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The article analyzes behavior of the solution of the hyperbolic curvature flow by means of a class 
of analytical solutions and by computational studies performed by a semi-discrete finite-volume 
scheme. A class of analytical solutions is derived and used for the verification of the computational 
algorithm by numerical convergence to it. An original tangential redistribution is proposed to 
stabilize the numerical scheme. Its derivation requires a four-dimensional transformation of the 
evolution law. The role of tangential redistribution is demonstrated on computational examples. 
Computational studies show evolution of the initially convex and non-convex curves, and include 
cases when singularities predicted by theory start to develop.

1. Introduction

This article focuses on the motion of curves in plane where the acceleration is given by curvature in the sense specified below. 
This type of motion can be called the hyperbolic (mean) curvature flow as the acceleration is expressed by the second time derivative 
of position, and can be phrased as

acceleration + dissipation = curvature + forces. (1)

The curvature term in (1) contributes, due to the line tension, to forces acting on the curve. The dissipation term in (1) is given 
by the velocity. If the acceleration is negligible with respect to other terms, the dissipation in terms of the velocity prevails on the 
left-hand side, recovering the well-known dissipative curvature flow

velocity = curvature + forces, (2)

which is, due to its wide application range, mostly studied in literature (we refer the reader to theoretical results in [15,16,1,10], 
numerical solution in [11,14,42], applications in [5,7,28,6], and to more references therein).

Below, we present a motivation and historical overview of literature introducing and analyzing motion law (1). Originally, motion 
law (1) was motivated by laboratory experiments with helium at temperatures close to the absolute zero and at high pressure where 
the growing helium crystals exhibited melting-freezing crystallization waves, as described in [2,27]. Using principles of continuum 
mechanics and thermodynamics, motion law of the type (1) was formulated in [20,21] for the crystallization waves in solid-liquid 
phase transitions. The same type of motion law was derived for dynamics of thin liquid film or foam dynamics within the gas-liquid 
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two-phase fluid flow, first in [25], then in [26]. In [24], this approach to modeling foams and thin films was confirmed. The same 
motion law applied to a vibrating membrane was suggested in [51].

Based on the above mentioned applications, [40] studied the damped version of motion law (1) of a closed simple curve 𝛾 written 
as

𝑣⋅𝛾 + 𝛿𝑣𝛾 = 𝜅𝛾 , (3)

in the direction of the inner normal vector where 𝛿 > 0, 𝜅𝛾 is the curvature, 𝑣𝛾 is the normal velocity, and 𝑣⋅𝛾 is the normal acceleration 
defined as the time derivative of the normal velocity 𝑣 along a path normal to the 𝛾 . In [40], evolution law (3) was formulated in 
an anisotropic version as well, and it was studied numerically by means of a crystalline algorithm. In [41], the authors considered a 
hyperbolic phase-field model, from which a version of (3) with nonlinear damping was obtained by the asymptotic analysis.

As for the dissipative motion law (2), the parametric method is convenient in analyzing and solving motion law (1). For this 
purpose we identify the notation for the curve 𝛾 with its parametrization 𝛾 = 𝛾(𝑡, 𝑠) where 𝑡 is the time, and 𝑠 is the arc-length 
parameter. Using the Frenet frame 𝑇 , �⃗� , Yau in [51] formulated the hyperbolic version of mean curvature flow of hypersurfaces, 
which, in plane, has the form

𝜕𝑡𝑡𝛾 = 𝜅𝛾�⃗�. (4)

However, this flow is not normal, even when the initial velocity is in the normal direction. Motion law (4) was analyzed more in [23] 
from the view point of formulation, local existence and uniqueness, analytical solution in simple situations, and nonlinear stability.

Independently, a geometric evolution equation for hypersurfaces was derived in [32] based on the conservation of momentum. 
The Hamiltonian principle was used on actions containing kinetic and internal energy. In plane, this motion law reads

𝜕𝑡𝑡𝛾 =
1
2
(1 + |𝜕𝑡𝛾|2)𝜅�⃗� − ⟨𝜕𝑠𝑡𝛾, 𝜕𝑡𝛾⟩𝑇 , (5)

where ⟨⋅, ⋅⟩ denotes the scalar product in ℝ2, and the operator 𝜕𝑠𝑡 is defined as 𝜕𝑠𝑡 = 𝜕𝑠𝜕𝑡. In this case, the tangential term ensures 
that (5) is normal provided the initial velocity is normal.

Another article [29] considered an evolution equation for parametric curves and studied blow-up criteria. This motion law applied 
to planar curves has the form

𝜕𝑡𝑡𝛾 = 𝜅�⃗� − ⟨𝜕𝑠𝑡𝛾, 𝜕𝑡𝛾⟩𝑇 . (6)

The flow can be called hyperbolic curve shortening flow as an analogue to classic curve shortening flow.
The assumptions in the mentioned article involved convexity of the initial curve and the normal initial velocity, i.e. the initial 

velocity in the form 𝑣0�⃗�0 where �⃗�0 is the normal vector of the initial curve. The tangential term again ensures that the flow is 
normal. Motion law (6) is subject of this article.

In subsequent papers on this subject, [30] studied singularities for evolving closed convex curves, whereas [45] discussed singular-
ities for the hyperbolic mean curvature flow in a Minkowski space. The article [22] analyzed self-similar solutions of one-dimensional 
flow (6). The authors of [49] added the dissipation term to (6) as in (1) and (3). Variety of forcing terms for (1) were considered in 
[33,46,47]. Motion law (1) has been generalized in different ways for the affine invariant curve flow in [50], for the hyperbolic power 
mean curvature flow in [52], for the Gauss curvature in [9], the inverse mean curvature in [34,48]. Recently, [17,18] studied sym-
metries and conservation laws for the hyperbolic motion by mean curvature, [8] analyzed normal flow, [35] provided representation 
formulae for it.

Numerical solution of motion law (1) is so far presented in few articles - the crystalline approach was used in [40], the HMBO 
algorithm was used in [19,31], the level-set method and ENO schemes in [26], and the fully discrete three-level finite-difference 
scheme with constant time step was used in [12] to solve the parametric formulation of (1).

In this paper, we summarize properties of evolution equation (6), derive the analytical solution under specific conditions, serv-
ing as benchmarks for verification of the numerical algorithm. It is based on a semi-discrete scheme based on the finite-difference 
approximation of the parametric evolution law. The resulting system of ODE’s is then solved in time by a higher-order time solver 
with adaptive time step. This scheme is used to conduct computational studies of the hyperbolic curvature flow for a variety of initial 
conditions. Performance of the numerical algorithm is improved by means of an original redistribution of discretization points derived 
by means of a four-dimensional variant of the motion law.

The article is therefore structured in four sections beyond Introduction. In Section 2, main analytical properties of evolution 
equation (6) are summarized. This motion law is modified to allow for a suitable redistribution along the curve without disturbing 
the curve motion. Analytical solution of (6) is studied in Section 3. In Section 4, we derive semi-discrete numerical schemes and 
describe the numerical algorithm. Finally, Section 5 contains comparison with the analytical solution, examples of evolution for 
various initial conditions and including the redistribution effects.

