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CONLEY INDEX AND NUMERICAL VERIFICATION

YASUAKI HIRAOKA

Abstract. The purpose of my work is to develop a rigorous numerical technique to prove the
existence of stationary solutions and to detect connecting orbits among them in dissipative PDEs.
The Conley index, topological quantities defined on invariant sets in dynamical systems, is applied
to these problems. We consider the cubic Swift-Hohenberg equation as an example and study how
to rigorously verify the existence of stationary solutions and connecting orbits among them. An
effective algorithm by using FFT for this verification technique is also shown. This algorithm is
applied to study the snaky bifurcation structure appearing in the quintic Swift-Hohenberg equation.
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1. Introduction. One of the ultimate goals in dynamical systems is to study the
structure of invariant sets in phase spaces. For instance, we often try to find equilibria,
periodic orbits, homoclinic orbits, and so on in order to understand the underlying
phenomena for a given dynamical system. In many cases, numerical approaches are
regarded as one of the powerful tools for this purpose and many works which make use
of computer simulations are performed to investigate complicated dynamical systems.

On the other hand, in recent years, a new concept, called numerical verification, is
gradually getting popular. The numerical verifications mean that by using computers
we obtain mathematically rigorous results. One of the key techniques for numerical
verifications is the interval arithmetic. For example, Nakao’s method [7] shows that
sufficient conditions for the existence of solutions in elliptic PDEs can be checked by
using computers with interval arithmetic.

Our main goal in this research is to develop a new rigorous numerical method to
prove the existence of stationary solutions and to detect the connecting orbits among
them in dissipative PDEs. We insist that although there are some kinds of numerical
verification methods for the existence of stationary solutions, our method enables us
to capture not only local stationary solutions but also the global dynamics. We use
the Conley index, topological quantity defined on an invariant set, for the numerical
verification and this topological approach plays a crucial role to detect connecting
orbits.

This paper begins in Section 2 with an explanation of topological verification
method to verify the existence of stationary solutions after a brief summary of the
Conley index theory. Then in Section 3, we move on to the discussion about a rigorous
numerical scheme to detect connecting orbits in gradient systems. Finally we study
an efficient technique to reduce computational costs for the verification in Section 4.

2. Topological verification method. In this section, we begin with the brief
introduction of the Conley index theory, which plays a central role throughout the
paper. The general references are [1][6][9].
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Let X be a locally compact topological space and ϕ : R × X → X be a flow on
X . A compact set N ⊂ X is defined as an isolating neighborhood if the maximal
invariant set of N is contained in the interior of N , i.e.

Inv(ϕ, N) := {x ∈ N | ϕ(R, x) ⊂ N} ⊂ Int N.

This maximal invariant set Inv(ϕ, N) is called the isolated invariant set. Moreover, if
the boundary of the isolating neighborhood is composed by the union of

L+ := {x ∈ ∂N | ∃t > 0 s.t. ϕ((0, t), x) ∩ N = ∅} ,

L− := {x ∈ ∂N | ∃t > 0 s.t. ϕ((−t, 0), x) ∩ N = ∅}

then N is defined as an isolating block and L+, L− are called the exit set and the
entrance set, respectively.

Definition 1. The Conley index of the isolated invariant set Inv(ϕ, N) is defined
by

CH∗ (Inv(ϕ, N)) := H∗

(

N, L+
)

,

where H∗(N, L+) expresses the relative homology of (N, L+).
We remark here that the above definition is well-defined [1][9]. That is to say,

for any given isolated invariant set, there exist an isolating block and its exit set. In
addition, if (Ni, Li), i = 1, 2 are pairs of isolating blocks and these exit sets for the
same isolated invariant set, then

CH∗(N1, L
+
1 ) ∼= CH∗(N2, L

+
2 ).

