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IMPROVED NUMERICAL METHOD FOR MULTIDIRECTIONAL
FRACTIONAL ADVECTION-DISPERSION EQUATION IN 1-D AND

2-D WITH GENERAL BOUNDARY CONDITIONS

PETR BEDNAŘÍK1

Abstract. In this work we develop a finite difference method for the solution of the 1-D two-
sided fractional advection-dispersion equation which enables more general boundary conditions than
found in literature. Based on the 1-D method a generalization is developed into 2-D, where we solve
the most general equation with a multidirectional fractional differential operator. The method is
demostrated on several numerical examples.

Key words. 1-D and 2-D multidirectional fractional advection-dispersion equation, fractional
diffusion, fractional partial differential equations, finite difference method, numerical solution, general
boundary conditions.

1. Introduction. The concept of fractional derivative, which is almost as old
as its integer counterpart has only recently began to find applications in many fields
of physics, finance or hydrology ([1], [2], [20], [3], [9]). Partial differential equations
with fractional derivatives in time and/or space are used to create models in these
fields, where classical derivatives do not suffice or give unsatisfying results. Fractional
derivatives in space can be used to model anomalous diffusion, which is diffusion not
in accord with the classical model of Brownian motion. When the second derivative in
the classical diffusion equation is replaced by a derivative of fractional order α, where
0 < α < 2, this leads to faster than classical diffusion (also called superdiffusion). If
α > 2, the result is slower than classical diffusion, also called subdiffusion.

In this paper we are going to deal with a generalization of the classical advection-
diffusion (dispersion) equation, where the second derivative will be replaced by a
derivative of fractional order. We thus have the following partial differential equa-
tion on the domain x ∈ 〈L, R〉 , t ∈ 〈0, T 〉, with the following initial and boundary
conditions. We will call this equation the Fractional Advection-Dispersion Equation
(FADE):

∂c

∂t
(x, t) = −v (x) ∗ ∂c

∂x
(x, t) + β ∗ d (x) ∗D−

α (c) (x, t) + (1− β) ∗ d (x) ∗D+
α (c) (x, t) ,

c(x, 0) = c0(x), (1.1)

c(L, t) = dL, or
∂c

∂x
(L, t) = nL, c(R, t) = dR, or

∂c

∂x
(R, t) = nR.

The paper will be organized in the following way. First we will give a brief introduction
into the theory of fractional derivatives. We will then present current numerical
methods used to solve the 1-D FADE and we will demonstrate problems, which these
methods have. In the following we will try to address these problems by developing
an improved method based on the previous. In the last section we will generalize our
method into 2-D and give some numerical examples.
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2. Fractional derivative. In this section we will give a brief introduction to
the theory of fractional derivatives, for a more thorough account see [17], [14], [19] or
[18].

2.1. Riemann-Liouville definition. The fractional derivative is defined with
use of the Cauchy formula for n-times repeated integration on the domain R.

f [n] (x) =
∫ x

−∞

∫ σ1

−∞
...

∫ σn−1

−∞
f (σn) dσn...dσ2dσ1 =

1
(n− 1)!

∫ x

−∞
(x− y)n−1

f (y) dy.

This formula can easily be generalized for fractional orders of integration. We obtain
the following definition of the left-sided fractional integration operator of order α.

J−α (f) (x) :=
1

Γ (α)

∫ x

−∞
(x− y)α−1

f (y) dy.

The right-sided operator can be defined in a similar way.

J+
α (f) (x) :=

1
Γ (α)

∫ ∞

x

(x− y)α−1
f (y) dy.

To calculate the α-order fractional derivative of the function f, let us denote n =
[α] + 1. We calculate the n − α order fractional integral and we differentiate this
n-times, which is a well-defined operation, because n is integer. This is the so-called
Riemann-Liouville operator, which defines the left-sided fractional derivative.

D−
α (f) (x) =

dn

dxn

(
J−n−α (f) (x)

)
.

The right-sided fractional derivative is defined in a similar manner.

D+
α (f) (x) =

dn

dxn

(
J+

n−α (f) (x)
)
.

2.2. Grűnwald formula. Another way to arrive at the fractional derivative is
by generalizing finite difference schemes.

The first derivative can be approximated by the backward difference on a lattice
of box size h.

f ′ (x) ≈ f (x)− f (x− h)
h

.

