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Abstract. Software configuration often studies two issues: firstly,

how to merge various software components together to create a pro-

gram with a fixed structure that fits the requirements, and secondly,

how to effectively set up the remaining (usually installation specific)

configuration options when deploying the program. Nowadays, the

user demands a simple and well arranged way to set up these options,

possibly through a graphical user interface (GUI). There are vari-

ous tools designed to assist the user with these tasks. In this paper,

a general multi-platform configuration tool Freeconf is introduced.

Our technique to simplify a GUI, which has been incorporated into

Freeconf, is described. This technique is based on a set of properties

that allow splitting the universe of configuration options into sev-

eral categories with a clear semantics and rules that control the dy-

namics of options distribution to these categories in response to the

user’s actions. The rules are currently only implemented in the source

code of Freeconf as a proof-of-concept without any formal proof of

soundness or completeness. Results from the domain of Rule-Based

Constraint Programming have been applied in the paper to develop a

formal description of the rules.

1 Introduction

While working with a software application, the user usually needs to

adjust a working environment to her needs. Nowadays, almost every

application lets the user to perform some configuration. The aver-

age user often does not understand the background of the program

and expects a nice graphical user interface (GUI) to assist her. How-

ever, there are many applications (especially in the GNU/Linux en-

vironment) that do not have any GUI whatsoever and the only way

how to configure them is through configuration text files. A serious

problem of these files is that their syntax differs greatly, so the user

must learn it first from the documentation. It is also necessary for

the user to deeply understand the meaning of various configuration

options (configuration keys), their dependencies, and their possible

values.

1.1 Configuration Tools

There exist tools that address the above mentioned difficulties. Some

are focused on a given domain (or even at one application, Linux

kernel is popular) like SmartFrog [2] and LCFG [1, 3] which are
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designed to administer the installation of large scaled networks of

UNIX systems, or MenuConfig [16, ch. 7] which is a primary tool for

Linux kernel configuration. Then there exist general tools like Lin-

uxConf [10] and Freeconf [9]. Freeconf is a unique tool as it offers a

multi-platform and a multi-desktop configuration of applications of

any kind.

1.2 Configuration Properties

Many automatic configuration tools suffer from the overwhelming

complexity of the user interface they generate which is a severe prob-

lem for the user. One of the possibilities of solving this issue consists

in breaking the uniform universe of keys to several categories and

providing the categories with an exact semantics. Then, only the keys

from a category which is the most interesting to the user at a given

moment can be displayed. The solution presented here is based on a

set of properties of keys, in other words, on a set of labels that are

assigned to every key and determine its membership to a category. In

Table 1, there is an example of a set of possible properties for keys

categorization. The last property undefined represents a set of keys

that do not have their value set and therefor could cause problems in

the output of the configuration. In other words, this property allows

us to describe a form of inconsistency with the instant state of the

configuration.

property meaning

mandatory The key is important to the configured application and
must be filled in.

meaningful The key has sense in the present settings and its exis-
tence is not ruled out by any dependency.

undefined The key finds itself in an invalid state such as that it
has no value set or the value is in conflict with depen-
dencies.

Table 1. Properties used for configuration keys categorization.

Having each key as a feature, this approach resembles feature

modeling [7] with extra-functional attributes. The semantics for op-

erators and dependencies, however, is different.

The distribution of keys into categories does not have to be static,

some keys can change their roles during the configuration process

in response to an outer activity (a dependency event, user input). A

mechanism is needed to control the development of the categories.

For this, Freeconf uses rules to control the propagation of properties.

The current set of rules in Freeconf has been constructed by hand

and tested only empirically; it has not been proved, whether the rules

are sound or complete. Techniques of the rule-based constraint pro-

gramming can provide a proof; however, one must first give a formal

description to the rules.
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The number of keys can vary depending on the configured applica-

tion. Usually, configuration packages have tens to hundreds of keys,

but some configurations utilize up to thousands of keys like in the

case of the Linux kernel.