In the paper [6], Conley indices for several isolated invariant sets are calculated.
Let us here discuss the relationship between stationary solutions of evolution equa-

tions and Conley indices. Our main purpose in this section is to obtain the rigorous
numerical technique to prove the existence of stationary solutions by the information
of Conley indices. We treat the Swift-Hohenberg equation with the periodic boundary
condition:

ut = E(u) :=

{

ν −

(

1 +
∂2

∂x2

)2
}

u − u3,(2.1)

u(x, t) = u(x + L0, t), u ∈ L2(0, L0)

as an example. Here we also assume u(x, t) = u(−x, t). First of all, let us introduce
the Fourier cosine expansion

u(x, t) =
∞
∑

j=0

aj(t) cos(jk0x),

where k0 = 2π/L0. Then the Swift-Hohenberg equation is expressed by

ȧj = fj(a) = ζjaj − f
(3)
j (a), j = 0, 1, · · · ,(2.2)

where

ζj = ν −
(

1 − j2k2
0

)2
, f

(3)
j (a) =

∑

m1+m2+m3=j

mi∈Z

am1
am2

am3
.
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Hence, stationary solutions E(u) = 0 of (2.1) may be regarded as equilibria fj(a) =
0, j ≥ 0 of (2.2).

In this setting, we decompose the variable a = {a0, a1, · · ·} and the vector field
f(a) into two parts for some positive integer m such as a = (aF , aI), f(a) = (fF (a), fI(a))
with

aF = (a0, a1, · · · , am), aI = (am+1, am+2, · · ·),

fF (a) = (f0(a), f1(a), · · · , fm(a)), fI(a) = (fm+1(a), fm+2(a), · · ·).

In the rest of the paper, the subscripts F and I represent the finite part and the
infinite part, respectively. Following this decomposition, we prepare the approximate
solution ā = (āF , 0) for the verification. Here āF is an approximate solution, i.e.
gF (āF ) := fF (āF , aI = 0) ≈ 0. The approximate solutions in this paper are computed
by the Galerkin method. Note that the finite part of the vector field can be expressed
by fF (aF , aI) = gF (aF ) + r(aF , aI), where r(aF , aI) is the error term. Let us remark
that the dimension m should be large enough to include the essential dynamics of the
original differential equation around the equilibria.

Let us here introduce a new variable {bj} satisfying

(PbF + āF , bI) = (aF , aI),

where the eigenvectors pj , j = 0, 1, · · · , m, of the Jacobi matrix DgF (āF ) are taken
to be column vectors for the matrix P . By this transformation, we can deal with the
local dynamics around the approximate solution in the neighborhood of the origin.
This transformation is denoted by T : (bF , bI) 7→ (aF , aI). After the Taylor expansion
of gF (aF ) at āF with the new variable {bj}, the original dynamical system can be
represented by

ḃ = h(b),(2.3)

where the finite part and infinite part of the vector field {hj(b)} are, respectively,

hj(b) =

{

λjbj + Rj(b), j = 0, 1, · · · , m,
fj(PbF + āF , bI), j > m.

Here λj is the eigenvalue of the eigenvector pj and RF (b) is given by

RF (b) = P−1

(

gF (āF ) +
1

2
D2gF (āF )(PbF )2 +

1

3!
D3gF (āF )(PbF )3 + r(bF , bI)

)

.

For the simplicity of the explanation, we assume λj(6= 0) ∈ R for all j = 0, 1, · · · , m.
Definition 2. A compact set W =

∏

j≥0

[

b−j , b+
j

]

3 0 is defined as a lifting set
if the following conditions are satisfied.

