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Abstract. Compositional gas flow in a heterogeneous porous medium and in the cou-
pled atmospheric boundary layer above the porous medium surface is of interest in
many applications, which requires reliable numerical tools for modeling of very com-
plex physical processes. But there are still many important effects which are very often
ignored in contemporary models of this flow. One of them is compressibility. So far, no
models of non-isothermal compositional compressible gas flow in a porous medium
and in the coupled atmospheric boundary layer above its surface has been reported
in the literature. Therefore, we propose mathematical and numerical models for the
description of the above scenario. In order to assess the reliability of our numerical
model, we analyze its convergence by quantitative computational studies. We also
present several qualitative computational studies which present the dynamics of the
non-isothermal compositional compressible gas flow in free flow–porous medium flow
interaction.
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Key words: Compressible flow, non-isothermal flow, compositional flow, porous medium, free
flow, coupling conditions.

Nomenclature

Greek letters

αBJ Beavers-Joseph coefficient [−] (introduced in (2.39), page 355)
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αEOC coefficient defined on page 372

Γα
i,j side of Vα

i (defined on page 361)

Γ f ,θ part of ∂Ωpm, where θ∈{Dir, Neu, out} and f ∈{p, Xn, T}
Γ

ff
θ part of ∂Ωff , where θ∈{left, right, top1, top2, side}

Γi, Γb
i parts of ∂Vi (defined on page 357)

Γe
i,j, Γb

i,j parts of ∂Vi (defined on page 357)

Γ
pm
θ part of ∂Ωpm, where θ∈{wall, gap1, gap2, right}

δi,j Kronecker delta

κ ratio of specific heats [−]

λ thermal conductivity [kg·m·s−3 ·K−1]

Λe, Λi sets of indices (defined on page 357)

Λe
i , Λb

i sets of indices (defined on page 357)

Λi,j, Λn
i sets of indices (defined on page 357)

Λb
f ,θ,i set of indices related to function f , where θ∈{Neu, out} (defined on page 357)

µ dynamic viscosity [kg·m−1 ·s−1]

ν output time step [s] (introduced in (4.4), page 372)

ρ density [kg·m−3]

τ time step in the numerical scheme from Section 3.1 [s]

τcou time step for the coupling of the numerical schemes from Section 3 [s]

φ porosity [−]

ϕi basis function associated with node xi of T
Ω spatial domain

Ω̃ff extension of Ωff (defined on page 360)

Latin letters

a longitudinal dispersion coefficient [m]

cp specific heat at constant pressure [m2 ·s−2 ·K−1]

cp,σ specific heat at constant pressure of component σ [m2 ·s−2 ·K−1]

cs specific heat capacity of the solid matrix [m2 ·s−2 ·K−1]

cV specific heat at constant volume [m2 ·s−2 ·K−1]

cV,σ specific heat at constant volume of component σ [m2 ·s−2 ·K−1]

D diffusion coefficient [m2 ·s−1]

Dσ,γ multicomponent diffusion coefficient [m2 ·s−1]

Dn diffusion coefficient of the NAPL vapor [m2 ·s−1]
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dσ diffusion driving force of component σ [m−1]

e specific energy [m2 ·s−2]

F sink/source term of the mixture [kg·m−3 ·s−1]

f α
i , f α

i,j functions related to xα
i and xα

i,j, respectively (defined on page 361)

f α
i,j upwind term defined by (3.20), page 362

f e
B function related to xe

B (defined on page 357)

ḟ time derivative of f , where f = f (t)

fe function related to Te (defined on page 357)

fi, fi,j functions related to xi and xi,j, respectively (defined on page 357)

f e
i,j, f b

i,j functions related to xe
i,j and xb

i,j, respectively (defined on page 357)

f e,n+1
i,j upwind term defined by (3.7), page 359

f n value of f at time tn (defined on page 357)

Fn sink/source term of the NAPL vapor [kg·m−3 ·s−1]

g gravitational acceleration vector [m·s−2]

h, hx1
, hx2 spatial mesh parameters introduced in Section 4.1 [m]

I identity tensor

I interface between Ωpm and Ωff

k permeability tensor [m2]

k̃, k̃1, k̃2 parameters in the expression for k on page 368 [m2]

kTσ thermal diffusion ratio of component σ [−]

M mean molar mass [kg·mol−1]

M0 parameter in Section 4 [kg·mol−1]

Mσ molar mass of component σ [kg·mol−1]

n unit outward normal

Nα, Ñα numbers of all α nodes in Ω
ff

and Ω̃
ff

, respectively

NT number of triangles in T
Nt number of time steps in Section 3

Nref number of nodes in (4.5) and (4.6), page 372

NV number of finite volumes in V
P pressure tensor [Pa]

p pressure [Pa]

p0, p1, p2 parameters in Section 4 [Pa]

pσ partial pressure of component σ [Pa]
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Q heat flow vector [kg·s−3]

q heat production per unit volume [kg·m−1 ·s−3]

q f ,Neu flux prescribed on Γ f ,Neu

R gas constant [J·K−1 ·mol−1]

ρσ partial density of component σ [kg·m−3]

S rate-of-shear tensor [s−1]

T triangulation covering Ω
pm

t unit vector tangential to I
T thermodynamic temperature [K]

t time [s]

T0 parameter in Section 4 [K]

tini, tfin initial and final time, respectively [s]

tn n-th time level [s]

V mesh of finite volumes covering Ω
pm

v velocity [m·s−1]

v1,0 parameter in Section 4 [m·s−1]

Vα
i finite volume associated with xα

i

Ve
i part of Vi (defined on page 357)

V σ diffusion velocity of component σ [m·s−1]

X set of all nodes in T
X α, X̃ α sets of all α nodes in Ω

ff
and Ω̃

ff
, respectively

xα
i,j point in Ω̃

ff
(defined on page 361)

xe
B barycenter of triangle Te (defined on page 357)

xe circumcenter of triangle Te (defined on page 357)

xi node in T
xi i-th spatial coordinate [m]

xi,j point in Ωpm (defined on page 357)

xb
i,j point on ∂Ωpm (defined on page 357)

xe
i,j point in Ωpm (defined on page 357)

Xn,0, Xn,1 parameters in Section 4 [−]

Xσ mass fraction of component σ [−]

zfine numerical solution on a very fine mesh (introduced on page 372)

zh numerical solution corresponding to h (introduced on page 372)
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Subscripts

g gas

m combination of properties of the solid matrix and the fluid

n NAPL vapor

s solid matrix

Superscripts

1 1-node

2 2-node

ff free flow

pm porous medium

s s-node

T transpose

Other symbols

[ f ]k ,[ f ]k,l components k and k,l of vector and matrix f , respectively

|Γ| length of line segment Γ

|V| area of V

⊗ tensor product

‖·‖ Euclidean norm

‖·‖θ norm, where θ∈
{

t, l1, l2, l̃2
}

(defined by (4.4)–(4.6) and (4.8), pages 372 and 381)

1 Introduction

A detailed description of compositional flow in a porous medium and in the atmospheric
boundary layer above its surface is required in many research areas and applications, in-
cluding, for example, environmental protection, search for new energy resources or study
of climate change (e.g., [8] and [14]). In past years and decades, many researchers have
focused on the development and analysis of variously detailed mathematical models of
such flow and on the development of numerical models based on these mathematical for-
mulations. The subject of our research is the modeling of NAPL (volatile organic waste
chemicals that are in the form of non-aqueous phase liquid) vapor transport (e.g., [29]
and [26]) driven by air flow inside a porous medium and above its surface, where this
flow is the non-isothermal, compressible flow of a mixture of two gases subject to gravity.

Surprisingly, it seems that no models of such flow are reported in the literature. One
can find many models of isothermal single-phase single-component flow (e.g., [2], [5],
[11]), where some of them describe only steady flows ( [2], [5]). There are also, for exam-
ple, models of isothermal two phase-flow (e.g., [7], [19]) and non-isothermal models of
two-phase two-component flow in the porous medium and single-phase two-component
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flow above its surface (e.g., [8], [13], [1], [20]). But to the best of our knowledge, none
of existing models that couple flow inside a porous medium and above its surface are
capable of modeling non-isothermal compressible flow. Moreover, the model of the in-
teraction among the species in the same phase in the mixture is highly simplified in these
models, and the gravitational effects are often neglected (e.g., [13], [1] and [20]). There-
fore, the primary aim of this paper is to contribute to the present knowledge and to pro-
pose a mathematical formulation and a reliable numerical model for the above mentioned
compositional flow.

This paper is structured as follows: In Section 2, we describe our mathematical model
and in Section 3, we present our numerical model. In Section 4, we present our numerical
results.

2 Mathematical model of coupled flows

Our model is based on the two domain approach (e.g., [2], [5], [11], [7], [19], [13], [1],
[20], [28]), i.e., the computational domain is divided into the free flow subdomain and
porous medium subdomain. In each subdomain, the flow is described by corresponding
conservation laws for mass, momentum and energy. At the interface between these two
subdomains, coupling conditions are prescribed allowing the exchange of mass, momen-
tum and energy between the flows (see Fig. 1). This approach allows us to decompose
the whole problem into two subproblems which can be solved separately (by using, e.g.,
different forms of conservation laws and a different numerical scheme in each subdo-
main), which is very convenient because the phase velocities in a porous medium are
much lower than in the free space above its surface.

We assume that the gaseous mixture flowing in the porous medium and in the free
space above its surface consists of two components. For simplicity, the first component
will be referred to as gas and the second one as NAPL vapor. In each subdomain, the
flow of this mixture is described by conservation laws for the mass of the mixture, mass
of the NAPL vapor, momentum of the mixture and energy of the mixture.

The conservation laws for the individual flows can be found in the literature on the
kinetic theory of gases (e.g., [6], [12] and [16]) and in the publications on transport in

I

coupling conditions

n
ff

n
pmt

Ωff

Ωpm

Figure 1: Free flow region Ωff , porous medium Ωpm and interface I .
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porous media (e.g., [21] and [18]). The numerical scheme for the flow inside the porous
medium has been already published by the authors [24]. The numerical model for the
flow inside the free flow region has been already tested by the authors as well [23]. The
types of coupling conditions employed are commonly used (e.g., [11], [13], [1], [20] or
[21]).

In the following, the objects related to the porous medium and free flow region are
denoted by the superscripts pm and ff, respectively, when these need to be distinguished.
The entire domain Ω⊂R

2 in which the flow occurs consists of two subdomains Ωpm and
Ωff and of the interface I between the domains, i.e., Ω=Ωpm∪I∪Ωff (see Fig. 1). Vectors
and matrices are printed in the bold font, and their components are in the non-bold font,
i.e., v=(v1,v2)T, where T denotes the transpose. The Cartesian spatial coordinates of a
point x∈Ω are denoted by xi, i=1,2. The quantities related to the NAPL vapor and gas
are denoted by the subscripts n and g, respectively.

In this text, all of the physical quantities have the units listed in the section Nomen-
clature. The flow is considered on a time interval [tini,tfin].

