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MATHEMATICAL TREATMENT OF SMOLDERING COMBUSTION
UNDER MICRO-GRAVITY

KOTA IKEDA1 AND MASAYASU MIMURA2

Abstract. Various finger-like smoldering patterns are observed in experiments under micro-
gravity. For theoretical understanding of such pattern phenomena, a model of reaction-diffusion
system has been proposed. In this paper, we prove the existence and uniqueness of a solution for this
reaction-diffusion system. We also consider a large-time behavior of solutions and show nonexistence
results of traveling wave solutions.
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1. Introduction. It is shown in [4] that thin solid, for an example, paper, cel-
lulose dialysis bags and polyethylene sheets, burning against oxidizing wind develops
finger-like patterns or fingering patterns. The oxidizing gas is supplied in a uniform
laminar flow, opposite to the directions of the front propagation and they control
the flow velocity of oxygen, denoted by VO2. When VO2 is decreased below a critical
value, the smooth front develops a structure which marks the onset of instability. As
VO2 is decreased further, the peaks are separated by cusp-like minima and a fingering
pattern is formed. In addition, thin solid is stretched out straight onto the bottom
plate and they also control the adjustable vertical gap, denoted by a parameter h,
between top and bottom plates. Experimentally, fingering pattern occurs for small
h, which implies that fingering pattern appears in the absence of natural convection.
Similar phenomena have been observed in a micro-gravity experiment in space (see
[2]).

Here we propose a phenomenological model described by the following reaction-
diffusion system for the (dimensionless) temperature u, the density of paper v, the
concentration of the mixed gas w.

(RD)





∂u

∂t
= Le∆u + λ

∂u

∂x
+ γk(u)vw − aum, (x, y) ∈ I × Ω, t > 0,

∂v

∂t
= −k(u)vw, (x, y) ∈ I × Ω, t > 0,

∂w

∂t
= ∆w + λ

′ ∂w

∂x
− k(u)vw, (x, y) ∈ I × Ω, t > 0,

where the constants Le, called Lewis number, a and γ are positive parameters, λ and
λ
′
are nonnegative parameters, k(u) is a nonlinear term called Arrhenius kinetics and

defined by k(u) = exp(−1/u), I ⊂ (−∞,∞) is a bounded interval (0, lx) or a whole
line (−∞,∞), Ω ⊂ Rn is a bounded domain, and ∆ = ∂2/∂x2 +

∑n
i=1 ∂2/∂y2
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Laplacian as usual. We suppose that if I = (0, lx), u, w satisfy

∂u

∂x
(0, y, t) =

∂u

∂x
(lx, y, t) = 0,

∂w

∂x
(0, y, t) = 0, w(lx, y, t) = wr > 0

for any y ∈ Ω and t > 0, and if I = (−∞,∞),

lim
|x|→∞

u(x, y, t) = 0, lim
x→∞

w(x, y, t) = wr, lim
x→−∞

w(x, y, t) = wl ≥ 0

for any y ∈ Ω and t > 0. In both cases we also suppose that u,w satisfy

∂u

∂ν
(x, y, t) =

∂u

∂ν
(x, y, t) = 0,

∂w

∂ν
(x, y, t) =

∂w

∂ν
(x, y, t) = 0

for x ∈ I, y ∈ ∂Ω and t > 0, where ν is the unit exterior normal vector on ∂Ω. We
suppose that initial values u0, v0 and w0 satisfy

u(x, y, 0) = u0(x, y) ≥ 0, v(x, y, 0) = v0(x, y) ≥ 0, w(x, y, 0) = w0(x, y) ≥ 0.

In numerical simulations, we take λ = 0 and λ
′

as a controlled parameter. If λ
′

is large, a smooth flame front is observed (see Figure 1.1 (a)). When λ
′
is decreased,

the instability of a smooth flame front occurs. As λ
′
is decreased further, a fingering

pattern is formed (see Figure 1.1 (b), (c)). Numerical simulations suggest that the
model (RD) exhibits a qualitative agreement with the experimental results. This
motives us to discuss analytically (RD) from pattern formation viewpoints. As the
first step, we will show the existence and uniqueness of global solution of (RD) and
to study the asymptotic behavior of the global solution.

