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FINITE DIFFERENCE SCHEME FOR THE LANDAU-LIFSHITZ
EQUATION

ATSUSHI FUWA1, TETSUYA ISHIWATA2 AND MASAYOSHI TSUTSUMI3

Abstract. We propose a finite difference scheme for the Heisenberg equation and the Landau-
Lifshitz equation. These equations have a length-preserving property and energy conservation or
dissipation property. Our proposed scheme inherits both characteristic properties. We also show
that the boundedness of finite difference solutions and an unique solvability of our scheme. Finally,
we show some numerical examples.
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1. Introduction. In this short report we propose a finite difference scheme for
the Landau-Lifshitz equation in the form

∂u

∂t
= u×∆u− µu× (u×∆u),(1.1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)): Ω × (0,∞) → R3, µ is the Gilbert
damping constant and × denotes the vector product in R3. This equation describes
the evolution of spin fields in non-equilibrium continuum ferromagnets. When µ = 0,
this equation is called Heisenberg equation. For simplicity, we consider only the case
Ω = [−1, 1] and boundary condition is periodic. It is obvious that the equation (1.1)
has a length-preserving property: |u(x, t)| = |u(x, 0)| for any t > 0. Thus, we usually
assume that |u(x, 0)| = 1 and only consider solutions in a class of vector functions
which take value in a unit sphere. Note that any constant vector functions which
length are one are trivial solutions of (1.1). This is also true for Neumann boundary
condition case.

Let E(u(t)) be an energy defined by E(u(t)) := ‖∇u(t)‖2L2(Ω). Then the energy
satisfies

E(u(t)) = E(u0)− 2µ

∫ t

0

‖u(s)×∆u(s)‖2L2(Ω)ds(1.2)

for any t > 0. That is, this problem has energy dissipation property for the case µ > 0
and energy conservation property for the case µ = 0.

The purpose of this paper is to propose a finite difference scheme which inherits
the above important properties from the original problem. The contents of this paper
are as follows: In Section 2, we propose a finite difference scheme and show that the
scheme satisfies a length-preserving properties and inherits the property of energy. In
Section 3, we show the unique solvability of the proposed scheme because the scheme
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is implicit and nonlinear. In Section 4, some numerical examples for exact solutions
are shown to demonstrate that the proposed scheme has good features. Finally, we
mention a convergence of the finite difference solution to the analytical solution. A
proof of the convergence works in progress. We will report about the convergence in
the forthcoming paper.

2. Proposed scheme and its properties. Let um
n = (um

1,n, um
2,n, um

3,n) denote
a finite difference solution at x = xn (n = 0, 1, · · · , N), t = tm (m = 0, 1, 2, · · ·). The
proposed finite difference scheme is as follows:

um+1
n − um

n

∆t
= um+1/2

n ×∆hum+1/2
n − µum+1/2

n × (um+1/2
n ×∆hum+1/2

n )(2.1)

for n = 0, 1, · · · , N − 1 and m = 0, 1, 2, · · ·,
um

0 = um
N , um

−1 = um
N−1(2.2)

for m = 0, 1, 2, · · · and

u0
n = u0(xn)(2.3)

for n = 0, 1, 2, · · · , N . Here xn − xn−1 = ∆x > 0, tm − tm−1 = ∆t > 0, u
m+1/2
n =

(um+1
n + um

n )/2 and ∆h is the standard discretization of ∆:

∆hun =
un+1 − 2un + un−1

∆x2
.

Hereinafter, we will show that the above scheme inherits a length-preserving prop-
erty and energy structure from the original problem.

By taking an inner product of (2.1) with u
m+1/2
n , we easily obtain

|um+1
n | = |um

n |
for any m and n. This means that the proposed scheme has a length-preserving
property. Moreover, this fact leads to the boundedness of the finite difference solutions
in l∞ norm.

Let Eh(um) be the discrete energy defined by

Eh(um) := ||D+um||22
Here D+ is a finite difference operator defined by

D+un :=
un+1 − un

∆x

and || · ||2 means

||v||2 =
(N−1∑

n=0

|vn|2∆x
)1/2

.

