
Proceedings of Czech–Japanese Seminar in Applied Mathematics 2004

August 4-7, 2004, Czech Technical University in Prague

http://geraldine.fjfi.cvut.cz

pp. 148–164

NUMERICAL RECOVERY OF THE SIGNED DISTANCE FUNCTION

TOMÁŠ OBERHUBER1

Abstract. We test several methods for computing the signed distance function which is very
usefull not just for the level set methods. Both approaches, evolutinary based on the equation
Φt = signΦ0 (1 − |∇Φ|) and direct based on the eikonal equation |∇Φ| = 1, are compared. We also
derive new algorithm to solve more general problem |∇u(x)| = F (x) based on the fast sweeping
method. This algorithm is more efficient then the fast sweeping method mainly for the narrow band
methods. We show some numerical examples even on practical problems.

Key words. free boundary problems, signed distance function, viscosity solution, Hamilton-
Jacobi equation, level set methods, fast sweeping method, fast marching method, monotone schemes,
upwind scheme, Godunov scheme, eikonal equation

AMS subject classifications. 35F25, 65B99, 65D99, 68U10, 68W25

1. Introduction. The free boundary problems are one of the most important
branch in the theory of partial differential equations. There are several approaches
how to model evolving curves or surfaces - front tracking method, phase field model
([3], [4]) and level set methods. Some comparisons can be found for example in [13],
[14] or [5]. For the level set methods the signed distance function to given curve
(surface) is usually taken as the initial condition. Since the property of being the
signed distance function to evolving curve (surface) is usually lost after few iterations
we need some efficient algorithm to recover the function back. In this article we deal
just with structured meshes (for level set methods on unstructured meshes, see [17]).

2. The definition of the signed distance function. We consider a closed set
Γ = ∂ΩS where Ω is bounded domain ΩS ⊂ Ω ⊂ R

n, n = 1, 2, 3. Γ can be given as
manifold using a function Φ0 with additional properties: Γ = {x ∈ R

n | Φ0(x) = 0},
Φ0(x) < 0 for x ∈ IntΓ, Φ0(x) > 0 for x 6∈ IntΓ and Φ0 is Lipschitz continuous.

Main purpose is to find an accurate approximation of the signed distance function
dΓ. That means

dΓ(x) =

{

ρ(x, Γ) ; x 6∈ IntΓ = Ω\ΩS

−ρ(x, Γ) ; x ∈ IntΓ = ΩS
.

Recent research results showed that the theory of PDE offers an efficient method for
getting the signed distance function (SDF). From the PDE point of view the definition
as it was mentioned above is not entirely convenient. To describe SDF in terms of
PDE let us do simple observation in 1D case. Consider Ω ≡ 〈0, 1〉 and IntΓ ≡ (0, 1)
which gives dΓ(x) =

∣

∣x − 1
2

∣

∣− 1
2 . Now we differentiate dΓ with respect to x for x 6= 0

and we observe that
∣

∣

∂dΓ

∂x

∣

∣ = 1 for all x 6= 0. So we may try to define SDF as function
f satisfying |∇f | = 1 a. e. and f ≡ 0 on Γ. However there are some difficulties. First
of all dΓ is not differentiable everywhere. Moreover function f satisfying |∇f | = 1
a.e. does not have to be SDF - see (2.1).

1Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Tech-
nical University in Prague, Trojanova 13, 120 00 Prague, Czech Republic.

148



Recovery of the signed distance function 149

u
+

u
−

Fig. 2.1. Several functions for which |∇f | = 1 holds almost evrywhere. But only u+ or u− can
be SDF.

To overcome these difficulties we need some kind of week solution which will
ensure uniqueness. Such property offers so called viscosity solution.

3. Viscosity solution. The theory of viscosity solution was introduced in 1980s
by Crandall and Lions [10]. It deals with so called Hamilton-Jacobi equations of the
form

F (x, u (x) , Du (x)) = 0.(3.1)

In general, the theory of viscosity solution ([2], [11] and [7]) can by applied even for
the second order PDE’s but it is not our case. In this article we will use the following
definition:

Definition 3.1. Let Ω be an open subset of
�

n, F be a mapping F : Ω× � × �
n →

�
. We say u is a viscosity subsolution of (3.1) in Ω if it is upper semicontinuous and

for each ϕ ∈ C2(Ω) and local maximum point x0 ∈ Ω of u − ϕ we have

F (x0, u (x0) , Dϕ (x0)) ≤ 0.

We say u is upper semicontinuous if for all x ∈ Ω lim supy→x u (u) ≤ u (x).
Definition 3.2. Let Ω be an open subset of

�
n, F be a mapping F : Ω× � × �

n →
�

. We say u is a viscosity supersolution of (3.1) in Ω if it is lower semicontinuous
and for each ϕ ∈ C2(Ω) and local minimum point x0 ∈ Ω of u − ϕ we have

F (x0, u (x0) , Dϕ (x0)) ≥ 0.

