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NUMERICAL SIMULATION OF REACTION-DIFFUSION
DYNAMICS

ROBERT STRAKA!

Abstract. Reaction-diffusion system Brusselator is theoretical model of nonlinear chemical reac-
tion in stirred reactor tank. In the reaction scheme the initial components A and B are transformed
into products D and E via the reaction intermediates X and Y. It is well known that this model
exhibit various types of solutions depending on the characteristic length of reactor tank L. Keeping
L small L € (0,0.513) we obtain trivial invariant set - stable fixed point. If L increases we obtain
stable symmetic periodic solution - we crossed first Hopf bifurcation point L* = 0.513. The branch
of stable asymmetric solutions bifurcates in neighbourhood of L+ = 1.225 and further develop to
invariant torus. Developments of this torus were studied using methods of Poincaré intersection,
it’s fractal dimension and Lyapunov characteristic exponents. Symmetry of solutions and period of
periodic solutions were studied as well.
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1. Introduction. This paper summarizes results of numerical simulation of
parabolic equations of the Brusselator model. This model exhibits various types
of dynamics which was investigated. The main goal of this paper is to characterize
branches of stable periodic solutions and investigate development of invariant tori and
their geometrical structure. Methods of Poincaré map, Lyapunov characteristic ex-
ponents (LCEs) and box-counting dimension of intersections were used. Symmetries
of solution branches were studied as well to identify symmetry-breaking bifurcation
points. I would like thank to Dr. Michal Bene§ for important advices and helpful
notes.

2. Brusselator RD model. Theoretical example of nonlinear chemical reaction
in theory of dissipative structures, the Brusselator model. In the reaction scheme the
initial components A and B are transformed into products D and E via the reaction
intermediates X and Y.

k1
A —=X,
B+X 2 Y+D,
2X +Y 2% X,

Xt R

For constant concentrations of components A and B, reaction rate constants k; =
1, i=1,2,3,4, isothermic conditions and one-dimensional case, resulting system of
PDEs is as follows:
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dr D, 0%z

=222 L A—-(B+1 2
5 L262+ (B + 1)z + z°y,
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where D, D, are diffusion rates', L is characteristic length of the reactor tank. In
every numerical simulations homogeneous Dirichlet boundary conditions were used:

z€4{0,1}: z(z,t) = A, y(z,t)= g

and intial conditions:
B
z(2,0) = A +V2sin(r2), y(z,0) = 1 +v/2sin(7z).

3. Used techniques. In several subsections, basics of techniques for investi-
gation dynamics of RD systems are described. Mainly the technique of Poincaré
intersection which is useful to reveal geometrical complexity of invariant torusoidal
attractors.

3.1. Discretization of PDEs. Method of finite differences and method of lines
were applied to the PDEs. Consider the RD system with Dirichlet boundary condition
and mesh with equidistant step?:

1
zi=th, i=0,...,n, h=—,
n

denote solution in mesh points as:

zi(t) ~ 2(25,t),  wi(t) ~y(ait),

we approximate using central difference formulasi=1,...,n—1
dz; D
d—tl = LQ—ZQ(%'—l = 22; + Ti1) + A — (B + D)z; + 27y;,
dy; D
% = LQ—;":Q(yiq = 2yi + yi+1) + Bz; — 2y,

from boundary condition we obtain

B
Ty = T, = A, yozynzz-

Now we have system of 2(n — 1) ODEs with O(h?) accuracy in space, which can
be solved with the Runge-Kutta method (4th-order Merson’s scheme was used with
adaptive size of time step). In such way we can obtain n — 1 orbit for each z(z,t),
y(z,t) and apply techniques for dynamics investigation of given RD system.

3.2. Poincaré intersection. It is essential tool for investigation tori develop-

ment. We define hypersurface X given by S(x1, ..., z,) = 0, which lies in the attractor
A and intersects trajectory I' (see Fig.3.2).
Integrating system of ODEs and evaluating sign of ¥ yields the points of Poincaré
mapping obtained by linear aproximation. Although linear approximation can pro-
duce numerical errors, the Hénon method was used and compared with those linear
approximation intersections.

In numerical experiments following parameter’s values were used: D, = 0.008, Dy, = 0.004,
A =2, B=5.45.
2In numerical experiments n = 100 was used, except of LCEs evaluation where n = 20 was used.
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Poincare suréécq bf section
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Fi1a. 3.1. Poincaré intersection.