To obtain an approximation of the second derivative, we perform the backward dif-
ference twice.

f ′′ (x) ≈ f (x)− 2f (x− h) + f (x− 2h)
h2

.

After applying the backward difference n-times we obtain the following approximation
of the n-th derivative.

f (n) (x) ≈ 1
hn

n∑

k=0

(−1)k

(
n

k

)
f (x− kh) .
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The previous relation can be generalized to non-integer orders by use of the gamma
function as a generalization of the factorial. The limit h → 0 gives us another defini-
tion of the left-sided fractional derivate. This is called the Grűnwald formula.

D−
α (f) (x) = lim

h→0

1
hα

∞∑

k=0

Γ (k − α)
Γ (−α) Γ (k + 1)

f (x− kh) .

Similarly we obtain a right-sided derivative.

D+
α (f) (x) = lim

h→0

1
hα

∞∑

k=0

Γ (k − α)
Γ (−α) Γ (k + 1)

f (x + kh) .

It is known that under fairly mild assumptions, the Riemann-Liouville and Grűnwald
definitions are equivalent (see [19]).

3. Current methods for numerical solution of 1-D FADE. In recent years
several authors have developed numerical methods of the solution of 1-D FADE. Most
use a FDM approximation based on or similar to the Grűnwald formula ([15], [21], [5],
[16], [24], [25], [4]). Roop et at. also developed a FEM method ([7], [8]). Meerschaert
et al. developed a numerical method of second-order precision ([22]).

In this section we will briefly present the numerical method for the solution of
equation (1.1), which was developed by Meerschaert and Tadjeran([10],[11]).

Consider a lattice in space with nodes x0 = L, x1, x2, ..., xn = R, where ∆x = R−L
n

and xi = i∆x and in time t(0) = 0, t(1), ..., t(m) = T , where ∆t = T/m and t(k) = k∆t.

3.1. Numerical approximation of fractional derivative. To approximate
the fractional differentiation operator in FADE we will use the Grűnwald formula, let
us denote.

gk =
Γ (k − α)

Γ (−α) Γ (k + 1) .

The Grűnwald formulas thus take the form

D−
α (f) (xi) =

1
∆xα

∞∑

k=0

gkf (xi−k) ,

D+
α (f) (xi) =

1
∆xα

∞∑

k=0

gkf (xi+k) .

Because we are working on a finite domain 〈L,R〉, we will approximate the fractional
derivatives in equation (1.1) in the following manner.

D−
α (f) (xi) ≈ 1

∆xα

i∑

k=0

gkf (xi−k) ,

D+
α (f) (xi) ≈ 1

∆xα

n−i∑

k=0

gkf (xi+k) .

Meerschaert and Tadjeran proved ([10],[11]) that to get a unconditionally stable
scheme it is better to use the a modified Grűnwald formula which is shifted by 1.
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The approximation we are going to use is the following.

D−
α (f) (xi) ≈ 1

∆xα

i+1∑

k=0

gkf (xi+1−k) , (3.1)

D+
α (f) (xi) ≈ 1

∆xα

n−i+1∑

k=0

gkf (xi−1+k) .

3.2. Numerical scheme for FADE. The time derivative is discretized by
means of a backward difference.

∂c

∂t
(xi, t

(n+1)) ≈ c
(n+1)
i − c

(n)
i

∆t
.

An explicit scheme using the previous approximations of the derivatives would be com-
putationally more feasible, but unfortunately such a scheme is not stable. Therefore
we will use the following implicit scheme, which is stable (see [10],[11]).

c
(nt+1)
i − c

(nt)
i

∆t
= −vi

c
(nt+1)
i+1 − c

(nt+1)
i

∆x
+ βdi

1
∆xα

i+1∑

k=0

gkc
(nt+1)
i+1−k

+(1− β) di
1

∆xα

n−i+1∑

k=0

gkc
(nt+1)
i−1+k , nt = 0, . . . , m− 1, i = 1, . . . , n− 1. (3.2)

Let us denote

Ei = vi∆t/∆x, Bi = di∆t/∆xα.

We then get the following system of linear equations.

