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NUMERICAL SCHEME FOR TWO-SCALE MODEL OF LIQUID
PHASE EPITAXY

VLADIMÍR CHALUPECKÝ1 AND HEIKE EMMERICH2

Abstract. We present a numerical scheme and simulations of a two-scale model for liquid phase
epitaxy. The model consists of a macroscopic partial differential equation for solute diffusion and
advection in the fluid volume, which is coupled to a microscopic phase-field formulation of the classical
BCF-model for epitaxy growth. The numerical scheme is solved by the method of lines, where the
spatial derivatives are approximated by finite differences. Finally, we present some computational
results.
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1. Motivation. Liquid phase epitaxy (LPE) [2, 17] is a technique for growing
thin crystal films from solution. A substrate is introduced into the liquid solution
and the film grows by new atoms attaching at the crystalline surface. The classical
approach to mathematical modelling of this process is based on the theory of Burton,
Cabrera and Frank [3]. In their theory, atoms are first adsorbed to the crystalline
surface. Such atoms are called adatoms. They diffuse freely along the surface, they
can desorb from it back into the solution with probability proportional to 1/τs or
incorporate themselves permanently into the surface at a step. The concrete mecha-
nism of the surface growth thus depends on the presence or absence of dislocations in
the substrate.

In case there are no dislocations, the surface can grow only by nucleation. The
surface does not grow or grows very slowly until the supersaturation of the solution is
increased above some level. When the concentration exceed this limit value, sponta-
neous nucleation takes place and random nuclei appear. These provide the necessary
growth steps, where adatoms can attach. The growth then proceeds very quickly due
to the high supersaturation by successive nucleation and island coalescence.

If dislocations terminating in the surface are present in the crystal lattice of the
substrate, they provide a way of controlling the growth as they introduce the growth
steps. In this situation, high supersaturations are not necessary to trigger nucleation
and the growth can proceed at lower temperatures and supersaturations. Macroscop-
ically, the crystal growth occurs in the direction perpendicular to the substrate, while
microscopically, the growth occurs laterally thanks to the addition of new adatoms
at edges of steps. This means that the initial morphology and step topology of the
substrate influence the growth mechanism. Steps originating from dislocations form
spirals or closed loops, which represent the most common growth morphology.

The BCF model can be formulated mathematically as a free-boundary problem
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(a) Single screw dislocation

(b) Two screw dislocations of opposite sense connected by a step

Fig. 1.1: Models of screw dislocations terminating in the crystal surface.

as

∂tc
S = DS∆cS − 1

τS
cS + F, (1.1a)

cS = ceq

(
1 + κΩγ/(kBT )

)
, for t ∈ (0, T ), x ∈ S0, (1.1b)

vΓ = DSΩ
[
∂cS

∂n

]
for t ∈ I, x ∈ Γ(t). (1.1c)

This free-boundary problem is similar to the Stefan problem appearing in solidification
(see [18] and references therein). Here, cS is the density of adatoms on the surface S0

measured by the number of atoms per unit area, DS is a surface diffusion coefficient,
τS is the mean time for the desorption of adatoms from to surface to the solution,
F is the deposition rate, ceq is the equilibrium concentration for a straight step, κ is
the curvature of step Γ(t), Ω is the area of a single atom, γ is the step stiffness, kBT
describes the thermal energy for a fixed temperature T and vΓ is the normal velocity
of the step. The bracket

[
∂cS

∂n

]
denotes the difference of the normal derivative on both

sides of the step. Schematic situation of an epitaxial surface submerged in the liquid
solution is depicted in Fig. 1.

Direct numerical simulations of the sharp-interface problem (1.1) are difficult,
since the position of the steps has to be tracked explicitly. This difficulty can be
overcome by using so called phase field method, which has been successfully applied
in modelling of many microscopic phenomena. It consists of the introduction of a
higher-dimensional order parameter function Φ(x, t), whose values indicate the phase
at a given position. The interface is tracked implicitly and can be recovered as a level
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Epitaxial layer
Q Liquid solution
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Fig. 1.2: Vertical cut through the container with liquid solution and epitaxial surface
with several spirals placed at the bottom.

set of Φ at some particular value. In our case, the order parameter will represent the
height of the epitaxial surface over the initial substrate profile Φs measured by the
number of atom layers.

