8. The central finite difference semi-discrete approximation of the mean-
curvature flow of graphs with the Dirichlet boundary conditions is given by

duhij
dt

= Qhij∇c ·
(
∇cuhij
Qhij

)
+Rvisc on ωh, (6.39)

uhij |t=0 = P (uini)ij on ωh (6.40)

uhij = gij on ∂ωh.

The central finite difference semi-discrete approximation of the mean-curvature flow
of graphs with the Neumann boundary conditions is given by (6.39)–(6.40) and

∂hνu
h
ij = 0 on ∂ωh.
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6.2. Space discretisation

Scheme 6.2.9. The central finite difference semi-discrete approximation of the Will-
more flow of graphs with the Dirichlet boundary conditions is given by

duhij
dt

= −Q̄hij∇c ·

 1

Qhij

1− u2
c.,ij

(Qhij)
2 −uc.,iju.c,ij

(Qhij)
2 ,

−uc.,iju.c,ij

(Qhij)
2 1− u2

.c,ij

(Qhij)
2

∇cwhij − 1

2

(
whij

)2

(
Qhij

)3∇cuhij


+ Rvisc on ωh, (6.41)

whij = Qhij∇c ·
(
∇cuhij
Qhij

)
, on ωh, (6.42)

uhij |t=0 = P (uini)ij on ωh, (6.43)

uhij = gij and whij = 0 on ∂ωh. (6.44)

The central finite difference semi-discrete approximation of the Willmore flow of
graphs with the Neumann boundary conditions is given by (6.41)–(6.43) and

∂hνu
h
ij = 0 and ∂hνw

h
ij = 0 on ∂ωh.

Remark 6.2.10. Since the stencil of the schemes (6.2.8) and (6.2.9) is larger then in case of
the one-sided schemes, we need to evaluate the first derivatives on ωh to be able to approximate
the second derivatives on ωh (and the same is true also for the third and the fourth derivatives).
For this purpose, we replace central differences for the approximation of the first and the third
derivatives at the boundaries of ωh by forward resp. backward differences depending on which
ones are appropriate.

Energy equality for the Willmore flow of graphs with central differences

As in the previous section, we would like to gain an equality similar to (5.2.11). Once we become
aware of (6.38) the proof is straightforward.

Lemma 6.2.11. Let u : ωh → R, v : ωh → R2. Then the Green formula is valid

(∇cu,v)h = −1

2

[
(u,∇b · v)f + (u,∇f · v)b

]
(6.45)

+

N2−1∑
l=1

h2

2

(
uN1,lv

1
N1,l − u1lv

1
0l + uN1−1,lv

1
N1,l − u0lv

1
0l

)
+

N1−1∑
k=1

h1

2

(
uk,N2v

2
k,N2
− uk1v

2
k0 + uk,N2−1v

2
k,N2
− uk0v

2
k0

)
. (6.46)

Proof. The proof follows directly from (6.20) and (6.21) by writing

(∇cu,v)h =

(
1

2
(∇fu+∇bu) ,v

)
h

.

Corollary 6.2.12. Let p, u, v : ωh → R and assume v |∂ωh≡ 0. Then the following equality
holds:

(∇cu,v)h = −1

2

[
(u,∇b · v)f + (u,∇f · v)b

]
. (6.47)
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6. Numerical approximation

Theorem 6.2.13. For the solution of (6.41)-(6.42) uh, wh and wh |∂ωh≡ 0, the following equality
holds: ((

uht

)2
,

1

Qh

)
h

+
d

dt

[((
Hh
)2
, Qh

)
h

− Cvisc
h2

2

(
∇hbuh,∇hbuh

)
h

]
= 0, (6.48)

where for simplicity we assume h = h1 = h2.

Proof. To proof is very similar to (6.2.6). Taking (6.42), divide by Qhij , multiply by ξij vanishing
on ∂ωh, summing over ω and applying (6.47 gives

(
wh

Qh
, ξ

)
h

= −1

2

((∇cuhij
Qhij

)
,∇fξ

)
f

+

((
∇cuhij
Qhij

)
,∇bξ

)
b

 (6.49)

Repeating the same with the right hand side of (6.41) and the test function ϕ vanishing at ∂ωh
leads to(

−∇c ·
(
Eh∇cwh −

1

2

(
wh
)2

(Qh)
3∇cuh

)
, ϕ

)
h

=
1

2

(Eh∇cwh − 1

2

(
wh
)2

(Qh)
3∇cuh,∇fϕ

)
f

+

(
Eh∇cwh −

1

2

(
wh
)2

(Qh)
3∇cuh,∇bϕ

)
b

]
,

(6.50)

where

Eh =
1

Qhij

(
1− u2

c.,ij −uc.,iju.c,ij
−uc.,iju.c,ij 1− u2

.c,ij

)
.

Differentiating (6.49) with respect to t we have(
wht
Qh

, ξ

)
h

−
(
Qht · wh
(Qh)

2 , ξ

)
h

+
1

2

[(
Eh∇cuht ,∇fξ

)
f

+
(
Eh∇cuht ,∇bξ

)
b

]
= 0.

Substituting ξ = wh and applying wh |∂ωh gives(
wht
Qh

, wh
)
h

−
(

Qht

(Qh)
2 ,
(
wh
)2
)
h

+
(
Eh∇cuht ,∇cwh

)
h

= 0, (6.51)

and a substitution ϕ = uht in (6.30) together with uht |∂ωh≡ 0 (we assume the Dirichlet boundary
conditions) gives ((

uht

)2
,

1

Qh

)
h

−
(
Eh∇cwh −

1

2

(
wh
)2

(Qh)
3∇cuh,∇cuht

)
h

= 0. (6.52)

Adding (6.51) to (6.52), using the symmetry of Eh and the fact that ∇cuh · ∇cuht = Qh ·Qht we
have ((

uht

)2
,

1

Qh

)
h

+

(
wht

(Qh)
2 , w

h

)
h

− 1

2

(
Qht

(Qh)
2 ,
(
wh
)2
)
h

= 0, (6.53)

and ((
uht

)2
,

1

Qh

)
h

+
1

2

d

dt

((
Hh
)2
, Qh

)
h

= 0.
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For the viscose term Rvisc we have Rvisc = Cvisch
2∇hf∇hbuh. Multiplying by ϕ vanishing on ∂ωh

we get (
Cvisch

2∇hf∇hbuh, ϕ
)
h

= −Cvisch2
(
∇hbuh,∇hbϕ

)
f

= −Cvisch2
(
∇hbuh,∇hbϕ

)
h
.

The last equality holds since ϕ |∂ωh= 0. Setting ϕ = uht we obtain

−Cvisch2
(
∇hbuh,∇hbuht

)
h

= −Cvisc
h2

2

d

dt

(
∇hbuh,∇hbuh

)
h
.

Remark: Unfortunately, from (6.48) we can not claim that
(
Hh
)2
Qh is decreasing when Cvisc

is non-zero. The viscosity term is main problem of this scheme. In the next section, we will
try to avoid it. The Figure 6.3 shows the stencil for the central schemes applied to the fourth
order problems. For the isotropic problem it is a 41 point stencil. Another disadvantage of the
scheme is the fact that the matrix arising in a semi-implicit scheme would have many non-zero
elements.

Figure 6.3.: Stencil of the numerical scheme (6.2.9) is symmetric, however it is very large.

6.2.3. Semidiscrete scheme based on the finite volume method

The third class of the numerical schemes is based on the method of the finite volumes. More
precisely, we follow complementary volume concept introduced by Walkington [99] who combined
the complementary volumes with the finite elements . Handlovičová, Mikula and Sgallari [55]
applied similar scheme in image processing. For the level-set formulation of the Willmore flow,
we introduced the complementary finite volume scheme in [13]. We restrict ourselves only to
Ω ⊂ R2. First we demonstrate the finite volume principles of the scheme. Later in this section
we derive the same scheme with the finite difference approach which will allow to prove the
energy equality (5.2.11).

Complementary finite volumes

For the purpose of this section we define the dual mesh Vh as

Vh ≡
{
vij =

〈(
i− 1

2

)
h1,

(
i+

1

2

)
h1

〉
×
〈(

j − 1

2

)
h2,

(
j +

1

2

)
h2

〉
|

i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1

}
. (6.54)
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6. Numerical approximation

For 0 < i < N1, 0 < j < N2, i and j fixed, consider a volume vij of the dual mesh Vh, denote
its interior as Ωij , its boundary as Γij and let µ (Ωij) be the volume of Ωij . We also denote all
the neighbouring volumes of the volume vij as Nij . For all finite volumes vij of the dual mesh
Vh, the boundary Γij consists of four linear segments. We denote them as Γij,̄ij̄ . It means that
Γij,̄ij̄ is a boundary of the finite volume vij between nodes (i, j) and (̄i, j̄). By lij,̄ij̄ we denote
the length of this part of Γij .

(0, 0) (N1, 0)

(0, N2) (N1, N2)

Figure 6.4.: Dual mesh (6.54) for the complementary finite volumes method - circles denote ∂ωh,
dots denote ωh and solid lines stand for Vh.

Evaluation of isotropic mean curvature of graphs We start with the equation for the isotropic
mean curvature

H = ∇ ·
(∇ϕ
Q

)
which we integrate over the finite volume vij and apply the Stokes theorem (A.0.7)∫

Ωij

Hdx =

∫
Ωij

∇ ·
(∇ϕ
Q

)
dx =

∫
Γij

∇ϕ
Q
· νdHn−1, (6.55)

where ν denotes the outer unit normal vector to the finite volume boundary Γij . If Γij is a part
of the boundary of Vh we set in agreement with (5.28) ∇ϕ · ν = 0. We approximate the term on
the left as ∫

Ωij

Hdx ≈ µ (Ωij)H
h
ij (6.56)

and the term on the right as∫
Γij

∇ϕ
Q
· νdHn−1 =

∑
vīj̄∈Nij

∫
Γij,̄ij̄

∇ϕ
Q
· νdHn−1 (6.57)
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6.2. Space discretisation

For the inner finite volume vij ∈ Vh, there are four different neighbours vīj̄ ∈ Nij . All the
boundaries Γij,̄ij̄ are linear segments and so ν = νij,̄ij̄ is constant there. Moreover we assume
that ∇ϕ and Q are constant along Γij,̄ij̄ too. It gives

∑
vīj̄∈Nij

∫
Γij,̄ij̄

∇ϕ
Q
· νdHn−1 ≈

∑
vīj̄∈Nij

lij,̄ij̄
∇ϕh

ij,̄ij̄

Qh
ij,̄ij̄

· νij,̄ij̄ (6.58)

Putting (6.56) and (6.58) together we get

Hh
ij ≈

1

µ (Ωij)

∑
vīj̄∈Nij

lij,̄ij̄
∇ϕh

ij,̄ij̄

Qh
ij,̄ij̄

· νij,̄ij̄ . (6.59)

For the dual mesh Vh given by (6.54), we may substitute µ (Ωij) = h1h2. For vij , vīj̄ such
that νij,̄ij̄ = (±1, 0) we have lij,̄ij̄ = h2 and if νij,̄ij̄ = (0,±1) then lij,̄ij̄ = h1. We also see
that for fixed finite volume vij one of its neighbours is determined by the form of the normal
νij,̄ij̄ of the boundary Γij,̄ij̄ . There are four possibilities for the normal νij,̄ij̄ . For r, s ∈ {−1, 1}
and |r| + |s| = 1 the unit outer normal νij,̄ij̄ can take the values νij,̄ij̄ = (r, s) when ī = i + r
and j̄ = j + s - see Figure 6.5. The complementary finite volume isotropic mean curvature
approximation from (6.59) then reads

vij

vi+1,jvi−1,j

vi,j+1

vi,j−1

νij,i+1j = (1, 0)νij,i−1j = (−1, 0)

νij,ij+1 = (0, 1)

νij,ij−1 = (0,−1)

Figure 6.5.: Notation νij,̄ij̄ .
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Hh
ij ≈

1

h1h2

(
lij,i+1j

∇ϕhij,i+1j

Qhij,i+1j

· νij,i+1j + lij,ij+1

∇ϕhij,ij+1

Qhij,ij+1

· νij,ij+1

+ lij,i−1j

∇ϕhij,i−1j

Qhij,i−1j

· νij,i−1j + lij,ij−1

∇ϕhij,ij−1

Qhij,ij−1

· νij,ij−1

)

=
1

h1h2

(
h2

∇ϕhij,i+1j

Qhij,i+1j

· (1, 0)T + h1

∇ϕhij,ij+1

Qhij,ij+1

· (0, 1)T

+ h2

∇ϕhij,i−1j

Qhij,i−1j

· (−1, 0)T + h1

∇ϕhij,ij−1

Qhij,ij−1

· (0,−1)T
)

=

(
∂hx1

ϕhij,i+1j

h1Qhij,i+1j

+
∂hx2

ϕhij,ij+1

h2Qhij,ij+1

−
∂hx1

ϕhij,i−1j

h1Qhij,i−1j

−
∂hx2

ϕhij,ij−1

h2Qhij,ij−1

)

=

(
ϕhi+1j − ϕhij
h2

1Q
h
ij,i+1j

+
ϕhij+1 − ϕhij
h2

2Q
h
ij,ij+1

−
ϕhij − ϕhi−1j

h2
1Q

h
ij,i−1j

−
ϕhij − ϕhij−1

h2
2Q

h
ij,ij−1

)
. (6.60)

We set

Qhij,i+1j =

√
1 +

(
∂hx1

ϕhij,i+1j

)2
+
(
∂hx2

ϕhij,i+1j

)2
, (6.61)

Qhij,ij+1 =

√
1 +

(
∂hx1

ϕhij,ij+1

)2
+
(
∂hx2

ϕhij,ij+1

)2
, (6.62)

Qhij,i−1j =

√
1 +

(
∂hx1

ϕhij,i−1j

)2
+
(
∂hx2

ϕhij,i−1j

)2
, (6.63)

Qhij,ij−1 =

√
1 +

(
∂hx1

ϕhij,ij−1

)2
+
(
∂hx2

ϕhij,ij−1

)2
, (6.64)

for

∂hx1
ϕhij,i+1j =

ϕhi+1j − ϕhij
h1

, ∂hx1
ϕhij,i−1j =

ϕhij − ϕhi−1j

h1
, (6.65)

∂hx2
ϕhij,ij+1 =

ϕhij+1 − ϕhij
h2

, ∂hx2
ϕhij,ij−1 =

ϕhij − ϕhij−1

h2
, (6.66)

and

∂hx2
ϕhij,i+1j =

ϕhij,i+1j+1 − ϕhij,i+1j−1

h2
, ∂hx2

ϕhij,i−1j =
ϕhij,i−1j+1 − ϕhij,i−1j−1

h2
, (6.67)

∂hx1
ϕhij,ij+1 =

ϕhij,i+1j+1 − ϕhij,i−1j+1

h1
, ∂hx1

ϕij,ij−1 =
ϕij,i+1j−1 − ϕij,i−1j−1

h1
, (6.68)

where we denote ( see Figure 6.6).

ϕhij,i+1j+1 =
1

4

(
ϕhij + ϕhi+1j + ϕhij+1 + ϕhi+1j+1

)
(6.69)

ϕhij,i+1j−1 =
1

4

(
ϕhij + ϕhi+1j + ϕhij−1 + ϕhi+1j−1

)
(6.70)

ϕhij,i−1j+1 =
1

4

(
ϕhij + ϕhi−1j + ϕhij+1 + ϕhi−1j+1

)
(6.71)

ϕhij,i−1j−1 =
1

4

(
ϕhij + ϕhi−1j + ϕhij−1 + ϕhi−1j−1

)
. (6.72)
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ϕh
ij ϕh

i+1,jϕh
i−1,j

ϕh
i,j+1 ϕh

i+1,j+1ϕh
i−1,j+1

ϕh
i,j−1 ϕh

i+1,j−1ϕh
i−1,j−1

ϕh
ij,i+1jϕh

ij,i−1j

ϕh
ij,i+1j+1ϕh

ij,i−1,j+1ϕ
h
ij,ij+1

ϕh
ij,i+1j−1ϕh

ij,i−1j−1 ϕ
h
ij,ij−1

Figure 6.6.: Notation ϕh
ij,̄ij̄

on the dual mesh.

In the case of the Neumann boundary conditions from (5.13) or (5.49) we set:

if i = 1 then ν = (−1, 0) ⇒
ϕh1j − ϕh0j

h1
= 0⇒ ϕh0j = ϕh1j , (6.73)

if i = N1 − 1 then ν = (1, 0) ⇒
ϕhN1j

− ϕhN1−1j

h1
= 0⇒ ϕhN1j = ϕhN1−1j , (6.74)

if j = 1 then ν = (0,−1) ⇒ ϕhi1 − ϕhi0
h2

= 0⇒ ϕhi0 = ϕhi1, (6.75)

if j = N2 − 1 then ν = (0, 1) ⇒
ϕhiN2

− ϕhiN2−1

h2
= 0⇒ ϕhiN2

= ϕhiN2−1. (6.76)

Approximation of isotropic Willmore flow of graphs We first need to approximate

whij = QhijH
h
ij . (6.77)

Hh
ij is given by (6.60). For Qhij we set

Qhij =
1

4

(
Qhij,i+1j +Qhij,ij+1 +Qhij,i−1j +Qhij,ij−1

)
. (6.78)

Integrating (5.45) over Ωij and applying the Stokes theorem we get∫
Ωij

1

Q
∂tϕdx = −

∫
Γij

E∇wν − 1

2

w2

Q3
∂νϕdHn−1 (6.79)

where ν is the unit outer normal of the boundary Γij . The integral on the left hand side is
approximated as follows: ∫

Ωij

1

Q
∂tϕdx ≈ µ (Ωij)

Qij

d

dt
ϕhij (6.80)
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6. Numerical approximation

where we again assumed that ϕhij and Qhij are constant on the element vij . For the integral on
the right hand side of (6.79) we have

−
∫

Γij

E∇wν − 1

2

w2

Q3
∂νudHn−1 ≈ −

∑
vīj̄∈Nij

lij,̄ij̄

Ehij,̄ij̄∇whij,̄ij̄νij,̄ij̄ −
1

2

(
wh
ij,̄ij̄

)2

(
Qh
ij,̄ij̄

)3∇ϕhij,̄ij̄νij,̄ij̄

 .

(6.81)
(6.80) together with (6.81) gives

d

dt
ϕhij ≈

Qhij
µ (Ωij)

lij,i+1j

Ehij,i+1j∇whij,i+1jνij,i+1j −
1

2

(
whij,i+1j

)2

(
Qhij,i+1j

)3∇ϕhij,i+1jνij,i+1j


+ lij,ij+1

Ehij,ij+1∇whij,ij+1νij,ij+1 −
1

2

(
whij,ij+1

)2

(
Qhij,ij+1

)3∇ϕhij,ij+1νij,ij+1


+ lij,i−1j

Ehij,i−1j∇whij,i−1jνij,i−1j −
1

2

(
whij,i−1j

)2

(
Qhij,i−1j

)3∇ϕhij,i−1jνij,i−1j


+ lij,ij−1

Ehij,ij−1∇whij,ij−1νij,ij−1 −
1

2

(
whij,ij−1

)2

(
Qhij,ij−1

)3∇ϕhij,ij−1νij,ij−1


 .

In the terms of the regular dual mesh (6.54) it means that

d

dt
ϕhij ≈

Qhij
h1h2

h2

Ehij,i+1j∇whij,i+1j (1, 0)T − 1

2

(
whij,i+1j

)2

(
Qhij,i+1j

)3∇ϕhij,i+1j (1, 0)T


+ h1

Ehij,ij+1∇whij,ij+1 (0, 1)T − 1

2

(
whij,ij+1

)2

(
Qhij,ij+1

)3∇ϕhij,ij+1 (0, 1)T


+ h2

Ehij,i−1j∇whij,i−1j (−1, 0)T − 1

2

(
whij,i−1j

)2

(
Qhij,i−1j

)3∇ϕhij,i−1j (−1, 0)T


+ h1

Ehij,ij−1∇whij,ij−1 (0,−1)T − 1

2

(
whij,ij−1

)2

(
Qhij,ij−1

)3∇ϕhij,ij−1 (0,−1)T


 ,
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and

d

dt
ϕhij ≈ Qhij

 1

h1

Ehij,i+1j∇whij,i+1j (1, 0)T − 1

2

(
whij,i+1j

)2

(
Qhij,i+1j

)3∇ϕhij,i+1j (1, 0)T


+

1

h2

Ehij,ij+1∇whij,ij+1 (0, 1)T − 1

2

(
whij,ij+1

)2

(
Qhij,ij+1

)3∇ϕhij,ij+1 (0, 1)T


+

1

h1

Ehij,i−1j∇whij,i−1j (−1, 0)T − 1

2

(
whij,i−1j

)2

(
Qhij,i−1j

)3∇ϕhij,i−1j (−1, 0)T


+

1

h2

Ehij,ij−1∇whij,ij−1 (0,−1)T − 1

2

(
whij,ij−1

)2

(
Qhij,ij−1

)3∇ϕhij,ij−1 (0,−1)T


 ,

which gives

d

dt
ϕhij = Qhij

 1

h1

Eh11,ij,i+1j∂
h
x1
whij,i+1j + Eh12,ij,i+1j∂

h
x2
whij,i+1j −

1

2

(
whij,i+1j

)2

(
Qhij,i+1j

)3∂
h
x1
ϕhij,i+1j


+

1

h2

Eh21,ij,ij+1∂
h
x1
whij,ij+1 + Eh22,ij,ij+1∂

h
x2
whij,ij+1 −

1

2

(
whij,ij+1

)2

(
Qhij,ij+1

)3∂
h
x2
ϕhij,ij+1


− 1

h1

Eh11,ij,i−1j∂
h
x1
whij,i−1j + Eh12,ij,i−1j∂

h
x2
whij,i−1j −

1

2

(
whij,i−1j

)2

(
Qhij,i−1j

)3∂
h
x1
ϕhij,i−1j


− 1

h2

Eh21,ij,ij−1∂
h
x1
whij,ij−1 + Eh22,ij,ij−1∂

h
x2
whij,ij−1 −

1

2

(
whij,ij−1

)2

(
Qhij,ij−1

)3∂
h
x2
ϕhij,ij−1


 .

We approximate ∂x1ϕ
h
ij,̄ij̄

and ∂x2ϕ
h
ij,̄ij̄

by (6.65)–(6.68) and the same holds for ∂x1w
h
ij,̄ij̄

and

∂x2w
h
ij,̄ij̄

with

whij,i+1j =
1

2

(
whij + whi+1j

)
, whij,ij+1 =

1

2

(
whij + whij+1

)
, (6.82)

whij,i−1j =
1

2

(
whij + whi−1j

)
, whij,ij−1 =

1

2

(
whij + whij−1

)
, (6.83)

and whij,i+1j+1, whij,i+1j−1, whij,i−1j+1 and whij,i−1j−1 are approximated in the same way as (6.69)–

(6.72). Qh
ij,̄ij̄

are given by (6.61)–(6.64), Qhij as

Qhij =
1

4

(
Qhij,i+1j +Qhij,ij+1 +Qhij,i−1j +Qhij,ij−1

)
. (6.84)

For

Ehij,̄ij̄ =

(
Eh

11,ij,̄ij̄
Eh

12,ij,̄ij̄

Eh
21,ij,̄ij̄

Eh
22,ij,̄ij̄

)
, (6.85)
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the following holds

Ehij,i+1j ≈
1

Qij,i+1j

 1−
(
∂x1ϕ

h
ij,i+1j

)2
−∂x1ϕ

h
ij,i+1j∂x2ϕ

h
ij,i+1j

−∂x1ϕ
h
ij,i+1j∂x2ϕ

h
ij,i+1j 1−

(
∂x2ϕ

h
ij,i+1j

)2

 ,

Ehij,ij+1 ≈ 1

Qij,ij+1

 1−
(
∂x1ϕ

h
ij,ij+1

)2
−∂x1ϕ

h
ij,ij+1∂x2ϕ

h
ij,ij+1

−∂x1ϕ
h
ij,ij+1∂x2ϕ

h
ij,ij+1 1−

(
∂x2ϕ

h
ij,ij+1

)2

 ,

Ehij,i−1j ≈
1

Qij,i−1j

 1−
(
∂x1ϕ

h
ij,i−1j

)2
−∂x1ϕ

h
ij,i−1j∂x2ϕ

h
ij,i−1j

−∂x1ϕ
h
ij,i−1j∂x2ϕ

h
ij,i−1j 1−

(
∂x2ϕ

h
ij,i−1j

)2

 ,

Ehij,ij−1 ≈ 1

Qij,ij−1

 1−
(
∂x1ϕ

h
ij,ij−1

)2
−∂x1ϕ

h
ij,ij−1∂x2ϕ

h
ij,ij−1

−∂x1ϕ
h
ij,ij−1∂x2ϕ

h
ij,ij−1 1−

(
∂x2ϕ

h
ij,ij−1

)2


The Neumann boundary conditions ∂νϕ = 0 on ∂Ω take the form (6.73)–(6.76). The same is
true even for the Neumann boundary conditions ∂νw = 0

if i = 1 then ν = (−1, 0) ⇒ 1

h1

(
wh1,j − wh0,j

)
= 0⇒ wh1,j = wh0,j , (6.86)

if i = N1 − 1 then ν = (1, 0) ⇒ 1

h1

(
whN1,j − whN1−1,j

)
= 0⇒ whN1,j = whN1−1,j , (6.87)

if j = 1 then ν = (0,−1) ⇒ 1

h2

(
whi,1 − whi,0

)
= 0⇒ whi,1 = whi,0, (6.88)

if j = N2 − 1 then ν = (0, 1) ⇒ 1

h2

(
whi,N2

− whi,N2−1

)
= 0⇒ whi,N2

= whi,N2−1. (6.89)

Numerical schemes for the isotropic graph formulations We conclude with the following
schemes:

Scheme 6.2.14. The complementary finite volume semi-discrete numerical scheme for
the isotropic mean-curvature flow of graphs with the Dirichlet boundary condi-
tions takes the following form

d

dt
ϕhij = Qhij

(
ϕhi+1j − ϕhij
h2

1Q
h
ij,i+1j

+
ϕhij+1 − ϕhij
h2

2Q
h
ij,ij+1

−
ϕhij − ϕhi−1j

h2
1Q

h
ij,i−1j

−
ϕhij − ϕhij−1

h2
2Q

h
ij,ij−1

)
(6.90)

on ωh, (6.91)

ϕhij |t=0 = P
(
ϕhini

)
ij

on ωh, (6.92)

ϕhij = gij on ∂ωh,

where Qhij is given by (6.78) and Qhij,i+1j , Q
h
ij,ij+1, Qhij,i−1j and Qhij,ij−1 are given by (6.61)–

(6.64).
The complementary finite volume semi-discrete numerical scheme for the isotropic
mean-curvature flow of graphs with the Neumann boundary conditions is given by
(6.91)–(6.92) and (6.73)–(6.76).
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6.2. Space discretisation

Scheme 6.2.15. The complementary finite volume semi-discrete numerical scheme for the
isotropic Willmore flow of graphs with the Dirichlet boundary conditions takes the
following form

d

dt
ϕhij = Qhij

 1

h1

Eh11,ij,i+1j∂
h
x1
whij,i+1j + Eh12,ij,i+1j∂

h
x2
whij,i+1j −

1

2

(
whij,i+1j

)2

(
Qhij,i+1j

)3∂
h
x1
ϕhij,i+1j


+

1

h2

Eh21,ij,ij+1∂
h
x1
whij,ij+1 + Eh22,ij,ij+1∂

h
x2
whij,ij+1 −

1

2

(
whij,ij+1

)2

(
Qhij,ij+1

)3∂
h
x2
ϕij,ij+1


− 1

h1

Eh11,ij,i−1j∂
h
x1
whij,i−1j + Eh12,ij,i−1j∂

h
x2
whij,i−1j −

1

2

(
whij,i−1j

)2

(
Qhij,i−1j

)3∂
h
x1
ϕij,i−1j


− 1

h2

Eh21,ij,ij−1∂
h
x1
whij,ij−1 + Eh22,ij,ij−1∂

h
x2
whij,ij−1 −

1

2

(
whij,ij−1

)2

(
Qhij,ij−1

)3∂
h
x2
ϕij,ij−1


 ,
(6.93)

whij = Qhij

(
ϕhi+1j − ϕhij
h2

1Q
h
ij,i+1j

+
ϕhij+1 − ϕhij
h2

2Q
h
ij,ij+1

−
ϕhij − ϕhi−1j

h2
1Q

h
ij,i−1j

−
ϕhij − ϕhij−1

h2
2Q

h
ij,ij−1

)
on ωh, (6.94)

ϕhij |t=0 = P (uini)ij on ωh, (6.95)

ϕhij = gij and whij = 0 on ∂ωh,

where Qhij is given by (6.78) and Qhij,i+1j , Q
h
ij,ij+1, Qhij,i−1j and Qhij,ij−1 are given by (6.61)–(6.64),

Eh
ij,̄ij̄

is given by (6.85), wh
ij,̄ij̄

by (6.82)–(6.83) and as (6.69)–(6.72). ∂hx1
ϕh
ij,̄ij̄

and ∂hx2
ϕh
ij,̄ij̄

is

approximated by (6.65)–(6.68).
The complementary finite volume semi-discrete numerical scheme for the isotropic Will-
more flow of graphs with the Neumann boundary conditions is given by (6.93)–(6.95)
and (6.73)–(6.76) and (6.86)–(6.89).

