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VECTOR FIELD VISUALIZATION BY MEANS OF ANISOTROPIC
DIFFUSION

PAVEL STRACHOTA1

Abstract. We propose a method of vector field visualization based on noisy texture smearing.
The smearing process is carried out by solving the Allen-Cahn equation with advection. We state the
theorem of existence and uniqueness of the weak solution and derive the appropriate a priori estimate.
The numerical algorithm for PDE solution is introduced together with an idea of its parallelization.
Finally, some results are presented.
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1. Introduction. Suppose we have a static vector field v defined in a rectangular
domain Ω = (0, L1)× (0, L2). Our goal is to make its stream lines emerge as smudges
by means of smearing a noisy texture on Ω in the direction of the field. In addition
to smearing, it is sometimes reasonable to make the texture move (advect) in the
direction of the vector field.

For the above stated purposes, it is possible to use a diffusion parabolic PDE with
the incorporated diffusion anisotropy and with the advection term. (see [18, 19, 4, 7]).

2. Formulation. Let p : J × Ω 7→ R, p = p(t,x) be the function of texture
intensity at each point x ∈ Ω and at time t ∈ J where J = [0, T ] is a time interval.
The initial boundary-value problem for the Allen-Cahn equation with advection (see
[19]) reads as:

ξ2 ∂p

∂t
+ ξ2v · ∇p = ξ2∆p + f0(p) + c0Fξ, (2.1)

∂p

∂n

∣∣∣∣
∂Ω

= 0, (2.2)

p(0, x) = I(x), (2.3)

where

f0(p) = p(1− p)
(

p− 1
2

)
.

In the above problem, the term ∆p is responsible for isotropic diffusion and the term
v ·∇p causes texture advection. (see [4, 6, 8, 5]). The polynomial f0 makes nucleation
occur during the time. In this context, nucleation is a formation of areas where the
value of p is near 0 or 1. As descibed for example in [19, 6, 7], the parameter ξ
is proportional to the diffuse interface layer between such areas. We usually choose
ξ such that it is small in comparison with the dimensions of Ω. The influence of
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the parameter F can be explained in the context of the related problem for mean
curvature flow

vΓ = −κΓ + F. (2.4)

For details, we refer the reader to [7, 4, 6, 19].
In the context of visualization, if I : Ω 7→ R represents the intensity of a noisy

texture at each point, the solution p will reflect the gradual diffusion of the initial
image I with increasing time. Both the state of p at some final time T and the entire
solution evolution can be regarded as the result.

Introducing anisotropy. Our objective is to focus the diffusion mainly in the
direction of the vector field. According to (2.1) with the term ∆p written as ∇· (∇p),
the diffusion speed (i.e. the value of the derivative ∂p

∂t ) at a given point is proportional
to the norm of the gradient of p. Therefore, we replace ∇p in ∇·(∇p) by an expression
which will have a large absolute value only when the gradient direction and the vector
field direction (nearly) coincide.

Consider a norm Φ0 defined on R2, which is called the dual Finsler metric in the
context of the Finsler geometry (see [3, 4, 6]). We define its derivative with respect

to the vector η =
(

η1

η2

)
∈ R2 as the vector

Φ0
η(η) =

(
∂η1Φ0(η)
∂η2Φ0(η)

)
.

Next, we replace the gradient of p by the term T 0(∇p), which represents a so-called
Φ-gradient of p (∇Φp) and is defined as

T 0(∇p) = Φ0(∇p)Φ0
η(∇p),

where T 0 : R2 7→ R2. Hence, the term ∆p in (2.1) is replaced by ∇ · (T 0(∇p)
)
.

If we choose Φ0(η) = |η| then T 0(η) = η and hence ∇ · (T 0(∇p)
)

= ∆p which is
the original isotropic case. In the text below, we consider

Φ0(η) =
√

α · (η̃1)2 + β · (η̃2)2. (2.5)

In general, we have α = α(v(x), x) := α(x), β = β(x) and η̃1, η̃2 are the coordinates
of the vector η in the orthonormal basis ( 1

v v, 1
v v⊥). Choosing α À β, the term

Φ0(∇p) (as well as the absolute value of the whole anisotropic term ∇ · (T 0(∇p)
)
)

will be much larger in case of ∇p ‖ v than in case of ∇p ⊥ v.
Remark. The above described anisotropic model is a generalization of the diffusion
tensor model (see [21, 13]), which is based on replacing ∆p by the term

∇ · (D(∇p)) ,

where D is a symmetric positive definite matrix. Indeed, it is easy to verify that
defining

Φ0(η) =
√

ηTDη,

we obtain

T 0(∇p) = D(∇p).
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On the other hand, our special choice (2.5) can be expressed in terms of the diffusion
tensor model. The corresponding tensor is such that it has the form

D =
(

α
β

)
,

expressed in the basis ( 1
v v, 1

v v⊥).