−(βg0 + (1− β)g2)Bic
(nt+1)
i+1 + (1 + Ei − g1Bi) c

(nt+1)
i

− (Ei + βg2Bi + (1− β)g0Bi) c
(nt+1)
i−1 − βBi

i+1∑

k=3

gkc
(nt+1)
i−k+1 − (1− β)Bi

n−i+1∑

k=3

gkc
(nt+1)
i−1+k

= c
(n)
i + ∆tf

(nt+1)
i , i = 1, · · · , n− 1

We also have equations that come from the boundary conditions (depending on
whether we have Dirichlet or Neumann conditions).

c0 = dL or
c1 − c0

∆x
= nL, cn = dR or

cn − cn−1

∆x
= nR.

To move forward one time-step we have to solve a system of linear equations, where
the values of c in the previous time are on the right-hand side. If the coefficients vi

and di are constant in time then the matrix of the linear system will remain the same.
We thus calculate its inverse in the beginning and then only change right-hand sides,
which is an advantage in computations.
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3.3. Problems of method.

3.3.1. Problem 1: Boundary conditions. The method described in the pre-
vious section works well for problems, where we expect, that the function c outside of
the boundaries (i.e. the intervals (−∞, L)∪ (R,∞)) is equal to 0. In other words, the
support of the function c is all inside the interval (L,R). This is only the case when
there are Dirichlet boundary conditions on both sides with dL = dR = 0. When we
have Neumann conditions on the boundaries and the values of c near the boundaries
are close to 0 then this is a good approximation. But for all other cases (i.e. non-zero
Dirichlet boundaries or Neumann boundaries, where c is non-negligibly higher than
0) the method leads to fundamentally wrong results. This is illustrated in Figure
3.1, which shows the evolution of two different numerical solutions to equation 1.1,
when using the above described method of Meerschaert and Tadjeran. The blue line
is the solution with a delta function initial condition and zero Dirichlet boundary
conditions. The green line corresponds to the first problem shifted up by 0.5 (i.e.
c (x, 0) = 0.5 + δ (x) , dL = dR = 0.5). It would be expected, that the two solutions
will behave in an identical manner only shifted by 0.5 for all times t. But we can see
that in the second case its behavior is different at the boundaries (a very fast decrease
of c) and soon this artifact changes the look of the whole function.

The problem is caused by the incorrect interpretation of boundary conditions.
For simplicity, let us consider in the following only the left fractional derivative (i.e.
β = 1), all of the also following applies for the right fractional derivative in a sim-
ilar manner. When evaluating the left fractional derivative at a point near the left
boundary only the information in the few points between the point itself and the
boundary is used. Whereas when the left fractional derivative is evaluated at a point
further away from the left boundary, information about the function in more points
is used. The more points we use for the evaluation of the Grűnwald formula (i.e. the
less members in the Grűnwald sum we cut off) the better approximation of the real
fractional derivative we get. But the number of points used depends on the distance
from the boundary, so for the points close to the left boundary, the left fractional
derivative is approximated very badly.

3.3.2. Proposed solution to problem 1. When numerically solving partial
differential equations (i.e. non-fractional) the number of points which are used to
approximate the derivatives in the equation is always constant in space. Also, the
number of points on the edge, which have to be prescribed by a boundary condi-
tion is equal to the distance of the furthest point in the derivative approximation
scheme. For example when solving the ordinary diffusion equation by use of the
scheme f ′′i ≈ fi−1−2fi+fi+1

∆x2 , only one point on the each boundary has to be prescribed,
f0 and fn. But if we used a five-point symmetric scheme for the approximation of
the second derivative, 2 points on each boundary would have to be prescribed, f−1, f0

and fn, fn+1.
But when solving the FADE by use of the method described above (scheme (3.2))

we use only one point on each boundary although the number of points in the approx-
imation of the derivative ranges from 1 to n. But scheme (3.2) can also be interpreted
in a different way. We could use an n-point approximation of the left fractional
derivative in each point,

D−
α (f) (xi) =

1
∆xα

n∑

k=0

gkf (xi−k) , i = 1, ..., n− 1,
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Fig. 3.1. Problem with non-zero Dirichlet boundary conditions. Artifacts are created at the
boundaries.