(a) (b) (c)

large ←− λ
′ −→ small

Fig. 1.1. various patterns in (RD)

This paper is organized as follows; In Section 2, we show the global existence and
uniqueness of a solution of (RD) (Theorems 2.1, 2.3). Furthermore we have the upper
bound of a solution of (RD) (Lemma 2.2). In Section 3, we consider the asymptotic
behavior of a global solution given in Section 2 (Theorem 3.1). In Section 4, we
obtain the nonexistence results of a traveling wave solution (Lemmas 4.1, 4.3). ¿From
experiments and simulations, we expect that there is a stable traveling wave solution
if λ

′
is large. Then we would like to prove the existence of a traveling wave solution

and in general, however, it is difficult. Hence it is necessary to obtain such conditions
as there are no traveling wave solutions. We prove that there are no traveling wave
solutions if a or λ is large. In addition, we also obtain the upper bound of the wave
speed of a traveling wave solution in Lemma 4.3.
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2. Existence and uniqueness of a global solution. In this section, we prove
the existence and uniqueness of a global solution. We first prove the existence and
uniqueness of a local solution. Then we replace w by z such as w = z + ω, where
ω = ω(x) is a smooth positive function and satisfies ω(lx) = wr and ω

′
(0) = 0 if

I = (0, lx), or ω → wr as x → ∞ and ω → wl as x → ∞ if I = (−∞,∞). Then we
consider the following system derived from (RD) with respect to (u, v, z);





∂u

∂t
= Le∆u + λ

∂u

∂x
+ γk(u)v(z + ω)− aum, (x, y) ∈ I × Ω, t > 0,

∂v

∂t
= −k(u)v(z + ω), (x, y) ∈ I × Ω, t > 0,

∂z

∂t
= ∆z + λ

′ ∂z

∂x
− k(u)v(z + ω) + ω

′′
+ λ

′
ω
′
, (x, y) ∈ I × Ω, t > 0.

(2.1)

The initial values u0, v0 and z0 are

u(x, y, 0) = u0(x, y) ≥ 0, v(x, y, 0) = v0(x, y) ≥ 0,

z(x, y, 0) = w0(x, y)− ω(x) ≡ z0(x, y)
(2.2)

for x ∈ I and y ∈ Ω. We suppose that u, z satisfy

∂u

∂x
(0, y, t) =

∂u

∂x
(lx, y, t) = 0,

∂z

∂x
(0, y, t) = 0, z(lx, y, t) = 0 (2.3)

for y ∈ Ω and t > 0 if I = (0, lx), and

lim
|x|→∞

u(x, y, t) = lim
|x|→∞

z(x, y, t) = 0 (2.4)

for y ∈ Ω and t > 0 if I = (−∞,∞). In both cases we suppose that u, z satisfy

∂u

∂ν
(x, y, t) =

∂u

∂ν
(x, y, t) = 0,

∂z

∂ν
(x, y, t) =

∂z

∂ν
(x, y, t) = 0, (2.5)

for x ∈ I, y ∈ ∂Ω and t > 0.
We prove the existence and uniqueness of a local solution of the above system.

In the proof, we shall use the standard theory of an analytic semigroup and prove the
existence of the following integral equation;

Φ(t) = T (t)Φ0 +
∫ t

0

T (t− s)f(Φ(s))ds, (2.6)

where Φ = (u, v, z)t, Φ0 = (u0, v0, z0)t, T (t) is a semigroup generated by a differential
operator A defined by

A =




Le∆ + λ
∂

∂x
0 0

0 0 0

0 0 ∆ + λ
′ ∂

∂x




and

f(Φ) =




γk(u)(ω + z)v − aum

−k(u)(ω + z)v
−k(u)(ω + z)v + ω

′′
+ λ

′
ω
′


 .
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We consider the integral equation (2.6) in the functional space X defined by