Reformulation of (1.1) as a phase-field model was previously used by Liu and
Metiu in [16] for one-dimensional step train. This model was further enhanced by
Karma and Plapp in [15] to allow for spiral growth modelling. This model has the
form

∂tc
S = DS∆cS − cS

τS
+ F − Ω−1∂tΦ, (1.2a)

α∂tΦ = ξ2∆Φ + sin(2π(Φ− Φs)) + λcS(1 + cos(2π(Φ− Φs))), (1.2b)

where Φs is the height of the initial substrate surface, ξ is a small parameter which
describes the width of interfaces (steps) between terraces, α is a time relaxation
parameter and λ is a coupling constant. The term sin(2π(Φ−Φs))+λcS(1+cos(2π(Φ−
Φs))) is a derivative of multi-well potential with minima at integers.

2. Two-scale model of LPE. In LPE systems, unlike systems where the sur-
face grows from vapour, the assumption of quiescent liquid is no longer valid and
hydrodynamics effects have to be taken into account. During the crystal growth, con-
centration near the surface depletes. To prevent this, a forced convection is usually
imposed, most often in the form of rotating disk. In this configuration, the liquid
solution is drawn to the surface and then expelled in the radial direction parallel to
the surface.

Modelling of this process requires dealing with two different scales due to the
processes involved. We need to treat the processes taking place on the microscopic
scale, where we follow evolution of atom-sized epitaxial layers. At the same time, we
want to use continuum models to treat diffusion and fluid flow in the volume of liquid
above the surface.



Numerical scheme for two-scale model of liquid phase epitaxy 53

In [5, 6, 10] a two-scale model for such a situation was derived using homogeniza-
tion techniques. The phase-field formulation of the model consists of a macroscopic
diffusion-convection equation

∂tc
V = DV ∆cV − v · ∇cV , in Q ⊂ R3 × (0, T ), (2.1a)

of the phase-field version of the microscopic BCF model (1.2)

∂tc
S = DS∆ycS +

1
τV

cV − 1
τS

cS − Ω−1∂tΦ, (2.1b)

τΦξ2∂tΦ = ξ2∆yΦ− sin(2π(Φ− Φs)) + λcS(1 + cos(2π(Φ− Φs))), (2.1c)

to be solved for every x ∈ S0 × (0, T ) on a unit cell Y ⊂ R2 and of the coupling
condition

DV
∂cV

∂n
= mA

(
c̄S

τS
− cV

τV

)
, (2.1d)

which serves as boundary condition for equation (2.1a) on the part S0 of the boundary
of Q. Here, cV is the solute concentration in the volume, cS is the concentration of
adatoms on the epitaxial surface, Φ is the height of the surface, Φs is the initial height
of the substrate, v is a constant velocity field, τV is the rate of adsorption of adatoms
to the surface, τS is the rate of desorption of adatoms from the surface, ξ is the width
of the interface between ridges of the spirals, Ω is the adatom area, c̄S =

∫
Y

cS dx is
the microscopic mean value of cS over one spiral cell Y .

Since in the discrete case S0 is formed by a regular grid of points, we join the
cells Y to obtain a rectangular domain Sm = (0, LS

1 )× (0, LS
2 ) and solve the equations

(2.1c), (2.1b) in this domain. We supplement this system by suitable initial and
boundary conditions. In our setting we consider a small sample above the epitaxial
surface and we use the following setup.

We consider Q to be a rectangular domain (0, LV
1 ) × (0, LV

2 ) × (0, LV
3 ⊂ R3 and

we denote its boundaries as ΓV
1 , ΓV

2 , ΓV
3 , ΓV

4 , S0, ΓV
5 at x = 0, x = LV

1 , y = 0,
y = LV

2 , z = 0, z = LV
3 , respectively. This situation is depicted in Fig. 2.1. Then the

system (2.1) is supplemented by the following boundary conditions, which hold for all
t ∈ (0, T ),

cV (t, x) = cV
in, x ∈ ΓV

1 , (2.2)

∂cV

∂n
(t, x) = v · ∇cV , x ∈ ΓV

2 , (2.3)

cV |ΓV
3

= cV |ΓV
4
, (2.4)

∂cV

∂n
(t, x) = 0, x ∈ ΓV

5 , (2.5)

∂cS

∂n
(t, x) =

∂Φ
∂n

(t, x) = 0, x ∈ ∂Sm. (2.6)

The condition (2.2) means constant inflow of macroscopic concentration at the
left side of the 3D volume, the condition (2.3) means free outflow of the same at the
right face. At the front and back face of the volume we impose periodic boundary
conditions, which are described by (2.4), and at the top face we impose zero Neumann



54 V. Chalupecký and H. Emmerich

x
y

z

Y

S0

Γ
V

1

Γ
V

3
and Γ

V

4

Γ
V

5

Γ
V

2

direction of �ow
domain Q

domain Sm

Fig. 2.1: Notation used for boundaries of Q.

boundary conditions (2.5). The conditions at the bottom side include coupling to the
microscopic problem and are given by (2.1d). At the boundary of Sm we impose
zero Neumann boundary conditions (2.6) both for the phase-field and microscopic
concentration.