Evaluation of isotropic mean curvature for the level-set formulation We take the right-hand
side of the equation (5.17) and integrate it over a finite volume Ωij

∫
Ωij

Hdx =

∫
Ωij

∇ ·
(∇u
Qε

)
. (6.96)
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6. Numerical approximation

As for the graph formulation we get

Hh
ij ≈

1

µ (Ωij)

∑
vīj̄∈Nij

lij,̄ij̄
∇uh

ij,̄ij̄

Qh
ε,ij,̄ij̄

· νij,̄ij̄

=
1

h1h2

(
h2

∇uhij,i+1j

Qhε,ij,i+1j

· (1, 0)T + h1

∇uhij,ij+1

Qhε,ij,ij+1

· (0, 1)T

+ h2

∇uhij,i−1j

Qhε,ij,i−1j

· (−1, 0)T + h1

∇uhij,ij−1

Qhε,ij,ij−1

· (0,−1)T
)
,

which gives

Hh
ij ≈

(
uhi+1j − uhij
h2

1Q
h
ε,ij,i+1j

+
uhij+1 − uhij
h2

2Q
h
ε,ij,ij+1

−
uhij − uhi−1j

h2
1Q

h
ε,ij,i−1j

−
uhij − uhij−1

h2
2Q

h
ε,ij,ij−1

)
,

where

Qhε,ij,i+1j =

√
ε2 +

(
∂hx1

uhij,i+1j

)2
+
(
∂hx2

uhij,i+1j

)2
, (6.97)

Qhε,ij,ij+1 =

√
ε2 +

(
∂hx1

uhij,ij+1

)2
+
(
∂hx2

uhij,ij+1

)2
, (6.98)

Qhε,ij,i−1j =

√
ε2 +

(
∂hx1

uhij,i−1j

)2
+
(
∂hx2

uhij,i−1j

)2
, (6.99)

Qhε,ij,ij−1 =

√
ε2 +

(
∂hx1

uhij,ij−1

)2
+
(
∂hx2

uhij,ij−1

)2
. (6.100)

Evaluation of isotropic level-set formulation of the Willmore flow We integrate the equation
(5.53) over the finite volume Ωij and we apply the Stokes theorem to get∫

Ωij

1

Qε
∂tudx = −

∫
Γij

E∇wν − 1

2

w2

Q3
ε

∂νudHn−1, (6.101)

which gives

µ (Ωij)

Qhε,ij

d

dt
uhij = −

∑
vīj̄∈Nij

lij,̄ij̄

Ehij,̄ij̄∇whij,̄ij̄νij,̄ij̄ −
1

2

(
wh
ij,̄ij̄

)2

(
Qh
ε,ij,̄ij̄

)3∇uhij,̄ij̄νij,̄ij̄

 , (6.102)

where

Qhε,ij =
1

4

(
Qhε,ij,i+1j +Qhε,ij,ij+1 +Qhε,ij,i−1j +Qhε,ij,ij−1

)
. (6.103)

and

whij = Qhε,ijH
h
ij , (6.104)

whij,i+1j =
1

2

(
whij + whi+1j

)
, whij,ij+1 =

1

2

(
whij + whij+1

)
, (6.105)

whij,i−1j =
1

2

(
whij + whi−1j

)
, whij,ij−1 =

1

2

(
whij + whij−1

)
. (6.106)
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6.2. Space discretisation

In terms of the regular dual mesh (6.54) it reads

d

dt
uhij = Qhε,ij

 1

h1

Eh11,ij,i+1j∂
h
x1
whij,i+1j + Eh12,ij,i+1j∂

h
x2
whij,i+1j −

1

2

(
whij,i+1j

)2

(
Qhε,ij,i+1j

)3∂
h
x1
uhij,i+1j


+

1

h2

Eh21,ij,ij+1∂
h
x1
whij,ij+1 + Eh22,ij,ij+1∂

h
x2
whij,ij+1 −

1

2

(
whij,ij+1

)2

(
Qhε,ij,ij+1

)3∂
h
x2
uhij,ij+1


− 1

h1

Eh11,ij,i−1j∂
h
x1
whij,i−1j + Eh12,ij,i−1j∂

h
x2
whij,i−1j −

1

2

(
whij,i−1j

)2

(
Qhε,ij,i−1j

)3∂
h
x1
uhij,i−1j


− 1

h2

Eh21,ij,ij−1∂
h
x1
whij,ij−1 + Eh22,ij,ij−1∂

h
x2
whij,ij−1 −

1

2

(
whij,ij−1

)2

(
Qhε,ij,ij−1

)3∂
h
x2
uhij,ij−1


 ,

Numerical schemes for the isotropic level-set formulations We conclude with the following
schemes:

Scheme 6.2.16. The complementary finite volume semi-discrete numerical scheme
for the level-set formulation of the isotropic mean-curvature flow with the
Dirichlet boundary conditions takes the form

d

dt
uhij = Qhε,ij

(
uhi+1j − uhij
h2

1Q
h
ε,ij,i+1j

+
uhij+1 − uhij
h2

2Q
h
ε,ij,ij+1

−
uhij − uhi−1j

h2
1Q

h
ε,ij,i−1j

−
uhij − uhij−1

h2
2Q

h
ε,ij,ij−1

)
on ωh,

(6.107)

uhij |t=0 = P (uini)ij on ωh, ϕ
h
ij = gij on ∂ωh, (6.108)

where Qhε,ij is given by (6.103) and Qhε,ij,i+1j , Q
h
ε,ij,ij+1, Qhε,ij,i−1j and Qhε,ij,ij−1 are given

by (6.61)–(6.64).
The complementary finite volume semi-discrete numerical scheme for the level-set
formulation of the isotropic mean-curvature flow with the Neumann boundary
conditions is given by (6.73)–(6.76).
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6. Numerical approximation

Scheme 6.2.17. The complementary finite volume semi-discrete numerical scheme
for the level-set formulation of the isotropic Willmore flow with the Dirichlet
boundary conditions takes the form

d

dt
uhij = Qε,ij

E
h
11,ij,i+1j∂

h
x1
whij,i+1j + Eh12,ij,i+1j∂

h
x2
whij,i+1j − 1

2

(whij,i+1j)
2

(Qhε,ij,i+1j)
3∂

h
x1
uhij,i+1j

h1

+

Eh21,ij,ij+1∂
h
x1
whij,ij+1 + Eh22,ij,ij+1∂

h
x2
whij,ij+1 − 1

2

(whij,ij+1)
2

(Qhε,ij,ij+1)
3∂

h
x2
uhij,ij+1

h2

−
Eh11,ij,i−1j∂

h
x1
whij,i−1j + Eh12,ij,i−1j∂

h
x2
whij,i−1j − 1

2

(whij,i−1j)
2

(Qhε,ij,i−1j)
3∂

h
x1
uhij,i−1j

h1

−
Eh21,ij,ij−1∂

h
x1
whij,ij−1 + Eh22,ij,ij−1∂

h
x2
whij,ij−1 − 1

2

(whij,ij−1)
2

(Qhε,ij,ij−1)
3∂

h
x2
uhij,ij−1

h2

 ,
(6.109)

whij = Qhε,ij

(
uhi+1j − uhij
h2

1Q
h
ε,ij,i+1j

+
uhij+1 − uhij
h2

2Q
h
ε,ij,ij+1

−
uhij − uhi−1j

h2
1Q

h
ε,ij,i−1j

−
uhij − uhij−1

h2
2Q

h
ε,ij,ij−1

)
on ωh,

uhij |t=0 = P (uini)ij on ωh, (6.110)

uhij = gij and whij = 0 on ∂ωh, (6.111)

where Qhε,ij is given by (6.103) and Qhε,ij,i+1j , Q
h
ε,ij,ij+1, Qhε,ij,i−1j and Qhε,ij,ij−1 are given

by (6.97)–(6.100), Eh
ij,̄ij̄

is given by (6.85), wh
ij,̄ij̄

by (6.82)–(6.83) and as (6.69)–(6.72).

∂hx1
uh
ij,̄ij̄

and ∂hx2
uh
ij,̄ij̄

is approximated by (6.65)–(6.68).
The complementary finite volume semi-discrete numerical scheme for the level-set
formulation of the isotropic Willmore flow with the Neumann boundary con-
ditions is given by (6.109)–(6.110), (6.73)–(6.76) and (6.86)–(6.89).

Evaluation of anisotropic mean curvature of graphs For admissible anisotropy γ, the anisotropic
mean curvature of graphs is given by equation (5.25). Integrating it over a finite volume Ωij

and applying the Stokes formula∫
Ωij

Hγdx =

∫
Ωij

∇ · (∇pγ) dx =

∫
Γij

∇pγ · νdHn−1. (6.112)

The approximation reads∫
Ωij

Hγdx ≈ µ (Ω)Hh
γ,ij =

∑
vīj̄∈Nij

lij,̄ij̄∇pγij,̄ij̄νij,̄ij̄dHn−1, (6.113)

where

∇pγij,̄ij̄ =
(
∂p1γij,̄ij̄ , ∂p2γij,̄ij̄

)T
=
(
∂p1γ

(
∇ϕhij,̄ij̄ ,−1

)
, ∂p2γ

(
∇ϕhij,̄ij̄ ,−1

))T
. (6.114)
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6.2. Space discretisation

For the regular dual mesh (6.54) we have

Hh
γ,ij =

1

h1h2

(
h2∇pγij,i+1j · (1, 0)T + h1∇pγij,ij+1 · (0, 1)T

+ h2∇pγij,i−1j · (−1, 0)T + h1∇pγij,ij−1 · (0,−1)T
)

=

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
. (6.115)

In the case of the Neumann boundary conditions from ∇pγ · ν = 0 we set:

if i = 1 then ν = (−1, 0) ⇒ ∂p1γ1j,0j = 0, (6.116)

if i = N1 − 1 then ν = (1, 0) ⇒ ∂p1γN1−1j,N1j = 0, (6.117)

if j = 1 then ν = (0,−1) ⇒ ∂p2γi1,i0 = 0, (6.118)

if j = N2 − 1 then ν = (0, 1) ⇒ ∂p2γiN2−1,iN2 = 0. (6.119)

The approximation of ∇pγij,̄ij̄ for general anisotropies is discussed later in the Sections 6.3.

Anisotropic Willmore flow of graphs From (6.115) we see the approximation of wγ = QHγ

on the finite volume Ωij as

whγ,ij =
Qhij

µ (Ωij)

∑
vīj̄∈Nij

lij,̄ij̄∇pγij,̄ij̄νij,̄ij̄

= Qhij

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
,

and we also define

whγ,ij,i+1j =
1

2

(
whγ,ij + whγ,i+1j

)
, whγ,ij,ij+1 =

1

2

(
whγ,ij + whγ,ij+1

)
, (6.120)

whγ,ij,i−1j =
1

2

(
whγ,ij + whγ,i−1j

)
, whγ,ij,ij−1 =

1

2

(
whγ,ij + whγ,ij−1

)
. (6.121)

Integrating (5.81) over Ωij and applying the Stokes theorem we get∫
Ωij

1

Q
∂tϕdx = −

∫
Γij

Eγ∇wγν −
1

2

w2
γ

Q3
∂νϕdHn−1 (6.122)

where ν is the unit outer normal of the boundary Γij . As before, the left hand side is approxi-
mated as follows: ∫

Ωij

1

Q
∂tϕdx ≈ µ (Ωij)

Qhij

d

dt
ϕhij = h1h2

1

Qhij

d

dt
ϕhij , (6.123)

where we again assumed that ϕhij and Qhij are constant on the element vij . For the integral on
the right hand side of (6.122) we have

−
∫

Γij

Eγ∇wγν−
1

2

w2
γ

Q3
∂νϕdHn−1 ≈ −

∑
vīj̄∈Nij

lij,̄ij̄

Ehγ,ij,̄ij̄∇whγ,ij,̄ij̄νij,̄ij̄ −
1

2

(
wh
γ,ij,̄ij̄

)2

(
Qh
ij,̄ij̄

)3 ∇ij,̄ij̄ϕhijνij,̄ij̄

 .

(6.124)
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6. Numerical approximation

with the usual notation. Putting (6.123) and (6.124) together gives

d

dt
ϕhij = −

Qhij
µ (Ωij)

∑
īj̄∈Nij

lij,̄ij̄

Ehγ,ij,̄ij̄∇whγ,ij,̄ij̄νij,̄ij̄ −
1

2

(
wh
γ,ij,̄ij̄

)2

(
Qh
ij,̄ij̄

)3 ∇ijīj̄ϕhijνij,̄ij̄

 .

In the terms of the regular dual mesh (6.54) we get

d

dt
ϕhij = −

Qhij
h1h2

[
h2

Ehγ,ij,i+1j∇whγ,ij,i+1j (1, 0)T − 1

2

(
whγ,ij,i+1j

)2

(
Qhij,i+1j

)3 ∇ϕhij,i+1j (1, 0)T


+ h1

Ehγ,ij,ij+1∇whγ,ij,ij+1 (0, 1)T − 1

2

(
whγ,ij,ij+1

)2

(
Qhij,ij+1

)3 ∇ϕhij,ij+1 (0, 1)T


+ h2

Ehγ,ij,i−1j∇whγ,ij,i−1j (−1, 0)T − 1

2

(
whγ,ij,i−1j

)2

(
Qhij,i−1j

)3 ∇ϕhij,i−1j (−1, 0)T


+ h1

Ehγ,ij,ij−1∇whγ,ij,ij−1 (0,−1)T − 1

2

(
whγ,ij,ij−1

)2

(
Qhij,ij−1

)3 ∇ϕhij,ij−1 (0,−1)T

],
and so

d

dt
ϕhij = −Qhij

[
1

h1

Ehγ,11,ij,i+1j∂
h
x1
whγ,ij,i+1j + Ehγ,12,ij,i+1j∂

h
x2
whγ,ij,i+1j −

1

2

(
whγ,ij,i+1j

)2

(
Qhij,i+1j

)3 ∂x1ϕ
h
ij,i+1j


+

1

h2

Ehγ,21,ij,ij+1∂
h
x1
whγ,ij,ij+1 + Ehγ,22,ij,ij+1∂

h
x2
whγ,ij,ij+1 −

1

2

(
whγ,ij,ij+1

)2

(
Qhij,ij+1

)3 ∂
h
x2
ϕhij,ij+1


− 1

h1

Ehγ,11,ij,i−1j∂
h
x1
whγ,ij,i−1j + Ehγ,12,ij,i−1j∂

h
x2
whγ,ij,i−1j −

1

2

(
whγ,ij,i−1j

)2

(
Qhij,i−1j

)3 ∂
h
x1
ϕhij,i−1j


− 1

h2

Ehγ,21,ij,ij−1∂
h
x1
whγ,ij,ij−1 + Ehγ,22,ij,ij−1∂

h
x2
whγ,ij,ij−1 −

1

2

(
whγ,ij,ij−1

)2

(
Qhij,ij−1

)3 ∂
h
x2
ϕhij,ij−1

],
where for

Ehγ,ij,̄ij̄ =

(
Eh
γ,11,ij,̄ij̄

Eh
γ,12,ij,̄ij̄

Eh
γ,21,ij,̄ij̄

Eh
γ,22,ij,̄ij̄

)
, (6.125)

we have

Ehγ,ij,i+1j = ∂p1∂p1γ
(
∇ϕhij,i+1j ,−1

)
, Ehγ,ij,ij+1 = ∂p1∂p2γ

(
∇ϕhij,ij+1,−1

)
,

Ehγ,ij,i−1j = ∂p1∂p1γ
(
∇ϕhij,i−1j ,−1

)
, Ehγ,ij,ij−1 = ∂p1∂p2γ

(
∇ϕhij,ij−1,−1

)
.
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6.2. Space discretisation

The Neumann boundary conditions ∂νϕ = 0 on ∂Ω take the following discrete form

if i = 1 then ν = (−1, 0) ⇒ 1

h1

(
ϕh1,j − ϕh0,j

)
= 0, (6.126)

if i = N1 − 1 then ν = (1, 0) ⇒ 1

h1

(
ϕhN1,j − ϕhN1−1,j

)
= 0, (6.127)

if j = 1 then ν = (0,−1) ⇒ 1

h2

(
ϕhi,1 − ϕhi,0

)
= 0, (6.128)

if j = N2 − 1 then ν = (0, 1) ⇒ 1

h2

(
ϕhi,N2

− ϕhi,N2−1

)
= 0 (6.129)

and from (5.80) we get

if i = 1 then ν = (−1, 0) ⇒ Eγ,11,1j,0j∂x1w
h
γ,1j,0j +Eγ,12,1j,0j∂x2w

h
γ,1j,0j = 0,

(6.130)

if i = N1 − 1 then ν = (1, 0) ⇒ Eγ,11,N1−1j,N1j∂x1w
h
γ,N1−1j,N1j +

Eγ,12,N1−1j,N1j∂x2w
h
γ,N1−1j,N1j = 0, (6.131)

if j = 1 then ν = (0,−1) ⇒ Eγ,21,i1,i0∂x1w
h
γ,i1,i0 +Eγ,22,i1,i0∂x2w

h
γ,i1,i0 = 0, (6.132)

if j = N2 − 1 then ν = (0, 1) ⇒ Eγ,21,iN2−1,iN2∂x1w
h
γ,iN2−1.iN2

+

Eγ,22,iN2−1,iN2∂x2w
h
γ,iN2−1,N2

= 0. (6.133)

Numerical schemes for the anisotropic graph formulations We get the following schemes:
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6. Numerical approximation

Scheme 6.2.18. The complementary finite volume semi-discrete numerical scheme for the
anisotropic Willmore flow of graphs with the Dirichlet boundary conditions takes
the following form

d

dt
ϕhij = Qij

E
h
γ,11,ij,i+1j∂

h
x1
whγ,ij,i+1j + Ehγ,12,ij,i+1j∂

h
x2
whγ,ij,i+1j − 1

2

(whγ,ij,i+1j)
2

(Qhij,i+1j)
3 ∂

h
x1
ϕhij,i+1j

h1

+

Ehγ,21,ij,ij+1∂
h
x1
whγ,ij,ij+1 + Ehγ,22,ij,ij+1∂

h
x2
whγ,ij,ij+1 − 1

2

(whγ,ij,ij+1)
2

(Qhij,ij+1)
3 ∂

h
x2
ϕhij,ij+1

h2

−
Ehγ,11,ij,i−1j∂

h
x1
whγ,ij,i−1j + Ehγ,12,ij,i−1j∂

h
x2
whγ,ij,i−1j − 1

2

(whγ,ij,i−1j)
2

(Qhij,i−1j)
3 ∂

h
x1
ϕhij,i−1j

h1

−
Ehγ,21,ij,ij−1∂

h
x1
whγ,ij,ij−1 + Ehγ,22,ij,ij−1∂

h
x2
whγ,ij,ij−1 − 1

2

(whγ,ij,ij−1)
2

(Qhij,ij−1)
3 ∂

h
x2
ϕhij,ij−1

h2

 ,
(6.134)

whγ,ij = Qhij

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
on ωh,

ϕhij |t=0 = P (ϕini)ij on ωh, (6.135)

ϕhij = gij and whij = 0 on ∂ωh, (6.136)

where Qhij is given by (6.78) and Qhij,i+1j , Q
h
ij,ij+1, Qhij,i−1j and Qhij,ij−1 are given by (6.61)–(6.64),

Eh
γ,ij,̄ij̄

is given by (6.125), wh
γ,ij,̄ij̄

by (6.120)–(6.121). ∂hx1
ϕh
ij,̄ij̄

and ∂hx2
ϕh
ij,̄ij̄

is approximated by

(6.65)–(6.68).
The complementary finite volume semi-discrete numerical scheme for the anisotropic Will-
more flow of graphs with the Neumann boundary conditions is given by (6.134)–(6.136),
(6.126)–(6.129) and (6.130)–(6.133).
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6.2. Space discretisation

Scheme 6.2.19. The complementary finite volume semi-discrete numerical scheme
for the anisotropic mean-curvature flow of graphs with the Dirichlet boundary
conditions takes the form

d

dt
ϕhij = Qhij

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
on ωh, (6.137)

ϕhij |t=0 = P (ϕini)ij on ωh, (6.138)

ϕhij = gij on ∂ωh, (6.139)

where Qhij is given by (6.78) and ∇pγij,̄ij̄ =
(
∂p1γij,̄ij̄ , ∂p2γij,̄ij̄

)T
is given by (6.114).

The complementary finite volume semi-discrete numerical scheme for the anisotropic
mean-curvature flow of graphs with the Neumann boundary conditions is given
by (6.137)–(6.139) and (6.116)–(6.119).

Evaluation of anisotropic mean curvature for the level-set formulation Taking the right-
hand side of the equation (5.30), integrating over a finite volume Ωij and applying the Stokes
formula we get ∫

Ωij

Hγdx =

∫
Ωij

∇ · (∇pγ (∇u)) dx =

∫
Γij

∇pγ (∇u) · νdHn−1, (6.140)

which gives ∫
Ωij

Hγdx ≈ µ (Ω)Hh
γ,ij =

∑
vīj̄∈Nij

lij,̄ij̄∇pγij,̄ij̄νij,̄ij̄dHn−1, (6.141)

for

∇pγij,̄ij̄ =
(
∂p1γij,̄ij̄ , ∂p2γij,̄ij̄

)T
=
(
∂p1γ

(
∇uhij,̄ij̄

)
, ∂p2γ

(
∇uhij,̄ij̄

))T
. (6.142)

On the regular dual mesh (6.54) we get

Hh
γ,ij =

1

h1h2

(
h2∇pγij,i+1j · (1, 0)T + h1∇pγij,ij+1 · (0, 1)T

+ h2∇pγij,i−1j · (−1, 0)T + h1∇pγij,ij−1 · (0,−1)T
)

=

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
. (6.143)

The Neumann boundary conditions from ∇pγ · ν = 0 are approximated as follows:

if i = 1 then ν = (−1, 0) ⇒ ∂p1γ1j,0j = 0, (6.144)

if i = N1 − 1 then ν = (1, 0) ⇒ ∂p1γN1−1j,N1j = 0, (6.145)

if j = 1 then ν = (0,−1) ⇒ ∂p2γi1,i0 = 0, (6.146)

if j = N2 − 1 then ν = (0, 1) ⇒ ∂p2γiN2−1,iN2 = 0. (6.147)
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6. Numerical approximation

Anisotropic level-set formulation of the Willmore flow As for the isotropic level-set formula-
tion, we start with the approximation of wγ = QεHγ . For the finite volume Ωij we get

whγ,ij =
Qhε,ij
µ (Ωij)

∑
vīj̄∈Nij

lij,̄ij̄∇pγij,̄ij̄νij,̄ij̄

= Qhε,ij

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
,

where Qh
ε,ij,̄ij̄

is given by (6.103), Qhε,ij,i+1j , Q
h
ε,ij,ij+1, Qhε,ij,i−1j and Qhε,ij,ij−1 are given by (6.97)–

(6.100) and we also define whγ,ij,i+1j , w
h
γ,ij,ij+1, whγ,ij,i−1j and whγ,ij,ij−1 by (6.120)–(6.121). We

integrate the equation (5.89) over the finite volume Ωij and we apply the Stokes theorem to get∫
Ωij

1

Qε
∂tudx = −

∫
Γij

Eγ∇wγν −
1

2

w2
γ

Q3
ε

∂νudHn−1, (6.148)

which gives

µ (Ωij)

Qhε,ij

d

dt
uhij = −

∑
vīj̄∈Nij

lij,̄ij̄

Ehγ,ij,̄ij̄∇whγ,ij,̄ij̄νij,̄ij̄ −
1

2

(
wh
γ,ij,̄ij̄

)2

(
Qh
ε,ij,̄ij̄

)3∇uhij,̄ij̄νij,̄ij̄

 , (6.149)

where for

Ehγ,ij,̄ij̄ =

(
Eh
γ,11,ij,̄ij̄

Eh
γ,12,ij,̄ij̄

Eh
γ,21,ij,̄ij̄

Eh
γ,22,ij,̄ij̄

)
, (6.150)

we have

Ehγ,ij,i+1j = ∂p1∂p1γ
(
∇uhij,i+1j

)
, Ehγ,ij,ij+1 = ∂p1∂p2γ

(
∇uhij,ij+1

)
,

Ehγ,ij,i−1j = ∂p1∂p1γ
(
∇uhij,i−1j

)
, Ehγ,ij,ij−1 = ∂p1∂p2γ

(
∇uhij,ij−1

)
.

and we set

whγ,ij,i+1j =
1

2

(
whγ,ij + whγ,i+1j

)
, whγ,ij,ij+1 =

1

2

(
whγ,ij + whγ,ij+1

)
, (6.151)

whγ,ij,i−1j =
1

2

(
whγ,ij + whγ,i−1j

)
, whγ,ij,ij−1 =

1

2

(
whγ,ij + whγ,ij−1

)
. (6.152)

In terms of the regular dual mesh (6.54) it reads

d

dt
uhij = Qhε,ij

 1

h1

Ehγ,11,ij,i+1j∂
h
x1
whγ,ij,i+1j + Eh12,ij,i+1j∂

h
x2
whγ,ij,i+1j −

1

2

(
whγ,ij,i+1j

)2

(
Qhε,ij,i+1j

)3 ∂
h
x1
uhij,i+1j


+

1

h2

Ehγ,21,ij,ij+1∂
h
x1
whγ,ij,ij+1 + Ehγ,22,ij,ij+1∂

h
x2
whγ,ij,ij+1 −

1

2

(
whγ,ij,ij+1

)2

(
Qhε,ij,ij+1

)3 ∂
h
x2
uhij,ij+1


− 1

h1

Ehγ,11,ij,i−1j∂
h
x1
whγ,ij,i−1j + Ehγ,12,ij,i−1j∂

h
x2
whγ,ij,i−1j −

1

2

(
whγ,ij,i−1j

)2

(
Qhε,ij,i−1j

)3 ∂
h
x1
uhij,i−1j


− 1

h2

Ehγ,21,ij,ij−1∂
h
x1
whγ,ij,ij−1 + Ehγ,22,ij,ij−1∂

h
x2
whγ,ij,ij−1 −

1

2

(
whγ,ij,ij−1

)2

(
Qhε,ij,ij−1

)3 ∂
h
x2
uhij,ij−1


 .
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6.2. Space discretisation

The Neumann boundary conditions ∂νϕ = 0 on ∂Ω take the following discrete form

if i = 1 then ν = (−1, 0) ⇒ 1

h1

(
ϕh1,j − ϕh0,j

)
= 0, (6.153)

if i = N1 − 1 then ν = (1, 0) ⇒ 1

h1

(
ϕhN1,j − ϕhN1−1,j

)
= 0, (6.154)

if j = 1 then ν = (0,−1) ⇒ 1

h2

(
ϕhi,1 − ϕhi,0

)
= 0, (6.155)

if j = N2 − 1 then ν = (0, 1) ⇒ 1

h2

(
ϕhi,N2

− ϕhi,N2−1

)
= 0 (6.156)

and from (5.80) we get

if i = 1 then ν = (−1, 0) ⇒ Eγ,11,1j,0j∂x1w
h
γ,1j,0j +Eγ,12,1j,0j∂x2w

h
γ,1j,0j = 0,

(6.157)

if i = N1 − 1 then ν = (1, 0) ⇒ Eγ,11,N1−1j,N1j∂x1w
h
γ,N1−1j,N1j +

Eγ,12,N1−1j,N1j∂x2w
h
γ,N1−1j,N1j = 0, (6.158)

if j = 1 then ν = (0,−1) ⇒ Eγ,21,i1,i0∂x1w
h
γ,i1,i0 +Eγ,22,i1,i0∂x2w

h
γ,i1,i0 = 0, (6.159)

if j = N2 − 1 then ν = (0, 1) ⇒ Eγ,21,iN2−1,iN2∂x1w
h
γ,iN2−1.iN2

+

Eγ,22,iN2−1,iN2∂x2w
h
γ,iN2−1,N2

= 0. (6.160)

Numerical schemes for the anisotropic level-set formulations We conclude with the following
schemes:

Scheme 6.2.20. The complementary finite volume semi-discrete numerical scheme
for the level-set formulation of the anisotropic mean-curvature flow with the
Dirichlet boundary conditions takes the form

d

dt
uhij = Qhε,ij

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
on ωh,

(6.161)

uhij |t=0 = P (uini)ij on ωh, (6.162)

uhij = gij on ∂ωh, (6.163)

where Qhε,ij is given by (6.103) and and ∇pγij,̄ij̄ =
(
∂p1γij,̄ij̄ , ∂p2γij,̄ij̄

)T
is given by (6.142).

The complementary finite volume semi-discrete numerical scheme for the level-set
formulation of the anisotropic mean-curvature flow with the Neumann bound-
ary conditions is given by (6.161)–(6.162) and (6.144)–(6.147).
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6. Numerical approximation

Scheme 6.2.21. The complementary finite volume semi-discrete numerical scheme for the
level-set formulation of the anisotropic Willmore flow with the Dirichlet boundary
conditions takes the form

d

dt
uhij = Qhε,ij

E
h
11,ij,i+1j∂

h
x1
whij,i+1j + Eh12,ij,i+1j∂

h
x2
whij,i+1j − 1

2

(whij,i+1j)
2

(Qhε,ij,i+1j)
3∂

h
x1
uhij,i+1j

h1

+

Eh21,ij,ij+1∂
h
x1
whij,ij+1 + Eh22,ij,ij+1∂

h
x2
whij,ij+1 − 1

2

(whij,ij+1)
2

(Qhε,ij,ij+1)
3∂

h
x2
uhij,ij+1

h2

−
Eh11,ij,i−1j∂

h
x1
whij,i−1j + Eh12,ij,i−1j∂

h
x2
whij,i−1j − 1

2

(whij,i−1j)
2

(Qhε,ij,i−1j)
3∂

h
x1
uhij,i−1j

h1

−
Eh21,ij,ij−1∂

h
x1
whij,ij−1 + Eh22,ij,ij−1∂

h
x2
whij,ij−1 − 1

2

(whij,ij−1)
2

(Qhε,ij,ij−1)
3∂

h
x2
uhij,ij−1

h2

 ,
(6.164)

whij = Qhε,ij

(
uhi+1j − uhij
h2

1Q
h
ε,ij,i+1j

+
uhij+1 − uhij
h2

2Q
h
ε,ij,ij+1

−
uhij − uhi−1j

h2
1Q

h
ε,ij,i−1j

−
uhij − uhij−1

h2
2Q

h
ε,ij,ij−1

)
on ωh, (6.165)

uhij |t=0 = P (uini)ij on ωh, (6.166)

uhij = gij and whij = 0 on ∂ωh, (6.167)

where Qhε,ij is given by (6.103) and Qhε,ij,i+1j , Q
h
ε,ij,ij+1, Qhε,ij,i−1j and Qhε,ij,ij−1 are given by

(6.97)–(6.100), Eij,̄ij̄ is given by (6.85), wij,̄ij̄ by (6.82)–(6.83) and as (6.69)–(6.72). ∂x1u
h
ij,̄ij̄

and

∂x2u
h
ij,̄ij̄

is approximated by (6.65)–(6.68).
The complementary finite volume semi-discrete numerical scheme for the level-set formu-
lation of the anisotropic Willmore flow with the Neumann boundary conditions is
given by (6.164)–(6.166), (6.144)–(6.147) and (6.157)–(6.160).

Remark 6.2.22. We can see that in general we get implicit boundary conditions of the form
(6.116)-(6.119), (6.144)-(6.147), (6.130)-(6.133) and (6.157)-(6.160). These equations are non-
linear in uhij resp. whij on ∂ωh and therefore it is not trivial to solve them. As a result we do
not know these quantities on ∂ωh. In section 6.3.2, we will see that it is important for the
semi-implicit scheme and we will show how to approximate the quantities we mentioned on the
boundaries.

Remark 6.2.23. In the Figure 6.7 we show the stencil of the complementary finite volume
schemes for the fourth order problem (6.2.18) and (6.2.21). It is a 21 point stencil (resp. a 25
point stencil in the case of the anisotropy 5.111). One can see that the stencil is symmetric and
it is smaller then the stencil for the central schemes (see Figure 6.3).
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6.2. Space discretisation

Figure 6.7.: Stencil of the numerical schemes (6.2.15), (6.2.17), (6.2.18) and (6.2.21) is symmetric
and compact. Grey points represent the stencil of the schemes with the anisotropy
(5.111)

Comparison with finite difference approach

Now we aim to derive the same schemes as in the previous section (i.e. schemes (6.2.14), (6.2.15),
(6.2.16), (6.2.15), (6.2.19), (6.2.18), (6.2.20) and (6.2.21) ) in terms of the finite difference
method. The essence of this approach is in a definition of a finer numerical grid

Ωh =

{
(ih1, jh2) | i =

1

2
, 1, · · ·N1 −

1

2
; j =

1

2
, 1 · · ·N2 −

1

2

}
, (6.168)

In comparison with the mesh ωh we have added new nodes which are counterparts of the bound-
aries of the finite volumes of the dual mesh (6.54). The values of the grid function uhij on Ωh are
obtained by the following interpolation mapping:

Definition 6.2.24. The interpolation mapping I
(
uh, i, j, r, s

)
: ωh → Ωh is linear mapping

defined for r, s ∈ {−1, 1} as:

I
(
uh, i, j, r, 0

)
=

1

2

(
uhi+r,j + uhij

)
,

I
(
uh, i, j, 0, s

)
=

1

2

(
uhi,j+s + uhij

)
,

I
(
uh, i, j, r, s

)
=

1

4

(
uhi+r,j+s + uhi+r,j + uhi,j+s + uhij

)
.

For r, s ∈ {−1, 0, 1} we set uhi+ r
2
,j+ s

2
= I

(
uh, i, j, r, s

)
. By uppercase, we denote a grid function

with doubled indices
Uhkl = uhk

2
l
2

, (6.169)

for k = 0, · · · , 2N1 and l = 0, · · · , 2N2. We extend the notation for finite differences on the finer
grid as

Uhf.,kl = 2
Uhk+1,l − Uhkl

h
, Uhb.,kl = 2

Uhkl − Uhk−1,l

h
,

Uh.f,kl = 2
Uhk,l+1 − Uhkl

h
, Uh.b,kl = 2

Uhkl − Uhk,l−1

h
,

Uhc.,kl =
1

2

(
Uhf.,kl + Uhb.,kl

)
, Uh.c,kl =

1

2

(
Uh.f,kl + Uh.b,kl

)
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6. Numerical approximation

To approximate gradient of u we define

∇huhij =
(
Uhc.,2i,2j , U

h
.c,2i,2j

)
for i = 1, · · ·N1 − 1, j = 1, · · · , N2 − 1

Note that since we define ∇huhij in terms of Uhkl we can also write ∇huhi± 1
2
,j± 1

2

for i = 1 · · ·N1−1

and j = 1, · · ·N2 − 1. The discrete divergence operator is defined in the same manner.

For the graph formulation we denote

Qh
i± 1

2
,j± 1

2

=

√
1 +

∣∣∣∣∇hϕhi± 1
2
,j± 1

2

∣∣∣∣2 resp. Qhij =
1

4

∑
ζ,η∈{−1,1)
|ζ|+|η|=1

Qh
i+ ζ

2
,j+ η

2

, (6.170)

Hh
γ,ij = ∇h · ∇pγij = ∇h · (∂p1γij , ∂p2γij)

T , (6.171)

E
h
γ,i± 1

2
,j± 1

2

= Eγ

(
∇hϕhi± 1

2
,j± 1

2

)
= ∇p ⊗∇pγ

(
ϕh
i± 1

2
,j± 1

2

,−1
)
. (6.172)

for i = 1, · · ·N1 − 1 and j = 1, · · · , N2 − 1 where

(∂p1γij , ∂p2γij)
T =

(
∂p1γ

(
∇hϕhij ,−1

)
, ∂p2

(
∇hϕhij ,−1

))T
. (6.173)

Remark 6.2.25. We demonstrate the meaning of the approximation on the isotropic mean
curvature. It gives

Hh
γ,ij = ∇h ·

(
∇hϕhij
Qhij

)
.

