THE CUDA IMPLEMENTATION OF THE METHOD OF LINES FOR THE CURVATURE DEPENDENT FLOWS

Tomáš Oberhuber, Atsushi Suzuki and Vítězslav Žabka

We study the use of a GPU for the numerical approximation of the curvature dependent flows of graphs – the mean-curvature flow and the Willmore flow. Both problems are often applied in image processing where fast solvers are required. We approximate these problems using the complementary finite volume method combined with the method of lines. We obtain a system of ordinary differential equations which we solve by the Runge–Kutta–Merson solver. It is a robust solver with an automatic choice of the integration time step. We implement this solver on CPU but also on GPU using the CUDA toolkit. We demonstrate that the mean-curvature flow can be successfully approximated in single precision arithmetic with the speed-up almost 17 on the Nvidia GeForce GTX 280 card compared to Intel Core 2 Quad CPU. On the same card, we obtain the speed-up 7 in double precision arithmetic which is necessary for the fourth order problem – the Willmore flow of graphs. Both speed-ups were achieved without affecting the accuracy of the approximation. The article is structured in such way that the reader interested only in the implementation of the Runge–Kutta–Merson solver on the GPU can skip the sections containing the mathematical formulation of the problems.

Keywords: GPGPU, CUDA, parallel algorithms, high performance computing, differential geometry, mean-curvature flow, Willmore flow, Runge–Kutta method, method of lines, explicit scheme, complementary finite volume method

Classification: 68W10, 35K55, 35K52, 53A05, 53C44, 74S10, 74G15

1. INTRODUCTION

GPUs (Graphics processing units) are devices designed to accelerate visualization of 3D objects in computer graphics. Originally they were designed especially for the computer games. For this purpose, the GPU designers concentrated on the processing of detailed textures rather than on complex geometry with millions of polygons. Therefore the GPUs are equipped with memory chips optimized to read large sequential blocks of data which is significantly faster than random access. In order to implement special graphics effects like texture filtering, new programmable units were added to the GPU. Their capabilities were improving with each new generation. Their processing capability grew from only dozens of instructions into sophisticated one which allows to run the same code as usual CPU. They kept their advantage which is parallelism. It is usual to run thousands of threads concurrently...
on one GPU. This is two orders higher in comparison with nowadays multicore CPU. While the peak performance of todays GPUs is estimated approximately to 1 TFlops, a four cores CPU peak performance is around 50 GFlops. As a result, we have a computing device better suited for numerical algorithms than the usual CPU. The main advantages of GPUs are

- higher memory bandwidth than common CPUs (≈ 10×),
- higher level of parallelism than common CPUs (≈ 100×).

It is no surprise that the researchers who need to compute complex simulations started to be interested in GPUs. The first attempts to implement general algorithms – not related to computer graphics – were based on the programming in OpenGL \[38\]. Soon, more advanced tools were released by the main vendors of GPUs – Nvidia and ATI/AMD. Mainly CUDA (Compute Unified Device Architecture) by Nvidia has attracted a lot of interest and became very popular in the community interested in GPGPU (General-Purpose Computation on GPU). Currently, a lot of algorithms are implemented in CUDA. There are several articles about sparse-matrix vector multiplication \[1, 2\] and about iterative linear solvers \[9, 10\]. The GPU implementation of the Gauss–Seidel solver can be found in \[20\] and the tridiagonal solver in \[44\]. A GPU acceleration of FEM is presented in a series of articles \[18, 19, 20\]. The implementation of the Runge–Kutta method has been discussed in \[40\]. In this article, we demonstrate the implementation of the Merson modification of the Runge–Kutta method \[42\]. The Merson algorithm allows for the adaptive choice of the integration time step. This leads to a robust solver for the method of lines for the parabolic partial differential equations. We use this solver for the numerical approximation of the mean-curvature flow and the Willmore flow of graphs by the complementary finite volume method and the method of lines. They are non-linear second and fourth order geometric partial differential equations.

Contributions. We present a detailed description of the implementation of the Runge–Kutta–Merson solver in CUDA and we discuss several optimization techniques for large kernels. We compare the accuracy and the efficiency of the solver running on both CPU and GPU. We also test the numerical convergence in the single and the double precision arithmetic.

Organization. The article is organized as follows. In Section 2 we briefly explain two curvature dependent flows which we solve. Section 3 describes the numerical approximation. From this section, the reader should see the amount of computations necessary in each iteration of the Runge–Kutta solver. Both sections can be skipped by readers interested only in the CUDA implementation of the Runge–Kutta–Merson solver which can be found in Section 4. Here, we first show the CPU code and then we transform it step by step to CUDA. We explain only the necessary minimum of the CUDA knowledge. The results we obtained are discussed in Section 5.
2. MATHEMATICAL FORMULATION

In this section, we show the numerical approximation of the mean-curvature flow and the Willmore flow of graphs. Both problems originate from differential geometry and they have applications in phase transitions [22], image processing [8, 33, 34], surface restoration [13] and physics of elasticity [25, 41]. The mean-curvature flow minimizes the surface area functional

$$ A(\Gamma) = \int_{\Gamma} 1\,dS, \quad (1) $$

where Γ is a hypersurface in \mathbb{R}^n. Let Γ_0 be the initial hypersurface. We may generate a class of hypersurfaces $\Gamma(t)$ depending on the parameter t (it has the meaning of artificial time) such that $\Gamma(0) = \Gamma_0$ and either $\Gamma(t_0)$ for $t_0 > 0$ or $\lim_{t \to \infty} \Gamma(t)$ minimizes A. Since we are interested in the change of shape of $\Gamma(t)$, we will study the motion of the points $x(t) \in \Gamma(t)$. Only the projection to the normal direction at each point changes the shape of $\Gamma(t)$ and therefore we may omit the tangential velocity. One can show that A is minimized if the normal velocity V reads as

$$ V = H \text{ on } \Gamma(t), \quad (2) $$

where H is the mean curvature of $\Gamma(t)$. The Willmore flow minimizes the Willmore functional

$$ W(\Gamma) = \int_{\Gamma} H^2\,dS, \quad (3) $$

for which the normal velocity reads [28]

$$ V = -\Delta_{\Gamma} H - \frac{1}{2} H^3 + 2KH \text{ on } \Gamma(t). \quad (4) $$

Here, Δ_{Γ} is the Laplace–Beltrami operator and K is the Gauss curvature. Let Ω be a domain in \mathbb{R}^2 and let $\Gamma(t)$ be given as a graph of a function $\varphi: \Omega \times (0, \infty) \to \mathbb{R}$ such that

$$ \Gamma(t) \equiv \{ [x, \varphi(x, t)] \mid x \in \Omega \}. \quad (5) $$

Often, we solve more general problem with an additional forcing term $F: \Gamma(t) \to \mathbb{R}$. If we denote ν the outer unit normal of the boundary $\partial \Omega$, $Q = \sqrt{1 + |\nabla \varphi|^2}$ and $P = I - \frac{\nabla \varphi}{Q} \otimes \frac{\nabla \varphi}{Q}$ then (2) and (4) with the additional forcing term F read as follows:

