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MATHEMATICAL MODELLING AND NUMERICAL SIMULATION

OF POLLUTION TRANSPORT IN THE ATMOSPHERIC

BOUNDARY LAYER

PETR BAUER1 AND ZBYNĚK JAŇOUR2

Abstract. Air pollution is one the serious problems in almost all countries, especially those
with high population density and large industrial centers. We create a mathematical model based
on stationary Navier-Stokes equations for media flow and diffusion-convection equation describing
pollution transport, and solve the model using finite element methods (FEMs). The FEMs allows
us to use different terrain shapes and examine the terrain influence. An essential part of the work
is numerical analysis, which examines the properties of algorithms with respect to numerical pa-
rameters, and analyzes selected cases of media flow in the atmospheric boundary layer in the case
of instant, steady or periodically interrupted sources of pollution. The most significant results are
obtained in direct application to real problems like the transport of pollution caused by a stack with
time dependent intensity or the model of an ecological accident.
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1. Introduction. We create a 2D model of pollution transport on a polygonal
domain Ω which represents a vertical cut through landscape. We consider the case
of stationary Navier-Stokes flow and diffusion-convection equation for one type of
pollutant. We solve the following system of equations on (0, T ) × Ω:

∂c(t, x)

∂t
+ ~v(x) grad c(t, x) = D4c(t, x) + f(t, x)

~v(x)∇~v(x) − ν4~v(x) + grad p(x) = ~g(x)

div~v(x) = 0

c(0, x) = c0(x) x ∈ Ω

∂c

∂~n
|terr= 0 c |∂Ω= cΓ(x)

~v |∂Ω = ~vΓ

where Ω ⊂ R
2 is a bounded domain derived from a rectangle by substitution of the

bottom edge by a piecewise linear line representing the terrain, c(t, x) is the concen-
tration of pollutant, ~v(x) is the velocity, c0 is the initial condition for concentration,
∂c
∂~n

|terr= 0, cΓ, ~vΓ are boundary conditions for concentration and velocity, where ~n is
the unit outer normal and terr denotes the terrain. Dirichlet conditions were consid-
ered for easier implementation; compare with [9]. More accurate from physical point
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of view would be Neumann conditions on the outlet for both velocity and concentra-
tion ∂c

∂~n
|out= 0, ∂~v

∂~n
|out= 0. The term f(t, x) represents the pollution source and ~g(x)

is the external force.
If we assume that the pollutant particles have low momentum and low concentra-

tion, and thus don’t influence airflow retroactively, we can first solve the Navier-Stokes
problem and then the diffusion-convection problem with given velocity field ~v(x).

2. Weak formulation of Navier-Stokes problem. Let V = (W̊
(1)
2 (Ω))2, X =

(W
(1)
2 (Ω))2, H = {q ∈ L2(Ω) :

∫

Ω

q dx = 0}, ~w ∈ X : ~w |∂Ω= ~vΓ in weak sense,
∫

∂Ω

~w~n dS =
∫

Ω

div~udx = 0 for Dirichlet boundary condition. We denote ~u = ~v − ~w

((~w,~s)) =
∫

Ω

2
∑

i,j=1

∂wi

∂xj

∂si

∂xj
= (∇~w,∇~s), b(~u,~v, ~s) = 1

2

∫

Ω

2
∑

i,j=1

(uj
∂vi

∂xj
si − ujvi

∂si

∂xj
)

We seek v ∈ X and p ∈ H , such that:

((~v,~s)) + b(~v,~v, ~s) − (p, div~s) = (~g,~s) − ((~w,~s)) ∀~s ∈ V

(q, div~u) = −(q, div ~w) ∀q ∈ H

Index h denotes finite-dimensional subspaces V h ⊂ V , Xh ⊂ X , Hh ⊂ H . The mixed
formulation in finite-dimensional case stands:

((~vh, ~s))h + bh(~vh, ~vh, ~sh) − (ph, divh~s)h = (~gh, ~s)h − ((~wh, ~s))h

(q, divh~uh)h = −(q, divh ~wh)h ∀~s ∈ V h ∀q ∈ Hh

The nonlinear term bh(~uh, ~uh, ~sh) must be computed iteratively. Direct application
of this approach gives solution with oscillations. A suitable way is to use the upwind
scheme for finite element method by [6], which uses the dual triangulation1.