Since we want to evaluate the discrete divergence ∇h at the point xij , we will use the neighbours
xi± 1

2
,j± 1

2
. We get

Hh
γ,ij =

1

h1

∂hx1
uh
i+ 1

2
,j

Qh
i+ 1

2
,j

−
∂hx1

uh
i− 1

2
,j

Qh
i− 1

2
,j

+
1

h2

∂hx2
uh
i,j+ 1

2

Qh
i,j− 1

2

−
∂hx2

uh
i,j− 1

2

Qh
i,j− 1

2

 ,

and simple substitution for ∂hxlu
h
i± 1

2
,j± 1

2

for l = 1, 2 gives

Hh
γ,ij =

1

h2
1

uhi+1,j − uhij
Qh
i+ 1

2
,j

−
uhij − uhi−1,j

Qh
i− 1

2
,j

+
1

h2
2

uhi,j+1 − uhij
Qh
i,j− 1

2

−
uhij − uhi,j−1

Qh
i,j− 1

2

 ,

Remark 6.2.26. In case when we compute ∇hHh
γ,ij or ∇hwhij , having Hγ,i+ r

2
,j+ s

2
or whi+ r

2
,j+ s

2

for r, s ∈ {−1, 0, 1} is required. We have two possibilities how to achieve these quantities - either

exact evaluation by substituting ∇huhi+ r
2
,j+ s

2
as Hh

γ,i+ r
2
,j+ s

2
:= Hγ

(
∇huhi+ r

2
,j+ s

2

)
, or by means

of the interpolation mapping (6.2.24) on Hh
γ,ij as Hh

γ,i+ r
2
,j+ s

2
:= I

(
Hh
γ , i, j, r, s

)
. Numerical

experiments show that the latter approach gives the same accuracy of the scheme. Moreover,
implementation of such schemes is significantly easier and more efficient. Therefore we choose
the interpolation.

Now we introduce the following schemes (we consider only the anisotropic problems):
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6.2. Space discretisation

Scheme 6.2.27. The finite difference semi-discrete approximation of the mean-
curvature flow of graphs with the Dirichlet boundary conditions with the
anisotropy given by γ reads as

dϕhij
dt

= Qhij

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
on ωh, (6.174)

ϕhij |t=0 = P (ϕini)ij on ωh, (6.175)

ϕhij = gij on ∂ωh,

where Qhij is given by (6.170), ∂p1γij , ∂p2γij by (6.173). The finite difference semi-
discrete approximation of the mean-curvature flow of graphs with the Neumann
boundary conditions with the anisotropy function γ is given by (6.174)–(6.175) and

γp1,i− 1
2
,j = 0 for i = 1, γp1,i+

1
2
,j = 0 for i = N1 − 1, (6.176)

γp2,i,j− 1
2

= 0 for j = 1, γp2,i,j+
1
2

= 0 for j = N2 − 1. (6.177)
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6. Numerical approximation

Scheme 6.2.28. The finite difference semi-discrete approximation of the anisotropic
Willmore flow of graphs with the Dirichlet boundary conditions with the
anisotropy given by γ reads as

dϕhij
dt

= −Qhij∇h ·

Ehγ,ij∇hwhγ,ij − 1

2

(
whγ,ij

)2

(
Qhij

)3 ∇hϕhij

 on ωh, (6.178)

whγ,ij = Qhij

(
∂p1γij,i+1j − ∂p1γij,i−1,j

h1
+
∂p2γij,ij+1 − ∂p2γij,ij−1

h2

)
on ωh, (6.179)

ϕhij |t=0 = P (ϕini)ij on ωh, (6.180)

ϕhij = gij and whγ,ij = 0 on ∂ωh. (6.181)

where Qhij is given by (6.170), Ehγ,ij by (6.172) and ∂p1γij , ∂p2γij by (6.173). The finite
difference semi-discrete approximation of the anisotropic Willmore flow of graphs
with the Neumann boundary conditions with the anisotropy function γ is given by
(6.178)–(6.180) and

E11,i− 1
2
,j∂x1w

h
γ,i− 1

2
,j

+E12,i− 1
2
,j∂x2w

h
γ,1− 1

2
,j

= 0 for i = 1, (6.182)

E11,i+ 1
2
,j∂x1w

h
γ,i+ 1

2
,j

+E12,i+ 1
2
,j∂x2w

h
γ,i+ 1

2
,j

= 0 for i = N1 − 1, (6.183)

E21,i,j− 1
2
∂x1w

h
γ,i,j− 1

2

+E22,i,j− 1
2
∂x2w

h
γ,i,j− 1

2

= 0 for j = 1, (6.184)

E21,i,j+ 1
2
∂x1w

h
γ,i,j+ 1

2

+E22,i,j+ 1
2
∂x2w

h
γ,i,j+ 1

2

= 0 for j = N2 − 1, (6.185)

together with ∂hνϕ
h
ij = 0 on ∂ωh.

For the level-set formulation we denote

Qh
ε,i± 1

2
,j± 1

2

=

√
ε2 +

∣∣∣∣∇huhi± 1
2
,j± 1

2

∣∣∣∣2 resp. Qhij =
1

4

∑
ζ,η∈{−1,1)
|ζ|+|η|=1

Qh
i+ ζ

2
,j+ η

2

, (6.186)

Hh
γ,ij = ∇h · ∇pγij = ∇h · (∂p1γij , ∂p2γij)

T , (6.187)

E
h
γ,i± 1

2
,j± 1

2

= Eγ

(
∇hϕhi± 1

2
,j± 1

2

)
= ∇p ⊗∇pγ

(
ϕh
i± 1

2
,j± 1

2

)
. (6.188)

for i = 1, · · ·N1 − 1 and j = 1, · · · , N2 − 1 where

(∂p1γij , ∂p2γij)
T =

(
∂p1γ

(
∇hϕhij

)
, ∂p2

(
∇hϕhij

))T
. (6.189)

It allows us to introduce the following schemes:
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6.2. Space discretisation

Scheme 6.2.29. The finite difference semi-discrete approximation of the level-set
formulation of the mean-curvature flow with the Dirichlet boundary conditions
with the anisotropy given by γ reads as:

duhij
dt

= QhijH
h
γ,ij on ωh, (6.190)

uhij |t=0 = P (uini)ij on ωh, (6.191)

uhij = gij on ∂ωh,

where Qhij is given by (6.186), Ehγ,ij by (6.188) and ∂p1γij , ∂p2γij by (6.189).
The finite difference semi-discrete approximation of the level-set formulation of the
mean-curvature flow with the Neumann boundary conditions with the anisotropy
function γ is given by (6.190)–(6.191) and

γp1,i− 1
2
,j = 0 for i = 1, γp1,i+

1
2
,j = 0 for i = N1 − 1, (6.192)

γp2,i,j− 1
2

= 0 for j = 1, γp2,i,j+
1
2

= 0 for j = N2 − 1. (6.193)

Scheme 6.2.30. The finite difference semidiscrete approximation of the anisotropic
level-set formulation of the Willmore flow with the Dirichlet boundary condi-
tions with the anisotropy function γ reads as

duhij
dt

= −Qhij∇h ·

Ehγ,ij∇hwhγ,ij − 1

2

(
whγ,ij

)2

(
Qhij

)3 ∇huhij

 on ωh, (6.194)

whγ,ij = QhijH
h
γ,ij , on ωh, (6.195)

uhij |t=0 = P (uini)ij on ωh, (6.196)

uhij = gij and whγ,ij = 0 on ∂ωh,

where Qhij is given by (6.186), Ehγ,ij by (6.188) and ∂p1γij , ∂p2γij by (6.189).
The finite difference semidiscrete approximation of the anisotropic level-set formu-
lation of the Willmore flow with the Neumann boundary conditions with the
anisotropy function γ is given by (6.194)–(6.196) and

E
h
11,i− 1

2
,j
∂x1w

h
γ,i− 1

2
,j

+Eh
12,i− 1

2
,j
∂x2w

h
γ,1− 1

2
,j

= 0 for i = 1, (6.197)

E
h
11,i+ 1

2
,j
∂x1w

h
γ,i+ 1

2
,j

+Eh
12,i+ 1

2
,j
∂x2w

h
γ,i+ 1

2
,j

= 0 for i = N1 − 1, (6.198)

E
h
21,i,j− 1

2

∂x1w
h
γ,i,j− 1

2

+Eh
22,i,j− 1

2

∂x2w
h
γ,i,j− 1

2

= 0 for j = 1, (6.199)

E
h
21,i,j+ 1

2

∂x1w
h
γ,i,j+ 1

2

+Eh
22,i,j+ 1

2

∂x2w
h
γ,i,j+ 1

2

= 0 for j = N2 − 1, (6.200)

together with ∂hνu
h
ij = 0 on ∂ωh.

Remark: In comparison with the complementary finite volume schemes (6.2.14), (6.2.15),
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6. Numerical approximation

(6.2.16), (6.2.15), (6.2.19), (6.2.18), (6.2.20) and (6.2.21) the finite difference schemes (6.2.27),
(6.2.28), (6.2.29) and (6.2.30) are less general because they are restricted to regular orthogonal
numerical grids. On the other hand, we can see that they are expressed in more compact form
which is more similar to the original mathematical formulation. In the next part, it will allows
us to treat these schemes as the one-sided or central finite difference numerical schemes and
show some energy properties in the case of the Willmore flow of graphs. We remind that in
this text we study all numerical schemes only on the regular orthogonal numerical grids and in
this case the complementary finite volume schemes (6.2.14), (6.2.15), (6.2.16), (6.2.15), (6.2.19),
(6.2.18), (6.2.20), (6.2.21) and they finite difference counterparts (6.2.27), (6.2.28), (6.2.29) and
(6.2.30) give the same results - moreover they lead to the same implementation.

Energy equality of the Willmore flow of graphs

We prove analogy to (5.2.11). First, we need to extend the definitions of the scalar products
for the grid functions on the finner grid. Assume having the grid functions f, g : Ωh → R,
f : ωh → R2 and the related finner grid functions F,G,F defined by (6.169) we define

[F,G]PQpq =
h1h2

4

P,Q∑
k=p,l=q

FklGkl, (f, g)h = (F,G)h = [F,G]2N1−1,2N1−1
11 , (6.201)

(f, gc.)c = (F,Gc.)c =
1

2

(
[F,Gf.]

2N1−1,2N2−1
0,1 + [F,Gb.]

2N1,2N2−1
1,1

)
, (6.202)

(f, g.c)c = (F,G.c)c =
1

2

(
[F,G.f ]2N1−1,2N2−1

1,0 + [F,G.b]
2N1−1,2N2
1,1

)
, (6.203)

(f ,∇hG)c = (F,∇hG)c =
(
F 1, Gc.

)
c

+
(
F 2, G.c

)
c
. (6.204)

In this section, all scalar products are summed over the finner grid. We need to transform the
discrete Green formulas from central difference case to the finner grid functions.

Lemma 6.2.31. Let u : ωh → R, v : ωh → R2. Then the Green formula is valid:

(∇hu,v)h = − (u,∇h · v)c +
h2

2

2N−1∑
l=1

[
(U2N−1,l + U2N,l)V

1
2N,l − (U0l + U1l)V

1
0l

]
+
h1

2

2N−1∑
k=1

[
(Uk,2N−1 + Uk,2N )V 2

k,2N − (Uk0 + Uk1)V 2
k0

]
.

Proof. Writing (∇hu,v)h = (∇cU,V)h and applying (6.45) on the finner grid functions U and
V we obtain (6.205).

Corollary 6.2.32. Let p, u, v : ω̄h → R and v |∂ω= 0. Then

(∇h · (p∇hu) , v)h = − (p∇hu,∇hv)c . (6.205)

Proof. The proof is now really trivial.

Theorem 6.2.33. For the solution ϕh, wh of (6.178)–(6.179) and wh = 0 |∂ωh we have((
ϕht

)2
,

1

Qh

)
h

+
d

dt

((
Hh
γ

)2
, Qh

)
h

= 0.

Proof. The proof is the same as the proof of (6.48) but with the notation (6.201)-(6.204).
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6.3. Time discretisation

6.3. Time discretisation

In the previous section we derived several semi-discrete schemes (6.2.2), (6.2.3), (6.2.8), (6.2.9),
(6.2.27) and (6.2.28). They can be written in general as

duhij
dt

= f
(
t, uh

)
ij

for t > 0, (6.206)

uhij (t0) = uh0,ij , (6.207)

for i = 1, · · ·N1, j = 1, · · ·N2. Here F is a mapping f : Ψ→ RN and Ψ is a domain Ψ ⊂ RN+1.

If f ∈ C (Ψ) and ∂fk

∂xl
∈ C (Ψ) for k, l = 1, · · ·N then from Pontryagin [87] we have that for all

[t0, φ0,ij ] ∈ Ψ there exists δ > 0 and φhij : (−δ + t0, t0 + δ) → RN for i = 1, · · ·N1, j = 1, · · ·N2

for which

dφhij
dt

= f
(
t, φh

)
ij
, (6.208)

φhij (t0) = φ0,ij , (6.209)

for i = 1, · · ·N1, j = 1, · · ·N2. Moreover, if there is ψhij : I → RN for open non-empty interval I

and t0 ∈ I such that (6.208)–(6.209) holds for ψhij on I then φhij = ψhij on I ∩ (−δ + t0, t0 + δ)
for i = 1, · · ·N1, j = 1, · · ·N2.

To complete the discretisation we need to choose appropriate time discretisation. We have
three possibilities: explicit, semi-implicit and fully-implicit discretisation in time. In this text
we deal only with with the explicit and semi-implicit schemes.

6.3.1. Explicit schemes

Since we use highly nonlinear equations, the natural choice is the use of some explicit scheme.
The great advantage of the explicit schemes is their high accuracy and the fact that they are
easier to implement in comparison with the semi-implicit schemes requiring matrix solvers. In
many articles, the fourth order Runge-Kutta kind solvers were successfully used [9, 10, 11, 7].
The Merson solver [97] belongs to this class of solvers. Moreover it offers automatic choice of the
time step which makes it more robust. We will solve a system of ordinary differential equations
having a form

duhij
dt

= f
(
t, uh

)
ij
, (6.210)

where f is given by the right-hand side of some of the semidiscrete schemes (6.2.2), (6.2.3),
(6.2.8), (6.2.9),(6.2.27) and (6.2.28). The following algorithm represents the solver for the explicit
schemes which we present later in this text:

Algorithm 6.3.1. The explicit Runge-Kutta-Merson solver consist of the following steps:
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6. Numerical approximation

1. Compute the grid functions k1
ij , k

2
ij , k

3
ij , k

4
ij , k

5
ij as:

k1
ij := τf

(
t, uh

)
ij

k2
ij := τf

(
t+

1

3
τ, uh +

1

3
k1

)
ij

k3
ij := τf

(
t+

1

3
τ, uh +

1

6
k1 +

1

6
k2

)
ij

k4
ij := τf

(
t+

1

2
τ, uh +

1

8
k1 +

3

8
k3

)
ij

k5
ij := τf

(
t+ τ, uh +

1

2
k1 − 3

2
k3 + 2k4

)
ij

.

for i = 0, · · ·N1 and j = 0, · · · , N2.

2. Evaluate the error of the approximation with the current time step τ as

e := max
i=0,··· ,N1
j=0,··· ,N2

1

3

∣∣∣∣15k1
ij −

9

10
k3
ij +

4

5
k4
ij −

1

10
k5
ij

∣∣∣∣ . (6.211)

3. If this error is smaller then given tolerance ε update uh as:

uhij := uhij +
1

6

(
k1
ij + 4k4

ij + k5
ij

)
, (6.212)

for i = 0, · · ·N1, j = 0, · · · , N2 and set

t := t+ τ.

4. Independently on the previous condition update τ as:

τ := min

{
τ · 4

5

( ε
e

) 1
5
, T − t

}
. (6.213)

5. Repeat whole process with the new τ i.e. go to the step 1.

Depending on the form of the right-hand side f
(
t, uh

)
ij

of (6.210) we obtain the following
schemes:

Scheme 6.3.2. The explicit one-sided finite difference approximation of the mean-curvature
flow with the anisotropy γ is given by the algorithm 6.3.1 where for the right-hand side of (6.210)
we substitute the right-hand side of (6.10).

Scheme 6.3.3. The explicit one-sided finite difference approximation of the Willmore
flow with the anisotropy γ is given by the algorithm 6.3.1 where for the right-hand side of
(6.210) we substitute the right-hand side of (6.13).

Scheme 6.3.4. The explicit central finite difference approximation of the mean-curvature
flow with the anisotropy γ is given by the algorithm 6.3.1 where for the right-hand side of (6.210)
we substitute the right-hand side of (6.39).

Scheme 6.3.5. The explicit central finite difference approximation of the Willmore flow
with the anisotropy γ is given by the algorithm 6.3.1 where for the right-hand side of (6.210)
we substitute the right-hand side of (6.41).
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6.3. Time discretisation

Scheme 6.3.6. The explicit finite difference approximation of the mean-curvature flow
with the anisotropy γ is given by the algorithm 6.3.1 where for the right-hand side of (6.210)
we substitute the right-hand side of (6.174).

Scheme 6.3.7. The explicit finite difference approximation of the Willmore flow with
the anisotropy γ is given by the algorithm 6.3.1 where for the right-hand side of (6.210) we
substitute the right-hand side of (6.178).

Remark: The discretisation of the terms depending on given anisotropy, as they are expressed
in the Section 5.3, is very straightforward. We just substitute appropriate finite differences
approximating ∇u for p.

6.3.2. Semi-implicit schemes

This section shows the semi-implicit schemes for the semi-discrete finite volume schemes (6.2.27)
and (6.2.28). We omit the one-sided schemes (6.2.2) and (6.2.3) as well as the central schemes
(6.2.8) and (6.2.9) because of their disadvantages in comparison with first ones ((6.2.27) and
(6.2.28)). We discussed it in Sections 6.2.1 and 6.2.2. We study only the graph formulation. We
would proceed in the same way for the level-set method. We also omit the isotropic problems
since they are only special cases of more general anisotropic problems.

We assume having fixed time step τ such that τ = T/k for some k ∈ N+ and we denote

unij := uij (ih1, jh2, nτ) for the grid function u : ωh × [0, T )→ R.

The semi-implicit schemes for the non-linear partial differential equations are always some kind of
linearisation because we want to end up with a system of linear equations. The main difficulties
come with the discretisation of the anisotropic mean-curvature Hγ . In general we have

Hγ = ∇ · (∇pγ) = ∂x1∂p1γ + ∂x2∂p2γ.

We assume that we may write

∂piγ = γ∗i,1p1 + γ∗i,2p2 for i = 1, 2.

Then we may write

Hγ (ϕ) = ∇ · (∇pγ (∇ϕ,−1))

= ∂x1 [γ∗11 (∇ϕ,−1) ∂x1ϕ+ γ∗12 (∇ϕ,−1) ∂x2ϕ]

+ ∂x2 [γ∗21 (∇ϕ,−1) ∂x1ϕ+ γ∗22 (∇ϕ,−1) ∂x2ϕ] .

The idea is to discretise Hn
γ,ij as

Hn
γ,ij = ∂hx1

(
γ∗,n−1

11,ij ∂
h
x1
unij + γ∗,n−1

12,ij ∂
h
x2
unij

)
+ ∂hx2

(
γ∗,n−1

21,ij ∂
h
x1
unij + γ∗,n−1

22,ij ∂
h
x2
unij

)
,

=
1

h1

(
γ∗,n−1

11,i+ 1
2
,j
∂hx1

un
i+ 1

2
,j

+ γ∗,n−1

12,i+ 1
2
,j
∂hx2

un
i+ 1

2
,j

−γ∗,n−1

11,i− 1
2
,j
∂hx1

un
i− 1

2
,j
− γ∗,n−1

12,i− 1
2
,j
∂hx2

un
i− 1

2
,j

)
+

1

h2

(
γ∗,n−1

21,i,j+ 1
2

∂hx1
un
i,j+ 1

2

+ γ∗,n−1

22,i,j+ 1
2

∂hx2
un
i,j+ 1

2

− γ∗,n−1

21,i,j− 1
2

∂hx1
un
i,j− 1

2

− γ∗,n−1

22,i,j− 1
2

∂hx2
un
i,j− 1

2

)
, (6.214)
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6. Numerical approximation

where we denote
(
∂hx1

unij , ∂
h
x2
unij

)T
= ∇hunij . In the same manner we discretise the boundary

conditions (6.144)-(6.147).
With this notation in hand, we may introduce the following schemes – the choice of the time

step (n or n− 1) for each term is important:

Scheme 6.3.8. The semi-implicit numerical scheme for the finite difference anisotropic
mean-curvature flow graphs with the Dirichlet boundary conditions has a form

unij − un−1
ij

τ
= Qn−1

ij

(
∂hx1

(
γ∗,n−1

11,ij ∂
h
x1
unij + γ∗,n−1

12,ij ∂
h
x2
unij

)
+ ∂hx2

(
γ∗,n−1

21,ij ∂
h
x1
unij + γ∗,n−1

22,ij ∂
h
x2
unij

))
on ωh, (6.215)

u0
ij = P (uini)ij on ωh, (6.216)

unij = gij on ∂ωh,

where Qhij is given by (6.170), ∂p1γij , ∂p2γij by (6.173).
The semi-implicit numerical scheme for the finite difference anisotropic mean-
curvature flow graphs with the Neumann boundary conditions is given by
(6.215)–(6.216) and

γ∗,n−1

11,i− 1
2
,j
∂hx1

un
i− 1

2
,j

+ γ∗,n−1

12,i− 1
2
,j
∂hx2

un
i− 1

2
,j

= 0 for i = 1, (6.217)

γ∗,n−1

11,i+ 1
2
,j
∂hx1

un
i+ 1

2
,j

+ γ∗,n−1

12,i+ 1
2
,j
∂hx2

un
i+ 1

2
,j

= 0 for i = N1 − 1, (6.218)

γ∗,n−1

21,i,j− 1
2

∂hx1
un
i,j− 1

2

+ γ∗,n−1

22,i,j− 1
2

∂hx2
un
i,j− 1

2

= 0 for j = 1, (6.219)

γ∗,n−1

21,i,j+ 1
2

∂hx1
un
i,j+ 1

2

+ γ∗,n−1

22,i,j+ 1
2

∂hx2
un
i,j+ 1

2

= 0 for j = N2 − 1. (6.220)

For the level-set formulation we replace Qhij in (6.215) by Qhε,ij given by (6.186) and
∂p1γij , ∂p2γij is defined by (6.173).
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6.3. Time discretisation

Scheme 6.3.9. The semi-implicit numerical scheme for the finite difference anisotropic Willmore
flow of graphs with the Dirichlet boundary conditions has a form

unij − un−1
ij

τ
= −Qn−1

ij ∇h ·

En−1
γ,ij ∇hwnij −

1

2

(
wn−1
ij

)2

(
Qn−1
ij

)3∇hunij

 on ωh, (6.221)

wn−1
ij = Qn−1

ij Hn−1
γ,ij on ωh,

wnij = Qn−1
ij

(
∂hx1

(
γ∗,n−1

11,ij ∂
h
x1
unij + γ∗,n−1

12,ij ∂
h
x2
unij

)
+ ∂hx2

(
γ∗,n−1

21,ij ∂
h
x1
unij + γ∗,n−1

22,ij ∂
h
x2
unij

))
on ωh,

uhij |t=0 = P (uini)ij on ωh, (6.222)

unij = gij and wnij = 0 on ∂ωh,

where Qhij is given by (6.170), Ehγ,ij by (6.172) and ∂p1γij , ∂p2γij by (6.173).
The semi-implicit numerical scheme for the finite difference anisotropic Willmore flow of graphs
with the Neumann boundary conditions is given by (6.221)–(6.222) and

if i = 1 then ν = (−1, 0) ⇒ 1

h1

(
un1,j − un0,j

)
= 0, (6.223)

if i = N1 − 1 then ν = (1, 0) ⇒ 1

h1

(
unN1,j − unγ,N1−1,j

)
= 0, (6.224)

if j = 1 then ν = (0,−1) ⇒ 1

h2

(
uni,1 − uni,0

)
= 0, (6.225)

if j = N2 − 1 then ν = (0, 1) ⇒ 1

h2

(
uni,N2

− uni,N2−1

)
= 0 (6.226)

and

E
n−1
11,i− 1

2
,j

h1

(
wni,j − wn−1

i−1,j

)
+
E
n−1
12,i− 1

2
,j

4h1h2

(
wni,j+1 + wn−1

i−1,j+1 − wni,j−1 − wn−1
i−1,j−1

)
= 0 (6.227)

for i = 1,

E
n−1
11,i+ 1

2
,j

h1

(
wn−1
i+1,j − wnij

)
+
E
n−1
12,i+ 1

2
,j

4h1h2

(
wni,j+1 + wn−1

i+1,j+1 − wni,j−1 − wn−1
i+1,j−1

)
= 0 (6.228)

for i = N1 − 1,

E
n−1
21,i,j− 1

2

4h1h2

(
wni+1,j + wn−1

i+1,j−1 − wni−1,j − wn−1
i−1,j−1

)
+
E
n−1
22,i,j− 1

2

h2

(
wnij − wn−1

i,j−1

)
= 0 (6.229)

for j = 1,

E
n−1
21,i,j+ 1

2

4h1h2

(
wni+1,j + wn−1

i+1,j+1 − wni−1,j − wn−1
i−1,j+1

)
+
E
n−1
22,i,j+ 1

2

h2

(
wn−1
i,j+1 − wnij

)
= 0 (6.230)

for j = N2 − 1.

For the level-set formulation we replace Qhij in (6.215) by Qhε,ij given by (6.186), Ehγ,ij is defined by
(6.188) and ∂p1γij with ∂p2γij by (6.173).
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The linear system of the semi-implicit scheme for the mean-curvature flow

To implement the scheme (6.3.8) we need to find the coefficients of the linear system related to
it. From (6.215) we see that for i = 1, · · ·N1 − 1,j = 1, · · · , N2 − 1

Hn
γ,ij = ∇h ·

(
γ∗,n−1

11,ij ∂
h
x1
unij + γ∗,n−1

12,ij ∂
h
x2
unij , γ

∗,n−1
21 ∂hx1

unij + γ∗,n−1
22 ∂hx2

unij

)T
=

1

h1

(
γ∗,n−1

11,i+ 1
2
,j
∂hx1

un
i+ 1

2
,j

+ γ∗,n−1

12,i+ 1
2
,j
∂hx2

un
i+ 1

2
,j

− γ∗,n−1

11,i− 1
2
,j
∂hx1

un
i− 1

2
,j

+ γ∗,n−1

12,i− 1
2
,j
∂hx2

un
i− 1

2
,j

)
+

1

h2

(
γ∗,n−1

21,i,j+ 1
2

∂hx1
un
i,j+ 1

2

+ γ∗,n−1

22,i,j+ 1
2

∂hx2
un
i,j+ 1

2

− γ∗,n−1

21,i,j− 1
2

∂hx1
un
i,j− 1

2

+ γ∗,n−1

22,i,j− 1
2

∂hx2
un
i,j− 1

2

)
Substituting appropriate approximations of ∂hxmui±k 1

2
,j±l 1

2
for m = 1, 2, k, l ∈ {0, 1} and |k| +

|l| = 1 we get

Hn
γ,ij =

γ∗
11,i+ 1

2
,j

h2
1

(
uni+1,j − unij

)
−
γ∗

11,i− 1
2
,j

h2
1

(
unij − uni−1,j

)
+

γ∗
12,i+ 1

2
,j

4h1h2

(
uni+1,j+1 + uni,j+1 − uni+1,j−1 − uni,j−1

)
−

γ∗
12,i− 1

2
,j

4h1h2

(
uni,j+1 + uni−1,j+1 − uni,j−1 − uni−1,j−1

)
+

γ∗
21,i,j+ 1

2

4h1h2

(
uni+1,j+1 + uni+1,j − uni−1,j+1 − uni−1,j

)
−

γ∗
21,i,j− 1

2

4h1h2

(
uni+1,j−1 + uni+1,j − uni−1,j−1 − uni−1,j

)
+

γ∗
22,i,j+ 1

2

h2
2

(
uni,j+1 − unij

)
−
γ∗

22,i,j− 1
2

h2
2

(
unij − uni,j−1

)
(6.231)

or denoting

C0,0
H,ij :=

(
−
γ∗

11,i+ 1
2
,j

h2
1

−
γ∗

11,i− 1
2
,j

h2
1

−
γ∗

22,i,j+ 1
2

h2
2

−
γ∗

22,i,j− 1
2

h2
2

)
,

C1,0
H,ij :=

(
γ∗

11,i+ 1
2
,j

h2
1

+
γ∗

21,i,j+ 1
2

4h1h2
−
γ∗

21,i,j− 1
2

4h1h2

)
, C1,1

H,ij :=

(
γ∗

12,i+ 1
2
,j

4h1h2
+
γ∗

21,i,j+ 1
2

4h1h2

)
,

C0,1
H,ij :=

(
γ∗

12,i+ 1
2
,j

4h1h2
−
γ∗

12,i− 1
2
,j

4h1h2
+
γ∗

22,i,j+ 1
2

h2
2

)
, C1,−1

H,ij :=

(
−
γ∗

12,i+ 1
2
,j

4h1h2
−
γ∗

21,i,j− 1
2

4h1h2

)
,

C−1,0
H,ij :=

(
γ∗

11,i− 1
2
,j

h2
1

−
γ∗

21,i,j+ 1
2

4h1h2
+
γ∗

21,i,j− 1
2

4h1h2

)
, C−1,1

H,ij :=

(
−
γ∗

12,i− 1
2
,j

4h1h2
−
γ∗

21,i,j+ 1
2

4h1h2

)
,

C0,−1
H,ij :=

(
−
γ∗

12,i+ 1
2
,j

4h1h2
+
γ∗

12,i− 1
2
,j

4h1h2
+
γ∗

22,i,j− 1
2

h2
2

)
, C−1,−1

H,ij :=

(
γ∗

12,i− 1
2
,j

4h1h2
+
γ∗

21,i,j− 1
2

4h1h2

)
,
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and

Cr,sw,ij := Qn−1
ij Cr,sH,ij for r, s ∈ {−1, 0, 1} (6.232)

we may write

Hn
γ,ij =

∑
r,s∈{−1,0,1}

Cr,sH,iju
n
i+r,j+s, (6.233)

resp.

wnij =
∑

r,s∈{−1,0,1}
Cr,sw,iju

n
i+r,j+s, (6.234)

and (6.215) now reads as

unij − τ
∑

r,s∈{−1,0,1}
Cr,sw,iju

n
i+r,j+s = un−1

ij . (6.235)

Discretisation of the Neumann boundary conditions (6.217)-(6.220) gives

γ∗,n−1

11,i− 1
2
,j

h1

(
unij − uni−1,j

)
+
γ∗,n−1

12,i− 1
2
,j

4h1h2

(
uni,j+1 + uni−1,j+1 − uni,j−1 − uni−1,j−1

)
= 0 (6.236)

for i = 1,

γ∗,n−1

11,i+ 1
2
,j

h1

(
uni+1,j − uni,j

)
+
γ∗,n−1

12,i+ 1
2
,j

4h1h2

(
uni+1,j+1 + uni,j+1 − uni+1,j−1 − uni,j−1

)
= 0 (6.237)

for i = N1 − 1,

γ∗,n−1

21,i,j− 1
2

4h1h2

(
uni+1,j−1 + uni+1,j − uni−1,j−1 − uni−1,j

)
+
γ∗,n−1

22,i,j− 1
2

h2

(
unij − uni,j−1

)
= 0 (6.238)

for j = 1,

γ∗,n−1

21,i,j+ 1
2

4h1h2

(
uni+1,j+1 + uni+1,j − uni−1,j+1 − uni−1,j

)
+
γ∗,n−1

22,i,j+ 1
2

h2

(
uni,j+1 − unij

)
= 0 (6.239)

for j = N2 − 1,

which we will use to define the values of unij on ∂ωh. There is, however, ambiguity for the
values at the corners of ω̄h. Take for example the value un00. It appears in two equations (6.236)
and (6.238). This is because in the corner of ∂ωh the outer normal is not defined and so the
boundary condition ∇pγ · ν = 0 does not make sense. For example for this corner node we have
(for i = j = 1 from (6.236) and (6.238)):

γ∗,n−1

11, 1
2
,1

h1

(
un1,1 − un0,1

)
+
γ∗,n−1

12, 1
2
,1

4h1h2

(
un1,2 + un0,2 − un1,0 − un0,0

)
= 0, (6.240)

γ∗,n−1

21,1, 1
2

4h1h2

(
un2,0 + un2,1 − un0,0 − un0,1

)
+
γ∗,n−1

22,1, 1
2

h2

(
un1,1 − un1,0

)
= 0 (6.241)

Summing these two equations we get:

C0,0
w,0,0u

n
0,0 + C1,0

w,0,0u
n
1,0 + C0,1

w,0,0u
n
0,1 + C1,1

w,0,0u
n
1,1

+C1,2
w,0,0u

n
1,2 + C0,2

w,0,0u
n
0,2 + C2,1

w,0,0u
n
2,0 + C2,0

w,0,0u
n
2,1 = 0, (6.242)
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for

C0,0
w,0,0 := −

γ∗,n−1

12, 1
2
,1

4h1h2
−
γ∗,n−1

21,1, 1
2

4h1h2
, C1,0

w,0,0 := −
γ∗,n−1

12, 1
2
,1

4h1h2
−
γ∗,n−1

22,1, 1
2

h2
,

C0,1
w,0,0 := −

γ∗,n−1

11, 1
2
,1

h1
−
γ∗,n−1

21,1, 1
2

4h1h2
, C1,1

w,0,0 :=
γ∗,n−1

11, 1
2
,1

h1
+
γ∗,n−1

22,1, 1
2

h2
,

C1,2
w,0,0 := C0,2

w,0,0 =
γ∗,n−1

12, 1
2
,1

4h1h2
, C2,1

w,0,0 := C2,0
w,0,0 =

γ∗,n−1

21,1, 1
2

4h1h2
.