Problem 2.1. The graph formulation of the mean-curvature flow with the forcing term F, the Dirichlet boundary conditions and the initial condition φ_{ini} is the second order parabolic problem given by

$$ \frac{\partial}{\partial t} \varphi = -Q \nabla \cdot \left(\frac{\nabla \varphi}{Q} \right) + F(t) \text{ on } \Omega \times (0, T], \quad (6) $$

$$ \varphi|_{t=0} = \varphi_{\text{ini}} \text{ on } \Omega, \quad (7) $$

$$ \varphi = g \text{ on } \partial \Omega. \quad (8) $$
The graph formulation of the mean-curvature flow with the forcing term F, the Neumann boundary conditions and the initial condition φ_{ini} is the second order parabolic problem given by (6)–(7) and
\[
\partial_t \varphi = 0 \quad \text{on } \partial \Omega.
\] (9)

Problem 2.2. The graph formulation of the Willmore flow with the forcing term F, the Dirichlet boundary conditions and the initial condition φ_{ini} is a fourth order parabolic problem given by
\[
\partial_t \varphi = -Q \nabla \cdot \left(\frac{1}{Q} \nabla w - \frac{1}{2} w^2 \nabla \varphi \right) + F(t) \quad \text{on } \Omega \times (0, T],
\] (10)
\[
w = Q \nabla \cdot \left(\frac{\nabla \varphi}{Q} \right) \quad \text{on } \Omega \times [0, T],
\] (11)
\[
\varphi|_{t=0} = \varphi_{\text{ini}} \quad \text{on } \Omega,
\] (12)
\[
\varphi = g, w = 0 \quad \text{on } \partial \Omega.
\] (13)

The graph formulation of the Willmore flow with the forcing term F, the Neumann boundary conditions and the initial condition φ_{ini} is the fourth order parabolic problem given by (10)–(12) and
\[
\partial_t \varphi = 0, \partial_n w = 0 \quad \text{on } \partial \Omega.
\] (14)

For some theoretical results concerning (2) and (4), we refer to [11, 12, 14, 15, 16, 17, 26, 27, 30, 31, 32, 35, 39].

3. NUMERICAL APPROXIMATION

To approximate (2.1) and (2.2) numerically we firstly discretize the equations in space by the complementary finite volumes method. This method has been successfully used in [7, 23, 34, 36, 43]. In the second step we will proceed to the discretization in time by the method of lines. We assume that $\Omega \equiv (0, L_1) \times (0, L_2)$. Let h_1, h_2 be space steps such that $h_1 = \frac{L_1}{N_1}$ and $h_2 = \frac{L_2}{N_2}$ for some $N_1, N_2 \in \mathbb{N}^+$. We define the numerical grid, its closure and its boundary as
\[
\omega_h = \{(ih_1, jh_2) \mid i = 1\ldots N_1 - 1, j = 1\ldots N_2 - 1\},
\] (15)
\[
\bar{\omega}_h = \{(ih_1, jh_2) \mid i = 0\ldots N_1, j = 0\ldots N_2\},
\]
\[
\partial \omega_h = \bar{\omega}_h \setminus \omega_h.
\]

We define the projection operator $P_h : C(\bar{\omega}_h) \to \bar{\omega}$ as
\[
P_h (\varphi)_{ij} := \varphi^h_{ij} := \varphi(ih_1, jh_2).
\] (16)

The details of the space discretization (2.1) and (2.2) can be found in [36, 37]. With the discretization formulas from the appendix (7) we may write the numerical schemes.
Scheme 3.1. The complementary finite volume semi-discrete numerical scheme for the mean-curvature flow of graphs with the zero forcing term $F(t)$ and the Dirichlet boundary conditions takes the following form

$$\frac{d}{dt} \varphi^h_{ij} = Q_{ij}^h \left(\frac{\varphi^h_{ij} - \varphi^h_{i,j+1}}{h^2 Q^h_{ij,i,j+1}} + \frac{\varphi^h_{ij+1} - \varphi^h_{ij}}{h^2 Q^h_{ij,j+1}} - \frac{\varphi^h_{ij} - \varphi^h_{i,j-1}}{h^2 Q^h_{ij,i,j-1}} - \frac{\varphi^h_{ij} - \varphi^h_{i+1,j}}{h^2 Q^h_{ij+1,j}} \right) \quad \text{on } \omega_h,$$

$$\varphi^h_{ij} |_{t=0} = \mathcal{P}_h (\varphi_{ini}, ij) \quad \text{on } \overline{\omega}_h,$$

$$\varphi^h_{0j} = g_{ij} \quad \text{on } \partial \omega_h,$$

where Q_{ij}^h is given by (49) and $Q_{ij,i+1}, Q_{ij,i+1}, Q_{ij,i-1}, Q_{ij,i-1}$ and $Q_{ij,i-1}$ are given by (36)–(39). The complementary finite volume semi-discrete numerical scheme for the mean-curvature flow of graphs with the Neumann boundary conditions is given by (17)–(18) together with

$$\varphi^{h}_{j} = \varphi^{h}_{j+1} \quad \text{and} \quad \varphi^{h}_{N+1,j} = \varphi^{h}_{N,j} \quad \text{for } j = 0, \ldots, N-1,$$

$$\varphi^{h}_{i0} = \varphi^{h}_{i+1} \quad \text{and} \quad \varphi^{h}_{i,N+1} = \varphi^{h}_{i,N} \quad \text{for } i = 0, \ldots, N.$$

Scheme 3.2. The complementary finite volume semi-discrete numerical scheme for the Willmore flow of graphs with the zero forcing term $F(t)$ and the Dirichlet boundary conditions takes the following form

$$\frac{d}{dt} \varphi^h_{ij} = Q_{ij}^h \left[\frac{1}{h_1} (E_{11,ij,i+1} \partial^h_{x_1} w_{ij,i+1}^h + E_{12,ij,i+1} \partial^h_{x_2} w_{ij,i+1}^h) \right. \right.$$

$$\left. + \frac{1}{h_2} (E_{21,ij,i+1} \partial^h_{x_1} w_{ij,i+1}^h + E_{22,ij,i+1} \partial^h_{x_2} w_{ij,i+1}^h) \right.$$

$$\left. - \frac{1}{h_1} (E_{11,ij,i-1} \partial^h_{x_1} w_{ij,i-1}^h + E_{12,ij,i-1} \partial^h_{x_2} w_{ij,i-1}^h) \right.$$

$$\left. - \frac{1}{h_2} (E_{21,ij,i-1} \partial^h_{x_1} w_{ij,i-1}^h + E_{22,ij,i-1} \partial^h_{x_2} w_{ij,i-1}^h) \right.$$

$$\left. - \frac{1}{h_1} \left(\frac{1}{2} \left(\frac{w^h_{ij,i+1}}{Q^h_{ij,i+1}} \right)^2 \partial^h_{x_1} \varphi^h_{ij,i+1} - \frac{1}{2} \left(\frac{w^h_{ij,i-1}}{Q^h_{ij,i-1}} \right)^2 \partial^h_{x_1} \varphi^h_{ij,i-1} \right) \right.$$

$$\left. - \frac{1}{h_2} \left(\frac{1}{2} \left(\frac{w^h_{ij,i+1}}{Q^h_{ij,i+1}} \right)^2 \partial^h_{x_2} \varphi^h_{ij,i+1} - \frac{1}{2} \left(\frac{w^h_{ij,i-1}}{Q^h_{ij,i-1}} \right)^2 \partial^h_{x_2} \varphi^h_{ij,i-1} \right) \right] \quad \text{on } \omega_h,$$

