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Abstract. This paper deals with segmentation of image data using a partial differential equation
of level-set type. The first part of this paper describes the level-set formulation and modification of
the level-set equation. The evolution process are controlled by the segmented image data in such
a way that the edges of objects can be found. The semi-implicit complementary-volume numerical
scheme is used for solving the level-set equation. The final part of the paper describes algorithm
parameters and their setting used for segmentation of the left heart ventricle in the cardiac MRI
images.
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1. Introduction

The presented work is motivated by the need of medi-
cal practice for evaluation of the dynamical images of the
heart obtained by the magnetic resonance imaging (car-
diac MRI). One of the important purposes of cardiac MRI
examination is an estimation of parameters reflecting cur-
rent clinical state of patients. A typical example could be
an accurate measurement of heart ventricle volume during
the heart contraction showing the contractive ability of my-
ocardium. Within this framework, it is necessary to find
the inner contour of the ventricle in the MR images. We at-
tempt to adapt and modify a segmentation model based on
numerical solution of a partial differential equation of the
level set type. The iterative algorithm is controlled by the
segmented image data in such a way that the edges of the
objects can be found. The level set equation is solved by
the semi-implicit complementary-volume numerical scheme
[7], [13], [14]. The prove of stability and consistency of
the linear semi-implicit complementary-volume numerical
scheme for solving the regularized (in the sense of Evans
and Spruck [9]) mean curvature flow equation in the level
set formulation can be found in [10]. We describe parame-
ters and their setting used for segmentation of the left heart
ventricle from the cardiac MRI images.

A similar model ([1]) used in image segmentation is based
on the phase-field approach to the mean curvature flow.
The segmentation model is given by the Allen-Cahn equa-
tion (see [2]). In [5] and [6] the Allen-Cahn equation is used
for segmentation of the left heart ventricle volume and the
wall of the left heart ventricle. Over the last years, 3D
[7] and 4D (space and time) [3], [12], [13], [15] methods
became used in image segmentation. Recently, a priori in-
formation carried by the image data has been included into
the segmentation models (see [8], [16], [18]).

2. Mathematical model

Our approach is based on level set formulation for the mo-
tion of the segmentation curve Γt ⊂ Ω, Ω ∈ R2 propagating
in the normal direction with speed V . A detailed descrip-
tion of the level set formulation can be found in [19].

Main idea of the level set method is to describe the mo-
tion of Γ(t) by means of the zero level set of a function
u : [0, T ] × Ω → R such that

Γ(t) = {x ∈ Ω |u(t, x) = 0} . (1)

We define the signed distance function (SDF) needed for
our approach:
Definition 2.1. Let Γ be a closed curve in Ω ⊂ R2 for
which Γin = int Γ, Γout = ext Γ are defined and satisfies
Γ = ∂Γin = ∂Γout, Γin∪Γ∪Γout = Ω. We define the signed
distance function (dΓ) as

dΓ(x) =

 dist(x, Γ) x ∈ Γout ,
0 x ∈ Γ ,

− dist(x, Γ) x ∈ Γin ,

where dist(x,Γ) = min{|x − y| | y ∈ Γ} .
For a given initial closed simple curve Γ0, we can define

uini as follows

uini(x) = u(0, x) = dΓ0(x) ∀x ∈ Ω . (2)

Using level set formulation we can derive following evolu-
tion equation which implicitly describes the motion of Γ(t)
given by (1) with speed V in the outward normal direction.

∂u

∂t
+ V |∇u| = 0 . (3)

The function u(t, x) will be referred to as the segmentation
function. For certain form of the speed function V one
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(a) (b)

Figure 1: The testing image (a) and the corresponding edge
detector (b).

obtains a standard Hamilton-Jacobi equation. Specifically,
we consider the following form of the normal velocity

V = −κ + F = −∇ · ∇u

|∇u|
+ F , (4)

where κ is the mean curvature of each level set defined as
the divergence of its normal vector and F is an external
force term. Substituting (4) to equation (3), we obtain the
level set equation in the form

ut = |∇u|∇ · ∇u

|∇u|
− |∇u|F , (5)

where we denote ut := ∂u/∂t. Modification of the level set
equation in the form

ut = |∇u|ε∇ · ∇u

|∇u|ε
− |∇u|εF , (6)

where |∇u| ≈ |∇u|ε =
√

ε2 + |∇u|2 denotes a regulariza-
tion, can be used as a tool to prove existence of viscosity
solution of the level set equation (see [9]). In this work ε
is a computational parameter; its value is set to ε = 0.001.