We say u is lower semicontinuous if for all x ∈ Ω lim infy→x u (y) ≥ u (x).
Definition 3.3. u is a viscosity solution of (3.1) if it is both viscosity subsolution

and viscosity supersolution.
Notice that if u is differentiable, we have D (u − ϕ)) (x0) = 0 ⇒ Du (x0) =

Dϕ (x0) and so 0 = F (x0, u (x0) , Du (x0)) = F (x0, u (x0) , Dϕ (x0)). So our defini-
tion holds for classical solution.

The following statement holds ([15]):
Theorem 3.4. For Γ Lipschitz continuous dΓ is also Lipschitz continuous and

is a viscosity solution of the eikonal equation



150 T. Oberhuber

|Du| = 1.

Now we will show the meaning of the viscosity solution in a simple 1D case (see
also. [15], [8]).

Consider function u+ = 1 − |x| in Ω = (−1, 1) and u+ (−1) = u+ (1) = 0. We
will show that it is a viscosity solution of |Du| = 1. We need to show that for all
ϕ ∈ C∞ if u+ − ϕ has a maximum at x0 then |Dϕ (x0)| ≤ 1. It is clear for all
x ∈ Ω, x0 6= 0. Assume u+ − ϕ has a maximum at x0 = 0 and |Dϕ (x0)| > 1
then since ϕ ∈ C∞ there exists neighbourhood Hx0

such that Dϕ > 1 or Dϕ < −1
for all x ∈ Hx0

. If Dϕ > 1 then there exists x ∈ Hx0
and x < x0 such that

(u+ − ϕ) (x) > (u+ − ϕ) (x0) which is a contradiction. For Dϕ < −1 we can get
contradiction in very similar way. To complete the proof consider the case when
u+ −ϕ has a minimum at some x0 ∈ Ω for ϕ ∈ C∞. We must show |Dϕ (x0)| ≥ 1. It
is clear for x0 6= 0. We will just show that u+ − ϕ can not have minimum at x0 = 0.
Indeed we have 1 = limx↑0 Du+ ≤ limx↑1 Dϕ = limx↓0 Dϕ ≤ limx↓0 Du+ = −1 which
is a contradiction.

Now let us show that u− = |x|−1 in Ω = (−1, 1) and again u− (−1) = u− (1) = 0
is not a viscosity solution of |Du| = 1. For ϕ = x2 − 1 u−−ϕ has minimum at x0 = 0
but Dϕ (x0) = 0 which is a contradiction with |Dϕ (x0)| ≥ 1.

One can easily show that u− is a viscosity solution of − |Du| = −1. It may look
a little bit strange that multiplying an equation by −1 can change the solution but it
is not surprising since the solution is defined by inequalities.

So now we can see that the viscosity solution is exactly what we want. The
important thing is that the viscosity solution of |Du| = 1 does not allow any minimum
like the one which u− has. Moreover we have a tool to define not just a distance
function but even signed distance function. From our definition of Γ by Φ0 we can
define the SDF of Γ as

dΓ (x) =







viscosity solution of |Du| = 1 for Φ0 > 0,

0 for Φ0 = 0,

viscosity solution of − |Du| = −1 for Φ0 < 0,

(3.2)

or
dΓ is a viscosity solution of the Hamilton-Jacobi equation signΦ0 |Du| = signΦ0 resp.

signΦ0 (|Du| − 1) = 0,(3.3)

and dΓ = 0 on Γ.
Similar, but evolutionary equation ( see. [20] ) is

∂u
∂t

(t, x) = sign u(t, x) · (1 − |∇u(t, x)|) ,

x ∈ �
n,

t ≥ 0,

u |t=0 = u0.

(3.4)

The stationary solution of this equation is expected to be just the viscosity solu-
tion of (3.3). This equation was not studied theoretically for these papers and as far



Recovery of the signed distance function 151

as we know the mathematical analysis of this equation is still an open problem. In
fact we do not know what is a viscosity solution of (3.4). For the rest of this paper
we will talk about the viscosity solution of (3.3)

4. Monotone schemes. While solving numerically we can use only the schemes
which will ensure the convergence to the viscosity solution. In [19] is shown that so
called monotone schemes have such property. To define them we will use the following
notation.

Consider subset Ω of
�

n to be Ω ≡ 〈a1, b1〉 × 〈a2, b2〉 · · · 〈an, bn〉 and define
numerical grid 4 on M , 4 ≡ {xi1 ···in

; ij = 0, 1 · · ·Nj , j = 1 · · ·n} where xi1 ···in
:=

(a1 + i1 · h1, · · · an + in · hn) and hj :=
bj−aj

Nj
; j = 1 · · ·n. We will also write just xi

instead of xi1 ···in
. For given T ∈ �

we define ΩT = Ω× (0, T 〉, ∆t := T
NT

, tk := k ·∆t

for k = 0, 1 · · ·NT and 4T ≡ {(xi, tk) ; xi ∈ 4, k = 0, 1, · · ·NT }. Let Sh := L∞ (4)
and Sh

T := L∞ (4T ) then the values of the functions from Sh at node i will be written
as ui and similarly Sh

T at node i and time tk will be written as uk
i .