$$w^h_{ij} = Q_{ij}^h \left(\frac{\varphi^h_{ij+1} - \varphi^h_{ij}}{h^2 Q^h_{ij+1,j}}, \frac{\varphi^h_{ij+1} - \varphi^h_{ij}}{h^2 Q^h_{ij+1,j}}, \frac{\varphi^h_{ij} - \varphi^h_{ij-1}}{h^2 Q^h_{ij-1,j}}, \frac{\varphi^h_{ij} - \varphi^h_{ij-1}}{h^2 Q^h_{ij-1,j}} \right) \quad \text{on } \omega_h,$$

$$\varphi^h_{ij} \big|_{t=0} = \mathcal{P}_h (\varphi_{ini}, ij) \quad \text{on } \overline{\omega}_h,$$

$$\varphi^h_{ij} = g_{ij} \quad \text{and} \quad w^h_{ij} = 0 \quad \text{on } \partial \omega_h,$$

where Q_{ij}^h is given by (49) and $Q_{ij,i+1}, Q_{ij,i+1}, Q_{ij,i-1}, Q_{ij,i-1}$ and $Q_{ij,i-1}$ are given
by (36)–(39), \(\Xi_{mn,ij,ij}^h \) for \(m, n = 1, 2 \) is given by (53), \(w_{ij,ij}^h \) by (51)–(52) and as (44)–(47), \(\partial_{x_1} \omega_{ij,ij}^h \) and \(\partial_{x_2} \omega_{ij,ij}^h \) are approximated by (40)–(43).

The complementary finite volume semi-discrete numerical scheme for the Willmore flow of graphs with the Neumann boundary conditions is given by (21)–(23), (19)–(20) together with

\[
\begin{align*}
\omega_{i,0}^h & = \omega_{i-1,0}^h, \\
\omega_{i,N_2}^h & = \omega_{i-1,N_2}^h
\end{align*}
\]

(25)

Remark 3.3. After the discretization in space we have a system of ordinary differential equations of the form

\[
\frac{d u_{ij}^h}{dt} = f \left(t, u^h \right)_{ij},
\]

(26)

where \(f \left(t, u^h \right)_{ij} \) is given by the right-hand sides of (17) and (21). We solve the system by the Runge–Kutta method. It is the explicit time discretization known as the method of lines.

4. THE CUDA IMPLEMENTATION OF THE RUNGE–KUTTA–MERSON SOLVER

4.1. The Runge–Kutta–Merson solver for the Method of Lines

The advantage of explicit schemes is their high accuracy and easier implementation in comparison with semi-implicit or fully-implicit schemes involving solvers of linear or non-linear systems. The disadvantage is that they require significantly smaller time steps. It means that the solver must perform more iterations. In each iteration, the right-hand side \(f \) is evaluated. As a result, the explicit solvers can be computationally more intensive. This makes them good candidates for the implementation on the GPU.

The fourth order Runge–Kutta solvers were successfully used in many articles \[3, 4, 5, 6\]. The Merson solver \[42\] belongs to this class of solvers. Moreover, it offers the automatic choice of time step which makes the solver more robust. We will solve the system of ordinary differential equations (26). The Runge–Kutta–Merson solver consists of the following steps:

Algorithm 4.1. The explicit Runge–Kutta–Merson solver (Vitásek \[42\]) consists of the following steps:
1. Compute the grid functions $k_{ij}^1, k_{ij}^2, k_{ij}^3, k_{ij}^4, k_{ij}^5$ as:

$$
\begin{align*}
 k_{ij}^1 & := \tau f(t, u^h)_{ij} \\
 k_{ij}^2 & := \tau f(t + \frac{1}{3}\tau, u^h + \frac{1}{3}k_{ij}^1) \\
 k_{ij}^3 & := \tau f(t + \frac{1}{3}\tau, u^h + \frac{1}{6}k_{ij}^1 + \frac{1}{6}k_{ij}^2) \\
 k_{ij}^4 & := \tau f(t + \frac{1}{2}\tau, u^h + \frac{1}{8}k_{ij}^1 + \frac{3}{8}k_{ij}^3) \\
 k_{ij}^5 & := \tau f(t + \tau, u^h + \frac{1}{2}k_{ij}^1 - \frac{3}{2}k_{ij}^3 + 2k_{ij}^4)
\end{align*}
$$

for $i = 0, \ldots, N_1$ and $j = 0, \ldots, N_2$.

2. Evaluate the approximation error for the current time step τ as

$$
e := \max_{i=0,\ldots,N_1} \max_{j=0,\ldots,N_2} \left| \frac{1}{3} k_{ij}^1 - \frac{9}{10} k_{ij}^3 + \frac{4}{5} k_{ij}^4 - \frac{1}{10} k_{ij}^5 \right|.
$$

3. If this error is smaller than given tolerance ϵ, update u^h as:

$$
u_{ij}^h := u_{ij}^h + \frac{1}{6} \left(k_{ij}^1 + 4k_{ij}^4 + k_{ij}^5 \right),
$$

for $i = 0, \ldots, N_1$, $j = 0, \ldots, N_2$ and set

$$t := t + \tau.$$

4. Independently on the previous condition update τ as:

$$
\tau := \min \left\{ \tau \cdot \frac{4}{5} \left(\frac{\epsilon}{e} \right)^{\frac{1}{4}}, T - t \right\}.
$$

5. Repeat the whole process with the new τ i.e. go to step 1.

4.2. Implementation of the Runge–Kutta–Merson solver on CPU

The implementation of the algorithm (4.1) in the C language on the CPU reads as follows:

```c
void RungeKuttaMersonCPU( double *u_ini, double final_time )
{
    // compute the degrees of freedom
    const int N = N1 * N2;
    // allocate the numerical grids
    double *u, *k1, *k2, *k3, *k4, *k5, *k;
```
```c
    u = ( double* ) malloc( sizeof( double ) * N );
    k1 = ( double* ) malloc( sizeof( double ) * N );
    ...
// copy the initial condition to u
memcpy( u_init, u, sizeof( double ) * N );

double t = 0;
double tau = tau_0;

while( t < final_time ) {
    // compute the grid functions k1, k2, k3, k4, k5
    EvaluateRHS( t, u, k1 );
    for( int i = 0; i < N; i++ )
        k[i] = u[i] + tau/3.0 * k1[i];
    EvaluateRHS( t + tau/3.0, k, k2 );
    ...

    // compute the error with given tau
    double e = 0.0;
    for( int i = 0; i < N; i++ )
        e = Max(e, tau/3.0 *
                (0.2*k1[i] - 0.9*k3[i] + 0.8*k4[i] - 0.1*k5[i]));

    // if e is small enough proceed to the next time level
    if( e < epsilon ) {
        for( i = 0; i < N; i++ )
            u[i] = u[i] + tau/6.0 * ( k1[i] + 4.0*k4[i] + k5[i] );
        t = t + tau;
    }

    // recompute the new time step
    tau = Min( 4.0/5.0*tau*pow( epsilon/e, 0.2 ), T-t );

    // copy the result to the grid with the initial data
    memcpy( u, u_init, sizeof( double ) * N );

    // free the allocated memory
    memfree( u );
    memfree( k1 );
    ...
}
```

4.3. Implementation of the Runge–Kutta–Merson method in CUDA

Here is what we need for the implementation of our algorithm on the GPU in CUDA:

1. allocate the numerical grids on the CUDA device
The CUDA implementation of the method of lines for the curvature dependent flows

2. copy the initial data from the host system (CPU memory) to the CUDA device

3. evaluate the weighted sum of the grid functions \(u^h + \frac{1}{6} k^1 \), \(u^h + \frac{1}{6} k^1 + \frac{1}{6} k^2 \), \(u^h + \frac{1}{8} k^1 + \frac{3}{8} k^3 \) and \(u^h + \frac{1}{2} k^1 - \frac{3}{2} k^3 + 2 k^4 \) in the first step and \(u^h_{ij} := u^h_{ij} + \frac{1}{6} (k^1_{ij} + 4 k^4_{ij} + k^5_{ij}) \) in the third step of the Algorithm 4.1.