and prescribe a boundary condition in not just one point on the boundary but in n
points f0, f−1, f−2, ..., f−(n−1). When we put

c−1, c−2, ..., c−(n−1) = 0, c0 = cL,

we get a scheme, which is exactly the same as scheme (3.2). Therefore scheme (3.2)
can be interpreted as an n-point scheme with zero boundary conditions everywhere
but c0. This explains the artifacts which arise near the boundary in Figure 3.1.
When c0 = 0.5 to solution is forced to have this value on the boundary, but because
c−1, ..., c−(n−1) = 0 there is a very steep downward gradient near the boundary, which
causes the sharp decrease which eventually deforms the whole solution. Our answer
to this problem is to prescribe all the boundary conditions in a consistent manner

c−1, ..., c−(n−1) = c0 = cL.

All of the previous applies similarly for the right-sided fractional derivative and the
right boundary conditions

cn+1, ..., c2n−1 = cn = cR.

Our proposed method will we covered in more detail in section 4.

3.3.3. Problem 2: Derivative of constant function. When the first problem
is removed as indicated above (more in section 4) another problem demonstrates
itself. The problem can be best shown on a simple FADE with Dirichlet boundary
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Fig. 3.2. Illustration of problem 2. Derivative of constant function is not zero.

conditions on both edges and a constant initial condition. The derivative (even of
fractional order) of a constant is always 0 so the solution of the FADE in this case
will not change and will remain constantly identical to the initial condition. But the
numerical results are different as is shown on Figure 3.2. The reason behind this again
lies in way the fractional derivative is approximated. In classical partial differential
equations when approximating the derivative by means of a finite difference scheme,
the coefficients always add up to zero. This causes the derivative of a constant function
to be zero. But in our case, when we approximate the fractional derivative by means
of the Grűnwald formula, we always have to cut some members of the sum off because
there is a infinite number of them. And only the whole infinite sum of coefficients
adds up to zero. When we cut the sum at some stage this causes the sum of what’s
left to be less than one. Therefore the fractional derivative of a constant calculated
using this approximation is slightly negative, which causes the global decrease of the
whole solution in time as shown on Figure 3.2.

3.3.4. Proposed solution to problem 2. The problem can be solved by in-
creasing the coefficient at the furthest point by the difference needed to get a zero
sum of the coefficients. This is equivalent to extending the function to all of R and
postulating that ∀i ∈ N0, x−n = x0. That is, constantly extending the function from
the finite interval onto R. Naturally, this extension is not always ideal (it is so for
Dirichlet boundary conditions), but it is certainly better than extending the function
with zeros.
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4. Proposed numerical method for solution of 1-D FADE. In this section
we will present our numerical method for the solution of the 1-D FADE, which is based
on the method described in the previous chapter but contains improvements, which
deal with the problems described above.

Consider a lattice in space with nodes x0 = L, x1, x2, ..., xn = R, where ∆x = R−L
n

and xi = L + i∆x and in time t(0) = 0, t(1), ..., t(m) = T , where ∆t = T/m and
t(k) = k∆t.

Also let us consider a function f defined on 〈L,R〉. Then we can define an
extension of the function f onto the whole real axis in the following manner

f̃ (x) = f (x) , x ∈ 〈L,R〉 ,
f̃ (x) = f (L) , x ∈ 〈−∞, L〉 ,
f̃ (x) = f (R) , x ∈ 〈R,∞〉 .

The function f̃ is simply the extension of f , under the assumption that outside the
interval 〈L,R〉 the function is constant and it’s value is equal to the value at the
boundary.

4.1. Approximation of fractional derivative. In our method we will again
start from the Grűnwald formula. This time we will not cut off the members of
the Grűnwald sum which lie out of the interval 〈L,R〉, but we will use the com-
plete Grűnwald sum of the extended function f̃ . Thus our approximation of the left
fractional derivative will have the following form.

D−
α (f) (xi) =

1
∆xα

∞∑

k=0

gkf̃ (xi−k) .

This can be rewritten by use of the definition of f̃ .