2. Mathematical properties of the flow

First, we formulate the motion law (6) in more detail. Let the closed curve 𝛾 be parametrized by a parameter 𝑢 ∈ [0,1]. We 
say that 𝛾 is immersed provided |𝜕𝑢𝛾| ≠ 0. For such a curve, the Frenet frame, i.e. tangent and normal vector, is defined correctly. 
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For the purpose of reformulating the motion law (6), we express the tangent vector 𝑇 and the normal vector �⃗� by means of the 
parametrization and using the arc-length variable 𝑠 for which 𝜕𝑠 = |𝜕𝑢𝛾|−1𝜕𝑢:

𝑇 = 𝜕𝑠𝛾, �⃗� = 𝜕𝑠𝛾⟂.

Here, the symbol ⟂ is defined for any two-dimensional vector 𝑣 = (𝑣1, 𝑣2) as 𝑣⟂ = (−𝑣2, 𝑣1). Together with the Frenet equation 
𝜕𝑠𝑇 = 𝜅�⃗� we express the term 𝜅�⃗� using the parametrization:

𝜅�⃗� = 1 |𝜕𝑢𝛾|𝜕𝑢
(
𝜕𝑢𝛾|𝜕𝑢𝛾|

)
.

From (6), we obtain the Evolution problem 1 for the parametric curve 𝛾 ∶ 𝑆1 × [0, 𝑇 ) → ℝ2 which has the form of a system of 
non-linear partial differential equations

𝜕𝑡𝑡𝛾 =
1 |𝜕𝑢𝛾|𝜕𝑢

(
𝜕𝑢𝛾|𝜕𝑢𝛾|

)
− 1 |𝜕𝑢𝛾|2 ⟨𝜕𝑢𝑡𝛾, 𝜕𝑡𝛾⟩𝜕𝑢𝛾 in 𝑆1 × (0, 𝑇 ),

𝛾|𝑡=0 = 𝛾0 in 𝑆1,

𝜕𝑡𝛾|𝑡=0 = 𝛾1 in 𝑆1.

(7)

Here 𝛾0 is the initial closed curve and 𝛾1 is the initial velocity. We assume that the initial curve is smooth and immersed. In addition, 
we demand the initial curve to be embedded, i.e. not intersecting itself. Even though the system of equations is non-linear, it can be 
proved that they form a quasi-linear system of PDEs as the right-hand sides can be expresses as linear combinations of the second-order 
derivatives of the parametrization components by expressions containing lower-order derivatives - see also [44].

Curve flow (7) was studied in [29], specifically for smooth strictly convex initial curve and the normal initial velocity in form 
𝛾1 = 𝜈0�⃗�0 where �⃗�0 stands for the normal vector of the initial curve. For the function 𝜈0 = 𝜈0(𝑢), the authors required that 𝜈0 ≥ 0. 
They described a convex curve in terms of the support function which led to a single Monge-Ampère equation. Using this formulation, 
useful properties of flow (7) were proved such as the solution existence on finite time interval, during which the curve shrinks to a 
point, or converges to a piece-wise smooth curve. In the article, they also proved that evolving curves stay convex during evolution 
and satisfy the containment principle. The containment principle guaranties the preservation in time of mutual position of two convex 
curves where one is contained in the interior of another one initially, provided some conditions for the initial velocity are satisfied.

Such a knowledge on asymptotic behavior of the solution is interesting for numerical solution as well, as we can expect a smooth 
curve to develop singularities in finite time.

Other results, such as convexity preservation and the containment principle can be demonstrated on numerically computed ex-
amples as well.

Proposition 1. For a normal initial velocity, the Evolution problem 1 is normal.

Proof. We use the definition of normal flow as mentioned in [9]. We differentiate the term ⟨𝜕𝑡𝛾, 𝜕𝑢𝛾⟩ with respect to time, use motion 
law (6) and the facts that 𝜕𝑡𝑢 = 𝜕𝑢𝑡, and 𝜕𝑠 = |𝜕𝑢𝛾|−1𝜕𝑢:

𝜕

𝜕𝑡
⟨𝜕𝑡𝛾, 𝜕𝑢𝛾⟩ = ⟨𝜕𝑡𝑡𝛾, 𝜕𝑢𝛾⟩+ ⟨𝜕𝑡𝛾, 𝜕𝑡𝑢𝛾⟩

= |𝜕𝑢𝛾|⟨𝜅�⃗� − ⟨𝜕𝑠𝑡𝛾, 𝜕𝑡𝛾⟩𝑇 ,𝑇 ⟩+ ⟨𝜕𝑡𝛾, 𝜕𝑡𝑢𝛾⟩
= −|𝜕𝑢𝛾|⟨𝜕𝑠𝑡𝛾, 𝜕𝑡𝛾⟩+ ⟨𝜕𝑡𝛾, 𝜕𝑡𝑢𝛾⟩
= −⟨𝜕𝑢𝑡𝛾, 𝜕𝑡𝛾⟩+ ⟨𝜕𝑡𝛾, 𝜕𝑡𝑢𝛾⟩ = 0.

Therefore, term ⟨𝜕𝑡𝛾, 𝜕𝑢𝛾⟩ remains constant in time and the tangential velocity

1 |𝜕𝑢𝛾| ⟨𝜕𝑡𝛾, 𝜕𝑢𝛾⟩
is zero provided the initial velocity is in the normal direction. □

In [9], the normal flows were suggested as a special type of flows prescribing the acceleration of the evolving curve which, in the 
graph formulation, can be reduced to one quasi-linear partial differential equation for one coordinate.

2.1. Redistribution along the curve

Controlling the redistribution of points without affecting the shape of the evolving curve is important for numerical solution 
of the motion law, especially in applications. For the parabolic curvature flow, corresponding tools exist, as mentioned, e.g. in 
[36,38,37]. For the hyperbolic flow, a straightforward adding a tangential term to the evolution law is impossible as the law works 
with accelerations. We therefore rewrite evolution law (7) as a system of first-order equations in 4D, in fact.
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Denoting 𝜂 = 𝜕𝑡𝛾 , system (7) can be rewritten as a system of four PDEs

𝜕𝑡

(
𝛾

𝜂

)
=

(
𝜂

𝜅𝛾�⃗�𝛾 −
1 |𝜕𝑢𝛾| ⟨𝜕𝑢𝜂, 𝜂⟩𝑇𝛾

)
in 𝑆1 × (0, 𝑇 ) (8)

for 𝜅𝛾 , 𝑇𝛾 , �⃗�𝛾 , the curvature and the Frenet frame of curve 𝛾 . In other words, the velocity of a curve in 4D is prescribed. For such a 
curve, the tangential vector, which we denote by ⃗̃𝑇 , is defined as

⃗̃𝑇 = 1 √|𝜕𝑢𝛾|2 + |𝜕𝑢𝜂|2
(
𝜕𝑢𝛾

𝜕𝑢𝜂

)
.