Detection of image object edges (boundaries) is a known
task in image segmentation. Edges in the input image (de-
noted by I0 and represented by the matrix nx1 × nx2 with
values 0, 1, . . . , Imax) can be recognized by the magnitude
of its spatial gradient. Application of the level set equation
in this area requires an adaptation as follows

ut =|∇u|ε∇ ·
(

g
(∣∣I0 ∗ ∇Gσ

∣∣) ∇u

|∇u|ε

)
− g

(∣∣I0 ∗ ∇Gσ

∣∣) |∇u|εF ,

(7)

where g : R+
0 → R+ is a non-increasing function for

which g(0) = 1 and g(s) → 0 for s → +∞. This func-
tion was first used by P. Perona and J. Malik ([17]) to
modify a heat equation into a nonlinear diffusion equa-
tion which maintains edges in an image. Consequently, the
function g is called the Perona-Malik function. We put
g(s) = 1/(1 + λs2) with s ≥ 0. Gσ ∈ C∞(R2) is a smooth-
ing kernel, e.g. the Gauss function with zero mean and
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Figure 2: The velocity field of the advection term for the
image in Fig. 1a.

variance σ2

Gσ(x) =
1√

2πσ2
e−

|x|2

2σ2 ,

which is used for pre-smoothing (denoising) of image gra-
dients by convolution

(I0 ∗ ∇Gσ)(x) =
∫

R2
Ī0(x − y)∇Gσ(y) dy ,

where Ī0 is the extension of I0 to R2 by, e.g. mirroring,
periodic prolongation or zero padding. Let us note that
equation (7) can be rewritten into the advection-diffusion
form

ut = g0|∇u|ε∇ ·
(

∇u

|∇u|ε

)
︸ ︷︷ ︸

(D)

+∇g0 · ∇u︸ ︷︷ ︸
(A)

− g0|∇u|εF︸ ︷︷ ︸
(F )

. (8)

For convenience, we use the abbreviation g0 =
g(

∣∣I0 ∗ ∇Gσ

∣∣). (D) in (8) denotes the diffusion term, (A)
the advection term and (F ) the external force term. The
term g0 is called the edge detector. For an example of an
edge detector, see Fig. 1b. We can observe that value
of the edge detector is approximately equal to zero close
to image edges. Here the evolution of the segmentation
function slows down. On the contrary, the edge detector
equals one in parts of the image with constant intensity.
As we can see in Figure 2, the advection term attracts the
segmentation function to the image edges. We propose an
advection parameter A to change the magnitude of the ad-
vection term. Obviously, in an image might be parts where
∂g0 = 0 and there the advection term does not contribute
to the evolution of the function u and the zero level set as
well. Using the SDF as an initial condition the external
force term becomes an essential part of the segmentation
model. Finally, we obtain the final form of the modified
level set equation, namely

ut = g0|∇u|ε∇ ·
(

∇u

|∇u|ε

)
+ A∇g0 · ∇u − g0|∇u|εF . (9)
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Figure 3: Example of segmentation function. Initial seg-
mentation function u0 (left), segmentation function u for
(t > 0) (middle), restored SDF (right).

2.1. Initial condition

A segmentation function u(t, x) evolves from the initial
guess (2). The initial curve Γ0 has to be placed inside the
segmented area (inside the left heart ventricle). To expand
the initial curve, velocity (4) has to be positive. Positive
value of V implies positive value of the external force F ,
rather F > κ. In other words, the zero level set is forced
to expand in regions where the advection term does not
contribute to the evolution of the function u. We use the
signed distance function (SDF) for setting and restoring
(redistancing) of the initial condition.