X = Lp(I × Ω)× L∞(I × Ω)× Lp(I × Ω)

for p > 1. And the domain of A, denoted by D(A), is defined by

D(A) = W 2,p
N (I × Ω)× L∞(I × Ω)×W 2,p

N,0(I × Ω),

where if I = (0, lx), W 2,p
N (I × Ω) is defined by

W 2,p
N (I × Ω) = {u ∈ W 2,p(I × Ω) | ∂u

∂ν
= 0 for x ∈ I, y ∈ ∂Ω,

∂u

∂x
= 0 for x = 0, lx, y ∈ Ω}

and W 2,p
N,0(I × Ω) is defined by

W 2,p
N,0(I × Ω) = {z ∈ W 2,p(I × Ω) | z = 0 for x = lx, y ∈ Ω,

∂z

∂ν
= 0 for x ∈ I, y ∈ ∂Ω,

∂z

∂x
= 0 for x = 0, y ∈ Ω}

and if I = (−∞,∞), W 2,p
N (I × Ω) is defined by

W 2,p
N (I × Ω) = {u ∈ W 2,p(I × Ω) | ∂u

∂ν
= 0 for x ∈ I, y ∈ ∂Ω,

lim
|x|→∞

u(x, y) = 0 for y ∈ Ω}

and W 2,p
N,0(I × Ω) is equal to W 2,p

N (I × Ω). W 2,p(I × Ω) is a usual Sobolev space.
We assume that u0 ∈ D(Lα

u), v0 ∈ Cκ(I × Ω) and z0 ∈ D(Lα
z ) for 0 < α < 1 and

0 < κ < 1, where Lu = Le∆ + λ∂/∂x and Lz = ∆ + λ
′
∂/∂x. The functional spaces

D(Lα
u) and D(Lα

z ) are called fractional spaces (see Section 2.6 of [3]). And Cκ(I×Ω)
is the Hölder space with a Hölder exponent 0 < κ < 1. Then we have the following
theorem for existence of a local solution.

Theorem 2.1. Assume that p > n + 1, 1/2 < α < 1, 0 < κ < 1, and ∂Ω ∈
C2. In addition, suppose that the function ω has the second order Hölder continuous
derivatives in x ∈ I belonging to Lp(I × Ω). Then, for any (u0, v0, z0) ∈ D(Lα

u)×
Cκ(I × Ω) × D(Lα

z ), there exist T > 0 and a unique local classical solution (u, v, z)
of (2.1), (2.2), (2.3), and (2.5) if I = (0, lx), or (2.1), (2.2), (2.4), and (2.5) if
I = (−∞,∞) for t < T .

We can show Theorem 2.1 by a standard argument. So we omit the details. In
fact, the local solution obtained in Theorem 2.1 exists globally. To prove it, we need
to obtain a priori estimate. We shall prove that u, v and w are bounded from above.

Lemma 2.2. Let (u, v, z) be a solution given in Theorem 2.1 and set w = z + ω.
Then there exists a constant R > 0, depending on initial values u0, v0 and w0, such
that for any (x, y) ∈ I × Ω, t > 0,

0 ≤ u ≤ R, 0 ≤ v ≤ R, 0 ≤ w ≤ R.

Proof. We first have

0 ≤ v ≤ ‖v0‖L∞(I×Ω), 0 ≤ w ≤ max{‖w0‖L∞(I×Ω), wr, wl}
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because ṽ = ‖v0‖L∞(I×Ω) and w̃ = max{‖w0‖L∞(I×Ω), wr, wl} are super-solutions of
v and w respectively. From the first equation of (2.1), we have

∂u

∂t
= Le∆u + λ

∂u

∂x
+ γk(u)vw − aum ≤ Le∆u + λ

∂u

∂x
+ γṽw̃k(u)− aum.

Here we set ũ = max{‖u0‖L∞(I×Ω), sup{u > 0 | γṽw̃k(u) − aum > 0}}. Note that
ũ < ∞ because of k(u) < 1. Then we readily see that ũ is a super-solution of u, so
that we obtain 0 ≤ u ≤ ũ. Thus the proof is completed.