Introducing a given velocity in this direction by the function �̃�, we obtain a modification of (8), the Evolution problem 2 in the 
form:

𝜕𝑡

(
𝛾

𝜂

)
=

(
𝜂

𝜅𝛾�⃗�𝛾 −
1 |𝜕𝑢𝛾| ⟨𝜕𝑢𝜂, 𝜂⟩𝑇𝛾

)
+ �̃� ⃗̃𝑇 in 𝑆1 × (0, 𝑇 )(

𝛾

𝜂

)|𝑡=0 =(
𝛾0
𝛾1

)
in 𝑆1.

(9)

We intend to choose �̃� in such a way that it accordingly redistributes the points along the curve while ensuring that the solution of 
equations (8) and (9) are geometrically the same. This means that the curves as trajectories of the solution at the same time moment 
overlap. This is commented in the following remark.

Remark. The conditions for the geometric equivalence of the evolution laws can be discussed more in detail considering two 
evolution laws providing parametrizations of the curves expected to overlap. Then an equation for reparametrization can be derived 
stating the conditions for the geometric equivalence of the evolution laws.

Motivated by the experience with the dissipative flow as in [5,36], we set

�̃� = −𝜕𝑢(|𝜕𝑢𝛾|−1) =⟨
𝜕𝑢𝑢𝛾|𝜕𝑢𝛾|2 , 𝑇𝛾

⟩
,

which is known as the de Turck trick - see [10]. The above described step motivates further study as well as search for other possible 
choices of �̃�.

3. Analytical solutions

Below, we summarize the results concerning analytical solvability of hyperbolic law (7). First case when we are able to calculate 
analytical solution is under the simplifying assumption of radial symmetry of the evolution problem. The behavior of the circle 
evolution was mentioned for example in [29] but the explicit solution was not provided. In this section, we also derive the analytical 
solution for special choice of tangential velocity.

3.1. Evolving circle

For hyperbolic equation (7), the evolving circle is a self-similar solution which can be studied analytically for certain initial 
velocities. In this case, we consider the initial velocity to be constant and in the normal direction along the curve.

Let the initial curve and velocity be

𝛾0(𝑢) = 𝑟0(cos𝑢, sin𝑢),

𝛾1(𝑢) = −𝑟1�⃗�0(𝑢) = −𝑟1(−cos𝑢,−sin𝑢)
(10)

for 𝑟0 ∈ℝ+, 𝑟1 ∈ℝ, �⃗�0 the inner normal vector of the initial circle. We then obtain the following statement.

Theorem 3.1. The radially symmetric analytical solution of (7) with the initial condition (10) for 𝑟1 = 0 is

𝑟(𝑡) = 𝑟0 exp

(
−
(
erf−1

(
𝑡

√
2∕𝑟20𝜋

))2
)
, for 𝑡 ∈ [0, 𝑇 ), 𝑇 = 𝑟0

√
𝜋∕2.

For 𝑟1 > 0, the solution is

𝑟(𝑡) = 𝑟0e
𝑟21
2 exp

⎛⎜⎜⎝−
[
erf−1

(
−𝑡e−

𝑟21
2 
√

2∕𝑟20𝜋 + erf
( 𝑟1√

2

))]2⎞⎟⎟⎠
for 𝑡 ∈ [0, 𝑇𝑠], where
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𝑇𝑠 =
√
𝜋

2 
𝑟0e

𝑟21
2 erf

(
𝑟1√
2

)
.

For 𝑡∈ [𝑇𝑠, 𝑇 ), the solution is given as the zero velocity solution with the initial radius equal to 𝑟(𝑇𝑠) = 𝑟0e
𝑟21
2 .

Proof. Equation (7) for the evolving circle can be rewritten as a second order differential equation for the time-dependent radius 
𝑟 = 𝑟(𝑡):

�̈� = −1
𝑟 

in (0, 𝑇 ),

𝑟(0) = 𝑟0,

�̇�(0) = 𝑟1.

(11)

Here, 𝑇 > 0 is defined such that

lim 
𝑡→𝑇−

𝑟(𝑡) = 0

holds.
Equation (11) is solved analytically. Multiplying it by �̇� and integrating over (0, 𝑡) for 0 < 𝑡 < 𝑇 , we obtain the identity

�̇�2(𝑡) + 2 ln 𝑟(𝑡) = 𝑟21 + 2 ln 𝑟0, for 𝑡 ∈ [0, 𝑇 ). (12)

From (12) we see that 𝑟(𝑡) ≤ exp( 12 (𝑟
2
1 + 2 ln 𝑟0)) and therefore, by (11), there is a constant 𝐶0 > 0 such that 𝑟′′(𝑡) ≤ −𝐶0 < 0. The 

solution 𝑟 = 𝑟(𝑡) is then a concave function.
Suppose first that 𝑟1 ≤ 0. Separating the variables in equation (12) and integrating it over (0, 𝑡), we obtain the solution implicitly 

given in the integral form

𝑟(𝑡) 

∫
𝑟0

d𝑟

−
√
𝑟21 + 2 ln 𝑟0

𝑟

= 𝑡 (13)

for 𝑡 ∈ (0, 𝑇 ).
Resolving implicit equation (13) for 𝑟1 = 0, we find

𝑟(𝑡) = 𝑟0 exp

(
−
(
erf−1

(
𝑡

√
2∕𝑟20𝜋

))2
)
, for 𝑡 ∈ [0, 𝑇 ), 𝑇 = 𝑟0

√
𝜋∕2. (14)

Here, erf ∶ℝ→ℝ is the error function defined as

erf(𝑥) = 2 √
𝜋

𝑥 

∫
0 

e−𝑧2d𝑧

and erf−1 is its inverse.
For 𝑟1 > 0, the radius first increases until 𝑡 = 𝑇𝑠. Once more, we separate variables in (12) and integrate, this time with the 

assumption �̇� > 0 in (0, 𝑇𝑠). Thus, we obtain an implicit solution in (0, 𝑇𝑠) as

𝑟(𝑡) 

∫
𝑟0

d𝑟

+
√
𝑟21 + 2 ln 𝑟0

𝑟

= 𝑡. (15)

Solving the implicit equation, we obtain solution for 𝑡 ∈ [0, 𝑇𝑠] as

𝑟(𝑡) = 𝑟0e
𝑟21
2 exp

⎛⎜⎜⎝−
[
erf−1

(
−𝑡e−

𝑟21
2 
√

2∕𝑟20𝜋 + erf
( 𝑟1√

2

))]2⎞⎟⎟⎠ (16)

for

𝑇𝑠 =
√
𝜋

2 
𝑟0e

𝑟21
2 erf

(
𝑟1√
2

)
.