Although our model is spatially two-dimensional, it can be readily extended to the
three-dimensional case (see, e.g., [2], [7], [28]).

2.1 Mathematical model for compressible flow in porous medium

The mathematical model for the flow inside the porous medium reads

φ(∂ρ/∂t)+∇·(ρv)=F, (2.1)

φ(∂(Xnρ)/∂t)+∇·(Xnρv−Dρ∇Xn)=Fn, (2.2)

v=−(1/µ)k(∇p−ρg), (2.3)

(ρcp)m (∂T/∂t)+∇·
(

ρcpTv−λm∇T
)

=∇·
(

ρcpv
)

T

+qm+φ((∂p/∂t)+∇p·v), (2.4)

where the diffusion coefficient D is defined by

D=φDn+a‖v‖. (2.5)

The mass fraction Xσ (σ=n,g) is defined as Xσ=ρσ/ρ, where the partial densities satisfy
ρn+ρg =ρ. Consequently, we have Xn+Xg =1. The specific heat cp is defined as

cp= cp,nXn+cp,gXg, (2.6)

and the subscript m in (2.4) denotes the following combinations of the properties of the
solid matrix (subscript s) and fluid:

(ρcp)m =(1−φ)(ρscs)+φρcp,

λm =(1−φ)λs+φλ,

qm =(1−φ)qs+φq.

(2.7)
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The pressure, densities and temperature of the mixture are assumed to be related by
the equation of state for the mixture of two ideal gases

ρ= pM/(RT), (2.8)

where M represents the mean molar mass defined by

M=
(

Xn/Mn+Xg/Mg

)−1
. (2.9)

For the solution of the system (2.1)–(2.9), the primary variables are p, Xn and T. This
system is solved in the following nonconservative form (see [24]):

φ

(

∂ρ

∂p

∂p

∂t
+

∂ρ

∂Xn

∂Xn

∂t
+

∂ρ

∂T

∂T

∂t

)

+∇·(ρv)=F, (2.10)

φρ
∂Xn

∂t
+φXn

(

∂ρ

∂p

∂p

∂t
+

∂ρ

∂Xn

∂Xn

∂t
+

∂ρ

∂T

∂T

∂t

)

+∇·(Xnρv−Dρ∇Xn)=Fn, (2.11)

(

(ρcp)m+φcpT
∂ρ

∂T

)

∂T

∂t
+φcpT

∂ρ

∂Xn

∂Xn

∂t
+φ

(

cpT
∂ρ

∂p
−1

)

∂p

∂t

+∇·
(

ρcpTv−λm∇T
)

=ρT∇cp ·v+qm+φ∇p·v+FcpT, (2.12)

where Eq. (2.12) was obtained by adding the cpT multiple of (2.1) to (2.4).

The initial conditions are

p(tini,x)= pini(x), Xn(tini,x)=Xn,ini(x), T(tini,x)=Tini(x) ∀x∈Ω
pm

. (2.13)

On ∂Ωpm, the following boundary conditions can be prescribed:

p= pp,Dir on Γp,Dir, (ρv)·n=qp,Neu on Γp,Neu, (2.14)

Xn =XnXn,Dir on ΓXn,Dir, ∇Xn ·n=0 on ΓXn,out, (2.15)

(Xnρv−Dρ∇Xn)·n=qXn ,Neu on ΓXn,Neu, (2.16)

T=TT,Dir on ΓT,Dir, ∇T ·n=0 on ΓT,out, (2.17)
(

ρcpTv−λm∇T
)

·n=qT,Neu on ΓT,Neu, (2.18)

where Γp,Dir∪Γp,Neu = ∂Ωpm and Γp,Dir∩Γp,Neu =∅; ΓXn,Dir∪ΓXn,Neu∪ΓXn,out = ∂Ωpm, and
ΓXn,Dir, ΓXn,Neu and ΓXn,out are pairwise disjoint; ΓT,Dir∪ΓT,Neu∪ΓT,out= ∂Ωpm, and ΓT,Dir,
ΓT,Neu and ΓT,out are pairwise disjoint. The symbol n stands for the unit outward normal
to ∂Ωpm.
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2.2 Mathematical model for compressible flow in free flow region

The mathematical model for the free flow above the surface of the porous medium reads

∂ρ/∂t+∇·(ρv)=0, (2.19)

∂ρn/∂t+∇·(ρn (v+V n))=0, (2.20)

∂(ρv)/∂t+∇·(P+ρv⊗v)=ρg, (2.21)

∂(ρe)/∂t+∇·(Q+ρev+Pv)=ρg ·v, (2.22)

where the terms V σ, P and Q are defined as

V σ=−∑γ∈{n,g}Dσ,γ(dγ+kTγ(∇T/T)), σ= g,n, (2.23)

P= pI−2µS, (2.24)

Q=−λ∇T+p∑σ∈{n,g}
(

kTσ+
κ

κ−1
pσ

p

)

V σ. (2.25)

Here, the diffusion driving forces dσ and rate-of-shear tensor S are defined as

dσ=∇(pσ/p)+(pσ/p−ρσ/ρ)(∇p/p) , σ= g,n, (2.26)

Si,j=(1/2)
(

∂vj/∂xi+∂vi/∂xj

)

−(1/3)∇·vδi,j, i, j=1,2. (2.27)

The partial pressures pσ and thermal diffusion ratios kTσ satisfy pn+pg=p and kTn=−kTg.
The multicomponent diffusion coefficients Dσ,γ, where σ,γ= g,n, fulfill the conditions

Dσ,γ=Dγ,σ for σ 6=γ,

Dσ,σ=−(ργ/ρσ)Dγ,σ for σ 6=γ, ρσ 6=0.
(2.28)

(When ρσ = 0, Dσ,σ is not needed.) The ratio of specific heats κ is defined by κ = cp/cV ,
where cp is given by (2.6), and cV is defined as

cV = cV,nXn+cV,gXg. (2.29)

The above system of equations is supplemented by the formula

ρe= cV ρT+ρv2/2. (2.30)

Combining (2.8) and (2.30) with the Mayer relation M(cp−cV)=R, we get the following
expression relating the energy to the pressure

p=(κ−1)
(

ρe−ρv2/2
)

. (2.31)

Note that for ρn = 0, the above system reduces to the compressible Navier-Stokes
equations and the corresponding energy balance equation.

In system (2.8) and (2.19)–(2.31), the primary variables are ρ, ρn, ρv1, ρv2 and ρe. The
initial conditions are

ρ(tini,x)=ρini(x), ρn(tini,x)=ρn,ini(x), (2.32)

T(tini,x)=Tini(x), v(tini,x)=vini(x) (2.33)

∀x∈Ω
ff

. The boundary conditions will be described in Section 4.
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2.3 Coupling conditions

In this section, we discuss the coupling conditions prescribed at the interface I which
couple the free flow and porous medium flow presented in previous sections. These
conditions were explored, for example, for non-isothermal incompressible compositional
flow in [8], [13], [1] and [20] and for isothermal incompressible single-phase single- com-
ponent flow in [11] and [21].

We use the following coupling conditions (see Fig. 1, page 351):

• Conditions at the interface I for the porous medium flow in Ωpm:

– For the pressure p in Eq. (2.10):

ppm :=[((P+ρv⊗v)n)·n]ff . (2.34)

– For the mass fraction of the NAPL vapor Xn or, alternatively, for the mass flux
of the NAPL vapor in Eq. (2.11):

X
pm
n :=X

ff
n (2.35)

or
[(Xnρv−Dρ∇Xn)·n]pm :=−[(ρn (v+V n))·n]ff . (2.36)

– For the heat flux in Eq. (2.12):

[(

ρcpTv−λm∇T
)

·n
]pm

:=−[(Q+ρev+Pv)·n]ff . (2.37)

• Conditions at the interface I for the free flow in Ωff :

– For the mass flux in Eq. (2.19) and for the component x2 of the momentum ρv
in Eq. (2.21):

[ρv ·n]ff :=−[ρv ·n]pm . (2.38)

– For the rate-of-shear tensor S in Eq. (2.21):

2[Sn]ff ·t :=− αBJ√
tTkt

(

vff −vpm
)

·t. (2.39)

Note that Eq. (2.39) is the condition listed in [20]. But in our case, the velocity
of the porous medium flow is not neglected (similarly as in [11] and [21]).

– For the mass fraction of the NAPL vapor Xn or, alternatively, for the flux of the
NAPL vapor in Eq. (2.20):

X
ff
n :=X

pm
n (2.40)

or
[(ρn (v+V n))·n]ff :=−[(Xnρv−Dρ∇Xn)·n]pm . (2.41)
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– For the temperature T in Eq. (2.22):

Tff :=Tpm. (2.42)

When employing the above conditions, the quantities on the left-hand sides are deter-
mined by the corresponding quantities on the right-hand sides. For Eqs. (2.11) and (2.20),
we use either (2.35) together with (2.41) or (2.36) together with (2.40).

3 Numerical solution

The complete system of equations is solved by two numerical schemes used by the au-
thors in their past work ( [24] and [23]). These two schemes are coupled via discretized
versions of the coupling conditions from Section 2.3. In the following sections, the indi-
vidual parts of the resulting numerical model are described.

3.1 Numerical scheme for compressible flow in porous medium

The spatial discretization of the governing equations is carried out via the control volume
based finite element method (e.g., [15] and [25]). The reasons for employing this method
are its simplicity and suitability for handling heterogeneous porous media.

Using this method, the domain Ωpm is covered by a boundary conforming Delaunay

triangulation T ={Te}NT
e=1 [30]. All functions involved are approximated using the linear

Lagrange finite elements, where each node xi of T is associated with the basis function ϕi.