Anisotropic diffusion problem. We formulate the anisotropic diffusion prob-
lem for the PDE of Allen-Cahn type, which reads as follows:

ξ2 ∂p

∂t
+ ξ2v · ∇p = ξ2∇ · T 0(∇p) + f0(p) + c0Fξ in J × Ω, (2.6)

p|∂Ω = 0 on J × ∂Ω, (2.7)
p|t=0 = I in Ω. (2.8)

Remark. For the sake of simplicity, we consider the homogeneous Dirichlet boundary
condition instead of (2.2) in the problem analysis. However, there is a choice of various
combinations of boundary conditions in the computational studies.

3. Mathematical analysis. We introduce the notations

(u, v) =
∫

Ω

u(x)v(x)dx , u, v ∈ L2(Ω),

(∇u,∇v) =
∫

Ω

∇u(x) · ∇v(x)dx , u, v ∈ H1
0(Ω).

The norms induced by the above scalar products will be denoted by ‖u‖, ‖∇u‖ re-
spectively.

The function p ∈ L2(J ; H1
0(Ω)) is the weak solution of the anisotropic diffusion

problem (2.6-2.8) if it satisfies

ξ2 d
dt

(p, q) + ξ2 (v · ∇p, q) + ξ2
(
T 0(∇p),∇q

)
= (f0(p), q) + (c0Fξ, q) ,

p(0) = I, (3.1)

for each q ∈ D(Ω), in the sense of D′(J ).
Theorem. If I ∈ H1

0(Ω) and for ξ > 0 fixed, there exists a unique weak solution p of
the anisotropic diffusion problem (3.1) which satisfies

p ∈ L2(J ; H2(Ω) ∩H1
0(Ω)),

∂p

∂t
∈ L2(J ; L2(Ω)).

Proof. To show existence, we use the Faedo-Galerkin method together with the method
of compactness (see e.g. [10, 7, 5, 4]). We derive the a priori estimate for the problem
(2.6-2.8).

As the essential step, we construct a sequence of approximations of the solutions
of the original problem, using the orthonormal basis {vi}i∈N of L2(Ω) consisting of
eigenfunctions of the operator −∆ coupled with the homogeneous Dirichlet boundary
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conditions, together with the corresponding eigenvalues {λi}i∈N. Additionally, assume
that

(∀i ∈ N)
(
vi ∈ C2(Ω) ∪ C1(Ω̄)

)
.

Let

Vm = [v1, v2, ..., vm]λ

be a finite-dimensional subspace of L2(Ω) and let

Pm : L2(Ω) 7→ Vm

denote the projector on Vm. We seek for an approximation of the solution of the
problem (3.1)

pm : [0, T ) 7→ Vm,

which solves the auxiliary problem (∀j ∈ m̂)

ξ2 d
dt

(pm, vj) + ξ2 (v · ∇pm, vj) + ξ2(T 0(∇pm),∇vj) = (f0(pm), vj) + (c0Fξ, vj) ,

pm(0) = Pmpini. (3.2)

We express the solution of (3.2) using the basis functions vj as

pm(t) =
m∑

j=1

γm
j (t)vj .

After substituting this to (3.2), we obtain a system of ODEs for the unknown func-
tions of time γm

i (t). Using the method of compactness, it is possible to show strong
convergence of the subsequence of pm to the weak solution of (3.1), provided we have
the boundedness of pm and its derivatives in the appropriate norms. These properties
follow from the a priori estimate.

A priori estimate of the auxiliary solution. We multiply the equality (3.2)
by dγm

j /dt and sum over j. After rearrangement of the respective terms (see [18]),
we obtain

ξ2

∥∥∥∥
∂pm

∂t

∥∥∥∥
2

+
ξ2

2
d
dt

(
Φ0(∇pm)2, 1

)
+

d
dt

(w0(pm), 1) = ξ2

(
1
ξ
c0F − v · ∇pm,

∂pm

∂t

)
,

(3.3)
where w′0 = f0. Assume that the vector field is bounded, i.e.