On [𝑇𝑠, 𝑇 ) the solution continues as the above derived solution for the zero initial velocity (14) with the initial radius equal to

𝑟(𝑇𝑠) = 𝑟0e
𝑟21
2 . □
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Fig. 1. The analytic solution of equation (11) for 𝑟0 = 1, 𝑟1 = 0 and for 𝑟1 = 0.7 is shown. For the exact form, see (14) and (16). 

In Fig. 1, the radius is plotted for the zero as well as non-zero initial velocity.

3.2. Tangential initial velocity

The case of the initial velocity in the tangential direction was not yet studied in the literature. Under specific conditions for the 
tangential initial velocity we provide an analytic solution of equation (7) for any immersed initial closed curve.

Theorem 3.2. Let 𝛾0 be a smooth immersed initial closed curve, and the initial velocity be given as 𝛾1 = ±𝑇0, where 𝑇0 =
1 |𝛾′0| 𝛾 ′0. Let 

𝜑 ∶ 𝑆1 × [0, 𝑇 )→ℝ be a function satisfying the differential equation

𝜕𝑡𝜑(𝑢, 𝑡) = ± 1 |𝛾 ′0(𝜑(𝑢, 𝑡))| ,
𝜑(𝑢,0) = 𝑢,

(17)

for each 𝑢 ∈ 𝑆1 and 𝑡∈ [0, 𝑇 ), with the sign given by the sign in the initial velocity.

Then

𝛾(𝑢, 𝑡) = 𝛾0(𝜑(𝑢, 𝑡)), (18)

solves equation (7) for the given initial conditions.

Proof. Consider the function given by (18). Then the tangent and the normal vectors are expressed as

𝑇 (𝑢, 𝑡) =
𝛾 ′0(𝜑(𝑢, 𝑡)) |𝛾 ′0(𝜑(𝑢, 𝑡))| 𝜕𝑢𝜑(𝑢, 𝑡) |𝜕𝑢𝜑(𝑢, 𝑡)| ,

�⃗�(𝑢, 𝑡) =
𝛾 ′0(𝜑(𝑢, 𝑡))

⟂

|𝛾 ′0(𝜑(𝑢, 𝑡))| 𝜕𝑢𝜑(𝑢, 𝑡) |𝜕𝑢𝜑(𝑢, 𝑡)|
where for a vector 𝑧 = (𝑧1, 𝑧2), 𝑧⟂ is defined as 𝑧⟂ = (−𝑧2, 𝑧1).

For the existence of the Frenet frame, we need 𝜕𝑢𝜑 to be either always positive or always negative. The initial condition implies 
𝜑(𝑢,0) = 𝑢 which yields 𝜕𝑢𝜑|𝑡=0 = 1 > 0. Thus we suppose 𝜕𝑢𝜑 > 0.

After differentiating 𝛾 twice with respect to time

𝜕𝑡𝑡𝛾(𝑢, 𝑡) = 𝛾 ′′0 (𝜑(𝑢, 𝑡))𝜕𝑡𝜑(𝑢, 𝑡)
2 + 𝛾 ′0(𝜑(𝑢, 𝑡))𝜕𝑡𝑡𝜑(𝑢, 𝑡),

the normal acceleration becomes⟨
𝜕𝑡𝑡𝛾(𝑢, 𝑡), �⃗�(𝑢, 𝑡)

⟩
=

𝜕𝑡𝜑(𝑢, 𝑡)2|𝛾 ′0(𝜑(𝑢, 𝑡))| ⟨𝛾 ′′0 (𝜑(𝑢, 𝑡)), 𝛾 ′0(𝜑(𝑢, 𝑡))⟂⟩ . (19)

We want this expression to be equal to curvature. The curvature can be expressed as

𝜅(𝑢, 𝑡) =
det(𝛾 ′0(𝜑(𝑢, 𝑡)), 𝛾

′′
0 (𝜑(𝑢, 𝑡)))|𝛾 ′0(𝜑(𝑢, 𝑡))|3 .

Notice that
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det(𝛾 ′0(𝜑(𝑢, 𝑡)), 𝛾
′′
0 (𝜑(𝑢, 𝑡))) = 𝛾

′
0,1(𝜑(𝑢, 𝑡))𝛾

′′
0,2(𝜑(𝑢, 𝑡)) − 𝛾

′
0,2(𝜑(𝑢, 𝑡))𝛾

′′
0,1(𝜑(𝑢, 𝑡))

=
⟨
𝛾 ′′0 (𝜑(𝑢, 𝑡)), 𝛾

′
0(𝜑(𝑢, 𝑡))

⟂⟩ .
From there, we deduce that 𝜑 must satisfy the equation

𝜕𝑡𝜑(𝑢, 𝑡)2 =
1 |𝛾 ′0(𝜑(𝑢, 𝑡))|2 ,

which can be rewritten as

𝜕𝑡𝜑(𝑢, 𝑡) = ± 1 |𝛾 ′0(𝜑(𝑢, 𝑡))| . (20)

As for the initial condition for 𝜑, we need

𝛾(𝑢,0) = 𝛾0(𝜑(𝑢,0)) = 𝛾0(𝑢)

which implies

𝜑(𝑢,0) = 𝑢.

The function 𝜑 then satisfies the initial-value problem

𝜕𝑡𝜑(𝑢, 𝑡) = ± 1 |𝛾 ′0(𝜑(𝑢, 𝑡))| in 𝑆1 × (0,+∞),

𝜑(𝑢,0) = 𝑢 in 𝑆1.

(21)

Due to the assumptions, 𝛾(𝑡, 𝑢) satisfies (21) for 𝑡 = 0 and therefore

𝜕𝑡𝛾(𝑢,0) = 𝛾 ′0(𝑢)𝜕𝑡𝜑(𝑢,0) = ±𝑇0(𝑢).

We can see that the initial velocity must be equal to ±𝑇0 to obtain the solution in the form of (18). Moreover, the sign in (20) 
corresponds to the choice of the sign of the initial velocity in the assumptions of Theorem 3.2.

We calculate the tangential acceleration⟨
𝜕𝑡𝑡𝛾(𝜑(𝑢, 𝑡)), 𝑇 (𝑢, 𝑡)

⟩
=

𝜕𝑡𝜑(𝑢, 𝑡)2|𝛾 ′0(𝜑(𝑢, 𝑡))| ⟨𝛾 ′′0 (𝜑(𝑢, 𝑡)), 𝛾 ′0(𝜑(𝑢, 𝑡))⟩+ |𝛾 ′0(𝜑(𝑢, 𝑡))|𝜕𝑡𝑡𝜑(𝑢, 𝑡). (22)

From (21), we evaluate 𝜕𝑡𝑡𝜑:

𝜕𝑡𝑡𝜑(𝑢, 𝑡) = ±𝜕𝑡

(
1 |𝛾 ′0(𝜑(𝑢, 𝑡))|

)
= −

⟨𝛾 ′0(𝜑(𝑢, 𝑡)), 𝛾 ′′0 (𝜑(𝑢, 𝑡))⟩|𝛾 ′0(𝜑(𝑢, 𝑡))|4 .