In the same way from (6.236) and (6.239) with i = 1 and j = N2 − 1 we get equation for un0,N2

C0,0
w,0,N2

un0,N2
+ C1,0

w,0,N2
un1,N2

+ C0,−1
w,0,N2

un0,N2−1 + C1,−1
w,0,N2

un1,N2−1

+C1,−2
w,0,N2

un1,N2−2 + C0,−2
w,0,N2

un0,N2−2 + C2,−1
w,0,N2

un2,N2
+ C2,0

w,0,N2
un2,N2−1 = 0,

(6.243)

for

C0,0
w,0,N2

:=
γ∗,n−1

12, 1
2
,N2−1

4h1h2
−
γ∗,n−1

21,1,N2− 1
2

4h1h2
, C1,0

w,0,N2
:=

γ∗,n−1

12, 1
2
,N2−1

4h1h2
+
γ∗,n−1

22,1,N2− 1
2

h2
,

C0,−1
w,0,N2

:= −
γ∗,n−1

11, 1
2
,N2−1

h1
−
γ∗,n−1

21,1,N2− 1
2

4h1h2
, C1,−1

w,0,N2
:=

γ∗,n−1

11, 1
2
,N2−1

h1
+
γ∗,n−1

22,1,N2− 1
2

h2
,

C1,−2
w,0,N2

:= C0,−2
w,0,N2

:= −
γ∗,n−1

12, 1
2
,N2−1

4h1h2
, C2,−1

w,0,N2
:= C2,0

w,0,N2
:=

γ∗,n−1

21,1,N2− 1
2

4h1h2

from (6.237) and (6.238) with i = N1 − 1 and j = 1 we get equation for uN1,0

C0,0
w,N1,0

unN1,0 + C−1,0
w,N1,0

unN1−1,0 + C0,1
w,N1,0

unN1,1 + C−1,1
w,N1,0

unN1−1,1

+C−1,2
w,N1,0

unN1−1,2 + C0,2
w,N1,0

unN1,2 + C−2,1
w,N1,0

unN1−2,1 + C−2,0
w,N1,0

unN1−2,0 = 0,

(6.244)

for

C0,0
w,N1,0

:= −
γ∗,n−1

12,N1+ 1
2
,1

4h1h2
+
γ∗,n−1

21,N1−1, 1
2

4h1h2
, C−1,0

w,N1,0
:= −

γ∗,n−1

12,N1+ 1
2
,1

4h1h2
−
γ∗,n−1

22,N1−1, 1
2

h2
,

C0,1
w,N1,0

:=
γ∗,n−1

11,N1+ 1
2
,1

h1
+
γ∗,n−1

21,N1−1, 1
2

4h1h2
, C−1,1

w,N1,0
:= −

γ∗,n−1

11,N1+ 1
2
,1

h1
+
γ∗,n−1

22,N1−1, 1
2

h2
,

C−1,2
w,N1,0

:= C0,2
w,N1,0

:=
γ∗,n−1

12,N1+ 1
2
,1

4h1h2
, C−2,1

w,N1,0
:= C−2,0

w,N1,0
:= −

γ∗,n−1

21,N1−1, 1
2

4h1h2
,

and from (6.237) and (6.239) with i = N1 − 1 and j = N2 − 1 we get equation for uN1,N2

C0,0
w,N1,N2

unN1,N2
+ C−1,0

w,N1,N2
unN1−1,N2

+ C0,−1
w,N1,N2

unN1,N2−1

+C−1,−1
w,N1,N2

unN1−1,N2−1 + C−1,−2
w,N1,N2

unN1−1,N2−2 + C0,−2
w,N1,N2

unN1,N2−2

+C−2,−1
w,N1,N2

unN1−2,N2−1 + C−2,0
w,N1,N2

unN1−2,N2
= 0,

(6.245)
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C0,0
w,N1,N2

:=
γ∗,n−1

12,N1− 1
2
,N2−1

4h1h2
+
γ∗,n−1

21,N1−1,N2− 1
2

4h1h2
, C−1,0

w,N1,N2
:=

γ∗,n−1

12,N1− 1
2
,N2−1

4h1h2
+
γ∗,n−1

22,N1−1,N2− 1
2

h2
,

C0,−1
w,N1,N2

:=
γ∗,n−1

11,N1− 1
2
,N2−1

h1
+
γ∗,n−1

21,N1−1,N2− 1
2

4h1h2
, C−1,−1

w,N1,N2
:= −

γ∗,n−1

11,N1− 1
2
,N2−1

h1
−
γ∗,n−1

22,N1−1,N2− 1
2

h2
,

C−1,−2
w,N1,N2

:= C0,−2
w,N1,N2

:= −
γ∗,n−1

12,N1− 1
2
,N2−1

4h1h2
, C−2,−1

w,N1,N2
:= C−2,0

w,N1,N2
:= −

γ∗,n−1

21,N1−1,N2− 1
2

4h1h2
.

Now from the equation (6.236) we get system of equations for unij for i = 0 and j = 1, · · · , N2−1

C0,0
w,0,ju

n
0,j + C1,0

w,0,ju
n
1,j + C0,1

w,0,ju
n
0,j+1 + C0,−1

w,0,ju
n
0,j−1 + C1,−1

w,0,ju
n
1,j−1 + C1,1

w,0,ju
n
1,j+1 = 0, (6.246)

for

C0,0
w,0,j := −C1,0

w,0,j = −
γ∗,n−1

11, 1
2
,j

h1
,

C0,1
w,0,j := −C0,−1

w,0,j := −C1,−1
w,0,j := C1,1

w,0,j :=
γ∗,n−1

12, 1
2
,j

4h1h2
,

from (6.237) we get system of equations for unij for i = N1 and j = 1, · · · , N2 − 1

C0,0
w,N1,j

unN1,j + C−1,0
w,N1,j

unN1−1,j + C0,1
w,N1,j

unN1,j+1

+C0,−1
w,N1,j

unN1,j−1 + C−1,−1
w,N1,j

unN1−1,j−1 + C−1,1
w,N1,j

unN1−1,j+1 = 0, (6.247)

for

C0,0
w,N1,j

:= −C−1,0
w,N1,j

:=
γ∗,n−1

11,N1+ 1
2
,j

h1
,

C0,1
w,N1,j

:= −C0,−1
w,N1,j

:= −C−1,−1
w,N1,j

:= C−1,1
w,N1,j

:=
γ∗,n−1

12,N1+ 1
2
,j

4h1h2
,

from (6.238) we get system of equations for unij for i = 1 · · · , N1 − 1 and j = 0

C0,0
w,i,0u

n
i,0 + C0,1

w,i,0u
n
i,1 + C1,0

w,i,0u
n
i+1,0 + C−1,0

w,i,0u
n
i−1,0 + C1,1

w,i,0u
n
i+1,1 + C−1,1

w,i,0u
n
i−1,1 = 0, (6.248)

for

C0,0
w,i,0 := −C0,1

w,i,0 := −
γ∗,n−1

22,i,j− 1
2

h2
,

C1,0
w,i,0 := −C−1,0

w,i,0 := C1,1
w,i,0 := −C−1,1

w,i,0 :=
γ∗,n−1

21,i, 1
2

4h1h2
,

and from (6.239) we get system of equations for unij for i = 1 · · · , N1 − 1 and j = N2

C0,0
w,i,N2

uni,N2
+ C0,−1

w,i,N2
uni,N2−1 + C1,0

w,i,N2
uni+1,N2

+C−1,0
w,i,N2

uni−1,N2
+ C1,−1

w,i,N2
uni+1,N2−1 + C−1,−1

w,i,N2
uni−1,N2−1 = 0, (6.249)
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for

C0,0
w,i,N2

:= −C0,−1
w,i,N2

:=
γ∗,n−1

22,i,N2− 1
2

h2
, (6.250)

C1,0
w,i,N2

:= −C−1,0
w,i,N2

:= C1,−1
w,i,N2

:= −C−1,−1
w,i,N2

:=
γ∗,n−1

21,i,N2− 1
2

4h1h2
. (6.251)

So, in general we have nine-point stencil for wnij given by the coefficients Cr,sw,ij for r, s ∈
{−2,−1, 0, 1, 2} (r and s can be ±2 only at the corner nodes) using which we can assembly
the final linear system. In the matrix form it reads

A
MC

(
un−1

)
un = b

(
un−1

)
. (6.252)

Let us index the rows and columns corresponding to some unij by

I(i, j) = J(i, j) = iN2 + j (6.253)

where we will use I for the rows of A
(
un−1

)
and J for its columns. We also define the inverse

mapping

i = i(I) = I div N2 resp. i = i(J) = J div N2, (6.254)

j = j(I) = I mod N2 resp. j = j(J) = J mod N2. (6.255)

If we set Cr,sw,ij = 0 for all such i, j, r, s that Cr,sw,ij was not defined so far, the matrix AMC is
given by the following algorithm.

Algorithm 6.3.10. Setup of the linear system matrix for the semi-implicit mean-
curvature flow consist of the following steps:

1. set AMC
IJ := 0 for all I, J = 0, · · ·N1N2 and bI := 0 for all I = 0, · · ·N1N2

2. for the row I = 0, · · ·N1N2 do

3. if (i(I), j(I)) ∈ ∂ωh set the boundary conditions

4. set AMC
II := 1, bI := gnij for the Dirichlet boundary conditions

5. for r, s ∈ {−2,−1, 0, 1, 2}, J = J (i+ r, j + s) AMC
IJ := Cr,sw,ij , bI := 0 for the

Neumann boundary conditions

6. else set AII := 1, bI := un−1
ij

7. for r, s ∈ {−1, 0, 1}, J = J (i+ r, j + s) AMC
IJ := AMC

IJ − τC
r,s
w,ij .

The linear system of the semi-implicit scheme for the Willmore flow

The equation (6.221) gives

unij + τQn−1
ij ∇h ·

En−1
γ,ij ∇hwnij −

1

2

(
wn−1
ij

)2

(
Qn−1
ij

)3∇hunij

 = un−1
ij (6.256)
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which gives

unij + τQn−1
ij · 1

h1

En−1
γ,11,i+ 1

2
,j
∂hx1

wn
i+ 1

2
,j

+En−1
γ,12,i+ 1

2
,j
∂hx2

wn
i+ 1

2
,j
− 1

2

(
wn−1
i+ 1

2
,j

)2

(
Qn−1
i+ 1

2
,j

)3∂x1u
n
i+ 1

2
,j

− En−1
γ,11,i− 1

2
,j
∂hx1

wn
i− 1

2
,j
−En−1

γ,12,i− 1
2
,j
∂hx2

wn
i− 1

2
,j

+
1

2

(
wn−1
i− 1

2
,j

)2

(
Qn−1
i− 1

2
,j

)3∂x1u
n
i− 1

2
,j



+
1

h2

En−1
γ,21,i,j+ 1

2

∂hx1
wn
i,j+ 1

2

+En−1
γ,22,i,j+ 1

2

∂hx2
wn
i,j+ 1

2

− 1

2

(
wn−1
i,j+ 1

2

)2

(
Qn−1
i,j+ 1

2

)3∂x2u
n
i,j+ 1

2

− En−1
γ,21,i,j− 1

2

∂hx1
wn
i,j− 1

2

−En−1
γ,22,i,j− 1

2

∂hx2
wn
i,j− 1

2

+
1

2

(
wn−1
i,j− 1

2

)2

(
Qn−1
i,j− 1

2

)3∂x2u
n
i,j− 1

2


 = un−1

ij ,

and the approximations of the partial derivatives of uij and wij gives

unij + τQn−1
ij ·En−1

γ,11,i+ 1
2
,j

h2
1

(
wni+1,j − wnij

)
+
E
n−1
γ,12,i+ 1

2
,j

4h1h2

(
wni,j+1 + wni+1,j+1 − wni,j−1 − wni+1,j−1

)

−
E
n−1
γ,11,i− 1

2
,j

h2
1

(
wnij − wni−1,j

)
−
E
n−1
γ,12,i− 1

2
,j

4h1h2

(
wni,j+1 + wni−1,j+1 − wni,j−1 − wni−1,j−1

)

− 1

2h2
1

(
wn−1
i+ 1

2
,j

)2

(
Qn−1
i+ 1

2
,j

)3

(
uni+1,j − unij

)
+

1

2h2
1

(
wn−1
i− 1

2
,j

)2

(
Qn−1
i− 1

2
,j

)3

(
unij − ui−1,j

)

+
E
n−1
γ,21,i,j+ 1

2

4h1h2

(
wni+1,j + wni+1,j+1 − wni−1,j − wni−1,j+1

)
+
E
n−1
γ,22,i,j+ 1

2

h2
2

(
wni,j+1 − wnij

)
−
E
n−1
γ,21,i,j− 1

2

4h1h2

(
wni+1,j + wni+1,j−1 − wni−1,j − wni−1,j−1

)
−
E
n−1
γ,22,i,j− 1

2

h2
2

(
wnij − wni−1,j

)

− 1

2h2
2

(
wn−1
i,j+ 1

2

)2

(
Qn−1
i,j+ 1

2

)3

(
uni,j+1 − unij

)
+

1

2h2
2

(
wn−1
i,j− 1

2

)2

(
Qn−1
i,j− 1

2

)3

(
unij − uni,j−1

)
 = un−1

ij .

Let us now again introduce supporting coefficients Cr,s
E,ij for r, s ∈ {−1, 0, 1}

109



6. Numerical approximation

C0,0
E,ij := τQn−1

ij

−En−1
γ,11,i+ 1

2
,j

h2
1

−
E
n−1
γ,11,i− 1

2
,j

h2
1

−
E
n−1
γ,22,i,j+ 1

2

h2
2

−
E
n−1
γ,22,i,j− 1

2

h2
2

 ,

C1,0
E,ij := τQn−1

ij

En−1
γ,11,i+ 1

2
,j

h2
1

+
E
n−1
γ,21,i,j+ 1

2

4h1h2
−
E
n−1
γ,21,i,j− 1

2

4h1h2

 ,

C1,1
E,ij := τQn−1

ij

En−1
γ,12,i+ 1

2
,j

4h1h2
+
E
n−1
γ,21,i,j+ 1

2

4h1h2

 ,

C0,1
E,ij := τQn−1

ij

En−1
γ,12,i+ 1

2
,j

4h1h2
−
E
n−1
γ,12,i− 1

2
,j

4h1h2
+
E
n−1
γ,22,i,j+ 1

2

h2
2

 ,

C−1,1
E,ij := τQn−1

ij

−En−1
γ,12,i− 1

2
,j

4h1h2
−
E
n−1
γ,21,i,j+ 1

2

4h1h2

 ,

C−1,0
E,ij := τQn−1

ij

En−1
γ,11,i− 1

2
,j

h2
1

−
E
n−1
γ,21,i,j+ 1

2

4h1h2
+
E
n−1
γ,21,i,j− 1

2

4h1h2
+
E
n−1
γ,22,i,j− 1

2

h2
2

 ,

C−1,−1
E,ij := τQn−1

ij

En−1
γ,12,i− 1

2
,j

4h1h2
+
E
n−1
γ,21,i,j− 1

2

4h1h2

 ,

C0,−1
E,ij := τQn−1

ij

−En−1
γ,12,i+ 1

2
,j

4h1h2
+
E
n−1
γ,12,i− 1

2
,j

4h1h2

 ,

C1,−1
E,ij := τQn−1

ij

−En−1
γ,12,i+ 1

2
,j

4h1h2
−
E
n−1
γ,21,i,j− 1

2

4h1h2

 ,

and Cr,swQ,ij for r, s ∈ {−1, 0, 1} and |r| = |s| = 1

C1,0
wQ,ij := τQn−1

ij

− 1

2h2
1

(
wn−1
i+ 1

2
,j

)2

(
Qn−1
i+ 1

2
,j

)3

 , C0,1
wQ,ij := τQn−1

ij

− 1

2h2
2

(
wn−1
i,j+ 1

2

)2

(
Qn−1
i,j+ 1

2

)3



C−1,0
wQ,ij := τQn−1

ij

− 1

2h2
1

(
wn−1
i− 1

2
,j

)2

(
Qn−1
i− 1

2
,j

)3

 , C0,−1
wQ,ij := τQn−1

ij

− 1

2h2
2

(
wn−1
i,j− 1

2

)2

(
Qn−1
i,j− 1

2

)3


and also

C0,0
wQ,ij := −

∑
r,s∈{−1,0,1};|r|=|s|=1

Cr,swQ,ij .

Then we may write

unij +
∑

r,s∈{−1,0,1}
Cr,s
E,ijw

n
i+r,j+s +

∑
r′,s′∈{−1,0,1};|r′|+|s′|=1

Cr
′,s′

wQ,iju
n
i+r′,j+s′ = un−1

ij , (6.257)

110



6.3. Time discretisation

for i = 1, · · ·N1 − 1, j = 1, · · · , N2 − 1. We expand wni+r,j+s using the coefficients Cr
′,s′

w,i+r,j+s for

0 < i+ r < N1 and 0 < j + r < N2, otherwise we replace wnij by wn−1
ij . At the end we have

unij +
∑

r,s∈{−1,0,1}
(i+r,j+s)∈ωh

Cr,s
E,ij

∑
r′,s′∈{−1,0,1}

Cr,sw,i+r,j+su
n
i+r+r′,j+s+s′ (6.258)

+
∑

r′,s′∈{−1,0,1}
|r′|+|s′|=1

Cr
′,s′

wQ,iju
n
i+r′,j+s′ = un−1

ij ,

unij +
∑

r′,s′∈{−1,0,1}
|r′|+|s′|=1

Cr
′,s′

wQ,iju
n
i+r′,j+s′ = un−1

ij

−
∑

r,s∈{−1,0,1}
(i+r,j+s)∈∂ωh

Cr,s
E,ijw

n−1
i+r,j+s, (6.259)

which is again a system of linear equations in unij for i = 1, · · ·N1 − 1, j = 1, · · · , N2 − 1 and
it can be written in a matrix form,

A
(
un−1

)
un = b

(
un−1,wn−1

)
. (6.260)

What remains now, is to solve the boundary conditions. The Dirichlet problem is trivial to solve.
In case of the Neumann problem we must deal with the equations (6.227)-(6.230) - solving the
Neumann boundary conditions on uhij i.e. ∂hnu

h
ij = 0 on ∂ωh is also trivial. To solve (6.227)-

(6.230) proceed as follows. For the node wn−1
0,0 we get from (6.227) and (6.229) for i = 1 and

j = 1

C0,0
E,0,0w

n−1
0,0 + C0,1

E,0,0w
n−1
0,1 + C1,0

E,0,0w
n−1
1,0 + C1,1

E,0,0w
n−1
1,1 +

C0,2
E,0,0w

n−1
0,2 + C2,0

E,0,0w
n−1
2,0 + C1,2

E,0,0w
n−1
1,2 + C2,1

E,0,0w
n−1
2,1 = 0 (6.261)

where

C0,0
E,0,0 := −

E
n−1
12, 1

2
,1

4h1h2
−
E
n−1
21,1, 1

2

4h1h2
, C0,1

E,0,0 := −
E
n−1
11, 1

2
,1

h1
−
E
n−1
21,1, 1

2

4h1h2
,

C1,0
E,0,0 := −

E
n−1
12, 1

2
,1

4h1h2
−
E
n−1
22,1, 1

2

h2
, C1,1

E,0,0 :=
E
n−1
11, 1

2
,1

h1
+
E
n−1
22,1, 1

2

h2
,

C0,2
E,0,0 := C1,2

E,0,0 :=
E
n−1
12, 1

2
,1

4h1h2
, C2,0

E,0,0 := C2,1
E,0,0 :=

E
n−1
21,1, 1

2

4h1h2
,

for the node wn−1
N1,0

we have from (6.228) and (6.229) with i = N1 − 1 and j = 1

C0,0
E,N1,0

wn−1
N1,0

+ C0,1
E,N1,0

wn−1
N1,1

+ C−1,0
E,N1,0

wn−1
N1−1,0 + C−1,1

E,N1,0
wn−1
N1−1,1

+C0,2
E,N1,0

wn−1
N1,2

+ C−2,0
E,N1,0

wn−1
N1−2,0 + C−1,2

E,N1,0
wn−1
N1−1,2 + C−2,1

E,N1,0
wn−1
N1−2,1 = 0 (6.262)
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where

C0,0
E,N1,0

:= −
E
n−1
12,N1− 1

2
,1

4h1h2
+
E
n−1
21,N1−1, 1

2

4h1h2
, C0,1

E,N1,0
:=
E
n−1
11,N1− 1

2
,1

h1
+
E
n−1
21,N1−1, 1

2

4h1h2
,

C−1,0
E,N1,0

:= −
E
n−1
12,N1− 1

2
,1

4h1h2
−
E
n−1
22,N1−1, 1

2

h2
, C−1,1

E,N1,0
:= −

E
n−1
11,N1− 1

2
,1

h1
+
E
n−1
22,N1−1, 1

2

h2
,

C0,2
E,N1,0

:= C−1,2
E,N1,0

:=
E
n−1
12,N1− 1

2
,1

4h1h2
, C−2,0

E,N1,0
:= C−2,1

E,N1,0
:= −

E
n−1
21,N1−1, 1

2

4h1h2
.

For the node wn−1
0,N2

we take (6.227) and (6.230) with i = 1 and j = N2 − 1. It gives

C0,0
E,0,N2

wn−1
0,N2

+ C0,−1
E,0,N2

wn−1
0,N2−1 + C1,0

E,0,N2
wn−1

1,N2
+ C1,−1

E,0,N2
wn−1

1,N2−1

+C0,−2
E,0,N2

wn−1
0,N2−2 + C2,0

E,0,N2
wn−1

2,N2
+ C1,−2

E,0,N2
wn−1

1,N2−2 + C2,−1
E,0,N2

wn−1
2,N2−1 = 0 (6.263)

for

C0,0
E,0,N2

:=
E
n−1
12, 1

2
,N2−1

4h1h2
−
E
n−1
21,1,N2− 1

2

4h1h2
, C0,−1

E,0,N2
:= −

E
n−1
11, 1

2
,N2−1

h1
−
E
n−1
21,1,N2− 1

2

4h1h2
,

C1,0
E,0,N2

:=
E
n−1
12, 1

2
,N2−1

4h1h2
+
E
n−1
22,1,N2− 1

2

h2
, C1,−1

E,0,N2
:=
E
n−1
11, 1

2
,N2−1

h1
−
E
n−1
22,1,N2− 1

2

h2
,

C0,−2
E,0,N2

:= C1,−2
E,0,N2

:= −
E
n−1
12, 1

2
,N2−1

4h1h2
, C2,0

E,0,N2
:= C2,−1

E,0,N2
:=
E
n−1
21,1,N2− 1

2

4h1h2
,

and from (6.228) and (6.230) with i = N1 − 1 and j = N2 − 1 we get

C0,0
E,N1,N2

wn−1
N1,N2

+ C0,−1
E,N1,N2

wn−1
N1,N2−1 + C−1,0

E,N1,N2
wn−1
N1−1,N2

+C−1,−1
E,N1,N2

wn−1
N1−1,N2−1 + C0,−2

E,N1,N2
wn−1
N1,N2−2 + C−2,0

E,N1,N2
wn−1
N1−2,N2

+C−1,−2
E,N1,N2

wn−1
N1−1,N2−2 + C−2,−1

E,N1,N2
wn−1
N1−2,N2−1 = 0 (6.264)

where

C0,0
E,N1,N2

:=
E
n−1
12,N1− 1

2
,N2−1

4h1h2
+
E
n−1
21,N1−1,N2− 1

2

4h1h2
, C0,−1

E,N1,N2
:=
E
n−1
11,N1− 1

2
,N2−1

h1
+
E
n−1
21,N1−1,N2− 1

2

4h1h2
,

C−1,0
E,N1,N2

:=
E
n−1
12,N1− 1

2
,N2−1

4h1h2
+
E
n−1
22,N1−1,N2− 1

2

h2
, C−1,−1

E,N1,N2
:= −

E
n−1
11,N1− 1

2
,N2−1

h1
−
E
n−1
22,N1−1,N2− 1

2

h2
,

C0,−2
E,N1,N2

:= C−1,−2
E,N1,N2

:= −
E
n−1
12,N1− 1

2
,N2−1

4h1h2
, C−2,0

E,N1,N2
:= C−2,−1

E,N1,N2
:= −

E
n−1
21,N1−1,N2− 1

2

4h1h2
.

Proceeding to the equation (6.227) with i = 1 and j = 1, · · · , N2−1 we get a system of equations

C0,0
E,0,jw

n−1
0,j + C1,0

E,0,jw
n−1
1,j + C0,1

E,0,jw
n−1
0,j+1

+C0,−1
E,0,jw

n−1
0,j−1 + C1,1

E,0,jw
n−1
1,j+1 + C1,−1

E,0,jw
n−1
1,j−1 = 0 (6.265)

for

C0,0
E,0,j := −C1,0

E,0,j := −
E
n−1
11, 1

2
,j

h1
,

C0,1
E,0,j := −C0,−1

E,0,j := −C1,−1
E,0,j := C1,1

E,0,j :=
E
n−1
12, 1

2
,j

4h1h2
,
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6.3. Time discretisation

from (6.228) with i = N1 − 1 and j = 1, · · · , N2 − 1 we get

C0,0
E,N1,j

wn−1
N1,j

+ C−1,0
E,N1,j

wn−1
N1−1,j + C0,1

E,N1,j
wn−1
N1,j+1

+C0,−1
E,N1,j

wn−1
N1,j−1 + C−1,1

E,N1,j
wn−1
N1−1,j+1 + C−1,−1

E,N1,j
wn−1
N1−1,j−1 = 0 (6.266)

for

C0,0
E,N1,j

:= −C−1,0
E,N1,j

:=
E
n−1
11,N1− 1

2
,j

h1
,

C0,1
E,N1,j

:= −C0,−1
E,N1,j

:= −C−1,−1
E,N1,j

:= C−1,1
E,N1,j

:=
E
n−1
12,N1− 1

2
,j

4h1h2

from (6.229) with i = 1, · · · , N1 − 1 and j = 1 we get

C0,0
E,i,0w

n−1
i,0 + C−1,0

E,i,0w
n−1
i−1,0 + C1,0

E,i,0w
n−1
i+1,0

+C0,1
E,i,0w

n−1
i,1 + C1,1

E,i,0w
n−1
i+1,1 + C−1,1

E,i,0w
n−1
i−1,1 = 0 (6.267)

where

C0,0
E,i,0 := −C0,1

E,i,0 := −
E
n−1
22,i, 1

2

h2
,

C1,0
E,i,0 := −C−1,0

E,i,0 := −C−1,1
E,i,0 := C1,1

E,i,0 :=
E
n−1
21,i, 1

2

4h1h2
,

and finally from (6.230) with i = 1, · · · , N1 − 1 and j = N2 − 1 we get

C0,0
E,i,N2

wn−1
i,N2

+ C−1,0
E,i,N2

wn−1
i−1,N2

+ C1,0
E,i,N2

wn−1
i+1,N2

+C0,−1
E,i,N2

wn−1
i,N2−1 + C1,−1

E,i,N2
wn−1
i+1,N2−1 + C−1,−1

E,i,N2
wn−1
i−1,N2−1 = 0 (6.268)

where

C0,0
E,i,N2

:= −C0,−1
E,i,N2

:=
E
n−1
22,i,N2− 1

2

h2
,

C1,0
E,i,N2

:= −C−1,0
E,i,N2

:= −C−1,−1
E,i,N2

:= C1,−1
E,i,N2

:=
E
n−1
21,i,N2− 1

2

4h1h2
.

As before, we end up with a system of linear equations using which we are able to extend wn−1
ij

from ωh to ω̄h. The resulting algorithm reads:

Algorithm 6.3.11. Algorithm for the extension of whij to ω̄h:

1. set AwextIJ := 0 for all I, J = 0, · · ·N1N2 and bI := 0 for all I = 0, · · ·N1N2

2. for the row I = 0, · · ·N1N2 do

3. if (i (I) , j (I)) ∈ ωh set

AwextII := 1 and bI := whi(I),j(I)

4. if (i (I) , j (I)) ∈ ∂ωh set

AwextIJ(i+r,j+s) := Cr,s
E,i,j and bI := 0,

for i = u (I),j = j (I) and r, s ∈ {−2,−1, 0, 1, 2}
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6. Numerical approximation

5. solve the linear system

A
wextwh = b.

The algorithm for assembling the linear system matrix for the semi-implicit scheme for the
Willmore flow is as follows:

Algorithm 6.3.12. Setup of the linear system matrix for the semi-implicit Willmore
flow consists of the following steps:

1. set AWIJ := 0 for all I, J = 0, · · ·N1N2 and bI := 0 for all I = 0, · · ·N1N2

2. evaluate wn−1
γ,ij := Qn−1

ij ∇ · ∇pγ
(
∇un−1

ij

)
on ωh

3. in case of the Neumann boundary conditions extend whij on ω̄h using the algorithm (6.3.11)

4. for the row I = 0, · · ·N1N2 do

5. if (i(I), j(I)) ∈ ∂ωh set the boundary conditions:

6. for the Dirichlet boundary conditions set

AWII := 1, bI := gn−1
ij , and wn−1

ij := 0,

7. for the Neumann boundary conditions set bI := 0 and

if i = i (I, J) = 0 set AWII := −1 and AWI,J(i+1,j) := 1,

if i = i (I, J) = N1 set AWII := 1 and AWI,J(i−1,j) := −1,

if j = j (I, J) = 0 set AWII := −1 and AWI,J(i,j+1) := 1,

if j = j (I, J) = N2 set AWII := 1 and AWI,J(i,j−1) := −1,

8. else set AII := 1, bI := un−1
ij

9. for all r, s = −1, 0, 1 do

10. for all r′, s′ = −1, 0, 1 and |r′|+ |s′| = 1 set

AIJ := AIJ + Cr
′,s′

wQ,i+r′,j+s′ for J = J
(
i+ r′, j + s′

)
11. if (i+ r, j + s) ∈ ωh do

12. for all r′, s′ = −1, 0, 1 set

AIJ := AIJ + Cr,s
E,ijC

r,s
w,i+r,j+s for J = J

(
i+ r + r′, j + s+ s′

)
13. if (i+ r, j + s) ∈ ∂ωh do set

bI := bI − Cr,sE,ijwn−1
i+r,j+s
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6.4. Numerical scheme for the parametric approach

We will now describe numerical schemes for the parametric approach . It is a simplified version
of the scheme introduced in [77]. Since we use the parametric approach only for a comparison
with the level-set method, we consider only schemes of the semi-implicit nature. We discretise
the evolved plane curve by points xni for i = 1, · · · , N and n = 1, · · · ,M . The index i denotes the
space discretisation and index n stands for the time stepping. We remind that since we constrain
ourselves only to closed planar curves, we set the periodic boundary conditions xn−1 = xnN−1,
xn0 = xnN , xnN+1 = xn1 and xnN+2 = xn1 for all n = 1, · · · ,M . For a uniform division of the time
interval [0, T ] we get τ = T/M and with the uniform division of the parametrisation interval
[0, 1], we get h = 1/N and we may write xni = x (ih, nτ). To solve the system (5.123)-(5.125)
we also discretise the quantities g, κ, α, β with their discrete counterparts rni , κni , αni and βni .
For the approximation of the local lengths rni we set

rni =
∣∣xni − xni−1

∣∣ . (6.269)

αni and βni represent normal and tangential velocity of the node xni . Discrete curvature κni
is piecewise constant approximation of κ in the so-called flowing finite volume

[
x̃ni−1, x̃

n
i

]
for

x̃ni =
xni−1+xni

2 . We also define local length of the flowing volume

qni ≈
∣∣x̃ni+1 − x̃ni

∣∣ ≈ 1

2

(
rni+1 + rni

)
(6.270)

For the approximation of the curvature κ (see the Figure 6.8), we introduce the tangential vector
Rni = xni − xni−1. From (4.3) we see that κ is in fact a change of angle between the tangential
vectors adjacent to the vector Ri. Since κni is constant approximation of κ in the flowing volume[
x̃ni , x̃

n
i+1

]
, we will evaluate it in the node xni . We measure the change of the angle between Rni−1

and Rni+1 related to the local length rni . It is given by

∆θ = arccos

(
Rni+1 ·Rni−1∣∣Rni+1

∣∣ ∣∣Rni−1

∣∣
)
.