¿From the above lemma, the following theorem holds.
Theorem 2.3. Let (u, v, z) be a solution given in Theorem 2.1. Then (u, v, z)

exists globally.
Proof. In order to prove this theorem, we shall obtain ‖u‖α ≡ ‖u‖Lp(I×Ω)

+‖Lα
uu‖Lp(I×Ω) and ‖z‖α ≡ ‖z‖Lp(I×Ω) +‖Lα

z z‖Lp(I×Ω) exist for all t > 0. First
of all, we obtain the estimate of ‖u‖Lp(I×Ω). Here let Tu(t) be an analytic semigroup
generated by Lu. Then there exist some constants C1 > 0 and β ∈ R such that
‖Tu(t)‖ ≤ C1e

βt. Using Tu(t) and (2.6), we have

‖u‖Lp(I×Ω) ≤ C1e
βt‖u0‖Lp(I×Ω) + C

∫ t

0

eβ(t−s)‖u‖Lp(I×Ω)ds,

where C > 0 is a constant. Here note that k(u)/u is bounded from above for u > 0.
From Gronwall’s inequality, it follows that

‖u‖Lp(I×Ω) ≤ C1e
(β+C)t‖u0‖Lp(I×Ω).

Next we estimate the norm ‖Lα
uu‖Lp(I×Ω). Since ‖Lα

uT (t)‖ ≤ C1e
βt/tα holds for

t > 0 (see Theorem 6.13 in Section 2 of [3]), we obtain by using (2.6)

‖Lα
uu‖Lp(I×Ω) ≤ C1e

βt‖Lα
uu0‖Lp(I×Ω) +

∫ t

0

C

(t− s)α
eβ(t−s)‖u‖Lp(I×Ω)ds

≤ C1e
βt‖Lα

uu0‖Lp(I×Ω) +
Ct1−α

1− α
e(β+C)t.

Therefore ‖u‖α exists globally. From a similar argument, it can also be shown that
‖z‖α exists globally.

3. Asymptotic behavior of u and v. In this section we consider the asymp-
totic behavior of classical solutions of (RD).

Theorem 3.1. Set I = (0, lx) and let (u, v, z) be a solution given in Theorem
2.1. For any (x, y) ∈ I × Ω, limt→∞ u(x, y, t) = 0. Moreover, there exists v∞(x, y) ∈
L∞(I × Ω) such that limt→∞ v(x, y, t) = v∞(x, y) and the function v∞ has a positive
value at any points (x, y) ∈ I × Ω where v0(x, y) > 0.

It is easy to see that there exists v∞(x, y) such that v(x, y) → v∞(x, y) as t →∞
because v decreases monotonically. Therefore the remainder is to obtain the asymp-
totic behavior of u and positiveness of v∞.

We need lemmas to prove Theorem 3.1. As the first step of the proof of Theorem
3.1, we consider the reaction term k(u)vw and prove that it approach 0 as t → ∞.
This implies that either u, v or w approach 0.

Lemma 3.2. Let (u, v, z) be a solution given in Theorem 2.1 and set w = z + ω.
Then, for any (x, y) ∈ I × Ω, it holds that k(u)vw → 0 as t →∞.
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Proof. The statement of the lemma is equivalent to vt → 0, and we prove it. By
using v → v∞, for any ε > 0 and (x, y) ∈ I × Ω, there exists T > 0 such that for
t > T ,

|v(x, y, t)− v∞(x, y)| < ε2.

Then we see that
∣∣∣∣
v(x, y, t + ε)− v(x, y, t)

ε

∣∣∣∣ ≤ 2ε,

and then

|vt(x, y, t + θε)| ≤ 2ε

for some θ ∈ (0, 1). Thus it follows that

lim sup
t→∞

|vt(x, y, t)| = lim sup
t→∞

|vt(x, y, t + θε)| ≤ 2ε.

Since ε is any small parameter, we have limt→∞ vt(x, y, t) = 0, which completes the
proof.

Here we note that we can also show the similar result to Lemma 3.2 in the case
of I = (−∞,∞).

The previous lemma implies that u, v or w approach 0. Now we define a constant
Mk for integers k ≥ 1 by Mk ≡ supu>0 k(u)/uk. Using this constant, we have k(u) ≤
Mmum.

Lemma 3.3. Set I = (0, lx) and let (u, v, z) be a solution given in Theorem 2.1.
Then it holds that u → 0 as t →∞ at any (x, y) ∈ I × Ω.