When substituting 𝜕𝑡𝜑 and 𝜕𝑡𝑡𝜑 back into expression (22), we observe that the tangential acceleration is zero:

⟨𝜕𝑡𝑡𝛾(𝑢, 𝑡), 𝑇 (𝑢, 𝑡)⟩ = ⟨𝛾 ′0(𝜑(𝑢, 𝑡)), 𝛾 ′′0 (𝜑(𝑢, 𝑡))⟩|𝛾 ′0(𝜑(𝑢, 𝑡))|3 −
⟨𝛾 ′0(𝜑(𝑢, 𝑡)), 𝛾 ′′0 (𝜑(𝑢, 𝑡))⟩|𝛾 ′0(𝜑(𝑢, 𝑡))|3 = 0.

On the right-hand side of (7), the prescribed tangential acceleration becomes

− 1 |𝛾 ′0(𝜑(𝑢, 𝑡))| ⟨𝜕𝑢𝑡𝛾(𝜑(𝑢, 𝑡)), 𝜕𝑡𝛾(𝜑(𝑢, 𝑡))⟩
= − 1 |𝛾 ′0(𝜑(𝑢, 𝑡))| ⟨𝜕𝑢(𝛾 ′0(𝜑(𝑢, 𝑡))𝜕𝑡𝜑(𝑢, 𝑡), 𝛾 ′0(𝜑(𝑢, 𝑡))𝜕𝑡𝜑(𝑢, 𝑡)⟩
= −

⟨
1 |𝛾 ′0(𝜑(𝑢, 𝑡))| 𝜕𝑢

(
±
𝛾 ′0(𝜑(𝑢, 𝑡)) |𝛾 ′0(𝜑(𝑢, 𝑡))|

)
,±

𝛾 ′0(𝜑(𝑢, 𝑡)) |𝛾 ′0(𝜑(𝑢, 𝑡))|
⟩

= −

⟨
1 |𝛾 ′0(𝜑(𝑢, 𝑡))| 𝜕𝑢𝑇0(𝑢, 𝑡), 𝑇0(𝑢, 𝑡)

⟩
and from the Frenet formulae, we obtain

−

⟨
1 |𝛾 ′0(𝜑(𝑢, 𝑡))| 𝜕𝑢𝑇0(𝜑(𝑢, 𝑡)), 𝑇0(𝜑(𝑢, 𝑡))

⟩
= −

⟨
𝜅0(𝜑(𝑢, 𝑡))�⃗�0(𝜑(𝑢, 𝑡)), 𝑇0(𝜑(𝑢, 𝑡))

⟩
= 0.

Therefore, the curve 𝛾 is a solution of equation (7). □

Applied Mathematics and Computation 495 (2025) 129301 

7 



M. Suchomelová, M. Beneš and M. Kolář 

Example. To illustrate Theorem 3.2, we set the initial curve as a circle with the radius 𝑟0 . Then equation (17) can be rewritten as 
𝜕𝑡𝜑 = ± 1 

𝑟0
, 𝜑(𝑢,0) = 𝑢. The right-hand side is constant, therefore its solution is 𝜑(𝑢, 𝑡) = ± 1 

𝑟0
𝑡+ 𝑢 and the form of 𝛾 is

𝛾(𝑢, 𝑡) = 𝑟0
(
cos(± 1 

𝑟0
𝑡+ 𝑢), sin(± 1 

𝑟0
𝑡+ 𝑢)

)
. (23)

The sign in ± corresponds to the choice of the sign in the initial velocity in Theorem 3.2.
Consequence. Note, that any immersed initial curve can be arc-length reparametrized. For such an initial curve, equation (17) is 

reduced to equation 𝜕𝑡𝜑 = ±1, 𝜑(𝑢,0) = 𝑢 with the solution 𝜑(𝑢, 𝑡) = ±𝑡+ 𝑢. This proves that the solution of (17) can always be found 
for any immersed initial curve.

4. Numerical scheme

In the previous part of the text, we presented several analytically solvable cases. Below, we derive a numerical scheme which 
will approximate the solution of (7) and its modification (9) in a more general setup of the initial conditions. For this purpose, we 
describe the discretization of evolution law (7) and its modification (9) by means of the finite-volume/finite-difference method. In 
[12], a fully discrete finite-difference scheme with constant time step using three consecutive time levels is proposed. In our case, 
we discretize (7), (9) in the parameter space to design semi-discrete schemes as systems of ODE’s, which are then solved by more 
accurate higher-order time solvers of Runge-Kutta type with adaptive time step. Additionally, we design an original redistribution 
procedure based on (9) which further stabilizes the algorithm.

The evolving closed curve 𝛾(𝑢, 𝑡) defined on [0,2𝜋] × [0, 𝑇 ) is approximated by a piecewise linear curve (polygon) given by the set 
of discrete points 𝛾𝑗 (𝑡) = 𝛾(𝑗 2𝜋

𝑁
, 𝑡) for 𝑗 ∈ {1,2,… ,𝑁} where 𝑁 is the number of discretization points. Notice that for a closed curve 

the periodic boundary conditions hold, i.e. 𝛾0 = 𝛾𝑁 and 𝛾𝑁+1 = 𝛾1. In the following approximations and schemes we denote

ℎ = 2𝜋
𝑁
, 𝑑𝑗𝑐 = |𝛾𝑗+1 − 𝛾𝑗−1| and 𝑑𝑗 = |𝛾𝑗+1 − 𝛾𝑗 |. (24)

Using finite differences we approximate the term 𝜅�⃗� at 𝑢 = 𝑗ℎ (denoted by upper index 𝑗):[
1 |𝜕𝑢𝛾|𝜕𝑢

(
𝜕𝑢𝛾|𝜕𝑢𝛾|

)]𝑗
≈ 2 
𝑑
𝑗
𝑐

(
𝛾𝑗+1 − 𝛾𝑗

𝑑𝑗
− 𝛾𝑗 − 𝛾𝑗−1

𝑑𝑗−1

)
. (25)

This approximation is of second order.
By the same order, we approximate ⟨𝜕𝑠𝑡𝛾, 𝜕𝑡𝛾⟩ as[⟨

𝜕𝑢𝑡𝛾|𝜕𝑢𝛾| , 𝜕𝑡𝛾
⟩]𝑗

≈ 1 
𝑑
𝑗
𝑐

⟨�̇� 𝑗+1 − �̇� 𝑗−1, �̇� 𝑗⟩, (26)

where �̇� 𝑗 = 𝜕𝑡𝛾(𝑗ℎ, 𝑡).
Discrete Evolution Law 1. Equation (7) is approximated by the semi-discrete scheme which is a system of 2𝑁 second-order

ordinary differential equations

�̈� 𝑗 = 2 
𝑑
𝑗
𝑐

(
𝛾𝑗+1 − 𝛾𝑗

𝑑𝑗
− 𝛾𝑗 − 𝛾𝑗−1

𝑑𝑗−1

)
− ⟨�̇� 𝑗+1 − �̇� 𝑗−1, �̇� 𝑗⟩ (𝛾𝑗+1 − 𝛾𝑗−1)

(𝑑𝑗𝑐 )2
, 𝑗 = 1,… ,𝑁

𝛾0 =𝛾𝑁 , 𝛾𝑁+1 = 𝛾1,

𝛾𝑗 (0) =𝛾0(𝑗ℎ),

�̇� 𝑗 (0) =𝛾1(𝑗ℎ), 𝑗 = 1,… ,𝑁.

