
Proceedings of the Czech–Japanese Seminar in Applied Mathematics 2006

Czech Technical University in Prague, September 14-17, 2006
pp. 156–165

APPLICATION OF NON-LINEAR DIFFUSION IN ALGORITHMS OF
MATHEMATICAL VISUALIZATION

JAN MACH1

Abstract. The article briefly summarizes numerical solution of a parabolic equation used in
the context of mathematical visualization. The presented nonlinear initial-boundary value problem
serve in vector field visualization. Its numerical solution is based on spatial discretization by finite
differences, and time discretization is given by the Runge-Kutta-Merson scheme. A simple paral-
lelization using POSIX threads is shown to speed-up the numerical computation. The computational
results demonstrate the process of vector field pattern sharpening in an initial noise and computation
speed-up due to parallelization.

Key words. Degenerate diffusion, FDM, method of lines, mathematical visualization, parallel
programming, POSIX threads.

AMS subject classifications. 35K55, 35K60, 35K65, 35K50, 35K45, 68N19

1. Introduction. Numerical simulations often result in large amounts of data
which we need to display suitably to be able to understand them. The field study-
ing these problems is called mathematical visualization. Numerical solutions of flow
models simulating some natural phenomena such as liquid flow (see [5]), pollution
transport in atmosphere (see [8]) give as results describing some vector field. That is
why a vector field visualization is an important part of mathematical visualization.
There are many methods which can be used for vector field visualization (see [6]) and
new ones are still being developed. One of the modern methods is based on anisotropic
diffusion. This paper deals with a numerical solution of degenerate parabolic equation,
a key part of anisotropic diffusion model.

2. Anisotropic diffusion model. Let Ω be a bounded domain in R2. Let
v : Ω → R2 be a given vector field on the domain Ω, which we assume to be contin-
uous and non-vanishing. One of the modern methods used for vector field visualiza-
tion is based on solving the following initial-boundary value problem for a non-linear
anisotropic diffusion PDE (see [9])

∂

∂t
ρ− div(A(v, ‖∇ρε‖)∇ρ) = f(ρ) in Ω× (0, T), (2.1a)

ρ(0, x) = ρ0(x) x ∈ Ω, (2.1b)
∂

∂~n
ρ = 0 x ∈ ∂Ω, t ∈ (0, T), (2.1c)

where A is nonlinear function of gradient ∇ρε called diffusion matrix defined as

A(v, ‖∇ρε‖) = B(v)T

(
α(‖v‖) 0

0 G(‖∇ρε‖)

)
B(v). (2.2)

The function ρε = Gε ∗ ρ where Gε is a Gaussian kernel causes the problem (2.1) to
have better mathematical properties (see [9]). B is a continuous orthogonal mapping

1Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Tech-
nical University, Prague.

156

Application of degenerate diffusion in algorithms of mathematical visualization 157

such that B(v)v = ‖v‖e1 where {ei}i=1,2 are the axes directions in R2. Function
α : R+

0 → R+ controls diffusion in the vector field direction.We choose it to be a
monotone function satisfying the following properties

lim
s→+∞

α(s) = αmax, αmax ∈ R+, (2.3a)

α(0) > 0. (2.3b)

The function G : R+
0 → R+ is an edge enhancing coefficient which acts in the direction

orthogonal to the vector field. We choose it to be a monotone function satisfying

G(0) = β, β ∈ R+ (2.4a)
lim

d→+∞
G(d) = 0, (2.4b)

The evolution for a vanishing right hand side f would decrease image contrast due to
diffusion. Therefore, we define f : [0, 1] → R such as

f(0) = 0,

f(1) = 0,

f < 0 on (0.0, 0.5), (2.5)
f > 0 on (0.5, 1.0),

to increase contrast of the evolving solution. Solving the above problem with some
initial noise ρ0 gives us a solution ρ(t) for all times which can be written in a form
where we can see the vector field pattern being successively sharpened.

3. Algorithm and implementation. We solved the problem (2.1) by the
method of lines. This method consists of two steps. First, a spatial discretization
of the problem is performed. It results in a system of ODE’s which is then solved by
a modified Runge-Kutta method.