Further, Ωpm is also covered by a node-centered dual mesh of finite volumes V={Vi}NV
i=1

based on the Voronoi diagrams [30]. The time interval [tini,tfin] is divided by means of a

strictly increasing sequence (tn)
Nt
n=0, where t0 = tini, tNt = tfin and tn = tini+nτ for a time

step τ.
For the description of the numerical scheme, we shall use the following notation (see

Fig. 2):

Γ
e2
i2,i5

Γi6

Γ
b
i3

Γ
b
i1,i4

x i1 x i2 x i3

x i4 x i5 x i6

x i7 x i8

x i2,i5x e2

x i1,i4

x
e5
B

T
e1

T
e2

T
e3

T
e4

T
e5

T
e6

T
e7

V
e6
i5

x1 direction

x
2
d
ir
e
c
t
io
n

Figure 2: Triangulation (solid line) and mesh of finite volumes (dashed line). According to the notation

introduced in Section 3.1, we have Λe1 ={i1,i4,i5}, Λi5
={i1,i2,i4,i6,i7,i8}, Λ

e2

i5
={i1,i2}, Λb

i2
={i1,i3}, Λi2,i5

=

{e2,e3} and Λn
i2
={e2,e3,e4}. The gray region is Ve6

i5
. The dotted lines are Γb

i1,i4
, Γ

e2

i2,i5
, Γb

i3
and Γi6

.
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• X ={xi}NV
i=1 is the set of all nodes in the triangulation T ;

• Λe ={i|xi∈Te} for a triangle Te ∈T ;

• Λi ={j|(∃Te ∈T )(i∈Λe∧ j∈Λe)}\{i};

• Λe
i =Λe∩Λi;

• Λb
i =Λi∩

{

j|xj ∈∂Ωpm
}

;

• Λi,j ={e|i∈Λe∧ j∈Λe};

• Λn
i ={e|i∈Λe};

• xi,j is the midpoint of the line segment connecting the nodes xi and xj;

• xe is the circumcenter of the triangle Te;

• xe
B is the barycenter of the triangle Te;

• Γe
i,j is the line segment connecting the points xe and xi,j for xe 6= xi,j;

• Γb
i,j is the line segment connecting the boundary points xi and xi,j;

• Γi=
⋃

j∈Λi

⋃

e∈Λi,j
Γe

i,j;

• Γb
i =

⋃

j∈Λb
i
Γb

i,j for xi∈∂Ωpm;

• xe
i,j and xb

i,j are the midpoints of Γe
i,j and Γb

i,j, respectively;

• Λb
f ,Neu,i=

{

j∈Λb
i |xb

i,j ∈Γ f ,Neu

}

, where f = p,Xn,T;

• Λb
Xn,out,i=

{

j∈Λb
i |xb

i,j ∈ΓXn,out

}

;

• Ve
i =Vi∩Te;

• f (xi)= fi, f (xi,j)= fi,j, f (xe
i,j)= f e

i,j, f (xb
i,j)= f b

i,j and f (xe
B)= f e

B, where the time coor-

dinate is omitted;

• fe is the constant value of f on Te ∈T ;

• f (tn)= f n, where f = f (t).

Using the notation given above, the finite volume Vi is the open set surrounded by the
curve Γi (i.e., ∂Vi=Γi) for xi /∈∂Ωpm and by the curve Γi∪Γb

i (i.e., ∂Vi=Γi∪Γb
i ) for xi∈∂Ωpm.

An example of a mesh of such finite volumes is depicted in Fig. 2.
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The numerical scheme is derived (see [24]) by integrating (2.10)–(2.12) over a volume
Vi, using the Green formula, approximating all the functions and integrals, approximat-
ing the time derivatives by backward finite differences, subtracting the cn+1

p,i Tn+1
i multiple

of the equation resulting from (2.10) from the equation resulting from (2.12) and replacing
some values from the new time level by the values from the previous one.

In this procedure, the parameters k, φ, cs, ρs and λs are approximated by constant
values ke, φe, cs,e, ρs,e and λs,e on each triangle Te ∈T , and the parameters µ, λ, cp,n and
cp,g are positive constants. Similarly, g is constant. The integrals arising in the derivation
of the scheme are approximated in the following way (the time coordinate is omitted):

•
∫

Vi
f (x)g(x)dx≈∑e∈Λn

i



Ve
i



 fige, where g is constant on each Te ∈T ;

•
∫

Vi
f (x)·h(x)dx≈∑e∈Λn

i



Ve
i



 f e
B ·he

B;

•
∫

Γi
f (s)·nds≈∑j∈Λi

∑e∈Λe
i,j





Γe
i,j





 f e
i,j ·ne

i,j, where ne
i,j is the unit outward normal with

respect to Γe
i,j;

•
∫

Γb
i

f (s)·nds≈∑j∈Λb
i






Γb

i,j






f b

i,j ·nb
i,j, where nb

i,j denotes the unit outward normal with

respect to Γb
i,j.

Using the aforementioned procedure and considering boundary conditions (2.14)–
(2.18), we get the following system of linear algebraic equations for the unknown values
pn+1

i , Xn+1
n,i and Tn+1

i , where n=0,1,··· ,Nt−1:

∑
e∈Λn

i

|Ve
i |φe

(

∂ρ

∂p

)n

i

pn+1
i −pn

i

τ
+ ∑

e∈Λn
i

|Ve
i |φe

(

∂ρ

∂Xn

)n

i

Xn+1
n,i −Xn

n,i

τ

+ ∑
e∈Λn

i

|Ve
i |φe

(

∂ρ

∂T

)n

i

Tn+1
i −Tn

i

τ
+ ∑

j∈Λi

∑
e∈Λi,j






Γe

i,j






ρe,n

i,j ve,n+1
i,j ·ne

i,j

+ ∑
j∈Λb

p,Neu,i





Γb
i,j





qb,n+1
p,Neu,i,j= ∑

e∈Λn
i

|Ve
i |Fn+1

i (3.1)

for i=1,2,··· ,NV , xi /∈Γp,Dir,

pn+1
i = pn+1

p,Dir,i for i=1,2,··· ,NV , xi ∈Γp,Dir, (3.2)

∑
e∈Λn

i

|Ve
i |φeρ

n
i

Xn+1
n,i −Xn

n,i

τ
+ ∑

e∈Λn
i

|Ve
i |φeX

n
n,i

(

∂ρ

∂p

)n

i

pn+1
i −pn

i

τ

+ ∑
e∈Λn

i

|Ve
i |φeX

n
n,i

(

∂ρ

∂Xn

)n

i

Xn+1
n,i −Xn

n,i

τ
+ ∑

e∈Λn
i

|Ve
i |φeX

n
n,i

(

∂ρ

∂T

)n

i

Tn+1
i −Tn

i

τ
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+ ∑
j∈Λi

∑
e∈Λi,j





Γe
i,j





ρe,n
i,j ne

i,j ·
(

Xe,n+1
n,i,j ve,n

i,j −De,n
i,j ∇Xe,n+1

n,i,j

)

+ ∑
j∈Λb

Xn ,out,i






Γb

i,j






Xn+1

n,i qb,n+1
p,Neu,i,j+ ∑

j∈Λb
Xn ,Neu,i






Γb

i,j






qb,n+1

Xn,Neu,i,j= ∑
e∈Λn

i

|Ve
i |Fn+1

n,i (3.3)

for i=1,2,··· ,NV , xi /∈ΓXn,Dir,

Xn+1
n,i =Xn+1

n,Xn,Dir,i for i=1,2,··· ,NV , xi ∈ΓXn,Dir, (3.4)

∑
e∈Λn

i

|Ve
i |
(

φeρ
n
i cn

p,i+(1−φe)ρs,ecs,e

) Tn+1
i −Tn

i

τ
− ∑

e∈Λn
i

|Ve
i |φe

pn+1
i −pn

i

τ

+ ∑
j∈Λi

∑
e∈Λi,j





Γe
i,j







(

ρe,n
i,j ce,n

p,i,jT
e,n+1
i,j ve,n

i,j −λe
m,i,j∇Te,n+1

i,j

)

·ne
i,j

+ ∑
j∈Λb

T,Neu,i






Γb

i,j






qb,n+1

T,Neu,i,j− ∑
j∈Λb

T,Neu,i






Γb

i,j






cn

p,iT
n+1
i qb,n+1

p,Neu,i,j

− ∑
j∈Λi

∑
e∈Λi,j






Γe

i,j







(

ρe,n
i,j ce,n

p,i,jT
e,n+1
i,j ve,n

i,j

)

·ne
i,j

= ∑
e∈Λn

i

|Ve
i |qn+1

m,i + ∑
e∈Λn

i

|Ve
i |
(

φe∇pe,n+1
B +ρe,n

B Te,n+1
B ∇ce,n

p,B

)

·ve,n
B (3.5)

for i=1,2,··· ,NV , xi /∈ΓT,Dir,

Tn+1
i =Tn+1

T,Dir,i for i=1,2,··· ,NV , xi ∈ΓT,Dir. (3.6)

In these equations, the underlined terms are calculated using the full upwind formula

f e,n+1
i,j =

{

f n+1
i , ve,n

i,j ·ne
i,j ≥0,

f n+1
j , ve,n

i,j ·ne
i,j <0,

(3.7)

and the term ve,n+1
i,j is approximated as

ve,n+1
i,j ≈−(1/µ)ke

(

∇pe,n+1
B −pe,n+1

i,j (∂ρ/∂p)e,n
i,j g

)

. (3.8)

Note that in the course of the derivation of Eq. (3.5), the boundary integrals over ΓT,out

canceled out.
Eqs. (3.1)–(3.6) are subject to the initial conditions

p0
i = pini,i, X0

n,i=Xn,ini,i, T0
i =Tini,i for i=1,2,··· ,NV . (3.9)

Since linear system (3.1)–(3.9) is sparse, it is solved by UMFPACK from the Suite-
Sparse package [9] via the LU factorization after which an iterative refinement is per-
formed.
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3.2 Numerical scheme for compressible flow in free flow region

The system of the governing equations describing the free flow is solved via the method
of lines in which the spatial discretization is carried out by the finite volume method
with the staggered arrangement of variables [25]. Based on the experience of the au-
thors, this scheme proves to be more stable than the control volume based finite element
method for the free flow in the setup considered in this paper. For the time integration,
the Runge-Kutta-Merson method with the time step adaptivity [17] is employed, where
the adaptivity is crucial because the solver needs to start with a shorter time step after
the interface values are updated.

For simplicity, the domain Ωff is assumed to be rectangular. This domain is covered
by an orthogonal mesh as in Fig. 3, i.e., by rectangles. The scalar variables are located
at the nodes (referred to as s-nodes) of this mesh, respectively. The components ρv1 and
ρv2 of the vector ρv are located at the midpoints (referred to as 1- and 2-nodes) of the
horizontal and vertical edges of this mesh, respectively. The s-, 1- and 2-nodes will be
denoted by the superscripts s, 1 and 2. Each s-, 1- and 2-node which does not lie on
∂Ωff is surrounded by the rectangular finite volume each side of which lies on the axis of
symmetry of the line segment connecting this node with a neighboring s-, 1- and 2-node,
respectively. For the nodes on ∂Ωff , the sides of the surrounding finite volume lie on the
aforementioned axes of symmetry and on ∂Ωff (see the boundary volume Vs

9 in Fig. 3).

In our simulations, the mesh covering Ωff is extended by one layer of auxiliary rect-
angles [4] at the left and right end of Ωff (according to Fig. 4, page 366). The boundary
conditions on the left and right side of Ωff are prescribed at the new boundary nodes
(referred to as the ’dummy nodes’). The extended domain will be denoted by Ω̃ff . De-
scribing the spatial discretization in detail, we shall use the following notation, where
α= s,1,2 (see Fig. 3):

V
1

1

V
2
4

V
s

4

V
s

9
Γ
2

4,0

x
s

1 x
s

2

x
s

3 x
s

4 x
s

5 x
s

6

x
s

7
x
s

8
x
s

9

x
1
1 x

1
2 x

1
3

x
2

1 x
2

2

x
2
3 x

2
4

x1 direction

x
2
d
ir
e
c
t
io
n

Figure 3: Mesh of rectangles (solid line) and selected finite volumes (dashed line). According to the notation

introduced in Section 3.2, we have xs
4,0= x1

1, xs
4,1= x2

3, xs
4,2= x1

2, xs
4,3 = x2

1 and so on. The dotted line is Γ2
4,0.
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• X α=
{

xα
i

}Nα

i=1
and X̃ α=

{

xα
i

}Ñα

i=1
are the sets of all α-nodes in Ωff and in Ω̃ff , respec-

tively.