(∃V > 0) (∀x ∈ Ω) (‖v(x)‖ ≤ V ) .

Due to the Schwarz inequality on R2 and further using the equivalence of the Euclidean
norm and the Φ0 norm, we can estimate

|v · ∇pm| ≤ V |∇pm| ≤ CΦ0(∇pm), (3.4)
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where C > 0. For the estimate of the right hand side, we use the Schwarz and then
the Young inequality and get

ξ2

(
1
ξ
c0F − v · ∇pm,

∂pm

∂t

)
≤ ξ2

2

(∥∥∥∥
∂pm

∂t

∥∥∥∥
2

+

((
1
ξ
c0F − v · ∇pm

)2

, 1

))

≤ ξ2

2

∥∥∥∥
∂pm

∂t

∥∥∥∥
2

+
ξ2

2

((
1
ξ
|c0F |+ CΦ0(∇pm)

)2

, 1

)
.

In the last step, we use the triangle inequality and the relation (3.4). Let us denote
C1 := 1

ξC |c0F |. If we use the obvious inequality

(a + b)2 ≤ 2a2 + 2b2,

we can remove the squared sum on the right hand side, so that it is possible to continue
in the upper estimates,

ξ2

(
1
ξ
c0F − v · ∇pm,

∂pm

∂t

)
≤ ξ2

2

∥∥∥∥
∂pm

∂t

∥∥∥∥
2

+ 2C2 ξ2

2
(
Φ0(∇pm)2, 1

)
+ C2ξ2

(
C2

1 , 1
)
.

After substituting to (3.3), we get

ξ2

2

∥∥∥∥
∂pm

∂t

∥∥∥∥
2

+
ξ2

2
d
dt

(
Φ0(∇pm)2, 1

)
+

d
dt

(w0(pm), 1) ≤ 2C2 ξ2

2
(
Φ0(∇pm)2, 1

)

+C2ξ2
(
C2

1 , 1
)
. (3.5)

Due to nonnegativity of the terms
∥∥∥∂pm

∂t

∥∥∥
2

and 2C2 (w0(pm), 1), this yields

d
dt

(
ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
≤ 2C2

(
ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)

+C2ξ2
(
C2

1 , 1
)
. (3.6)

We move the first term of the right hand side to the left and multiply the inequality
by e−2C2t. Then

d
dt

((
ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
e−2C2t

)
≤ C2ξ2

(
C2

1 , 1
)
e−2C2t.

We integrate over [0, t] and obtain
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(t)

≤
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(0)e2C2t +

ξ2

2
(
C2

1 , 1
)
(e2C2t − 1︸ ︷︷ ︸

>0

). (3.7)

In the following, we return to the relation (3.5), where we estimate again the term
on the right hand side as

2C2 ξ2

2
(
Φ0(∇pm)2, 1

) ≤ 2C2

(
ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
.
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We integrate the resulting inequality with respect to t over the interval [0, T ] and
acquire

T∫

0

(
ξ2

2

∥∥∥∥
∂pm

∂t

∥∥∥∥
2
)

(t)dt +
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(T )

≤
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(0)

+ 2C2

T∫

0

(
ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(t)dt + C2ξ2

(
C2

1 , 1
)
T.

According to (3.7), it is possible to estimate the integral on the right as

2C2

T∫

0

(
ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
dt

≤
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(T )eC2

F T −
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(0)

+
ξ2

2
(
C2

1 , 1
)
(e2C2T − 1)− C2ξ2

(
C2

1 , 1
)
T,

so that we come to the estimate

T∫

0

(
ξ2

2

∥∥∥∥
∂pm

∂t

∥∥∥∥
2
)

(t)dt +
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(T )

≤
(

ξ2

2
(
Φ0(∇pm)2, 1

)
+ (w0(pm), 1)

)
(0)eC2T +

ξ2

2
(
C2

1 , 1
)
(e2C2T − 1). (3.8)

The inequality (3.8) implies that ∂pm

∂t and (via the norm equivalence - see (3.4)) also
∇pm are bounded in L∞ (J , L2(Ω)), independently of m. Thanks to the properties of
the double well potential w0, we also obtain the boundedness of pm in L∞ (J ,Ls(Ω))
for any 1 ≤ s ≤ 4.