D−
α (f) (xi) =

1
∆xα

(
i∑

k=0

gkf (xi−k) +
∞∑

k=i+1

gkf (x0)

)

=
1

∆xα

(
i−1∑

k=0

gkf (xi−k) + g′if (x0)

)
,

where g′i = gi +
∑∞

k=i+1 gk = −∑i−1
k=0 gk. The previous equality is implied by the

fact, that
∑∞

k=0 gk = 0. Therefore

D−
α (f) (xi) =

1
∆xα

(
i−1∑

k=0

gkf (xi−k)−
(

i−1∑

k=0

gk

)
f (x0)

)

=
1

∆xα

i−1∑

k=0

gk (f (xi−k)− f (x0)) .

Similarly for the right-sided derivative

D+
α (f) (xi) =

1
∆xα

n−i−1∑

k=0

gk (f (xi+k)− f (xn) .)
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To improve the stability of the scheme we are going to apply the same shift by one as
in the method described in section 3.1. We thus obtain the following approximation
of the fractional derivatives.

D−
α (f) (xi) ≈ 1

∆xα

i∑

k=0

gk (f (xi+1−k)− f (x0)) , (4.1)

D+
α (f) (xi) ≈ 1

∆xα

n−i∑

k=0

gk (f (xi−1+k)− f (xn)) .

4.2. Numerical scheme. The time derivative is discretized by means of a back-
ward difference.

∂c

∂t
(xi, t

(n+1)) ≈ c
(n+1)
i − c

(n)
i

∆t
.

For reasons of stability we propose the following implicit scheme for the solution of
equation (1.1) by use of the approximations (4.1).

c
(nt+1)
i − c

(nt)
i

∆t
= −vi

c
(nt+1)
i+1 − c

(nt+1)
i

∆x
+ βdi

1
∆xα

i∑

k=0

gk

(
c
(nt+1)
i+1−k − c

(nt+1)
0

)
, (4.2)

+ (1− β) di
1

∆xα

n−i∑

k=0

gk

(
c
(nt+1)
i−1+k − c(nt+1)

n

)
, (4.3)

nt = 0, ...,m− 1, i = 1, n− 1.

Let us denote

Ei = vi∆t/∆x, Bi = di∆t/∆xα.

We then get the following system of linear equations.

−(βg0 + (1− β)g2)Bic
(nt+1)
i+1 + (1 + Ei − g1Bi) c

(nt+1)
i

− (Ei + βg2Bi + (1− β)g0Bi) c
(nt+1)
i−1 − βBi

i∑

k=3

gkc
(nt+1)
i−k+1 − (1− β)Bi

n−i∑

k=3

gkc
(nt+1)
i−1+k

+βBi

i∑

k=0

gkc
(nt+1)
0 + (1− β) Bi

n−i∑

k=0

gkc(nt+1)
n = c

(nt)
i + ∆tf

(nt+1)
i , i = 1, . . . , n− 1.

We also have equations that come from the boundary conditions (depending on
whether we have Dirichlet or Neumann conditions).

c0 = dL or
c1 − c0

∆x
= nL, cn = dR or

cn − cn−1

∆x
= nR.

The system has similar properties as the system in the method of Meerschaert
and Tadjeran. To move forward one time-step we have to solve a system of linear
equations, where the values of c in the previous time are on the right-hand side. If
the coefficients vi and di are constant in time then the matrix of the linear system
will remain the same. We thus calculate its inverse only once at the beginning and
then only change right-hand sides, which is an advantage for computations.
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5. Two-dimensional FADE. The numerical solution of the 2-D FADE has also
been considered by Meerschaert and Tadjeran ([12], [23]), but only in the simplest
form of diffussion along the principal axes x and y (i.e. 4 directions in our notation).
Roop et al. developed a multidimensional FEM method ([6]). To our knowledge,
these are the only published results on the multidimensional FADE. In the following,
we will develop a numerical method for the solution of the 2-D FADE in it’s general
multi-directional form.

5.1. Generalization of 1-D FADE. The generalization of the 1-D FADE to
2-D is not as straightforward as in the case of the ordinary ADE. This is caused by the
fact that any ordinary diffusion in 2-D can by expressed as a combination of diffusion
along the axes x and y (or more generally a rotated coordinate system, this would
mean the diffusion coefficient d would be a 2by2 tensor). Thus the ordinary 2-D ADE
has the following form

∂c

∂t
(x, y, t) = −v · ∇c (x, y, t) + d ∗ 4c (x, y, t) , (5.1)

where v = (vx (x, y) , vy (x, y)), ∇c =
(

∂c
∂x , ∂c

∂y

)
and 4c = ∂2c

∂x2 + ∂2c
∂y2 .