At the beginning of segmentation, i.e. for the first image,
we have to place the initial curve Γ0 into the left heart
ventricle manually, e.g. as a circle. For a given Γ0 we
construct SDF dΓ0 and set the initial condition as uini =
dΓ0 . The segmentation function u evolves from the initial
guess (Fig. 3 left) according to (7). This evolution distorts
the original shape of uini into u(t, x) which fails to have
unit gradient slopes (Fig. 3 middle). At the beginning of
next image segmentation it is convenient to use the result
of previous image segmentation Γt = {x ∈ R2 |u(t, x) =
0} and its signed distance function dΓt as a new initial
condition.

This is performed by means of the fast sweeping method
introduced in [20]. This method is used for computing the
viscosity solution of the eikonal equation

|∇u(x)| = 1 x ∈ Ω ,
u(x) = 0 x ∈ Γ ⊂ Ω .

Example of the restored signed distance function is shown
in Figure 3 on the right.

3. Numerical scheme

A semi-implicit co-volume space discretization is used for
solving (9) numerically. In [7], [10], [11], [14] a semi-implicit
co-volume method discretizing (7) without the external
force term is presented. First, we choose a uniform dis-
crete time step τ . Then we replace time derivative in (9)
by backward difference. The linear terms of the equation
are considered at the current time level while the nonlin-
ear terms (i.e. |∇u|ε) are treated from the previous time
level. In this way we obtain the following semi-implicit

Figure 4: Input image (left), first zoom of input im-
age (middle) and second zoom (right) with triangulation
(dashed lines) and image structure corresponding to co-
volume mesh (solid lines).

discretization

uk − uk−1

τ
=g0|∇uk−1|ε∇ ·

(
∇uk

|∇uk−1|ε

)
+ A∇g0 · ∇uk − g0|∇uk−1|εF .

(10)

To simplify construction of spatial discretization, we
rewrite the previous equation using the following expres-
sion

g0∇·
(

∇uk

|∇uk−1|ε

)
= ∇·

(
g0 ∇uk

|∇uk−1|ε

)
−∇g0 · ∇uk

|∇uk−1|ε
.

(11)
Now we substitute (11) to (10). Dividing by |∇uk−1|ε, we
get new form of (10)

1
|∇uk−1|ε

uk − uk−1

τ
= ∇ ·

(
g0 ∇uk

|∇uk−1|ε

)
+ (A− 1)

1
|∇uk−1|ε

∇g0 · ∇uk − g0F .

(12)

To construct a fully-discrete system of equations, we use
the co-volume method. The digital image is recorded on a
structure of pixels with rectangular shape. Each pixel in-
cludes values of I0 influencing the segmentation model. We
relate spatial approximations of the segmentation function
u to the centers of image pixels. We evaluate the gra-
dients of the segmentation function at the previous time
step (|∇uk−1|ε) in (12). We put a triangulation inside the
pixel structure and use a piecewise linear approximation
of the segmentation function on this triangulation. This
approach gives constant value of gradient on each trian-
gle. For a given pixel structure we build a triangulation in
such a way that the centers of pixels are connected by new
rectangular mesh. Each new rectangle is divided into four
triangles of equal size (see Fig. 4). The pixel centers will
be called degree-of-freedom (DF) nodes. Other nodes (at
intersection of solid lines in Figure 4) will be called non-
degree-of-freedom (NDF) nodes. Let a function u be given
by discrete values at DF nodes and uh be a piecewise linear
approximation of u on the triangulation. The value uh at
NDF nodes is given by average value of the neighboring
DF nodal values.
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For triangulation Th given by the previous construction,
we construct a co-volume (dual) mesh consisting of cells
p associated with DF nodes p of Th only. Without any
confusion, we denote each co-volume and the corresponding
DF node by the same symbol. In order to derive the co-
volume spatial discretization let us introduce the notation
in Table 1.

Cp . . . set of all DF nodes q connected
to the node p by an edge

σpq . . . edge connecting DF nodes p and q
hpq . . . length of σpq

epq . . . common edge of co-volumes p and q
(∂p =

∪
q∈Cp

epq)
Epq . . . set of triangles including the edge σpq

cT
pq . . . length of the portion of epq that is

in T ∈ Th (cT
pq = |eT

pq ∩ T |)
Np . . . set of T ∈ Th including the vertex p

|∇uT | . . . value of |∇uh| on T ∈ Th

up . . . value of uh(xp), where xp is
the coordinate of the node p on Th

upq . . . value of uh(x pq
2

), where x pq
2

= σpq ∩ epq

νp . . . outer normal of co-volume p
νpq . . . outer normal of co-volume p on epq

Table 1: Co-volume notations.