Note that the following relationship is called “summation by parts” which is a discrete
analogue of integration by parts:

N−1∑
n=0

(D−an)bn = −
N−1∑
n=0

an(D+bn)
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where an and bn are periodic in n and D− is a finite difference operator defined by

D−un :=
un − un−1

∆x
.

By taking an inner product of (2.1) with ∆hu
m+1/2
n and using “summation by parts”

and boundary condition (2.2), we obtain

Eh(uM ) = Eh(u0)− 2µ

M−1∑
m=0

||um+1/2 ×∆hum+1/2||22∆t.

The above result shows that the finite difference solution of (2.1) satisfies a discrete
version of (1.2).

Remark: We here note some other methods. We first mention the projection method
(for example, see [1]). This method is useful to keep the length of numerical solutions.
In this procedure, we first calculate the intermediate solution ũn by some scheme, –
for example, we may use an implicit scheme –, and next project to a unit sphere,
that is, um+1

n = ũn/|ũn|. Thus, the length of numerical solutions are always equal
to 1. But there is no guarantee to inherit the energy property. Next we mention the
designing methods of a finite difference scheme from viewpoint of energy structure.
For example, D. Furihata proposed a procedure to design a finite difference scheme
which inherits energy structure from the original problem (see [2]).

3. Unique existence of the solution to the proposed scheme. In this sec-
tion we establish an unique existence of finite difference solution of (2.1) at each time
step because the proposed scheme is implicit. We first show the uniqueness.

Lemma 3.1. Suppose that there exists solution of (2.1). If

∆t

∆x2
<

1
2 + 3µ

,

then the solution is unique.
Sketch of proof. Suppose that there are two solutions vn and wn which satisfy

(2.1) as um+1
n . By using an ×∆han = an × (an+1 + an−1)/∆x2, we have

||w − v||∞ ≤ ∆t

∆x2

(
2||w − v

2
||∞ · ||w + um

2
||∞ + 2||v + um

2
||∞ · ||w − v

2
||∞

+2µ||w − v

2
||∞ · ||w + um

2
||2∞ + 2µ||v + um

2
||∞ · ||w − v

2
||∞ · ||w + um

2
||∞

+2µ||v + um

2
||2∞ · ||w − v

2
||∞

)

≤ (2 + 3µ)
∆t

∆x2
||w − v||∞

since ||(v + um)/2||∞ ≤ 1 and ||(w + um)/2||∞ ≤ 1. Thus we have the assertion.

Next we show the existence of a solution.

Theorem 3.2. If

∆t

∆x2
< min

{ M − 1
M2 + µM3

,
1

2M + 3µM2

}
(3.1)



110 A. Fuwa, T. Ishiwata and M. Tsutsumi

for some M > 1, then the solution of (2.1) exists.
We only mention the outline of proof. We use iteration:

vk+1
n − um

n

∆t
=

vk
n + um

n

2
×∆h

vk
n + um

n

2
(3.2)

−µ
vk

n + um
n

2
× (

vk
n + um

n

2
×∆h

vk
n + um

n

2
)

and construct a sequence {vk
n}. The next lemma shows the boundedness of {vk

n}.

Lemma 3.3. Let M be a positive constant larger than 1. Suppose that |um
n | = 1.

If

||v
0 + um

2
||∞ ≤ M(3.3)

and
∆t

∆x2
≤ M − 1

M2 + µM3
,(3.4)

then we have

||v
k + um

2
||∞ ≤ M

for any k ∈ N.
Sketch of proof. Let wk

n = (vk
n + um

n )/2. Using (3.2), we obtain

wk+1
n =

vk+1
n − um

n

2
+ um

n

= um
n +

∆t

2∆x2

(
wk

n × (wk
n+1 + wk

n−1)− µwk
n ×

(
wk

n × (wk
n+1 + wk

n−1)
))

.