Proof. Set w = z + ω. Since k(u)vw → 0 from Lemma 3.2, there exists T > 0
such that γk(u)vw ≤ aum/2 for any t > T and (x, y) ∈ I × Ω. Then u satisfies

ut ≤ ∆u + λ
∂u

∂x
− a

2
um

for any t > T and (x, y) ∈ I × Ω. Now we use a constant R given in Lemma 2.2 and
define q = q(t) by a solution of

q
′
= −a

2
qm, q(T ) = R.

The function q is explicitly written such as

q(t) =





R

{a(m− 1)Rm−1(t− T )/2 + 1}1/(m−1)
, m > 1,

R exp(−a(t− T )/2), m = 1.

Using u ≤ R and applying the comparison principle to u and q, we have u ≤ q for
t > T . Since q → 0 as t →∞, u also approaches 0, which completes the proof.

¿From the previous lemma, u does approach 0 as t →∞. Now we are in position
to prove that v∞ > 0.

Proof. Let q = q(t) be a function given in the proof of Lemma 3.3. As stated
previously, we have 0 ≤ u ≤ q for any t > T, (x, y) ∈ I × Ω. Then it follows from the
second equation of (RD) that

vt ≥ −k(u)wv ≥ −MmRqmv,
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where R is a constant given in Lemma 2.2. By using this inequality, we obtain

v(x, y, t) ≥ v(x, y, T )exp(−MmR

∫ t

T

qmds)

= v(x, y, T )exp(−2MmR

a
(q(T )− q(t))) ≥ v(x, y, T )exp(−2MmR

a
q(T )).

(3.1)
Here we have an estimate of v(x, y, T ) such as

v(x, y, T ) = v0(x, y)exp(−
∫ T

0

k(u)wds) ≥ v0(x, y)exp(−RT ), (3.2)

because of w ≤ R and k(u) < 1. Therefore it follows from (3.1) and (3.2) that

v(x, y, t) ≥ v0(x, y)exp(−RT − 2MmR

a
q(T )),

which implies that v∞(x, y) > 0 if v0(x, y) > 0.

4. Nonexistence of a traveling wave solution. ¿From the results of experi-
ments and simulations, we expect that there exists a traveling wave solution indepen-
dent of y-direction and moving opposite to the flow of the oxidizing gas, which is a
positive solution of (RD) and can be written such as

u(x, t) = U(x− ct), v(x, t) = V (x− ct), w(x, t) = W (x− ct),

where c > 0 is a wave speed. Here we set z = x− ct. Then our equations satisfied by
(U, V, W ) have the forms

−cU
′

= LeU
′′

+ λU
′
+ γk(U)V W − aUm,

−cV
′

= −k(U)V W,

−cW
′

= W
′′

+ λ
′
W

′ − k(U)V W,

(4.1)

where the prime ′ is d/dz, and boundary conditions are

U(±∞) = 0, V (+∞) = Vr > 0, W (+∞) = Wr > 0, W (−∞) = Wl(< Wr).

In this paper, we consider the conditions of the parameters as there does not exist a
traveling wave solution, although we would like to prove the existence of a traveling
wave solution (U, V,W, c). Recalling the constant Mm, defined before Lemma 3.3.

Lemma 4.1. If a ≥ γMmVrWr, there does not exist a traveling wave solution.
Proof. We first prove that V ≤ Vr and W ≤ Wr whenever a traveling wave solu-

tion (U, V, W, c) exists. From the second equation of (4.1), V increases monotonically
and satisfies V ≤ Vr. Next we suppose that W > Wr holds. Then W must have
the maximum at some point. Hence it follows from the third equation of (4.1) and
W

′
= 0 that

W
′′

= k(U)V W > 0

at the point, which is a contradiction. Therefore we have W ≤ Wr.
Next assume that there exists a traveling wave solution (U, V, W, c) for a ≥

γMmVrWr. From the boundary condition, the function U must have the maximum
at some point. Then we have from the first equation of (4.1) and U

′
= 0,

LeU
′′

= aUm − γk(U)V W ≥ Um(a− γMmVrWr) ≥ 0,
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which is a contradiction.
We showed in the previous lemma that no traveling wave solutions exist if a ≥

γMmVrWr. In addition, if a > γMmVrWr, we have the asymptotic behavior of the
function u of a solution of (RD) as t →∞.