(27)

To discretize modified evolution law (9), we approximate �̃� as[
1 |𝜕𝑢𝛾|3 ⟨𝜕𝑢𝑢𝛾, 𝜕𝑢𝛾⟩]𝑗 ≈ 4 

(𝑑𝑗𝑐 )3

⟨(
𝛾𝑗−1 − 2𝛾𝑗 + 𝛾𝑗+1

)
,
(
𝛾𝑗+1 − 𝛾𝑗−1

)⟩
.

The tangent vector of the four-dimensional curve (𝛾, 𝜂)⊤ is approximated as[
⃗̃𝑇
]𝑗

=

[
1 √|𝜕𝑢𝛾|2 + |𝜕𝑢𝜂|2

(
𝜕𝑢𝛾

𝜕𝑢𝜂

)]𝑗
≈ 1 
𝑑
𝑗
𝑐

(
𝛾𝑗+1 − 𝛾𝑗−1
𝜂𝑗+1 − 𝜂𝑗−1

)
,

for

𝑑𝑗𝑐 =
√|𝛾𝑗+1 − 𝛾𝑗−1|2 + |𝜂𝑗+1 − 𝜂𝑗−1|2.

Those approximations are of second-order as well.
Discrete Evolution Law 2. Equation (9) is approximated by the semi-discrete scheme which is a system of 4𝑁 first-order ordinary 

differential equations:
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Fig. 2. The comparison between the mean radius 𝑟 of the numerically computed evolving circle (red crosses) and the analytic solution (blue line); example with the 
zero initial velocity on the left, and example with the non-zero normal initial velocity on the right. The mean radius is computed with the time step 0.1 on the left and 
with the time step 0.2 on the right. Number of mesh points was 𝑁 = 300 in both cases.

�̇� 𝑗 =𝜂𝑗 + 4 
𝑑
𝑗
𝑐 (𝑑

𝑗
𝑐 )3

⟨(
𝛾𝑗−1 − 2𝛾𝑗 + 𝛾𝑗+1

)
,
(
𝛾𝑗+1 − 𝛾𝑗−1

)⟩(
𝛾𝑗+1 − 𝛾𝑗−1

)
,

�̇�𝑗 = 2 
𝑑
𝑗
𝑐

(
𝛾𝑗+1 − 𝛾𝑗

𝑑𝑗
− 𝛾𝑗 − 𝛾𝑗−1

𝑑𝑗−1

)
− ⟨𝜂𝑗+1 − 𝜂𝑗−1, 𝜂𝑗⟩ (𝛾𝑗+1 − 𝛾𝑗−1)

(𝑑𝑗𝑐 )2

+ 4 
𝑑
𝑗
𝑐 (𝑑

𝑗
𝑐 )3

⟨(
𝛾𝑗−1 − 2𝛾𝑗 + 𝛾𝑗+1

)
,
(
𝛾𝑗+1 − 𝛾𝑗−1

)⟩(
𝜂𝑗+1 − 𝜂𝑗−1

)
, 𝑗 = 1,… ,𝑁

𝛾0 =𝛾𝑁 , 𝛾𝑁+1 = 𝛾1, 𝜂0 = 𝜂𝑁 , 𝜂𝑁+1 = 𝜂1,

𝛾𝑗 (0) =𝛾0(𝑗ℎ),

𝜂𝑗 (0) =𝛾1(𝑗ℎ), 𝑗 = 1,… ,𝑁.

(28)

Scheme (27) approximates evolution law (7), and scheme (28) approximates evolution law (9) with the order of approximation (ℎ2)
in space as follows from this behavior for each particular term of the right-hand sides mentioned above. Both schemes as the systems 
of ordinary differential equations in variables 𝛾1(𝑡),… , 𝛾𝑁 (𝑡) can be understood as autonomous with locally Lipschitz-continuous 
right-hand sides, and in the initial-value problem are locally solvable due to the Picard theorem, see [39]. Global solvability as well 
as convergence of their solutions to the solutions of problems (27) and (7) are beyond the scope of this text.

In the subsequent computations, both systems of ordinary differential equations (27) and (28) are numerically solved using 
the Runge-Kutta-Merson method with adaptive time step as in [36,43,7]. The time-step adaptivity tolerance was set to 10−6 in all 
computations.

5. Computational examples

Schemes (27) and (28) were used to obtain a numerical solution of evolution laws (7) and (9). In this section, the numerical 
solution is compared with the analytic one and the computational examples for various initial conditions are presented.

5.1. Quantitative computations

As derived in Section 3, the analytical solution of (7) exists and has the form of an evolving circle. It can be used to verify behavior 
of numerical scheme (27) by comparison with it (similarly to [12] - Tab. 1). For this purpose, we prescribe the initial condition as in 
(10) and evaluate it on a uniform mesh along the interval [0,2𝜋] as in (24). We recall that there is no guaranty that the line segments 
𝑑
𝑗
𝑐 and 𝑑𝑗 are kept of uniform magnitude during the curve evolution. This fact motivates the improvement in the form of the problem 

(9) discussed below.
For a given numerical solution of (27) of the radially symmetric problem represented by 𝑁 points (𝛾𝑗 )𝑁

𝑗=1, we define the mean 

radius as 𝑟 =
(∑𝑁

𝑗=1 |𝛾𝑗 |)∕𝑁 .

To measure the deviation from the value of 𝑟, the standard deviation 𝜎 is given as a square root from 𝜎2 =
(∑𝑁

𝑗=1(|𝛾𝑗 |− 𝑟)2)∕𝑁 .

The comparison between the mean radius of the numerically computed evolving circle and its analytic value is presented in 
Fig. 2, considering the example with the zero initial velocity as well as the example with the non-zero normal velocity. The numerical 
solution was computed using 𝑁 = 300 points. The values of the absolute error and 𝜎 are presented in Table 1.
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Table 1
The left table corresponds to Fig. 2 a), and the right table corresponds to Fig. 2 b). In 
the second column of the tables, the evaluated absolute difference between the mean 
radius of the numerical solution 𝑟 and the analytical value 𝑟(𝑡) is presented for given 
time levels. In the third column, the values of standard deviation 𝜎 are shown.