Finally, the initial conditions are given by

cV (0, x) = cV
0 (x), x ∈ Q,

cS(0, x) = 0,

Φ(0, x) = Φs(x),
x ∈ Sm.

3. Numerical scheme. The scheme we employ for the simulations in Section
5 is based on the method of lines in time. After discretizing the problem by finite
differences in space, we solve the resulting ODE system by the standard Runge-Kutta
method of fourth order with fixed time step. Application of a variable-step method is
not straightforward due to the two-scale nature of the problem and will be addressed
in our future work.

Before describing the scheme, we first introduce some notation for the spatial
discretization: hV

1 = LV
1

NV
1

, hV
2 = LV

2
NV

2
, hV

3 = LV
3

NV
3

are the mesh sizes in the vol-

ume Q and hS
1 = LS

1
NS

1
, hS

2 = LS
2

NS
2

are the mesh sizes on the surface Sm, ωV
h ={

(ihV
1 , jhV

2 , khV
3 ) | i = 1, . . . , NV

1 − 1, j = 1, . . . , NV
2 − 1, k = 1, . . . , NV

3 − 1
}

and
ωS

h =
{
(ihS

1 , jhS
2 ) | i = 1, . . . , NS

1 − 1, j = 1, . . . , NS
2 − 1

}
are the grids of internal

nodes and ω̄V
h =

{
(ihV

1 , jhV
2 , khV

3 ) | i = 0, . . . , NV
1 , j = 0, . . . , NV

2 , k = 0, . . . , NV
3

}
and ω̄S

h =
{
(ihS

1 , jhS
2 ) | i = 0, . . . , NS

1 , j = 0, . . . , NS
2

}
are the grids of all nodes.

We can consider grid functions u : (0, T ) × ωV
h → R, w : (0, T ) × ωS

h → R, for
which uijk = u(t, ihV

1 , jhV
2 , khV

3 ) and wij = w(t, ihS
1 , jhS

2 ). We define the standard
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Fig. 3.1: Relation between the macro grid in 3D and micro grid in 2D.

central-difference operators

δc
xu =

1
2hV

1

(ui−1,j,k + ui+1,j,k), (δ2
xw)ij =

wi+1,j − 2wij + wi−1,j

(hS
1 )2

,

(δ2
xu)ijk =

ui+1,j,k − 2uijk + ui−1,j,k

(hV
1 )2

, δc
xw =

1
hV

1

(wi−1,j + wi+1,j),

∆V
h u = δ2

xu + δ2
yu + δ2

zu, ∆S
hw = δ2

xw + δ2
yw,

∇V
h u = (δc

xu, δc
yu, δc

zu).

The two meshes ω̄V
h and ω̄S

h are tightly coupled. At the microscopic surface we
model the spiral growth on an array of dislocation cells. The number of these cells in
x- and y-direction is the same as the number of grid nodes in x- and y-direction in the
macroscopic grid ω̄V

h , i.e. it is equal to NV
1 , resp. NV

2 . If each cell is discretized by Nd
1

nodes in x-direction and by Nd
2 nodes in y-direction, then the sizes of the microscopic

grid ω̄S
h are NS

1 = NV
1 Nd

1 , NS
2 = NV

2 Nd
2 . Schematic plot of this situation is shown in

Fig. 3.1.
The semi-discrete scheme has the form of

ċV
h = DV ∆V

h cV
h − vh · ∇hcV

h on ωV
h , (3.1a)

αξ2Φ̇h = ξ2∆S
hΦh + sin(2π(Φh − Φs

h))

+ λ1c
S
h(1 + cos(2π(Φh − Φs

h))) on ωS
h ,

(3.1b)

ċS
h = DS∆S

hcS
h +

1
τV

c̄V
h −

1
τS

cS
h −

1
Ω

∂tΦh on ωS
h , (3.1c)
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where its solution are maps cV
h : (0, T ) × ω̄V

h → R, cS
h : (0, T ) × ω̄S

h → R, Φh :
(0, T )× ω̄S

h → R, which also satisfy discrete versions of the boundary conditions and
coupling conditions.

The quantities ūh and c̄V
h represent an extension of the macroscopic quantities

onto the microscopic mesh ω̄S
h so that they are constant on each dislocation cell.