To keep the correct sign of κ (positive for convex and negative for concave parts) we multiply it
by the orientation of Rni+1 and Rni−1 which is

sign
(
Rni+1 ∧Ri−1

)
= sign det

(
Rni+1, R

n
i−1

)
.

Putting it all together, we have

κni = ∂sθ ≈
∆θ

∆s
=

1

qni−1 + qni
sign

(
Rni+1 ∧Rni−1

)
arccos

(
Rni+1 ·Rni−1

rni+1r
n
i−1

)
≈ 1

2rni
sign

(
Rni+1 ∧Rni−1

)
arccos

(
Rni+1 ·Rni−1

rni+1r
n
i−1

)
.

where we used the fact that

qni−1 + qni =
1

2

(
rni−1 + rni

)
+

1

2

(
rni + rni+1

)
= rni +

1

2
rni−1 +

1

2
rni+1 ≈ 2rni .
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6. Numerical approximation

xi−2 xi−1

xi

xi+1

∆θ = θi+1 − θi−1

Ri−1

θi−1

Ri

θi

Ri+1θi+1

qi−1

qi

Figure 6.8.: Curvature approximation for the Lagrangian method is given as a change of the
angles θi+1 and θi−1 corresponding to the tangential vectors Ri+1 and Ri−1 divided
by the distance qi−1 + qi.

Having κni in hand, we may proceed to the discretisation of β from (5.4.1) and (5.4.2). The
first one is trivial. In the case of (5.4.2) we need to evaluate the second derivative of κ at x̃ni , it
is

∂2
sκ (x̃ni ) =

∂sκ (xni )− ∂sκ
(
xni−1

)
rni

=
1

rni

(
κ
(
x̃ni+1

)
− κ (x̃ni )

qni
− κ (x̃ni )− κ

(
x̃ni−1

)
qni−1

)

=
1

rni

(
κni+1 − κni

qni
− κni − κni−1

qni−1

)
.

To approximate α we integrate the equation (5.124) over the volume [xi−1, xi] and obtain∫ xi

xi−1

∂sαds =

∫ xi

xi−1

κβ − 〈κβ〉Γ(t) + ω

(
L

g
− 1

)
ds,

which gives

αi − αi−1 = ri
(
κiβi − 〈κβ〉Γ(t)

)
+ ω

(
L

N
− ri

)
.

Denoting

Ln =
N∑
l=1

rnl and Bn =
1

Ln

N∑
l=1

rnl κ
n
l β

n
l ,

and setting αn0 = 0 we have

αni = αni−1 + rn−1
i

(
κn−1
i βn−1

i −Bn−1
)

+ ω

(
Ln−1

n
− rn−1

i

)
,
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6.4. Numerical scheme for the parametric approach

for i = 1, · · ·N . Finally we may proceed to the discretisation of the equation

∂tx = βn + αt. (6.271)

Since we aim to derive a semi-implicit scheme, we would like to express βn in terms of partial
derivatives of x w.r. to s. For the mean-curvature flow from (4.4) we have βn = κn = −∂2

sx. It
is approximated as follows:

∂2
sx (xi) ≈

∂sx (x̃i+1)− ∂sx (x̃i)

qi
≈ 1

qi

(
xi+1 − xi
ri+1

− xi − xi−1

ri

)
.

To discretise βn with β given by (5.4.2) i.e. β = −∂2
sκ− 1

2κ
3 we start with the fourth derivative

of the positional vector x:

∂4
sx = ∂3

st = −∂2
s (κn) = −∂s (∂skn + κ∂sn) = −∂2

sκn− 2∂sκ∂sn− κ∂2
sn

= −∂2
sκn− 2∂sκ (κt)− κ∂s (κt) = −∂2

sκn− 2∂sκ (κt)− κ∂sκt− κ2∂st

= −∂2
sκn− 3∂sκ (κt)− κ2∂st = −∂2

sκn− 3

2
∂s
(
κ2
)
∂sx− κ2∂2

sx.

It means:

∂2
sκn = −∂4

sx− κ2∂2
sx−

3

2
∂s
(
κ2
)
∂sx,

and together with κn = −∂st = −∂2
sx we have:(

∂2
sκ+

1

2
κ3

)
n = −∂4

sx−
3

2
∂s
(
κ2
)
∂sx− κ2∂2

sx−
1

2
κ2∂2

sx

= −∂4
sx−

3

2
∂s
(
κ2
)
∂sx−

3

2
κ2∂2

sx

= −∂4
sx−

3

2
∂s
(
κ2∂sx

)
.

The approximation of ∂4
sx is as follows:

∂4
sx (xi) ≈

∂3
sx (x̃i+1)− ∂3

sx (x̃)

qi

≈ 1

qi

(
∂2
sx (xi+1)− ∂2

sx (xi)

ri+1
− ∂2

sx (xi)− ∂2
sx (xi−1)

ri

)
≈ 1

qiri+1

(
∂sx (x̃i+2)− ∂sx (x̃i+1)

qi+1
− ∂sx (x̃i+1)− ∂sx (x̃i)

qi

)
− 1

qiri

(
∂sx (x̃i+1)− ∂sx (x̃i)

qi
− ∂sx (x̃i)− ∂sx (x̃i−1)

qi−1

)
≈ 1

qiqi+1ri+1

(
xi+2 − xi+1

ri+2
− xi+1 − xi

ri+1

)
− 1

q2
i ri+1

(
xi+1 − xi
ri+1

− xi − xi−1

ri

)
− 1

q2
i ri

(
xi+1 − xi
ri+1

− xi − xi−1

ri

)
+

1

qiqi−1ri

(
xi − xi−1

ri
− xi−1 − xi−2

ri−1

)
.
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6. Numerical approximation

The second term is discretised as:

3

2
∂s
(
κ2∂sx

)
≈ 3

2

(
κ2∂sx

)
(x̃i+1)−

(
κ2∂sx

)
(x̃i)

qi

≈ 3

2

1

qi

(
κ2
i+1

xi+1 − xi
ri+1

− κ2
i

xi − xi−1

ri

)
.

To complete the space discretisation of (6.271) we need only to solve the tangential term:

αt ≈ αi
x̃i+1 − x̃i

qi
=
αi
2

xi+1 − xi−1

qi
.

We replace the time derivative in (6.271) by backward difference. We conclude with the following
algorithm:

Algorithm 6.4.1. The semi-implicit parametric approach with asymptotically uni-
form redistribution:

1. Evaluate the local length rni for i = 1, · · ·N by

rni =
∣∣xni − xni−1

∣∣ , (6.272)

and apply the periodic boundary conditions rn−1 = rnN−1, rn0 = rnN , rnN+1 = rn1 and rnN+2 =
rn1 .

2. Evaluate the curvature κni for i = 1, · · ·N by

κni =
1

2rni
sign

(
Rni+1 ∧Rni−1

)
arccos

(
Rni+1 ·Rni−1

rni+1r
n
i−1

)
, (6.273)

for Rni = xni − xni−1 and with the periodic boundary conditions κn−1 = κnN−1, κn0 = κnN ,
κnN+1 = κn1 and κnN+2 = κn1 .

3. Evaluate the normal velocity βni :

a) In the case of the mean-curvature flow set

βni = κni , for i = −1, · · ·N + 2 (6.274)

b) In the case of the Willmore flow set

βni = − 1

rni

(
κni+1 − κni

qni
− κni − κni−1

qni−1

)
− 1

2
(κni )3 for i = 1, · · · , N (6.275)

where qi = 1
2

(
rni + rni+1

)
and apply the periodic boundary conditions βn−1 = βnN−1, βn0 =

βnN , βnN+1 = βn1 and βnN+2 = βn1 .

4. Evaluate the tangential velocity αni by

Ln =

N∑
l=1

rnl , B
n =

1

Ln

N∑
l=1

rnl κ
n
l β

n
l , ω = δ1 + δ2B

n

αn0 = 0,

αni = αni−1 + rn−1
i

(
κn−1
i βn−1

i −Bn−1
)

+ ω

(
Ln−1

n
− rn−1

i

)
, (6.276)

for i = 1, · · · , N .
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6.5. Numerical solution of eikonal equations

5. Solve:

a) Tridiagonal system for the mean-curvature flow:

Bn
i x

n
i−1 + Cni x

n
i +Dn

i x
n
i+1 = Fni , (6.277)

where

Cni =
qni
τ
− (Bn

i +Dn
i ) , Fni =

qni
τ
xn−1
i ,

Bn
i =

1

rni
, Dn

i =
1

rni+1

.

b) Pentadiagonal system for the surface diffusion flow: where

c) Pentadiagonal system for the Willmore flow:

Ani x
n
i−2 +Bn

i x
n
i−1 + Cni x

n
i +Dn

i x
n
i+1 + Eni+2 = Fni , (6.278)

where

Ani =
1

rni q
n
i−1r

n
i−1

, Cni =
qni
τ
− (Ani +Bn

i +Dn
i + Eni ) ,

Eni =
1

rni+1q
n
i+1r

n
i+2

, Fni =
qni
τ
xn−1
i ,

Bn
i = −

(
1

rni q
n
i−1r

n
i−1

+
1

(rni )2qni−1

+
1

(rni )2qni
+

1

rni q
n
i r

n
i+1

)
+

3

2

(κni )2

rni
+
αni
2

Dn
i = −

(
1

rni q
n
i r

n
i+1

+
1

(rni+1)2qni
+

1

(rni+1)2qni+1

+
1

rni+1q
n
i+1r

n
i+2

)
+

3

2

(κni+1)2

rni+1

− αni
2
.

6.5. Numerical solution of eikonal equations

In this section we discuss possible numerical schemes to the eikonal equations (5.136) and (5.137).
We will see that the main difficulties come from the necessity to get a scheme which will ensure
convergence towards the viscosity solution of (5.136) resp. (5.137). We also require that in case
of the level-set function redistancing , the zero level-set curve (hypersurface) Γ will be preserved.

We start with the time dependent equation (5.137). In the case of general Hamilton-Jacobi
equation of the from

ut +H (x,∇u (x)) = 0, (6.279)

for H uniformly continuous, Ostrov [86], Bardi and Osher [4] show convergence of monotone
numerical schemes to the viscosity solution of (6.279). For the definition of the monotone
schemes see for example a book by Feistauer, Felcman and Straškraba [50].

Definition 6.5.1. Assume numerical scheme for the solution of (6.279) (for the simplicity only
in R1) which can be written in a form

un+1
i = Φ

(
uni−l, · · · , uni , · · · , uni+l

)
.

The scheme is called monotone iff Φ is nondecreasing in all its arguments:

aj ≤ bj , for j = 1, · · · , 2l + 1⇒ Φ (a1, · · · a2l+1) ≤ Φ (b1, · · · , b2l+1) .
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6. Numerical approximation

In [80] we compared the following monotone iterative schemes for (5.137): a regularised
scheme , an upwind scheme and the Godunov scheme .

6.5.1. Regularised scheme

The idea of the regularised scheme comes directly from the method of the vanishing viscosity.
The scheme has a form

Scheme 6.5.2. The regularised finite difference numerical scheme for the equation (5.137) reads
as:

un+1
ij − unij

τ
= sign

(
u0
ij

)
(1− |∇cuij |) + ε∆hu

n
ij on ωh,

uhij |t=0 = P (uini)ij on ωh,

∂hnu
h
ij = 1 on ∂ωh (the Neumann b.c.),

for

∆hu
h
ij =

uhi−1,j − 2uij + uhi+1,j

h2
1

+
uhi,j−1 − 2uij + uhi,j+1

h2
2

.

6.5.2. Upwind scheme

The methods based on the upwind schemes are well known from the numerical methods for the
equation containing advection. For the first order Hamilton-Jacobi equation of the form

ut + F (x, u) |∇u| = 0, (6.280)

the upwind scheme reads as

un+1
ij − unij

τ
= [Fij ]+∇+

U

(
unij
)

+ [Fij ]−∇−U
(
unij
)

(6.281)

where

∇+
Uu

h
ij =

(
[ub.,ij ]

2
+ + [uf.,ij ]

2
− + [u.b,ij ]

2
+ + [u.f,ij ]

2
−

) 1
2
, (6.282)

∇−Uuhij =
(

[uf.,ij ]
2
+ + [ub.,ij ]

2
− + [u.f,ij ]

2
+ + [u.b,ij ]

2
−

) 1
2
. (6.283)

and we use the notation [a]+ = max {a, 0} and [a]− = min {a, 0}. At the boundaries we replace:

ub.,ij by uf.,ij for i = 0 and uf.,ij by ub.,ij for i = N1, (6.284)

u.b,ij by u.f,ij for j = 0 and u.f,ij by u.b,ij for j = N2. (6.285)

For (5.137) we have:

Scheme 6.5.3. The upwind finite difference numerical scheme for the equation (5.137) reads
as:

un+1
ij − nkij

τ
=

[
sign

(
u0
ij

)]
+
∇+
U

(
unij
)

+
[
sign

(
u0
ij

)]
−∇

−
U

(
unij
)
− sign

(
u0
ij

)
on ωh,

uhij |t=0 = P (uini)ij on ωh,

where ∇+
U and ∇−U are given by (6.283) and (6.283).
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6.5. Numerical solution of eikonal equations

6.5.3. Godunov scheme

The Godunov scheme – see Bardi and Osher [4] – is similar to the upwind scheme. For equation
(6.280) it has a form

uk+1
ij − ukij

τ
= [Fij ]+∇+

M

(
ukij

)
+ [Fij ]−∇−M

(
ukij

)
where

∇+
M =

(
max

(
[ub.,ij ]+ ,− [uf.,ij ]−

)2
+ max

(
[u.b,ij ]+ ,− [u.f,ij ]−

)2
) 1

2

,

(6.286)

∇−M =

(
max

(
[uf.,ij ]+ ,− [ub.,ij ]−

)2
+ max

(
[u.f,ij ]+ ,− [u.b,ij ]−

)2
) 1

2

,

(6.287)

and the finite differences at the boundaries are handled in the same way as for the upwind
scheme using (6.284) and (6.285). In R2 the scheme for the equation (5.137) has a form:

Scheme 6.5.4. The Godunov finite difference numerical scheme for the equation (5.137) reads
as:

uk+1
ij − ukij

τ
=

[
sign u0

ij

]
+
∇+
M

(
ukij

)
+
[
sign u0

ij

]
−∇

−
M

(
ukij

)
− sign u0

ij ,

uhij |t=0 = P (uini)ij on ωh,

where ∇+
M and ∇−M are given by (6.286) and (6.287).

6.5.4. Interface preserving re-distancing

In [80], we show that the above mentioned schemes do not preserve the zero level-set sufficiently.
Moreover, in some cases when the evolution of (5.137) is computed for a time long enough, the
zero level-set may totally disappear. We have achieved these results independently on the works
of Sussman and others [70, 69, 93, 94] where we can read: ”The evolution equation for the
interface (5.137) conserves the volume of the domain bounded by the curve defined implicitly
by the equation u0 (x) = 0. This is due to the fact that it does not change the position of the
boundary (zero level-set). In numerical computation this is not true anymore.”

The authors of [94] propose a method for better preserving of the zero level-set based on the
conserving of the volume of IntΓ. If H is the Heaviside function defined as

H (u) =

{
1 if u > 0
0 if u ≤ 0

, (6.288)

then we want

∂t

∫
Ω
H (u) dx = 0. (6.289)

It is a condition for the preserving of the volume of IntΓ. Let us denote

L (u0, u) = sign (u0) (1− |∇u|) .
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6. Numerical approximation

Instead of (5.137) we consider a modified evolution equation

∂tu = L (u0, u) + λf (u) , (6.290)

where λ is a function only of t determined by

∂t

∫
Ω
H (u) dx =

∫
Ω
H ′ (u) ∂tu =

∫
Ω
H ′ (u) (L (u0, u) + λf (u)) = 0,

which gives

λ =
−
∫

ΩH
′ (u)L (u0, u)∫

ΩH
′ (u) f (u)

.

To correct u only near the zero level-set we set

f (u) = H ′ (u) |∇u| .

For the numerical implementation, we consider the dual mesh (6.54), take a finite volume vij
for 0 < i < N1, 0 < j < N2, i and j fixed, and denote Ωij its interior. We want to preserve the
volume of Γ interior on each Ωij . It means that ∂t

∫
Ωij

H (u) dx = 0 should hold. It gives us

d

dt
uhij = L

(
uh0 , u

h
)

+ λijf
(
uh
)
,

λij =
−
∫

Ωij
H ′
(
uh
)
L
(
uh0 , u

h
)∫

Ωij
H ′ (uh) f (uh)

.

The Heaviside and the sign function are discretise as

Hh

(
uh
)

=


1 if uh > h
0 if uh < −h

1
2

(
1 + u

h + 1
π sin

(
π uh
))

otherwise
,

signh

(
uh
)

= 2

(
Hh

(
uh
)
− 1

2

)
.

The partial derivatives of u are approximated as

∂hx1
uij ≈


uf ·,ij if uf ·,ijuhsign (u0,ij) < 0 and (ub·,ij + uf ·,ij) sign (u0,ij) < 0
ub·,ij if ub·,ijuhsign (u0,ij) > 0 and (ub·,ij + uf ·,ij) sign (u0,ij) > 0

0 if ub·,ijsign (u0,ij) < 0and uf ·,ijsign (u0,ij) > 0

∂hx2
uij ≈


u·f,ij if u·f,ijuhsign (u0,ij) < 0 and (u·b,ij + u·f,ij) sign (u0,ij) < 0
u·b,ij if u·b,ijuhsign (u0,ij) > 0 and (u·b,ij + u·f,ij) sign (u0,ij) > 0

0 if u·b,ijsign (u0,ij) < 0and u·f,ijsign (u0,ij) > 0

and the numerical scheme reads as:

Scheme 6.5.5. The zero level-set preserving explicit finite difference numerical scheme for the
level-set function redistancing with the first order discretisation reads as

ũn+1
ij = unij + τL

(
uh0 , u

n
)
,

un+1
ij = ũn+1

ij + τλijH
′
h

(
uh0

) ∣∣∣∇uh0,ij∣∣∣ ,
λij =

−
∫

Ωij
H ′h
(
uh0
) ũn+1

ij −uh0,ij
τ dx∫

Ωij

[
H ′h

(
uh0,ij

)]2 ∣∣∣∇uh0,ij∣∣∣ dx
, (6.291)

where τ is fixed time step.
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6.5. Numerical solution of eikonal equations

The integrals over the finite volume Ωij are approximated as

∫
Ωij

gdx ≈ h2

24

16gij +

1∑
m,n=−1;(m,n) 6=(0,0)

gi+m,j+n

 .

The discretisation of the constraint removes the leading order term of the error in∫
Ωij

(
Hh

(
un+1

)
−Hh (u0)

)
.

The Taylor expansion gives∫
Ωij

(
Hh

(
un+1

)
−Hh (u0)

)
=

∫
Ωij

H ′h (u0)
(
un+1 − u0

)
+

∫
Ωij

H ′′h (u0)

(
un+1 − u0

)2
2

+ · · ·

If we assume that λij is constant on Ωij then we may write∫
Ωij

H ′h (u0)
(
un+1 − u0

)
=

∫
Ωij

H ′h (u0)
(
ũn+1 + τλijH

′ (u0) |∇u0| − u0

)
= τ

[∫
Ωij

H ′h (u0)
ũn+1 − u0

τ
dx + λij

∫
Ωij

(
H ′h (u0)

)2 |∇u0|dx

]
= 0,

where the we substituted from (6.291).

6.5.5. Direct methods

At the end of this section we only refer to some direct methods which might be used for finding
a viscosity solution of an equation

|∇u (x)| = F (x) on Rn and u = g on Γ ⊂ Rn, (6.292)

where the boundary conditions are given on some subset Γ where u is fixed. Γ might be for
example some hypersurface to which we want to construct the (signed) distance function – in
this case g = 0. We should also imposed some compatibility condition on g to ensure that
(6.292) has a solution. Let us assume that such solution exists. Discretisation of the left hand
side of (6.292) using some of the monotones scheme gives linear system which might by solved
by some appropriate solver of linear systems. However, better understanding of this equation
allows us to develop much more efficient methods. Very simply said, we should construct the
solution first at the regions closer to Γ. It corresponds well with the fact that (6.292) simulates
a monotonically advancing front, for example water front. Assume that n = 2, g ≡ 0 and Γ
is a planar curve representing the front moving in R2 with speed v (x) = 1/F (x) depending
on the space variable x (v is only scalar now and it says, in what speed the particles of the
front can move at given point x). Γ (t) given as Γ (t) ≡

{
x ∈ R2 | u (x)

}
= t is just the shape

of the advancing front at time t. Realizing this fact, it is really natural that we construct the
approximate solution first at the nodes of the numerical mesh which are closest to Γ |t=0 and
the we proceed to further regions following the front.
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6. Numerical approximation

This idea led to the first method optimised just for (6.292). It was the fast marching
method by Sethian [61]. This method splits all nodes of the numerical mesh to fixed points
(those where we already know the approximate solution), tentative points (they are usually
neighbours of the fixed points and therefore we can approximate the solution there using the
values from the fixed points) and unknown points (they are too far from the regions where
we know the approximate solution so that we do not even try to guess their values). At each
iteration of the algorithm we seek for the tentative point with the smallest value. This point is
the closest one to the region where we know the solution. We fix this point, update values of its
neighbours and mark them as tentative. It is an efficient method which allows us to construct
the solution only in some small neighbourhood of Γ. It is useful especially for the narrow band
methods . The main disadvantage of this method is the necessity of searching the tentative
point with the smallest value. This can significantly slowdown whole method. Heap sort is
usually preferred for this task.

Tsai, Cheng and Zhao [102, 58] introduced the fast sweeping method . This method
eliminates any seeking. It consists of the Gauss-Seidel type iterations called sweepings. At each
sweeping we immediately use new values at nodes we went already through as it is usual for
the Gauss-Seidel iterations. If the direction of the sweeping agree with the direction at which
the front is propagating we construct the correct approximate solution very efficiently. To cover
all the directions the front can propagate, we change the direction of the sweepings every time
we finish one sweeping and start another. It is not difficult to prove that if f ≡ 1 we can get
the approximate solution after 4 iterations – see Qian, Zhang and Zhao [88]. The fast sweeping
method is simple to implement and at the same time it is very efficient.

In [80] we introduced so called the front tracing method. It combines advantages of both
methods. It also avoids the necessity of seeking for the smallest tentative node and at the same
time it allows to construct the approximate solution only in some small neighbourhood of Γ
which is not possible with the fast sweeping method. In cases when f is not constant and
generates more complex characteristics (lines along which the front is moving) the fast sweeping
method may require more then 4 iterations. At this situation the front tracking method might
perform even better then the fast sweeping method. The disadvantage of the front tracking
method is in its higher complexity (it is also why we do not explain this method in this text)
and the fact that it is not trivial to extend it to higher dimensions which is trivial for both fast
marching and fast sweeping method.

For our numerical simulations we preferred mainly the fast sweeping method.
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7.1. Experimental order of convergence

In this chapter, we describe methods which we use for the measuring of the experimental order of
convergence and we also present many qualitative results obtained using the numerical schemes
we described in this thesis.

7.1.1. Experimental order of convergence for the graph formulation

To our best knowledge, there is no analytical solution for the graph formulation of the mean-
curvature flow or Willmore flow. To study the experimental convergence, we solve a modified
problems of the form

∂tϕ = Q (ϕ)∇ ·
( ∇ϕ
Q (ϕ)

)
+ FMC (ϕ) on (0,T〉 × Ω, (7.1)

ϕ |t=0 = ϕini on Ω,

with the Dirichlet boundary condition

ϕ = g on ∂Ω,

for the isotropic graph formulation of the mean-curvature flow and

∂tϕ = −Q (ϕ)∇ ·
(

1

Q (ϕ)
P (ϕ)∇w (ϕ)− 1

2

w2 (ϕ)

Q3 (ϕ)
∇ϕ
)

+ FW (ϕ) on Ω× (0, T ] ,

(7.2)

w = QH on Ω× [0, T ] , (7.3)

ϕ |t=0 = ϕini on Ω,

with the Dirichlet boundary conditions

ϕ = g, w = 0 on ∂Ω,

for the isotropic graph formulation of the Willmore flow. We choose FMC and FW such that
(7.1) and (7.2)–(7.3) have analytical solution. Having a function ζ (x, t) and setting

FMC (ζ) = −Q (ζ)∇ ·
( ∇ζ
Q (ζ)

)
+ ∂tζ, (7.4)
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and

FW (ζ) = Q (ζ)∇ ·
(

1

Q (ζ)
P (ζ)∇w (ζ)− 1

2

w2 (ζ)

Q3 (ζ)
∇ζ
)

+ ∂tζ, (7.5)

w (ζ) = Q (ζ)∇ ·
( ∇ζ
Q (ζ)

)
on Ω× [0, T ] . (7.6)

We express all necessary quantities in terms of the function ζ:

Q :=
√
ε2 + ζ2

x + ζ2
y ,

Qx := (ζxζxx + ζyζxy) /Q,

Qy := (ζyζyy + ζxζxy) /Q,

Qxx :=
(
ζ2
xx + ζxζxxx + ζ2

xy + ζyζxxy −Q2
x

)
/Q,

Qxy := (ζxyζxx + ζxζxxy + ζyyζxy + ζyζxyy −QxQy) /Q,
Qyy :=

(
ζ2
yy + ζyζyyy + ζ2

xy + ζxζxyy −Q2
y

)
/Q,

Qxxx := (3ζxxζxxx + ζxζxxxx + 2ζxyζxxy + ζxyζxxy + ζyζxxxy − 3QxQxx) /Q,

Qxxy := (2ζxxζxxy + ζxyζxxx + ζxζxxxy + 2ζxyζxyy + ζyyζxxy + ζyζxxyy

− 2QxQxy −QxxQy) /Q,
Qxyy := (2ζyyζxyy + ζxyζyyy + ζyζxyyy + 2ζxyζxxy + ζxxζxyy + ζxζxxyy

− 2QyQxy −QyyQx) /Q,

Qyyy := (3ζyyζyyy + ζyζyyyy + 2ζxyζxyy + ζxyζxyy + ζxζxyyy − 3QyQyy) /Q,

H := (ζxx + ζyy) /Q− (ζxQx + ζyQy) /Q
2,

Hx := (ζxxx + ζxyy) /Q+ 2Qx (ζxQx + ζyQy) /Q
3 −

(2ζxxQx + ζyyQx + ζxQxx + ζxyQy + ζyQxy) /Q
2,

Hy := (ζyyy + ζxxy) /Q+ 2Qy (ζxQx + ζyQy) /Q
3 −

(2ζyyQy + ζxxQy + ζyQyy + ζxyQx + ζxQxy) /Q
2,

Hxy := (ζxxxy + ζxyyy) /Q− [Qx (ζxxy + ζyyy) +Qy (ζxxx + ζxyy) +

Qxy (ζxx + ζyy) + ζxxyQx + ζxyQxx + ζxxQxy + ζxQxxy+

ζxyyQy + ζyyQxy + ζxyQyy + ζyQxyy] /Q
2 +

2 (QxQy (ζxx + ζyy) +Qx (ζxyQx + ζxQxy + ζyyQy + ζyQyy) +

Qy (ζxxQx + ζxQxx + ζxyQy + ζyQxy) +Qxy (ζxQx + ζyQy)] /Q
3 −

6 [QxQy (ζxQx + ζyQy)] /Q
4,

Hxx := (ζxxxx + ζxxyy) /Q− (Qxζxyy + 3ζxxxQx + 3ζxxQxx + ζxQxxx+

ζxyyQx + ζyyQxx + ζxxyQy + 2ζxyQxy + ζyQxxy) /Q
2 +

2 [Qxx (ζxQx + ζyQy) +Qx (3ζxxQx + 2ζxQxx + 2ζxyQy + ζyQxy+

ζyyQx + ζyQxy)] /Q
3 − 6

[
Q2
x (ζxQx + ζyQy)

]
/Q4,

Hyy := (ζyyyy + ζxxyy) /Q− [Qyζxxy + 3ζyyyQy + 3ζyyQyy + ζyQyyy+

ζxxyQy + ζxxQyy + ζxyyQx + 2ζxyQxy + ζxQxyy) /Q
2 +

2 [Qyy (ζyQy + ζxQx) +Qy (3ζyyQy + 2ζyQyy + 2ζxyQx + ζxQxy+

ζxxQy + ζxQxy)] /Q
3 − 6

[
Q2
y (ζyQy + ζxQx)

]
/Q4,

126



7.1. Experimental order of convergence

w := QH,

wx := QxH +QHx,

wy := QyH +QHy,

wxy := QxyH +QyHx +QxHy +QHxy,

wxx := QxxH + 2QxHx +QHxx,

wyy := QyyH + 2QxHx +QHyy.

EW11 := 1/Q− ζ2
x/Q

3,

EW12 := −ζxζy/Q3,

EW22 := 1/Q− ζ2
y/Q

3,

EW11,x := −Qx/Q2 − 2ζxζxx/Q
3 + 3Qxζ

2
x/Q

4,

EW12,x := − (ζxxζy + ζxζxy) /Q
3 + 3Qxζxζy/Q

4,

EW12,y := − (ζxyζy + ζxζyy) /Q
3 + 3Qyζxζy/Q

4,

EW22,y := −Qy/Q2 − 2ζyζyy/Q
3 + 3Qyζ

2
y/Q

4,

We get that (7.4) reads

FMC := −w + ∂tζ (7.7)

and for (7.5) we get

FW := −Q
[
EW11,xwx + EW11wxx + EW22,ywy + EW22wyy

+ EW12,xwy + EW12wxy + EW12,ywx + EW12wxy

−1

2

((
2wwxζx + w2ζxx + 2wwyζy + w2ζyy

)
/Q3

− 3w2 (ζxQx + ζyQy) /Q
4
)]

+ ∂tζ. (7.8)

As an analytical solution ζ(x, t) of (7.1) and (7.2)–(7.3) we chose the following function

ζ (x, y) := cos (πt)
1

r2n
(xn − rn) (yn − rn) exp

(
−σ
(
x2 + y2

))
on Ω× [0, T ], (7.9)

for Ω ≡ [−r, r]2. Then we get

ζx := cos (πt) /r2n (yn − rn)nxn−1 exp
(
−σ
(
x2 + y2

))
− 2σxζ,

ζy := cos (πt) /r2n (xn − rn)nyn−1 exp
(
−σ
(
x2 + y2

))
− 2σxζ,

ζxx := cos (πt) /r2n (yn − rn)
(
n (n− 1)xn−2 − 2σnxn

)
exp

(
−σ
(
x2 + y2

))
− 2σ (ζ + xζx) ,

ζxy := cos (πt) /r2n
(
n2yn−1xn−1 exp

(
−σ
(
x2 + y2

)))
− 2σ (yζx − xζy)− 4σ2xyζ,

ζyy := cos (πt) /r2n (xn − rn)
(
n (n− 1) yn−2 − 2σnyn

)
exp

(
−σ
(
x2 + y2

))
− 2σ (ζ + yζy) ,
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ζxxx := cos (πt) /r2n (yn − rn)
(
n (n− 1) (n− 2)xn−3 − 2σn (2n− 1)xn−1 + 4σ2nxn+1

)
exp

(
−σ
(
x2 + y2

))
− 2σ (2ζx + xζxx) ,

ζxxy := cos (πt) /r2n
(
n2 (n− 1)xn−2yn−1 − 2σn2xnyn−1

)
exp

(
−σ
(
x2 + y2

))
−2σyζxx − 4σ2y (ζ + xζx)− 2σζy − 2σxζxy,

ζxyy := cos (πt) /r2n
(
n2 (n− 1)xn−1yn−2 − 2σn2xn−1yn

)
exp

(
−σ
(
x2 + y2

))
−2σxζyy − 4σ2x (ζ + yζy)− 2σζx − 2σyζxy,

ζyyy := cos (πt) /r2n (xn − rn)
(
n (n− 1) (n− 2) yn−3 − 2σn (2n− 1) yn−1 + 4σ2nyn+1

)
exp

(
−σ
(
x2 + y2

))
− 2σ (2ζy + yζyy) ,

ζxxxx := cos (πt) /r2n (yn − rn) exp
(
−σ
(
x2 + y2

))(
n (n− 1) (n− 2) (n− 3)xn−4 − 6σn (n− 1) (n− 1)xn−2 + 12σ2n2xn − 8σ3nxn+2

)
−2σ (3ζxx + xζxxx) ,

ζxxxy := cos (πt) /r2n
(
n (n− 1) (n− 2)xn−3 − 2σn (2n− 1)xn−1 + 4c2nxn+1

)(
nyn−1 − 2σy (yn − 1)

)
exp

(
−σ
(
x2 + y2

))
− 2σ (2ζxy + xζxxy) ,

ζxxyy := cos (πt) /r2n exp
(
−σ
(
x2 + y2

))(
n2 (n− 1)2 xn−2yn−2 − 2σn2 (n− 1)xnyn−2 − 2σn2 (n− 1)xn−2yn + 4σ2n2xnyn

)
−2σ (ζxx + ζyy + yζxxy + xζxyy)− 4σ2 (ζ + xζx + yζy + xyζxy) ,

ζxyyy := cos (πt) /r2n
(
n (n− 1) (n− 2) yn−3 − 2σn (2n− 1) yn−1 + 4σ2nyn+1

)(
nxn−1 − 2σx (xn − 1)

)
exp

(
−σ
(
x2 + y2

))
− 2σ (2ζxy + yζxyy) ,

ζyyyy := cos (πt) /r2n (xn − rn) exp
(
−σ
(
x2 + y2

))(
n (n− 1) (n− 2) (n− 3) yn−4 − 6σn (n− 1) (n− 1) yn−2 + 12σ2n2yn − 8σ3nyn+2

)
−2σ (3ζyy + yζyyy) .