When a package is loaded, the library constructs three tree struc-

tures — a template tree for storing key properties, a configuration

tree for storing values and handling dependencies, and a GUI tree

for dialog modeling. The trees are interconnected, and one can freely

traverse from one node of one tree to the matching node of another

tree. Leave nodes correspond to keys and their properties, the non-

leave nodes represent configuration sections (there is always a root-

section present). When a client needs data for dialog construction,

it connects to the library through the client-library interface and ob-

tains various properties for each node. Fig.3 shows the situation. The

interface forms a tree which is placed between the GUI tree in the

library and the hierarchy of GUI elements (group-boxes, line edits,

check-boxes, etc.). The client organizes the GUI elements to another

tree that is very closely related to the actual look of the dialog.

client tree
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library GUI tree

Figure 3. Tree data structures and the client-library interface. The top figure

shows how the client tree is transformed into a dialog form.

3.2 Properties in Freeconf

Since the beginning of the project, every client could use the basic

set of properties for each key. These basic properties are presented in

Table 2.

property meaning

name Name of the key.

label Label for the key.

help Tooltip help text.

value Value of the key or default value if no value exists.

type Type of the key. It can be: boolean, number, string,
stringlist, or section.

Table 2. Basic properties of configuration keys.

Every key type adds additional properties, e.g., a number can have

a minimum, a maximum, and a step by which the value increments

and decrements. String keys usually have a regular expressions asso-

ciated with them constraining their value.

While the basic set of properties would generally suffice to con-

struct a dialog, the dialog would look overfilled and confusing to the

user. That is why another set of properties was added to Freeconf

which would enable splitting keys into different categories. Thus,

only keys from a specific category can be shown to the user. The

current set of properties which extends those presented in Table 1 is

summarized in Table 3.

property meaning

static mandatory If it is true, the key is mandatory and must be
always shown.

static active If it is false, the key is not visible to the
client.

dynamic mandatory This property can only be set from a depen-
dency handler. If it is true, the key is manda-
tory and must be shown. This property has
no meaning when the static mandatory prop-
erty is set to false.

dynamic active This property can only be set from a depen-
dency handler. If it is false, the key does not
have sense in the current settings. This prop-
erty has no meaning when the static active
property is set to false.

inconsistent The key does not have neither a value, nor a
default value set and is dynamically manda-
tory and dynamically active.

empty The property is only applicable to section
nodes. It states whether the section is empty,
i.e., all its children are hidden.

Table 3. Additional properties used for keys categorization.

All static properties are stored in the package as a part of a tem-

plate describing the native configuration file, while the dynamic ones

are a part of a file describing dependencies.

Mandatory property states, whether the key is important or not.

Important keys should be visible in the dialog while non-mandatory

keys can be hidden, so the dialog becomes less confusing. The static

version of this property is used for packages with no dependencies

or for keys unaffected by any dependency. The dynamic version can,

as in the current version of Freeconf, override the static state only

when the static mandatory property is not false (that means static

non-mandatory keys are definite).

Active property has two different semantics. In its static version, it

is used to prevent the library from announcing the key to the client.

In other words, if the property is set to false, the key is virtually

commented out. It is easier to disable the key that way than to delete

it from the entire package which is non-trivial. The dynamic version

of this property serves the purpose of ruling out situations that do not

have sense (e.g., when the user checks the "no sound" option, setting

the "volume" option becomes nonsensical and this option should be

left out from the dialog or at least disabled).

Inconsistency is a special situation when the key does not have any

value set, but it is important to the configured program. This can hap-

pen, especially when the configuration is run for the first time, and

there exist keys which do not have default value set by the creator

of the package. When this situation occurs, the user has to be told

so and must be able to solve the problem with minimum effort. It

follows from the above mentioned description of the properties there

are situations where inconsistency is acceptable and the user needs

not to be alerted (e.g., when the key is statically inactive). In fact,

there exists exactly one combination of the properties which needs

some user assistance (i.e., the client must be informed) — the key

is dynamically mandatory, dynamically active, and inconsistent at

the same time. In other situations, such as when the key is only dy-

namically active but not mandatory, the key is simply left out from

the native output (so the native output will always contain only keys
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with a defined value).

Emptiness is an important property which naturally arose from the

need of hiding non-mandatory keys. The user cannot be distracted by

optional keys, so those must be hidden. If there is a section containing

only hidden keys, there is no point of displaying it. The empty prop-

erty can help the client with hiding of unnecessary GUI elements.