1. The operator E is continuous on XW :=
{

u =
∑

j≥0 aj cos(jk0x) ∈ X | a ∈ T · W
}

2. WF =
∏m

j=0[b
−
j , b+

j ] is an isolating block for the flow ϕ(bI) generated by

hF (bF , bI), ∀bI ∈ WI =
∏

j>m[b−j , b+
j ]

3. The boundary WF × ∂WI is an entrance set
We are now ready to introduce an important theorem.
Theorem 3. ([11]) Let W be a lifting set for the dynamical system (2.3). If the

Conley index of WF takes

CHj

(

Inv
(

WF , ϕ(bI )
))

∼=

{

Z2, j = k,
0, otherwise

(2.4)
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for some k ∈ {0, 1, · · · , m}, then there exists an equilibrium point of (2.2) in T ·W .
Therefore, from the viewpoint of the rigorous numerics, we need to construct a

lifting set which satisfies the sufficient condition of Theorem 3. However, note that
an infinite number of calculations, which are impossible for computers, are needed to
check the condition 3 of the lifting set. Therefore, to reduce the infinite dimensional
problem into the finite dimensional problem, we restrict lifting sets within appropriate
forms. In this article, we assume the power decay property on the infinite part, i.e.

W = WF × WI ,

WF :=

m
∏

j=0

[

b−j , b+
j

]

, WI :=
∏

j>m

[

−
c

js
,

c

js

]

,(2.5)

where c and s are positive constants. Note that the lifting set of this form can be
expressed by the finite data (b−j , b+

j , c, s) for j = 0, 1, · · · , m.
It is known that, from the argument in [2][11], this setting of the lifting set enables

us to obtain the estimates for the vector field {hj(b)} in W by using the interval
arithmetic. Therefore we can rigorously check the sufficient condition in Theorem 3.
The details of the algorithm for the verification and some numerical results can be
found in [2].

3. Detection of connecting orbits. This section is devoted to presenting a
method to detect connecting orbits among verified stationary solutions in gradient
systems. This is one of the advantages to use topological method to verify the existence
of stationary solutions. Through the algebraic argument with the information of
Conley indices, we can investigate the global dynamics. To see the details, let me first
briefly review several notions developed in the Conley index theory [1][3][9].

On the same setting at the beginning of Section 2, let us again suppose the flow
ϕ : R × X → X . For each x ∈ X , α(x) and ω(x) denote the α-limit set and the
ω-limit set, respectively. We here consider the following decomposition of an isolated
invariant set S.

Definition 4. A Morse decomposition of S is a finite collection

M(S, <) := {M(p) | p ∈ P}

of mutually disjoint invariant subsets M(p) of S such that if x ∈ S \
⋃

p∈P M(p), then
there exist p, q ∈ P with q > p satisfying x ∈ C(M(q), M(p)). Here C(M(q), M(p))
describes the connecting orbits from M(q) to M(p) defined by C(M(q), M(p)) :=
{x ∈ S | α(x) ⊂ M(q), ω(x) ⊂ M(p)} and < denotes a partial order on P , called an
admissible order.

We add several remarks on Morse decompositions. First of all, since each M(p) is
an isolated invariant set, we can define the Conley index on it. Moreover, concerning
the admissible order, the flow on S induces a natural ordering on the set P such that

p < q ⇐⇒ ∃{π0(= p), π1, · · · , πn(= q)} ⊂ P

s.t. C(M(πi), M(πi−1)) 6= ∅, i = 1, 2, · · · , n.

We denote this ordering by <F . As is easily observed, any admissible orders < are
extensions of <F , i.e. p <F q ⇒ p < q.

Next, let us move on to the definition of the connection matrix on a Morse de-
composition M(S, <).
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Definition 5. A connection matrix ∆n is defined as a degree −1 linear map

∆n :
⊕

p∈P

CHn(M(p)) →
⊕

p∈P

CHn−1(M(p)),

which satisfies the following three conditions.
1. ∆n is upper triangle, i.e. ∆n(p, q) 6= 0 ⇒ q > p
2. ∆n∆n+1 = 0
3. Ker∆n/Im∆n+1

∼= CHn(S)
Given a Morse decomposition M(S, <), we denote the set of connection matrices

by C(<). Since an admissible order < is an extension of <F , C(<F ) ⊂ C(<) can be
proven.