4. evaluate the right-hand side \(f(t, u^h)_{ij} \) in the first step of the Algorithm 4.1

5. evaluate the maximum \(e := \max_{i=0,\ldots,N_1} \max_{j=0,\ldots,N_2} \left| \frac{1}{3} k^1_{ij} - \frac{9}{10} k^3_{ij} + \frac{2}{5} k^4_{ij} - \frac{1}{10} k^5_{ij} \right| \).

The algorithm reads as follows:

```c
void RungeKuttaMersonCUDA(double *u_in, double final_time ) {
    // compute the degrees of freedom
    const int N = N1 * N2;

    // allocate the numerical grids on CUDA device
    double *u, *k1, *k2, *k3, *k4, *k5, *k;
    cudaMemalloc( (void**) &u, sizeof( double ) * N );
    cudaMemalloc( (void**) &k1, sizeof( double ) * N );
    cudaMemalloc( (void**) &k2, sizeof( double ) * N );
    cudaMemalloc( (void**) &k3, sizeof( double ) * N );
    cudaMemalloc( (void**) &k4, sizeof( double ) * N );
    cudaMemalloc( (void**) &k5, sizeof( double ) * N );

    // copy the initial condition to u
    cudaMemcpy( u, u_in, sizeof( double ) * N, cudaMemcpyHostToDevice );

    double t = 0;
    double tau = tau_0;

    const int desBlockSize = 128;
    const int gridDim = N / desBlockSize + ( N % desBlockSize != 0 );
    dim3 blockDim( desBlockSize ), gridDim( desBlockSize );

    // start now the main loop
```

We may start now the main loop...
while (t<final_time)
{
 // compute the grid functions k1, k2, k3, k4, k5
 EvaluateRHS<<<gridDim, blockDim>>>(t, u, k1);
}

On the line 24, we call a CUDA kernel, a function running on the GPU processed by \(N \) threads concurrently. Its implementation for the right-hand side of (17) and (21) will be discussed later. We demonstrate the concept on the next kernel

// Compute \(k[i] = u[i] + \text{tau}/3.0 \times k1[i] \) for \(i=0..N-1 \)
EvaluateK2Argument<<<gridDim, blockDim>>>(N, tau, u, k1, k);
EvaluateRHS(t + \text{tau}/3.0, k, k2);

The code for EvaluateK2Argument reads as follows:

```c
__global__ void EvaluateK2Argument( const int N, const double tau,
                                         const double* u, const double* k1,
                                         double* k )
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if( i < N )
        k[ i ] = u[ i ] + tau * ( 1.0 / 3.0 * k1[ i ] );
}
```

The word __global__ indicates that the function EvaluateK2Argument is a CUDA kernel. The parameters \(\text{const int N, const double tau} \) must be passed as a value not as a reference. It is because they reside in the host memory (CPU) and they must be copied to the device memory (GPU). The pointers \(\text{const double* u, const double* k1, double* k} \) point to the mesh functions \(u, k1 \) and \(k \) already allocated on the GPU. On the line 105, we compute the ID \(i \) of the current thread. Since there are generally more then \(N \) threads running (if \(N = 129 \) and the block size is 128 we must run 2 blocks and we have 256 threads) we check whether \(i < N \) on the line 106. On the line 107, we perform the main computation. The next kernel will not start until the current one has finished. This is an important synchronization in our algorithm. The main loop of the solver continues as follows:

// compute the error with given tau

double e = ComputeE(tau, k1, k3, k4, k5);

The function ComputeE computes the local error \(e_{ij} \) and it performs the parallel reduction [24]. We run 128 threads per block to reduce at most 2048 elements. It means that there are \(N/2048 \) blocks in the grid. Each thread sequentially reduces 16 elements and then the parallel reduction with logarithmic complexity is performed. The result is stored in the global memory in an array having the same number of elements as the number of blocks in the grid (each block stores one number – the result of the reduction). In the next step, we run the same kernel again with \(N/2048 \) elements. After the last step we have only one number stored on the GPU in the variable device.e from which it is then copied to the host variable \(e \). The rest of the code is straightforward.
The CUDA implementation of the method of lines for the curvature dependent flows

```c
// if e is small enough proceed to the next time level
if (e < epsilon )
    ComputeNewU<<<gridDim, blockDim>>>( tau, u, k1, k4, k5 );
    t = t + tau;

// recompute the new time step
    tau = Min ( 4.0 / 5.0 * tau * pow ( epsilon / e, 0.2 ), T - t );
}

// copy the result to the grid with the initial data
cudaMemcpy( u, u_init, sizeof(double) * N, cudaMemcpyDeviceToHost );

// free the allocated memory
cudaFree( u );
cudaFree( k1 );
...
```

We would like to comment on the evaluation of the right-hand side (17) or (21). The node \((i,j)\) is mapped to global memory through bijection \(I(i,j) = iN_2 + j\), where \(i = 0, \ldots, N_1\) and \(j = 0, \ldots, N_2\). The same bijection maps nodes and threads. We employ \(N\) threads split into one dimensional blocks. The node coordinates \((i,j)\) are extracted using the following code:

```c
const int ij = blockIdx.x * blockDim.x + threadIdx.x;
const int i = ij / N2;
const int j = ij % N2;
```

To get (17) in one interior node, we start a new kernel and we fetch \(\varphi_{ij}\) and its 8 neighbors to the shared memory. This grid function is bound to a texture and so the reading is cached. Then, we compute (36)–(47) and (49). It takes 36 additions, 21 multiplications (we precompute the values \(1/h_1\) and \(1/h_2\)), 8 absolute values and 4 square roots, i.e. 69 FLOPs (FLoating-point OPerations). Finally, we evaluate (48) which requires 4 multiplications (\(h_1^2\) and \(h_2^2\) are also precomputed), 4 divisions and 7 additions. At the end, we store the value \(Q_{ij} H_{ij}\), i.e. 1 multiplication. In total, we have 85 FLOPs per 10 (coalesced) global memory accesses – 9 readings and 1 writing. The arithmetic intensity, which is defined as the ratio of operations to memory access, is 8.5.