• Vα
i is the finite volume associated with the node xα

i .

• Γα
i,j is the j-th face of the volume Vα

i , where the faces are numbered counterclockwise

from 0 to 3 beginning with the left face (see Fig. 3).

• xα
i,j is the midpoint of Γα

i,j.

• f (xα
i )= f α

i and f (xα
i,j)= f α

i,j, where the time coordinate is omitted.

• ḟ is the time derivative of f , where f = f (t).

We remark that the aforementioned notation differs from the notation used in [23]. The
following approximations also slightly differ.

The numerical scheme is derived (see [23]) by integrating each of Eqs. (2.19)–(2.22)
over a corresponding volume Vα

i , using the Green formula and approximating the inte-
grals according to the following formulas:

•
∫

Vα
i

f (x)dx≈|Vα
i | f α

i ;

•
∫

∂Vα
i

f (s)·nds≈∑
3
j=0 |Γα

i,j| f α
i,j ·nα

i,j, where nα
i,j denotes the unit outward normal with

respect to Γα
i,j.

For each node xα
i at which the values of the primary variables are not prescribed as

the Dirichlet boundary conditions or calculated via extrapolation, the aforementioned
procedure yields

|Vs
i |ρ̇s

i +∑
3
j=0 |Γs

i,j|ρs
i,jv

s
i,j ·ns

i,j =0, (3.10)

|Vs
i |ρ̇s

n,i+∑
3
j=0 |Γs

i,j|ρs
n,i,j

(

vs
i,j+V s

n,i,j

)

·ns
i,j=0, (3.11)

|V1
i | ˙(ρv1)

1

i +∑
3
j=0 |Γ1

i,j|
[

P1
i,j ·n1

i,j

]

1
+∑

3
j=0 |Γ1

i,j|(ρv1)
1
i,jv

1
i,j ·n1

i,j= |V1
i |ρ1

i g1, (3.12)

|V2
i | ˙(ρv2)

2

i +∑
3
j=0 |Γ2

i,j|
[

P2
i,j ·n2

i,j

]

2
+∑

3
j=0 |Γ2

i,j|(ρv2)
2
i,jv

2
i,j ·n2

i,j= |V2
i |ρ2

i g2, (3.13)

|Vs
i | ˙(ρe)

s

i +∑
3
j=0 |Γs

i,j|
[

Ps
i,j ·vs

i,j+Qs
i,j+(ρe)s

i,jv
s
i,j

]

·ns
i,j= |Vs

i |g ·(ρv)s
i , (3.14)

where

V s
n,i,j=−∑σ∈{n,g}Ds

n,σ,i,j

(

ds
σ,i,j+ks

Tσ,i,j

(

∇Ts
i,j/Ts

i,j

))

, (3.15)

ds
σ,i,j=∇(pσ/p)s

i,j+
(

ps
σ,i,j/ps

i,j−(ρσ/ρ)s
i,j

)(

∇ps
i,j/ps

i,j

)

, (3.16)

Pα
i,j =(pI−2µS)α

i,j , (3.17)
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[

Sα
i,j

]

k,l
=(1/2)(∂vl/∂xk+∂vk/∂xl)

α
i,j−(1/3)(∇·vδk,l)

α
i,j , (3.18)

Qs
i,j =−λ(∇T)s

i,j+ps
i,j ∑σ∈{n,g}

[

ks
Tσ,i,j+

(

κs
i,j/
(

κs
i,j−1

))(

ps
σ,i,j/ps

i,j

)]

V s
σ,i,j (3.19)

for α= s,1,2; k,l=1,2 and σ=n,g.

Similarly as in Section 3.1, the underlined terms are modified by the upwind formula

f α
i,j =

{

f α
i , vα

i,j ·nα
i,j≥0 or Γα

i,j⊂∂Ω̃ff ,

f α
k , vα

i,j ·nα
i,j<0 and Γα

i,j 6⊂∂Ω̃ff ,
(3.20)

where xα
k is a node different from xα

i for which ∂Vα
i ∩∂Vα

k =Γα
i,j.

If a flux value is prescribed on a face Γα
i,j (for example, coupling condition (2.41) is

used), the corresponding summand in (3.10)–(3.14) is replaced by the prescribed value.

The values of the functions at the nodes at which they are not located are calculated
via the linear interpolation from the nearest function values. Therefore, we have, for
example, (see Fig. 3, page 360)

ρs
4,2=ρ1

2≈ (ρs
4+ρs

5)/2,
[

vs
4,2

]

2
=v2(xs

4,2)=v2(x1
2)≈

v2,u−v2,d
[

x2
1

]

2
−
[

x2
3

]

2

(

[xs
4]2−

[

x2
3

]

2

)

+v2,d,

where

v2,u =
(

v2(x2
1)+v2(x2

2)
)

/2, v2,d =
(

v2(x2
3)+v2(x2

4)
)

/2.

The spatial derivatives are calculated from the nearest function values too. Therefore, we
have, e.g.,

∂v1

∂x1
(xs

4,2)=
∂v1

∂x1
(x1

2)≈
v1(x1

1)−v1(x1
3)

[

x1
1

]

1
−
[

x1
3

]

1

,

∂v2

∂x2
(x2

4,1)=
∂v2

∂x2
(xs

8)≈
v2(x2

2)−v2(x2
4)

[

x2
2

]

2
−
[

x2
4

]

2

.

System (3.10)–(3.14) is considered together with the following initial conditions:

ρs
i (tini)=ρini(xs

i ) for i=1,2,··· ,Ñs, (3.21)

ρs
n,i(tini)=ρn,ini(xs

i ) for i=1,2,··· ,Ñs, (3.22)

Ts
i (tini)=Tini(xs

i ) for i=1,2,··· ,Ñs, (3.23)

vα
i (tini)=vini(xα

i ) for i=1,2,··· ,Ñα, α=1,2. (3.24)

The boundary conditions will be discussed in Section 4.
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3.3 Numerical approximation of coupling conditions

In this section, the numerical approximation of the coupling conditions from Section 2.3
is described. For simplicity, we assume that Ω̃ff is placed above Ωpm and that the meshes
covering the subdomains are defined in such a way that each s-node which lies on I
corresponds to one of the nodes in T and vice versa (see Fig. 4, page 366).

3.3.1 Conditions (2.35), (2.40) and (2.42) for mass fraction Xn and temperature T

Due to the alignment of the spatial meshes, the use of conditions (2.35), (2.40) and (2.42)
for the mass fraction of the NAPL vapor Xn in Eqs. (2.11) and (2.20) and for the temper-
ature T in Eq. (2.22) is straightforward. At each interface node, we prescribe the function
value at this node from the neighboring subdomain. Hence, in the example configura-
tion depicted in Fig. 4 (page 366), we prescribe, e.g., Xn,3 :=Xs

n,2 (by (2.35)), Xs
n,2 :=Xn,3 (by

(2.40)) and Ts
2 :=T3 (by (2.42)). The prescribed value is always from the latest time level

which is available in the neighboring subdomain.

3.3.2 Condition (2.39) for shear stress

Employing coupling condition (2.39) for the shear stress in Eq. (2.21), all of the terms
belonging to Ωpm and Ωff are discretized in the same way as in Sections 3.1 and 3.2. The
quantity on the discretized left-hand side is determined by the corresponding quantity
on the right-hand side. Thus, at the node x1

1 in Fig. 4 (page 366), we have

2
2

∑
l=1

[

S1
1,1

]

k,l

[

n1
1,1

]

l

[

t1
1,1

]

k
:=− αBJ

√

(

tTkt
)

1,2

([

v1
1,1−v1,2

]

k

)[

t1
1,1

]

k
(3.25)

for k= 1,2. Again, the components of v1,2 are always from the latest time level which is
available in Ωpm.

3.3.3 Conditions (2.36) and (2.37) for mass flux of NAPL vapor and heat flux

Using coupling conditions (2.36) and (2.37) for the mass flux of the NAPL vapor in
Eq. (2.11) and for the heat flux in Eq. (2.12), the approximations of the quantities on the
right-hand sides are calculated (as in [1]) from the discretized versions of the correspond-
ing conservation laws (i.e., from Eqs. (3.11) and (3.14)) which are considered at a time t
and in which each of the time derivatives is approximated via the backward finite dif-
ference using the time step τcou (see Section 3.4). The resulting values are prescribed as

qb,n+1
Xn,Neu,i,j and qb,n+1

T,Neu,i,j, respectively, in (3.3) and (3.5) for all the time levels tn+1∈(t−τcou,t]

(see Section 3.4). Thus, according to Fig. 4 (page 366), the mass and heat fluxes going into
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Ωpm through the line segment connecting the nodes x1
2 and xs

2 (i.e., through Γb
3,2) are

|Γb
3,2|qb,n+1

Xn ,Neu,3,2 :=−1

2
|Γs

2,1|ρs
n,2,1(t)

(

vs
2,1(t)+V s

n,2,1(t)
)

·ns
2,1

=
|Vs

2 |
2

ρs
n,2(t)−ρs

n,2(t−τcou)

τcou

+
1

2 ∑
j∈{0,2,3}

|Γs
2,j|ρs

n,2,j(t)
(

vs
2,j(t)+V s

n,2,j(t)
)

·ns
2,j, (3.26)

|Γb
3,2|qb,n+1

T,Neu,3,2 :=−1

2
|Γs

2,1|
[

Ps
2,1(t)·vs

2,1(t)+Qs
2,1(t)+(ρe)s

2,1(t)vs
2,1(t)

]

·ns
2,1

=
|Vs

2 |
2

(ρe)s
2(t)−(ρe)s

2(t−τcou)

τcou
− |Vs

2 |
2

g ·(ρv)s
2(t)

+
1

2 ∑
j∈{0,2,3}

|Γs
2,j|
[

Ps
2,j(t)·vs

2,j(t)+Qs
2,j(t)+(ρe)s

2,j(t)vs
2,j(t)

]

·ns
2,j. (3.27)

Note that the factor 1/2 in (3.26) and (3.27) follows from the fact that 2·|Γb
3,2|= |Γs

2,1|.
When applying the above procedure, the numerical fluxes through the parts of the

boundary ∂Ω̃ff not belonging to ∂Ωpm (e.g., one half of the bottom side of Vs
1 in Fig. 4,

page 366) are considered to be zero.