The following two theorems [3] play a crucial role in the connection matrix theory.
Theorem 6. C(<) 6= ∅
Theorem 7. Suppose ∆n ∈ C(<F ). If ∆n(p, q) 6= 0, then C(M(q), M(p)) 6= ∅.

Therefore, since the existence of connection matrices are assured by Theorem 6, if we
can somehow construct these matrices by using the algebraic restriction(Definition 5),
then it becomes possible to detect the connecting orbits by Theorem 7.

In the followings, we explain the method to detect the connecting orbits between
stationary solutions of the Swift-Hohenberg equation. The details, which include
proofs, algorithms, and several numerical results, are summarized in [2]. Suppose
(k0, ν) = (0.62, 0.38) for example. Figure 3.1 describes the approximate bifurcation
branches for equilibria of the Galerkin approximated Swift-Hohenberg equation at
k0 = 0.62. Due to the symmetry u(x, t) → −u(x, t) of (2.1), there seem to exist five
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FIG. 3.1. Bifurcation diagram at k0 = 0.62. FIG. 3.2. Semi-conjugacy

stationary solutions M(p), p ∈ P := {0±, 1±, 2} at ν = 0.38 from Figure 3.1. Here p±

imply the symmetry M(p+) = −M(p−). By using the method explained in Section 2,
this observation can be proven.

Lemma 8. At (k0, ν) = (0.62, 0.38), there uniquely exist stationary solutions in
the neighborhood of the approximate equilibria described in Figure 3.1. Moreover,
the Conley index for each stationary solution takes

CHj(M(2)) ∼=

{

Z2, j = 2,
0, otherwise

CHj(M(p±)) ∼=

{

Z2, j = p,
0, otherwise,

p = 0, 1.
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Note that we can not insist on the uniqueness of the solution by just using the
method in the previous section. However, we can apply another numerical verification
method developed in [10]. This technique is based on Banach’s fixed point theorem
and the application into the topological verification method enables us to prove the
uniqueness of the stationary solutions[2].

Lemma 9. The set J described in Table 3.1 is a positive invariant lifting set and
its Conley index takes

CHj(J) ∼=

{

Z2, j = 0,
0, otherwise.

(3.1)

In addition, all the stationary solutions in J are those proven in Lemma 8.

Table 3.1

Positive invariant lifting set J

k a−
k a+

k

0 −4.3380010295× 10−4 4.3380010295× 10−4

1 −3.4374821943× 10−3 3.4374821943× 10−3

2 −1.4440654070× 10−1 1.4440654070× 10−1

3 −4.5735140818× 10−5 4.5735140819× 10−5

4 −1.0× 10−4 1.0× 10−4

5 −1.0× 10−4 1.0× 10−4

6 −1.0× 10−4 1.0× 10−4

k ≥ 7 −1.0/k5 1.0/k5

The outline of the proof is the followings. First of all, the statement related to
the positive invariant lifting set can be checked by the rigorous numerics as those
performed in Section 2, since the vector field on the boundary of J is rigorously
estimated. Obviously, since the exit set is empty, its Conley index should be (3.1). To
complete the proof, it is sufficient to prove the nonexistence of the stationary solutions
except for the regions where the existence of the stationary solutions are proven in
Lemma 8. By adopting the nonexistence verification method[2] based on the mean
value theorem, this is also verified by the rigorous numerics.

The existence of the Lyapunov function

F (u) =

∫ L0

0

[

1

4
u4 −

ν

2
u2 +

1

2

(

(

1 + ∂2
x

)

u
)2
]

dx,

Lemma 9, and the argument in [4] assure that M(S) = {M(p) | p ∈ P} is a Morse
decomposition in J . Hence, the connection matrices on M(S) clarifies the following
theorem.

Theorem 10. At (k0, ν) = (0.62, 0.38), the dynamics in J is semi-conjugate to
the flow on the unit disk described in Figure 3.2.