To evaluate (21), we first compute \(w_{ij}\) using the kernel for (17). Then, we start a new kernel and read \(\varphi_{ij}\), its 8 neighbors and \(w_{ij}\) with its 8 neighbors (\(W_{ij}\) is also bound to a texture for cached reading). We recompute \(Q_{ij,i+1,j}, Q_{ij,i+1,j}, Q_{ij,i+1,j},\) and \(Q_{ij,i+1,j}\). It is faster than storing them in the global memory in the first kernel and rereading now. It takes 28 additions, 20 multiplications, 4 square roots and 8 absolute values. Then, we compute (40)–(47) and (51)–(53). It takes 54 additions, 76 multiplications, 16 divisions and 8 absolute values and 4 roots of square. Totally, it is 82 additions, 96 multiplications, 16 divisions, 16 absolute values and 8 square roots. This yields 218 FLOPs per 18 global memory readings and 1 writing. The arithmetic intensity is 11.5.
Table 1. This table shows the multiprocessor occupancy and the global memory throughput. In the first line, there are kernels computing the grid functions k_1, \ldots, k_5 and the kernel for updating u. In the second line, there is a reduction of the integration error e. The last two lines show kernels evaluating the right hand side f of (26) and the forcing terms F_{WC} and F_W.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Occupancy</th>
<th>Global memory throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_1 \ldots k_5, u$</td>
<td>1</td>
<td>100-105 GB/s</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>100 GB/s</td>
</tr>
<tr>
<td>f mean-curvature flow</td>
<td>0.33</td>
<td>85 GB/s</td>
</tr>
<tr>
<td>f Willmore flow</td>
<td>0.33</td>
<td>55 GB/s</td>
</tr>
<tr>
<td>F_{WC}, F_W</td>
<td>0.2</td>
<td>14 GB/s</td>
</tr>
</tbody>
</table>

Another important indicator is a multiprocessors occupancy. It is percentage of time spent by the computing. The occupancy depends on the number of registers used by one thread, shared memory allocated for one block and the number of threads in one block. The results obtained on the numerical grid with 512×512 nodes are summarized in the Table 1. This table also shows the global memory throughput. All kernels used for the Runge–Kutta-Merson solver achieve occupancy 100% and the global memory throughput over 100 GB/s. However, most of the time, 97%, is spent in kernels evaluating (6), (11) and (10). These kernels attain only 33% resp. 20% occupancy and 14 to 85 GB/s memory throughput. The limiting factor is the number of registers 1. Moreover, for large kernels some variables may not fit into limited shared memory on the multiprocessor (it is 16 kB on Nvidia GeForce GTX 280). The CUDA PTX compiler may decide to store some variables in the local memory of the thread which resides in the global memory of the device. Accessing these variables is very slow. Passing a parameter --ptxas-options= -v to nvcc compiler evokes printing information about the memory allocation. One should try to reduce bytes denoted by lmem. It can be achieved by reducing the number of the kernel variables by avoiding unnecessary variables or variables which are used only once and which just fetch data from the global memory. Note that the kernel code is also stored in the shared memory. Reducing the code size can therefore help. By this techniques we optimized our algorithm to run 25% faster.

The disadvantage of the CUDA implementation of the Runge–Kutta–Merson solver is that it does not work as a black box as the matrix solvers do. The user must write his own CUDA kernel. The efficiency of the solver then strongly depends on the efficiency of this kernel. We now summarize several rules for writing the kernel.

- The coalesced accesses to the global memory are essential in reducing the latency of the global memory of GPU 15. It is fulfilled easily using the natural mapping between numerical grid nodes and CUDA threads as we discussed above.

1The kernels were optimized using the CUDA Occupancy Calculator.
• It is better to recompute some quantities than to store them in the global memory.

• Elimination of unnecessary variables in large kernels may reduce the use of the local memory and registers of the multiprocessor. This can improve the occupancy.

5. COMPUTATIONAL RESULTS

To measure the speed-up of the Runge–Kutta–Merson solver implemented in CUDA and to compare its accuracy on both the GPU and the CPU, we will evaluate the experimental order of convergence (EOC). It shows how the approximation error depends on the space step of the numerical grid \(\omega_h \). To do this we take an analytical solution of (2.1) and (2.2) and compare it with the numerical approximation. We set force terms \(F_{MC} \) (resp. \(F_W \)) to match the solution

\[
\zeta(t, x) := \cos(\pi t) \frac{1}{r^{2n}} (x^n - r^n) (y^n - r^n) \exp\left(-\sigma \left(x^2 + y^2\right)\right) \quad \text{on } \Omega \times [0, T].
\] (30)

The forcing terms \(F_{MC} \) and \(F_W \) are evaluated exactly (see [37]). For given \(T \), we evaluate the errors of the numerical approximation in the norms of the spaces \(L^1(\Omega; [0, T]) \), \(L^2(\Omega; [0, T]) \) and \(L^\infty(\Omega; [0, T]) \) resp. their approximations

\[
\|\varphi^h - \mathcal{P}_h(\zeta)\|_{L^1(\omega_h; [0, T])} := \sum_{k=0}^{M} \theta \sum_{i=0}^{N_1} \sum_{j=0}^{N_2} \left|\varphi^h_{ij} (k\theta) - \mathcal{P}_h(\zeta)_{ij} (k\theta)\right| h_1 h_2,
\] (31)

\[
\|\varphi^h - \mathcal{P}_h(\zeta)\|_{L^2(\omega_h; [0, T])} := \left(\sum_{k=0}^{M} \theta \sum_{i=0}^{N_1} \sum_{j=0}^{N_2} \left(\varphi^h_{ij} (k\theta) - \mathcal{P}_h(\zeta)_{ij} (k\theta)\right)^2 h_1 h_2\right)^{1/2},
\] (32)

\[
\|\varphi^h - \mathcal{P}_h(\zeta)\|_{L^\infty(\omega_h; [0, T])} := \max_{k=0,\ldots,M} \max_{i=0,\ldots,N_1} \max_{j=0,\ldots,N_2} \left|\varphi^h_{ij} (k\theta) - \mathcal{P}_h(\zeta)_{ij} (k\theta)\right|,
\] (33)

for \(\theta = T/M \). For two numerical solutions \(\varphi^{h_1} \) and \(\varphi^{h_2} \) obtained by the discretization with the space steps \(h_1 \) and \(h_2 \), we compute the approximation errors \(Err_{h_1} \) and \(Err_{h_2} \) in one of the norms (31)–(33). Then, the experimental order of convergence is defined as

\[
EOC(Err_{h_1}, Err_{h_2}) := \frac{\log(Err_{h_1}/Err_{h_2})}{\log(h_1/h_2)}.
\] (34)

All computations were done on the Intel Core 2 Quad CPU with 4 cores, 4 MB cache memory running at 2.66 GHz and Nvidia GeForce GTX 280 with CUDA 2.3 and GNU/gcc 4.3 installed on the 64-bit GNU/Linux Ubuntu 10.04. The CPU computations were single threaded but also parallelized by OpenMP standard. The CPU code was not explicitly optimized to use SSE instructions. We set the domain \(\Omega \equiv [-4, 4]^2 \) and the stop time \(T = 0.1 \). The error as well as the experimental order of convergence for both the CPU and the GPU are the same. The experimental
Table 2. The experimental order of convergence (EOC) for the mean-curvature flow of graphs on the CPU and the GPU in the single precision. N denotes meshes of the numerical grid.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>Error</th>
<th>EOC</th>
<th>Error</th>
<th>EOC</th>
<th>Error</th>
<th>EOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>16^2</td>
<td>7.1e-03</td>
<td>9.0e-03</td>
<td>4.3e-02</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32^2</td>
<td>1.5e-03</td>
<td>1.9e-03</td>
<td>8.5e-03</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64^2</td>
<td>3.9e-04</td>
<td>4.9e-04</td>
<td>2.4e-03</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128^2</td>
<td>9.8e-05</td>
<td>1.2e-04</td>
<td>6.1e-04</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256^2</td>
<td>2.5e-05</td>
<td>3.1e-05</td>
<td>1.5e-04</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512^2</td>
<td>6.2e-06</td>
<td>7.8e-06</td>
<td>3.9e-05</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024^2</td>
<td>1.7e-06</td>
<td>1.9</td>
<td>2.1e-06</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

order of convergence equals 2. The Table 2 shows results for the single precision arithmetic while the Tables 3 and 4 in the double precision. We see that the numerical approximation of the mean-curvature flow of graphs in the single and the double precision exhibits approximately the same accuracy.