To obtain the 2-D FADE we have to define a fractional analogy of the Laplace
operator 4. Because of the non-local character of the fractional derivatives it is not
sufficient to use only the derivatives in the direction of the axes x and y. A fully
general 2-D FADE contains fractional derivatives in all directions. The definition of
the 2-D fractional derivative operator is the following (see [13]).

∇α
Mf (x, t) =

1
Γ (−α)

∫

‖θ‖=1

∫ ∞

0

r−α−1f (x− rθ, t) dr ·m (θ) dθ. (5.2)

Here m (θ) defines a probability measure on the unit circle, this measure represents
the weights of all the different directional derivatives, which are given by the unit
vector θ.

Now we will formulate the 2-D FADE on a rectangular domain x ∈ Γ = 〈L,R〉 ×
〈D,U〉 and t ∈ 〈0, T 〉. Let ∂Γ = ∂Γd ∪ ∂Γn.

∂c

∂t
(x, y, t) = −v · ∇c (x, y, t) + d ∗ ∇α

Mf (x, t) , (5.3)

c(x, y, 0) = c0(x, y),
c(x, y, t) = d∂Γ1 (x, y) for (x, y) ∈ ∂Γ1,

∂c

∂x
(x, y, t) = n∂Γ2 (x, y) for (x, y) ∈ ∂Γ2.

5.2. Numerical approximation of 2-D fractional derivative operator.
Consider a lattice on Γ defined by the discretization of the axes x and y in the
following manner:

x0 = L, x1, x2, ..., xnx = R, where ∆x =
R− L

nx
and xi = L + i∆x,

and

y0 = D, y1, y2, ..., yny = U , where ∆y =
U −D

ny
and yj = D + j∆y,
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and in time

t(0) = 0, t(1), ..., t(m) = T , where ∆t = T/m and t(k) = k∆t.

For the approximation of the operator (5.2) we will again use the modified Grűnwald
formula (4.1). For each direction θ = (θ1, θ2) there exists a unique angle ϕ ∈ 〈0, 2π)
such that θ = (cosϕ, sinϕ) . First we will discretize the unit circle (i.e. the possible
directions) by diving it into nϕ parts, which is equivalent to diving the interval 〈0, 2π)
into nϕ parts:

ϕ0 = 0, ϕ1 =
2π

nϕ
, ϕ2 = 2

2π

nϕ
, ..., ϕnϕ−1 = 2π − 2π

nϕ
.

This measure m (θ) defines a measure (it’s discretized version) md on ϕ0, ..., ϕnϕ−1

such that
∑nϕ−1

i=0 md (ϕi) = 1.
For simplicity, let us presume that ∆x = ∆y. We can approximate the 2-D

fractional differential operator by using the modified and improved Grűnwald formula
(4.1) in each direction ϕk. We obtain

∇α
Mf (xi, yj) ≈

nϕ−1∑
s=0

md (ϕs)
1

∆xα

rs(i,j)∑

k=0

gk

(
f

(
xs

k−1 (i, j)
)− f (bs (i, j))

)
. (5.4)

Here xs
k−1 (i, j) is the closest point in the grid to the point x̃s

k−1 (i, j), which is
the point with distance (k − 1) ∗∆x from the point (xi, yj) in the direction ϕs (see
Fig. 5.1) .

x̃s
k−1 (i, j) = (xi + (k − 1)∆x cosϕs, yj + (k − 1)∆x sin ϕs) =

= ∆x (i + (k − 1) cos ϕs, j + (k − 1) sin ϕs) .

Therefore

xs
k−1 (i, j) = ∆x (round (i + (k − 1) cos ϕs) , round (j + (k − 1) sin ϕs)) =

=
(
xround(i+(k−1) cos ϕs), yround(j+(k−1) sin ϕs)

)
.

The point bs (i, j) is the point xs
k−1 (i, j), which lies on the boundary of the

domain, rs (i, j) = k (i.e. this is the distance from the point (xi, yj) to the boundary).
See Figure 5.1.