The best known monotone schemes are the regularised scheme, the upwind scheme
and the Godunov (Max) scheme - [1], [8], [9] and [12]. In the following we will describe
them and show several numerical results.

First we define central, forward and backward differences.

Dcui =







u1−u0

h
; i = 0,

ui+1−ui−1

2h
; 0 < i < N,

uN−uN−1

h
; i = N,

(4.1)

D+ui =

{

ui+1−ui

h
; i < n,

un−un−1

; i = n,
(4.2)

D−ui =

{ u1−u0

; i = 0,
ui−ui−1

h
; i > 0,

(4.3)

D2ui =







u0−2u1+u2

2h2 ; i = 0,
ui−1−2ui+ui+1

2h2 ; 0 < i < N,
uN−2−2uN−1+uN

2h2 ; i = N,

(4.4)

In very similar way we define finite differences in 2D with respect to x (Dc
xuij ,

D+
x uij and D−

x uij) and y (Dc
yuij , D+

y uij and D−
y uij).

Regularised scheme. In general for the Hamilton-Jacobi equation

ut (x) + H
(

x, u (x) , Du (x) , D2u (x)
)

= 0,(4.5)

the regularised scheme is defined by equation

ut (x) + H
(

x, u (x) , Du (x) , D2u (x)
)

= ε · ∆u (x) .(4.6)

The term on the right hand side is so called artificial viscosity term. When ε → 0
the solution of (4.6) converges to the viscosity solution of (4.5). This method is known



152 T. Oberhuber

as a method of vanishing viscosity and can be used even for mathematical analysis of
Hamilton-Jacobi equations.

In our particular problem the regularised scheme has the form

uk+1
i − uk

i

∆t
= sign u0

i ·
(

1 −
∣

∣Dcuk
i

∣

∣

)

+ εD2uk
i(4.7)

for 1D and

u
k+1

ij
−uk

ij

∆t
= sign u0

ij ·
[

1 −
(

(

Dc
xuk

ij

)2
+

(

Dc
yuk

ij

)2
)

1
2

]

+

ε
(

D2
xuk

ij + D2
yu

k
ij

)

(4.8)

for 2D.
Upwind scheme. The upwind schemes were developed for the first order conserva-
tion laws. The idea of these schemes is to use forward or backward finite differences
in dependence on the information propagation. For the first order Hamilton-Jacobi
equation

ut + F |Du| = 0(4.9)

the scheme has the form

uk+1
ij − uk

ij

∆t
= [Fij ]+ ∇+

U

(

uk
ij

)

+ [Fij ]− ∇−
U

(

uk
ij

)

(4.10)

where

∇+
U =

(

[

D−x
ij

]2

+
+

[

D+x
ij

]2

−
+

[

D
−y
ij

]2

+
+

[

D
+y
ij

]2

−

)
1
2

(4.11)

and

∇−
U =

(

[

D+x
ij

]2

+
+

[

D−x
ij

]2

−
+

[

D
+y
ij

]2

+
+

[

D
−y
ij

]2

−

)
1
2

.(4.12)

We use notation [a]+ = max {a, 0} and [a]− = min {a, 0}. The scheme for the equation
(3.4) in 2D takes the form

uk+1
ij − uk

ij

∆t
=

[

sign u0
ij

]

+
∇+

U

(

uk
ij

)

+
[

sign u0
ij

]

−
∇−

U

(

uk
ij

)

− sign u0
ij .(4.13)

The scheme is similar in 1D.
Godunov scheme. The Godunov scheme [1] is similar to the upwind scheme. For
equation (4.9) it has a form

uk+1
ij − uk

ij

∆t
= [Fij ]+ ∇+

M

(

uk
ij

)

+ [Fij ]− ∇−
M

(

uk
ij

)



Recovery of the signed distance function 153

Fig. 4.1. Use of regularised scheme (4.7).Original function is f(x) = |x| + 0.25 · sin(2.5 · πx)
on 〈−3, 3〉, mesh size N = 100.

Fig. 4.2. Use of 1D version of upwind scheme (4.13).Original function is f(x) = |x| + 0.25 ·
sin(5 · πx) on 〈−3, 3〉, mesh size N = 100.

where

∇+
M =

(

max
(

[

D−x
ij

]

+
,−

[

D+x
ij

]

−

)2

+ max
(

[

D
−y
ij

]

+
,−

[

D
+y
ij

]

−

)2
)

1
2

and

∇−
M =

(

max
(

[

D+x
ij

]

+
,−

[

D−x
ij

]

−

)2

+ max
(

[

D
+y
ij

]

+
,−

[

D
−y
ij

]

−

)2
)

1
2

.

In 2D, the scheme has a form

uk+1
ij − uk

ij

∆t
=

[

sign u0
ij

]

+
∇+

M

(

uk
ij

)

+
[

sign u0
ij

]

−
∇−

M

(

uk
ij

)

− sign u0
ij(4.14)

and it is similar in 1D.

4.1. Numerical examples. Some numerical examples computed by the mono-
tone numerical schemes are showed in this section. We did both 1D and 2D compu-
tations.