Thus, we have

||wk+1||∞ ≤ 1 +
∆t

∆x2
(||wk||2∞ + µ||wk||3∞).

If ||wk||∞ ≤ M , then we have

||wk+1||∞ ≤ 1 +
∆t

∆x2
(M2 + µM3)

≤ M.

under the conditions (3.4). Thus, we have the assertion.

Remark: If we set v0
n = um

n , then (3.3) holds for any M > 1.

Next we show the convergence of {vk
n} as k → ∞. By a similar argument as in

the previous two proofs, we obtain the following:

vk+2
n − vk+1

n

∆t
=

vk+1
n − vk

n

2
× wk+1

n+1 + wk+1
n−1

∆x2
+ wk

n ×
vk+1

n+1 − vk
n+1 + vk+1

n−1 − vk
n−1

2∆x2

−µ

(
vk+1

n − vk
n

2
×

(
wk+1

n × wk+1
n+1 + wk+1

n−1

∆x2

)
+ wk

n ×
(vk+1

n − vk
n

2
×

wk+1
n+1 + wk+1

n−1

∆x2

)
+ wk

n ×
(
wk

n ×
vk+1

n+1 − vk
n+1 + vk+1

n−1 − vk
n−1

2∆x2

))
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By the previous lemma, we have

||vk+2 − vk+1||∞ ≤ (2M + 3µM2)
∆t

∆x2
||vk+1 − vk||∞

and this shows that {vk
n} has a limit v∗n = limk→∞ vk

n under the assumption (3.1).
Finally, we have the theorem.

4. Numerical examples. In this section we show some numerical examples for
exact solutions to verify the effectiveness of the proposed scheme.

4.1. Exact solutions. In this subsection we propose non-trivial exact solutions
for Landau-Lifshitz equation (1.1) on Ω = [−1, 1] with a periodic boundary condition.
Let α ∈ R and l ∈ Z. The exact solution is given by

u(x, t) = (u1(x, t), u2(x, t), u3(x, t))

=
( sin α cos [k · x− φ(x, t;α, k, µ)]

d(t;α, k, µ)
,
sin α sin [k · x− φ(x, t; α, k, µ)]

d(t;α, k, µ)
,

ek2µt cos α

d(t; α, k, µ)

)

where k = lπ, d(t; α, k, µ) =
√

sin2 α + e2k2µt cos2 α and

φ(x, t; α, k, µ) =
1
µ

log

(
d(t;α, k, µ) + ek2µt cosα

1 + cos α

)
.

Note that we can easily obtain the exact solution for higher dimensional case.
Letting µ → 0+, we have

u1(x, t) = sin α cos
(
k · x− (|k|2 cosα)t

)
,

u2(x, t) = sin α sin
(
k · x− (|k|2 cosα)t

)
,

u3(x, t) = cosα.

We see that the function u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is an exact solution for
Heisenberg equation. This solution is already shown in [4].

Remark: In [3], Lakshmanan and Nakamura propose a method for constructing the
exact solution of Landau-Lifshitz equation. However, their proposed procedure is not
valid in general (see [5]). Thus, we cannot obtain the above exact solution by their
method.

4.2. Numerical results. Figure 4.1 and 4.2 show numerical results for exact
solutions by the proposed scheme with ∆x = 1/30, ∆t = 1/20000.

Figure 4.1 shows a view of u1 of the numerical solution in (a), a view of u1 of the
exact solution given in the previous subsection in (b) and a behavior of energy in (c)
in the case µ = 0. We can see that the conservation of energy holds.

Figure 4.2 shows a view of u1 of the numerical solution in (a), a view of u1 of the
exact solution given in the previous subsection in (b) and a behavior of energy in (c)
in the case µ = 0.1. We can see that the dissipation of energy holds and the behavior
of energy of the numerical solution is a very good agreement with that of the exact
solution.

From the numerical experiments, we may conclude that the proposed scheme has
good features.
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Fig. 4.1. Numerical results for µ = 0
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