For given T , we evaluate the errors in the norms of the spaces L1 (Ω; [0, T ]), L2 (Ω; [0, T ]) and
L∞ (Ω; [0, T ]) resp. their approximations∥∥∥ϕh − Ph (ζ)

∥∥∥h,τ
L1(ωh;[0,T ])

:=
M∑
k=0

τ

N1,N2∑
i=0,j=0

∣∣∣ϕhij (kτ)− ζ (−r + ih,−r + jh, kτ)
∣∣∣h2, (7.10)

∥∥∥ϕh − Ph (ζ)
∥∥∥h,τ
L2(ωh;[0,T ])

:=

 M∑
k=0

τ

N1,N2∑
i=0,j=0

(
ϕhij (kτ)− ζ (−r + ih,−r + jh, kτ)

)2
h2

 1
2

,

(7.11)∥∥∥ϕh − Ph (ζ)
∥∥∥h,τ
L∞(ωh;[0,T ])

:= max
k=0,··· ,M

max
i=0,··· ,N1
j=0,··· ,N2

∣∣∣ϕhij (kτ)− ζ (−r + ih,−r + jh, kτ)
∣∣∣ , (7.12)

for τ = T/M . We would like to emphasise that τ does not correspond with the time step of a
solver. In case of the explicit schemes, the time step is adaptively set by the solver. For the
semi-implicit scheme the time step is proportional to h2.

The experimental order of convergence is evaluated as follows - for two approximations ϕh1 and
ϕh2 obtained by the discretisation with the space steps h1 and h2 we compute the approximation
errors Errh1 and Errh2 in one norm of (7.10)–(7.12) as

EOC (Errh1 , Errh2) :=
log (Errh1/Errh2)

log (h1/h2)
. (7.13)
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The results for the numerical schemes for the mean-curvature flow of graphs (6.3.2), (6.3.4),
(6.3.6), (6.3.8) and the Willmore flow of graphs (6.3.3), (6.3.5), (6.3.7), (6.3.9) are presented
in the Numerical experiments (7.1.1)-(7.1.8) resp. Figures (7.1)-(7.16). One can see that the
one-sided schemes approximate both ϕ and w with the EOC equal to 1 - see Tables (7.1), (7.2),
(7.7) and (7.8). For this class of schemes we tested only the explicit versions. On the other
hand, the central schemes approximate the quantities ϕ and H resp. w with the second order of
accuracy except of the approximation of w in the case of the Willmore flow. Here, only the error
in L∞ norm decreases with the second order. It follows from Tables (7.3), (7.4), (7.9) and (7.10).
Note also, that the central schemes require significantly less CPU time in comparison with the
one-sided schemes, the only exception here is the finest mesh for the Willmore flow. Even for
this class of schemes we tested only the ones with the explicit discretisation in time. Finally
the complementary finite volume schemes with the explicit time discretisation also give EOC
equal to 2 - see Tables (7.5), (7.6), (7.11) and (7.12). Concerning the CPU time requirement,
it is comparable with the one-sided schemes. For this class of scheme we also implemented
the semi-implicit counterparts. The results can be found in Tables (7.13), (7.14), (7.15) and
(7.16). We achieved again the approximation of the second order and we see that, except of the
mean-curvature flow, the semi-implicit schemes are computationally much more efficient.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.003227 0.00394 0.02163 1

1/4 0.001216 1.408 0.001544 1.351 0.01125 0.9428 1

1/8 0.000541 1.168 0.0007301 1.081 0.00477 1.238 3

1/16 0.0002576 1.07 0.0003602 1.02 0.002178 1.131 8

1/32 0.0001262 1.03 0.0001795 1.005 0.001046 1.058 31

1/64 6.26e-05 1.011 8.967e-05 1.001 0.0005103 1.036 292

Figure 7.1.: EOC of the approximation of ϕ for the explicit one-sided numerical scheme for
the mean-curvature flow of graphs (6.3.2). See the Numerical experiment 7.1.1.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.02809 0.04154 0.292

1/4 0.01383 1.023 0.02267 0.8739 0.2004 0.543

1/8 0.006039 1.195 0.01211 0.9041 0.105 0.9328

1/16 0.002888 1.064 0.006139 0.9804 0.05569 0.9148

1/32 0.00142 1.024 0.00308 0.9952 0.02727 1.03

1/64 0.000706 1.009 0.001541 0.9988 0.01346 1.019

Figure 7.2.: EOC of the approximation of w for the explicit one-sided numerical scheme for
the mean-curvature flow of graphs (6.3.2). See the Numerical experiment 7.1.1.

Numerical experiment 7.1.1. EOC for the explicit one-sided finite difference numerical scheme for the mean-
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curvature flow of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Space steps: 0.5×0.5, 0.25×0.25, 0.125×0.125, 0.0625×0.0625,
0.03125 × 0.03125 and 0.015625 × 0.015625. Time step: Adaptive. Numerical scheme: 6.3.2. Figure: 7.1
and 7.2. Remark: The approximation of ϕ and w is of the first order.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.01267 0.01914 0.167 1

1/4 0.003319 1.932 0.00459 2.06 0.04993 1.742 1

1/8 0.0008469 1.971 0.001111 2.047 0.00921 2.439 3

1/16 0.0002127 1.993 0.0002771 2.003 0.002137 2.107 6

1/32 5.324e-05 1.998 6.925e-05 2 0.000528 2.017 14

1/64 1.331e-05 2 1.731e-05 2 0.0001316 2.004 98

Figure 7.3.: EOC of the approximation of ϕ for the explicit central numerical scheme for the
mean-curvature flow of graphs (6.3.4). See the Numerical experiment 7.1.2.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.05449 0.06402 0.3501

1/4 0.02439 1.16 0.03808 0.7494 0.4347 -0.312

1/8 0.007615 1.679 0.01356 1.489 0.1864 1.221

1/16 0.002055 1.89 0.003667 1.887 0.05047 1.885

1/32 0.000523 1.974 0.0009342 1.973 0.01286 1.972

1/64 0.0001313 1.994 0.0002347 1.993 0.003231 1.993

Figure 7.4.: EOC of the approximation of w for the explicit central numerical scheme for the
mean-curvature flow of graphs (6.3.4). See the Numerical experiment 7.1.2.

Numerical experiment 7.1.2. EOC for the explicit central finite difference numerical scheme for the mean-
curvature flow of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Time step: Adaptive. Numerical scheme: 6.3.4. Figure: 7.3
and 7.4. Remark: The approximation of ϕ and w is of the second order.
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h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.003339 0.004452 0.02897 1

1/4 0.0008226 2.021 0.0009809 2.182 0.005666 2.354 1

1/8 0.0002085 1.98 0.0002458 1.997 0.001335 2.086 3

1/16 5.226e-05 1.996 6.152e-05 1.998 0.0003299 2.016 6

1/32 1.307e-05 2 1.539e-05 1.999 8.226e-05 2.004 29

1/64 3.268e-06 2 3.847e-06 2 2.055e-05 2.001 368

Figure 7.5.: EOC of the approximation of ϕ for the explicit complementary finite volume
numerical scheme for the mean-curvature flow of graphs (6.3.6). See the Nu-
merical experiment 7.1.3.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.02175 0.03425 0.2702

1/4 0.006553 1.731 0.008048 2.09 0.08475 1.673

1/8 0.001721 1.929 0.001988 2.017 0.02168 1.967

1/16 0.000438 1.974 0.0005028 1.983 0.005449 1.993

1/32 0.0001099 1.995 0.0001261 1.996 0.001364 1.998

1/64 2.762e-05 1.993 3.155e-05 1.998 0.0003411 2

Figure 7.6.: EOC of the approximation of w for the explicit finite difference numerical scheme
for the mean-curvature flow of graphs (6.3.6). See the Numerical experiment
7.1.3.

Numerical experiment 7.1.3. EOC for the explicit finite difference numerical scheme for the mean-curvature
flow of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Time step: Adaptive. Numerical scheme: 6.3.6. Figure: 7.5
and 7.6. Remark: The approximation of ϕ and w is of the second order.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.05847 0.1215 0.6986 3

1/4 0.004741 3.624 0.00441 4.785 0.01577 5.47 5

1/8 0.001783 1.411 0.002152 1.035 0.009123 0.7894 65

1/16 0.000602 1.566 0.00073 1.56 0.003162 1.529 3672

1/32 0.0002489 1.274 0.0003037 1.265 0.001246 1.344 273181

Figure 7.7.: EOC of the approximation of ϕ for the explicit one-sided numerical scheme for
the Willmore flow of graphs (6.3.3). See the Numerical experiment 7.1.4.
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h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.3495 0.8077 4.281

1/4 0.04469 2.968 0.06361 3.667 0.5434 2.978

1/8 0.01728 1.37 0.02333 1.447 0.1226 2.148

1/16 0.007537 1.197 0.01089 1.099 0.05642 1.119

1/32 0.003566 1.08 0.005345 1.027 0.02793 1.014

Figure 7.8.: EOC of the approximation of w for the explicit one-sided numerical scheme for
the Willmore flow of graphs (6.3.3). See the Numerical experiment 7.1.4.

Numerical experiment 7.1.4. EOC for the explicit one-sided finite difference numerical scheme for the Will-
more flow of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Space steps: 0.5× 0.5, 0.25× 0.25, 0.125× 0.125, 0.0625× 0.0625
and 0.03125×0.03125. Time step: Adaptive. Numerical scheme: 6.3.3. Figure: 7.7 and 7.8. Remark: The
approximation of ϕ and w is of the first order.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.2631 0.8637 9.058 4

1/4 0.04963 2.406 0.07862 3.458 0.3746 4.596 6

1/8 0.005386 3.204 0.004646 4.081 0.02642 3.826 14

1/16 0.001284 2.068 0.001061 2.13 0.004619 2.516 291

1/32 0.0002489 2.367 0.0003037 1.805 0.001246 1.89 268116

Figure 7.9.: EOC of the approximation of ϕ for the explicit central numerical scheme for the
Willmore flow of graphs (6.3.5). See the Numerical experiment 7.1.5.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.5269 0.5517 1.838

1/4 0.2113 1.318 0.2962 0.8974 2.192 -0.2537

1/8 0.03547 2.575 0.04777 2.632 0.5783 1.922

1/16 0.009032 1.974 0.01212 1.979 0.1307 2.145

1/32 0.003566 1.341 0.005345 1.181 0.02793 2.227

Figure 7.10.: EOC of the approximation of w for the explicit central numerical scheme for the
Willmore flow of graphs (6.3.5). See the Numerical experiment 7.1.5.

Numerical experiment 7.1.5. EOC for the explicit central finite difference numerical scheme for the Willmore
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flow of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Space steps: 0.5× 0.5, 0.25× 0.25, 0.125× 0.125, 0.0625× 0.0625
and 0.03125 × 0.03125. Time step: Adaptive. Numerical scheme: 6.3.5. Figure: 7.9 and 7.10. Remark:
The approximation of u is of the first order and the approximation of w is of the first order except of the error in
the norm ‖·‖h,τL∞(ωh;[0,T ]) where the approximation is of the second order.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.0992 0.202 1.049 3

1/4 0.00437 4.505 0.004395 5.523 0.02826 5.214 5

1/8 0.0009964 2.133 0.000755 2.541 0.001687 4.066 77

1/16 0.0002499 1.995 0.0001894 1.995 0.0004223 1.999 4494

1/32 6.256e-05 1.998 4.74e-05 1.999 0.0001057 1.998 328300

Figure 7.11.: EOC of the approximation of ϕ for the explicit finite difference numerical
scheme for the Willmore flow of graphs (6.3.7). See the Numerical experiment
7.1.6.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.4846 0.8378 3.652

1/4 0.03197 3.922 0.04893 4.098 0.5334 2.776

1/8 0.007023 2.187 0.00779 2.651 0.08812 2.598

1/16 0.001763 1.994 0.001911 2.028 0.02102 2.068

1/32 0.0004408 2 0.0004755 2.007 0.0052 2.015

Figure 7.12.: EOC of the approximation of w for the explicit finite difference numerical
scheme for the Willmore flow of graphs (6.3.7). See the Numerical experiment
7.1.6.

Numerical experiment 7.1.6. EOC for the explicit finite difference numerical scheme for the Willmore flow
of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Space steps: 0.5× 0.5, 0.25× 0.25, 0.125× 0.125, 0.0625× 0.0625
and 0.03125 × 0.03125. Time step: Adaptive. Numerical scheme: 6.3.7. Figure: 7.11 and 7.12. Remark:
The approximation of ϕ and w is of the second order.
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h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.0033 0.004406 0.02867 0

1/4 0.0008171 2.014 0.0009751 2.176 0.005642 2.345 0

1/8 0.0002078 1.976 0.000245 1.993 0.001332 2.083 2

1/16 5.216e-05 1.994 6.143e-05 1.996 0.0003296 2.015 15

1/32 1.306e-05 1.998 1.537e-05 1.998 8.221e-05 2.003 101

1/64 3.266e-06 1.999 3.845e-06 1.999 2.054e-05 2.001 823

Figure 7.13.: EOC of the approximation of ϕ for the semi-implicit finite difference numerical
scheme for the mean-curvature flow of graphs (6.3.8). See the Numerical
experiment 7.1.7.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.01955 0.03179 0.2601

1/4 0.006261 1.643 0.007808 2.026 0.08415 1.628

1/8 0.001679 1.899 0.001955 1.998 0.02162 1.96

1/16 0.0004324 1.957 0.0004985 1.972 0.005442 1.99

1/32 0.0001093 1.984 0.0001257 1.988 0.001364 1.996

1/64 2.745e-05 1.994 3.15e-05 1.996 0.0003411 1.999

Figure 7.14.: EOC of the approximation of w for the semi-implicit finite difference numerical
scheme for the mean-curvature flow of graphs (6.3.8). See the Numerical
experiment 7.1.7.

Numerical experiment 7.1.7. EOC for the semi-implicit finite difference numerical scheme for the mean-
curvature flow of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Space steps: 0.5×0.5, 0.25×0.25, 0.125×0.125, 0.0625×0.0625,
0.03125×0.03125 and 0.015625×0.015625. Time step: Depends on the space steps - 5·10−3, 2.5·10−3, 1.25·10−3,
6.25 · 10−4, 3.125 · 10−4 and 1.5625 · 10−4. Numerical scheme: 6.3.8. Figure: 7.13 and 7.14. Remark: The
approximation of ϕ and w is of the second order.
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h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/2 0.0925 0.1856 0.9748 0

1/4 0.0043 4.427 0.004341 5.418 0.02809 5.117 5

1/8 0.0009945 2.112 0.0007539 2.526 0.001685 4.06 34

1/16 0.0002498 1.993 0.0001893 1.994 0.0004221 1.997 1106

1/32 6.247e-05 2 4.736e-05 1.999 0.0001057 1.997 29804

Figure 7.15.: EOC of the approximation of ϕ for the semi-implicit finite difference numerical
scheme for the Willmore flow of graphs (6.3.9). See the Numerical experiment
7.1.8.

h
‖·‖h,τL1(ωh;[0,T ]) ‖·‖h,τL2(ωh;[0,T ]) ‖·‖h,τL∞(ωh;[0,T ])

Error EOC Error EOC Error. EOC

1/2 0.3897 0.7456 3.812

1/4 0.03144 3.632 0.0486 3.94 0.5327 2.839

1/8 0.007006 2.166 0.007785 2.642 0.08811 2.596

1/16 0.001762 1.991 0.00191 2.027 0.02102 2.068

1/32 0.0004407 2 0.0004755 2.006 0.0052 2.015

Figure 7.16.: EOC of the approximation of w for the semi-implicit finite difference numerical
scheme for the Willmore flow of graphs (6.3.9). See the Numerical experiment
7.1.8.

Numerical experiment 7.1.8. EOC for the semi-implicit finite difference numerical scheme for the Willmore
flow of graphs. Computational domain: Ω ≡ [−4, 4]2. Initial condition:

ϕini (x, y) :=
1

r2n
(xn − rn) (yn − rn) exp

(
−σ

(
x2 + y2))

for r = 4, n = 4, σ = 1. Final time: T = 0.1. Space steps: 0.5× 0.5, 0.25× 0.25, 0.125× 0.125, 0.0625× 0.0625
and 0.03125×0.03125. Time step: Depends on the space steps - 2.5·10−3, 6.25·10−4, 1.5625·10−4, 3.90625·10−5

and 9.765625 ·10−6. Numerical scheme: 6.3.9. Figure: 7.15 and 7.16. Remark: The approximation of ϕ and
w is of the second order.

7.1.2. Experimental order of convergence for the level-set formulation

For the isotropic level-set formulations of the mean-curvature flow and the Willmore flow, there
exist analytical solutions. As an initial condition we always choose a circle with radius r0. For
all the evolutionary laws, the initial curve remains the circle, however the radius may change.
We want to find formulas describing the rate of change. It is easy to see that the curvature of
circle with radius r (t) equals

κ (t) = − 1

r (t)
.

For the mean-curvature flow from (5.19) resp. (5.4.1) we have that

∂tr (t) = − 1

r (t)
,
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which is an ordinary differential equation. Solving it we get:

A circle with initial radius r0 driven by mean-curvature flow

V = H

evolves with respect to the following relation for the radius

r (t) =
√
r2

0 − 2t. (7.14)

In case of the Willmore flow we look at the Definition 5.2.5 resp. (5.4.2) and obtain

∂tr (t) =
1

2

1

r3
, (7.15)

solution of which gives:

A circle with initial radius r0 driven by the Willmore flow

V = −∆ΓH −
1

2
H3 + 2KH

evolves with respect to the following relation for the radius r

r (t) =
(
2t+ r4

0

) 1
4 . (7.16)

The errors of the approximation are evaluated in similar manner as for the graph formu-
lation. Having an exact solution Γ (t) and an approximated solution Γh (t), the error of the
approximation at point x ∈ Γh (t) is given by

Err (Γh (t) ,x) = min
y∈Γ(t)

|x− y| .

Employing the norms of spaces L1 (Γ (t) ; [0, T ]), resp. L2 (Γ (t) ; [0, T ]) resp. L∞ (Γ (t) ; [0, T ]),
we get the global error of the approximation Γh (t) of Γ (t) during the evolution up to time T .
If Γ (t) is a circle with its centre in the origin we may approximate the local error Err (Γh (t) ,x)
by

Err (Γh (t) ,x) ≈ ||x| − r (t)| ,
For function αh (t) defined on Γh (t) as αhi (t) = α (xi (t) , t) where Γh (t) is approximated by
points xi for i = 1, · · · , N , we define the discrete norms as

∥∥∥αh∥∥∥h,τ
L1(Γh;[0,T ])

:=

M∑
k=0

τ

N∑
i=0

∣∣∣αhi (kτ)
∣∣∣ qi,

∥∥∥αh∥∥∥h,τ
L2(Γh;[0,T ])

:=

(
M∑
k=0

τ

N∑
i=0

(
αhi (kτ)

)2
qi

) 1
2

,

∥∥∥αh∥∥∥h,τ
L∞(Γh;[0,T ])

:= max
k=0,··· ,M

max
i=0,··· ,N

∣∣∣αhi (kτ)
∣∣∣ ,
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where qi is given by (6.270). We leave the superscript h in the norm notation ‖·‖h,τL·(Γh;[0,T ])
to express the dependence on the numerical grid ωh which was used for the level-set method.
Experimental order of convergence with errors on two different numerical grids with space steps
h1 and h2 is given by (7.13).

The reader can find obtained experimental order of convergence in Tables 7.17–7.19.

h
‖·‖h,τL1(Γh(t);[0,T ]) ‖·‖h,τL2(Γh(t);[0,T ]) ‖·‖h,τL∞(Γh(t);[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/16 1.601e-05 0.0001282 0.00223 1

1/32 3.11e-06 2.364 2.517e-05 2.349 0.0004446 2.326 2

1/64 7.864e-07 1.919 6.394e-06 1.913 0.0001175 1.858 5

1/128 1.954e-07 2.078 1.562e-06 2.104 2.94e-05 2.068 13

1/256 4.631e-08 2.077 3.748e-07 2.059 7.329e-06 2.004 148

1/512 1.145e-08 2.016 9.386e-08 1.998 1.84e-06 1.994 2688

1/1024 2.876e-09 1.992 2.35e-08 1.998 4.592e-07 2.002 41270

Figure 7.17.: EOC of the approximation of Γ (t) for the explicit finite difference numerical
scheme for the level-set formulation of the mean-curvature flow. See the
Numerical experiment 7.1.9.

Numerical experiment 7.1.9. EOC for the explicit finite difference numerical scheme for the level-set for-
mulation of the mean-curvature flow. Computational domain: Ω ≡ [−0.5, 0.5]2. Initial condition: Circle
given by x2 + y2 = 0.252. Boundary conditions: ∂νu = 1 on ∂Ω. Final time: T = 0.02. Space steps:
1/16× 1/16, 1/32× 1/32, 1/64× 1/64, 1/128× 1/128, 1/256× 1/256, 1/512× 1/512 and 1/1024× 1/1024. Time
step: Adaptive. Level-set: regularisation ε = 10−15, no re-distancing. Numerical scheme: 6.3.6 Figure:
7.17. Remark: –

h
‖·‖h,τL1(Γh(t);[0,T ]) ‖·‖h,τL2(Γh(t);[0,T ]) ‖·‖h,τL∞(Γh(t);[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/16 1.648e-05 0.0001318 0.002276 0

1/32 3.218e-06 2.884 2.57e-05 2.886 0.0004519 2.855 3

1/64 8.13e-07 1.877 6.55e-06 1.865 0.0001184 1.828 56

1/128 2.027e-07 1.95 1.602e-06 1.977 2.948e-05 1.951 1068

1/256 4.793e-08 2.13 3.844e-07 2.107 7.433e-06 2.035 16446

1/512 1.192e-08 2.032 9.658e-08 2.017 1.854e-06 2.027 267354

Figure 7.18.: EOC of the approximation of Γ (t) for the semi-implicit finite difference nu-
merical scheme for the level-set formulation of the mean-curvature flow.
See the Numerical experiment 7.1.10.

Numerical experiment 7.1.10. EOC for the semi-implicit finite difference numerical scheme for the level-set
formulation of the mean-curvature flow. Computational domain: Ω ≡ [−0.5, 0.5]2. Initial condition: Circle
given by x2 + y2 = 0.252. Boundary conditions: ∂νu = 1 on ∂Ω. Final time: T = 0.02. Space steps:
1/16×1/16, 1/32×1/32, 1/64×1/64, 1/128×1/128, 1/256×1/256 and 1/512×1/512. Time step: Depends on
the space step – 2 ·10−4,5 ·10−5,1.25 ·10−5,3.125 ·10−6,7.8125 ·10−7 and 1.953125 ·10−7. Level-set: regularisation
ε = 10−15, no re-distancing. Numerical scheme: 6.3.8 Figure: 7.18. Remark: –
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h
‖·‖h,τL1(Γh(t);[0,T ]) ‖·‖h,τL2(Γh(t);[0,T ]) ‖·‖h,τL∞(Γh(t);[0,T ]) CPU/sec.

Error EOC Error EOC Error. EOC

1/16 0.2715 0.1499 0.1092 0

1/32 0.01877 4.974 0.01188 4.719 0.01488 3.711 11

1/64 0.02958 -0.6891 0.01756 -0.5915 0.01484 0.003516 683

1/128 0.02275 0.3735 0.01375 0.3481 0.01222 0.2768 59127

Figure 7.19.: EOC of the approximation of Γ (t) for the semi-implicit finite difference nu-
merical scheme for the level-set formulation of the Willmore flow. See the
Numerical experiment 7.1.11.

Numerical experiment 7.1.11. EOC for the semi-implicit finite difference numerical scheme for the level-set
formulation of the Willmore flow. Computational domain: Ω ≡ [−0.5, 0.5]2. Initial condition: Circle given
by x2 +y2 = 0.252. Boundary conditions: ∂νu = 1 on ∂Ω. Final time: T = 0.02. Space steps: 1/16×1/16,
1/32 × 1/32, 1/64 × 1/64, 1/128 × 1/128, 1/256 × 1/256 and 1/512 × 1/512. Time step: Depends on the
space step – 0.01,2.5 · 10−3,6.25 · 10−4 and 1.5625 · 10−4. Level-set: regularisation depends on the space step
ε = 0.4472, 0.3162,0.2236 and 0.1581, re-distancing depends on the space step τredist = 0.025, 0.0125, 6.25 · 10−3

and 3.125 · 10−3. Numerical scheme: 6.3.9 Figure: 7.19. Remark: –
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7.2. Numerical experiments

In this part we bring almost 100 numerical experiments. They demonstrate differences between
all the classes of the schemes we derived in this text i.e. one-sided finite differences, central
finite differences and the complementary finite volumes schemes. We show both the graph
and the level-set formulation. For all initial conditions the reader can see comparison of the
evolutions given by the mean-curvature flow and the Willmore flow. We will be also interested
in a comparison of the explicit and semi-implicit schemes. First of all, we test the schemes on
the graph formulation then we proceed to the level-set method. In both cases we start with the
isotropic problems and then we show examples of few anisotropies.

7.2.1. Graph formulation

Let us begin with the one-sided finite difference schemes. Numerical experiments 7.2.1–7.2.4
and Figures 7.20 – 7.23 show that the scheme 6.3.2 for the mean-curvature flow performs well.
However, we can see significant loss of symmetry when we approximate the Willmore flow - see
Figure 7.21 related to the experiment 7.2.2. It is even more evident on the Figure 7.23 and the
experiment 7.2.4 where we can see that the scheme 6.3.3 in fact failed to converge to the correct
solution. We have already mentioned that this class of schemes suffers from non-symmetric
stencils. Therefore in [82] we proposed to use the central differences.

The results obtained by the finite difference method with use of the central differences (i.e.
schemes 6.3.4 – 6.3.5) are on Figures 7.20 – 7.27 resp. experiments 7.20 – 7.2.8. One can see that
these schemes preserve the symmetry sufficiently even for the Willmore flow. The disadvantage
is that they do not perform well for discontinuous initial conditions in the experiments 7.2.7 –
7.2.8. For the fourth order problem (experiment 7.2.8) we had to add some artificial viscosity
Cvisc from 100 to 1000. This, however, decreases the accuracy of the scheme. It makes this
class of schemes not very good choice. Moreover, large stencil in the case of the fourth order
problems is not convenient for the semi-implicit schemes.

The rest of the results was obtained just by the complementary finite volumes method ei-
ther in explicit or semi-implicit form. Figures 7.2.9 – 7.39 and numerical experiments 7.28 –
7.2.20 demonstrate the isotropic problems. The level lines always show good preserving of the
symmetry when the initial condition is symmetric.

For Figures 7.36 – 7.39 and the numerical experiments 7.2.17 – 7.2.20 the Neumann boundary
conditions were imposed.

The effect of the anisotropy (5.111) can be seen on Figures 7.40 – 7.51 and numerical exper-
iments 7.2.21 – 7.2.24. First of all, the quadratic form G is set such that the level-lines turn
into ellipses oriented along the axis y. By setting up even the non-diagonal elements to non-
zero values (Figures 7.42 – 7.43 and experiments 7.2.23 – 7.2.24 ), we get a deformation along
the line x = y. The Neumann boundary conditions were imposed in the case of the numerical
experiments7.2.25 – 7.2.32, results of which can be seen on the Figures 7.44 – 7.51. We have
tested both, the deformation along the axis y (experiments 7.2.25 – 7.2.26, 7.2.29 – 7.2.30 and
Figures 7.44 – 7.45 and 7.48 – 7.49 ) and along the line x = y (experiments 7.2.27 – 7.2.28,
7.2.31 – 7.2.32 and Figures 7.46 – 7.47 and 7.50 – 7.51).

The anisotropy (5.113) has been studied at the experiments 7.2.33 – 7.2.44 and Figures 7.52
– 7.44. This anisotropy turns the level-lines into squares or rectangles which have the same
orientation as the coordinate system. When this anisotropy is inserted into the fourth order
problems, we get really highly non-linear problems. If we employ the explicit schemes, we get
very small time steps even on quite coarse meshes. For example the numerical experiment 7.2.34
(Figure 7.53) was performed with space step h = 0.01 and the adaptive algorithm at the Merson
method set the time step to 10−12. The computation was running for more then 8 months on 2
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CPU AMD Opteron 270 (4 cores) and it did not reach a steady state. The semi-implicit scheme
here gave comparable results with much higher efficiency. It is the reason why we were not able
to show the steady states for all simulations. We can, however, see that even with such high
non-linearity, the complementary finite volume schemes are able to handle discontinuities like
the ones we can see at the experiments 7.2.35 – 7.2.36 and Figures 7.54 – 7.55. We, of course,
show experiments with the Neumann boundary conditions 7.2.41 – 7.2.44, see Figures 7.60 –
7.63.

The last anisotropy we consider is the lm-norm (5.114) for m = 16. The results are presented
on Figures 7.64 – 7.75 and numerical experiments 7.2.45 – 7.2.56. This anisotropy leads to even
stronger non-linearity. The semi-implicit schemes often require very small time steps too. The
explicit schemes then may be better choice.
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Numerical experiment 7.2.1. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Final time: T = 0.05.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.2
Figure: 7.20.
Remark: In the case of the mean-curvature flow of graphs the scheme (6.3.2) performs
sufficiently.

Numerical experiment 7.2.2. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = Q∇ ·
(∇ϕ
Q

)
on Ω× [0, T ] ,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Dirichlet boundary conditions

ϕ = 0, w = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Final time: T = 0.002.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.3
Figure: 7.21.
Remark: In the case of the Willmore flow of graphs we see that the scheme (6.3.3) does
not preserve the symmetry of the initial condition.
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7. Computational studies

Isotropic graph formulation of the mean-curvature flow

Figure 7.20.: The explicit one-sided finite difference numerical scheme for the isotropic
mean-curvature flow of graphs at times t = 0, t = 0.0125, t = 0.025 and
t = 0.05 (graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical
experiment 7.2.1.
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7.2. Numerical experiments

Isotropic graph formulation of the Willmore flow

Figure 7.21.: The explicit one-sided finite difference numerical scheme for the isotropic
Willmore flow of graphs at times t = 0, t = 0.0001, t = 0.0005 and t = 0.001
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.2.
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7. Computational studies

Numerical experiment 7.2.3. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]2.
Final time: T = 0.25.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.2
Figure: 7.22.
Remark: The scheme (6.3.2) performs well even for discontinuous initial condition.

Numerical experiment 7.2.4. Test of the explicit one-sided finite difference nu-
merical scheme for the isotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = Q∇ ·
(∇ϕ
Q

)
on Ω× [0, T ] ,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

with the Dirichlet boundary conditions

ϕ = 0, w = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]2.
Final time: T = 0.03.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.3
Figure: 7.23.
Remark: With discontinuous initial condition the Numerical scheme (6.3.3) completely
fails to find approximate solution.
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7.2. Numerical experiments

Isotropic graph formulation of the mean-curvature flow

Figure 7.22.: The explicit one-sided finite difference numerical scheme for the mean-
curvature flow of graphs at times t = 0, t = 0.0125, t = 0.0625 and t = 0.125
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.3.
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7. Computational studies

Isotropic graph formulation of the Willmore flow

Figure 7.23.: The explicit one-sided finite difference numerical scheme for the Willmore
flow of graphs at times t = 0, t = 1 · 10−5, t = 0.01 and t = 0.03 (graph of ϕ on
the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.4.
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7.2. Numerical experiments

Numerical experiment 7.2.5. Test of the explicit central finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Final time: T = 0.05.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.4
Figure: 7.20.
Remark: In the case of the mean-curvature flow of graphs the scheme (6.3.4) performs
well.