(

A(uk) B

BT 0

) (

uk

−pk

)

=

(

G
H

)

3. Rothe Method and the Method of Characteristics for diffusion-

convection equation. We use implicit Rothe method [4] to deal with time derivative
∂c
∂t

(t, x) = c(t,x)−c(t−τ,x)
τ

, where τ is the timestep. For timelevel kτ , k = 0, . . . , T/τ
we obtain:

c(kτ, x) − τD4c(kτ, x) + τ~v ∇c = τf(kτ, x) + c((k − 1)τ, x)

Direct application of this approach leads to the oscillatory scheme with nonsymetric
matrix. One possible way to remove these properties is to use the method of character-

istics [5]. Let V = W̊
(1)
2 (Ω), w ∈ W

(1)
2 (Ω): w |∂Ω= cΓ(x) in weak sense. The main idea

of the method is to separate both parts of the process. The convective part is repre-
sented by the instant shift of concentration field using mapping ϕk(x) = x− τ~v(kτ, x)

Making scalar product with a function v ∈ V we have ∀v ∈ W̊
(1)
2 (Ω)

(ck, v) + τD(∇(ck − w),∇v) = (τfk + ck−1 ◦ ϕk, v) − τD(∇w,∇v)

Restriction to finite-dimensional subspace V m ⊂ V and standard Galerkin approxi-
mation give a linear system with positive-definite matrix. For i = 1, . . . , m:

m
∑

j=1

αk
j [(vj , vi) + τD(∇vj ,∇vi)] = (τfk + ck−1 ◦ ϕk, vi) − τD(∇w,∇vi)

1Uses the barycentric nodes of the original triangulation
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4. Triangulation of Domain for Navier-Stokes Problem. When storing
general unstructured mesh the required information depends on the type of the prob-
lem we solve, consequently on the selected type of finite elements. Also different types
of boundary conditions require specific indexing. Although there is some ”minimal”
sufficient information, obtaining additional data necessary to fill the elements of the
matrices for weak solutions is time-expensive.

In our case, we must store following information: for nodes their coordinates,
for edges their position - whether they are interior or boundary, indexes of vertices,
surrounding edges and triangles, and for triangles their vertices and edges. We must
also split the boundary into parts according to the type of the boundary condition.

5. Numerical Solution using the Finite Element Method. The finite ele-
ment method was selected because it allows an easy solution of the model on domains
with different terrain shapes. A simple structured mesh of rectangle type with M
nodes in the horizontal direction and N nodes in the vertical direction was used in
the simulations. We have chosen linear Lagrange elements for concentration, Cruzeix-

Fig. 5.1. Structured mesh

Raviart elements for velocity and piecewise constant elements for pressure. Similar
elements related to the boundary nodes were used for the approximation of boundary
conditions. Very important for the implementation is the fact that both problems
lead to rare matrices with only O(MN) nonzero elements.

Fig. 5.2. Lagrange and Cruzeix-Raviart elements
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Fig. 5.3. Accident model - concentration at timesteps 0,100,200,300,400,500; ordered from left

to right and from top to bottom
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Fig. 5.4. Steady source model - concentration at timesteps 200,600,900,1100,1500,2000; ordered

from left to right and from top to bottom
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Fig. 5.5. Pulsing source model - concentration at timesteps 400,1200,2000,3200,4800,6400;

ordered from left to right and from top to bottom

Fig. 5.6. Velocity and pressure fields - pulsing source
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6. Main results. The following examples show the most important results con-
cerning pollution transport. Stokes flow is considered. Different types of terrain and
pollution source are used. The figures show the values of concentration for several
timesteps, eventually pressure and velocity fields.

6.1. Example. In t=0 an accident happens and certain amount of pollution is
released in the air. The example shows the time development of the pollution cloud
and its dissipation due to terrain shape. Concentration levels are shown on Fig.5.3.

6.2. Example. The steady source of pollution. In the middle of the time period
the source ceases and then the area becomes clean again. See Fig.5.4.

6.3. Example. The stack, which produces pollution in shifts. Several periods
proceed, making significant waves with each shift. See Fig.5.5 and Fig.5.6.

7. Conclusion. We presented a 2D model of pollution transport in the atmo-
spheric boundary layer. The model consists of diffusion-convection equation describ-
ing the transport of one passive pollutant in the isothermic flow governed by stationary
Navier-Stokes equations. Dirichlet boundary conditions were considered for simplic-
ity. Numerical solution was performed by finite element method. Several examples
were tested, using different types of terrain and sources of pollution. An improved
model containing Neumann boundary conditions will be finished soon. Main goal of
the future work is implementation of a suitable turbulence model and comparison
of results with experimental data provided by the Institute of Thermomechanics of
Academy of Sciences of the Czech Republic.
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