1D case - we do not show results obtained by the Godunov scheme because it is
very similar to the upwind scheme. As the initial condition we choosed the SDF for
interval 〈−1, 1〉 perturbed by sinus. We did the computations on quite coarse grid
with just 100 meshes.



154 T. Oberhuber

Fig. 4.3. Singularity of unit circle SDF at (0, 0) - graph of |∇hdΓ| on the left. Evolution
of (4.13) with SDF as initial condition on the right (cut along the x axis) - the graph should not
change(zero level set corresponds to shrinking circle).

We can see that both the regularised scheme (4.1) and the upwind scheme (4.2)
really converge to the viscosity solution. The disadvantage of the regularised scheme
is the need of choice of ε which can differ from case to case. Upwind scheme offers
better convergence. We were able to use even more perturbed initial condition and
the convergence was much faster then for the regularised scheme.

2D case - in the previous section we dealed with SDF in 1D which is a piecewise linear
function and can be easily approximated even on coarse numerical grids. However in
2D SDF is not so ”simple”. Usually it has one or more singularities which we are
not able to approximate with a rectangular numerical grid. It leads to systematical
numerical errors which can spoil the scheme convergence. Let us show this effect on
particular example.

Consider SDF for the unit circle with equation d (x, y) =
(

x2 + y2
)

1
2 −1. It is easy

to see that ∂d
∂x

= 1 and ∂d
∂y

= 0 for y ≡ 0 and so |∇d| = 0 for y ≡ 0. On the other hand

consider numerical grid on 〈−1, 1〉×〈−1, 1〉 with space step h. For now it is convenient
to number the nods with respect to the origin. It means that the nods of numerical
grids have coordinates

(

− 1
h
, · · · 0, · · · 1

h

)

×
(

− 1
h
, · · · 0, · · · 1

h

)

and nod (0, 0) is at the

origin. So we have D+
x u−1,0 = d(0,0)−d(−h,0)

h
= 1 but D+

y u−1,0 = d(−h,h)−d(−h,0)
h

=
√

2 − 1 6= 0 so either |∇hd| =
[

(D+
x )

2
+

(

D+
y

)2
]

1
2 6= 1. So even if we start with

exact SDF all numerical schemes using finite differences on a rectangular grid will
see quite big error - see Figure 4.3 on the left. Moreover numerical experiments show
that all mentioned schemes have also diffusive effect so they can spread the error to
much larger domains. Significant problems can arise when such error get all over the
interior of given curve Γ.

On Figure 4.3 on the right there are shown several cuts along the axes x during the
evolution of equation (3.4) using the upwind scheme (4.13) where the initial condition
was exact SDF. We can see that the graph starts to rise up at the origin. This process
is due to the small error at singularity of the unit circle SDF. It does not matter how
small the error is, we can decrease it by decreasing h, after a while it covers the whole
domain where the initial condition was nagetive. Since the we have no boundary
conditions there is no feedback to stop this process. At this point whole graph starts
to rise up and it will never stop.

It seems to be really essential problem. It means that we are not able to re-
construct SDF with iterative methods based on monotone schemes because as our



Recovery of the signed distance function 155

Fig. 4.4. Pointwise error of (4.13) - evolution of the curve obtained by unit circle SDF d◦ as
an initial condition. At the intersections of the unit circle and the axes, d◦ is exactly equal to 0 so
it can not change at these points during the evolution.

function converge to SDF some singularities will usually develop. In many applica-
tions from interface motion we do not need to have SDF over the whole domain Ω
but it is sufficient to recover it only at given narrow band along the curve Γ. However
we never know if some singularity can develop at the narrow band.

Theoreticaly it may be right( but we remind - there is no mathematical analysis
for given equation). We have SDF for given Γ (with small error) plus a constant
which is increasing in time. We need some kind of Dirichlet boundary condition. It
is not possible to define it on the boundaries of Ω because we do not know values of
SDF there. We would like to define this condition on Γ where SDF is equal to zero.
Unfortunately there are just few or even none points of the numerical grid intersected
by Γ.

On Figure 4.4 we show zero level set obtained by upwind scheme (4.13) with the
initial condition equal to the unit circle SDF but now we changed values of the initial
function at points (1, 0), (0, 1), (−1, 0) and (0,−1) to be equal to zero. Even if the
changes are small, original values were approximately of the order 10−8, we obtained
qualitatively different solution which have a steady state - SDF to a rectangle given
by the four fixed points.

Our idea is to build a narrow band of fixed points along Γ. So we choose δ and
after each time iteration we look for all nods where

∣

∣uk
∣

∣ ≤ δ and
∣

∣∇huk
∣

∣ ' 1. Such
nods are marked as fixed and we do not change them anymore. It should also ensure
that Γ will not change during the computation.

However on the Figure 4.5 on the right we can see that even with such improve-
ment the original curve is not preserved properly.

5. Direct algorithms for getting the signed distance function. Except
the method mentioned in the previous section there are also yet another algorithms
for getting SDF. They do not solve the evolutionary equation (3.4) but (3.3). In this
section we describe two of them - fast marching method introduced by Sethian [16]
and fast sweeping method by Tsai, Cheng, Osher and Zhao [21]. We will show that
these algorithms are very fast and offer good accuracy. We also come with our new
algorithm which is even faster and combines advantages of both algorithms.



