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FLOW AND POLLUTION TRANSPORT IN THE STREET CANYON

PETR BAUER!2? AND ZBYNEK JANOUR?2

Abstract. Air pollution is one of the serious problems in almost all countries, especially those
with high population density and large industrial centers. We develop a mathematical model based on
Navier-Stokes equations for viscous incompressible flow and diffusion-convection equation describing
pollution transport, and solve the model using finite element method (FEM). A simple algebraic
turbulence model is included with the turbulent viscosity scaled for urban area problems. We present
the recent numerical results of Navier-Stokes flow and pollution transport in the 2D street canyon.
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1. Introduction. We use a 2D model of air flow and pollution transport on
a polygonal domain € which represents a vertical cut through the street area. We
consider the case of stationary Navier-Stokes flow and diffusion-convection equation
for one type of pollutant. We solve the following system of equations on (0,7") x £:

OlD) | (a) grad et ) = DAL ) + F(1,2),
(x)Vi(z) — vAT(z) + grad p(z) = g(z),
divd(z) =0,
c(0,z) = co(x) €,
oc
% ‘terr - 07
ﬁ‘ter’r = ﬁh

where Q C R? is a bounded domain, ¢(¢, ) is the concentration of the pollutant, (x)
is the velocity, ¢ is the initial condition for concentration, 7 is the unit outer normal
and terr denotes the terrain. The term f(¢,x) represents the pollution source and
g(x) is the external force.

On the surface, we use the Neumann boundary condition for concentration and
the Dirichlet boundary condition for velocity, which are appropriate from the physical
point of view; see [9]. We use either Dirichlet or Neumann boundary conditions on
the other parts of the boundary, like c|i= c¢;, U]in= 0, % lout=0, % lout= 0.

2. Weak formulation and numerical solution of the problem. The Navier-

Stokes problem is weakly formulated as follows. Let V = (VT/Q(U(Q)V, X =
WD), H = {q € L*(Q) : Jqdx =0}, W € X: @ |po= Ur in the weak sense,
Q

J wiidS = [divddz = 0 for Dirichlet boundary condition. We denote @ = 7 — @
89 Q
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FiG. 2.1. Lumped regions
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F1G. 2.2. Lagrange and Cruzeiz-Raviart elements
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We seek v € X and p € H, such that:

((7,8)) + b(¥,9,5) — (p,divs) = (¢,5) — ((,5))  VSeV,
(q,divil) = —(¢q,div) Vg€ H.

The index h denotes finite-dimensional subspaces V* ¢ V, X* ¢ X, H" ¢ H. The
mixed formulation in finite-dimensional case stands:

((6h7‘§‘))h + bh(6h7z7ha‘§h) - (phadivhg)h = (ghagjh - ((wh7§))’la
(q,divpa™), = —(q, divywh), VeVt vqe H".

The nonlinear term by, (@", @", 5*) must be computed iteratively. Direct application of
this approach results in oscillations in the solution. We use the upwinding technique
proposed by [6], based on dual triangulation. This approach eventually leads to the
iterative scheme:

- (A0 BY( ) =),

For the Diffusion-Convection Equation, we use implicit Rothe method [4] and
the method of characteristics [5] which separates diffusion from convection. This
approach uses pre-computed velocity field, and is therefore independent of the flow
type used. Application of these methods leads to the following linear system with a
positive-definite matrix; see [10]. For i =1,...,m:

m
Za?[(vj,vi) +7D(Vv, V)] = (5 + 1o % ;) — 7D(Vw, V).

j=1
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Numerical Solution using the Finite Element Method. We have chosen
the finite element method in order to treat different terrain shapes easily. We use the
linear Lagrange elements for concentration, Cruzeix-Raviart (Fig. 2.2) elements for
velocity and piecewise constant elements for pressure.

Current mesh structure allows storing of multiple meshes together with their
hierarchic structure to support the efficient multigrid solver which is being developed.
We can treat two different types of boundary conditions on each part of the boundary.
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Fic. 3.3. Time evolution of concentration

3. Results. We show the recent results of steady state Navier-Stokes flow in the
street canyon with Reynolds number Re = 1000 using parabolic velocity profile on the
inlet. Note that the pressure is determined up to a constant; we have chosen zero as a
mean value in this case. The domain €2 has unit size, and the parameters are: § =0,
D = 1072. A constant source of pollution is located at the street level simulating



8 P. Bauer and Z. Janour

exhaust gases from the traffic. We can observe the cumulation of pollutant at the
leeward side of the the street. This is in agreement with the experimental results, and
occurs due to the circular flow in the canyon.

Due to relatively low Reynolds number and isothermal model, only a small amount
of pollutant escapes the canyon because of convection.
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