𝑟1 = 0

𝑡 |𝑟− 𝑟(𝑡)| 𝜎

0 0 3.09 ×10−17
0.1 1.76×10−7 6.41 ×10−15
0.2 7.03×10−7 6.28 ×10−13
0.3 2.20×10−6 3.21 ×10−11
0.4 4.31×10−6 1.44 ×10−9
0.5 7.30×10−6 1.53 ×10−9
0.6 1.09×10−5 2.53 ×10−10
0.7 1.44×10−5 4.68 ×10−10
0.8 2.04×10−5 9.64 ×10−11
0.9 2.68×10−5 3.86 ×10−9
1 3.49×10−5 3.97 ×10−9
1.1 4.62×10−5 4.06 ×10−10
1.2 6.64×10−5 5.90 ×10−11

a) 

𝑟1 = 0.7

𝑡 |𝑟− 𝑟(𝑡)| 𝜎

0 0 3.09 ×10−17
0.2 2.78×10−6 3.29 ×10−13
0.4 2.22×10−7 8.83 ×10−10
0.6 4.78×10−6 5.77 ×10−10
0.8 1.92×10−5 3.30 ×10−10
1 2.44×10−5 8.58 ×10−11
1.2 4.05×10−5 1.63 ×10−9
1.4 5.27×10−5 9.70 ×10−10
1.6 6.99×10−5 6.42 ×10−9
1.8 9.12×10−5 2.33 ×10−10
2 1.21×10−4 1.72 ×10−9
2.2 1.67×10−4 7.06 ×10−10
2.4 2.81×10−4 2.59 ×10−10

b) 

Table 2
The experimental order of convergence for evolving unit circle for zero and non-zero 
initial normal velocity 𝑟1 . Parameters for the computation were 𝑚= 12 for both cases, 
𝜏 = 0.1 on the left and 𝜏 = 0.2 on the right. The exact solution was represented by a 
polygonal curve with 1600 vertices in both cases.

𝑟1 = 0

𝑁𝑖 ‖𝑒(𝑖)‖𝑤 EOC(𝑁𝑖−1,𝑁𝑖) 
50 0.002085 – 
100 0.000522 1.999 
200 0.000131 1.995 
400 0.000033 1.974 
800 0.000009 1.894 

𝑟1 = 0.7

𝑁𝑖 ‖𝑒(𝑖)‖𝑤 EOC(𝑁𝑖−1,𝑁𝑖) 
50 0.004866 – 
100 0.001215 2.002 
200 0.000306 1.991 
400 0.000079 1.952 
800 0.000023 1.809 

The rate of convergence of the numerical solution to the analytic solution with the increasing number of grid points 𝑁 , called the 
experimental order of convergence (EOC) can be evaluated as in, e.g. [13], or in [3,4].

The EOC is calculated in the following way. Let 𝑁𝑖 be 𝑖−th element of an increasing sequence of number of grid points. Let �̂�(⋅, 𝑡)
be a very fine piece-wise linear (polygonal) approximation of the exact solution of problem (7) - in the presented computations, it 
uses 1600 vertices. Let 𝛾𝑖(⋅, 𝑡) be piecewise-linear (polygonal) representation of the numerical solution obtained by scheme (27) with 
𝑁𝑖 discretization points. We then denote by 𝑒(𝑖)

𝑘
the Hausdorff distances between the exact solution �̂� and curve 𝛾𝑖 at the times 𝑘𝜏 , 

where 𝜏 is the given time step between the measurements and 𝑘 = 0,1,2,… ,𝑚 for 𝑚 a given number of measurements.
Remark. The Hausdorff distances between the polygonal curves considered above are evaluated (and, in fact, approximated) by 

collecting distances of a segment of one curve from all segments of other curve. Mutual distances between segments are obtained 
approximatively by considering distances of a larger number of individual points of one segment from other segment and vice versa.

Then we calculate the weighted 𝐿2 norm of Hausdorff distances over the time levels as

‖𝑒(𝑖)‖𝑤 =

(
1 

𝑚+ 1

𝑚 ∑
𝑘=0

(𝑒(𝑖)
𝑘
)2
)1∕2

.

The experimental order of convergence is obtained for two consecutive grids with 𝑁𝑖−1 and 𝑁𝑖 mesh points as

𝐸𝑂𝐶(𝑁𝑖−1,𝑁𝑖) =
log(‖𝑒(𝑖−1)‖𝑤∕‖𝑒(𝑖)‖𝑤)

log(𝑁𝑖∕𝑁𝑖−1) 
.

In Table 2, the convergence analysis is presented for the evolving circle. The exact solution was represented by a piece-wise linear 
curve (polygon) with 1600 vertices in both cases. The calculated EOCs are close to the value of two. This is in accordance with scheme 
(27) which is of the second-order accuracy in space.

Next we investigate convergence of the numerical solution obtained by scheme (28) for a nonuniformly divided initial condition 
(10) as

𝛾0(𝑗ℎ) = 𝑟0(cos𝜙(𝑗ℎ), sin𝜙(𝑗ℎ)),

𝛾1(𝑗ℎ) = 𝑟1(cos𝜙(𝑗ℎ), sin𝜙(𝑗ℎ))
(29)
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Fig. 3. On the left, the evolution of the initially non-uniformly discretized circle (𝜙(𝑢) = 2𝜋(3(𝑢∕2𝜋)2 − 2(𝑢∕2𝜋)3)) with the zero initial velocity. The time step between 
the presented time levels is 0.1, number of points is 𝑁 = 50. On the right, the evolution of the initially non-uniformly discretized circle (𝜙(𝑢) = 𝑢+ 10

11
sin𝑢) with the 

initial velocity 𝑟1 = 0.7. The time step between the presented time levels is 0.2, number of points is 𝑁 = 50.

Table 3
The experimental order of convergence for the evolving unit circle with the initially 
non-uniform discretization for zero and non-zero initial normal velocity 𝑟1. Parameters 
for the computation were 𝑚 = 11 for both cases, 𝜏 = 0.1 on the left and 𝜏 = 0.2 on the 
right. The exact solution was represented by a polygonal curve with 1600 vertices in 
both cases.

𝑟1 = 0

𝑁𝑖 ‖𝑒(𝑖)‖𝑤 EOC(𝑁𝑖−1,𝑁𝑖) 
50 0.004219 – 
100 0.001057 1.997 
200 0.000267 1.985 
400 0.000072 1.901 
800 0.000021 1.743 

𝑟1 = 0.7

𝑁𝑖 ‖𝑒(𝑖)‖𝑤 EOC(𝑁𝑖−1,𝑁𝑖) 
50 0.0215070 – 
100 0.0053893 1.997 
200 0.0013500 1.997 
400 0.0003403 1.988 
800 0.0000884 1.944 

where 𝜙(𝑢) = 2𝜋(3(𝑢∕2𝜋)2 − 2(𝑢∕2𝜋)3), resp. 𝜙(𝑢) = 𝑢+ 𝑎 
1+𝑎 sin𝑢 with 𝑎 = 10, 𝑟0 = 1.0 and 𝑟1 = 0.0 or 𝑟1 = 0.7, 𝑢 ∈ [0,2𝜋]. The curve 

dynamics is shown in Fig. 3. In Table 3, the convergence analysis is presented for this case indicating values similar to Table 2. 