3.3.4 Condition (2.34) for pressure p

Using coupling condition (2.34) for pressure p in Eq. (2.10), the quantity on the right-
hand side at a given time t is approximated via the technique described in Section 3.3.3.
However, this quantity consists of parts which are calculated from different equations
((3.12) and (3.13)) which correspond to different finite volumes (see Fig. 4, page 366).
Therefore, these two parts are considered as values located at the midpoints of the bottom
sides of the corresponding finite volumes V1

i and V2
i , and the desired approximation is

obtained by means of the linear interpolation from the nearest values. The resulting value
is used as pn+1

p,Dir,i in (3.2) for all of the time levels tn+1 ∈ (t−τcou,t] (see Section 3.4). Note

that due to the alignment of the spatial meshes, only the values calculated from (3.12)
need to be interpolated because the node xi ∈ ∂Ωpm is the midpoint of Γ2

i,1, the bottom

side of V2
i . Thus, at the node x2 in Fig. 4 (page 366), we prescribe

pn+1
p,Dir,2 :=

((

p̃1
1,1(t)+ p̃1

2,1(t)
)

/2
)

[

n2
1,1

]

1
+ ˜̃p2

1,1(t)
[

n2
1,1

]

2
, (3.28)

where the parts p̃1
1,1(t), p̃1

2,1(t) and ˜̃p2
1,1(t) corresponding to the volumes V1

1 , V1
2 and V2

1 ,
respectively, are given by

p̃1
k,1(t)=

[

P1
k,1(t)·n1

k,1

]

1
+(ρv1)

1
k,1(t)v1

k,1(t)·n1
k,1

=
|V1

k |
|Γ1

k,1|

(

ρ1
1(t)g1−

(ρv1)
1
k (t)−(ρv1)

1
k (t−τcou)

τcou

)
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− ∑
j∈{0,2,3}

|Γ1
k,j|

|Γ1
k,1|
([

P1
k,j(t)·n1

k,j

]

1
+(ρv1)

1
k,j (t)v1

k,j(t)·n1
k,j

)

for k=1,2, (3.29)

˜̃p2
1,1(t)=

[

P2
1,1(t)·n2

1,1

]

2
+(ρv2)

2
1,1(t)v2

1,1(t)·n2
1,1

=
|V2

1 |
|Γ2

1,1|

(

ρ2
1(t)g2−

(ρv2)
2
1(t)−(ρv2)

2
1(t−τcou)

τcou

)

− ∑
j∈{0,2,3}

|Γ2
1,j|

|Γ2
1,1|
([

P2
1,j(t)·n2

1,j

]

2
+(ρv2)

2
1,j (t)v2

1,j(t)·n2
1,j

)

. (3.30)

3.3.5 Conditions (2.38) and (2.41) for mass fluxes

Coupling conditions (2.38) and (2.41) for the mass fluxes in Eqs. (2.19) and (2.20) are
utilized in the same way as conditions (2.36) and (2.37) (see Section 3.3.3). The approxi-
mations of the quantities on the right-hand sides are calculated from the equations which
are obtained by discretizing Eqs. (2.1) and (2.2) considered at a time t by means of the
same discretization techniques as in Section 3.1, i.e., from equations

∑
e∈Λn

i

|Ve
i |φe

ρi(t)−ρi(t−τcou)

τcou
+ ∑

j∈Λi

∑
e∈Λi,j






Γe

i,j






ρe

i,j(t)v
e
i,j(t)·ne

i,j

+ ∑
j∈Λb

i






Γb

i,j






ρb

i,j(t)v
b
i,j(t)·nb

i,j = ∑
e∈Λn

i

|Ve
i |Fi(t), (3.31)

∑
e∈Λn

i

|Ve
i |φe

ρn,i(t)−ρn,i(t−τcou)

τcou

+ ∑
j∈Λi

∑
e∈Λi,j





Γe
i,j





ρe
i,j(t)n

e
i,j ·
(

Xe
n,i,j(t)v

e
i,j(t)−De

i,j(t)∇Xe
n,i,j(t)

)

+ ∑
j∈Λb

i





Γb
i,j





ρb
i,j(t)n

b
i,j ·
(

Xb
n,i,j(t)v

b
i,j(t)−Db

i,j(t)∇Xb
n,i,j(t)

)

= ∑
e∈Λn

i

|Ve
i |Fn,i(t). (3.32)

The resulting values are prescribed in Eqs. (3.10) and (3.11) instead of the terms represent-
ing the numerical fluxes through the bottom side of the corresponding boundary finite
volume Vs

i for all times t̃∈ [t,t+τcou) (see Section 3.4). Consequently, in the case of the
mass flux of the mixture and the mass flux of the NAPL vapor through ∂Vs

2 ∩∂V3 in Fig. 4
(page 366), we have

|Γs
2,1|ρs

2,1(t̃)v
s
2,1(t̃)·ns

2,1 :=− ∑
j∈Λb

3





Γb
3,j





ρb
3,j(t)v

b
3,j(t)·nb

3,j = ∑
e∈Λn

3

|Ve
3 |φe

ρ3(t)−ρ3(t−τcou)

τcou

+ ∑
j∈Λ3

∑
e∈Λ3,j





Γe
3,j





ρe
3,j(t)v

e
3,j(t)·ne

3,j− ∑
e∈Λn

3

|Ve
3 |F3(t), (3.33)
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|Γs
2,1|ρs

n,2,1(t̃)
(

vs
2,1(t̃)+V s

n,2,1(t̃)
)

·ns
2,1

:=− ∑
j∈Λb

3






Γb

3,j






ρb

3,j(t)n
b
3,j ·
(

Xb
n,3,j(t)v

b
3,j(t)−Db

3,j(t)∇Xb
n,3,j(t)

)

= ∑
e∈Λn

3

|Ve
3 |φe

ρn,3(t)−ρn,3(t−τcou)

τcou

+ ∑
j∈Λ3

∑
e∈Λ3,j





Γe
3,j





ρe
3,j(t)n

e
3,j ·
(

Xe
n,3,j(t)v

e
3,j(t)−De

3,j(t)∇Xe
n,3,j(t)

)

− ∑
e∈Λn

3

|Ve
3 |Fn,3(t). (3.34)

3.3.6 Condition (2.38) for momentum ρv in Eq. (3.13)

Finally, when using coupling condition (2.38) for Eq. (3.13), we calculate the term

∑
j∈Λb

i






Γb

i,j






ρb

i,j(t)v
b
i,j(t)·nb

i,j (3.35)

from Eq. (3.31) and assume that

|Γ2
k,1|
(

|
[

ρ2
k,1(t̃)v

2
k,1(t̃)

]

1

[

n2
k,1

]

1
+
[

ρ2
k,1v2

k,1(t̃)
]

2

[

n2
k,1

]

2

)

=− ∑
j∈Λb

i





Γb
i,j





ρb
i,j(t)v

b
i,j(t)·nb

i,j (3.36)

for boundary finite volumes V2
k and Vi such that Γ2

k,1=Γb
i (e.g., the volumes V2

1 and V2 in

Fig. 4) and for all times t̃∈ [t,t+τcou) (see Section 3.4). Considering the fact that the first
term in (3.36) can be obtained independently of the second one by solving (3.12), we can
prescribe
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Figure 4: Structure of spatial meshes covering Ω
pm∪Ω̃

ff
in the simulations. The dotted lines denote the

auxiliary parts of the meshes and Γ2
1,1, the bottom side of the volume V2

1 . Note that x1 = xs
1, x3 = xs

2 and

Γb
2=Γ2

1,1.
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[

ρ2
k,1(t̃)v

2
k,1(t̃)

]

2
:=

−1

|Γ2
k,1|
[

n2
k,1

]

2



 ∑
j∈Λb

i






Γb

i,j






ρb

i,j(t)v
b
i,j(t)·nb

i,j+|Γ2
k,1|
[

ρ2
k,1(t̃)v

2
k,1(t̃)

]

1

[

n2
k,1

]

1



.

(3.37)
But since there are not any 2-nodes on Γ2

k,1 (see the edge Γ2
1,1 in Fig. 4), the value of the

right-hand side of (3.37) is prescribed as (ρv2)2
k(t̃). Hence, at the node x2

1 in Fig. 4, we
have

(ρv2)
2
1(t̃) :=

−1

|Γ2
1,1|
[

n2
1,1

]

2



 ∑
j∈Λb

2






Γb

2,j






ρb

2,j(t)v
b
2,j(t)·nb

2,j+|Γ2
1,1|
[

ρ2
1,1(t̃)v

2
1,1(t̃)

]

1

[

n2
1,1

]

1



.

(3.38)

3.4 Coupling of numerical schemes

In this section, we summarize how the numerical schemes from Sections 3.1 and 3.2 are
coupled via the conditions from Section 3.3. Assume that [tini,tfin] is discretized by means

of a sequence (tn)
Nt
n=0, where tn+1−tn = τcou. The realization of the coupling can be de-

scribed by the following algorithm:

1. Calculate the initial conditions for the model of coupled flows by finding the nu-
merical solutions of the submodels from Sections 3.1 and 3.2 on a time interval
[tini,tfin], where the submodels are solved uncoupled under stationary conditions.
Here the values tini and tfin are temporary values which are not related to the actual
initial and final time introduced on page 352 and which are used only in this step.
This preparation is necessary because the initial conditions for Ωff need to be close
to steady state. Since the submodels are uncoupled, we use the following boundary
conditions on the interface I (cf. Section 2.3) for all t∈ [tini,tfin] and x∈I :

ppm(t,x) := p
pm
ini (x),

[(

ρcpTv−λm∇T
)

·n
]pm

(t,x) :=0, (3.39)

X
pm
n (t,x) :=X

pm
n,ini(x) or [(Xnρv−Dρ∇Xn)·n]pm(t,x) :=0, (3.40)

(

2[Sn]ff (t,x)
)

·t :=

(

− αBJ√
tTkt

vff (t,x)

)

·t, (3.41)

[ρv ·n]ff (t,x) :=0, Tff (t,x) :=T
ff
ini(x), (3.42)

X
ff
n (t,x) :=ρ

ff
n,ini(x)/ρ

ff
ini(x) or [(ρn (v+V n))·n]ff (t,x) :=0, (3.43)

where we use the combination of the conditions in Eqs. (3.40) and (3.43) which
corresponds to our choice of the conditions from Eqs. (2.35), (2.36), (2.40) and (2.41).

2. Set the index of the time level n := 0 and use the values of the state variables from
the final time of the simulation in step 1 as the initial conditions for the solution
of the numerical submodels from Sections 3.1 and 3.2 on the time interval [tini,tfin]
(i.e., as the solution at time t= tini).
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3. Using the discretized versions of coupling conditions from Section 3.3, calculate the
values which are to be prescribed at I for Ωff for times t∈ [tn,tn+1). If tn = tini, use
the conditions from Section 3.3 modified in the same way as in step 1.

4. Solve the numerical submodel from Section 3.2 on the time interval [tn,tn+1] using
the boundary conditions at I from step 3.

5. Using the discretized versions of coupling conditions from Section 3.3, calculate the
values which are to be prescribed at I for Ωpm for times t∈ [tn,tn+1).

6. Solve the numerical submodel from Section 3.1 on the time interval [tn,tn+1] using
the boundary conditions at I from step 5.