Lemma 4.2. Let (u, v, w) be a solution given in Theorem 2.1 with the ini-
tial conditions (u0, v0, w0) satisfying v0 ≤ Vr and w0 ≤ Wr. If a > γMmVrWr,
‖u‖L∞(I×Ω) → 0 as t →∞.

This result implies that flame front does not keep spreading with high temperature
if heat radiation is too strong.

Proof. From the assumption, we have from the first equation of (RD)

ut ≤ Le∆u + λ
∂u

∂x
− (a− γMmVrWr)um.

Let q = q(t) be a solution of

q
′
= −(a− γMmVrWr)qm, q(0) = R,

where R is a constant given in Lemma 2.2. Then it holds that u ≤ q and q → 0 as
t →∞. This completes the proof.

Next we show that there does not exist traveling wave solutions if λ is large.
Lemma 4.3. Set m = 1. Then there exists a constant c∗ independent of Le, λ

such that (4.1) possesses no traveling wave solutions with the wave speed c satisfying
c >

√
Lec∗ − λ.

¿From this lemma, we can state that the wave speed of traveling wave solutions
must satisfy c ≤ √

Lec∗ − λ if exists. This is the upper bound of the wave speed.
Proof. From Lemma 4.1, we can assume a < γM1VrWr without loss of generality.

Here we set f(U) = γk(U)VrWr − aU . Then f(U) has zeros at U = 0, U1, U2 for
0 < U1 < U2. Moreover it holds that f(U) < 0 for 0 < U < U1 and f(U) > 0
for U1 < U < U2, which implies that f(U) is a nonlinear term of a bistable type.
Therefore there exists a traveling wave solution Q = Q(z̃) with the wave speed c∗

independent of Le, λ such that

−
√

Lec∗Q
′
= LeQ

′′
+ f(Q), Q(−∞) = U2, Q(+∞) = 0,

where z̃ = x− (
√

Lec∗− λ)t and the prime
′
= d/dz̃ (see Theorem 4.2 of [1]). Setting

q(x, t) = Q(x− (
√

Lec∗ − λ)t), we know that q satisfies

∂q

∂t
= Le

∂2q

∂x2
+ λ

∂q

∂x
+ f(q).

Now we assume that there exists a traveling wave solution (U, V, W ) with the
wave speed c >

√
Lec∗ − λ. We have obtained V ≤ Vr and W ≤ Wr in Lemma 4.1.

Then u(x, t) = U(x− ct) satisfies

∂u

∂t
≤ Le

∂2u

∂x2
+ λ

∂u

∂x
+ f(u)

and u < U2 for −∞ < x < ∞. Then we can show that q(x, t) is a super solution
of u(x, t). To prove it, it should be shown that u decays faster as x → ∞ than
q. Indeed, this is true because u decays as x → ∞ at the rate exp(µ1x), where
µ1 = {−(λ + c) −

√
(λ + c)2 + 4aLe}/2Le, and q does at the rate exp(µ2x), where
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µ2 = {−√Lec∗ −
√

Le(c∗)2 + 4aLe}/2Le. Hence for some h ∈ R, we have u(x, t) <

q(x−h, t) for any −∞ < x < ∞ and t > 0, that is, U(x−ct) < Q(x−h−(
√

Lec∗−λ)t).
However, since c >

√
Lec∗ − λ, U must reach Q at some point in a finite time, which

is a contradict.
Acknowledgement. Special thanks go to Professor Eiji Yanagida for many

stimulating discussions and continuous encouragement.

REFERENCES

[1] D.G.Aronson, and H.F.Weinberger, Nonlinear Diffusion in Population Genetics, Com-
bustion, and Nerve Pulse Propagation, Partial differential equations and related topics,
Lecture Notes in Math., 446, 5–49, Springer(1975).

[2] S.L.Olson, H.R.Baum, and T.Kashiwagi, Finger-like Smoldering over Thin Cellulosic Sheets
in Microgravity, Combustion Institute, 2525–2533, (1998).

[3] A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, New York, 44, (1983).

[4] O.Zik, Olami, E.Moses, Fingering Instability in Combustion, Phys. Rev. Lett., 81 (1998),
3836.