156 T. Oberhuber

Fig. 4.5. Redistancing of a function given by a dendritic growth. On the left the evolution of
the original curve with no fixed points is shown. On the right there is a result obtained by fixing
points along the curve - still there is some small error.

Fast marching method. This method assumes that we already have SDF in a
narrow band along Γ. All of the nodes inside this band are fixed except the nods
which have a neighbour out of this band - they are marked as tentative. At each step
of the algorithm we find the nod which has the smallest value from all nods marked
as tentative. This point is marked as fixed and all of its unknown and tentative
neighbours are updated and marked as tentative. Algorithm stops when all nods are
marked as fixed.

For updating tentative values ( at a grid node xij ) we use upwind

[

D−
x uij

]2

+
+

[

D+
x uij

]2

−
+

[

D−
y uij

]2

+
+

[

D+
y uij

]2

−
= 1(5.1)

or Godunov scheme

max
(

[

D−
x uij

]

+
,−

[

D+
x uij

]

−

)2

+ max
(

[

D−
y uij

]

+
,−

[

D+
y uij

]

−

)2

= 1.(5.2)

The key idea of the fast marching method is observation that in the case of upwind
scheme information propagates from smaller values to larger values. So we start at
the points closest to Γ and use them to compute SDF at further points. To solve (5.1)
or (5.2) we always choose the neighbours with the smallest magnitude to substitute to
finite differences. It leads to a quadratic equation which can have one or two solutions.
From these solutions we choose the one with largest magnitude to obtain the right
(viscosity) solution. Fast marching method gives much better results then iterative
methods we discussed in the previous section. First of all one should notice that it
uses a band of fixed points along Γ which is the same assumption as we needed above.
In this case we can consider it as a initial condition for a problem of monotonically
advancing front.

Fast sweeping method. This method is a type of the Gauss-Seidel iterative method.
Again we assume to have a band of fixed points along Γ with a good approximation



Recovery of the signed distance function 157

0

1

2

Fig. 5.1. When recostructing SDF for the curve on the figure we must start in the middle with
the points closest to the curve and the proceed towrds the edges.

of SDF and the rest is set to ±∞. We seqeuntialy change the direction of iter-
ations: top→bottom left→right, bottom→top left→right, top→bottom right→left
and bottom→top right→left. If there is one or more finite neighbours of currently
visited point we use (5.2) to update value at this point. It is mainly because of good
properties of (5.2) that after few iterations we have good approximation of SDF. For
more details see [21].

Fast sweeping method gives almost the same accuracy as fast marching method.
A disadvantage of fast marching method is the searching for a point with smallest
magnitude. It slows down this method significantly. There are some attempts to
speed this step up - using binary tree [18] or hash tables [16]. Fast sweeping method
does not use any stack which we should go through and that is why it is much faster.
It is also much simpler to implement. On the other hand fast marching method can be
stopped whenever you want and you have at least approximation of the SDF at some
band along Γ. As we said before this is sufficient for many applications, for example
in interface motion. This cannot be done with fast sweeping method. If you stop it
too soon you are going to have a function which is far from good approximation of
SDF even at points close to initial band.

In the next section we describe an algorithm which combines advantages of both
methods - it constructs the solution from the given initial band and it does not need
any searching for closest point.
Front tracing method. The idea of this algorithm (from now we will also refer it
as FTM) is to start at the curve and then propagate to further regions. Since it is
the same way in which the information propagates we can expect improvement in the
efficiency of the algorithm.

In the following we consider more general equation |∇u(x)| = F (x). Here u has
a meaning of first arrival time of the monotonically advancing front and 1

F (x) > 0 is

speed of the advancing front. We will use the scheme (5.2)

max
(

[

D−
x uij

]

+
,−

[

D+
x uij

]

−

)2

+ max
(

[

D−
y uij

]

+
,−

[

D+
y uij

]

−

)2

= F 2
ij .(5.3)

See Figure 5.1. We assume to have good approximation of the solution at the
closest neighbours of the initial curve. In this case they are the rows 0 and 1. Now
we want to approximate the solution to the neighbourhood which is the row number
2. The best approximation can be obtained by updating first the neighbours of the
smallest points as it is done in FMM. In this case it is the point in the middle. So if
we sweep over the updating row from the left to the right only the right half is correct
and the left half has larger values then the correct solution. Since we know that the
scheme (5.3) always use smaller values to update to new one we can sweep from right
to the left and get the correct solution over the whole row. This is similar to FSM in
1D.



158 T. Oberhuber

Fig. 5.2. Difference between real physical and virtual front. Crosses and boxes show stack of
the new algorithm after each marching step without synchronising steps. Dots show the points that
should already in the stack but they are not.

Now we can construct the first version of our algorithm. In the first step we
construct the initial narrow band. It contains just the points which have a neighbour
with different sign. We assume to have them ordered in the clockwise direction along
the curve Γ. Now we can sweep in the same direction over all neighbours and then in
the opposite direction and we have the right approximation. In the same way we can
proceed further and at the end we have the solution over the whole grid.