The Tables 5–7 show the sequential CPU time, the parallel CPU time and the GPU time together with the number of gigaflops and the speed-up. The last columns show the speed-up of the GPU relative to the sequential code resp. to the parallel OpenMP code. The power of the GPU is evident especially on large meshes. GPU profits from the single precision arithmetic for which it is equipped with more computing units. The speed-up is almost 17. Applications in image processing can profit from it. The speed-up in the double precision is up to 7. With the CPU, we have achieved 3 GFLOPS (Giga FLoating-point Operations Per Second) performance. Note, that our algorithm contains functions like pow, exp, sin or sqrt which we take as one FLOP. On GPU we get almost 50 GFLOPS in the single precision and 17 GFLOPS in the double precision.

The Figures 1 and 2 show the evolution of the initial surface given as a graph of the following function

\[\varphi |_{t=0} = \sin \left(3\pi \sqrt{x^2 + y^2} \right) \quad \text{on } \Omega, \quad (35) \]

where \(\Omega \equiv (-2, 2)^2 \). We set the Neumann boundary conditions \((9) \) resp. \((14) \) and the space step \(h = 0.03125 \), i.e., \(128^2 \) meshes. The CPU and the GPU times together with the speed-up for the single and the double precision are in the Table 8. The approximation of the Willmore flow in the single precision was omitted since it does not give reasonable results.
The CUDA implementation of the method of lines for the curvature dependent flows

Table 3. The experimental order of convergence (EOC) for the **mean-curvature flow of graphs** on the CPU and the GPU in the double precision. N denotes meshes of the numerical grid.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>(|\cdot|_{L_1(h;[0,T])}^{h,T}) Error</th>
<th>EOC</th>
<th>(|\cdot|_{L_2(h;[0,T])}^{h,T}) Error</th>
<th>EOC</th>
<th>(|\cdot|{L\infty(h;[0,T])}^{h,T}) Error</th>
<th>EOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>16(^2)</td>
<td>7.1e-03</td>
<td>9.0e-03</td>
<td>4.3e-02</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32(^2)</td>
<td>1.5e-03</td>
<td>1.9e-03</td>
<td>2.1</td>
<td>8.5e-03</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>64(^2)</td>
<td>3.9e-04</td>
<td>4.9e-04</td>
<td>2.1</td>
<td>2.4e-03</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>128(^2)</td>
<td>9.8e-05</td>
<td>1.2e-04</td>
<td>2.1</td>
<td>6.1e-04</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>256(^2)</td>
<td>2.5e-05</td>
<td>3.1e-05</td>
<td>2.1</td>
<td>1.5e-04</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>512(^2)</td>
<td>6.2e-06</td>
<td>7.7e-06</td>
<td>2.1</td>
<td>3.8e-05</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1024(^2)</td>
<td>1.6e-06</td>
<td>1.9e-06</td>
<td>9.6e-06</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. The experimental order of convergence (EOC) for the **Willmore flow of graphs** on the CPU and the GPU in the double precision. N denotes meshes of the numerical grid.

| N \(\|\cdot\|_{L_1(h;[0,T])}^{h,T}\) Error | EOC | \(\|\cdot\|_{L_2(h;[0,T])}^{h,T}\) Error | EOC | \(\|\cdot\|_{L_\infty(h;[0,T])}^{h,T}\) Error | EOC |
|--------|------------------|-----|------------------|-----|------------------|-----|
| 16\(^2\) | 1.4e-01 | 2.5e-01 | 1.3 | 0.8 |
| 32\(^2\) | 8.1e-02 | 1.5e-01 | 7.0e-01 | 0.8 |
| 64\(^2\) | 5.8e-03 | 1.2e-02 | 7.1e-02 | 3.3 |
| 128\(^2\) | 1.8e-03 | 3.8e-03 | 2.3e-02 | 1.6 |
| 256\(^2\) | 4.5e-04 | 9.9e-04 | 6.1e-03 | 1.9 |

Table 5. The efficiency of the CUDA implementation demonstrated on the **mean-curvature flow of graphs** on the CPU and the GPU in the single precision. N denotes meshes of the numerical grid. The CPU and the GPU times are presented in seconds. The last column shows speed-up of the GPU implementation compared to sequential resp. parallel CPU code.

<table>
<thead>
<tr>
<th>N</th>
<th>1 core CPU Time</th>
<th>GFlops</th>
<th>4 cores CPU Time</th>
<th>GFlops</th>
<th>Speed-up</th>
<th>Nvidia GTX 280 Time</th>
<th>GFlops</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>16(^2)</td>
<td>0.18</td>
<td>0.86</td>
<td>0.18</td>
<td>0.86</td>
<td>1</td>
<td>0.04</td>
<td>3.9</td>
<td>4.5/4.5</td>
</tr>
<tr>
<td>32(^2)</td>
<td>0.51</td>
<td>0.9</td>
<td>0.42</td>
<td>1.08</td>
<td>1.2</td>
<td>0.05</td>
<td>9.2</td>
<td>10.2/8.5</td>
</tr>
<tr>
<td>64(^2)</td>
<td>2</td>
<td>1.02</td>
<td>1.53</td>
<td>1.32</td>
<td>1.3</td>
<td>0.1</td>
<td>20.4</td>
<td>20/15.4</td>
</tr>
<tr>
<td>128(^2)</td>
<td>12</td>
<td>0.9</td>
<td>5.01</td>
<td>2.16</td>
<td>2.4</td>
<td>0.32</td>
<td>33.7</td>
<td>37.5/15.6</td>
</tr>
<tr>
<td>256(^2)</td>
<td>173</td>
<td>0.96</td>
<td>55.8</td>
<td>2.97</td>
<td>3.1</td>
<td>3.5</td>
<td>47.4</td>
<td>49.4/15.9</td>
</tr>
<tr>
<td>512(^2)</td>
<td>2537</td>
<td>0.91</td>
<td>746</td>
<td>3.1</td>
<td>3.4</td>
<td>49</td>
<td>47.1</td>
<td>51.8/15.2</td>
</tr>
<tr>
<td>1024(^2)</td>
<td>40869</td>
<td>0.9</td>
<td>12771</td>
<td>2.9</td>
<td>3.2</td>
<td>754</td>
<td>48.8</td>
<td>54.2/16.9</td>
</tr>
</tbody>
</table>
Table 6. The efficiency of the CUDA implementation demonstrated on the **mean-curvature flow of graphs** on the CPU and the GPU in the **double** precision. N denotes meshes of the numerical grid. The CPU and the GPU times are presented in seconds. The last column shows speed-up of the GPU implementation compared to sequential resp. parallel CPU code.