The discretization of the Dirichlet (2.2) and the periodic (2.4) boundary conditions
is straightforward, zero Neumann boundary conditions (2.5), (2.6) are treated by
mirroring the values in the inner nodes across the boundary. Condition (2.3) is treated
specially. The y- and z-components of the discrete gradient operator are computed by
taking standard central finite differences in the respective direction. The x-component
is computed using the following backward finite-difference operator

δb
xuh|i=NV

1
=

1
2hV

1

(uNV
1 −2,jk−4uNV

1 −1,jk+3uNV
1 jk), j = 0, . . . , NV

2 , k = 0, . . . , NV
3 .

(3.2)
The coupling condition (2.1d) is discretized using central differences as follows

δc
zc

V
h |k=0 =

mA

DV

(
1
τS

c̄S
ij0 −

1
τV

cV
ij0

)
, i = 0, . . . , NV

1 , j = 0, . . . , NV
2 . (3.3)

Here,

c̄S
ij0 =

1
Nd

1 Nd
2

∑

lm

cS
lm, (3.4)

where the sum is over the dislocation cell, which corresponds to cV
ij0.

The initial conditions are obtained by projecting the respective functions onto the
finite-difference grids. The initial height of the substrate Φs is formed by arctan(y/x)
for each dislocation cell, which is properly centered and scaled, so that there is no
step between two adjacent spiral cells. This form of Φs initiates the spiral growth
dynamics.

The ODE system we obtain from (3.1), (3.3) and from the discretized boundary
conditions is then solved by the standard Runge-Kutta method of fourth order with
fixed time step. Details are given in Algorithm 1.

Algorithm 1 Numerical algorithm for scheme (3.1)
1. Set up the constant velocity field vh.
2. Set up the initial surface Φs and initial conditions for cV

h , cS
h and Φh.

3. Initialize ∂tΦ = 0.
4. For all the time steps n = 1, 2, · · ·

(a) Compute c̄S
h by summing over each dislocation cell.

(b) Extend cV
h for k = 0 onto ωS

h .
(c) Compute cV

h , cS
h and Φh at new time level.

(d) Compute ∂tΦh using finite-difference. approximation with Φh from the
current and previous time step.

(e) Advance to the next time level.

4. Parallel algorithm. For the parallel implementation on distributed-memory
systems the Message Passing Interface (MPI) was used. Although in the numeri-
cal scheme the finite-difference method was used, the parallel implementation is not
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Compute new cV

h
Compute new Φh

Compute ∂tΦh

Send c
V

h
at S0 to MI-

CRO COMM

Receive coupling values from

MACRO COMM

Compute new cS

h

Receive coupling values from

MICRO COMM
Sum c

S

h
over each spiral cell and

send values to MACRO COMM

Fig. 4.1: Outline of the parallel algorithm. Solid arrows denote execution path of the
algorithm, dashed line denote data communication between the two MPI communica-
tors.

straightforward due to two-scale nature of the algorithm. The algorithm proceeds
as follows. First, we split the default communicator MPI COMM WORLD into two
communicators, where one communicator takes care of the microscopic problem and
the other of the macroscopic problem. The processors within each group are given
Cartesian topology by using functions MPI Dims create and MPI Cart create. The
initialization routine is then finished by various calls to MPI Cart shift in order to
initialize the communication neighbors of each processor. The master process reads
the configuration file with problem parameters and by using MPI Bcast sends the
data to all processors. The main computing loop is outlined in Fig. 4.1. The com-
puting steps are run sequentially within each group, however, each computing step
is run in parallel on all available processors in each group. Synchronization within
each group occurs when computing boundary conditions, synchronization between the
groups occurs when computing the coupling between the microscopic and macroscopic
problems.

5. Numerical results. In the numerical experiments we impose a constant ve-
locity field defined as

vijk =
(

v0

√
khV

z , 0, 0
)

,

where the ijk denote the three spatial directions and hV
z the mesh size in the z-

direction in the volume.
The simulations allow to visualize e.g. how the variation of the macroscopic

flow field as depicted in Fig. 5.1 is accompanied by a variation of the concentration
field in the melt which in turn results in a systematic variation of micro structure
evolution as depicted in Fig. 5.2. Fig. 5.2 displays the micro scale ridges, which wind
around the dislocations forming spirals. The height between successive turns of the
ridges is one atomic layer. Obviously spirals on the left hand side of the simulated
part of the sample, where the macroscopic concentration field due to the dynamics
of the transport fields in the volume is largest, grow faster than those on the right
hand side of the system. Systematic parameter studies to show the limitations of
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previous perturbative studies [14, 7] of micro structure evolution in LPE are still
open, just as their analysis to extract relations between processing parameters and
morphological stability of the material sample which promise to allow for a desired
more efficient parameter control in the sensitive crystallization process of LPE grown
material systems [8].