So far we did not take care about the speed of propagation. It means that our
virtual front does not have to correspond with the real physical one. This can be a
problem at points where more characteritics intersect each other. The parts following
different characteristics can have different values and a discontinuity can develop
there. To solve it we must synchronize the algorithm with the real front. We stop
the virtual front at the points where the real one is slow and proceed just with the
fast parts of the front. It is done by taking the maximum of already known values
and then propagate further as we did above until all values along the virtual front
are approximately equal to the maximum. In fact even if we solve a problem with
F (x) = 1 the virtual front does not correspond with the real one - see Figure 5.2.

In the following we describe the algorithm in details.

For simplicity we assume having a 2D mesh M of size N × N with space step
h and function u0

ij defined on M . We also need a stack Si for i = 0 · · ·N2 − 1 of
coordinates of points from M . Set of neighbours B (i, j) of point (i, j) is defined as
B ≡ {(i − 1, j) , (i + 1, j) , (i, j − 1) , (i, j + 1)}. We write E(i1, j1, i2, j2) for an edge
given by points (i1, j1) and (i2, j2). We say E(i1, j1, i2, j2) is intersected by Γ if
u0

i1j1
· u0

i2j2
≤ 0. By updating a value at given point we mean use of (5.2) where we

do not use points (i, j) such that uij = ±∞.

Initiation

I0: set m0 = 0, m1 = 0
I1: for all edges E(i1, j1, i2, j2) of the mesh M

if E(i1, j1, i2, j2) is intersected by Γ
set Sm1

= (i1, j1), Sm1+1 = (i2, j2) and m1 = m1 + 2



Recovery of the signed distance function 159

set ui1j1 = u0
i1j1

and ui2j2 = u0
i2j2

I2: for all (i, j) 6∈ S set uij = signu0
ij · ∞

I3: set n = 1
I4: set s0 ≡ {(i, j) | (i, j) ≡ Sm; m ∈ [m0, m1]}

We assume that for all (i, j) ∈ s0 uij is good approximation of SDF.

Marching step

M0: set mn+1 = mn

M1: for all m ∈ sn−1 - m increasing ( from mn−1 to mn ) - upward step

for all points (i, j) ∈ B (m) \ S

update uij

M2: for all m ∈ sn−1 - m decreasesing ( from mn to mn−1 ) - downward step

for all points (i, j) ∈ B (m) \ S

update uij

set Smn+1
= (i, j)

set mn+1 = mn+1 + 1
M3: set sequence sn ≡ {(i, j) | (i, j) ≡ Sm; m ∈ [mn, mn+1]}
M4: set umax = max(i,j)∈sn

uij

M5: set n0 = n

M6: set n = n + 1

Synchronising step

S0: for all m ∈ sn−1 - m increasing - upward step

for all points (i, j) ∈ B (m) \ S

update uij

S1: for all m ∈ sn−1 - m decreasesing - downward step

for all points (i, j) ∈ B (m) \ ⋃n0

k=0 sk

update uij

if uij ≤ umax

set Smn+1
= (i, j)

set mn+1 = mn+1 + 1
S2: set sequence sn ≡ {(i, j) | (i, j) ≡ Sm; m ∈ [mn, mn+1]}
S3: set n = n + 1
S4: if sn−1 is not empty go to step S0

Repeat

R0: if there was at least one nod updated go to M0

For simplicity in the initial step we just said that we take vertices of all edges
intersected by Γ. For the sweeping along Γ we need to assume some kind of continuity
of the first sequence. Such continuous sequence can be obtained as follows: Find the
first square of the mesh intersected by Γ, put all vertices of intersected edges into
the stack and then recursively process all squares adjacent to intersected edges. Of
course we need to ensure that we do not go several times through any of the mesh
squares. In fact, what we need is a 2D version of so called marching cubes algorithm
by Bloomenthal [6].

Note that all points added to the stack S during the synchronising step are not
fixed before the step ends (see condition: update all points (i, j) ∈ B (m) \ ⋃n+0

k=0 sk).



160 T. Oberhuber

↘

↘

↙

↙

↗

↗

↖

↖

Fig. 5.3. This figure shows what direction of the sweeping is needed in the particular domain
when solving (3.3).

That is because within the synchronising step two virtual fronts can intersect each
other at wrong place. In this case we just let them go over each other and as we saw
above the scheme (5.3 ) has the property to fix it.

5.0.1. SDF reconstruction along Γ. The last thing we have to solve is recon-
struction of the SDF along Γ. All of the algorithms mentioned in this section are able
just to extend SDF to further regions.