3.2.1. The Hénon method. Simple form of ¥ = z; — a = 0 is often used. We
divide the system of ODEs by i-th equation provided f;(x,a) # 0 in neighbourhood
of ¥ holds.

dz,  fi(x,a)

dxi B fi(xa Ol),
(3.1) E

dzy, _ fn(x,a)

dxi B fi(xa Ol) -

Then we integrate the original system till ¥ change its sign. By this point we integrate
system (3.1) with step Az; = z; —a. Such points lie on ¥ with accuracy of integration
method. After obtaining point of intersection we continue with integration of the
original ODEs.

3.3. Symmetry of solutions, diagram of solutions. By changing L, sym-
metry of solutions can change. We define

1/2 1
(3.2) z1/2(t) = /0 z(z,t)dz, Lo/ (t) = /1/2 z(z,t)dz,

and plot them. Symmetric and asymmetric solutions are indicated by plots similar
to those as in Fig.3.2. We use methods of Poincaré mapping to measure period
of solutions. Diagram of periodic solutions is plot of solution’s period (amplitude)
against characteristic length of reactor tank L.

4. Numerical results. Following numerical results are introduced: diagram of
solutions (Fig.4.1) with solutions plots for z(z,t) and y(z,t) (Fig.4.2), orbits (Fig.4.3)
as well as symmetry plots (Fig.4.4) for points from each branch in diagram. Geomet-
rical study of tori development follows in Fig.4.5 and comparison of linear approxima-
tion and the Hénon method (Fig.4.6). The last part is table of Lyapunov characteristic
exponents and box-counting dimension of Poincaré intersections (Tab.5).

5. Conclusions. Dynamics of the Brusselator model was investigated, three
branches of stable periodic solution were found (in range L € (0,2)), from first Hopf
bifurcation point at L = 0.513 till L ~ 1.225 (symmetry-breaking bifurcation point)
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LL N [ A | A | M [ dimes |
03 || —044 | —2.39 | —5.59 | —9.97 -
1.0 0.00 | —0.35 | —0.45 | —0.92 -
1.24 || 0.00 | -0.20 | —0.42 | —0.75 -
1.3 0.00 | —-0.09 | —0.38 | —0.56 -
1.38 || 0.00 | -0.03 | —0.31 | —0.52 1.08
142 || 0.00 | -0.01 | —0.28 | —0.55 1.39
147 || 0.01 0.0 —-0.24 | -0.51 1.17
1.52 || 0.02 0.00 | —0.22 | —0.46 -
1.56 | 0.02 0.00 | —0.22 | —0.42 1.03
1.57 || 0.01 0.00 | —0.22 | —0.43 -
1.7 0.00 | —-0.02 | -0.15 | —-0.31 -
1.75 || 0.00 | -0.01 | —0.21 | —0.36 -
1.81 | 0.01 0.00 | —0.20 | —0.34 1.16
1.85 | 0.01 0.00 | —-0.01 | -0.18 0.98
19 0.01 0.00 | -0.15 | -0.31 1.08
1.97 || 0.01 0.00 | -0.15 | —0.28 1.11
1.98 | 0.01 0.00 | —0.14 | —0.27 1.54
1.99 | 0.01 0.00 | -0.13 | -0.26 1.15
2.0 0.01 0.00 | -0.13 | -0.26 1.88

TABLE 5.1
Table of Lyapunov characteristic exponents and boz-counting dimensions of Poincaré intersec-
tions. At least one positive LCE indicates invariant torus, zero LCE indicates periodic solution and
whole negative LCEs stand for trivial invariant set—fized point.

it is branch of stable symmetric periodic solutions. After symmetry-breaking bifur-
cation, branch of stable asymmetric periodic solutions exist and further develop to
branch of invariant tori in neighbourhood of L = 1.38. Small part of stable, asymmet-
ric, periodic solutions branch is also visible. Toruses were studied using techniques of
Poincaré intersections to show great geometrical complexity of toroidal structures and
to show development of these structures (torus doubling and deformation which lead
to more complicated shapes). Comparison of two methods for Poincaré intersection
prove that when linear approximation is used, some extra parts in the intersection can
appear. Lyapunov characteristic exponents and box-counting dimension for Poincaré
intersections clasifies type of the obtained solution.
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(a) Symmetry of solution (b) Asymmetry of solution

F1G. 3.2. Characteristic plots of symmetric and asymmetric solutions.
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F1G. 4.1. Diagrams of solutions for Brusselator model. Three branches of stable solutions are

displayed.
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F1G. 4.2. Solutions of concentrations intermediates X and Y in space, for several values of L
and time t.
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Fi1a. 4.3. Orbits for solutions x(0.5,t) and y(0.5,t) for various L, ¢t denotes time.
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F1G. 4.4. Symmetry plots for different L.
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F1a. 4.5. Poincaré intersections with hyperplane x(0.6,t) = A, points are taken from the centre
of reactor tank x(0.5,%), y(0.5,%).
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