<table>
<thead>
<tr>
<th>N</th>
<th>1 core CPU Time</th>
<th>1 core CPU GFlops</th>
<th>4 cores CPU Time</th>
<th>4 cores CPU GFlops</th>
<th>Nvidia GTX 280 Time</th>
<th>Nvidia GTX 280 GFlops</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>16^2</td>
<td>0.13</td>
<td>0.85</td>
<td>0.12</td>
<td>0.93</td>
<td>0.05</td>
<td>2.21</td>
<td>2.6/2.4</td>
</tr>
<tr>
<td>32^2</td>
<td>0.53</td>
<td>0.87</td>
<td>0.35</td>
<td>1.31</td>
<td>0.06</td>
<td>7.74</td>
<td>8.9/5.9</td>
</tr>
<tr>
<td>64^2</td>
<td>2.1</td>
<td>0.86</td>
<td>1.23</td>
<td>1.46</td>
<td>0.17</td>
<td>10.5</td>
<td>12.3/7.2</td>
</tr>
<tr>
<td>128^2</td>
<td>13</td>
<td>0.83</td>
<td>5.41</td>
<td>1.99</td>
<td>0.66</td>
<td>16.3</td>
<td>19.7/8.2</td>
</tr>
<tr>
<td>256^2</td>
<td>200</td>
<td>0.8</td>
<td>64.5</td>
<td>2.48</td>
<td>9.0</td>
<td>17.7</td>
<td>22.2/7.16</td>
</tr>
<tr>
<td>512^2</td>
<td>3272</td>
<td>0.76</td>
<td>934</td>
<td>2.66</td>
<td>138</td>
<td>17.4</td>
<td>23/6.57</td>
</tr>
<tr>
<td>1024^2</td>
<td>54187</td>
<td>0.72</td>
<td>16420</td>
<td>2.37</td>
<td>2213</td>
<td>17.2</td>
<td>24/7.27</td>
</tr>
</tbody>
</table>

Table 7. The efficiency of the CUDA implementation demonstrated on the **Willmore flow of graphs** on the CPU and the GPU in the **double** precision. N denotes meshes of the numerical grid. The CPU and the GPU times are presented in seconds. The last column shows speed-up of the GPU implementation compared to sequential resp. parallel CPU code.

<table>
<thead>
<tr>
<th>N</th>
<th>1 core CPU Time</th>
<th>1 core CPU GFlops</th>
<th>4 cores CPU Time</th>
<th>4 cores CPU GFlops</th>
<th>Nvidia GTX 280 Time</th>
<th>Nvidia GTX 280 GFlops</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>16^2</td>
<td>0.28</td>
<td>0.9</td>
<td>0.12</td>
<td>2</td>
<td>0.19</td>
<td>1.26</td>
<td>1.4/0.7</td>
</tr>
<tr>
<td>32^2</td>
<td>7.4</td>
<td>0.87</td>
<td>2.38</td>
<td>2.7</td>
<td>1.44</td>
<td>4.6</td>
<td>5.3/1.7</td>
</tr>
<tr>
<td>64^2</td>
<td>492</td>
<td>0.8</td>
<td>136</td>
<td>2.9</td>
<td>38</td>
<td>9.6</td>
<td>13/3.6</td>
</tr>
<tr>
<td>128^2</td>
<td>30494</td>
<td>0.83</td>
<td>8241</td>
<td>3.1</td>
<td>1494</td>
<td>10.8</td>
<td>20/5.4</td>
</tr>
<tr>
<td>256^2</td>
<td>197424</td>
<td>0.81</td>
<td>51953</td>
<td>3.1</td>
<td>93031</td>
<td>17</td>
<td>21/5.5</td>
</tr>
</tbody>
</table>

Table 8. Comparison of the CPU and the GPU time for the evolution of the surface on the Figures 1 and 2 in the single and the double precision with 128^2 meshes. The CPU and the GPU times are presented in seconds. The last column shows speed-up of the GPU implementation compared to sequential resp. parallel CPU code.

<table>
<thead>
<tr>
<th>Precision</th>
<th>CPU time</th>
<th>4 cores CPU time</th>
<th>Speed-up</th>
<th>GPU time</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean-curvature flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>14.3</td>
<td>4.08</td>
<td>3.5</td>
<td>1</td>
<td>14.3/4.1</td>
</tr>
<tr>
<td>Double</td>
<td>23.2</td>
<td>6.62</td>
<td>3.5</td>
<td>2</td>
<td>11.6/3.3</td>
</tr>
<tr>
<td>Willmore flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Double</td>
<td>152717</td>
<td>44354</td>
<td>3.4</td>
<td>11818</td>
<td>12.9/3.8</td>
</tr>
</tbody>
</table>
The CUDA implementation of the method of lines for the curvature dependent flows

6. CONCLUSION

We have presented the CUDA implementation of the Runge–Kutta–Merson solver and use it for the numerical approximation of the curvature dependent flows by the method of lines. We obtained speed-up 17 in the single precision arithmetic and 7 in the double precision arithmetic. Advantages of this algorithm are automatic choice of the integration time step and relatively simple implementation. It is computationally more intensive in comparison with linear solvers and thus it profits more from the great performance of modern GPUs. Unfortunately, the number of the multiprocessor registers is a limiting factor for larger kernels. It is the reason why our kernels exploit only 33% of the GPU performance. We have also mentioned a few optimization techniques which might be useful for writing larger CUDA kernels with many variables. The source code for the CPU and the GPU implementation of the Runge–Kutta–Merson solver is freely available as a part of the Template Numerical Library (TNL) at http://geraldine.fjfi.cvut.cz/~oberhuber/doku-wiki-tnl.
7. APPENDIX

In this appendix we show the discretization formulas. We set

\[Q_{ij,i+1,j}^h = \sqrt{1 + \left(\frac{\partial_i^h \varphi_{ij,i+1,j}^h}{h_1} \right)^2 + \left(\frac{\partial_j^h \varphi_{ij,i+1,j}^h}{h_1} \right)^2}, \]
\[Q_{ij,i,j+1}^h = \sqrt{1 + \left(\frac{\partial_i^h \varphi_{ij,i,j+1}^h}{h_1} \right)^2 + \left(\frac{\partial_j^h \varphi_{ij,i,j+1}^h}{h_1} \right)^2}, \]
\[Q_{ij,i-1,j}^h = \sqrt{1 + \left(\frac{\partial_i^h \varphi_{ij,i-1,j}^h}{h_1} \right)^2 + \left(\frac{\partial_j^h \varphi_{ij,i-1,j}^h}{h_1} \right)^2}, \]
\[Q_{ij,i,j-1}^h = \sqrt{1 + \left(\frac{\partial_i^h \varphi_{ij,i,j-1}^h}{h_1} \right)^2 + \left(\frac{\partial_j^h \varphi_{ij,i,j-1}^h}{h_1} \right)^2}, \]

for

\[\partial_x^h \varphi_{ij,i+1,j}^h = \frac{\varphi_{ij,i+1,j+1}^h - \varphi_{ij,i+1,j}^h}{h_2}, \quad \partial_x^h \varphi_{ij,i-1,j}^h = \frac{\varphi_{ij,i-1,j+1}^h - \varphi_{ij,i-1,j}^h}{h_2}, \]
\[\partial_x^h \varphi_{ij,i,j+1}^h = \frac{\varphi_{ij,i+1,j}^h - \varphi_{ij,i,j+1}^h}{h_2}, \quad \partial_x^h \varphi_{ij,i,j-1}^h = \frac{\varphi_{ij,i,j-1}^h - \varphi_{ij,i,j}^h}{h_2}, \]