Our first attempt was to extend FMM. When studying this method we found out
little difference in the explanation by Sethian [16] and by Osher [18]. In his book Osher
says ”tentative values are never used to compute new tentative values” but Sethian
does use tentative values. We tried not to fix any point at the beginning so we had
initial band just with tentative values and each of them was allowed to be changed.
Then we tried if FMM with this initial band could recover SDF even inside the band.
Unfortunately this is not possible. Consider simple example in 1D. We have a function
f(x) = 0.1 · x for x ≥ 0 and we want to recover it to SDF which is d(x) = x. If the
space step h is 1 then we have f(x0) = 0, f(x1) = 0.1, f(x2) = 0.2 etc. At the first
step FMM choose point x0 fix it and recompute x1 which is f(x1) = f(x0)+h = 1. In
the next step FMM is supposed to take x1 which is the closest one to x0 but instead
of it FMM uses x2 to recompute f(x3) = f(x2) + h = 1.2. In general we can say that
FMM is not able to recover SDF at all points x where |∇f0(x)| ≤ 1. On the other
hand FMM can work well if |∇f0(x)| ≥ 1.

Another attempt was use of the scheme (4.13) just for the very narrow band
obtained by the initial step of FTM. It does not work even if there are no singularities
in the band.

In the end we had to use simple method - approximation of the curve and then
computing SDF for all neighbouring points. There are two ways how to do it. One can
either compute just intersections of Γ and mesh edges and with this data approximate
SDF at vertices of intersected edges (we always use the smallest value for vertices
which belong to more intersected edges) or one can approximate Γ at each mesh
square by a linear function and then compute distance between the square vertices
and approximation of Γ. Since we do it only for the closest neighbours of Γ it is not



Recovery of the signed distance function 161

computationally expansive.

5.0.2. Numerical experiments. In this section we compare the algorithms
mentioned above in 2D. We tested the accuracy using SDF to unit circle which can be
solved in analytical form - d© =

√

x2 + y2 − 1. We compare all algorithms from this
section and the iterative scheme (4.13). On the Figures and Tables (5.5), (5.1) and
(5.4) one can see that the iterative methods based on the evolutionary equation (3.4)
are not optimal. As we said before they do not preserve the given curve Γ properly.
The direct algorithms ( FMM, FSM and FTM ) seems to be better. Even if the initial
condition is close to SDF, iterative methods need tens or hundreds of iterations. On
the other hand, FSM method converges after less then 10 iterations for arbitrary
initial condition. Since FMM, FSM and FTM give almost the same accuracy the only
criterion is their efficiency. From our results one can see that FMM is the slowest one.
Here we must notice that we did not use any method to speed up searching in the
stack of FMM (for comparison of improved FMM and FSM see. [22] ). FSM seems
to be good choice, it is fast and it is the simplest method to implement. FTM shows
good efficiency in the case when we need SDF only at some band along Γ which is
usual in many applications based on the level set methods (see Figure 5.1).

On the Figure 5.1 you can see application of the new algorithm to real physical
problem which is model of dendritic growth [3].

5.1. Conclusion. This article shows that the direct methods based on the eqau-
tion (3.3) are much better for SDF reconstruction then the iterative methods based on
the equation (3.4) which are very slow, less accurate and do not preserve the original
curve properly. FSM is good choice for its high efficiency and simple implementation.
If one needs even faster algorithm FTM should be considered mainly for the narrow
band methods or for more general problems like monotonicaly advancing front with
curved characteristics.

Acknowledgement. Author prepared this article during his stay at the Univer-
sity of Sussex as a part of the Marie Curie Fellowship founded by the European Union.
The author was also partly supported by project MSM 6840770010 of the Ministry
of Education of the Czech Republic and by the project No. CTU 0415314 of Czech
Technical University in Prague. Author would like to acknowledge Prof. Charles M.
Elliott1 for fruitful discussions.

REFERENCES

[1] M. Bardi and S. Osher. The nonconvex multi-dimensional Riemann problem for Hamilton-
Jacobi equations, SIAM Journal of Mathematical Analysis 22 (1991), 344–351.

[2] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Springer-
Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA, 1994.

[3] M. Beneš. Mathematical and computational aspects of solidification of pure substances, Acta
Mathematica Universitatis Comenianae 70 (2000), 123–151.

[4] , Mathematical analysis of phase-field equations with numerically efficient coupling
terms, Interfaces and Free Boundaries 3 (2001), 201–221.

[5] M. Beneš and K. Mikula. Simulation of anisotropic motion by mean curvature - comparison
of phase field and sharp interface approaches, Acta Mathematica Universitatis Comenianae
67 (1998), 17–42.

[6] J. Bloomenthal. An implicit surface polygonizer, Graphics Gems IV, Academic Press, 1994,
pp. 324–349.

[7] A. Briani. Notes on viscosity solution for partial differential equation, (2002).