The outline of the proof is the followings. We consider a chain complex such as

0 −→
⊕

p∈P

CH2(M(p))
∆2−→

⊕

p∈P

CH1(M(p))
∆1−→

⊕

p∈P

CH0(M(p)) −→ 0.
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By Lemma 8, the symmetry F (M(p−)) = F (M(p+)), and the algebraic restriction
(see Definition 5), the connection matrices ∆2, ∆1 become

∆2 =













0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0













, ∆1 =













0 0 1 1 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













.

Therefore, Theorem 7 shows the existence of connecting orbits described in Figure 3.2.
For the construction of the semi-conjugate dynamics, see [2].

4. Efficient method for estimates of nonlinear terms. In this section, we
discuss an efficient method to obtain estimates of nonlinear terms. As we discussed so
far, the estimates of vector fields are inevitable for all computations. For this purpose,
we need to especially estimate nonlinear terms,

∑

m1+m2+···+mp=j

mi∈Z

am1
am2

· · · amp
,

where we assume the p-th nonlinearity for general cases. From the computational
point of view, the computational cost for the finite sum

∑

m1+m2+···+mp=j

|mi|≤m

am1
am2

· · ·amp
, j = 0, 1, . . . , m(4.1)

grows rapidly with the order O(mp). Hence, it becomes difficult to use topological
verification method for problems with large m and p. For example, localized patterns
appearing in the quintic Swift-Hohenberg equation are one of the typical situations of
this type[5]. Therefore, we try to reduce these computational costs in this section. The
key idea comes from the pseudo spectral method with Fast Fourier Transform(FFT),
which is well-known as one of the simulation methods for studying evolution equations.

Let us denote the discrete Fourier transform by

al = F(u)|l =
2m−1
∑

j=0

u(xj)e
−ilk0xj ,(4.2)

u(xj) = F−1(a)
∣

∣

j
=

1

2m

m
∑

l=−m+1

ale
ilk0xj ,(4.3)

where {xj = L0

2m
j}, j = 0, 1, · · · , 2m − 1 are grid points in the space [0, L0]. The

basic idea of the pseudo spectral method is the following. First, we pull back the
Fourier coefficients {al} to the original variable {u(xj)} by (4.3). Then we calculate
the nonlinear term {up(xj)} at each point and again transform them into the Fourier
region by (4.2). This argument can be checked in case of p = 2 (for the sake of
simplicity) as,

cl =

2m−1
∑

j=0

u(xj)
2e−ilk0xj(4.4)
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=
1

(2m)2

2m−1
∑

j=0

(

m
∑

m1=−m+1

am1
eim1k0xj

)(

m
∑

m2=−m+1

am2
eim2k0xj

)

e−ilk0xj

=
1

2m

∑

m1+m2=l

−m+1≤mi≤m

am1
am2

+
1

2m

∑

m1+m2=l±2m

−m+1≤mi≤m

am1
am2

.

Note that the last term of (4.4) corresponds to the aliasing error. One of the methods
to remove this error is the following[8]. Expand the size of Fourier coefficients from
2m to 2mδ for some δ > 1 as follows,

{

aj = 0, for m + 1 ≤ j ≤ δm and − δm + 1 ≤ j ≤ −m− 1,
a−m = am.

Then, the same calculation as above for the extended Fourier coefficients leads to

ĉl =

2δm−1
∑

j=0

u(xj)
2e−ilk0xj

=
1

2δm

∑

m1+m2=l

|mi|≤m

am1
am2

+
1

2δm

∑

m1+m2=l±2δm

|mi|≤m

am1
am2

.(4.5)

Hence if we take δ > 3
2 , then the aliasing term can be eliminated and the finite

summation (4.1) for p = 2 is calculated by
∑

m1+m2=l

|mi|≤m

am1
am2

= 2mδĉl.

Note that by using FFT equipped with interval arithmetic we obtain the rigorous
estimates of (4.1) quite efficiently.