We integrate (12) over each co-volume p, p ∈ 1, . . . ,M
(M denotes the number of all DF nodes). The approxima-
tion of the left-hand side and the first term on the right-
hand side of (12) can be found in [14]. Hence we provide a
result of approximation of these two terms without expla-
nation. The left-hand side of (12) is approximated by∫

p

1
|∇uk−1|ε

uk − uk−1

τ
dx ≈ m(p)Mk−1

p

uk
p − uk−1

p

τ
, (13)

where m(p) is the measure of co-volume p in R2 and Mk−1
p

is given by

Mk−1
p =

1
|∇uk−1

p |ε
, |∇uk−1

p | =
∑

T∈Np

m(T ∩ p)
m(p)

|∇uk−1
T | ,

where T ∩ p is the intersection of triangle T and co-volume
p. In our case for T ∈ Np, it holds m(T ∩ p)/m(p) = 1/8.
Denoting the spatial step of the co-volume mesh by h, we
get m(p) = h2. The approximation of the first term on the
right-hand side of (12) is in the form∫

p

∇·
(

g0 ∇uk

|∇uk−1|ε

)
dx ≈

∑
q∈Cp

 ∑
T∈Epq

cT
pq

g0
T

|∇uk−1
T |ε

 uk
q − uk

p

hpq
,

(14)

where g0
T denotes approximation of g0 on a triangle T ∈

Th. The advection term on the right-hand side of (12) is

approximated by the first-order upwind scheme. We use
the following approximation∫

p

(A− 1)
1

|∇uk−1|ε
∇g0 · ∇uk dx ≈

(A− 1)Mk−1
p

∫
p

∇g0 · ∇uk dx .

Now we rewrite the scalar product of ∇g0 and ∇uk into
the form

∇g0 · ∇uk = ∇ ·
(
∇g0uk

)
− ∆g0uk .

Then we get∫
p

∇g0 ·∇uk dx =
∫

p

∇·
(
∇g0uk

)
dx−

∫
p

∆g0uk dx . (15)

The first term on the right hand side of (15) is approxi-
mated as follows∫

p

∇ ·
(
∇g0uk

)
dx =

∫
∂p

∂g0

∂νp
uk ds ≈

∑
q∈Cp

|epq|
∂g0

∂νpq
uk

pq .
(16)

For the second term on the right hand side of (15) the
divergence theorem implies∫

p

∆g0uk dx ≈ uk
p

∫
p

∆g0 dx = uk
p

∫
∂p

∂g0

∂νp
ds ≈

uk
p

∑
q∈Cp

∫
epq

∂g0

∂νpq
ds ≈ uk

p

∑
q∈Cp

|epq|
∂g0

∂νpq
.

(17)

Now we can substitute (16) and (17) into (15) to get∫
p

∇g0 · ∇uk dx ≈
∑

q∈Cp

|epq|
∂g0

∂νpq

(
uk

pq − uk
p

)
.

To complete approximation of the advection term we need
to evaluate uk

pq. As mentioned above, we use the first-order
upwind scheme

uk
pq :=

{
uk

p for ∂g0

∂νpq
> 0

uk
q for ∂g0

∂νpq
< 0

.

Finally the above expressions are put together to get spatial
approximation of the advection term∫

p

(A − 1)
1

|∇uk−1|ε
∇g0 · ∇uk dx ≈

(A− 1)Mk−1
p

∑
q∈Cp

|epq|min
(

∂g0

∂νpq
, 0

) (
uk

q − uk
p

)
.

(18)

The force term on the right-hand side of (15) is approxi-
mated as follows ∫

p

g0F dx ≈ m(p)g0
pF , (19)
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where g0
p denotes approximation of g0 on the co-volume p.