7. If tn+1 6= tfin, increase n by one and go to step 3. If tn+1= tfin, then at interface nodes,
prescribe the latest solution values. (This is done because each of the submodels
has its own interface values.) Then stop.

Note that although the algorithm from Section 3.2 is used prior to the one from Section 3.1
on each time interval [tn,tn+1], these algorithms can be used in the reverse order too (as
in Test 2 in Section 4.1).

4 Computational studies

In this section, we present the results of several numerical tests which model flow in a
tank filled with sand and in the free space of atmospheric flow above its surface. This
setup corresponds to the laboratory experiments reported in [8] and [13].

In these tests, we used the following setup: The subdomains are defined as Ωpm =
(0,3)×(−1,0) and Ωff =(0,3)×(0,1) (see Fig. 5, page 370). Many physical parameters in
the numerical model have the same constant values in all the tests. These values as well
as the rest of the parameter values mentioned in this paragraph are listed (together with
their units) in Table 1. The permeability tensor k is a scalar multiple of the identity tensor,
i.e., k= k̃I, where k̃ varies between k̃1 and k̃2 (see Fig. 7, page 380). The porosity φ and
density ρs vary linearly with k̃ between φ1 and φ2 and between ρs,1 and ρs,2, respectively.
Finally, based on information in [6], the coefficient kTn is defined as

kTn =0.077XnXg. (4.1)

In step 1 of the algorithm in Section 3.4, we always considered tini = 0 and tfin = 1,
where the values are in seconds. The initial conditions for time tini in step 1 were always
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Table 1: Values of constant physical parameters. The values for the gas and NAPL vapor correspond to the
values for the air and trichloroethylene [22], respectively. The values for the porous medium are selected based
on the values listed in [3] and [27]. The values of Dg,n, Dg,g, Dn,n, kTg and kTn are calculated via Eq. (2.28)
and the formula kTn =−kTg, where kTn is given by Eq. (4.1).

parameter value units parameter value units

µ 1.81·10−5 kg·m−1 ·s−1 a 0.01 m

Mg 0.02896 kg·mol−1 ρs,1 1500.0 kg·m−3

Mn 0.13139 kg·mol−1 ρs,2 1590.0 kg·m−3

R 8.3144621 J·K−1 ·mol−1 cs 830.0 m2 ·s−2 ·K−1

g1 0 m·s−2 cp,g 1005.0 m2 ·s−2 ·K−1

g2 −9.81 m·s−2 cp,n 1300.0 m2 ·s−2 ·K−1

F 0 kg·m−3 ·s−1 cV,g 718.0 m2 ·s−2 ·K−1

Fn 0 kg·m−3 ·s−1 cV,n 975.0 m2 ·s−2 ·K−1

φ1 0.399 − λs 0.2 kg·m·s−3 ·K−1

φ2 0.433 − λ 0.024 kg·m·s−3 ·K−1

k̃1 2.0·10−9 m2 qs 0 kg·m−1 ·s−3

k̃2 2.0·10−11 m2 q 0 kg·m−1 ·s−3

Dn 8.35·10−6 m2 ·s−1 αBJ 1.0 −
Dn,g 8.35·10−6 m2 ·s−1 p0 101325.0 Pa

the following:

Tini(x)=T
pm
0 , Xn,ini(x)=X

pm
n,0, pini(x)= p0 exp

(

M
pm
0 g2(x2−0.5)

RT
pm
0

)

∀x∈Ω
pm

,

where M
pm
0 =

(

X
pm
n,0/Mn+(1−X

pm
n,0)/Mg

)−1
;

Tini(x)=T
ff
0 , ρini(x)=

p0 M
ff
0

RT
ff
0

exp

(

M
ff
0 g2(x2−0.5)

RT
ff
0

)

, ρn,ini(x)=X
ff
n,0ρini(x),

v1,ini(x)=v1,0x2x2, v2,ini(x)=0 ∀x∈ Ω̃
ff

,

where M
ff
0 =

(

X
ff
n,0/Mn+(1−X

ff
n,0)/Mg

)−1
.

The constants T
pm
0 , X

pm
n,0, T

ff
0 , X

ff
n,0 and v1,0 in the above formulas will be specified in the

description of each test. The value of p0 is the same in all tests. It is listed in Table 1.

Remark that the initial conditions for Ω
pm

represent hydrostatic conditions at constant
temperature T

pm
0 and mass fraction X

pm
n,0.

In all the tests, ∂Ω was divided into several parts on which different boundary con-
ditions were prescribed (see Figs. 5 and 6, pages 370 and 371). In the following list, the



370 O. Pártl et al. / Commun. Comput. Phys., 26 (2019), pp. 346-388

0.0
−1.0

3.0

0.0

1.0

x2 [m]

x1 [m]

Γ
ff
top

1

I

Γ
ff
left

Γ
ff
right

Γ
pm
wall

Γ
pm
right

Γ
pm
gap

2

Ωff

Ωpm

−0.875
−0.625

(a) Division of ∂Ω in Tests 1–4.
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(b) Division of ∂Ω in Tests 5 and 6.

Figure 5: Division of ∂Ω in Tests 1–6. The vertical coordinates of the endpoints of Γ
pm
gap1

, Γ
pm
gap2

are x2=−0.625

and x2 =−0.875. In Test 6, Γ
pm
gap1

was replaced by Γ
pm
wall

.

’extrapolation’ means that on ∂Ωff , the new values of the numerical solution are calcu-
lated via extrapolation from the new values of the numerical solution which we already
have in the interior of Ωff . For ∂Ωff , we considered these parts:

• Γ
ff
left: For all t∈ [tini,tfin], we prescribe

ρ(t,x)=ρini(x), ρn(t,x)=X
ff
n,0ρ(t,x), v(t,x)=vini(x) ∀x∈Γ

ff
left

for step 1 of the algorithm in Section 3.4,

ρ(t,x)= p1
ρini(x)

p0
, ρn(t,x)=Xn,1ρ(t,x), v(t,x)=vini(x) ∀x∈Γ

ff
left otherwise,

and using the constant extrapolation, we extrapolate p from the interior of Ωff .

• Γ
ff
top1

: We prescribe v(t,x)=vini(x) ∀x∈Γ
ff
top1

, t∈ [tini,tfin] and we extrapolate ρ and
p using the linear extrapolation and Xn using the constant extrapolation from the
interior of Ωff .

• Γ
ff
top2

: We prescribe v(t,x)=vini(x) ∀x∈Γ
ff
top2

, t∈ [tini,tfin] and we extrapolate ρ using
the linear extrapolation and ρn and T using the constant extrapolation from the
interior of Ωff .

• Γ
ff
right: We prescribe p(t,x)= p0exp

(

M
ff
0 g2(x2−0.5)/(RT

ff
0 )
)

∀x∈Γ
ff
right, t∈ [tini,tfin]

and we extrapolate ρ, ρn and v2 using the constant extrapolation and we solve
(3.12).

• Γ
ff
side: We prescribe v(t,x)= vini(x) ∀x∈ Γ

ff
side, t∈ [tini,tfin] and we extrapolate ρ, ρn

and T using the constant extrapolation from the interior of Ωff .

• I : This part is described in Sections 3.3 and 3.4.
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Figure 6: Division of ∂Ω in Test 7.

The constants p1 and Xn,1 in the above list will be specified later on. We note that in the
numerical tests presented in this text, the original domain Ωff was extended by one layer
of auxiliary rectangles on the left- and right-hand side (see Fig. 4, page 366). Therefore,

the boundary conditions for Γ
ff
left, Γ

ff
right and Γ

ff
side were prescribed at the dummy nodes,

and the boundaries Γ
ff
top1

and Γ
ff
top2

were extended. The corner nodes were considered to

be parts of Γ
ff
left, Γ

ff
right and Γ

ff
side.

For ∂Ωpm, the following parts were considered (see Figs. 5 and 6, pages 370 and 371):

• Γ
pm
wall: We assume that Γ

pm
wall is a subset of Γp,Neu, ΓXn,Neu and ΓT,Neu and we set

qp,Neu(t,x)=0, qXn ,Neu(t,x)=0, qT,Neu(t,x)=0 ∀x∈Γ
pm
wall, t∈ [tini,tfin].

• Γ
pm
gap1

: We assume that Γ
pm
gap1

is a subset of Γp,Neu, ΓXn,out and ΓT,out. For all t∈[tini,tfin],
we set

qp,Neu(t,x)=0 ∀x∈Γ
pm
gap1

for step 1 of the algorithm in Section 3.4,

qp,Neu(t,x)=10−3 ∀x∈Γ
pm
gap1

otherwise.

• Γ
pm
gap2

: We assume that Γ
pm
gap2

is a subset of Γp,Dir, ΓXn,Dir and ΓT,Dir. For all t∈[tini,tfin],
we set

pp,Dir(t,x)= pini(x) ∀x∈Γ
pm
gap2

for step 1 of the algorithm in Section 3.4,

pp,Dir(t,x)=
p2

p0
pini(x) ∀x∈Γ

pm
gap2

otherwise,

XnXn,Dir(t,x)=Xn,ini(x), TT,Dir(t,x)=Tini(x) ∀x∈Γ
pm
gap2

,

where the constant p2 will be specified later on.

• Γ
pm
right: We assume that Γ

pm
right is a subset of Γp,Dir, ΓXn,Dir and ΓT,Dir and we set

pp,Dir= pini(x), XnXn,Dir(t,x)=Xn,ini(x), TT,Dir(t,x)=Tini(x), (4.2)

∀x∈Γ
pm
right, t∈ [tini,tfin]. (4.3)
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• I : This part is described in Sections 3.3 and 3.4.

All the results presented here were obtained using the numerical algorithm described
in this paper. This algorithm was implemented in the C++ programming language and
parallelized via OpenMP. The computations were performed on a computer with 4 core
Intel Core i5-2500 CPU 3.30 GHz, 7.8 GB RAM.

The remaining details of the computational tests are presented in the following sec-
tions.

4.1 Quantitative computational studies

In order to assess the reliability of our numerical model, we chose several reference exper-
imental setups and for each setup, we carried out simulations with differently fine spatial
meshes. Then, we measured the difference between the respective numerical solutions
and a numerical solution on a very fine mesh (’fine solution’).

The fineness of the spatial meshes was characterized by the parameter h denoting the
largest circumdiameter of all the mesh cells. Given a corresponding solution zh and a fine
solution zfine, the difference ‖zh−zfine‖t between these solutions (’error’) was measured
as

‖zh−zfine‖t= max
j=0,···,N

{

‖zh(tini+ jν)−zfine(tini+ jν)‖ξ

}

, (4.4)

where ν denotes the output time step, N stands for the number of the output time steps
(tini+Nν= tfin), and ‖zh(t)−zfine(t)‖ξ is one of the norms

‖zh(t)−zfine(t)‖l1
= ∑

k=1,···,Nref

|Vk|·





zk

h(t)−zk
fine(t)






, (4.5)

‖zh(t)−zfine(t)‖l2
=

√

∑
k=1,···,Nref

|Vk|·


zk
h(t)−zk

fine(t)




2
, (4.6)

where zk
h(t) and zk

fine(t) denote the k-th nodal values of the projections of zh(t) and zfine(t)
onto a regular orthogonal mesh (’reference mesh’) with Nref nodes, and |Vk| is the area of
the finite volume associated with the k-th node of the reference mesh. The mesh for the
measurement of the error in Ω

pm
had the same structure as the mesh depicted in Fig. 2

(page 356). In the case of Ω
ff

, the mesh with the structure of the mesh of rectangles in
Fig. 3 (page 360) was considered for all variables. Both meshes were uniform.