4 Properties Propagation

Freeconf maintains properties in connected tree structures as de-

scribed in Section 3. The Freeconf library must be able to inform

the clients about the state of each property in every node the client–

library interface announces. For leave nodes, this becomes trivial. For

non-leave nodes, however, the state of a property must reflect what is

happening in all of node’s direct successors.

4.1 Propagation Mechanism

To keep record of the number of properties in children nodes, ev-

ery section has a set of counters, each bound to a specific property.

Counters hold how many times the matching property occurs in the

successors. For example, for the inconsistent property the "inconsis-

tent count" counter exists in each section and if it is, for instance, set

to two, then there are exactly two children nodes that are inconsistent.

If a counter reaches zero, a message about the change of a property

is sent to the client from the affected section. The section must also

inform its parent (i.e., another section) about the change, so the ap-

propriate counter of the parent can be adjusted. Similarly, a message

must be sent whenever a nullified counter is incremented.

The entire propagation schema can be seen in Fig.4.

section

sectionboolean

number string

inconsistency
changed to false

notify parent

if counter = 0 then notify parent

send message
to client tree

send message
to client tree

counter
decrement

Figure 4. Propagation of properties in Freeconf. Inconsistency of the bold

node has been changed. The information is propagated into the parent

node (dashed). The property can be further propagated. Every change is sent

to the client tree also.

When the state of a property (inconsistency in this case) has been

changed, the node notifies its parent about the change. The parent

section increments or decrements the matching counter and checks,

whether the counter is zero or not. If it is zero, the notification is

propagated further up the tree. This leads to the expected behavior in

the client since every path leading to an inconsistent key is marked,

so the client can render it appropriately. The top-level section (a con-

figuration tab in fact) also knows about the overall state of all keys

underneath and it can, for instance, forbid creating the native output

until all inconsistencies have been resolved. This method requires a

protection mechanism against resending the same message. An ob-

vious solution would be to remember the last state of each property

for every node and inform the parent only if the state changes.

For this algorithm to be valid, all counter must be set to the correct

value at start time. This is called the initialization phase. All counters

are set to zero, and the tree is traversed by depth-first search. Every

leave node is evaluated and the existing propagation framework is

used to initialize all counter values.

It is also possible to emit a global change, for instance, when the

user overrides the mandatory property and enforces showing all keys

which are dynamically active. In such a case, all leave nodes are

asked to reevaluate their states similarly to the initialization phase.

In fact, the initialization phase is a form of a global change.

5 Rules

The above mentioned algorithm was implemented in an ad hoc man-

ner. All property evaluation procedures were tailored to the seman-

tics described in Section 3. The result is a set of rules implemented

as condition statements in the source code.

The goal of this section is to bring a formal description of the

resulting rules based on definitions from Section 2.

5.1 Formal Description

Let K = {k1, . . . , kn} be a set of indices for keys and S =
{s1, . . . , sl} a set of indices for sections. Let parent : K ∪ S →
S ∪ {∅} be a mapping returning for each key or section its parent.

The symbol of an empty set is returned for the top-level section. All

properties of keys will be modeled as Boolean variables. For exam-

ple, dynactx will denote a dynamic active property of a key with an

index x ∈ K. Together with the properties from Table 3, variables

defvalsetx and valsetx will be used to describe the states where a

default value and a value have been set to the key, respectively.

Section counters will be modeled as non-negative integer vari-

ables. As an example, inconsistcounty represents the state of an

inconsistent counter in a section with an index y ∈ S. If the index is

∅, no action is performed.

Moreover, there is a Boolean variable called showallact which

enables showing even non-mandatory properties (i.e., showing all ac-

tive keys regardless of the state of the mandatory property). The list

of all rules currently used in Freeconf follows.