5.2. Qualitative computations

Once the numerical algorithm is verified, we demonstrate a selection of patterns developed during the evolution by the motion law 
(7) with the zero initial velocity solved by scheme (27) using a suitable number of discretization points justified by experience from 
quantitative computations. During the evolution we observe interesting behavior which can be explained as the onset of singularities 
predicted by theory. Computations stop before the singularities develop. The results are depicted in Figs. 4, 5, 6 and 7.

Convexity preservation is studied in Fig. 4, where the evolution of two initially convex curves is illustrated. On the left, the 
initial curve is in the form of the unit ball in the 𝐿3-norm (|𝑥|3 + |𝑦|3 = 1). It shrinks while its shape vibrates between two patterns 
whose corners seem to sharpen. On the right, the initial ellipse with the length of semi-axes equal to 1.5 and 1 shrinks and tends to 
a vertically oriented pattern with narrowing the upper and lower parts (compare with [12], Fig. 2). Both curves stay convex during 
the computation. This observation illustrates the convexity preservation, which was proved in [29]. The computation stops before 
any singularity predicted by Theorem 1.2 in [29] occurs.

Containment (comparison) principle is illustrated in Fig. 5. We can see the evolution the initial curve in the form of the unit 
ball in the 𝐿3-norm as above inside of its circumscribed circle. As expected, both curves never cross each other.

Evolution of non-convex patterns is shown in Figs. 6 and 7. The first case starts with a 3-folded curve whose shape oscillates 
between two shrinking 3-folded forms with variable sign of curvature. Apparently the petals tend to sharpen. The second case starts 
with the Cassini curve (compare with similar curve in [12], Fig. 6) which converts to an elongated shape and then becomes non-
convex from the sides and again tends to develop corners as predicted by the mentioned theory. Both computations stop before the 
singularity appears. At the time close to it, the numerical scheme is not stable.
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Fig. 4. Evolution of two convex curves under HCSF equation (7) with zero initial velocity. The time step between the presented time levels is 0.12, number of points 
is 𝑁 = 500.

Fig. 5. Evolving convex curve from Fig. 4 inside an evolving circle, both with zero initial velocity - the containment principle is illustrated. 

Effect of non-zero initial tangential velocity is studied in Figs. 8 and 9. The motion law (7) solved by scheme (27) is influenced 
by the choice of the tangential velocity 𝛾1 = 𝑐𝑇0, 𝑐 ∈ ℝ. In Fig. 8, the evolution of the unit circle is presented for various values of 
𝑐. As follows from Theorem 3.2, the curve will not change its shape during the evolution for 𝑐 = ±1. This was verified numerically 
in Fig. 8. For |𝑐| < 1, the circle shrinks to the point slower than for the zero initial velocity. For |𝑐| > 1, we observe that the circle 
starts to grow. This behavior resembles the effect of the centrifugal force. In Fig. 9, the effect of the tangential initial velocity with 
𝑐 = 0.2 on evolution of the ellipse is presented. We can see the deformation of the evolving curve and the prolongation of the 
evolution.

Applied Mathematics and Computation 495 (2025) 129301 

12 



M. Suchomelová, M. Beneš and M. Kolář 

Fig. 6. Evolving non-convex curve with zero initial velocity. In the top picture, the time step between the presented time levels is 0.1. Number of points is 𝑁 = 400. 

5.3. Redistribution

Uniform distribution of the discretization points during the curve evolution contributes to the stability of numerical schemes for 
the curve dynamics. The evolution law (9) was derived for this purpose. In Fig. 10, the evolution of the Cassini curve

𝛾0(𝑢) = 𝑝

√√√√
cos2𝑢+

√(
𝑞

𝑝 

)4
− sin2 2𝑢 (cos𝑢, sin𝑢), 𝑝 = 0.95, 𝑞 = 1

by equation (7) solved by (27) is compared with the evolution according to equation (9) solved by (28), both with the zero initial 
velocity. The evolution example confirms that the shape of the evolving curve is not changed. However the discretization points 
generated by (28) are distributed uniformly during the evolution.

In Fig. 11, the evolution of the Cassini initial curve (𝑝 = 0.99, 𝑞 = 1) by (28) is presented. For this case, a convergence study is 
presented where the numerical solution in the form of a polygonal curve for 𝑁 = 50,100,200,400,800 is compared with the very fine 
solution in the form of a polygonal curve for 𝑁 = 1600 by means of the Hausdorff distance - see Table 4.

In Fig. 12, the evolution of a 5-folded initial curve by (28) is presented with a typical pattern alternation. For this case, a conver-
gence study is presented where the numerical solution in the form of a polygonal curve for 𝑁 = 50,100,200,400,800 is compared 
with the very fine solution in the form of a polygonal curve for 𝑁 = 1600 by means of the Hausdorff distance - see Table 5.
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Fig. 7. The evolution of the Cassini curve with zero initial velocity under equation (7). In the top picture, the time step between the presented time levels is 0.1. 
Number of points is 𝑁 = 400.

Table 4
The experimental order of convergence 
for the Cassini curve is evaluated. The 
very fine solution was obtained using 𝑁 =
1600.

Cassini curve 
𝑁𝑖 ‖𝑒(𝑖)‖𝑤 EOC(𝑁𝑖−1,𝑁𝑖) 
50 0.0132919 – 
100 0.0045971 1.532 
200 0.0016012 1.522 
400 0.0004968 1.688 
800 0.0001141 2.122 

Table 5
The experimental order of convergence 
for the 5-folded curve is evaluated. The 
very fine solution was obtained using 𝑁 =
1600.

5-folded curve 
𝑁𝑖 ‖𝑒(𝑖)‖𝑤 EOC(𝑁𝑖−1,𝑁𝑖) 
50 0.0137570 – 
100 0.0040137 1.777 
200 0.0012216 1.716 
400 0.0003050 2.002 
800 0.0000619 2.300 

6. Conclusion

Computational studies by a semi-discrete finite-volume scheme supported by a class of existing analytical solutions allowed to 
study behavior of the solution representing convex as well as non-convex curves. The scheme was stabilized by a redistribution 
method derived in a specific way. Future investigation will be focused on the curve evolution influenced by external forces.
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Fig. 8. Evolution of circle for various initial tangential velocities; 𝛾1 = 𝑐𝑇0 for various values of 𝑐. The time step between the depicted time levels is 0.3. The red circle 
represents the initial curve. Number of points is 𝑁 = 400.

Fig. 9. Evolving ellipse with the initial tangential velocity 𝛾1 = 0.2𝑇0 . The time step between the depicted time levels is 0.15. Number of points is 𝑁 = 500. 
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