We conclude this section by showing the several results related to the localized
patterns appearing in the quintic Swift-Hohenberg equation[5]. Figure 4.1 is a bifur-
cation diagram for approximate equilibria for the quintic Swift-Hohenberg equation:

ut =

{

ν −

(

1 +
∂2

∂x2

)2
}

u + µu3 − u5,(4.6)

u(x, t) = u(x + L0, t), u ∈ L2(0, L0),

where ν and µ are parameters. In the diagram, each layer on the snaky bifurcation
branch is labeled as Uk, Sk corresponding to its stability(Uk: unstable, Sk: stable).
The wave profiles on these layers are shown in Figure 4.2. As is easily observed, the
wave profiles on these layers are localized patterns. This fact implies that the number
m in the Fourier expansion should be taken large enough to perform the verification.
The value of m in our verification is shown at the end of this section. In order to
apply the FFT technique, we prepare the following lemma.

Lemma 11. The constant δ to remove aliasing errors should satisfy δ > 2 for
p = 3 and δ > 3 for p = 5, respectively.

Let us denote the stationary solution corresponding to the equilibrium on the
lower layers of the snaky branch in Figure 4.1 by

u(x; k0, ν, b) =
∑

|j|≤m

aj cos(jk0x),
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Fig. 4.1. Bifurcation diagram at µ = 3.0 (k0 = 0.1).
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Fig. 4.2. Profiles of equilibria on the layers Uk, Sk, k = 1, 2, 3, (ν = −1.3).

where the set of the Fourier coefficients {aj} corresponds to the approximate equilib-
rium on each layer b = Uk, Sk, k = 1, 2, 3, at the parameter value ν. Then, we obtain
the following theorems by the topological verification method.

Theorem 12. Let ν = −1.3, µ = 3.0 and k0 = 0.1. Then, around each approx-
imate solution u(x; k0, ν, b), b = Uk, Sk, k = 1, 2, 3, there exists a stationary solution
u∗(x; k0, ν, b) of the quintic Swift-Hohenberg equation (4.6) such that

||u∗(·; k0, ν, U1) − u(·; k0, ν, U1)||L2 ≤ 1.04077019× 10−8

||u∗(·; k0, ν, S1) − u(·; k0, ν, S1)||L2 ≤ 1.57739803× 10−8

||u∗(·; k0, ν, U2) − u(·; k0, ν, U2)||L2 ≤ 2.44819377× 10−8

||u∗(·; k0, ν, S2) − u(·; k0, ν, S2)||L2 ≤ 4.31155312× 10−8

||u∗(·; k0, ν, U3) − u(·; k0, ν, U3)||L2 ≤ 2.83246161× 10−9

||u∗(·; k0, ν, S3) − u(·; k0, ν, S3)||L2 ≤ 7.47772691× 10−9

Theorem 13. Let ν = −1.5, µ = 3.0 and k0 = 0.1. Then, around each approx-
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imate solution u(x; k0, ν, b), b = Uk, Sk, k = 2, 3, there exists a stationary solution
u∗(x; k0, ν, b) of the quintic Swift-Hohenberg equation (4.6) such that

||u∗(·; k0, ν, U2) − u(·; k0, ν, U2)||L2 ≤ 4.47782900× 10−8

||u∗(·; k0, ν, S2) − u(·; k0, ν, S2)||L2 ≤ 4.57533187× 10−8

||u∗(·; k0, ν, U3) − u(·; k0, ν, U3)||L2 ≤ 4.20841075× 10−8

||u∗(·; k0, ν, S3) − u(·; k0, ν, S3)||L2 ≤ 6.82912523× 10−9

It should be remarked that we set the power decay property (2.5) as c = 1.0 and
s = 5 for all the verifications of the above theorems. Moreover, the dimension for
the finite part is chosen as m = 256 for Uk, Sk, k = 1, 2, and m = 512 for U3, S3 in
Theorem 12. In Theorem 13, m = 256 for U2, S2, U3 and m = 512 for S3.
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