The resulting errors were compared by calculating the experimental order of conver-
gence (EOC) [10], i.e., the coefficient αEOC from the formula

‖zh1
−zfine‖t

‖zh2
−zfine‖t

=

(

h1

h2

)αEOC

, (4.7)

where h1 and h2 are two different values of h.
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Table 2: Mesh parameters in Tests 1–7. According to the definition of h, we have h=
√

h2
x1
+h2

x2
.

mesh number hx1 hx2 τ τcou

1 3/24 1/16 1/16 1/8

2 3/49 1/33 1/64 1/16

3 3/99 1/67 1/256 1/32

4 3/192 1/128 1/1024 1/64

In all of the computations, we chose tini = 0 and tfin = 120 (where the values are in

seconds), and the errors were measured with ν=1 separately for Ω
pm

and Ω
ff

. The trian-

gulation of Ω
pm

had the same structure as the triangulation depicted in Fig. 2 (page 356).

In the case of Ω
ff

, the mesh with the same structure as the mesh of rectangles in Fig. 3
(page 360) was employed. Both meshes were uniform. The spatial steps in x1- and x2-
direction, hx1

and hx2 (they were the same in both subdomains) together with the time
step for coupling, τcou, and the time step for Ωpm, τ, are listed in Table 2. Note that for

our choice of spatial meshes, we have h=
√

h2
x1
+h2

x2
. Also note that the values of the steps

hx1
and hx2 are chosen in such a way that on each mesh, the numerical approximations of

the line segment Γ
pm
gap2

and the regions of low permeability (in Test 4) slightly differ. The
reason for this choice was that we wanted to avoid superconvergence.

The numerical solution corresponding to mesh 4 was considered as the fine solution.
The spatial steps of the reference mesh were hx1

=1/384 and hx2 =1/256. The boundary
∂Ω was always divided as in Fig. 5a. The runtimes for the meshes 1, 2, 3 and 4 were
approximately 15 min, 2 h, 17 h and 7 days, respectively.

The EOC measurements were carried out in four tests which are described in Sec-
tions 4.1.1–4.1.4. Their results are discussed in Section 4.1.5.

4.1.1 Test 1

This test models the escape of NAPL vapor from soil through its surface under the heat-
ing of this soil in the case where there is flow inside the soil which is not induced by the
atmospheric flow above the soil surface and which affects this atmospheric flow.

• Particular test setting: T
pm
0 = 290.15, X

pm
n,0 = 10−3, T

ff
0 = 295.15, v1,0 = 20.0, p1 = p0,

p2 = 101315.0, X
ff
n,0 = 0 and Xn,1 = X

ff
n,0. The soil is homogeneous. Its properties

correspond to the parameter values with the subscript 1 in Table 1, page 369.

• Particular coupling conditions: Condition (2.36) is used for the mass flux of the
NAPL vapor in (2.11). Condition (2.40) is used for the mass fraction of the NAPL
vapor Xn in (2.20).

The resulting errors and corresponding EOC coefficients are listed in Tables 3 and 4,
pages 374 and 375.
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Table 3: Errors and experimental orders of convergence (EOCs) for Ω
pm

for Test 1.

p in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 5.097927·10−1 - 4.683780·101 -

2 2.106274·10−1 1.2349 1.432574·101 1.6550

3 1.158169·10−1 0.8492 4.556323·100 1.6266

Xn in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 1.459467·10−4 - 4.720607·10−3 -

2 8.260621·10−5 0.7952 2.363393·10−3 0.9666

3 3.492286·10−5 1.2225 6.727359·10−4 1.7842

T in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 8.252852·10−3 - 1.469128·10−1 -

2 6.480628·10−3 0.3377 1.115703·10−1 0.3845

3 3.396655·10−3 0.9173 5.671265·10−2 0.9608

Table 4: Errors and experimental orders of convergence (EOCs) for Ω
ff

for Test 1.

ρ in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 4.291818·10−3 - 7.287217·10−2 -

2 2.316371·10−3 0.8616 2.469543·10−2 1.5118

3 8.281412·10−4 1.4605 6.630573·10−3 1.8671

ρn in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 2.316029·10−4 - 4.576338·10−3 -

2 1.914159·10−4 0.2662 2.411136·10−3 0.8952

3 7.477627·10−5 1.3347 5.245653·10−4 2.1658

ρv1 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 3.031204·10−2 - 5.576193·100 -

2 6.931596·10−3 2.0613 1.275801·100 2.0606

3 1.621265·10−3 2.0630 2.693425·10−1 2.2085
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Table 4 (continued).

ρv2 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 6.259461·10−4 - 1.568492·10−2 -

2 3.692922·10−4 0.7372 6.882566·10−3 1.1508

3 1.555041·10−4 1.2281 2.059193·10−3 1.7134

ρe in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 1.349656·101 - 3.278175·102 -

2 8.967213·100 0.5712 1.382702·102 1.2060

3 3.501076·100 1.3355 3.111505·101 2.1179

4.1.2 Test 2

This test models the same situation as Test 1, but the algorithm from Section 3.4 is modi-
fied in the way described below. This test is performed in order to show that this modifi-
cation can be done.

• Particular test setting: Same as in Test 1.

• Particular coupling conditions: Same as in Test 1, except that for this test, the al-
gorithm from Section 3.4 is modified so that on each time interval [tn,tn+1], the
submodel from Section 3.1 is solved prior to the submodel from Section 3.2.

The resulting errors and corresponding EOC coefficients are listed in Tables 5 and 6,
pages 376 and 377. As expected, they are very similar to the results of Test 1.

4.1.3 Test 3

This test is similar to Test 1. But in this case, the NAPL vapor penetrates the soil which is
cooled. Moreover, we use a different combination of coupling conditions.

• Particular test setting: T
pm
0 = 295.65, X

pm
n,0 = 0, T

ff
0 = 295.15, v1,0 = 10.0, p1 = p0,

p2 = 101315.0, X
ff
n,0 = 10−3 and Xn,1 = X

ff
n,0. The soil is homogeneous. Its proper-

ties correspond to the parameter values with the subscript 1 in Table 1, page 369.

• Particular coupling conditions: Condition (2.35) is used for the mass fraction of the
NAPL vapor Xn in (2.11). Condition (2.41) is used for the mass flux of the NAPL
vapor in (2.20).

The resulting errors and corresponding EOC coefficients are listed in Tables 7 and 8,
pages 377 and 378.
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Table 5: Errors and experimental orders of convergence (EOCs) for Ω
pm

for Test 2.

p in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 5.097926·10−1 - 4.684219·101 -

2 2.106699·10−1 1.2346 1.432051·101 1.6557

3 1.263277·10−1 0.7262 4.462936·100 1.6555

Xn in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 1.458403·10−4 - 4.705354·10−3 -

2 8.255578·10−5 0.7950 2.361648·10−3 0.9631

3 3.498405·10−5 1.2191 6.726280·10−4 1.7833

T in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 8.252334·10−3 - 1.468319·10−1 -

2 6.480188·10−3 0.3377 1.115312·10−1 0.3842

3 3.396360·10−3 0.9173 5.670170·10−2 0.9606

Table 6: Errors and experimental orders of convergence (EOCs) for Ω
ff

for Test 2.

ρ in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 4.292611·10−3 - 7.286870·10−2 -

2 2.315768·10−3 0.8622 2.469129·10−2 1.5119

3 8.276825·10−4 1.4609 6.627576·10−3 1.8675

ρn in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 2.310381·10−4 - 4.574550·10−3 -

2 1.911726·10−4 0.2646 2.410002·10−3 0.8954

3 7.469858·10−5 1.3343 5.240306·10−4 2.1666

ρv1 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 3.062718·10−2 - 5.576724·100 -

2 6.963459·10−3 2.0694 1.275689·100 2.0608

3 1.595353·10−3 2.0924 2.693916·10−1 2.2081
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Table 6 (continued).

ρv2 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 6.259481·10−4 - 1.568834·10−2 -

2 3.692939·10−4 0.7372 6.882376·10−3 1.1511

3 1.555051·10−4 1.2281 2.058395·10−3 1.7139

ρe in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 1.372076·101 - 3.276810·102 -

2 8.963384·100 0.5948 1.384656·102 1.2035

3 3.501324·100 1.3347 3.118421·101 2.1167

Table 7: Errors and experimental orders of convergence (EOCs) for Ω
pm

for Test 3.

p in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 5.271308·10−1 - 4.796027·101 -

2 2.174821·10−1 1.2369 1.425991·101 1.6945

3 1.021158·10−1 1.0735 4.285839·100 1.7070

Xn in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 1.485054·10−4 - 6.205378·10−3 -

2 8.210769·10−5 0.8279 1.771374·10−3 1.7515

3 3.231605·10−5 1.3240 5.233401·10−4 1.7313

T in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 8.383680·10−4 - 1.584700·10−2 -

2 6.552652·10−4 0.3443 1.173008·10−2 0.4203

3 3.386718·10−4 0.9372 5.913397·10−3 0.9726

Table 8: Errors and experimental orders of convergence (EOCs) for Ω
ff

for Test 3.

ρ in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 4.619816·10−4 - 8.821972·10−3 -

2 2.476805·10−4 0.8709 2.730564·10−3 1.6384

3 9.121167·10−5 1.4185 7.845394·10−4 1.7709
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Table 8 (continued).

ρn in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 7.440048·10−5 - 2.446830·10−3 -

2 4.374683·10−5 0.7419 9.565878·10−4 1.3121

3 2.027859·10−5 1.0917 2.982784·10−4 1.6547

ρv1 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 1.463711·10−2 - 2.776736·100 -

2 3.653551·10−3 1.9389 6.358227·10−1 2.0594

3 8.278029·10−4 2.1081 1.337722·10−1 2.2134

ρv2 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 4.366362·10−4 - 1.111823·10−2 -

2 3.726740·10−4 0.2213 5.709312·10−3 0.9311

3 2.162009·10−4 0.7731 2.815189·10−3 1.0040

ρe in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 3.486931·100 - 1.453591·102 -

2 2.067647·100 0.7301 5.235062·101 1.4268

3 9.583252·10−1 1.0919 1.618243·101 1.6671

4.1.4 Test 4

This test models a situation similar to that in Test 3. But in this case, the mixture entering
Ωff from the left differs from the mixture inside Ωff in ρ, ρn and T. Moreover, the soil is
heterogeneous.