Using the notation

ak−1
pq =

1
hpq

∑
T∈Epq

cT
pq

g0
T

|∇uk−1
T |ε

,

gpq =|epq|min
(

∂g0

∂νpq
, 0

)
,

(20)

together with (13), (14), (18) and (19), gives the fully-
discrete semi-implicit co-volume scheme

[
m(p)Mk−1

p + τ
∑

q∈Cp

(
ak−1

pq + (A− 1)Mk−1
p gpq

)]
uk

p

−τ
∑

q∈Cp

(
ak−1

pq + (A− 1)Mk−1
p gpq

)
uk

q

= m(p)Mk−1
p uk−1

q − m(p)g0
pF .

(21)
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Figure 5: Co-volume p associated with a couple (i, j) and
set of 8 triangles Ni,j denoted by numbers 1 to 8.

For simplicity of implementation we can write the co-
volume scheme in the ”finite-difference notation”. Let I0

be the input image whose size is nx1 × nx2 where nx1 rep-
resents number of pixels in the horizontal direction and
nx2 in the vertical direction. We associate the co-volume p
and its corresponding DF node with a couple (i, j), where
i ∈ {1, . . . , nx2}, j ∈ {1, . . . , nx1}. Using this notation, the
unknown value uk

p is associated with uk
i,j and Np with Ni,j .

As we can see from the coefficient (20), we need to com-
pute absolute value of the gradient on each triangle from
the set Ni,j (see Fig. 5) denoted by G n

i,j , n ∈ {1, . . . , 8}
at each discrete time step k ∈ {1, . . . , s} and for every
i ∈ {2, . . . , nx2 − 1}, j ∈ {2, . . . , nx1 − 1} (except boundary
pixels). For this purpose we use the following expression
using discrete values of uk−1, i.e. the value of u from the
previous time step. For example

∣∣G1
i,j

∣∣2 is in the form

∣∣G1
i,j

∣∣2 =

(
uk−1

i,j+1 + uk−1
i+1,j+1 − uk−1

i,j − uk−1
i+1,j

2h

)2

+

(
uk−1

i+1,j − uk−1
i,j

h

)2

.

(22)

Other gradient discretization G2
i,j , . . . , G

8
i,j can be found in

[14]. In the same way (but in the beginning of the algorithm
only) we compute values Gσ,n

i,j , n ∈ 1, . . . , 8 replacing uk−1

by I0,σ := I0 ∗ Gσ in the previous expressions (22), e.g.

∣∣∣Gσ,1
i,j

∣∣∣2 =

(
I0,σ
i,j+1 + I0,σ

i+1,j+1 − I0,σ
i,j − I0,σ

i+1,j

2h

)2

+

(
I0,σ
i+1,j − I0,σ

i,j

h

)2

.

The convolution I0 ∗ Gσ can be evaluated numerically
as the solution of the linear heat equation at the time
t = σ2/2 with initial condition given by I0. For each
i ∈ {2, . . . , nx2 − 1}, j ∈ {2, . . . , nx1 − 1} we construct
north, west, south and east coefficients

nij = τ 1
2

∑2
n=1

g(Gσ,n
i,j )√

ε2+(G n
i,j)

2

+τh(A− 1)mi,j min
(

g(Gσ
i+1,j)−g(Gσ

i,j)

h , 0
)

,

wij = τ 1
2

∑4
n=3

g(Gσ,n
i,j )√

ε2+(G n
i,j)

2

+τh(A− 1)mi,j min
(

g(Gσ
i,j−1)−g(Gσ

i,j)

h , 0
)

,

sij = τ 1
2

∑6
n=5

g(Gσ,n
i,j )√

ε2+(G n
i,j)

2

+τh(A− 1)mi,j min
(

g(Gσ
i−1,j)−g(Gσ

i,j)

h , 0
)

,

eij = τ 1
2

∑8
n=7

g(Gσ,n
i,j )√

ε2+(G n
i,j)

2

+τh(A− 1)mi,j min
(

g(Gσ
i,j+1)−g(Gσ

i,j)

h , 0
)

,

where mi,j denotes the following expression

mi,j =
1√

ε2 +
(

1
8

∑8
n=1 Gσ,n

i,j

)2
.