In the initialization phase, dynactx and dynmanx are set accord-

ing to the static version of the properties and inconsistentx is eval-

uated for the first time.

dynactx ←staticactx ∀x ∈ K

dynmanx ←staticmanx ∀x ∈ K

inconsistentx ←(¬defvalsetx ∧ ¬valsetx)∧

∧ dynmanx ∧ dynactx ∀x ∈ K

When the valsetx variable changes its value, these rules are ap-

plied to update inconsistency.

inconsistentx ←(¬defvalsetx ∧ ¬valsetx)∧

∧ ¬inconsistentx ∧ dynmanx∧

∧ dynactx ∀x ∈ K

¬inconsistentx ←¬(¬defvalsetx ∧ ¬valsetx)∧

∧ inconsistentx ∀x ∈ K

Whenever either dynmanx or dynactx variable changes its

value, the inconsistent state of the node must be reevaluated and the

parent’s counter is adjusted accordingly.
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inc(inconsistcountparent(x))←

← dynmanx ∧ inconsistentx ∧ dynactx ∀x ∈ K

dec(inconsistcountparent(x))←

← (dynmanx ∧ inconsistentx ∧ ¬dynactx)∨

∨ (dynactx ∧ inconsistentx∧

∧ (¬dynmanx ∨ ¬inconsistentx)) ∀x ∈ K

(1)

If the inconsistcounty alters, the section must test if it is not

necessary to propagate the information further.

dec(inconsistcountparent(y)) ∧ ¬inconsistenty ←

← (inconsistcounty = 0) ∧ inconsistenty ∀y ∈ S

inc(inconsistcountparent(y)) ∧ inconsistenty ←

← ¬(inconsistcounty = 0) ∧ ¬inconsistenty ∀y ∈ S

The mandatoryshowny and activeshowny counters change

when a dependency alters dynmanx and dynactx, respectively. It

must be also tested whether the static equivalents to the respective

properties have not been set to false.

¬dynmanx ←¬staticmanx∧

∧ dynmanx ∀x ∈ K

¬dynactx ←¬staticactx∧

∧ dynactx ∀x ∈ K

inc(mandatoryshownparent(x))←dynmanx ∀x ∈ K

dec(mandatoryshownparent(x))←¬dynmanx ∀x ∈ K

inc(activeshownparent(x))←dynactx ∀x ∈ K

dec(activeshownparent(x))←¬dynactx ∀x ∈ K

The emptyy variable must be reevaluated for each section every

time any of its counters (except inconsistcounty) changes.

¬emptyy ∧ dec(sectionshownparent(y))←

← emptyy ∧ ¬(sectionshowny = 0)∨

∨ (showallact ∧ ¬(activeshowny = 0))∨

∨ (¬showallact ∧ ¬(activeshowny = 0)∧

∧ ¬(mandatoryshowny = 0)) ∀y ∈ S

emptyy ∧ inc(sectionshownparent(y))←

← ¬emptyy ∧ ((mandatoryshowny = 0)∧

∧ (sectionshowny = 0)) ∨ ((activeshowny = 0)∧

∧ (sectionshowny = 0)) ∀y ∈ S

(2)

5.2 Weaknesses of Freeconf Design

It can be easily seen that some of the rules are not optimal. For in-

stance, the second rule in 1 could be shortened by leaving out the last

occurrence of inconsistentx. In 2, the rules should be mutually ex-

clusive, but it is non-trivial showing the head formulas really behave

that way.

Clearly, a problem of the current implementation is the lack of

formal description. All condition statements are scattered across

the source code, and it is very complicated maintaining them even

though the number of the properties is very small. The design is also

not very robust since a small change in any of the conditions will

render the system non-functioning. This actually happened — one

conjunction was overwritten by mistake by a disjunction, and the

client started behaving strangely. It was obvious there was a mistake

in a condition, but it was difficult to find it.

6 Conclusion

This paper introduces Freeconf, a multi-platform configuration tool,

and a technique which reduces the problem of very complex graph-

ical user interfaces that are often generated by automatic configura-

tion tools. The technique is based on splitting configuration options

into categories using properties and forming a set of rules that con-

trol the dynamics of the evolution of the categories. A set of rules has

been proposed to be used in Freeconf to simpify its graphical output.

The rules have been implemented in the source code as a proof-of-

concept, and it has been empirically verified that the rules work. In

this paper, a formal description of the rules has been presented based

on the theory of Rule-Based programming. The proof of soundness

and completeness of the rules is subject of future work.
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