4. Numerical solution. For numerical solution, we use the method of lines. The
spatial discretization is carried out by the finite difference method; for the temporal
discretization, we employ a 4th-order Runge-Kutta solver with adaptive time stepping.
First, let us introduce the notations

h = (h1, h2), hk :=
Lk

mk
, k ∈ {1, 2},

xi,j = (xi, yj) = (i · h1, j · h2), vi,j = (v1
i,j , v

2
i,j) := v(xi,j), ui,j = u(xi,j), (4.1)

ωh =
{(

ih1, jh2
) ∣∣i = 1, ..., m1 − 1, j = 1, ...,m2 − 1

}
,

ω̄h =
{(

ih1, jh2
) ∣∣i = 0, ..., m1, j = 0, ...,m2

}
, γh = ω̄h − ωh,
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Hh =
{
w

∣∣w : ω̄h → R
}

, Phu = u
∣∣
ω̄h

. (4.2)

In the sense of (4.1), we introduce the following discrete substitutes for derivatives,
gradient and divergence:

ux̄1,i,j =
ui,j − ui−1,j

h1
, ux1,i,j =

ui+1,j − ui,j

h1
,

ux̄2,i,j =
ui,j − ui,j−1

h2
, ux2,i,j =

ui,j+1 − ui,j

h2
,

ux̄1x1,i,j = (ux̄1)x1,i,j =
1

(h1)2
(ui+1,j − 2ui,j + ui−1,j) , (4.3)

∇̄hu = (ux̄1 , ux̄2) , ∇hu = (ux1 , ux2) , ∆hu = ux̄1x1 + ux̄2x2 ,

∇h · V = V 1
x1 + V 2

x2 , ∇̄h · V = V 1
x̄1 + V 2

x̄2 , V = (V 1, V 2).

Using the above definitions, we assemble the semi-discrete scheme of the problem
(2.6-2.8) for the unknown grid function ph : J → Hh:

ξ2 dph

dt
+ ξ2Ph(v) · ∇hph = ξ2∇h ·

(
T 0(∇̄hph)

)
+ f0(ph) + c0Fξ in J × ωh, (4.4)

ph|γh
= 0 on J × γh, (4.5)

ph(0) = PhI in ωh. (4.6)

Interpolating the grid function ph to Ω and using the method of compactness, it is
possible to show (see [6]).
Theorem. Let I ∈ H2(Ω). Then the solution ph of the semi-discrete scheme converges
in L2(J ,L2(Ω)) to the unique weak solution of the problem (2.6-2.8).
Remark. The above stated convergence is understood in the sense

lim
h→0

∥∥p−Qph
∥∥

L2(J ,L2(Ω))
= 0,

where Q is the interpolation operator.

5. Parallelization. The numerical algorithm has been parallelized using MPI
(Message Passing Interface, see [17]), the widely used message passing library designed
for parallel computing on distributed memory systems. The idea of parallelization of
the finite difference algorithm is to divide (decompose) the grid ωh into blocks, each
of those being handled by different process. Our choice was to compose a block of
several rows of the grid, as shown in Fig. 5.1a.

For the sake of the following explanation, suppose the division into blocks in the
manner ”b“ and suppose we use Runge-Kutta temporal discretization. We solve a sys-
tem of ODEs in the form ṗ = f(t,p), where p represents a vector of unknown scalar
functions of time, in our case p = ph. Due to the use of the 7-point scheme, for the cal-
culation of the right hand side f(t,p) in the nodes at the boundary of the block (I, J),
we need to know the values of p lying in up to three different adjacent blocks (again,
see Fig. 5.1). Similar situation also occurs in the bottom left corner of the block (I, J).
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Figure 5.1. Different methods of grid decomposition

Configuration Time [m:s]
1+1 6:12.77
2+1 3:49.73
3+1 3:05.42

Load balancing disabled

Configuration Time [m:s]
1+1 3:42.75
2+1 2:44.04
3+1 1:04.89

Load balancing enabled
Table 5.1

Computation times on a given number of
”
fast“ +

”
slow“ machines.