Finite differences are used to perform a spatial discretization. We consider a
regular rectangular grid ωh in 2D. Grid values and spatial differences of the function
ρ are denoted as follows

h = (h1, h2), h1 =
L1

N1
, h2 =

L2

N2
(3.1)

xij = [x1
ij , x

2
ij], ρij = ρ(xij) (3.2)

ρx1,ij =
ρij − ρi−1,j

h1
, ρx1,ij =

ρi+1,j − ρij

h1
, (3.3)

ρx2,ij =
ρij − ρi,j−1

h2
, ρx2,ij =

ρi,j+1 − ρij

h2
(3.4)

and

∇hρ = [ρx1 , ρx2],∇hρ = [ρx1 , ρx2] (3.5)

Using the above declared notation, we can write the difference scheme for the problem
(2.1) in the following form

d
dt

ρ = ∇h · (A(v, ‖∇hρh,ε‖)∇hρh)− f(ρh) in ωh × (0, T), (3.6a)

ρh(0, x) = ρ0,h(x) x ∈ ωh, (3.6b)
∂

∂~n
ρh = 0 x ∈ γh, t ∈ (0, T), (3.6c)

158 J. Mach

CPU0 CPU1

CPU0

CPU0 CPU1

CPU2 CPU3

Fig. 3.1. Splitting of the domain Ω for parallel computation.

which can be rewritten as the following system of ODE’s

∂

∂t
ρ(t, xi,j) = ρi+1,j(

Ai+1,j
11

h2
1

+
Ai+1,j

12

h1h2
) − ρi,j(

Ai+1,j
11

h2
1

+
Ai,j

11

h2
1

+

Ai,j
12

h1h2
+

Ai,j
21

h1h2
+

Ai,j+1
22

h2
2

+
Ai,j

22

h2
2

) + ρi−1,j(
Ai,j

11

h2
1

+
Ai,j

21

h1h2
) −

− ρi+1,j−1
Ai,j

12

h1h2
+ ρi,j−1(

Ai,j
12

h1h2
+

Ai,j
22

h2
2

) +

+ ρi,j+1(
Ai,j+1

21

h1h2
+

Ai,j+1
22

h2
2

) − ρi−1,j+1
Ai,j+1

21

h1h2
+ f(ρij), (3.7a)

ρ(0, xij) = ρ0(xij), (3.7b)
ρi,0(t) = ρi,1(t), ρN1,j(t) = ρN1−1,j(t),
ρi,N2(t) = ρi,N2−1(t), ρ0,j(t) = ρ1,j(t), (3.7c)
∀i ∈ 1, . . . , N1 − 1,∀j ∈ 1, . . . , N2 − 1,

∀t ∈ (0, T),

where

A =
(

A11 A12

A21 A22

)
. (3.8)

We used the Runge-Kutta-Merson method (see [11]) to solve the above system
of ODE’s. It is a modified Runge-Kutta method with adaptive time stepping. The
time-step length adaptivity may shorten the time needed for computation. It can be
written in the following algorithm

Application of degenerate diffusion in algorithms of mathematical visualization 159

— Algorithm R.-K.-M. —
1 compute k1,ij(dt)
2 compute k2,ij(dt)
3 compute k3,ij(dt)
4 compute k4,ij(dt)
5 compute k5,ij(dt)
6 q = max{|2k1,ij(dt)− 9k3,ij(dt) + 8k4,ij(dt)− k5,ij(dt)|/30}
7 if(q < adaptivity)
8 {
9 yij(t0 + dt) = yij(t0) + (k1,ij(dt) + 4k4,ij(dt) + k5,ij(dt))/6

10 t0 = t0 + dt
11 }
12 dt = dtω(adaptivity/q)0.2

We usually choose adaptivity ∈ [10−6, 10−3], ω ∈ [0.8, 0.9]. Denoting f the right hand
side in (3.7a) the coefficients k1, ..., k5 can be written in the following form

k1(dt) = dtf(t0, y(t0))
k2(dt) = dtf(t0 + dt/3, y(t0) + k1(dt)/3)
k3(dt) = dtf(t0 + dt/3, y(t0) + (k1(dt) + k2(dt))/6)
k4(dt) = dtf(t0 + dt/2, y(t0) + 0.125k1(dt) + 0.375k3(dt)) (3.9)
k5(dt) = dtf(t0 + dt, y(t0) + 0.5k1(dt)− 1.5k3(dt) + 2.0k4(dt))

The numerical algorithm works on rectangular grids (computation of coefficients
k1, ..., k5 and solution y(t0 + dt)) and can be easily parallelized. Splitting of the
domain Ω is shown on Figure 3.1. Computations on all sub-grids can be performed in
parallel. This was implemented using POSIX threads which are commonly available
on UNIX systems and enable program parallelization on systems with shared memory.
To measure a computation speed-up due to the performed parallelization of numerical
algorithm, a series of computations on the following computers was done.

• 4x CPU HP PA-RISC, 1GHz, 12GB RAM

• 2x CPU Dual Core AMD Opteron 270, 2GHz, 4GB RAM

Tables 3.1, 3.2 show time needed to complete the computation for given grid
dimension and number of threads. Numbers in brackets in the last two columns
indicate, what portion of time needed for the sequential computation was needed
for the corresponding parallel computation. We can see a significant speed-up of
computations especially for large grids.