If we define diagonal coefficients by

ci,j = ni,j + wi,j + si,j + ei,j + mi,jh
2

and right hand sides at the kth discrete time step by

rij = mi,jh
2uk−1

i,j − τh2Gσ
i,jF ,

then for the couple (i, j) we get

ci,ju
k
i,j−ni,ju

k
i+1,j−wi,ju

k
i,j−1−si,ju

k
i−1,j−ei,ju

k
i,j+1 = ri,j .

(23)
Collecting these equations for inner DF nodes with the
Neumann boundary condition we get a linear system to
be solved. We solve this system by the SOR (Successive
Over-Relaxation) iterative method.

4. Results

In this section we present the results obtained by our al-
gorithm using the linear system (23) with the Neumann
boundary condition. To apply this scheme we have to spec-
ify correct values of the parameters of equation (9). The
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(a) Result of segmentation (end-diastole).

(b) Result of segmentation (end-systole).

Figure 6: Segmentation result for (a) end-diastole and (b)
end-systole with parameters h = 0.0034, λ = 0.25, Aout =
2, Fout = −10, Fin = 50.

(a) Result of segmentation (end-diastole).

(b) Result of segmentation (end-systole).

Figure 7: Segmentation result for (a) end-diastole and (b)
end-systole with parameters h = 0.0028, λ = 0.25, Aout =
2, Fout = −10, Fin = 50.

sensitivity of the edge detector depends on value of the pa-
rameter λ. Very low values of λ decrease the efficiency of
edge detection. On the other hand, very high values of λ
can cause detection of spurious edges (i.e. noise, blood flow
artifacts, etc.). In our work we set λ = 0.25. We propose
an image dependent setting of the force parameter F and
of the advection parameter A. In the cardiac MR images
obtained by means of the bright blood technique (see [4],
chapter 4), the blood in the ventricle is lighter than the my-
ocardium and the surrounding tissue. Also, blood in the
ventricles has higher intensity than the myocardium. Us-
ing this information we can set a threshold Iin for picture
elements certainly inside the ventricle and a threshold Iout

for picture elements certainly in the myocardium and the
surrounding tissue. These thresholds are set automatically
using an algorithm based on minimum search on selected
image slices for a given initial condition. We then propose
external force parameter in the form

F (I0) =


Fout I0 ≤ Iout ,

Fin

(
I0−Iout
Iin−Iout

)
Iout < I0 < Iin ,

Fin I0 ≥ Iin ,

(24)

where Fout is the value of the force parameter for the pic-
ture elements certainly outside the left ventricle and Fin is
the value of the force parameter for the picture elements
certainly inside the left ventricle. For the picture elements
certainly outside the ventricle we need to shrink the evolu-
tion curve. Then the value of Fout has to be negative. The
value Fin has to be positive, as we discussed in Section 2.1.
Similarly we propose the advection term, namely

A(I0) =


Aout I0 ≤ Iout ,

(Aout−1)
(
1− I0−Iout

I in −Iout

)
+1 Iout < I0 < Iin ,

1 I0 ≥ Iin ,
(25)

where Aout > 1. This means that edges with lower inten-
sity are more important than edges with higher intensity.
The spatial discrete step is denoted by h and is given as
h = 1/(max{nx1 , nx2}−1), the temporal discrete time step
τ is given by τ = h/5 and σ is set to the value σ = 3h.

In our work we dealt with non-constant choice of pa-
rameters F (24) and A (25), which is fundamental to ob-
tain good segmentation results. The strong dependence of
the algorithm on the thresholds Iin and Iout could be con-
sidered a hindrance. Wrong settings of these thresholds
can cause incorrect segmentation results. Therefore it is
important to apply robust automatic threshold selection.
The results of segmentation can be seen in Fig. 6 and 7.
The images are depicted in the end-diastolic phase (maxi-
mal volume of the ventricle) and in the end-systolic phase
(minimum volume of the ventricle).

5. Conclusion

In the presented paper we adapted the segmentation model
based on the level set formulation to the problem of car-
diac MRI data segmentation. For the modified level-set
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equation we introduced a numerical scheme using the semi-
implicit discretization in time and the co-volume method
for spatial discretization. We proposed new advection and
force parameter which depend on input image intensities.
Our algorithm is applied to real cardiac MRI data1.
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