Generally, each block lying in the interior of the grid must obtain values from 6 of 8
adjacent blocks. Passing the boundary values among blocks is called synchronization.
During the coefficient calculation in the Runge-Kutta method, the previous coefficient
appears in the argument of the right hand side. It is therefore necessary to perform
synchronization before the calculation of each coefficient. Synchronization can easily
take advantage of nonblocking (asynchronous) MPI communication (see [17, 18]).

Load balancing. If we divide the grid of n × n nodes into N × N blocks, the
overall length of the block boundaries expressed by the number of nodes will be
2(N − 1)n. However, in case of the division into N2 row blocks, the boundary length
will be

(
N2 − 1

)
n. Already with four processes (N = 2), we interchange one half

more data. On the other hand, the row block division is easier to implement and
moreover, it has the following advantages:

1. The number of processes can be arbitrary. (not necessarily a multiple of M
or N).

2. The individual blocks may have different sizes.
The above properties allowed us to propose an interesting method of dynamic load
balancing during the calculation. It is based on the changes of the block sizes, cor-
responding to the particular processes. For a given period, each process accumulates
the wall time of its autonomous calculations (between synchronizations). The ac-
quired time values are then converted to relative speeds of the processes. Afterwards,
the master process calculates the new block sizes, proportional to the process speeds.
We assume that with such block sizes, the idle times of the processes (waiting for
synchronization) should be eliminated. Rearrangement of the blocks requires data
to be redistributed among the blocks. The algorithm implementation tries to mini-
mize the amount of data being sent and provides mechanisms to avoid meaningless
rearrangements (when the changes to be made are negligible).
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Arrow visualization t = 0.00002

t = 0.00004 t = 0.0001

Figure 5.2. Rotation. m = n = 200, ξ = 0.005, γ = 400, σ = 200, κ = 0.01

Arrow visualization t = 0.00002

t = 0.00004 t = 0.0001

Figure 5.3. Rotation. The same as in Fig. 5.2 calculated using the upwind scheme.
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Arrow visualization t = 0.00004

t = 0.00008 t = 0.0002

Figure 5.4. 3 el. charges. m = n = 200, ξ = 0.005, γ = 40, σ = 100, κ = 0.05

Arrow visualization t = 0.0003

t = 0.0006 t = 0.0015

Figure 5.5. Sine field. m = n = 200, ξ = 0.005, γ = 1000, σ = 50, κ = 0.1
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Arrow visualization t = 0.0002

t = 0.0004 t = 0.001

Figure 5.6. Neg. el. charge. m = n = 200, ξ = 0.01, γ = 1000, σ = 50, κ = 0.1

Arrow visualization t = 0.0003

t = 0.0006 t = 0.0015

Figure 5.7. A channel. m = n = 400, ξ = 0.003, γ = 600, σ = 50, κ = 0.1
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Thanks to the use of dynamic load balancing, we can employ machines with much
different performance in the calculation. We can also load one or more of the machines
with a different task without noticing a significant slowdown of the whole calculation.
This is because the largest amount of work is always assigned to those machines where
most performance is available. A sample demonstration of the load balancing benefits
can be found in Table 5.1.

The proposed load balancing system is not suitable for advanced homogeneous
cluster solutions controlled by resource managers. On such a system, all nodes utilized
by the user application have the same performance and they are fully at its disposal
for the whole program run time. No load balancing is therefore necessary.

6. Results. The results shown in figures have been obtained using the multi-
plicative factor γ at the advective term v · ∇p in (2.6) and using the choice

α = κ (1 + σv) , β = κ,

where κ > 0, σ > 0 (see Section 2). The first of the three pictures in a row always
represents the vector field indicated by arrows, the following two pictures demonstrate
the evolution of the image in time. All calculations were performed in Ω = (0, 1) ×
(0, 1); the remaining parameters are given below figures. The boundary condition is
always (2.2) except for Figs. 5.5, 5.6 and 5.7, where, at some part of the boundary, it
has been replaced by the Dirichlet boundary condition in the form of a pattern.
Remark. In Fig. 5.2, it can be seen that in some directions, the anisotropy of the
smearing is relatively poor. This issue is caused by the chosen numerical scheme. In
the most recent work, it has been effectively eliminated by using a scheme of upwind
type for the discretization of the term ∇ · T 0(∇p) in (2.6). The difference is shown in
Fig. 5.3.
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