and

\[\partial_x^h \varphi_{ij,i+1,j}^h = \frac{\varphi_{ij,i+1,j+1}^h - \varphi_{ij,i+1,j}^h}{h_2}, \quad \partial_x^h \varphi_{ij,i-1,j}^h = \frac{\varphi_{ij,i-1,j+1}^h - \varphi_{ij,i-1,j}^h}{h_2}, \]
\[\partial_x^h \varphi_{ij,i,j+1}^h = \frac{\varphi_{ij,i+1,j}^h - \varphi_{ij,i,j+1}^h}{h_1}, \quad \partial_x^h \varphi_{ij,i,j-1}^h = \frac{\varphi_{ij,i,j-1}^h - \varphi_{ij,i,j}^h}{h_1}, \]

where we denote

\[\varphi_{ij,i+1,j+1}^h = \frac{1}{4} \left(\varphi_{ij}^h + \varphi_{ij+1,j}^h + \varphi_{ij+1,j+1}^h + \varphi_{ij+1,j+1}^h \right), \]
\[\varphi_{ij,i+1,j-1}^h = \frac{1}{4} \left(\varphi_{ij}^h + \varphi_{ij+1,j}^h + \varphi_{ij+1,j-1}^h + \varphi_{ij+1,j-1}^h \right), \]
\[\varphi_{ij,i-1,j+1}^h = \frac{1}{4} \left(\varphi_{ij}^h + \varphi_{ij-1,j}^h + \varphi_{ij+1,j}^h + \varphi_{ij+1,j}^h \right), \]
\[\varphi_{ij,i-1,j-1}^h = \frac{1}{4} \left(\varphi_{ij}^h + \varphi_{ij-1,j}^h + \varphi_{ij+1,j}^h + \varphi_{ij+1,j}^h \right). \]

We approximate the mean curvature H as

\[H_{ij}^h \approx \left(\frac{\varphi_{ij,i+1,j}^h - \varphi_{ij}^h}{h_1^2 Q_{ij,i+1,j}^h} + \frac{\varphi_{ij+1,j}^h - \varphi_{ij+1,j+1}^h}{h_2^2 Q_{ij+1,j}^h} - \frac{\varphi_{ij}^h - \varphi_{ij-1,j}^h}{h_1^2 Q_{ij,i-1,j}^h} - \frac{\varphi_{ij}^h - \varphi_{ij-1,j-1}^h}{h_2^2 Q_{ij,i-1,j+1}^h} \right). \]

Setting

\[Q_{ij}^h = \frac{1}{4} \left(Q_{ij,i+1,j}^h + Q_{ij,i+1,j+1}^h + Q_{ij,i,j+1}^h + Q_{ij,i,j}^h \right), \]
\[w_{ij}^h = Q_{ij}^h H_{ij}^h, \]

with

\[w_{ij} = Q_{ij} H_{ij}, \]
\begin{align}
 w_{ij,i+1,j}^h &= \frac{1}{2} \left(w_{ij}^h + w_{i+1,j}^h \right), \\
 w_{ij,i+1,j}^h &= \frac{1}{2} \left(w_{ij}^h + w_{i+1,j}^h \right), \\
 w_{ij,i-1,j}^h &= \frac{1}{2} \left(w_{ij}^h + w_{i-1,j}^h \right), \\
 w_{ij,i-1,j}^h &= \frac{1}{2} \left(w_{ij}^h + w_{i-1,j}^h \right), \\
 \mathbb{E}_{ij,i+1,j}^h &= \frac{1}{Q_{ij,i+1,j}} \begin{pmatrix}
 1 \left(\partial_{x_1} \phi_{ij,i+1,j}^h \right)^2 - \partial_{x_1} \phi_{ij,i+1,j} \partial_{x_2} \phi_{ij,i+1,j} \\
 - \partial_{x_1} \phi_{ij,i+1,j} \partial_{x_2} \phi_{ij,i+1,j} + 1 - \left(\partial_{x_1} \phi_{ij,i+1,j} \right)^2
 \end{pmatrix}, \\
 \mathbb{E}_{ij,i+1,j}^h &= \frac{1}{Q_{ij,i+1,j}} \begin{pmatrix}
 1 \left(\partial_{x_1} \phi_{ij,i+1,j} \right)^2 - \partial_{x_1} \phi_{ij,i+1,j} \partial_{x_2} \phi_{ij,i+1,j} \\
 - \partial_{x_1} \phi_{ij,i+1,j} \partial_{x_2} \phi_{ij,i+1,j} + 1 - \left(\partial_{x_1} \phi_{ij,i+1,j} \right)^2
 \end{pmatrix}, \\
 \mathbb{E}_{ij,i-1,j}^h &= \frac{1}{Q_{ij,i-1,j}} \begin{pmatrix}
 1 \left(\partial_{x_1} \phi_{ij,i-1,j} \right)^2 - \partial_{x_1} \phi_{ij,i-1,j} \partial_{x_2} \phi_{ij,i-1,j} \\
 - \partial_{x_1} \phi_{ij,i-1,j} \partial_{x_2} \phi_{ij,i-1,j} + 1 - \left(\partial_{x_1} \phi_{ij,i-1,j} \right)^2
 \end{pmatrix}, \\
 \mathbb{E}_{ij,i-1,j}^h &= \frac{1}{Q_{ij,i-1,j}} \begin{pmatrix}
 1 \left(\partial_{x_1} \phi_{ij,i-1,j} \right)^2 - \partial_{x_1} \phi_{ij,i-1,j} \partial_{x_2} \phi_{ij,i-1,j} \\
 - \partial_{x_1} \phi_{ij,i-1,j} \partial_{x_2} \phi_{ij,i-1,j} + 1 - \left(\partial_{x_1} \phi_{ij,i-1,j} \right)^2
 \end{pmatrix}, \\
 \mathbb{E}_{ij,j}^h &= \left(\begin{array}{c}
 \mathbb{E}_{11,ij,j}^h \\
 \mathbb{E}_{12,ij,j}^h \\
 \mathbb{E}_{21,ij,j}^h \\
 \mathbb{E}_{22,ij,j}^h
 \end{array} \right).
\end{align}

Approximating \(\partial_{x_1} w_{ij,j}^h \) and \(\partial_{x_2} w_{ij,j}^h \) in the same way as \(\partial_{x_1} \phi_{ij,j}^h \) and \(\partial_{x_2} \phi_{ij,j}^h \) by (40)–(43).

ACKNOWLEDGMENT

This work was partially supported by the Jindřich Nečas Center for Mathematical Modelling, Research center of the Ministry of Education of the Czech Republic LC06052, Research Direction Project of the Ministry of Education of the Czech Republic No. MSM6840770010 and Supercomputing Methods in Mathematical Modelling of Problems in Engineering and Natural Sciences, project of the Student Grant Agency of the Czech Technical University in Prague No. 283 OHK4-009/10 P3913.

(Received July 20, 2010)

REFERENCES

The CUDA implementation of the method of lines for the curvature dependent flows

Tomáš Oberhuber, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2. Czech Republic.
e-mail: tomas.oberhuber@fjfi.cvut.cz

Atsushi Suzuki, CERMICS ENPC, 6 et 8 avenue Blaise Pascal, Cité Descartes – Champs sur Marne, 77455 Marne la Vallée. France.
e-mail: Atsushi.Suzuki@cermics.enpc.fr

Vítězslav Žabka, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2. Czech Republic.
e-mail: vitezslav.zabka@fjfi.cvut.cz