Numerical experiment 7.2.6. Test of the explicit central finite difference numerical
scheme for the isotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = Q∇ ·
(∇ϕ
Q

)
on Ω× [0, T ] ,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Dirichlet boundary conditions

ϕ = 0, w = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Final time: T = 0.002.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.5
Figure: 7.25.
Remark: In the case of the Willmore flow of graphs we see that the scheme (6.3.5)
preserves the symmetry of the solution well.
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7. Computational studies

Isotropic graph formulation of the mean-curvature flow

Figure 7.24.: The explicit central finite difference numerical scheme for the isotropic
mean-curvature flow of graphs at times t = 0, t = 0.0125, t = 0.025 and
t = 0.05 (graph of u on the left, level-lines of u on the right). See the Numerical
experiment 7.2.5.
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7.2. Numerical experiments

Isotropic graph formulation of the Willmore flow

Figure 7.25.: The explicit central finite difference numerical scheme for the isotropic Will-
more flow of graphs at times t = 0, t = 0.0001, t = 0.0005 and t = 0.002 (graph
of u on the left, level-lines of u on the right). See the Numerical experiment 7.2.6.
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7. Computational studies

Numerical experiment 7.2.7. Test of the explicit central finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]2.
Initial condition: uini (x, y) := sign

(
x2 + y2 − 0.1

)
+ 1.

Boundary conditions: u = w = 0 on ∂Ω.
Final time: T = 0.25.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.4
Figure: 7.26.
Remark: In the case of the mean-curvature flow of graphs with discontinuous initial
condition the scheme (6.3.4) performs sufficiently.

Numerical experiment 7.2.8. Test of the explicit central finite difference numerical
scheme for the isotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = Q∇ ·
(∇ϕ
Q

)
on Ω× [0, T ] ,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

with the Dirichlet boundary conditions

ϕ = 0, w = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]2.
Final time: T = 0.125.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.5
Figure: 7.27.
Remark: In the case of the Willmore flow of graphs we see that the scheme (6.3.5)
preserves the symmetry of the solution. However, strong artificial viscosity Cvisc = 1000
have to be added to avoid oscillations.
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7.2. Numerical experiments

Isotropic graph formulation of the mean-curvature flow

Figure 7.26.: The explicit central finite difference numerical scheme for the isotropic
mean-curvature flow of graphs at times t = 0, t = 0.0125, t = 0.0625 and
t = 0.125 (graph of u on the left, level-lines of u on the right). See the Numerical
experiment 7.2.7.
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7. Computational studies

Isotropic graph formulation of the Willmore flow

Figure 7.27.: The explicit central finite difference numerical scheme for the isotropic Will-
more flow of graphs at times t = 0, t = 0.00625, t = 0.03125 and t = 0.125
(graph of u on the left, level-lines of u on the right). See the Numerical experiment
7.2.8.
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7.2. Numerical experiments

Numerical experiment 7.2.9. Test of the explicit finite difference numerical scheme
for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Final time: T = 0.05.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.28.
Remark: In the case of the mean-curvature flow of graphs the scheme (6.3.6) preserves
the symmetry of the solution well.

Numerical experiment 7.2.10. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = Q∇ ·
(∇ϕ
Q

)
on Ω× [0, T ] ,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Dirichlet boundary conditions

ϕ = 0, w = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Final time: T = 0.004.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.29.
Remark: In the case of the Willmore flow of graphs we see that the scheme (6.3.7)
preserves the symmetry of the solution well.
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7. Computational studies

Isotropic graph formulation of the mean-curvature flow

Figure 7.28.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, t = 0.0125, t = 0.025 and t = 0.05 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment 7.2.9.
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7.2. Numerical experiments

Isotropic graph formulation of the Willmore flow

Figure 7.29.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times t = 0, t = 0.0001, t = 0.002 and t = 0.004 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment 7.2.10.
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7. Computational studies

Numerical experiment 7.2.11. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]2.
Final time: T = 0.25.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.30.
Remark: In the case of the mean-curvature flow of graphs with discontinuous initial
condition the scheme (6.3.6) performs sufficiently.

Numerical experiment 7.2.12. Test of the explicit central finite difference numer-
ical scheme for the isotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = Q∇ ·
(∇ϕ
Q

)
on Ω× [0, T ] ,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

with the Dirichlet boundary conditions

ϕ = 0, w = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]2.
Final time: T = 0.125.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.31.
Remark: In the case of the Willmore flow of graphs with discontinuous initial condition
the scheme (6.3.7) performs well.
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7.2. Numerical experiments

Isotropic graph formulation of the mean-curvature flow

Figure 7.30.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, t = 0.0125, t = 0.0625 and t = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment 7.2.11.
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7. Computational studies

Isotropic graph formulation of the Willmore flow

Figure 7.31.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times t = 0, t = 0.00625, t = 0.03125 and t = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment 7.2.12.
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7.2. Numerical experiments

Numerical experiment 7.2.13. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin
(
π tanh

(
5
((
x2 + y2

)
− 0.25

)))
on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]2.
Final time: T = 0.125.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.6.
Figure: 7.32.
Remark: –

Numerical experiment 7.2.14. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin
(
π tanh

(
5
((
x2 + y2

)
− 0.25

)))
on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]2.
Final time: T = 0.1.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.33.
Remark: –
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7. Computational studies

Isotropic graph formulation of the mean-curvature flow

Figure 7.32.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, t = 0.0125, t = 0.0625 and t = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment 7.2.13.
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7.2. Numerical experiments

Isotropic graph formulation of the Willmore flow

Figure 7.33.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times t = 0, t = 0.00625, t = 0.025 and steady state at t = 0.1 (graph
of u on the left, level-lines of u on the right). See the Numerical experiment 7.2.14.
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7. Computational studies

Numerical experiment 7.2.15. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = −0.5 sin2 (πx) ·
(

1− (y − 2)2
)(

1− tanh
(

10
(√

x2 + y2 − 0.6
)))

on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]2.
Initial condition:
uini (x, y) := −0.5 sin2 (πx) ·

(
1− (y − 2)2

)(
1− tanh

(
10
(√

x2 + y2 − 0.6
)))

.

Boundary conditions: u = w = 0 on ∂Ω.
Final time: T = 0.5.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.34.
Remark: –

Numerical experiment 7.2.16. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = −0.5 sin2 (πx) ·
(

1− (y − 2)2
)(

1− tanh
(

10
(√

x2 + y2 − 0.6
)))

on Ω,

with the Dirichlet boundary condition

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]2.
Final time: T = 0.5.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.35.
Remark: –
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7.2. Numerical experiments

Isotropic graph formulation of the mean-curvature flow

Figure 7.34.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, t = 0.0625, t = 0.125 and t = 0.5 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment 7.2.15.
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7. Computational studies

Isotropic graph formulation of the Willmore flow

Figure 7.35.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times t = 0, t = 0.00125, t = 0.025 and t = 0.5 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment 7.2.16.
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7.2. Numerical experiments

Numerical experiment 7.2.17. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Neumann boundary condition

∂νϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Initial condition: uini (x, y) := sin (2πx) sin (2πy).
Boundary conditions: ∂nu = ∂nw = 0 on ∂Ω.
Final time: T = 0.125.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.36.
Remark: See the Numerical experiment 7.2.9 with the same initial condition but the
Dirichlet boundary conditions.

Numerical experiment 7.2.18. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

with the Neumann boundary condition

∂νϕ = ∂νw = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]2.
Final time: T = 0.025.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.37.
Remark: See the Numerical experiment 7.2.10 with the same initial condition but the
Dirichlet boundary conditions.
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7. Computational studies

Isotropic graph formulation of the mean-curvature flow

Figure 7.36.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, t = 0.005, t = 0.025 and t = 0.125 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment 7.2.17.
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7.2. Numerical experiments

Isotropic graph formulation of the Willmore flow

Figure 7.37.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times t = 0, t = 0.00025, t = 0.00125 and t = 0.025 (graph of u on the
left, level-lines of u on the right). See the Numerical experiment 7.2.18.
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7. Computational studies

Numerical experiment 7.2.19. Test of the explicit finite difference numerical
scheme for the isotropic mean-curvature flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω,

with the Neumann boundary condition

∂νϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]2.
Final time: T = 0.5.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.38.
Remark: –

Numerical experiment 7.2.20. Test of the explicit finite difference numerical
scheme for the isotropic Willmore flow of graphs

∂tϕ = Q∇ ·
(∇ϕ
Q

)
on (0,T〉 × Ω,

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω,

with the Neumann boundary condition

∂νϕ = ∂νw0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]2.

Initial condition: uini (x, y) := sin
(

3π
√
x2 + y2

)
.

Boundary conditions: ∂nu = ∂nw = 0 on ∂Ω.
Final time: T = 0.1.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.39.
Remark: –
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7.2. Numerical experiments

Isotropic graph formulation of the mean-curvature flow

Figure 7.38.: The explicit finite difference numerical scheme for the mean-curvature flow
of graphs at times t = 0, t = 0.025, t = 0.1 and t = 0.5 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment 7.2.19.
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7. Computational studies

Isotropic graph formulation of the Willmore flow

Figure 7.39.: The explicit finite difference numerical scheme for the Willmore flow of
graphs at times t = 0, t = 0.01, t = 0.025 and t = 0.1 (graph of u on the left,
level-lines of u on the right). See the Numerical experiment 7.2.20.
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7.2. Numerical experiments

Numerical experiment 7.2.21. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγG (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
2 0
0 1

)
and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]
2
.

Final time: T = 0.1.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.40.
Remark: Compare with the Numerical experiment 7.2.11.

Numerical experiment 7.2.22. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
2 0
0 1

)
and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.001.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.41.
Remark: Compare with the Numerical experiment 7.2.12.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.40.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.025, t = 0.05 and t = 0.1 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.21.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.41.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 5 · 10−5, t = 2.5 · 10−4 and t = 0.001 (graph of
ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.22.
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7. Computational studies

Numerical experiment 7.2.23. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγG (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
2 1
1 2

)
and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]
2
.

Final time: T = 0.0625.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.42.
Remark: Compare with the Numerical experiment 7.2.11.

Numerical experiment 7.2.24. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
2 1
1 2

)
and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.01.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.43.
Remark: Compare with the Numerical experiment 7.2.12.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.42.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.00625, t = 0.03125 and t = 0.0625
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.23.

175



7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.43.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 0.0001, t = 0.0005 and t = 0.01 (graph of ϕ
on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.24.
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7.2. Numerical experiments

Numerical experiment 7.2.25. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγG (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin (2πx) sin (2πy) on Ω

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
10 0
0 1

)
and we apply the Neumann boundary conditions

∇pγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.125.
Space steps: h = 0.01.
Time step: τ = 2 · 10−5.
Numerical scheme: 6.3.8
Figure: 7.44.
Remark: Compare with the Numerical experiment 7.2.17.

Numerical experiment 7.2.26. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
10 0
0 1

)
and we apply the Neumann boundary conditions

∂νϕ = Eγ∇wγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 10−4.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.45.
Remark: Compare with the Numerical experiment 7.2.18.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.44.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.0025, t = 0.01 and t = 0.125
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.25.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.45.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 10−6, t = 4 · 10−6 and t = 0.0001 (graph of ϕ
on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.26.
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Numerical experiment 7.2.27. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγG (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin (2πx) sin (2πy) on Ω

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
11 10
10 11

)
and we apply the Neumann boundary conditions

∇pγν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.025.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.46.
Remark: Compare with the Numerical experiment 7.2.17.

Numerical experiment 7.2.28. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
11 10
10 11

)
and we apply the Neumann boundary conditions

∂νϕ = Eγ∇wγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 10−5.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.47.
Remark: Compare with the Numerical experiment 7.2.18.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.46.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.001, t = 0.002 and t = 0.025
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.27.
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7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.47.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 3 · 10−7, t = 10−6 and t = 5 · 10−5 (graph of ϕ
on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.28.
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Numerical experiment 7.2.29. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγG (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
8 0
0 1

)
and we apply the Neumann boundary conditions

∇pγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.25.
Space steps: h = 0.04.
Time step: τ = 5 · 10−4.
Numerical scheme: 6.3.8
Figure: 7.48.
Remark: Compare with the Numerical experiment 7.2.19.

Numerical experiment 7.2.30. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω,

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
8 0
0 1

)
and we apply the Neumann boundary conditions

∂νϕ = Eγ∇wγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.001.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.49.
Remark: Compare with the Numerical experiment 7.2.20.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.48.: The semi-implicit finite difference numerical scheme for the anisotropic
mean-curvature flow of graphs at times t = 0, t = 0.02, t = 0.08 and t = 0.25
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.29.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.49.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 1.6 · 10−5, t = 1.28 · 10−4 and t = 0.001 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.30.
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Numerical experiment 7.2.31. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγG (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
10 8
8 10

)
and we apply the Neumann boundary conditions

∇pγν = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.25.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.50.
Remark: Compare with the Numerical experiment 7.2.19.

Numerical experiment 7.2.32. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω,

where the anisotropy function γG is given by

γG (∇ϕ,−1) :=
√

1 +∇ϕTG∇ϕ, for G :=

(
10 8
8 10

)
and we apply the Neumann boundary conditions

∂νϕ = Eγ∇wγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 1.024 · 10−3.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.51.
Remark: Compare with the Numerical experiment 7.2.20.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.50.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.01, t = 0.04 and t = 0.25 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.31.
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Anisotropic graph formulation of the Willmore flow

Figure 7.51.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 8 · 10−6, t = 6.4 · 10−5 and t = 1.024 · 10−3

(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.32.
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7.2. Numerical experiments

Numerical experiment 7.2.33. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγabs (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin (2πx) sin (2πy) on Ω

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.025.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.52.
Remark: Compare with the Numerical experiment 7.2.9.

Numerical experiment 7.2.34. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω,

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 1.5 · 10−3.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.53.
Remark: Compare with the Numerical experiment 7.2.10.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.52.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.00625, t = 0.0125 and t = 0.025
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.33.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.53.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 4 · 10−6, t = 2.56 · 10−4 and t = 1.5 · 10−3

(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.34.
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7. Computational studies

Numerical experiment 7.2.35. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγabs (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]
2
.

Final time: T = 0.0625.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.54.
Remark: Compare with the Numerical experiment 7.2.11.

Numerical experiment 7.2.36. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j ,

and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]
2
.

Final time: T = 2.048 · 10−3.
Space steps: h = 0.01.
Time step: τ = 10−5.
Numerical scheme: 6.3.9
Figure: 7.55.
Remark: Compare with the Numerical experiment 7.2.12. Note small asymmetry on the third
image cause probably by use of the semi-implicit scheme.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.54.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.015625, t = 0.03125 and t =
0.0625 (graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical
experiment 7.2.35.
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7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.55.: The semi-implicit finite difference numerical scheme for the anisotropic
Willmore flow of graphs at times t = 0, t = 4 · 10−6, t = 1.6 · 10−5 and
t = 2.048 · 10−3 (graph of ϕ on the left, level-lines of ϕ on the right). See the
Numerical experiment 7.2.36.
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7.2. Numerical experiments

Numerical experiment 7.2.37. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγabs (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin
(
π tanh

(
5
((
x2 + y2

)
− 0.25

)))
, on Ω

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.125.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.56.
Remark: Compare with the Numerical experiment 7.2.13.

Numerical experiment 7.2.38. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin
(
π tanh

(
5
((
x2 + y2

)
− 0.25

)))
on Ω,

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 2 · 10−4.
Space steps: h = 0.02.
Time step: τ = 10−8.
Numerical scheme: 6.3.9
Figure: 7.57.
Remark: Compare with the Numerical experiment 7.2.14.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.56.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.03125, t = 0.0625 and t = 0.125
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.37.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.57.: The semi-implicit finite difference numerical scheme for the anisotropic
Willmore flow of graphs at times t = 0, t = 4 · 10−6, t = 3.2 · 10−5 and
t = 2 · 10−4 - it is not a steady state solution - (graph of ϕ on the left, level-lines
of ϕ on the right). See the Numerical experiment 7.2.38.
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Numerical experiment 7.2.39. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγabs (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = −0.5 sin2 (πx) ·
(

1− (y − 2)
2
)(

1− tanh
(

10
(√

x2 + y2 − 0.6
)))

on Ω

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.125.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.58.
Remark: Compare with the Numerical experiment 7.2.15.

Numerical experiment 7.2.40. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = −0.5 sin2 (πx) ·
(

1− (y − 2)
2
)(

1− tanh
(

10
(√

x2 + y2 − 0.6
)))

on Ω,

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.012.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.59.
Remark: Compare with the Numerical experiment 7.2.16.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.58.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.03125, t = 0.0625 and t = 0.125
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.39.
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7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.59.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 9.6 ·10−4, t = 1.536 ·10−3 and t = 0.012 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.40.
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7.2. Numerical experiments

Numerical experiment 7.2.41. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγabs (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin (2πx) sin (2πy) on Ω

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Neumann boundary conditions

∇pγν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.7.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.60.
Remark: Compare with the Numerical experiment 7.2.17.

Numerical experiment 7.2.42. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Neumann boundary conditions

∂νϕ = Eγ∇wγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.004.
Space steps: h = 0.01.
Time step: τ = 5 · 10−10.
Numerical scheme: 6.3.9
Figure: 7.61.
Remark: Compare with the Numerical experiment 7.2.18.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.60.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.04, t = 0.16 and t = 0.7 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.41.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.61.: The semi-implicit finite difference numerical scheme for the anisotropic
Willmore flow of graphs at times t = 0, t = 0.0001, t = 0.0002 and t = 0.0004
(graph of ϕ on the left, level-lines of ϕ on the right) – not a steady state. See the
Numerical experiment 7.2.42.
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Numerical experiment 7.2.43. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγabs (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Neumann boundary conditions

∇pγν = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.5.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.62.
Remark: Compare with the Numerical experiment 7.2.19.

Numerical experiment 7.2.44. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

where the anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j for εabs = 0.001,

and we apply the Neumann boundary conditions

∂νϕ = Eγ∇wγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.006.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.63.
Remark: Compare with the Numerical experiment 7.2.20. The computation has been stopped
after 70 days of running on 4 CPUs Opteron 2261.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.62.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.04, t = 0.08 and t = 0.5 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.43.
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Anisotropic graph formulation of the Willmore flow

Figure 7.63.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 5 ·10−5, t = 0.001 and t = 0.006 – not a steady
state (graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical
experiment 7.2.44.
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7.2. Numerical experiments

Numerical experiment 7.2.45. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγl16 (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin (2πx) sin (2πy)) on Ω

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.1.
Space steps: h = 0.01.
Time step: τ = 0.005.
Numerical scheme: 6.3.8
Figure: 7.64.
Remark: In case of lm anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment 7.2.9.

Numerical experiment 7.2.46. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.0004.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.65
Remark: –
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.64.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.005, t = 0.025 and t = 0.1 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.45.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.65.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 2 · 10−5, t = 0.0001 and t = 0.0004 (graph of
ϕ on the left, level-lines of ϕ on the right) – not a steady state. See the Numerical
experiment 7.2.46.
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7. Computational studies

Numerical experiment 7.2.47. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγl16 (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]
2
.

Final time: T = 0.0625.
Space steps: h = 0.01.
Time step: τ = 10−5.
Numerical scheme: 6.3.8
Figure: 7.66
Remark: Compare with the Numerical experiment 7.2.11.

Numerical experiment 7.2.48. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sign
(
x2 + y2 − 0.1

)
+ 1 on Ω,

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−0.5, 0.5]
2
.

Final time: T = 0.025.
Space steps: h = 0.01.
Time step: τ = 5 · 10−9.
Numerical scheme: 6.3.9
Figure: 7.67.
Remark: In case of lm anisotropy the solution of the Willmore flow of graphs seems to converge
to non-trivial steady state. Compare with the Numerical experiment 7.2.12.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.66.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.0125, t = 0.0375 and t = 0.0625
(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.47.
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7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.67.: The semi-implicit finite difference numerical scheme for the anisotropic Will-
more flow of graphs at times t = 0, t = 0.0001, t = 0.005 and t = 0.025 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.48.
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7.2. Numerical experiments

Numerical experiment 7.2.49. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγl16 (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin
(
π tanh

(
5
((
x2 + y2

)
− 0.25

)))
on Ω

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 1.0.
Space steps: h = 0.02.
Time step: τ = 1.25 · 10−4.
Numerical scheme: 6.3.8
Figure: 7.68.
Remark: In case of lm anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment 7.2.13.

Numerical experiment 7.2.50. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin
(
π tanh

(
5
((
x2 + y2

)
− 0.25

)))
on Ω,

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.1.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.69
Remark: The solution at the time t = 0.1 seems to be a steady state solution.
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.68.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.01, t = 0.04 and t = 1.0 (graph of
ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.49.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.69.: The semi-implicit finite difference numerical scheme for the anisotropic Will-
more flow of graphs at times t = 0, t = 0.001, t = 0.01 and t = 0.1 (graph of ϕ
on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.50.
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7. Computational studies

Numerical experiment 7.2.51. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγl16 (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = −0.5 sin2 (πx) ·
(

1− (y − 2)
2
)(

1− tanh
(

10
(√

x2 + y2 − 0.6
)))

on Ω

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.125.
Space steps: h = 0.02.
Time step: τ = 2.5 · 10−4.
Numerical scheme: 6.3.8
Figure: 7.70.
Remark: In case of lm anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment 7.2.15.

Numerical experiment 7.2.52. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = −0.5 sin2 (πx) ·
(

1− (y − 2)
2
)(

1− tanh
(

10
(√

x2 + y2 − 0.6
)))

on Ω,

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Neumann boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.009.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.2.52.
Remark: The computation has been stopped after 50 days of running on 4 CPUs Opteron 270 2
GHz.
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.70.: The semi-implicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.02, t = 0.04 and t = 1.0 (graph of
ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.51.
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7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.71.: The semi-implicit finite difference numerical scheme for the anisotropic Will-
more flow of graphs at times t = 0, t = 0.0001, t = 0.001 and t = 0.009 –
not a steady state (graph of ϕ on the left, level-lines of ϕ on the right). See the
Numerical experiment 7.2.52.
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7.2. Numerical experiments

Numerical experiment 7.2.53. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγl16 (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin (2πx) sin (2πy) on Ω

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Neumann boundary conditions

∇pγν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Boundary conditions: ∇pγν = 0 on ∂Ω.
Final time: T = 104.
Space steps: h = 0.01.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.72
Remark: In case of lm anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment 7.2.17.

Numerical experiment 7.2.54. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin (2πx) sin (2πy) on Ω,

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Neumann boundary conditions

∂νϕ = Eγ∇wγ · ν = 0 on ∂Ω.

Computational domain: Ω ≡ [0, 1]
2
.

Final time: T = 0.005.
Space steps: h = 0.02.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.73.
Remark: –
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7. Computational studies

Anisotropic graph formulation of the mean-curvature flow

Figure 7.72.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.001, t = 0.008 and t = 104 (graph
of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.53.
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7.2. Numerical experiments

Anisotropic graph formulation of the Willmore flow

Figure 7.73.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 0.0001, t = 0.001 and t = 0.005 (graph of ϕ
on the left, level-lines of ϕ on the right). See the Numerical experiment 7.2.54.
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7. Computational studies

Numerical experiment 7.2.55. Test of the explicit finite difference numerical scheme for
the anisotropic mean-curvature flow of graphs

∂tϕ = Q∇pγl16 (∇ϕ,−1) on (0,T〉 × Ω

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Dirichlet boundary conditions

ϕ = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 5 · 105.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.74.
Remark: In case of lm anisotropy the solution of the mean-curvature flow of graphs seems to
converge to non-trivial steady state. Compare with the Numerical experiment 7.2.19.

Numerical experiment 7.2.56. Test of the explicit finite difference numerical scheme for
the anisotropic Willmore flow of graphs

∂tϕ = −Q∇ ·
(
Eγ∇wγ −

1

2

w2
γ

Q3
∇ϕ
)

on (0, T )× Ω,

wγ = QHγ on (0, T )× Ω,

ϕ |t=0 = sin
(

3π
√
x2 + y2

)
on Ω,

where the anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and we apply the Neumann boundary conditions

ϕ = wγ = 0 on ∂Ω.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.1.
Space steps: h = 0.04.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.75
Remark:
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7.2. Numerical experiments

Anisotropic graph formulation of the mean-curvature flow

Figure 7.74.: The explicit finite difference numerical scheme for the anisotropic mean-
curvature flow of graphs at times t = 0, t = 0.001, t = 0.008 and t = 5 · 105

(graph of ϕ on the left, level-lines of ϕ on the right). See the Numerical experiment
7.2.55.
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7. Computational studies

Anisotropic graph formulation of the Willmore flow

Figure 7.75.: The explicit finite difference numerical scheme for the anisotropic Willmore
flow of graphs at times t = 0, t = 0.001, t = 0.01 and t = 0.1 (graph of ϕ on the
left, level-lines of ϕ on the right). See the Numerical experiment 7.2.56.
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7.2. Numerical experiments

7.2.2. Level-set formulation

The numerical experiments for the level-set formulation consist of two parts. In the first one
we compare the level-set method with the parametric approach on the isotropic problems. The
results are shown on the Figures 7.76 – 7.83 and set-ups of the experiments are described in
the Numerical experiments 7.2.57 – 7.2.64. Except of the last experiment 7.2.64 we have always
employed the semi-implicit versions of the complementary finite volume schemes. We have
considered initial curves with sharp corners and also curves which are not convex. In all cases
we show comparison of the evolutions driven by the mean-curvature and the Willmore flow. All
the experiments show very good agreement of the results obtained by both methods. We also
show evolution of the level-set function which is important too. One can see that its deformation
is most significant in the case of the Willmore flow.

The second part demonstrates anisotropic level-set method, but now it is not compared to the
parametric approach. One can find the results on the Numerical experiments 7.2.65 – 7.2.96 the
Figures 7.84 – 7.115. As well as in case of the isotropic evolutions, we also show the level-set
function evolution. One can see, that the numerical schemes we propose, are able to drive the
curves towards appearance of sharp corners even in cases of the fourth order problems.
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7. Computational studies

Numerical experiment 7.2.57. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

∂tu

Qε
= ∇ ·

(∇u
Qε

)
on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1 on ∂Ω,

and the parametric approach.
∂tx = kn.

The initial condition is an ellipse given by
(
x
1.5

)2
+
(

y
0.75

)2
= 1.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.5.
Level-set: 200× 200 nodes, regularisation ε = 10−5, no re-distancing.
Parametric approach: 100 nodes, redistribution ε1 = 1, δ1 = 1 and δ2 = 1.
Time step: 0.0005 - level-set method, 0.001 - parametric approach.
Numerical scheme: 6.3.8, 6.4.1 for the mean-curvature flow
Figure: 7.76.
Remark: One can see that both methods, level-set and parametric, give equivalent results.

Numerical experiment 7.2.58. Comparison of the semi-implicit finite difference numerical
scheme for the isotropic level-set formulation of the Willmore flow

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = QH on Ω× [0, T ] ,

ϕ |t=0 = ϕini on Ω,

with the Neumann boundary conditions

∂νu = 1, ∂νw = 0 on ∂Ω,

and the parametric approach.

∂tx =

(
−∂2sk −

1

2
k3
)

n.

The initial condition is an ellipse given by
(
x
1.5

)2
+
(

y
0.75

)2
= 1.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.5.
Level-set: 100× 100 nodes, regularisation ε = 0.04, no re-distancing.
Parametric approach: 100 nodes, redistribution ε1 = 1, δ1 = 1 and δ2 = 1.
Time step: 10−6 - level-set method, 0.001 - parametric approach.
Numerical scheme: 6.3.9, 6.4.1 for the Willmore flow
Figure: 7.77.
Remark: One can see that both methods, level-set and parametric, give equivalent results.
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7.2. Numerical experiments

Isotropic level-set formulation of the mean-curvature flow

Figure 7.76.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times t = 0, t = 0.05, t = 0.1 and t = 0.5. See the numerical
experiment 7.2.57.
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7. Computational studies

Isotropic level-set formulation of the Willmore flow

Figure 7.77.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-
more flow at times t = 0, t = 0.01, t = 0.02 and t = 0.5. See the numerical
experiment 7.2.58.
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7.2. Numerical experiments

Numerical experiment 7.2.59. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

∂tu

Qε
= ∇ ·

(∇u
Qε

)
on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1 on ∂Ω,

and the parametric approach.
∂tx = kn.

The initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−1, 1]
2
.

Initial condition: Square given by (|x| − 0.75) (|y| − 0.75) = 0.
Boundary conditions: ∂uν = 1 on ∂Ω.
Final time: T = 0.2.
Level-set: 200× 200 nodes, regularisation ε = 10−5, no re-distancing.
parametric approach: 150 nodes, redistribution ε1 = 1, δ1 = 1000 and δ2 = 1.
Time step: 10−6 - level-set method, 0.001 - parametric approach.
Numerical scheme: 6.3.8, 6.4.1 for the mean-curvature flow
Figure: 7.78.
Remark: One can see that both methods, level-set and parametric, give equivalent results.

Numerical experiment 7.2.60. Comparison of the semi-implicit finite difference numerical
scheme for the isotropic level-set formulation of the Willmore flow

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = QH on Ω× [0, T ] ,

ϕ |t=0 = ϕini on Ω,

with the Neumann boundary conditions

∂νu = 1, ∂νw = 0 on ∂Ω,

and the parametric approach.

∂tx =

(
−∂2sk −

1

2
k3
)

n.

The initial condition is an ellipse given by
(
x
1.5

)2
+
(

y
0.75

)2
= 1.

Computational domain: Ω ≡ [−1, 1]
2
.

Final time: T = 0.2.
Level-set: 100× 100 nodes, regularisation ε = 0.002, no re-distancing.
parametric approach: 200 nodes, redistribution ε1 = 2, δ1 = 1 and δ2 = 0.
Time step: 2 · 10−7 - level-set method, 10−6 - parametric approach.
Numerical scheme: 6.3.9, 6.4.1 for the Willmore flow
Figure: 7.79.
Remark: One can see that both methods, level-set and parametric, give equivalent results.
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7. Computational studies

Isotropic level-set formulation of the mean-curvature flow

Figure 7.78.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times t = 0, t = 0.01, t = 0.05 and t = 0.2. See the numerical
experiment 7.2.59.
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7.2. Numerical experiments

Isotropic level-set formulation of the Willmore flow

Figure 7.79.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-
more flow at times t = 0, t = 0.01, t = 0.05 and t = 0.2. See the numerical
experiment 7.2.59.
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7. Computational studies

Numerical experiment 7.2.61. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

∂tu

Qε
= ∇ ·

(∇u
Qε

)
on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1 on ∂Ω,

and the parametric approach.
∂tx = kn.

The initial condition is an astroid given by x2/3 + y2/3 = 0.752/3. Computational domain:
Ω ≡ [−1, 1]

2
.

Final time: T = 0.05.
Level-set: 130× 130 nodes, regularisation ε = 10−5, no re-distancing.
Parametric approach: 150 nodes, redistribution ε1 = 1, δ1 = 1 and δ2 = 1.
Time step: 10−6 - level-set method, 10−5 - parametric approach.
Numerical scheme: 6.3.8, 6.4.1 for the mean-curvature flow
Figure: 7.80.
Remark: One can see that both methods, level-set and parametric, give equivalent results.

Numerical experiment 7.2.62. Comparison of the semi-implicit finite difference numerical
scheme for the isotropic level-set formulation of the Willmore flow

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = QH on Ω× [0, T ] ,

ϕ |t=0 = ϕini on Ω,

with the Neumann boundary conditions

∂νu = 1, ∂νw = 0 on ∂Ω,

and the parametric approach.

∂tx =

(
−∂2sk −

1

2
k3
)

n.

The initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: T = 0.05.
Level-set: 150× 150 nodes, regularisation ε = 0.025, re-distancing τredist = 10−4.
Parametric approach: 200 nodes, redistribution ε1 = 0, δ1 = 1 and δ2 = 1.
Time step: 2 · 10−9 - level-set method, 10−9 - parametric approach.
Numerical scheme: 6.3.9, 6.4.1 for the Willmore flow
Figure: 7.81.
Remark: One can see that both methods, level-set and parametric, give equivalent results.
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7.2. Numerical experiments

Isotropic level-set formulation of the mean-curvature flow

Figure 7.80.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times t = 0, t = 0.001, t = 0.005 and t = 0.04. See the
numerical experiment 7.2.61.
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7. Computational studies

Isotropic level-set formulation of the Willmore flow

Figure 7.81.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-
more flow at times t = 0, t = 10−6, t = 10−4 and t = 0.0015. See the numerical
experiment 7.2.62.