5.3. Numerical scheme. The time derivative is discretized by means of a back-
ward difference.

∂c

∂t
(xi, yj , t

(n+1)) ≈ c
(n+1)
i,j − c

(n)
i,j

∆t
.

For reasons of stability we propose the following implicit scheme for the solution
of equation (5.3) by use of the approximations (5.4).

c
(n+1)
i,j − c

(n)
i,j

∆t
= −vx (i, j)

c
(n+1)
i+1,j − c

(n+1)
i,j

∆x
− vy (i, j)

c
(n+1)
i,j+1 − c

(n+1)
i,j

∆y

+
nϕ−1∑
s=0

m (θs)
1

∆xα

rs(i,j)∑

k=0

gk

(
c
(
xs

k−1 (i, j) , t(n+1)
)
− c

(
bs (i, j) , t(n+1)

))
,

n = 0, ..., m− 1, i = 1, nx − 1, j = 1, ..., ny − 1.
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Fig. 5.1. Illustration of our approximation of the fractional differential operator in 2-D

This scheme again leads to a system of linear equations, which must be solved in
each time step. The problem with this system is, that it’s matrix is dense, because
the value the fractional derivative of c in each point depends on almost all the points
in the grid (depending on the number of directions nϕ). Thus there are few zeros
in the matrix. This is a big problem because even at a relatively small number of
grid points the matrix is very large and it’s inversion is very slow or impossible. The
examples we are going to show in the following part of the paper are thus solutions
of the 2-D FADE only on grid with a small number of points (cca (50− 100)2).

5.4. Numerical examples of our method : example 1 - delta function
initial condition. The first example is going to be the simplest case possible, the
2-D FADE with a delta function initial condition. We are going to solve (5.3) with
α = 1.5 on Γ = 〈0, 50〉×〈0, 50〉 with a grid of nx = 50 points on the x axis and ny = 50
points on the y axis, thus ∆x = ∆y = 1. We use a timestep of ∆t = 1. The diffusion
coefficient d = 1, there is no advection, i.e. vx = vy = 0. The boundary conditions
used are Neumann boundary conditions on the whole boundary, i.e. ∂c

∂x (x, y, t) = 0 on
∂Γ. In the first case (left part of figures) we will use only 4 directions (i.e. nϕ = 4),
in the second case (right part of figures), we will use 17 directions. We will consider
in each case a uniform measure md (ϕi) = 1

nϕ
. The initial condition in this case

is the discrete approximation of a delta function, i.e. c
(
xnx/2, yny/2

)
= 1

∆x∆y and
c = 0 everywhere else. The results are shown on Figures 5.2, 5.3, 5.4. The bright
points correspond to higher values of c. It is visible that in the case of the 4 principal
directions the diffusion is asymmetrical and much quicker along the axes. In the case
of 17 directions the result is very close to a symmetrical shape.
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Fig. 5.2. Example 1 - t=5s, left 4 directions, right 17 directions

Fig. 5.3. Example 1 - t=20s, left 4 directions, right 17 directions
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Fig. 5.4. Example 1 - t=100s, left 4 directions, right 17 directions

5.5. Example 2 - Flow through pipe. The second example is going to be the
simple approximation of contaminant flow in a pipe We are going to solve (5.3) with
α = 1.5 on Γ = 〈0, 50〉×〈0, 20〉 with a grid of nx = 50 points on the x axis and ny = 20
points on the y axis, thus ∆x = ∆y = 1. We use a timestep of ∆t = 1. The diffusion
coefficient is uniformly equal to 1, i.e. d = 1 and there is a advective flow from left
to right, i.e. vx = 0.2, vy = 0. The boundary conditions used are Neumann boundary
conditions on the right side, i.e. ∂c

∂x (R, y, t) = 0 The source of the contaminant is the
left side which has a non-zero Dirichlet boundary condition, i.e. c(L, y, t) = 1. The
upper and lower boundaries have zero Dirichlet boundary conditions. 7 directions will
be used, i.e. nϕ = 7. We will consider in each case a uniform measure md (ϕi) = 1

nϕ
.

The initial condition in this case is c (x, y, 0) = 0. The result is shown on Figure 5.5.
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