160 J. Mach

grid 1 thread 2 threads 4 threads
50× 50 0:11 (100.00%) 0:08 (72.73%) 0:07 (63.64%)

100× 100 0:46 (100.00%) 0:25 (54.34%) 0:16 (34.78%)
150× 150 1:46 (100.00%) 0:55 (51.89%) 0:32 (33.92%)
200× 200 3:07 (100.00%) 1:37 (51.87%) 0:53 (28.34%)
250× 250 4:54 (100.00%) 2:34 (52.38%) 1:20 (27.21%)
300× 300 7:40 (100.00%) 4:18 (56.08%) 2:02 (26.52%)
400× 400 12:41 (100.00%) 6:29 (51.12%) 3:18 (26.02%)
500× 500 21:06 (100.00%) 10:47 (51.11%) 5:07 (24.25%)
600× 600 31:46 (100.00%) 16:40 (52.47%) 7:26 (23.40%)
700× 700 45:16 (100.00%) 24:04 (53.17%) 11:37 (25.66%)
800× 800 1:00:44 (100.00%) 35:49 (58.97%) 14:49 (24.40%)
900× 900 1:17:16 (100.00%) 43:39 (56.49%) 19:39 (25.43%)

1000× 1000 1:37:50 (100.00%) 58:07 (59.40%) 24:12 (24.74%)
1100× 1100 1:57:52 (100.00%) 1:08:59 (58.52%) 31:55 (27.08%)
1300× 1300 2:50:03 (100.00%) 1:44:56 (61.71%) 48:19 (28.41%)
1600× 1600 4:14:46 (100.00%) 2:38:46 (62.32%) 1:22:50 (32.51%)

Table 3.1
Times spent for computation measured on the PARISC system for different grid dimensions

and number of threads

grid 1 thread 2 threads 4 threads
50× 50 0:05.93 (100%) 0:05.88 (99.16%) 0:05.17 (87.18%)

100× 100 0:24.86 (100%) 0:15.47 (62.13%) 0:15.47 (62.13%)
150× 150 0:58.07 (100%) 0:34.29 (59.05%) 0:31.03 (53.43%)
200× 200 1:50.64 (100%) 1:07.57 (61.07%) 0:52.76 (47.69%)
250× 250 2:39.32 (100%) 1:32.88 (58.30%) 1:02.23 (39.06%)
300× 300 3:55.81 (100%) 2:13.84 (56.76%) 1:25.89 (36.42%)
400× 400 7:19.59 (100%) 4:05.14 (55.77%) 2:32.17 (34.62%)
500× 500 11:11.14 (100%) 6:16.87 (56.15%) 3:46.82 (33.80%)
600× 600 16:42.24 (100%) 9:15.33 (55.40%) 5:19.53 (31.88%)
700× 700 21:50.84 (100%) 12:27.02 (56.98%) 6:57.50 (31.85%)
800× 800 28:54.11 (100%) 16:18.26 (56.41%) 8:56.33 (30.93%)
900× 900 36:21.57 (100%) 20:45.55 (57.09%) 11:05.56 (30.51%)

1000× 1000 47:25.41 (100%) 26:26.64 (55.76%) 13:32.90 (28.57%)
1100× 1000 57:11.07 (100%) 31:42.46 (55.45%) 16:42.29 (29.21%)
1300× 1300 1:25:29.58 (100%) 49:13.30 (57.57%) 22:28.05 (26.28%)
1600× 1600 2:25:47.37 (100%) 1:24:32.78 (57.99%) 34:08.62 (23.42%)

Table 3.2
Times needed for computation measured on the Opteron system for different grid dimensions

and number of threads

Application of degenerate diffusion in algorithms of mathematical visualization 161

4. Model parameters. The functions f , G and α appearing in the anisotropic
diffusion model description (see Section 2) were defined as follows

f(ρ) = −γρ(ρ− 0.5)(ρ− 1.0), γ = const > 0.0,

G(d) =
β

1 + d2
, β > 0.0, (4.1)

α(s) = αmax(1.0− δ

1 + s2
), αmax > 0.0, 0.0 < δ < 1.0.

The parameters γ, β, αmax, δ influence the process of vector field pattern sharp-
ening. For some parameter values combinations the results are not satisfactory (see
Figures 4.1a, 4.1b, 4.1c).

a b

c d

Fig. 4.1. Results of vector field pattern sharpening for different parameters.

The greater the parameter β is, the stronger is the diffusion in the direction
orthogonal to vector field. Therefore, we must choose β relatively small in comparison
with parameter αmax value, which influences the diffusion in vector field direction.