• Particular test setting: T
pm
0 =296.15, X

pm
n,0=0, T

ff
0 =295.15, v1,0 =20.0, p1 =101525.0,

p2 = 101315.0, X
ff
n,0 = 0 and Xn,1 = 10−3. Inside Ωpm, there are three regions of low

permeability the boundary of which are depicted in Fig. 7, page 380. In Table 1
(page 369), the subscripts 1 and 2 correspond to the parameters of the soil with the
higher and lower permeability, respectively.

• Particular coupling conditions: Same as in Test 1.

The resulting errors and corresponding EOC coefficients are listed in Tables 9 and 10,
pages 379 and 380. Fig. 7 (page 380) also depicts the direction of the flow and the pressure
distribution in Ω.
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Table 9: Errors and experimental orders of convergence (EOCs) for Ω
pm

for Test 4.

p in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 7.620412·10−1 - 9.284969·101 -

2 2.651467·10−1 1.4749 2.297277·101 1.9513

3 9.077255·10−2 1.5221 6.959354·100 1.6957

Xn in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 9.926345·10−5 - 2.743497·10−3 -

2 5.524305·10−5 0.8187 9.683046·10−4 1.4550

3 1.501800·10−5 1.8495 2.402539·10−4 1.9792

T in Ω
pm

mesh number error l2 EOC l2 error l1 EOC l1

1 1.933644·10−3 - 2.985016·10−2 -

2 1.518990·10−3 0.3372 2.297951·10−2 0.3655

3 8.132838·10−4 0.8871 1.177145·10−2 0.9498

Table 10: Errors and experimental orders of convergence (EOCs) for Ω
ff

for Test 4.

ρ in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 8.610408·10−4 - 1.790453·10−2 -

2 4.601266·10−4 0.8755 6.228124·10−3 1.4753

3 1.682407·10−4 1.4286 1.972030·10−3 1.6329

ρn in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 1.638326·10−4 - 6.752006·10−3 -

2 8.870314·10−5 0.8572 2.843319·10−3 1.2083

3 3.841112·10−5 1.1884 8.482763·10−4 1.7174

ρv1 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 2.928273·10−2 - 5.568479·100 -

2 6.703896·10−3 2.0597 1.267855·100 2.0674

3 1.477936·10−3 2.1470 2.675459·10−1 2.2091
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Table 10 (continued).

ρv2 in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 2.572633·10−4 - 1.217678·10−2 -

2 2.036363·10−4 0.3266 7.040056·10−3 0.7655

3 1.344821·10−4 0.5891 3.097830·10−3 1.1656

ρe in Ω
ff

mesh number error l2 EOC l2 error l1 EOC l1

1 7.859271·100 - 4.322761·102 -

2 4.231543·100 0.8650 1.606827·102 1.3826

3 1.830714·100 1.1897 4.574894·101 1.7838

x1
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Figure 7: Test 4: Pressure p [Pa] and velocity field at time 2.0 s which were considered as the fine solution.

The arrows indicate the direction and magnitude of the velocity v [m·s−1]. The gray lines are the boundaries
of the regions of low permeability.

4.1.5 Discussion of results

The resulting errors and corresponding EOC coefficients are listed in Tables 3–10 (pages
374–380), where the EOC coefficient in the i-th row is calculated from the errors on the
(i−1)-th and i-th mesh.

Although on each mesh, the numerical approximations of the line segment Γ
pm
gap2

and
the regions of low permeability differ, the EOC coefficients indicate the convergence of
the numerical solution.

The values of the EOC coefficients for T are influenced by longer relaxation times of
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heat transfer inside soil. However, due to the runtimes listed on page 373, simulations
with tfin, e.g., of the order of hours or days are beyond the scope of this paper. The reason
why the EOC coefficients for ρv2 are much lower than that for ρv1 may be the fact that
ρv2 is much more affected by the presence of the artificial interface between Ωff and Ωpm

near which the values of ρv2 may oscillate. These possible oscillations then increase the
error in the other variables on both sides of the interface I .

This effect can be illustrated by the following example. If we measure the error in the
numerical solution in Test 1 at the k-th mesh node as

w

w

wzk
h−zk

fine

w

w

w

l̃2
=

√

∑
j=0,···,N

ν


zk
h(tini+ jν)−zk

fine(tini+ jν)




2
, (4.8)

where we use the same notation as in Eqs. (4.4)–(4.6), and compare the resulting values,
we can see that the largest error in ρv2 and, e.g., in Xn occurs indeed near the interface I .
This is depicted in Figs. 8 and 9.

Tests 1–4 also show the following important details: Tests 1 and 2 prove that in the
algorithm from Section 3.4, the submodels from Sections 3.1 and 3.2 can be solved in
reverse order. Further, Tests 3 and 4 prove that we can use both combinations of coupling
conditions listed in Section 2.3.

x1

x2

0.0
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Figure 8: Test 1: Contour lines of the error (in the l̃2-norm) in the mass fraction of NAPL vapor Xn calculated
on mesh 3. The highest error occurs near the interface I , which is located at x2 =0.0. Only the part of Ωpm

for x2 ≥−0.6 is shown because in the rest of Ωpm, the error is lower than 5·10−10.
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Figure 9: Test 1: Contour lines of the error (in the l̃2-norm) in the momentum component ρv2 calculated on

mesh 3. The largest error occurs near the interface I , which is located at x2 = 0.0. Only the part of Ωff for
x2 ≤0.4 is shown because in the rest of Ωff , the error is lower than 10−10.
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4.2 Qualitative computational studies

In this section, we present the results of three tests (Tests 5–7) with a longer time interval
[tini,tfin]. In all of these tests, we chose tini =0, tfin =24·3600 and we employed the same
spatial meshes and time steps τ and τcou as in the case of the mesh 1 in Section 4.1.

4.2.1 Test 5

This test models the penetration of NAPL vapor into a tank filled with heterogeneous
soil under the cooling of this soil in the case where the gaseous mixture is pumped out of
the tank through a gap in one of its walls.

• Division of ∂Ω: As in Fig. 5b, page 370.

• Particular test setting: T
pm
0 =296.15, X

pm
n,0=0, T

ff
0 =295.15, v1,0 =20.0, p1 =101525.0,

X
ff
n,0=0 and Xn,1=10−3. The soil properties are the same as in Test 4.

• Particular coupling conditions: Same as in Test 3.

The results are depicted in Figs. 10 and 11, pages 382 and 383. We can see that the changes
in Xn inside Ωpm are much faster than the changes in T.
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Figure 10: Test 5: Mass fraction Xn [−] and velocity field at time 24 h. The arrows indicate the direction and

magnitude of the velocity v [m·s−1]. The gray lines are the boundaries of the regions of low permeability. The
color scale indicates that the spatial distribution of Xn in Ωpm is determined by the shapes of these regions and
by the gap in the right wall. It also indicates that after 24 h, Xn is almost constant in Ω.
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Figure 11: Test 5: Temperature T [K] and velocity field at time 24 h. The arrows indicate the direction and

magnitude of the velocity v [m·s−1]. The gray lines are the boundaries of the regions of low permeability.
The color scale indicates that after 24 h, the spatial distribution of T is almost the same as the initial one (cf.
Fig. 10, page 382), and that the soil cools the fastest near the middle of the interface I (i.e., near the gap
among the regions of low permeability).

4.2.2 Test 6

This test models the escape of NAPL vapor from a tank filled with homogeneous soil.
Contrary to Test 5, the walls of the tank are perfectly sealed.

• Division of ∂Ω: As in Fig. 4, page 370, except that Γ
pm
gap1

is replaced by Γ
pm
wall.

• Particular test setting: T
pm
0 = 290.15, X

pm
n,0 = 10−3, T

ff
0 = 295.15, v1,0 = 20.0, p1 = p0,

X
ff
n,0=0 and Xn,1=0. The soil properties are the same as in Test 1.

• Particular coupling conditions: Same as in Test 1.

The results are depicted in Figs. 12, 13 and 14, pages 384 and 385. In the first two figures,
we can see how the NAPL vapor gradually escapes from Ω, and how Ωpm slowly warms
up. The graph in Fig. 14 shows how the escaping rate of the NAPL vapor decreases in
time, which agrees with the results of the physical experiments presented in [26].

4.2.3 Test 7

This test models the heating of cold air above the surface of warm soil.

• Division of ∂Ω: As in Fig. 6, page 371.
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Figure 12: Test 6: Mass fraction Xn [−] and velocity field at time 24 h. The arrows indicate the direction and

magnitude of the velocity v [m·s−1]. The color scale indicates that the distribution of Xn in Ωpm is almost
uniform in x1 direction, and that the NAPL vapor gradually escapes from Ω (the initial value of Xn in Ωpm

was 10−3).
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Figure 13: Test 6: Temperature T [K] and velocity field at time 24 h. The arrows indicate the direction and

magnitude of the velocity v [m·s−1]. From the color scale, it follows that after 24 h, the highest increase in T
occurs near the ends of the interface I . However, the values of T are still very similar to the initial ones (cf.
Fig. 12).
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Figure 14: Test 6: Cumulative mass loss of NAPL vapor from Ω during the simulation. The NAPL vapor
gradually escapes from Ω, and its escaping rate decreases in time, which agrees with the results presented
in [26].

• Particular test setting: T
pm
0 =305.15, X

pm
n,0 =0, T

ff
0 =295.15, X

ff
n,0=0 and v1,0 =0. The

soil properties are the same as in Test 1.

• Particular coupling conditions: Same as in Test 1.

In Fig. 15 (page 386) we can see the chaotic behavior of the flow field in this test. From
the color scale, it follows that Ωff warms up, but the temperature in Ωpm remains almost
the same.

5 Conclusions

In this paper, we proposed a mathematical formulation and a numerical model for the
description of the non-isothermal compressible flow of a mixture of two gases in a het-
erogeneous porous medium and the atmospheric boundary layer above its surface. Our
model proves to be able to simulate the gas exchange between these two flow domains
under the cooling or heating of the porous medium with realistic material properties. It
also proves to be able to simulate the heating of the atmospheric boundary layer by a
warm porous medium.

Further, we verified the convergence of our numerical algorithm by means of the
measurement of the experimental order of convergence on several test problems.

At this stage, however, only the model and its applicability to hypothetical scenarios
with realistic material properties are presented. It is our future goal to generate data in
a coupled porous media/wind tunnel facility that is available to the authors to validate
the model.
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(a) Time t=40 min.

-1.0

-0.5

x2

0.0

0.5

1.0

x10.0 0.5 1.0 1.5 2.0 2.5 3.0

(b) Time t=1 h.

Figure 15: Test 7: Temperature T [K] and velocity field at different times. The arrows indicate the direction

and magnitude of the velocity v [m·s−1]. The flow in Ωff induced by the warm soil is very chaotic, which

greatly accelerates heat transfer in Ωff . (The initial T in Ωff was 295.15.) From the color scales, we can see

that despite the rapid increase in T in Ωff , the values of T in Ωpm remain almost the same (cf. Figs 11 and
13, pages 383 and 384).
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