Fig. 5.1: Dynamics at the macroscale.

Fig. 5.2: Dynamics of microstructure evolution.

Before commenting on the parameters regimes obtained from the numerical simu-
lations, we will introduce an additional quantity characterizing the dynamical aspects
of the spiral growth, the so called surface width w(t), which is defined by

w(t) =
1
2
〈Φ(x, t)2 − 〈Φ(x, t)〉2〉1/2, (5.1)

where 〈f〉 ≡ ∫
S0

f dx.
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The numerical parameters for all the following simulations were set up as follows,
if not stated otherwise. The time step size for the Runge-Kutta solver was set to 0.002
and the system was evolved for 400000 time steps, so that T = 800. An array of 5× 1
dislocations was simulated, each dislocation was discretized on a regular rectangular
grid with 60×119 nodes, so the dimensions of ωS

h were 595×60 and the dimensions of
ωV

h were 5×1×5. Φs was set up so that the dislocations were 10 grid nodes long. The
spatial step size for ωS

h was set to 8/59, for ωV
h to 1. The interface width ξ was set to

0.3, the characteristic time of attachment of adatoms α to 1, the coupling constant
λ1 to 10, the desorption rate τS to 3.0, the adsorption rate τ0

V to 2.0, adatom area Ω
to 1.0, the diffusion coefficient DS to 2.0, DV to 10 and the mass of an adatom m0

A

to 0.1.
In the first set of numerical experiments we show the influence of different concen-

tration quantity flowing to the volume from the left (in the form of Dirichlet boundary
condition (2.2). In Fig. 5.3 several plots demonstrating the evolution of the surface
are shown. At the beginning, the volume is filled with constant concentration equal to
the concentration inflow from the left. At the start of the evolution, the leftmost and
rightmost spiral grow at almost the same speed. Then, due to the gradual deposition
of atoms on the surface, the macroscopic concentration field settles in a steady state
profile and maintains it during the rest of the evolution. Owing to this, the first spiral
starts to grow faster, as it has more concentration to grow from. The growth of the
last spiral is delayed. This causes oscillations in the ratio of w for an inflow value
cV
in = 0.1. If we increase cV

in growth proceeds faster. However, the evolution of the
surface width displays a universal behaviour independent of the precise value of cV

in

in the sense that after an initial transient it increases linearly. Moreover, the ratio of
w at the left and right spiral evolves to a constant value.

The effect of velocity profile v on the surface evolution is demonstrated in Fig.
5.4. The same setup as in the previous case was used, the velocity v0 at the top of
the volume is equal to 1. The ratio of w for the left and right spiral again tends to
a constant value, which is lower than in the previous case. This is due to the higher
velocity, which causes the macroscopic concentration profile to be more uniform.

From these numerical experiments we conclude that as long as we can ensure
a quasi-stationary growth dynamics (via our choice of simulation parameters, initial
and boundary conditions) the ratio of the surface widths measured over spirals at
opposite boundaries of the sample tends to a constant. Moreover, higher velocities
yield more uniform distributions of the atoms at the surface along the direction of flow.
Consequently, the height of spirals turns out to be more uniform, as well. Finally,
higher concentrations of atoms in the liquid volume speed up spiral growth linearly.

6. Conclusion. A two-scale model for liquid phase epitaxy [10, 12] was pre-
sented together with a numerical scheme based on the method of lines. Spatial
discretization is done by finite differences, in time the model is solved employing
the standard Runge-Kutta method of fourth order with fixed time step. Usage of
variable-step methods would be beneficial both for accuracy and efficiency, however,
their application for the two-scale problem in question is not straightforward due to
the difficulties in implementation and local-error estimation.

Systematic parameter studies to show the limitations of previous perturbative
studies [14, 7] of microstructure evolution in LPE are work in progress, just as their
analysis to extract relations between processing parameters and morphological stabil-
ity of the material sample which promise to allow for a desired more efficient parameter
control in the sensitive crystallization process of LPE grown material systems [8].
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Fig. 5.3: Comparison of surface dynamics for different levels of incoming concentra-
tion at low velocity v. In the left column the surface width at the first and last spiral
cell is shown, in the right column the ratio of w between the same two cells is shown.
Each row corresponds to a different concentration level.
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