162 J. Mach

When this is not satisfied, we may get results like in Figures 4.1a, 4.1b. The first
example shows the case, when diffusion in the orthogonal direction is much stronger
than diffusion in vector field direction. In the second example, the diffusion in vector
field direction is stronger, but not enough to produce sharp edges as we can see in
Figure 4.1d. It is also necessary to choose parameter αmax value sufficiently higher
than parameter γ value not to get results such as in Figure 4.1c.

To find out parameters which provide satisfactory results, such as in Figure 4.1d,
a series of computations for different parameter values combinations was done. The
vector field used for this test was ~v = [y, (1.0 − x2)y − x], x ∈ [−4, 4], y ∈ [−4, 4].
Having analyzed computed data, we can now recommend parameters in Table 4.1.
Using these values the vector field pattern should be sharpened enough by the time
t = 2.0. For some of our results see the next section.

parameter recommended values
γ 0.001 - 3.001
β 0.0001

αmax 35 - 50
δ 0.5

Table 4.1
Recommended parameter values.

5. Results. Figures 5.3, 5.2 show the process of vector field pattern sharpening
by solving the equation (2.1). In both cases we used β = 0.0001, γ = 3.0, αmax = 50.0,
δ = 0.5 parameter values. We used vector fields ~v = [8.0, 0.0] (Figure 5.2) and Benard
Convection (Figure 5.3), which can be downloaded from the web page [10]. These are
visualized for comparison on Figure 5.1 by matlab’s built-in function quiver.

a b

Fig. 5.1. (a) Vector field represents a fluid motion (a) and rotation (b)

Acknowledgement. Partial support of the project ”Applied Mathematics in
Physics and Technical Sciences”, No. MSN6840770010 of the Ministry of Education,
Youth and Sports of the Czech Republic is acknowledged.

REFERENCES

[1] M. Beneš, Mathematical analysis of phase-field equations with numerically efficient coupling
terms, Interfaces and Free Boundaries 3 (2001), 201–221.

Application of degenerate diffusion in algorithms of mathematical visualization 163

(a) t = 0.0 (b) t = 0.2

(c) t = 0.6 (d) t = 1.0

(e) t = 1.4 (f) t = 2.0

Fig. 5.2. The process of vector field pattern sharpening by solving the problem (2.1): β = 0.0001,
γ = 3.0, αmax = 50.0, δ = 0.5

164 J. Mach

(a) t = 0.0 (b) t = 0.2

(c) t = 0.6 (d) t = 1.0

(e) t = 1.4 (f) t = 2.0

Fig. 5.3. The process of vector field pattern sharpening by solving the problem (2.1): β = 0.0001,
γ = 3.0, αmax = 50.0, δ = 0.5

Application of degenerate diffusion in algorithms of mathematical visualization 165

[2] M. Beneš, Diffuse-Interface Treatment of the Anisotropic Mean-Curvature Flow, Applications
of Mathematics 48 (2003), 437–453.

[3] P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE
Trans. Pattern Anal. Mach. Intell. 12 (1990), 629–639.

[4] J. Kačur and K. Mikula, Solution of nonlinear diffusion appearing in image smoothing and
edge detection, Appl. Numer. Math 17 (1995), 47–59.

[5] J. Mikyška, Numerical Model for Simulation of Behaviour of Non-Aqueous Phase Liquids in
Heterogeneous Porous Media Containing Sharp Texture Transitions, PhD thesis, Czech
technical University in Prague, FNSPE (2005).

[6] M. Petřek, Algorithm of mathematical visualization and their use in mathematical modeling.
Diploma thesis, Dept. of Mathematics, Faculty of Nuclear Sciences and Physical Engineer-
ing, Czech Technical University in Prague, 2004, (in Czech).

[7] H.-C. Hege and K. Polthier (eds), Mathematical Visualization: Algorithms, Application
and Numerics, Springer-Verlag Berlin/Heidelberg, 1998.

[8] P. Bauer, Mathematical Modelling and Numerical Simulation of Pollution Transport in the
Atmospheric Boundary Layer, Proceedings on the Conference Topical Problems of Fluid
Mechanics, Praha (2005), 7–10.

[9] T. Preußer, M. Rumpf, Anisotropic Nonlinear Diffusion in Flow Visualization, In IEEE
Visuazliation’99, 1999, 323–332.

[10] M. Rumpf, Research group web page,
http://numod.ins.uni-bonn.de/exports/tdFlowVis/index.html.

[11] M. Holodniok, A. Kĺıč, M. Kub́ıček and M. Marek, Methods of Analysis of Nonlinear
Dynamical Models, Academia Praha (1986), (in Czech).