1Centre for Mathematical Analysis and its Applications, School of Mathematical Sciences, Uni-
versity of Sussex, Falmer, Brighton BN1 9QH, UK



162 T. Oberhuber

Iter. FMM

N h L∞ L1 CPU L∞ L1 CPU

100 0.04 0.0279 0.1772 3 0.0310 0.0871 0.4
200 0.02 0.0246 0.1293 21 0.0166 0.0396 2.0
500 0.008 0.0185 0.1053 411 0.0092 0.0154 34.0

1000 0.004 0.0168 0.0975 41142 0.0051 0.0081 312.0
2000 0.002 0.0030 0.0041 4147.0

FSM FTM

N h L∞ L1 CPU L∞ L1 CPU

100 0.04 0.0275 0.1070 0.03 0.0273 0.1078 0.04
200 0.02 0.0174 0.0577 0.16 0.0172 0.0583 0.12
500 0.008 0.0088 0.0232 1.00 0.0087 0.0235 0.70

1000 0.004 0.0050 0.0112 4.00 0.0050 0.0114 3.00
2000 0.002 0.0029 0.0054 26.00 0.0029 0.0055 15.00

Fig. 5.4. Comparison of ‖dh − dΓ‖L1
and ‖dh − dΓ‖L∞

and CPU time in seconds for the

upwind scheme (4.13), FMM, FSM and FTM - dh is numerical approximation and dΓ is the exact
SDF for a unit circle on Ω = 〈−2, 2〉 × 〈−2, 2〉. In the case of FSM we stopped the computation
after 8 sweepings. However it gives just a little bit more accure results then 4 sweepings in which
case both FSM and FTM need the same CPU time.

Fig. 5.5. Comparison of ‖dh − dΓ‖L1
(on the left ) and ‖dh − dΓ‖L∞

(on the right) for the

upwind scheme (4.13), FMM, FSM and FTM - dh is numerical approximation and dΓ is the exact
SDF for an unit circle on Ω = 〈−2, 2〉 × 〈−2, 2〉. Horizontal axes shows mesh size, vertical axes
shows the error.

Fig. 5.6. Comparison of CPU time in logarithmic scale for FMM, FSM and FTM.



Recovery of the signed distance function 163

Fig. 5.7. Comparison of CPU time in logarithmic scale for FMM, FSM and FTM when com-
puting SDF only on given band along Γ. The grid size is 500 × 500 nodes, horizontal axis shows
band width and vertical axis shows CPU time. FSM is able to compute SDF just over the whole
domain so its time does not depend on band width.

[8] A. J. Briggs. Numerical solutions of Hamilton-Jacobi equation, PHD dissertation, University
of Sussex, Department of Mathematics, Mantell Building, University of Sussex, Falmer,
Brighton, BN1 9RF, UK, 1999.

[9] J. R. Claisse. Vortex density motion in a cylindrical type 2 superconductor subject to a trans-
verse applied magnetic field, PHD dissertation, University of Sussex, Department of Math-
ematics, Mantell Building, University of Sussex, Falmer, Brighton, BN1 9RF, UK, 2000.

[10] M. Crandall and P.-L. Lions. Viscosity solution of Hamilton-Jacobi equations, Trans. Amer-
ican Mathematical Society 277:1 (1983), 1–41.

[11] M. G. Crandall. Viscosity solutions: a primer, Viscosity solutions and applications (Monte-
catini Terme, 1995), Lecture Notes in Math., vol. 1660, Springer, 1997, pp. 1–43.

[12] K. Deckelnick and C. M. Elliott. Uniqueness and error analysis for Hamilton-Jacobi equa-
tions with discontinuities, (2003).

[13] C. M. Elliott. Approximations of curvature dependent motion, State of the Art in Numerical
Analysis (G.A. Watson I.S. Duff, ed.), Clarendon Press, Oxford, 1997, pp. 407–440.

[14] C. M. Elliott and V. Styles. Computations of bidirectional grain boundary dynamics in
thin metallic films, Journal of Computational Physics 187 (2003), 524–543.

[15] L. C. Evans. Partial differential equations, Graduate Studies in Mathematics, American Math-
ematical Society, American Mathematical Society, P. O. Box 6248, Providence, Rhode
Island 02940-6248, USA, 1998.

[16] J.A.Sethian. A fast marching level set method for monotonical advancing fronts, Proceedings
of the National Academy of Sciences, vol. 93, National Academy of Sciences, 1996, pp. 1591–
1595.

[17] M. Kimura and H. Notsu. A level set method using the signed distance function, Japan
Journal of Industrial and Applied Mathematics 19 (2002), no. 3, 415–446.

[18] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces, Springer-Verlag,
Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA, 2003.

[19] D. Ostrov. Viscosity solutions and convergence of monotone schemes for synthetic aperture
radar shape-from-shading equations with discontinous intensities, SIAM Journal of Applied
Mathematics 59:6 (1999), 2060–2085.

[20] J. A. Sethian. Level set methods, evolving interfaces in geometry, fluid mechanics, computer
vision, and materials science, Cambridge University Press, New York, 1996.

[21] S. Osher, Y. R. Tsai, L. Cheng and H. Zhao. Fast sweeping algorithms for a class of
Hamilton-Jacobi equations, SIAM Journal on Numerical Analysis 41, No. 2 (2003), 673–
694.

[22] H. Zhao. The fast sweeping method and applications, 2004, Interphase 2004,
http://www.mat.uniroma1.it/interphase04/talks/Zhao.pdf.



164 T. Oberhuber

Fig. 5.8. Original function taken from phase field model of dendritic growth, its SDF dΓ and
|∇dΓ| obtained by FTM.