234



7.2. Numerical experiments

Numerical experiment 7.2.63. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the mean-curvature flow

∂tu

Qε
= ∇ ·

(∇u
Qε

)
on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1 on ∂Ω,

and the parametric approach.
∂tx = kn.

The initial condition is a non-convex curve given by x = 1 − 0.75 cos2 (6t) cos t, y = 1 −
0.75 cos2 (6t) sin t for t ∈ [0, 2π).

Computational domain: Ω ≡ [−1.5, 1.5]
2
.

Final time: T = 0.03.
Level-set: 400× 400 nodes, regularisation ε = 10−5, re-distancing τredist = 0.
parametric approach: 400 nodes, redistribution ε1 = 0, δ1 = 10 and δ2 = 1.
Time step: Adaptive - level-set method, 10−5 - parametric approach.
Numerical scheme: 6.3.6, 6.4.1 for the mean-curvature flow
Figure: 7.82.
Remark: One can see that both methods, level-set and parametric, give equivalent results even
with highly non-convex initial curve.
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7. Computational studies

Numerical experiment 7.2.64. Comparison of the explicit finite difference numerical scheme
for the isotropic level-set formulation of the Willmore flow

∂tϕ = −Q∇ ·
(

1

Q
P∇w − 1

2

w2

Q3
∇ϕ
)

on Ω× (0, T ] ,

w = QH on Ω× [0, T ] ,

ϕ |t=0 = ϕini on Ω,

with the Neumann boundary conditions

∂νu = 1, ∂νw = 0 on ∂Ω,

and the parametric approach.

∂tx =

(
−∂2sk −

1

2
k3
)

n.

The initial condition is a non-convex curve given by x = 1 − 0.3 cos2 (6t) cos t, y = 1 −
0.3 cos2 (6t) sin t for t ∈ [0, 2π).

Computational domain: Ω ≡ [−1.5, 1.5]
2
.

Final time: T = 0.00032.
Level-set: 200× 200 nodes, regularisation ε = 0.05, re-distancing τredist = 5 · 10−5.
Parametric approach: 1000 nodes, redistribution ε1 = 0, δ1 = 1 and δ2 = 1.
Time step: Adaptive - level-set method, 2 · 10−9 - parametric approach.
Numerical scheme: 6.2.30, 6.4.1 for the Willmore flow
Figure: 7.83.
Remark: One can see that both methods, level-set and parametric, give equivalent results. We
would like to note, that the semi-implicit scheme for the level-set method failed to compute ap-
proximate solution at this experiment. We chose a bit different initial curve then in the experiment
7.2.63 because it would lead to splitting into more the one curve which is not possible to be handled
by the parametric method.
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7.2. Numerical experiments

Isotropic level-set formulation of the mean-curvature flow

Figure 7.82.: Comparison of the parametric (crosses) and level-set method (lines) for the mean-
curvature flow at times t = 0, t = 0.005, t = 0.01 and t = 0.03. See the numerical
experiment 7.2.63.
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7. Computational studies

Isotropic level-set formulation of the Willmore flow

Figure 7.83.: Comparison of the parametric (crosses) and level-set method (lines) for the Will-
more flow at times t = 0, t = 8 · 10−5, t = 0.00016 and t = 0.00032. See the
numerical experiment 7.2.64.
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7.2. Numerical experiments

Numerical experiment 7.2.65. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
10 0
0 1

)
,

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Final time: T = 0.2.
Level-set: 100× 100 nodes, regularisation ε = 10−5, no re-distancing.
Time step: τ = 0.0005.
Numerical scheme: 6.3.8
Figure: 7.84.
Remark: –

Numerical experiment 7.2.66. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
10 0
0 1

)
,

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Final time: T = 0.07.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: τ = 2 · 10−7.
Numerical scheme: 6.3.9
Figure: 7.85.
Remark: –
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.84.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0,t = 0.1 and t = 0.2 and evolution of the initial curve
until the time t = 0.2 with the time period 0.02. See the Numerical experiment
7.2.65
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

Figure 7.85.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.03 and t = 0.07 and evolution of the initial curve
until the time t = 0.07 with the time period 0.007. See the Numerical experiment
7.2.66
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7. Computational studies

Numerical experiment 7.2.67. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Final time: T = 0.16.
Level-set: 100× 100 nodes, regularisation ε = 10−5, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.86.
Remark: –

Numerical experiment 7.2.68. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Final time: T = 0.0008.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.87.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.86.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.1, t = 0.16 and evolution of the initial curve until
the time t = 0.16 with the time period 0.02. See the Numerical experiment 7.2.67
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.87.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.0004, t = 0.008 and evolution of the circle until the
time t = 0.0008 with the time period 8 ·10−5. See the Numerical experiment 7.2.68
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7.2. Numerical experiments

Numerical experiment 7.2.69. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
10 0
0 1

)
,

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.25.
Level-set: 100× 100 nodes, regularisation ε = 10−5, no re-distancing.
Time step: τ = 10−6.
Numerical scheme: 6.3.8
Figure: 7.88.
Remark: –

Numerical experiment 7.2.70. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
10 0
0 1

)
,

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−3, 3]
2
.

Final time: T = 0.0025.
Level-set: 150× 150 nodes, regularisation ε = 0.01, no re-distancing.
Time step: τ = 10−8.
Numerical scheme: 6.3.9
Figure: 7.89.
Remark: –
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.88.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.128 and t = 0.25 and evolution of the circle until
the time t = 0.25 with the time period 0.025. See the Numerical experiment 7.2.69
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

Figure 7.89.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.00125, t = 0.0025 and evolution of the initial curve
at the time t = 0.0025 with the time period 0.0001. See the Numerical experiment
7.2.70
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7. Computational studies

Numerical experiment 7.2.71. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.2.
Level-set: 100× 100 nodes, regularisation ε = 0.001, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.90.
Remark: –

Numerical experiment 7.2.72. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−3, 3]
2
.

Final time: T = 0.0008.
Level-set: 150× 150 nodes, regularisation ε = 0.01, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.91.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.90.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.1, t = 0.2 and evolution of the initial curve until
the time t = 0.2 with the time period 0.02. See the Numerical experiment 7.2.71
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.91.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.0004, t = 0.0008 and evolution of the initial curve at
times t = 10−5, 4 · 10−5, 8 · 10−5, 0.00016, 0.00024, · · · , 0.0008. See the Numerical
experiment 7.2.72
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7.2. Numerical experiments

Numerical experiment 7.2.73. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
10 0
0 1

)
,

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: T = 0.0045.
Level-set: 100× 100 nodes, regularisation ε = 10−5, no re-distancing.
Time step: τ = 2 · 10−5.
Numerical scheme: 6.3.8
Figure: 7.92.
Remark: –

Numerical experiment 7.2.74. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
10 0
0 1

)
,

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: T = 5 · 10−4.
Level-set: 125× 125 nodes, regularisation ε = 0.01, no re-distancing.
Time step: τ = 10−9.
Numerical scheme: 6.3.9
Figure: 7.93.
Remark: –
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.92.: Anisotropic level-set method for the mean-curvature flow – graphs if the level-
set function at times t = 0, t = 0.001, t = 0.0045 and evolution of the initial
curve until the time t = 0.0045 with the time period 0.005. See the Numerical
experiment 7.2.73
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

Figure 7.93.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 10−5, t = 0.0005 and evolution of the initial curve at
times t = 10−6, 10−5, 5 · 10−5, 0.00015, · · · , 0.0005. See the Numerical experiment
7.2.74
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7. Computational studies

Numerical experiment 7.2.75. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: T = 0.033.
Level-set: 100× 100 nodes, regularisation ε = 0.001, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.94.
Remark: –

Numerical experiment 7.2.76. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: T = 0.0001.
Level-set: 125× 125 nodes, regularisation ε = 0.01, no re-distancing.
Time step: τ = 10−9.
Numerical scheme: 6.3.9
Figure: 7.95.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.94.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.015, t = 0.033 and evolution of the initial curve
until the time t = 0.033 with the time period 0.003. See the Numerical experiment
7.2.75
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.95.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 5 · 10−5, t = 0.0001 and evolution of the initial curve
at times t = 10−6, 5 · 10−6, 10−5, 2 · 10−5, 3 · 10−5, · · · , 0.0001. See the Numerical
experiment 7.2.76
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7.2. Numerical experiments

Numerical experiment 7.2.77. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
10 0
0 1

)
,

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.75 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Computational domain: Ω ≡ [−1.5, 1.5]

2
.

Final time: T = 0.1.
Level-set: 250× 250 nodes, regularisation ε = 10−5, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.96.
Remark: –
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7. Computational studies

Numerical experiment 7.2.78. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.3 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Computational domain: Ω ≡ [−1.5, 1.5]

2
.

Final time: T = 0.0012.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.93.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.96.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.05, t = 0.1 and evolution of the initial curve at
times t = 0.005, 0.01, 0.02, 0.03, · · · , 0.1. See the Numerical experiment 7.2.77
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.97.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.0006, t = 0.0012 and evolution of the initial curve at
times t = 10−6, 10−5, 5 ·10−5, 0.0001, 0.0002, 0.0003, · · · , 0.0012. See the Numerical
experiment 7.2.78
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7.2. Numerical experiments

Numerical experiment 7.2.79. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγG (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγGν = 1 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.75 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Computational domain: Ω ≡ [−1.5, 1.5]

2
.

Final time: T = 0.075.
Level-set: 250× 250 nodes, regularisation ε = 0.001, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.98.
Remark: –
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7. Computational studies

Numerical experiment 7.2.80. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γG is given by

γG (p,−1) :=
√

1 + pTGp, for G :=

(
11 10
10 11

)
,

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.3 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Computational domain: Ω ≡ [−1.5, 1.5]

2
.

Final time: T = 3 · 10−4.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.99.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.98.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.0375, t = 0.075 and evolution of the initial
curve until the time t = 0.075 with the time period 0.0075. See the Numerical
experiment 7.2.79
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.99.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 1.5 ·10−4, t = 3 ·10−4 and evolution of the initial curve
at times t = 10−6, 3 · 10−5, 6 · 10−5, 9 · 10−5, 0.00012, 0.00015, 0.00018, · · · , 0.0003.
See the Numerical experiment 7.2.80
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7.2. Numerical experiments

Numerical experiment 7.2.81. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγabs (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Final time: T = 0.36.
Level-set: 100× 100 nodes, regularisation ε = 10−5, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.100.
Remark: –
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Numerical experiment 7.2.82. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Initial condition: Circle given by x2 + y2 = 1.
Boundary conditions: ∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.
Final time: T = 0.1.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: τ = 10−8.
Numerical scheme: 6.3.9
Figure: 7.101.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.100.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0,t = 0.18 and t = 0.36 and evolution of the initial curve
until the time t = 0.36 with the time period 0.04. See the Numerical experiment
7.2.81
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7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.101.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.001 and t = 0.1 and evolution of the curve at times
t = 0.001, 0.005, 0.01, 0.02, 0.03, · · · , 0.1. See the Numerical experiment 7.2.82
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Numerical experiment 7.2.83. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγabs (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.48.
Level-set: 100× 100 nodes, regularisation ε = 0.001, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6.
Figure: 7.102.
Remark: –.

Numerical experiment 7.2.84. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.003.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: τ = 10−8.
Numerical scheme: 6.3.9.
Figure: 7.103.
Remark: –.
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.102.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.24, t = 0.48 and evolution of the curve until the
time t = 0.48 with the time period 0.04. See the Numerical experiment 7.2.83
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

Figure 7.103.: Anisotropic level-set method for the Willmore flow – graphs of the level-set func-
tion at times t = 0, t = 0.0015, t = 0.003 and evolution of the initial curve until
the time t = 0.003 with the time period 0.0003. See the Numerical experiment
7.2.84.
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Numerical experiment 7.2.85. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγabs (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: T = 0.075.
Level-set: 150× 150 nodes, regularisation ε = 10−5, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6.
Figure: 7.104.
Remark: –.

Numerical experiment 7.2.86. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: 0.0012.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.9
Figure: 7.105.
Remark: The computation was stopped after 38 days of running on 2 CPU Core2 Duo 2.66 GHz.
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.104.: Anisotropic level-set method for the mean-curvature flow – graphs if the level-
set function at times t = 0, t = 0.04, t = 0.075 and evolution of the curve until the
time t = 0.075 with the time period 0.05. See the Numerical experiment 7.2.85

273



7. Computational studies

Anisotropic level-set formulation of the Willmore flow

Figure 7.105.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 10−5, t = 0.0012 and evolution of the curve at
times t = 10−5, 5 ·10−5, 0.0001, 0.0002 · · · 0.0012 – it is not a steady state. See the
Numerical experiment 7.2.86
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Numerical experiment 7.2.87. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγabs (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.75 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Computational domain: Ω ≡ [−1.5, 1.5]

2
.

Final time: T = 1.7.
Level-set: 250× 250 nodes, regularisation ε = 0.001, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6.
Figure: 7.106.
Remark: –.
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Numerical experiment 7.2.88. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γabs is given by

γabs (P) =

3∑
i=1

√√√√P 2
i + εabs

3∑
j=1

P 2
j , for εabs = 0.001,

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.3 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Computational domain: Ω ≡ [−1.5, 1.5]

2
.

Final time: T = 0.025.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.107.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.106.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.8, t = 1.7 and evolution of the curve at times
t = 0.005, 0.01, 0.2, 0.3, 0.4, · · · , 1.7. See the Numerical experiment 7.2.87

277
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Anisotropic level-set formulation of the Willmore flow

Figure 7.107.: Anisotropic level-set method for the Willmore flow – graphs
of the level-set function at times t = 0, t = 0.0001,
t = 0.025 and evolution of the initial curve at times t =
10−5, 0.0001, 0.00025, 0.0005, 0.001, 0.002, 0.0025, 0.003, 0.004, 0.005, · · · , 0.025.
See the Numerical experiment 7.2.88
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7.2. Numerical experiments

Numerical experiment 7.2.89. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγl16 (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Final time: T = 0.55.
Level-set: 100× 100 nodes, regularisation ε = 10−5, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6
Figure: 7.108.
Remark: –

Numerical experiment 7.2.90. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is a circle given by x2 + y2 = 1.
Computational domain: Ω ≡ [−2, 2]

2
.

Final time: T = 0.0375.
Level-set: 100× 100 nodes, regularisation ε = 0.01, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.109.
Remark: –
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7. Computational studies

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.108.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0,t = 0.25, t = 0.55 and evolution of the initial curve
until the time t = 0.55 with the time period 0.05. See the Numerical experiment
7.2.89
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7.2. Numerical experiments

Anisotropic level-set formulation of the Willmore flow

Figure 7.109.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.015 and t = 0.0375 and evolution of the curve
at times t = 0.0, 0.0025, 0.005 · · · 0.0375 – not a steady state. See the Numerical
experiment 7.2.90
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Numerical experiment 7.2.91. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγl16 (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.7.
Level-set: 150× 150 nodes, regularisation ε = 10−5, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6.
Figure: 7.110.
Remark: –.

Numerical experiment 7.2.92. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is a square given by (|x| − 0.75) (|y| − 0.75) = 0.

Computational domain: Ω ≡ [−2, 2]
2
.

Final time: T = 0.025.
Level-set: 100× 100 nodes, regularisation ε = 0.05, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7.
Figure: 7.111.
Remark: –.
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.110.: Anisotropic level-set method for the mean-curvature flow – graphs of the level-
set function at times t = 0, t = 0.35, t = 0.7 and evolution of the curve until the
time t = 0.7 with the time period 0.07. See the Numerical experiment 7.2.91
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Anisotropic level-set formulation of the Willmore flow

Figure 7.111.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.01, t = 0.025 and evolution of the initial curve at
times t = 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.15 · · · 0.025 – not a steady state.
See the Numerical experiment 7.2.92
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Numerical experiment 7.2.93. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγl16 (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Anisotropy: γl16 (P) =
(∑3

i=1 |Pi|
16
) 1

16

Initial condition: Astroid given by x2/3 + y2/3 = 0.752/3.
Boundary conditions: ∇pγ · ν = 1 on ∂Ω.
Final time: T = 0.115.
Level-set: 150× 150 nodes, regularisation ε = 10−5, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6.
Figure: 7.112.
Remark: –.
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Numerical experiment 7.2.94. Test of the level-set formulation for the anisotropic Will-
more flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is an astroid given by x2/3 + y2/3 = 0.752/3.
Computational domain: Ω ≡ [−1, 1]

2
.

Final time: 0.0009.
Level-set: 100× 100 nodes, regularisation ε = 0.05, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.113.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.112.: Anisotropic level-set method for the mean-curvature flow – graphs if the level-
set function at times t = 0, t = 0.06, t = 0.115 and evolution of the curve until
the time t = 0.115 with the time period 0.005. See the Numerical experiment
7.2.93
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Anisotropic level-set formulation of the Willmore flow

Figure 7.113.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.0001, t = 0.0009 and evolution of the initial curve
at times t = 10−5, 5 · 10−5, 0.0001, 0.0002, 0.0003, · · · , 0.0009. See the Numerical
experiment 7.2.94

288



7.2. Numerical experiments

Numerical experiment 7.2.95. Test of the level-set formulation for the anisotropic mean-
curvature flow

∂tu

Qε
= ∇ · (∇pγl16 (∇u)) on (0,T〉 × Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∇pγabs · ν = 1 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.75 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Computational domain: Ω ≡ [−1.5, 1.5]

2
.

Final time: T = 0.26.
Level-set: 250× 250 nodes, regularisation ε = 0.001, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.6.
Figure: 7.114.
Remark: –.
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Numerical experiment 7.2.96. Computational domain: Ω ≡ [−1.5, 1.5]
2
. Test of the level-

set formulation for the anisotropic Willmore flow

∂tu

Qε
= −∇ ·

(
Eγ∇wγ −

1

2

w2
γ

Q3
∇u
)

on (0, T )× Ω,

wγ = QεHγ on (0, T )× Ω,

u |t=0 = uini on Ω,

with the Neumann boundary conditions

∂νu = 1, Eγ∇wγ · ν = 0 on ∂Ω.

The anisotropy function γl16 is given by

γl16 (P) =

(
3∑
i=1

|Pi|16
) 1

16

and the initial condition is a curve given by

u (x, y) =
√
x2 + y2 − 1− 0.3 sin

(
6 arccos

x√
x2 + y2

)
= 0

.
Final time: T = 0.01.
Level-set: 100× 100 nodes, regularisation ε = 0.05, no re-distancing.
Time step: Adaptive.
Numerical scheme: 6.3.7
Figure: 7.115.
Remark: –
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7.2. Numerical experiments

Anisotropic level-set formulation of the mean-curvature flow

Figure 7.114.: Anisotropic level-set method for the mean-curvature flow – graphs if the level-
set function at times t = 0, t = 0.13, t = 0.26 and evolution of the curve at times
t = 0.005, 0.01, 0.2, 0.3, · · · , 0.26. See the Numerical experiment 7.2.95
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Anisotropic level-set formulation of the Willmore flow

Figure 7.115.: Anisotropic level-set method for the Willmore flow – graphs of the level-set
function at times t = 0, t = 0.001, t = 0.01 and evolution of the initial curve
at times t = 0.0001, 0.0005, 0.001, 0.002, · · · , 0.01. See the Numerical experiment
7.2.96
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7.3. Summary

7.3. Summary

We summarise results of performed numerical experiments.

7.3.1. Discretisation in space

We proposed three different classes of schemes based on the discretisation in space:

• schemes based on the one-sided finite differences – 6.2.2 and 6.2.3

• schemes based in the central differences – 6.2.8 and 6.2.9

• complementary finite volume schemes resp. finite difference counterparts – 6.2.14–6.2.21
resp. 6.2.27 and 6.2.30

The Numerical experiments 7.2.2 and 7.2.4 show that the first class of schemes fails especially
in the approximation of the Willmore flow. The main problem is in lack of symmetry of those
schemes. Therefore we proposed replacing the one-sided finite differences by the central ones.
They offer better approximation. However, Figure 6.2 shows, that in case of discontinuous
functions, oscillations may appear. We tried to overcome this difficulty by introducing artificial
viscosity term which was supposed to keep the approximate solution smooth enough. This
approach, however, involve setting of a new parameter which is something we usually want to
avoid from the numerical schemes. We found a better solution in complementary finite-volume
schemes. They are symmetric (in the meaning of having symmetric stencil), they do not need
any artificial parameter and they also have smaller stencil then the central schemes. This is
important for the semi-implicit discretisation in time. Numerous tests, we performed in this
thesis, show that the complementary finite-volume schemes appear appropriate for the space
discretisation of the geometric partial differential equations.

7.3.2. Discretisation in time

We also have extensively tested two discretisations in time – the explicit and the semi-implicit
ones. None of them outperforms the other. We solve really highly non-linear problems. From
the nature of the semi-implicit schemes, we always have to undergo certain linearisation. It is
necessary for turning non-linear algebraic problem into linear one. This always brings in some
error of the approximation. The more non-nonlinear problem we solve the bigger this error is.
Therefore the semi-implicit schemes do not seem to be good choice in case of strongly non-linear
equations.

The disadvantage of the explicit schemes is in very small time step which is necessary for their
stability. It decreases efficiency of the algorithm.

We expected that such situation may occur in case of the fourth order level-set methods.
Here, the signed distance function of the initial curve is taken as an initial condition. It usually
contains singular points at which the partial derivatives are not defined.

The results of our tests are surprising. In most cases we are able to get correct approximation
using both kinds of time discretisation. Sometimes, however, the semi-implicit schemes fail
completely – see the Numerical experiment 7.2.64 or the Willmore flow with anisotropy given by
(5.114) in general. We were also surprised by the fact that the explicit schemes can be employed
even for the fourth order level-set methods. We must, however, confess, that the explicit schemes
require often a lot of CPU time. For example Numerical experiment 7.2.34 was running for more
then 8 months on 4 CPUs Opteron 270 and still did not reach the steady state. The same but
semi-implicit scheme performed almost ten times faster. On the other hand, in most of the
experiments dealing with the mean-curvature flow,, both kinds of schemes required the same
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7. Computational studies

CPU time and sometimes the explicit schemes were even faster – see the Numerical experiment
7.1.9 and 7.1.10. We would like to note that even for the semi-implicit schemes we had to set
quite small time steps such that the iterative matrix solver (GMRES in most cases) converged
in tens of iterations. Therefore a preconditioning, like ILU for example, do not speed up the
computation at all. It also requires some CPU for initiation which is not advantageous in the
situation when the iterative solver converges in few iterations.

The result of this comparison is that the explicit and the semi-implicit schemes are sufficient
for the second-order problems and both offer approximately the same efficiency. For the fourth-
order flows, fully implicit schemes based on the Newton solver might be more promising for
development of efficient algorithm.

7.3.3. Second order vs. fourth order flows

We would like to emphasise one important fact concerning the level-set formulation for the mean-
curvature flow. For both explicit and semi-implicit schemes, we were able to obtain experimental
order of convergence equal almost exactly 2 with the regularising parameter ε = 10−15 – see the
Numerical experiment 7.1.9 and 7.1.10. We did not have to change this parameter with respect
to the space step h (moreover, in the case of the explicit scheme we did not have to set even the
time step). It turns, especially the explicit scheme, into a black box which needs only the input
data and does not require setting of any parameter.

We would like to achieve similar results even for the Willmore flow. Unfortunately, we did not
succeed. The Numerical experiment 7.1.11 shows insufficient result obtained as an experimen-
tal order of convergence for the level-set formulation of the Willmore flow. Our computations
performed for the surface-diffusion flow for [83] showed better EOC. Moreover, Numerical exper-
iment 7.83 shows that the semi-implicit version of the Numerical scheme 6.2.30 may fail in case
of highly non-convex initial curves. We also experienced serious difficulties in case of changes of
topology with the level-set formulation of the Willmore flow – see [13].

As a result we see that the Willmore flow is the most difficult to approximate. Comparing
the equation for the normal velocity for the surface-diffusion flow

V = ∆ΓHγ on Γ (t),

and for the Willmore flow

V = ∆ΓH +H ‖W‖2F −
1

2
H3 on Γ (t),

we see that the difficulties with the Willmore flow come from the terms H ‖W‖2F − 1
2H

3 and not
∆ΓH, which is easier for numerical approximation when standing alone. We understand this as
one of the most important results in this thesis.

In the future work we would like to study the Willmore flow in context of image processing
and image inpainting. For this purpose we propose to study functional of bending energy (3.6)∫

Γ
κ2

1 + κ2
2dHn−1 =

∫
Γ
H2 − 2KdHn−1,

instead of ∫
Γ
H2dHn−1.

As a result we can say, that the numerical approximation of the Willmore flow is still an open
problem, especially the level-set formulation even without any anisotropy.
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8. Conclusion

The thesis deals with one of challenging fourth-order problems – with the Willmore flow. For
this purpose, physical background was presented. Chapter 4 summarises tools of differential
geometry needed for understanding of this problem. Chapter 5 deals with corresponding math-
ematical formulation using variational methods In this part there are two contributions by the
author – definition of the anisotropic Willmore flow (5.2.6), (5.2.8) and an extension of the
energy equality (5.2.10) to anisotropic problems – see the Theorem 5.2.11.

Main contributions concern numerical approximation of the Willmore flow. In Chapter 6
we present three classes of numerical schemes - numerical schemes based on one-sided finite
differences, schemes based on central finite differences and schemes based on complementary
finite volumes. We demonstrate that the first class is sufficient only for the reference problem
of mean-curvature flow. The second class suffers from possible appearance of oscillations in
case of discontinuous initial conditions. We obtained the best results using the complementary
finite-volume schemes. We reformulate them in terms of finite differences and we apply simple
mathematical background for the finite difference method to prove discrete energy equality
(5.2.11) and its anisotropic counterpart.

One of main goals of this thesis is a comparison of numerical schemes for the geometric partial
differential equations from different points of view. We find experimental order of convergence
for all isotropic numerical schemes. For graphs, it was done with additional forcing term which
allowed us to find analytical solution. When it comes to the level-set method, we know analytical
solution when the initial curve is a circle. Except of the level-set formulation of the Willmore
flow (see. Table 7.1.11) we obtained sufficient results.

We have performed many qualitative numerical experiments. We have tested the Willmore
flow on many different initial conditions and compared its evolution with the mean-curvature
flow. This holds for both - the graph formulation and the level-set formulation. The reader
can see differences in evolutions of both flows. We set the same initial conditions even for the
anisotropic problems. One can easily see even the differences between several anisotropies. In
case of the isotropic level-set method we also give comparison with the parametric approach.
This is an important test of reliability of proposed numerical schemes. We have achieved a good
agreement.

Unfortunately, there was no space left in the thesis for studying topological changes of curves
modelled by the level-set method. For the Willmore flow, it is non-trivial problem which we
do not consider as solved yet. In the future we would like to extend the theory of moving
hypersurfaces to anisotropic ones. It would allow us to derive a parametric model for the
anisotropic Willmore flow. We also would like to study the Willmore flow (even anisotropic one)
in context of edge detection and image inpainting. As we already mentioned in the text, a fully
implicit numerical scheme based on the Newton solver might be a promising approach to get an
efficient algorithm for the level-set formulation of the Willmore flow.
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A. Theoretical toolbox

In this chapter we summarise some neccesary theorems from calculus, measure theory and
functional analysis.

Definition A.0.1. Diffeomorphism [38]: Let Γ1 and Γ2 be differentiable manifolds. A map-
ping ϕ : Γ1 → Γ2 is a diffeomorphism if it is differentiable, bijective, ans its inverse ϕ−1 is also
differentiable.

Theorem A.0.2. Implicit function theorem [47]: Assume f =
(
f1, · · · fm

)
∈ Ck (Ω;Rm),

Ω ⊂ Rn+m and

det

∣∣∣∣∣∂
(
f1, · · · fm

)
∂ (y1, · · · ym)

(x0,y0)

∣∣∣∣∣ 6= 0,

where we denote (x,y) = (x1, · · · , xn, y1, · · · ym) ∈ Rm+n. Then there exists an open set Ψ ⊂ Ω
with (x0,y0) ∈ Ψ, an open set Υ ⊂ Rn, with x0 ∈ Υ and a Ck mapping g : Υ→ Rm such that

1. g (x0) = y0

2. f (x,g (x)) = z0, (x ∈ Υ)

and if (x,y) ∈ Ψ and f (x,y) = z0, then y = g (x). The function g is implicitly defined near x0

by the equation f (x,y) = z0.

Theorem A.0.3. Arzela-Ascoli compactness criterion [47]: Suppose that {fk}∞k=1 is a
sequence of real-valued functions defined on Rn, such that

|fk (x)| ≤ C for k = 1, · · · and x ∈ Rn,

for some constant C, and the sequence {fk}∞k=1 are uniformly equicontinuous. Then there exists
a subsequence

{
fkj
}∞
j=1
⊂ {fk}∞k=1 and a continuous function f , such that

fkj → f uniformly on compact subset of Rn.

Definition A.0.4. Hausdorff Measure [48]: Let Γ ⊂ Rn, 0 ≤ s < ∞, 0 < δ ≤ ∞. We
define

Hsδ (Γ) = inf


∞∑
j=1

α (s)

(
diam Ωj

2

)s
| A ⊂

∞⋃
j=1

Ωj , diam Ωj ≤ δ

 ,

where Ωj is a system of closed sets in Rn and

α (s) =
π
s
2

Γ
(
s
2 + 1

) .
Here Γ (s) =

∫∞
0 e−xxs−1dx, (0 < s <∞), is the usual gamma function. We denote

Hs (Γ) = lim
δ→0
Hsδ (Γ) = sup

δ>0
Hdδ (Γ) ,

and we call Hs s-dimensional Hausdorff measure on Rn.
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Theorem A.0.5. Co-area formula [47]: Let u : Rn → R be Lipschitz continuous and assume
that for a.e r ∈ R the level-set

{x ∈ Rn | u (x) = r}
is a smooth, (n− 1)-dimensional hypersurface in Rn. Suppose also f : Rn → R is continous
and summable. Then ∫

Rn

f |∇u|dx =

∫ +∞

−∞

(∫
u=r

fdHn−1

)
dr.

Theorem A.0.6. Gauss-Green Theorem [47]: Let Ω be a domain in Rn. Suppose u ∈
C1
(
Ω
)
. Then ∫

Ω
uxidx =

∫
∂Ω
uνidS, for i = 1, · · ·n.

Let u, v ∈ C1
(
Ω
)
. Then∫

Ω
uxivdx = −

∫
Ω
uvxidx +

∫
∂Ω
uνidS, for i = 1, · · ·n.

Theorem A.0.7. Stokes theorem: Let Ω be a domain in Rn. Let u ∈ C1
(
Ω;Rn

)
. Then∫

Ω
∇ · u =

∫
∂Ω

u · νdS.

Theorem A.0.8. Gauss-Green Theorem for hypersurfaces [56]: Let Γ be a manifold (or
C1-hypersurface for purposes of this text) in Rn. Let f ∈ C1 (Γ,Rn), g ∈ C1 (Γ) and supp (fg)
is compact. Then we have∫

Γ
f · ∇ΓgdHn−1 = −

∫
Γ

(∇Γ · f +Hn · f) gdHn−1.

Theorem A.0.9. Lax-Milgram [15]: Given a Hilbert space X, a continuous, coercive bilinear
form a (·, ·) and a continuous linear functional F ∈ X ′ (here X ′ denotes dual space to X), there
exists a unique u ∈ X such that

a (u, v) = F (v) for all v ∈ X. (A.1)

Definition A.0.10. Bounded and coercive bilinear form [15]: A bilinear form a (·, ·) on
a normed linear space X is said to be bounded (or continuous) if there exists C1 < ∞ such
that

|a (v, w)| ≤ C1 ‖v‖X ‖w‖X for all v, w ∈ X,

and coercive on Y ⊂ X if there exists C2 > 0 sucht that

a (v, v) ≥ C2 ‖v‖2Y for all v ∈ Y.

Theorem A.0.11. Poincaré inequality on Riemannian manifold [56]: Let Γ ⊂ Rn be a
compact Riemannian manifold of dimension n, and let 1 ≤ q < n be a real number. There exists
a positive constant C = C (Γ, q) such that for any u ∈W 1

q (Γ),

(∫
Γ
|u− ū|q dHn

) 1
q

≤ C
(∫

Γ
|∇Γu|q dHn

) 1
q

,

where ū = 1
|Γ|
∫

Γ udHn.
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Theorem A.0.12. Global Gauss-Bonnet theorem [100]: Let Γ be a compact two-dimensional
orientable Riemannian manifold without boundary. Then∫

Γ
KdHn−1 = 2πχ (Γ) ,

where χ (Γ) is the Euler-Poincaré characteristic of Γ.

Theorem A.0.13. Jacobi’s formula [65]: Let A ∈ C1 (I,Rn×n) for I ⊂ R. Then

d

dt
detA (t) = detA (t) Tr

(
A (t)−1A′ (t)

)
for t ∈ I provided detA (t) 6= 0 on I.
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